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Abstract

Texture specific mass matrices provide a good example of “Bottom-Up”approach to deal with the

fermion mass matrices and their implications for flavour physics. In the context of quarks, we have

studied the implication of “Weak Basis”transformations and the naturalness condition. Interestingly,

we find that the present data related to quark mixings and masses allow us to deduce almost a unique

set of viable quark mass matrices.
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Chapter 1

The Standard Model & Fermion

Mass Matrices

1.1 Introduction

Our present understanding of the fundamental particles and their interactions is neatly encapsulated

in a theory know as “The Standard Model”. The present form of the model surfaced in the late 1970s,

almost after a two decade long endeavour. The Standard Model provides a remarkable insight into

the fundamental structure of matter and their interactions. The model has successfully predicted

a wide variety of phenomena which were later on confirmed by experiments with unprecedented

precision. It has also explained almost all the experimental results.

The constituents of the SM can be broadly categorized as: matter forming and force carrying. The

world around us is built of elementary particles. These elementary particles occur in two basic types

called quarks and leptons. In The Standard Model both quarks and leptons come in six flavours

(types). The quarks and leptons are responsible for the matter formation and they interact with

each other through the exchange of force carriers known as the gauge bosons. The Standard Model

incorporates the three out of the four fundamental forces, namely the weak force, the electromagnetic

force and the strong force.

In mathematical parlance, the standard model is a quantum field theory based on the gauge group

SU(3)C×SU(2)L×U(1)Y where SU(3) is the gauge group of the strong interaction and SU(2)×U(1)

is the gauge group of the electroweak interaction. The Standard Model, in spite of its impressive

success has many unexplained features. The questions, such as “What is dark matter?”, or “Why uni-

verse contains more matter than antimatter?”, “Why are there exactly three generations of fermions

with different mass scales?”, don’t find an answer within the standard model. It has also very little to

say about the origin of electroweak symmetry breaking, smallness of neutrino masses and the origin

of flavour mixing. The presence of a large number of free parameters in the SM also points towards

its incompleteness. The free parameters include six quark mass masses, three mixing angles, three

charged lepton masses, three gauge couplings, two parameters for Higgs potential, one CP violating
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phase in the quark sector, one strong CP parameter which add up to a total of nineteen parameters.

The presence of an arbitrarily large number of parameters forces us to re-evaluate the status of

the SM as a true fundamental theory. The suspicion is that the SM is merely an effective theory

which has its origin in a more fundamental, yet unknown theory. It’s important to highlight the

fact that most of the free parameters reside in the fermionic sector also known as the Yukawa sector

of the SM. Therefore, it’s quite natural to assume that any new effort to understand the physics

beyond the standard model should keep fermionic sector at its core. The phenomenological models

attempting to reveal the mystery of fermion masses and mixings broadly fall into two categories,

viz., “top-down”approach and “bottom-up”approach. In the top-down approach fermion masses are

formulated using certain fundamental principles like grand unification, supersymmetry, horizontal

symmetries, extra dimensions etc..

The bottom-up approach of understanding the flavour problem has progressed along three different

directions. Firstly, on the lines of Fritzsch, the mass matrices are formulated in such a way that

certain elements are assumed to be zero. The viability of mass matrices hence obtained are ensured

by checking them against the low energy data obtained from experiments.

The other approach involves the freedom to make unitary transformations, referred to as the “Weak

Basis (WB) Transformations”which only affect the mass matrices without changing the mixing ma-

trices. WB transformations result in the reduction of free parameters of a general mass matrix.

The third approach put forward by Peccei and Wang relies on formulating “Natural Mass Matri-

ces”wherein the elements of these matrices imitate the hierarchical structure of the CKM matrix.

The outline of the thesis is the following. In Chapter 1, we introduce the idea of fermion mass

matrices and quark mass matrices. Chapter 2 discusses the current landscape of flavour mixing and

efforts to understand that in the light of texture zeroes and weak basis transformations [1]. The

idea of natural mass matrices have been discussed in Chapter 3 [2]. In Chapter 4, we explore the

possibility of quark mass matrices which are in tune with the data [3].

1.2 Fermion Mass Matrices

Within the SM, the fermions are considered to be the elementary particles. The notion of elementary

particles has kept on evolving with time. The advent of powerful accelerators have led us to probe

deeper into the structure of matter and we are somewhat confident about our current classification of

elementary particles. At the level of our current understanding, the elementary particles are quarks

and leptons which fall into three distinct generations.

Quarks:

 u

d

,

 c

s

,

 t

b

,

2



Leptons:

 νe

e−

,

 νµ

µ−

,

 ντ

τ−


In the standard model of strong, weak and electromagnetic interactions the Brout-Englert-Higgs

mechanism provides a consistent framework to generate masses for gauge bosons and fermions. The

fermions acquire masses, after the spontaneous symmetry breaking of SU(2)×U(1) gauge group to

U(1), through the Yukawa couplings and the vacuum expectation value of the neutral Higgs field.

The Lagrangian of the Yukawa sector of the standard model reads [4]:

L = Y ijd Q̄
i
LφD

j
R + Y iju Q̄

i
Lφ̃U

j
R + Y ije L̄

i
LφE

j
R + h.c. (1.1)

where φ is the Higgs doublet under SU(2) and φ̃ = ιτ2φ
†

Here, Yu, Yd, Ye are 3× 3 matrices with 36 real parameters each. After the SSB, the Higgs acquire

a vacuum expectation value (VEV) v

φ =
1√
2

 0

v + h

 , φ̃ =
1√
2

 v + h

0

 (1.2)

which leads to the introduction of undiagonalized 3 × 3 quark mass matrices (ignoring the lepton

part for present purpose)

M ij
u =

v√
2
Y iju (1.3)

M ij
d =

v√
2
Y ijd (1.4)

In the most general case, the above mass matrices contain 36 parameters (18 each) in total. To

simply things, we invoke the polar decomposition theorem of matrix algebra; by which a general

complex matrix can be written as a product of a hermitian and unitary matrix. In the SM, the

unitary matrix can be absorbed by a rotation on right-handed quark fields. This makes all the mass

matrices hermitian and brings down the number of free parameters from 36 to 18.

1.3 Quark Mass Matrices

The origin of quark mass matrices lies in the Higgs fermion couplings. These matrices, MU and MD

are arbitrary. The total number of free parameters (36 in case of two 3 × 3 complex matrix) are

greater than the number of observables. When the mass matrices are considered hermitian, the total

number of free parameters reduces from 36 to 18. The matrices MU and MD have to produce six

observables, i.e., six quark masses, three mixing angles and a CP violating phase.

In the general case mass terms are quadratic in terms of fermion fields. The quark mass terms, below

the electroweak symmetry breaking, read

Q̄ULMUQUR + Q̄DLMDQDR (1.5)
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where QUL(R) and QDL(R) are left handed (right handed) quark fields for up sector (u, c, t) and

down sector (d, s, b) respectively. The matrices MU and MD are for the up and down sector quarks

respectively. The above equation has to be re-expressed in terms of physical quark fields to make

any sense. This is achieved by diagonalizing the mass matrices via bi-unitary transformations.

V †ULMUVUR = MU
diag ≡ diag (mu,mc,mt) (1.6)

V †DLMDVDR = MD
diag ≡ diag (md,ms,mb) (1.7)

where mu,md, etc. are eigenvalues of the quark mass matrices which correspond to physical quark

masses. The equation (1.5) can be re-written using Eqs. (1.6) and (1.7) as

Q̄ULVULM
diag
U V †URQUR + Q̄DLVDLM

diag
D V †UDQUD (1.8)

which in terms of physical fields are

Q̄physUL
Mdiag
U QphysUR

+ Q̄physDL
Mdiag
D QphysDR

(1.9)

where QphysUL
= V †ULQUL and QphysDL

= V †DLQDL and so on. The mismatch in the diagonalization

of up and down matrices leads to the definition of quark mixing matrix, known as the Cabibbo-

Kobayashi-Maskawa (CKM) matrix, given by

VCKM = V †ULVDL (1.10)

The CKM matrix describes the weak interaction eigenstates (d′, s′, b′) of the quarks in terms of

their flavour eigenstates (d, s, b), e.g.,


d′

s′

b′

 =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb




d

s

b

 (1.11)

The CKM matrix is a unitary matrix which describes the transition of one quark into another. A

general n×n unitary matrix has n2 parameters, n(n−1)2 of these are the Eulers angles and remaining

n(n+1)
2 are the phases. However, some of these phases can be rotated away. So, in a n × n we

are left with only (n−1)(n−2)
2 measurable phases. Thus, in the case of three families of quarks, the

mixing matrix is expressed in terms of three angles and one phase, the latter being responsible for

CP violation.

The SM imposes the unitarity constraint on the quark mixing matrix. The unitarity of CKM matrix

leads to nine relations, three being the normalization conditions and the rest six are non-diagonal
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relations which are defined in the follwing way

∑
α=d,s,b

ViαV
∗
jα = δij (1.12)

∑
i=u,c,t

ViαV
∗
iβ = δαβ (1.13)

where the Greek indices run over the down type quarks (d, s, b) and the Latin ones run over the up

type quarks(u, c, t).
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Chapter 2

Weak Basis Transformations

2.1 The Technology

Understanding fermion masses and mixings is one of the fundamental problems in high energy

physics. In the absence of any compelling theoretical framework, the issues concerning fermion

mixings and masses are understood with “Bottom Up”approaches. Texture specific mass matrices

provide a good example of “Bottom Up”approach to have a viable description of fermion mixing and

masses. The mass matrices in the Standard Model are completely arbitrary 3× 3 complex matrices.

However, they can be reduced to hermitian matrices without loss of generality. The reduction of

the matrices to the hermitian form brings down the number of free parameters by half. However,

the above prescription still leaves us with eighteen free parameters which are still in excess when

compared to the number of observables, viz. six quark masses, three mixing angles and a CP violating

phase. To account for this redundancy, we require some additional assumptions. In this context the

concept of textures was introduced implicitly by Weinberg [5] and explicitly by Fritzsch [6], where

in certain elements of the mass matrices are assumed to be highly suppressed or can be considered

zero also. The zero elements of the mass matrices can be characterized as texture zeros defined in a

particular manner.

A particular texture structure is said to be texture n zero, if it has n number of non-trivial zeros,for

example, if the sum of the number of diagonal zeros and half the number of the symmetrically placed

off diagonal zeros is n.

The Fritzsch’s-like texture specific hermitian quark mass matrices have the following form.

MU =


0 AU 0

A∗U DU BU

0 B∗U CU

 , MD =


0 AD 0

A∗D DD BD

0 B∗D CD

 (2.1)

Here, Ai = |Ai|expιαi and Bi = |Bi|expιβi with i = U,D. Each of the above matrix is texture 2 zero

type.

7



One particular facility available to achieve texture zeroes is of the Weak Basis Transformations.

Branco et al [1] initiated the idea of WB transformations to introduce the texture zeroes compatible

with the SM so as to lend predictability to the general mass matrices. Initially, texture zeroes were

introduced as ansatz. However, efforts have been made to deduce these from symmetry considerations

as well as from general considerations. In this chapter we would attempt the introduction of textures

though general considerations.

In the SM one has the freedom to make a unitary transformation W on the quark fields e.g.,

qL → UqL, qR → UqR, q
′
L → Uq′L, q

′
R → Uq′R (2.2)

under which gauge currents

LW =
g√
2

(u, c, t)γµ


d

s

b


L

Wµ + hc (2.3)

remain real and diagonal but the mass matrices transform as

Mu → U†MuU , Md → U†MdU (2.4)

2.2 The (1,1) Weak Basis Zero

It is interesting to note that certain sets of zeroes in a texture specific mass matrices may be devoid

of any physical significance. These zeroes can be obtained through appropriate WB transformations

on arbitrary quark mass matrices. WB transformations only affect the mass matrices. The gauge

currents remain real and diagonal under WB transformations. The quark mass matrices related by

WB transformations display the same physical content.

In this section we present the results of Branco et al. [1]. We discuss the zeroes occurring at (1,1)

position in up and down quark mass matrices. The most general transformation that leaves the mass

matrices hermitian is:

Mu −→M ′u = U†MuU (2.5a)

Md −→M ′d = U†MdU (2.5b)

where U is an arbitrary unitary matrix. In such a basis, we can always find a set of unitary matrices

{Uu, Ud} which can diagonalize the mass matrices such that

D′u = U†uMuUu (2.6a)

D′d = U†dMdUd (2.6b)

where Du ≡ diag (mu,mc,mt) and Dd ≡ diag (md,ms,mb). We choose to work in basis where Mu
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is diagonal and Md is hermitian, i.e.

Mu = Du (2.7a)

Md = V DdV
† (2.7b)

The matrix V is an arbitrary unitary matrix. Effecting a WB transformation with U , under which

Mu and Md transform as:

Mu −→M ′u = U†DuU, (2.8a)

Md −→M ′d = U†V DdV
†U (2.8b)

that (M ′u)11 = (M ′d)11 = 0. This requires the solution of the following system of equations.

mu | U11 |2 +mc | U12 |2 +mt | U31 |2 = 0 (2.9a)

md | X11 |2 +ms | X12 |2 +mb | X31 |2 = 0 (2.9b)

| U11 |2 + | U12 |2 + | U13 |2 = 1 (2.9c)

where X = V †U and thus:

|Xi1|2 = |V1i|2|U11|2 + |V2i|2|U21|2 + |V3i|2|U31|2+

2Re(V ∗1iU11V2iU
∗
21) + 2Re(V ∗1iU11V3iU

∗
31) + 2Re(V ∗2iU21V3iU

∗
31),

(i = 1, 2, 3)

(2.10)

The system of Eqs. (2.9) has a real solution only if, at least one of the mass parameters mu,mc,mt

and one of the parameters md,ms,mb is negative. For the arbitrary mass matrices Mu andMd, one

has to find a unique U satisfying (2.9). It is not always possible to find analytic solutions for (Eqn

2.9). For the simple case, when V = 1, X = U and we obtain the follwing solutions:

| U11 |2 =
mcmb −msmt

∆
(2.11a)

| U21 |2 =
mdmt −mumb

∆
(2.11b)

| U31 |2 =
mums −mdmc

∆
(2.11c)

where

∆ = (mt −mu)(mb −ms)− (mt −mc)(mb −md) (2.12)

Next, if we choose V to be a realistic CKM matrix

V =


cosθ sinθ 0

−sinθ cosθ 0

0 0 1

 (2.13)
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In this case, Eqs.(2.9) become

| X11 |2 = cos2θ | U11 |2 +sin2θ | U21 |2 −sin2θ U11U21 (2.14a)

| X21 |2 = sin2θ | U11 |2 +cos2θ | U21 |2 +sin2θ U11U21 (2.14b)

| X31 |2 = | U31 |2 (2.14c)

Using unitarity, we can write

(mu −mt) | U11 |2 +(mc −mt) | U21 |2 +mt = 0 (2.15a)

(mdcos
2θ +mssin

2θ −mb) | U11 |2 +mdsin
2θ +mscos

2θ −mb) | U21 |2

+(ms −md) sin2θ U11U21 +mb = 0
(2.15b)

Parametrizing the solutions as:

√
mt −mu U11 =

√
mt cosφ (2.16a)

√
mt −mu U21 =

√
mt sinφ (2.16b)

Denoting

a = mb − (mb −mdsin
2θ −mscos

2θ)
mt

mt −mc
(2.17a)

b = (ms −md)
mtsin2θ√

(mt −mu)(mt −mc)
, (2.17b)

c = mb − (mb −mdcos
2θ −mssin

2θ)
mt

mt −mu
(2.17c)

introducing z ≡ tanφ, the solution is given by the quadratic equation

az2 + bz + c = 0 (2.18)

If θ = 0 and V = 1, we recover the results of Eqs. (2.11).

2.3 The (One Three, Three One) Problem

In this section we present our attempts and partial results to obtain texture two zero matrices from

the most general 3× 3 unitary matrix using the recipe of weak basis transformations. Fritzch in his

paper [7] had discussed the possibility of achieving the texture two form given below,

MU =


EU AU 0

A∗U DU BU

0 B∗U CU

 , MD =


ED AD 0

A∗D DD BD

0 B∗D CD

 (2.19)
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starting from the hermitian mass matrices,

Mq =


Eq Aq Fq

A∗q Dq Bq

F ∗q B∗q Cq

 , (q = U,D) (2.20)

through a common unitary transformation. We tried to find out the exact form of the unitary

matrix which accomplishes this task. We start by choosing a basis in which MU is diagonal and MD

hermitian.

MU =


m11 0 0

0 m22 0

0 0 m33

 , MD =


µ11 µ12e

iη12 µ13e
iη13

µ12e
−iη12 µ22 µ23e

iη23

µ13e
−iη13 µ23e

−iη23 µ33

 (2.21)

The unitary matrix for effecting the weak basis transformation is the following :

U = U1


cosα cos γ sinα cos γ sin γei(α3−δ)

− sinα cosβ − cosα sinβ sin γeiδ cosα cosβ − sinα sinβ sin γeiδ sinβ cos γ

sinα sinβ − cosα cosβ sin γeiδ − cosα sinβ − sinα cosβ sin γeiδ cosβ cos γ

U2

(2.22)

where U1 and U2 are given by

U1 =


1 0 0

0 ei(α4−α3) 0

0 0 ei(α5−α3)

 , U2 =


eiα1 0 0

0 eiα2 0

0 0 eiα3

 (2.23)

The result of the weak basis transformation on the matrices is the following.

M ′U = U†MUU (2.24a)

M ′D = U†MDU (2.24b)

Since, we are interested in only (M ′U )13 and (M ′D)13, we study the transformation of only those

elements.

(M ′D)13 = U†1i(MD)ijUj3 (2.25)

, where i, j = 1, 2, 3 or

(M ′D)13 = U†11{M11U13 +M12U23 +M13U33}+

U†12{M21U13 +M22U23 +M23U33}+

U†13{M31U13 +M32U23 +M33U33}

(2.26)
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which translates into

(M ′D)13 = 0 = µ11 cosα cos γ sin γei(α3−α1−δ)+

µ22 sinβ cos γ(sinα cosβ − cosα sinβ sin γe−iδ)ei(α3−α1)

+µ33 cosβ cos γ(sinα sinβ − cosα cosβ sin γe−iδ)ei(α3−α1)

+µ12[cosα cos2 γ sinβei(α4−α1+η12) + sinγ(sinα cosβ − cosα sin γe−iδ)ei(2α3−α1−α4−η12−δ)]

+µ13[cosα cosβ cos2 γei(α4−α1+η13) + sin γ(sinα sinβ − cosα sinβ sin γe−iδ)ei(2α3−α5−α1−η13−δ)]

+µ23[cosβ cos γ(sinα cosβ − cosα sinβ sin γe−iδ)

ei(α5+α3−α4−α1+η23) + sinβ cos γ(sinα sinβ − cosα cosβ sin γe−iδ)ei(α4+α3−α5−α1−η23)]

(2.27)

Similarly, the other equation is:

(M ′U )13 = 0 =m11 cosα cos γ sin γei(α3−α1−δ)

+m22 sinβ cos γ(sinα cosβ − cosα sinβ sin γe−iδ)ei(α3−α1)

+m33 cosβ cos γ(sinα sinβ − cosα cosβ sin γe−iδ)ei(α3−α1)

(2.28)

Now, we have to simultaneously solve Eqs. (2.27 & 2.28). We make the following assumptions to

simplify the above equations.

α3 = α1

δ = 0

α4 − α3 + η12 = 0

α5 − α3 + η13 = 0

α5 − α4 + η23 = 0

(2.29)

The assumptions of Eqn. (2.29), along with γ = 0 reduces Eqn. (2.28) to

m22 sinα sin 2β +m33 sinα sin 2β = 0 (2.30)

=⇒ either sinα = 0 or sin 2β(m22 +m33) = 0. If sinα 6= 0,then

sin 2β(m22 +m33) = 0 (2.31)

which gives β = 0, π2 . γ = 0 and β = 0, reduces Eqn. (2.27) to

µ13 cosα+ µ23 sinα = 0 (2.32a)

tanα =
−µ13

µ23
(2.32b)
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whereas γ = 0 and β = π
2 , reduces Eqn. (2.27) to

tanα =
−µ12

µ23
(2.33)

On the other hand, if sinα = 0 =⇒ α = 0

We obtain yet another solution with α = 0 and γ = 0 which is

tanβ =
−µ12

µ13
(2.34)

With γ = 0 β = π
2 and tanα = −µ12

µ23
, the matrix U becomes

U =


µ23√
µ2
12+µ

2
23

− µ12√
µ2
12+µ

2
23

0

0 0 1

− µ12√
µ2
12+µ

2
23

− µ23√
µ2
12+µ

2
23

0

 (2.35)

By virtue of Eqn. (2.24a), M ′U becomes

M ′U =


m33µ

2
12

µ2
12+µ

2
23

+
m11µ

2
23

µ2
12+µ

2
23

m33µ12µ23

µ2
12+µ

2
23
− m11µ12µ23

µ2
12+µ

2
23

0

m33µ12µ23

µ2
12+µ

2
23
− m11µ12µ23

µ2
12+µ

2
23

m11µ
2
12

µ2
12+µ

2
23

+
m33µ

2
23

µ2
12+µ

2
23

0

0 0 m22

 (2.36)

Similary, Eqn. (2.24b) leads to

M ′D =


µ23

(
µ11µ23√
µ212+µ223

− µ12µ13√
µ212+µ223

)
√
µ2
12+µ

2
23

−
µ12

(
µ13µ23√
µ212+µ223

− µ12µ33√
µ212+µ223

)
√
µ2
12+µ

2
23

−
µ12

(
µ11µ23√
µ212+µ223

− µ12µ13√
µ212+µ223

)
√
µ2
12+µ

2
23

−
µ23

(
µ13µ23√
µ212+µ223

− µ12µ33√
µ212+µ223

)
√
µ2
12+µ

2
23

0

µ23

(
− µ11µ12√

µ212+µ223

− µ13µ23√
µ212+µ223

)
√
µ2
12+µ

2
23

−
µ12

(
− µ12µ13√

µ212+µ223

− µ23µ33√
µ212+µ223

)
√
µ2
12+µ

2
23

−
µ12

(
− µ11µ12√

µ212+µ223

− µ13µ23√
µ212+µ223

)
√
µ2
12+µ

2
23

−
µ23

(
− µ12µ13√

µ212+µ223

− µ23µ33√
µ212+µ223

)
√
µ2
12+µ

2
23

− µ2
12√

µ2
12+µ

2
23

− µ2
23√

µ2
12+µ

2
23

0 − µ2
12√

µ2
12+µ

2
23

− µ2
23√

µ2
12+µ

2
23

µ22


(2.37)

We notice that Md has been put in the texture two zero form (Eqn. 2.19) though the weak basis

transformation but the same form couldn’t be achieved for Mu. We have additional zeroes on

symmetrical positions (2,3) & (3,2). Efforts were made to get rid of these zeroes using another

weak basis transformation but that couldn’t be achieved without destroying zeroes at (1,3) & (3,1)

position.

13



14



Chapter 3

Natural Mass Matrices

3.1 Preliminaries

The elements of the quark mixing matrix display a well defined hierarchy. Peccei and Wang used

this hierarchy to reconstruct the quark mass matrices which are referred to as “natural mass matri-

ces” [2]. The key idea is to manifest the hierarchical structure CKM matrix in the elements of the

mass matrices by avoiding fine tuning. In this chapter, we review the construction of these natural

mass matrices.

In its standard form the famous Cabibbo-Kobayashi-Maskawa matrix is

[CKM ] =


c1c3 s1c3 s3e

−iδ

−s1c2 − c1s2s3eiδ c1c2 − s1s2s3eiδ s2c3

s1s2 − c1c2s3eiδ −c1s2 − s1c2s3eiδ c2c3

 (3.1)

With the help of experimental hierarchy in the mixing angles, one can define

s1 ≡ sin θ1 ≡ λ ' 0.22, s2 ≡ sin θ2 ≡ Aλ2, s3 ≡ sin θ3 ≡ Aσλ3 with A, σ being of O(1). The CKM

matrix assumes the Wolfenstein form

[CKM ] =


1− λ2

2 −
λ4

8 λ Aσλ3e−iδ

−λ 1− λ2

2 − (A
2

2 + 1
8 )λ4 Aλ2

Aλ3(1− σeiδ) −Aλ2 +Aλ4

2 1− A2λ4

2

 (3.2)

3.2 The Notion of Naturalness in Two Generation

In a general 2× 2 hermitian mass matrix for the first two quark families, the phases can be rotated

away. The matrix thus obtained is a real symmetric matrix. The orthogonal matrix Ou and Od

diagonalizing, the matrices for u quark and d quark, Mu ≡ mcM̃u, Md ≡ msM̃d results in a Cabibbo

15



quark mixing matrix C. We have

OTu M̃uOu = M̃diag
u ≡

 ξucλ
4 0

0 1

 (3.3)

OTd M̃dOd = M̃diag
d ≡

 ξdsλ
2 0

0 1

 (3.4)

with

C =

 cos θC sin θC

−sinθC cos θC

 (3.5)

The matrices Ou and Od has the same form as the matrix C. In Eqn.

(3.5), θC = θd − θu.

Since sin θC ≡ λ� 1, it possible to have have both sin θu ≡ λ� 1 and sin θd ≡ λ� 1. This leads

us to three possibilities for the angles θu and θd.

(a) sin θd ≡ λ, sin θu ≡ λ

(b) sin θd ≡ λ, sin θu . λ2

(c) sin θd . λ2, sin θu ≡ λ

(3.6)

Evaluating M̃u and M̃d, we obtain

M̃u = OuM̃
diag
u OTu '

 ξucλ
4 + sin2 θu sin θu

sinθu 1

 (3.7)

M̃d = OdM̃
diag
d OTd '

 ξdsλ
2 + sin2 θu sin θd

sinθd 1

 (3.8)

The equations (3.6 a) & (3.6 c) require fine tuning of the matrix element [M̃u]11. Such a fine

tuning seems unnatural. Consequently, the to generation mass matrices assume the following form

corresponding to Eqn. (3.6 b).

M̃u '

 α′uλ
4 αuλ

2

αuλ
2 1

 , M̃d '

 α′dλ
2 αdλ

αdλ 1

 (3.9)

where

sin θu = αuλ
2, sin θd = αdλ , α′u

2 − αu2 = ξuc, α
′
d
2 − αd2 = ξds
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3.3 Three Generation Extension

The three generation extension of mass matrices is based on a perturbative expansion in λ. We

begin with the 3× 3 hermitian mass matrices Mu ≡ mt(mt)M̃u and Md ≡ mb(mt)M̃d which can be

diagonalized by unitary matrices U and D.

M̃u = UM̃diag
u U† (3.10)

M̃d = DM̃diag
d D† (3.11)

[CKM ] = U†D (3.12)

If we change N → NU and D → ND, CKM remains unchanged, where N is some arbitrary unitary

matrix then

M̃u = NUM̃diag
u U†N† (3.13)

M̃d = NDM̃diag
d D†N† (3.14)

Using eqns. (3.10) & (3.11) and eqns. (3.13) & (3.14), we notice that M̃u and M̃d are unique up

to a common unitary transformation M̃u ↔ N†M̃uN , M̃d ↔ N†M̃dN . The unitarity of N keeps

[CKM ] ' 1. This restricts our attention to small transformations, i.e., U ' 1, D ' 1.

If, in particular N = φL, φL being a phase matrix, the changes in M̃u and M̃d

M̃u → φLM̃uφ
†
L (3.15a)

M̃d → φLM̃dφ
†
L (3.15b)

can be absorbed by redefining the phases.

A change of in the construction of CKM [CKM ] → φ†u[CKM ]φd ↔ D → Dφd, U → Uφ doesn’t

lead to any changes as φuM̃
diag
u φ†u = M̃diag

u and φdM̃
diag
d φ†d = M̃diag

d Thus we can write

U†D = [CKM ] ≡ φ†u[CKM ]φd (3.16)

with D ≡ φ†LDsφd and U ≡ φ†LUsφu. The phase matrices φL& φd are chosen such that Ds has the

same form as the CKM matrix. We also obtain [CKM ]s = U†sDs.

Now, we construct the mass matrices as

M̃u = UsM̃
†
uU
†
s (3.17)

M̃d = DsM̃
†
dD
†
s (3.18)
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The CKM matrix (Eqn. 3.1) can be broken down into a product of following matrices

[CKM ] = C2∆C3∆†C1 =


1 0 0

0 c2 s2

0 −s2 c2

∆


c3 0 s3

0 1 0

−s3 0 c3

∆†


c1 s1 0

−s1 c1 0

0 0 1

 (3.19)

where 
1 0 0

0 1 0

0 0 eiδ

 (3.20)

D also takes the CKM form by assumption

D = C2d∆dC3d∆
†
dC1d (3.21)

where matrices Cid have been defined in analogy with the Cabibbo quark mixing matrix C with new

angles θid(i = 1, 2, 3). We define three more orthogonal matrices Ciu which satisfy the relation

CTiuCid = Ci (3.22)

where

θi = θid − θiu , i = (1, 2, 3) (3.23)

From Eqn. (3.16) we see that

U = D[CKM ]† = {C2u}{C2(∆dC3u∆†d)C
†
2}{C2(∆dC3∆†d)C1u(∆C†3∆†)C†2} (3.24)

The expansion in λ is given by

θ1d ≡
∑
n=1

αnλ
n, θ2d ≡

∑
n=2

βnλ
n, θ3d ≡

∑
n=4

γnλ
n (3.25)

The expansion of θiu is constrained by Eqn. (3.22) For naturalness we require

(a) θ1d ∼ λ, θ1u . λ2

(b) θ2u ∼ θ2d ∼ λ2 or θ2u ∼ λ2 � θ2d or θ2d ∼ λ2 � θ2u

(c) θ3u ∼ θ3d ∼ λ4 or θ3u ∼ λ4 � θ3d or θ3d ∼ λ4 � θ3u

(3.26)

For a particular set of angles like θ1d ∼ λ, θ1u ∼ θ2d ∼ λ2, θ2u ∼ θ3u ∼ λ4, θ3d ∼ λ5, we obtain the

following mass pattern

M̃u '


u11λ

7 u12λ
6 e−iδuu13λ

4

u12λ
6 u22λ

4 u23λ
4

eiδuu13λ
4 u23λ

4 1

 (3.27)
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M̃d '


d11λ

4 d12λ
3 e−iδdd13λ

4

d12λ
3 d22λ

2 d23λ
2

eiδdd13λ
4 d23λ

2 1

 (3.28)

where the coefficients uij and dij are functions of the CKM parameters A and σ, quark mass ratios

ξ′s and λ expansion coefficients {α1, β2, γ4}. The elements of any general mass matrix, following the

hierarchy

(1, 1), (1, 3), (3, 1) . (1, 2), (2, 1) . (2, 3), (3, 2), (2, 2) . (3, 3)

can be considered to be natural mass matrix.
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Chapter 4

Possibility of Unique Textures for

Quark Mass Matrices

4.1 Introduction

The idea of this chapter is to explore a finite set of viable texture specific mass matrices. The

general recipe to achieve this needs three essential ingredients namely, texture-zero approach, WB

transformations and the condition of “naturalness”. The WB transformations help in reducing the

number of free parameters of the hermitian mass matrices and imposing the condition of naturalness

puts a constrain on the parameter space available to these elements. We start with the most general

hermitian mass matrices and explore the possibilities of viable texture- specific mass matrices using

the tools, WB transformations and requirement of naturalness.

4.2 The Methodology

We start with the general hermitian mass matrices

Mq =


Eq Aq Fq

A∗q Dq Bq

F ∗q B∗q Cq

 (q = U,D) (4.1)

The next step is to introduce texture zeroes in these matrices using the weak basis transformation. In

principle one can always find a unitary matrix U transforming MU → U†MUU and MD → U†MDU ,

which results in

MU =


EU AU 0

A∗U DU BU

0 B∗U CU

 , MD =


ED AD 0

A∗D DD BD

0 B∗D CD

 (q = U,D) (4.2)
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Here, Ai = |Ai|expιαi and Bi = |Bi|expιβi with i = U,D. Each of the above matrix is texture 2 zero

type. The condition of naturalness on these mass matrices reads

(1, i) < (2, j) ≤ (3, 3); i = 1, 2, 3, j = 2, 3 (4.3)

The compatibility of the obtained matrices have to be checked against the CKM matrix to ensure

whether they are viable or not. This requires the know-how of constructing CKM matrix from the

mass matrices MU and MD. The matrix Mq can be written as Mq = Q†qM
r
qQq where Mr

q is a

symmetric matrix and Qq is a diagonal phase matrix.

Mr
q =


Eq Aq 0

|Aq| Dq Bq

0 |Bq| Cq

 , Q =


e−iαq 0 0

0 1 0

0 0 eiβq

 (4.4)

The matrix Mr
q can be diagonalized using the transformation

Mdiag
q = OTq QqMqQ

†
qOq = Diag(m1,−m2,m3) (4.5)

where 1, 2, 3 refer to u, c, t for the up sector and d, s, b for the down sector. The diagonalization of

Mr
q is achieved by the following matrix [8]

Oq =


√

(Eq+m2)(m3−Eq)(Cq−m1)
(Cq−Eq)(m3−m1)(m2+m1)

√
(m1−Eq)(m3−Eq)(Cq+m2)
(Cq−Eq)(m3+m2)(m2+m1)

√
(m1−Eq)(m2+Eq)(m3−Cq)
(Cq−Eq)(m3+m2)(m3−m1)√

(Cq−m1)(m1−Eq)
(m3−m1)(m2+m1)

−
√

(Cq+m2)(m2+Eq)
(m3+m2)(m2+m1)

√
(m3−Eq)(m3−Cq)
(m3+m2)(m3−m1)

−
√

(m1−Eq)(m3−Cq)(Cq+m2)
(Cq−Eq)(m3−m1)(m2+m1)

√
(Eq+m2)(m3−Cq)(Cq−m1)
(Cq−Eq)(m3+m2)(m2+m1)

√
(m3−Eq)(Cq−m1)(Cq+m2)
(Cq−Eq)(m3+m2)(m3−m1)


(4.6)

The relation between the CKM Matrix and the diagonalizing matrix is the following

VCKM = OTUQUQ
†
DOD (4.7)

We have considered EU , ED, DU , DD as free parameters for the construction of CKM matrix.

The inputs used for the calculation were [9]

mu = 1.3+0.42
−0.41 MeV, md = 2.82± 0.48 MeV,

md = 57+18
−12 MeV, mc = 0.638+0.043

−0.084 GeV,

mb = 2.860.16−0.06 GeV, mt = 172.1± 1.2 GeV,

mu

md
= 0.553± 0.043,

ms

md
= 18.9± 0.8

(4.8)

The parameters φ1 and φ2 are related to the phases of mass matrices as φ1 = αU − αD and φ2 =

βU−βD. The parameters φ1 and φ2 have been given full variation from 0 to 2π. The free parameters

EU , ED, DU , DD have also varied over a wide range ensuring that OU and OD remain real.
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4.3 Results & Discussion

The resultant CKM matrix obtained is

VCKM =


0.9739− 0.9745 0.2246− 0.2259 0.00337− 0.00365

0.2224− 0.2259 0.9730− 0.9990 0.0408− 0.0422

0.0076− 0.0101 0.0408− 0.0422 0.9990− 0.9999

 (4.9)

which is compatible with one given by the Particle Data Group (PDG) [10]. The magnitudes of the

element of the mass matrices which reproduce the CKM matrix of Eqn. (4.9) are

MU =


0− 0.00138 0.006− 0.042 0

0.006− 0.042 26.46− 102.68 62.82− 86.10

0 62.82− 86.10 68.78− 145.00

 (4.10)

MD =


0− 0.00127 0.011− 0.019 0

0.011− 0.019 0.36− 1.66 1.03− 1.44

0 1.03− 1.44 1.16− 2.44

 (4.11)

The structure of these mass matrices reveal that their (1, 1) element is very small in comparison

with the rest of non-zero elements. This indicates the redundancy of the (1, 1) element. The plots

of the (1, 1) elements, which are shown below, with CKM parameters confirm their redundancy.
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The plots show that parameters EU and ED assume quite small values for producing the experimental

range of CKM parameters. These parameters are essentially redundant. This indicates a transition

from texture-2 zero mass matrices to texture-4 zero mass matrices. A similar analysis for these

matrices results in the following CKM matrix

VCKM =


0.9741− 0.9744 0.2246− 0.2259 0.00337− 0.00365

0.2245− 0.2258 0.9732− 0.9736 0.0407− 0.0422

0.0071− 0.0100 0.0396− 0.0417 0.9990− 0.9992

 (4.12)

which is in agreement with the quark mixing matrix by PDG [10]. It has been shown by Sharma et

al. [3] that the following matrices


D A 0

A∗ 0 B

0 B∗ C

 ,


0 A D

A∗ 0 B

D∗ B∗ C

 ,


A 0 0

0 D B

0 B∗ C

 (4.13)

and their permutations are not viable for the description of quark mixing data. Therefore, we are

left with only the following form 
A 0 0

0 D B

0 B∗ C

 (4.14)

and its permutations as a viable option.
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The following plots show the viability of texture four zero matrices.
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Figure 4.5: CD/mb versus CU/mt
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From the above plots we found that there is a good range of values of CU and DU for which the

data can be fitted.
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