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Abstract

Large scale properties of the universe can be explained by Einstein’s general the-

ory of relativity. Λ-CDM model incorporating general relativity predicts the ac-

celerated expansion of universe and large scale distribution of galaxies. Structure

formation equation obtained from this model are non linear and difficult to solve.

Newtonian theory of gravity can be applied to situations after decoupling of mat-

ter and radiation. Newton himself tried to apply his theory to universe but failed.

Reason for failure is that he considered static model with infinite stars. This re-

sult in divergences. The divergences can be avoided by assuming finite number of

particles interacting only through gravitational attraction. This thesis is review

of Newtonian cosmological theory of finite number of discrete particles interact-

ing through gravitational attraction, also with Newtonian version of cosmological

constant. Exact solution we get for Newtonian equations are homothetically ex-

panding background with comoving positions constituting a central configuration.

The scale factor satisfy Rauchaudhuri and Friedmann equations without making

any fluid approximation. These solutions can be linearised to get perturbation

theory for structure formation calculations.



Chapter 1

Introduction

Newtonian cosmological model contains universe made up of discrete particles

interacting only via attractive gravitational force. This model do not require fluid

dynamics or general relativity. The particles in this model can be identified with

stars, galaxies, clusters, superclusters or even molecules. Cause any spherically

symmetric isolated subsystem will move and gravitate like a point particle located

at its ’centre’. The features of this model are :

1.1 No Fluid Model

The usual cosmological model assumes matter as continuous fluid distribution.

Standard fluid properties are derived for particles that only undergoes short range

interactions like collision. These short range interaction properties are not suitable

to explain long range gravitational interaction between stars, galaxies or dark

matter particles. Also if we want to identify galaxies as particle then the number

of particles is much too small for good fluid approximation.

So this model assumes sets of gravitating particles embedded in vacuum and their

interaction is long range gravitational attraction. Thus summation is used instead

of integration in equations describing model.

1



Chapter 1 Introduction 2

1.2 No Divergences

Newtons assume infinite number of stars in his cosmological model and considered

universe to be static. Failure to get cosmological solution was divergences associ-

ated with infinite number of particles. It leads to paradoxes like Olber’s paradox

and Bently’s paradox. Discrete model assume finite number of particles and avoid

these divergences and associated problems.

1.3 No Fourier analysis

In this model we try to get linear solutions to background model for structure

formation. The basic gravitational interactions for structure formation are non

linear and Fourier analysis would not work. For calculating actual dynamics we

can work with actual distribution rather than its Fourier modes.

1.4 No periodic boundary conditions

Periodic boundary conditions restrict the nature of allowed solutions, also in-

troduce artefacts. As periodic boundary conditions violate the conservation of

angular momentum by breaking rotational symmetry, we consider open boundary

condition.

1.5 Outcome

Outcome of this approach is that, if suitable discrete distribution of particles

satisfying central configuration is given, we obtain an exact Newtonian version

of standard FLRW models- a solution that expands homothetically and follow

Raychaudhuri equations for pressure free matter. For large number of particles

solutions are close to spatially homogeneous.

To get the FRLW like solution, initial distribution of particles must satisfy cen-

tral configuration equation. Structure formation for this model can be obtained

perturbing the dynamical equations of model. Also we can change background
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linearly and non linearly to see what happens using numerical integration meth-

ods. Perturbing the solutions gives us linearised Newtonian structure formation

equations.We can also derive Demitriev-Zel’dovich equations, which is different

approach to perturbation and in which we obtain equations governing the motion

of point particles in the background cosmology. These equations are widely used

in study of large scale structure in the universe.



Chapter 2

Discrete Newtonian cosmology

This chapter reviews dynamics of N point particles moving under the influence of

gravity.

2.1 The basic equations

The gravitating masses follows Newton’s laws of attraction. The equation of mo-

tion for interacting point particles, using inertial coordinates for discrete point

particles at position xa and with mass ma > 0 is

ma
d2xa

dt2
= Fa +

∑
b6=a

Fab (2.1)

where Fa are external forces, and Fab are inter particle forces between particle a

and b. a ranges over the value 1, 2, 3, ..., N if there are N particles. Gravitational

force between any two particle is

Fab = − Gmamb

|xa − xb|3
(xa − xb) (2.2)

where G is Newtons gravitational constant. Thus above equation become

ma
d2xa

dt2
= −

∑
b 6=a

Gmamb
(xa − xb)

|xa − xb|3
+ Fa (2.3)

We assume that universe consist of very large but finite number of particles and

apply force law to all particles, so that there is no external force. We can also

4



Chapter 2 Discrete Newtonian cosmology 5

assume that according to symmetry considerations external forces vanish. then

Fa = 0 and we get for each a,

ma
d2xa

dt2
= −

∑
b6=a

Gmamb
(xa − xb)

|xa − xb|3
(2.4)

and

F(grav)
a = − Gmamb

|xa − xb|3
(xa − xb) (2.5)

is total gravitational force exerted on a due to all other particles. We now drop

the superscript and identify gravitational force by symbol Fa

2.1.1 Potential energy

The gravitational force Fa acting on the a th particle can be represented as the

derivative of a gravitational potential energy Va acting on that particle. The

potential energy Va(xc) for the gravitational force on the particle xa is a function

of the position xa defined by

Va(xa) := −
∑
b 6=a

Gmamb

|xa − xb|
(2.6)

This is the discrete version of the continuous definition of potential. we define

xba := xb − xa, xba := |xba| = ((xb − xa).(xb − xa))
1/2. (2.7)

for xa 6= xb,
∂

∂xa

(
1

xba
) = (

1

xba
)3(xb − xa) (2.8)

∂Va(xa)

∂xa

= −
∑
b6=a

Fab = −Fa (2.9)

we can add any constant V0 without affecting the result.

2.1.2 Symmetries

Equations of motion have following symmetries,

• time translation(t→ t+ t0)
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• spatial translation(xa → xa + x0)

• rotation about origin

• boost from one inertial frame to other

2.1.3 Conserved quantities

Central nature of the gravitational force guarantees conservation of momentum,

angular momentum and energy. Mass of the isolated system of particles is also

conserved:

dma/dt = 0 (2.10)

It follows from the symmetries that total mass M , momentumP, and angular

momentumL about origin are conserved:

M =
∑
a

ma = M0(constant) > 0,P =
∑
a

maẋa = P0(constant), (2.11)

L =
∑
a

ma(xa × ẋa) = L0(constant) (2.12)

The conservation of momentum together with mass conservation implies that cen-

tre of mass moves with the constant velocity. Also energy E of system is conserved.

E = T + V = E′(constant) (2.13)

where T is kinetic energy and potential energy is V are given by

T (ẋc) :=
1

2

∑
a

ma(ẋa)2, V (xc) :=
∑
a

Va =
∑
a

∑
b 6=a

Gmamb

|xa − xb|
. (2.14)

The total gravitational potential energy, V (xc) is homogeneous function of degree

K = −1. T represents the total energy of motion of particle and V sum of potential

energies of all the particles. These are just the numbers
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2.1.4 Virial Relation

This result depends on the inverse square nature of the force law. Taking the dot

product of mathbfFa given by (5) with xa, and sum over a to get

∑
a

xa.Fa = −
∑
a

∑
b6=a

Gmamb
xa.(xa − xb)

|xa − xb|3
=

∑
a

∑
b6=a

xa.∂xa(
Gmamb

|xa − xb|
) (2.15)

Euler’s theorem on homogeneous function of degree k (that is function f(V ) such

that f(ax) = akf(x))says

x∂f/∂x = kf (2.16)

in this case f = 1
|xa−xb|

is of degree k = −1, so Euler’s theorem says

xa.∂xaf = −f ⇒ xa.∂xa(
1

|xa − xb|
) = − 1

|xa − xb|
. (2.17)

so that ∑
a

∑
b6=a

xa.∂xa(
Gmamb

|xa − xb|
) = −

∑
a

∑
b6=a

(
Gmamb

|xa − xb|
) = V (2.18)

from the equations above, we can calculate

∑
a

xa.Fa =
∑
a

ma.xa.
d2xa

dt2
=

∑
a

ma(
d

dt
(xa.

dxa

dt
)− dxa

dt
.
dxa

dt
) =

d

dt

∑
a

ma
1

2

d

dt
(xa.xa)−2T

(2.19)

Using all the above equation we will get the scalar virial relation. In celestial

mechanics following equation is called as Lagrange-Jacobi equation.

V =
d2I

dt2
− 2T (2.20)

where I is moment of inertia of the system. Taking time average〈〉, If the average

of the second derivative of the I(t)is zero we get the relation between kinetic and

potential energy

〈d
2I

dt2
〉 = 0⇒ 〈V 〉 = −2〈T 〉 (2.21)

2.2 Cosmological solutions

In this section we are going to discuss solutions of Newtons equations of mo-

tion which evolve by homotheties of the Euclidean space. Newton’s equation of
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motion only allows homothetic solutions if the comoving position of the particle

are constrained to form special configuration known as ”central configuration”.

Central configuration extremize a certain function of position denoted by Ṽ . In

case of large number of particles of equal mass maximizing Ṽ form spherical and

homogeneous ball.

2.2.1 Robertson-Walker like solutions

We assume the self similarity of the solutions. Let S(t) be the homothetic factor,

solutions are then given by

xa = S(t)ra, dra/dt = 0 (2.22)

where ra are comoving coordinates of particle a. so velosity distance relation is

given by

va :=
dxa

dt
= ˙S(t)ra = H(t)xa (2.23)

where H(t) :=
˙S(t)

S(t)
. The gravitational law becomes

mara
d2S(t)

dt2
= −

∑
b6=a

Gmamb
(ra − rb)

S2(t)|ra − rb|3
(2.24)

we define

C(t) := S2(t)
d2S(t)

dt2
(2.25)

then equation becomes

C(t)mara = −
∑
b6=a

Gmamb
(ra − rb)

|ra − rb|3
(2.26)

consistency requires that C(t) is constant

∂

∂dt
(C(t)mara) = 0,⇒ C(t) = Constant =: −GM̃ (2.27)

M̃ has units mass per unit volume.
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2.2.2 Central configuration equation

By taking into account the above definitions gives us

M̃mara = −
∑
b6=a

mamb
(ra − rb)

|ra − rb|3
(2.28)

for all values of a. The above set of nonlinear time independent equations area

known as central configuration equation. Small number of particles form polyhe-

dra. For large number of particles there will be shell like structures in the solution.

We will discuss more about the central configuration and how to find solutions

starting from the random distribution of particles using numerical methods.

2.2.3 Time evolution equation

We have

− GM̃

S2(t)
=
d2S(t)

dt2
(2.29)

is Raychaudhuri equation. Multiplying by (dS/dt) on both sides gives

d

dt
(
GM̃

S(t)
) = − GM̃

S2(t)

dS(t)

dt
=
d2S(t)

dt2
dS(t)

dt
=

1

2

d

dt
(
dS(t)

dt
)2 (2.30)

It can be integrated and gives Friedmann equation

GM̃

S3(t)
=

1

2
[

˜S(t)

S(t)
]2 − E

S2(t)
(2.31)

E is constant of integration. Thus we get the same result as in general relativity.

2.2.4 Virial Relation

For homothetic expansion moment of inertia becomes

I(t) =
1

2

∑
a

max
2
a = S2(t)

∑
a

mar
2
a = S2(t)Ĩ0 (2.32)

The virial relation become

V = 2(
GM̃

S(t)
+ 2E)Ĩ0 − 2T (2.33)
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In contrast to the earlier virial relation time average of the second derivative of

the moment of inertia is not equal to zero here.

So conclusion of above discussion is ”The Newtonian gravitational law of attraction

for finite set of gravitating particles has an exact homothetic solution provided

the time independent central configuration equation is satisfied for a− 1toN . The

effect of gravitational attraction is to lead to a homothetic change in size the

Raychaudhuri equation, with first integral the Friedmann equation.”

Universe is expanding at present. So to incorporate we add cosmological constant

term to the Newtonian equation and study their properties.

2.2.5 Cosmological constant

We add cosmological constant into the equations

ma
d2xa

dt2
= −

∑
b6=a

Gmamb
(xa − xb)

|xa − xb|3
+

Λmaxa

3
(2.34)

putting homothetic factor and using separation of variable we get

mara
d2S(t)

dt2
= −

∑
b6=a

Gmamb
S(t)(ra − rb)

S3(t)|ra − rb|3
+

ΛS(t)mara
3

(2.35)

this gives the result

maraS
2(t)

d2S(t)

dt2
= −GM̃mara +

ΛS3(t)mara
3

(2.36)

Now the Raychaudhuri equation with cosmological constant become

1

S(t)

d2S(t)

dt2
= − GM̃

S3(t)
+

Λ

3
(2.37)

To integrate we multiply both sides by (dS/dt) to get

dS(t)

dt

d2S(t)

dt2
= − GM̃

S3(t)

dS(t)

dt
+

Λ

3

dS(t)

dt
(2.38)

which is
1

2

d

dt
(
dS(t)

dt
)2 =

d

dt
(
GM̃

S(t)
) +

d

dt
(
ΛS2(t)

6
) (2.39)
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Integrating gives Friedmann equation

1

2
[

˜S(t)

S(t)
]2 =

GM̃

S3(t)
+

E

S2(t)
+

Λ

6
(2.40)

where E is constant of integration.We can derive the standard Raychaudhuri and

Friedmann equations for time dependant cosmology in exactly the same way for

discrete Newtonian cosmology with Λ 6= 0 as for the case with Λ = 0 The central

configuration equation required for homothetic solution is unchanged.



Chapter 3

Central Configuration equation

The central configuration equation

M̃mara = −
∑
b6=a

mamb
(ra − rb)

|ra − rb|3
(3.1)

is the initial value equation for discrete Newtonian cosmology, once it has been

satisfied at an initial time, it will be satisfied for all times. Consider there are two

forces acting on the particle in three spatial dimensions. One force is linear and

other inverse square attraction. The central configuration for the system is then

equilibrium between the two counteracting forces. We can think of central config-

uration in cosmological context as an equilibrium between gravitational attraction

and fictitious auxiliary cosmological repulsion.

3.1 Properties of central configuration

3.1.1 Centre of mass

the centre of mass rCM is given by

MrCM =
∑
a

mara =
∑
a

∑
b 6=a

mamb

M̃

(ra − rb)

|ra − rb|3
= 0 (3.2)

12
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because sum is symmetric but summand antisymmetric. Thus the centre of mass of

system lies at the origin. Total angular momentum and momentum of the system

are zero. Vanishing angular and linear momentum are referred as ’relational’.

3.1.2 Effective Forces

One can represent the nature of central configuration in terms of effective forces

and potentials. They are called effective because of their dependence on comoving

distances ra rather than actual distances xa that occure in force equation. Starting

with mara , add and subtracting same term again gives

mara =
1

M
mara

∑
b

mb =
1

M

∑
b

mamb(ra − rb) +
ma

M

∑
b

mbrb (3.3)

using centre of mass equation we get

mara ==
1

M

∑
b 6=a

mamb(ra − rb) (3.4)

substituting into central configuration and multiplying by G we get

∑
b6=a

mamb(ra − rb)(
GM̃

M
− G

r3
ab

) = 0 (3.5)

defining rab = |ra − rb| and effective inter particle force

F̃ab := mamb(ra − rb)(
GM̃

M
− G

r3
ab

) (3.6)

Thus ∑
b6=a

F̃ab = 0 (3.7)

We can write F̃ab as

F̃ab = F
(TD)
ab + F̃

(1)
ab (3.8)

where

F̃
(1)
ab := −Gmamb

(ra − rb)

|ra − rb|3
(3.9)
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is reduced inter particle gravitational force which is related to proper distances

than comoving distance.

F
(TD)
ab = G(

M̃

M
)mamb(ra − rb) (3.10)

is top down effective force exerted on the spatial distribution because of the con-

formal expansion. It is an effective repulsive force.It is not due to a cosmological

constant but arises solely due to configuration of particles.

3.2 Potential functions

We can write central configuration equation as

F̃a := F̃(1)
a + F̃(2)

a = 0 (3.11)

where F̃
(1)
a is given by

F̃(1)
a =

∑
b6=a

F̃
(1)
ab = −

∑
b6=a

Gmamb
(ra − rb)

|ra − rb|3
(3.12)

and F̃
(2)
a is defined by

F̃(2)
a := GM̃mara (3.13)

Define associated energies as

Ṽa := Ṽ(−1)a + Ṽ(2)a (3.14)

where the effective gravitational potential energy is

Ṽ(−1)a := −
∑
b6=a

Gmamb

|rab|
(3.15)

which is homogeneous of degree k = −1 , and the effective repulsion potential

energy is

Ṽ(2)a := −1

2
GM̃mara.ra (3.16)
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which is homogeneous of degree k = 2. from these definitions we can write

F̃(1)
a = −

∂Ṽ(−1)a

∂ra
, F̃(2)

a = −
∂Ṽ(2)a

∂ra
(3.17)

Solution to central configuration equation are critical points of Ṽa :

F̃ = 0,
∂Ṽa
∂ra

=
∂Ṽ(−1)a

∂ra
+
∂Ṽ(2)a

∂ra
= 0 (3.18)

Critical points of the function Ṽ are in one-one correspondence with central con-

figurations. There is at least one global and no global minima.

3.3 Numerical solutions

The conclusions of previous sections is that Newtonian cosmological solution exist

for certain arrangement of particles known as central configuration. Particles

satisfying these equations are special form of homothetically expanding solution.

Given random distribution of particle we have to find extrema of the potential

function Ṽ . Extrema of Ṽ are central configuration.

Finding extrema of multivariable function like Ṽ analytically is daunting task. We

have to use numerical methods for optimizing multivariable functions. There are

various methods used to find extremum of functions e.g. gradient descent method,

simulated annealing method etc.



Chapter 4

Perturbations

In this chapter we are going to discuss perturbed form of the homothetic solution.

4.1 General case

General form of equation of motion is

maẍa = −∂V (x1,x2, ...,xN)

∂xa

(4.1)

where V (x1,x2, ...,xN) is mutual gravitational potential energy of N particles.

4.1.1 Potential form

Lets consider that background solution is given by x̄a and linear perturbation δya

about this solution, so that

xa = x̄a + δya, |x̄a| � |δya| (4.2)

Taylor expanding and neglecting the higher order terms in δya yields

ma[
d2(x̄a)

dt2
+
d2(δya)

dt2
] = ma[

d2(x̄a + δya)

dt2
] (4.3)

= −[
∂V (x̄a + δya)

∂xa

] (4.4)

16
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= −[
∂V (x̄a)

∂x̄a

+
∂2V (x̄a)

∂x̄a∂x̄b

.∂x̄b] (4.5)

cancelling the background term the perturbation equation is

maδÿa = −
∑
b 6=a

∂2V

∂x̄a∂x̄a

(x̄1, x̄2, ..., x̄N).δya (4.6)

The symmetric operator acting on δya is in fact minus the Hessian Eab of V .

Hessian is given by

Eab = − ∂2V

∂x̄a∂x̄a

(4.7)

The above equation is a linear ordinary differential equation for the perturba-

tion δya(t) whose coefficients depends on background solution ¯xa(t). Coefficients

depends on time.

4.1.2 Force form

Force between the particles at xa and xb can be written as

Fab = − Gmamb

|xa − xb|3
(xa − xb) (4.8)

setting xba := xb − xa, δyba := δyb − δya , xba := |xb−xa| = ((xb−xa).(xb−xa))
1/2

gives

Fab(x̄a + δyb) = − Gmamb

|(x̄b − x̄a) + δyba|3
((x̄b − x̄a) + δyba) (4.9)

= − Gmamb

|x̄b − x̄a|3
(x̄ab + δyab)−

∂

∂xb

[
Gmamb

|x̄b − x̄a|3
].δybax̄ab +O(δya)

2 (4.10)

This gives

δFab = Fab(x̄ab + δyab)− Fab(x̄a) (4.11)

= −Gmamb

|x̄ab|3
(δyab)− 3

Gmamb

|x̄ab|4
(
∂

∂xa

(xab).δyab)x̄ab (4.12)

=
Gmamb

|x̄ab|5
{δybax̄ba

2 − 3(x̄ba.δyba)x̄ba} (4.13)

and so

ma( ¨δya) =
∑
b6=a

Gmamb

|x̄ab|5
{δybax̄ba

2 − 3(x̄ba.δyba)x̄ba} (4.14)

This applies generically to perturbation around any background.
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4.2 Cosmological case

Applying the above general formalism to homothetically expanding background

solution. Thus we have

x̄a = S(t)r̄a = constant, r̄ab := r̄a − r̄b = constant, r̄ab := |r̄a − r̄b| (4.15)

comoving perturbation variables are defined as Sa , Sab := Sa − Sb and δya =

S(t)Sa then the equation for perturbation becomes

ma
d2

dt2
(S(t)Sa) =

∑
b 6=a

Gmamb

S5(t)|r̄ab|5
S3(t){(Sa − Sb)|r̄ab|2 − 3(r̄ab.Sab)r̄ab} (4.16)

so the cosmological perturbation equation become

S2(t)ma
d2

dt2
(S(t)Sa) =

∑
b 6=a

Gmamb

|r̄ab|5
{(Sa − Sb)|r̄ab|2 − 3(r̄ab.Sab)r̄ab} (4.17)

this is second order ordinary differential equation for perturbation whose coeffi-

cients depend upon the background scale factor and background time independent

central configuration, whose homothetic expansion we are perturbing about.

4.2.1 Asymptotic solution

The growth of perturbation is given by

ma
d2

dt2
(S(t)Sa) =

1

S2(t)

∑
b6=a

Gmamb

|r̄ab|5
{(Sa − Sb)|r̄ab|2 − 3(r̄ab.Sab)r̄ab} (4.18)

as S →∞ Right hand side goes to zero. Thus at later times

SSa = wat+ qa (4.19)

where wa , qa are constant vectors. also S ∝ t2/3

Sa = wat
1/3 +

qa

t2/3
(4.20)

First term grows only algebraically while second term decays.
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4.3 Perturbation with cosmological constant

We are going to study perturbations in Newtonian equation of cosmology contain-

ing cosmological constant term. Newton’s force law with cosmological constant

term can be written as

ma
d2xa

dt2
= −

∑
b6=a

Gmamb
(xa − xb)

|xa − xb|3
+

Λmaxa

3
(4.21)

4.3.1 Perturbation

Background solution is given by x̄a and linear perturbation δya about this solution.

So the equations become

ma[
d2(x̄a + δya)

dt2
] = ma[

d2(x̄a)

dt2
+
d2(δya)

dt2
] +

Λma(x̄a + δya)

3
(4.22)

= −[
∂V (x̄a + δya)

∂xa

] (4.23)

= −[
∂V (x̄a)

∂x̄a

+
∂2V (x̄a)

∂x̄a∂x̄b

.∂x̄b] (4.24)

cancelling the background terms the perturbation equation is

maδÿa = −
∑
b6=a

∂2V

∂x̄a∂x̄a

(x̄1, x̄2, ..., x̄N).δya +
maΛδya

3
(4.25)

4.3.2 Force form

Given the force form

Fab = − Gmamb

|xa − xb|3
(xa − xb) +

Λmaxa

3
(4.26)

proceeding as shown in the general case subsection we get the perturbation equa-

tion as follows

ma( ¨δya) =
∑
b6=a

Gmamb

|x̄ab|5
{δybax̄ba

2 − 3(x̄ba.δyba)x̄ba}+
maΛδya

3
(4.27)
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4.3.3 Background cosmology

As before we put homothetic factor and separation of variable

mara
d2S(t)

dt2
= −

∑
b6=a

Gmamb
S(t)(ra − rb)

S3(t)|ra − rb|3
+

ΛS(t)mara
3

(4.28)

This implies Raychsudhuri equation with cosmological constant

1

S(t)

d2S(t)

dt2
= − GM̃

S3(t)
+

Λ

3
(4.29)

Integrate to get Friedmann equation

1

2
[

˜S(t)

S(t)
]2 =

GM̃

S3(t)
+

E

S2(t)
+

Λ

6
(4.30)

at late times
1

2
[

˜S(t)

S(t)
]2 =

Λ

6
(4.31)

if Λ > 0

S(t) = S0exp(

√
Λ

3
)(t− t0), (4.32)

is scale free solution. We can apply perturbations general formalism to homoth-

etically expanding background solutions with cosmological constant

ma
d2

dt2
(S(t)Sa) =

∑
b6=a

Gmamb

S5(t)|r̄ab|5
S3(t){(Sa − Sb)|r̄ab|2 − 3(r̄ab.Sab)r̄ab}+

ΛmaS(t)Sa(t)

3

(4.33)

4.3.4 Asymptotic Solution

Rearranging above equation growth of perturbation is given by

d2

dt2
(SSa) =

1

S2(t)

∑
b 6=a

Gmb

|r̄ab|5
{(Sa − Sb)|r̄ab|2 − 3(r̄ab.Sab)r̄ab}+

ΛS(t)Sa(t)

3
(4.34)

The first term on the right hand side goes to zero as S →∞ , Thus at late times

d2

dt2
(SSa) =

ΛSSa

3
(4.35)
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Assuming λ > 0 implies

Sa =
S0exp(

√
Λ
3
)(t− t0)

S(t)
(4.36)

4.4 Demitriev-Zel’dovich equation

This is different approach of perturbation theory. In this approach motion of

the subgroup of particles is described on background which remain unaffected.

Thus moving subgroup particles not only interact with themselves but also with

the background, but the background remain same. The equation we obtained

for such subgroup of particles is called Demitriev-Zel’dovich equations and are

time dependent. Lets start with equation of motion for large but finite number of

particles.

maẍa = −
∑
b 6=a

Gmamb

|xa − xb|3
(xa − xb) (4.37)

particles are divided into two classes with a = i.j.k... and a = I, J,K... the second

set forms the cosmological background. The second set remain unaffected. by the

first group of particles whose motion is however affected by both the background

and mutual interaction. Equation of motion splits into two sets, for background

model

mI ẍI =
∑
J 6=I

GmImJ

|xJ − xI |3
(xJ − xI) (4.38)

and for the subgroup

miẍi =
∑
j 6=i

Gmimj

|xj − xi|3
(xj − xi) +

∑
J

GmimJ

|xJ − xi|3
(xJ − xi) (4.39)

Now consider that background particles move isometrically: xa = S(t)ra by the

above arguments there must be central configuration and S(t) obeys the Friedmann

equation, then motion of the subgroup is given by

miẍi =
∑
j 6=i

Gmimj

|xj − xi|3
(xj − xi) +

∑
J

GmimJS(t)

|S(t)(rJ − ri)|3
(rJ − ri) (4.40)
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by replacing the absolute position of particles by conformally scaled xi = S(t)ri

and obtain

mi(S(t)r̈i+2Ṡ(t)ṙi+S̈(t)ri) =
1

S2(t)

∑
j 6=i

Gmimj

|rj − ri|3
(rj − ri)+

1

S2(t)

∑
J

GmimJ

|rJ − ri|3
(rJ − ri)

(4.41)

second term on the right hand side is force Fi exerted on the ith particle on

the background particle. The numerical calculations provides good evidence that

central configuration is to a very good approximation statistically spherically sym-

metric and homogeneous. It follows that force exerted by the background is radial.

1

S2(t)

∑
J

GmimJ

|rJ − ri|3
(rJ − ri) = −GM̃miri (4.42)

where S2S̈ = −GM̃ . then force term on right side and third term on the left side

cancels. we are left with

mi(S(t)r̈i + 2Ṡ(t)ṙi) =
1

S2(t)

∑
j 6=i

Gmimj

|rj − ri|3
(rj − ri) (4.43)

that is
d(S2(t)ṙi)

dt
=

1

S(t)

∑
j 6=i

Gmj

|rj − ri|3
(rj − ri) (4.44)

These are the Demitriev-Zel’dovich equations.
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