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Abstract

Magic Angle Spinning (MAS) is an important technique routinely employed for

obtaining high resolution nuclear magnetic resonance (NMR) spectra in the solid

state. In combination with MAS, the cross-polarization (CP) experiment (referred

to as CPMAS) forms a vital building block in the design of multi-dimensional solid-

state NMR (ssNMR) experiments for studying less sensitive/abundant nuclei. But

efficient implementation of CP schemes at faster MAS remains a challenge. Since,

the efficiency of CP under MAS depends on intrinsic parameters such as the ori-

entation of the dipolar tensor, magnitude of the chemical shift anisotropy (CSA)

interactions and other user control parameters such as the spinning frequency and

RF amplitudes, quantitative description of the underlying spin dynamics has al-

ways remained elusive. So, along with the development of NMR experiments,

refinements in NMR theory are also essential for designing sophisticated experi-

ments and for extracting meaningful constraints from experimental data. To this

end, a modified version of the CP experiment is proposed employing the con-

cept of effective Hamiltonians based on multi-mode Floquet theory. In contrast

to other existing schemes in the literature, the proposed schemes could be im-

plemented at higher magnetic field strengths and at faster spinning frequencies.

Since bio-molecular applications of solid-state NMR (ssNMR) entail the presence

of faster spinning modules, we believe that the design of NMR experiments based

on our approach would be beneficial. Additionally, the mechanism of polarization



transfer in CP experiments is described intuitively invoking the phenomenon of

dipolar truncation. We believe that the current study would provide the neces-

sary impetus for better design of ssNMR experiments and could be a guiding tool

for quantifying the experimental data. The validity of the predictions emerging

from our theory is verified with numerical simulations under different experimental

conditions.
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Chapter 1

Introduction

1.1 Background

Ever since its discovery in 19461–3, nuclear magnetic resonance (NMR) spec-

troscopy has become an indispensable tool for investigating molecular structure

in wide range of systems of chemical, biological and medical relevance. In spite

of its lower sensitivity, NMR enjoys wide popularity (as an analytic tool) mainly

due to the flexibility that it offers in the design of experiments. Through careful

manipulation of the nuclear spin interactions, structural constraints at the molec-

ular level (both in the liquid and solid state) are obtained through sophisticated

experiments. Unlike other forms of spectroscopy, the phenomenon of magnetic res-

onance (like NMR and Electron Spin Resonance (EPR)) results from a quantum

property referred to as ”spin”. Just like charge, mass, etc., spin is also a fun-

damental property exhibited by all sub-atomic particles like electrons, protons,

neutrons, etc. Being a quantum property, the spin of a nucleus is represented by

the spin quantum number ‘I’ and is manifested as spin angular momentum. The

charge distribution within the nucleus facilitates the interaction of matter with

the magnetic field component of the electromagnetic (EM) radiation. In nuclei

1



with spherical symmetry (nuclei with I = 1/2 satisfy this criterion), the charge

distribution is uniform and results in an intrinsic property commonly referred to

as ‘magnetic dipole moment’. Interestingly, nuclei with non-spherical distribu-

tion of charge (observed in nuclei with I > 1/2) result in both dipole as well as

quadrupole moment. In contrast to the magnetic dipole moment, the quadrupole

moment of a nucleus is larger in magnitude and interacts with the electric field

gradient surrounding the nucleus resulting in quadrupolar interaction. A more

detailed description of the various nuclear spin interactions are well-documented

in the literature4–7 and have been consciously omitted in this thesis to avoid rep-

etition.

Similar to other forms of spectroscopy, the appearance of the NMR spectrum

depends on the physical state of the sample under investigation. One of the

prominent features being the broadened spectra in the solid state. The restricted

mobility in the solid state renders the spin interactions anisotropic and is primarily

responsible for the line broadening observed in the spectrum5. By contrast, the

rapid isotropic motion inherent in the solution state averages the anisotropic inter-

actions and effectively removes them from the spectrum. At first sight, this might

force us to conclude that high resolution NMR spectroscopy would inevitably be

confined to liquid samples. Such a restriction would have been a serious limitation,

since interesting systems of chemical and biological relevance are either insoluble

(in suitable organic solvents) or do not crystallize. However, with the combined

efforts of several research groups8–31, solid-state NMR (ssNMR) is rapidly emerg-

ing as a viable alternative to solution NMR spectroscopy for structural studies in

2



proteins. As in solution NMR, efforts to develop ssNMR techniques for proteins

labeled uniformly with 13C and 15N are underway in several laboratories8–31. To

determine the overall three-dimensional structure of peptides/proteins, it is essen-

tial to integrate different NMR experiments and apply them to 13C, 15N -labeled

samples depending on the complexity of the system24–29. This requires sequence-

specific assignment of NMR resonances and measurement of sufficient number of

structural constraints (e.g. internuclear 13C −13 C and 13C −15 N distances and

torsion angles) to obtain a high-resolution structure that is consistent with these

constraints30–32.

The initial breakthrough in solid-state NMR (ssNMR) was provided in 1958 by

Andrew and coworkers33 and independently by Lowe34 in the form of ‘magic angle

spinning’ (MAS) experiments. In their experiment, the sample under investigation

was rotated along an axis (also referred to as rotor axis) inclined at an angle

θm = 54.7360 with respect to the external magnetic field. On rapid rotation of the

sample along this axis, the broadening effects due to the anisotropic interactions

get minimized resulting in fine structures similar to those found in the solution

state.

The next obstacle in the high-resolution NMR of solids was the sensitivity

factor. In general, the sensitivity of a nucleus depends on two intrinsic prop-

erties: (1) natural abundance (2) gyromagnetic ratio. Accordingly, nuclei with

lesser abundance and lower gyromagnetic ratios are often termed as dilute nu-

clei. Due to favourable chemical shift dispersion, the NMR spectra of dilute nuclei

(such as 13C, 15N) are preferred (over 1H-NMR) in structural investigations in the

3



solid state. To improve the sensitivity of dilute nuclei, Hartmann and Hahn35 pro-

posed a novel double resonance experiment (later referred to as ‘Cross-polarization’

(CP)), wherein, the polarization from a sensitive nucleus (nuclei with higher gy-

romagnetic ratio, γ and higher natural abundance) is transferred to the dilute

nuclei of interest through the dipolar interactions. From an experimental perspec-

tive, the polarization transfer observed in CP experiments is facilitated through

a resonance like phenomenon that involves careful matching of the amplitudes of

the oscillating radio-frequency (RF) fields that are employed on the two channels.

Hence, the combination of MAS with CP experiment seemed a probable solution

for improving both the resolution and sensitivity of the spectrum in the solid state.

In Fig. 1.1, the basic CP scheme is depicted.

DecouplING1H

13C

tmix

 2 y



,RF S

,RF I

Figure 1.1: Pulse scheme for Continuous Wave CP

Interestingly, from a conceptual viewpoint, this initial line of thought seemed

impractical owing to the averaging effect of MAS. Since dipolar interactions facili-
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tate the transfer of polarization among spins, the CP experiment was expected to

fail under MAS conditions. Nevertheless, in 1973 Waugh and coworkers success-

fully demonstrated the implementation of CP experiment under MAS conditions.

In their implementation of the CP experiment, the averaging effect of MAS (on

the dipolar interactions) was compensated temporarily during the CP period by

a careful manipulation of the amplitudes of the RF fields employed on the two

channels. Unlike the matching conditions in static CP experiments, the ampli-

tudes of the RF field employed on the two channels are highly sensitive to the

spinning frequency and are described in detail in the second chapter. Subse-

quently, the CPMAS experiment36 has become an integral building block in the

design of multi-dimensional solid state NMR experiments for studying dilute nu-

clei8,37–53,53–65. With the availability of higher magnetic field strengths and faster

spinning modules, sophisticated variants to the original CP experiment have been

developed in the past37–53,53–63. Consequently, suites of multi-dimensional experi-

ments involving dilute nuclei (such as 13C, 15N) have emerged in ssNMR and have

all been well documented in recent literature8,64,65.

In spite of the tremendous progress made in the last two decades, ssNMR is

still a developing field and methods towards structural characterization are just

emerging. Similar to other spectroscopic methods, the success of ssNMR relies

on the accuracy of the estimated molecular constraints such as inter-atomic dis-

tances, torsion angles etc. Since the number of molecular constraints estimated

through ssNMR experiments is limited (due to resolution), the accuracy of the

estimated constraints become important in the overall refinement of structure.

5



Hence, along with the progress on the experimental front, development of ana-

lytic theory/mathematical models is essential for both quantifying experiments

and designing sophisticated variants to existing experiments. Since the molecular

constraints in NMR spectroscopy are estimated through measurement of spin po-

larizations, understanding the mechanism of polarization transfer among nuclear

spins is vital for developing mathematical models for quantifying experimental

data. With this objective in mind, an analytic theory based on the concept of

effective Hamiltonians is proposed in this thesis for elucidating the mechanism

of polarization transfer in ssNMR experiments. A brief outline of the thesis is

presented in the following sections.

1.2 Objectives and Motivation

Problem-1:

To develop an analytic theory/model for describing multiple-pulse sequences with

cycle times occurring at competing timescales with respect to the MAS rotor

period.

Motivation:

To extend the utility of ssNMR in studying biophysical systems, availability of

higher magnetic field strengths and faster spinning modules are essential to im-

prove the resolution of the spectrum. Very often, at faster spinning frequencies,

the cycle time of a typical multiple-pulse sequence approaches to that of the MAS

rotor period. From a theoretical standpoint, the averaging effects of MAS and

multiple-pulse sequences become inseparable in the fast spinning regime and the

6



whole concept of a time-averaged Hamiltonian based on average Hamiltonian the-

ory (AHT)4,66 becomes invalid. Hence, development of analytic methods based

on Floquet theory67 are essential for describing periodic multiple-pulse sequences

that are incommensurate with the MAS rotor period.

13C1H

Figure 1.2: CP in an isolated two-spin system

Problem-2:

To understand the role of time-dependent oscillating fields (phase and amplitude

modulation) in heteronuclear polarization transfer experiments.

Motivation:

In a typical multiple-pulse sequence, the phase and amplitude of the oscillating

magnetic fields play an important role in the time-evolution of the spin system

of interest. In particular, understanding the interconnection between spinning

frequency, modulation frequency and RF amplitude is essential in the design of

multiple-pulse sequences at faster MAS frequencies. Employing multimodal Flo-
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Figure 1.3: Phase/amplitude-modulated CP scheme

quet theory68, we present an analytic theory for deducing the resonance conditions

in CP experiments that employ phase/amplitude modulations that are incommen-

surate with the MAS rotor period.

Problem-3:

To develop a mathematical model for quantifying polarization transfer to a given

target spin from multiple spin sites.

Motivation:

As discussed earlier, the number of molecular constraints (say interatomic dis-

tances, torsion angles, etc.) that could be estimated from ssNMR are limited due

to poor resolution. Hence, the accuracy of the estimated constraints remain vital

in the refinement of the three-dimensional structure of a typical biological system.

Additionally, due to spectral crowding (a case often encountered in the study of
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13C1H

1H

1H
1H 13C

1H

Figure 1.4: Polarization transfer from protons to carbons in CP experiments

proteins), selective transfer of polarization is hardly achieved in practice. In such

cases, theoretical descriptions built on isolated spin pair models are of limited

utility. As an alternative, models built on the concept of effective Hamiltonians

seem to be an attractive solution and would be explored in this thesis.

1.3 Methodology

In the operator formulation of quantum mechanics, the time-evolution of a system

is described by the Liouville-von Neumann equation,69

i~
∂ρ(t)

∂t
= [H, ρ(t)] (1.1)

where, ρ(t) denotes the state of the system after some time ‘t’. The internal inter-

actions of the system along with its interaction with the external fields (electric/or
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magnetic) is included in the Hamiltonian operator, ‘H’. When the Hamiltonian is

time-independent, the state of a system at any instant of time ‘t’ is given by the

expression

ρ(t) = exp

{
− i
~
Ht

}
ρ(0) exp

{
i

~
Ht

}
(1.2)

Subsequently, the expectation value of any observable is calculated by the

expression given below:

〈
Ôp(t)

〉
= Trace

[
Ôp.ρ(t)

]
(1.3)

However, as depicted in eq. 1.4, the solution gets quite complicated when the

Hamiltonian is explicitly time-dependent,

ρ(t) = T exp

− i~
t∫

0

H(t′)dt′

 ρ(0)T exp

 i

~

t∫
0

H(t′)dt′

 (1.4)

In the brute force approach, the solution to the above problem is obtained nu-

merically by evaluating the time-evolution of the system at shorter time-periods by

assuming a time-independent Hamiltonian. Although such approaches are quite

useful, they are of lesser utility in understanding the nuances of experiments. To

design new experiments or improve existing experiments, it is important to have a

deeper understanding of the spin physics at the microscopic level. Hence, analytic

methods based on average Hamiltonian theory (AHT)4,66 and Floquet theory67

were employed in the past to understand and design ssNMR experiments. In

both these approaches, the time-evolution of a system is described through a

time-averaged effective Hamiltonian employing different approximations. In the

10



AHT4,66 approach, the cycle times of the multiple-pulse sequences are synchro-

nized on purpose with the MAS rotor period and effective Hamiltonians to the

desired order are derived through Magnus expansion70. By contrast, the Floquet

approach presents a more general framework for describing ssNMR experiments

without imposing any restriction on the time-modulations. With the availability

of faster spinning modules, design of multiple-pulse experiments at faster spinning

frequencies become quite daunting owing to the competing nature of the MAS

and RF modulations. In such cases, Floquet theory67 seems to be better suited

for describing schemes that are incommensurate with the spinning frequency. A

formal description of multiple-pulse experiments with cycle times incommensurate

with the MAS rotor period is described in this thesis.

To begin with, the nuclear spin Hamiltonians under sample rotation is both

time-dependent and periodic5. As often the case, the Hamiltonian in the rotating

frame is expressed as a sum of single-spin and two-spin interactions represented

by,

H(t) = Hsingle−spin(t) +Htwo−spin(t) +HRF (t) (1.5)

The single-spin interaction comprises of the isotropic and anisotropic chemical

shift interactions and is represented by,

Hsingle−spin(t) =
2∑

m=−2

ω
(m)
I eimωrtIz +

2∑
m=−2

ω
(m)
S eimωrtSz (1.6)

The interaction among spins is depicted through two-spin Hamiltonians. Hence,

in this thesis, we confine our discussion only to the dipolar interactions,

11



Htwo−spin(t) =
2∑

m=−2,
m6=0

ω
(m)
IS e

imωrt

[
2IzSz −

1

2

{
I+S− + I−S+

}]
(1.7)

In the case of homonuclear dipolar interactions the flip-flop term ( I+S− + I−S+)

is retained while in heteronuclear dipolar interactions it is neglected.

The RF-Hamiltonian is represented by,

HRF (t) = ωRF,I(t)Ix + ωRF,S(t)Sx (1.8)

In the rotating frame, the RF-Hamiltonian could be time-dependent either

due to variation in its amplitude or phase or both. Such modulations are always

periodic and could be expressed as a Fourier series. To gain analytic insights, the

Hamiltonian is transformed into the RF interaction frame wherein the evolution

of the system is governed only by its internal Hamiltonian.

Although several descriptions based on AHT4,66 exist in the literature, Flo-

quet theory67 presents a comprehensive framework for describing the dynamics

of MAS experiments under oscillating RF fields. In the Floquet approach, the

time-dependent Hamiltonian is transformed to a time-independent Hamiltonian

through the use of a Fourier series expansion and Floquet theorem.

Consequently, both the nuclear spin states (|IM〉) and the operators (T (k)q)

are dressed with the Fourier indices associated with the various modulations in

the system i.e., |IM,m, n1, n2〉 and T
(k)q
m,n1,n2 . The periodic modulation imposed

by sample rotation is depicted through the Fourier index ‘m’, while the indices

12



n1, n2 depict the modulations due to the oscillating RF fields on spins I and S,

respectively. Employing the Floquet operators the Floquet Hamiltonian is defined

as,

HF =ωrI
(m)
F + ωRF,II

(n1)
F + ωRF,SI

(n2)
F

+
1∑

q=−1,
q 6=0

2∑
m=−2

[
∞∑

n1=−∞

G
(1)q
m,n1,0

(I)iT
(1)q
m,n1,0

(I) +
∞∑

n2=−∞

G
(1)q
m,0,n2

(S)iT
(1)q
m,0,n2

(S)

]

+
2∑

k=0

k∑
q=−k

2∑
m=−2,
m 6=0

∞∑
n1,n2=−∞

[
G(k)q
m,n1,n2

(IS)T (k)q
m,n1,n2

(IS)
]

(1.9)

To study the time evolution of a spin system, the Floquet Hamiltonian needs

to be diagonalized. One of the standard approaches involves numerical diagonal-

ization in which the eigenvalues are obtained by truncating the dimension of the

Floquet matrix based on the convergence of the eigenvalues. Although, such an

approach seems to be an attractive solution in simple problems, simulations in-

volving multiple time-modulations are quite complicated. This problem is further

accentuated with the increase in the number of spins in the system. To overcome

this limitation, an analytic description of the underlying spin dynamics in the

Floquet space is essential. In the past, this has been accomplished by employing

the concept of effective Floquet Hamiltonians derived from the contact transfor-

mation method71–74 (also known as the van Vleck transformation method). The

contact transformation method is an operator equivalent of the standard pertur-

bation theory in which all perturbation corrections are obtained in the form of

operators resulting in effective, more nearly diagonal Hamiltonians75.

To facilitate the implementation of the contact transformation procedure, the

Floquet Hamiltonian is re-expressed as a sum, comprising of a zero-order (H0)
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and a perturbing Hamiltonian (H1).

HF = H0 +H1 (1.10)

where,

H0 = ωrI
(m)
F + ωRF,II

(n1)
F + ωRF,SI

(n2)
F (1.11)

H1 = H
(I)
F +H

(S)
F +H

(IS)
F (1.12)

In contrast to the standard perturbation theory, the perturbation corrections in

the contact transformation method are derived through unitary transformations

and expressed in terms of operators. The transformed Hamiltonian (referred to as

effective Hamiltonian) to second-order after a single transformation is represented

by,

Heff
F = exp(iS1)HF exp(−iS1)

= H
(1)
0 +H

(1)
1 +H

(1)
2

H
(1)
0 = H0

H
(1)
1 = H1 + i [S1, H0]

H
(1)
2 = i

2
[S1, H1] (1.13)

The final stage involves the description of the time-evolution of the system through

the quantum-Liouville equation given below.

i~
∂ρ(t)

∂t
=
[
Heff
F , ρ(t)

]
(1.14)

Here in this thesis, effective Hamiltonians are derived for multiple-pulse exper-

iments that are incommensurate with the spinning frequency. The role of phase
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and amplitude modulation is described employing multi-mode Floquet theory68.

Through appropriately chosen model systems, polarization transfer in strongly

coupled systems is described beyond the isolated two-spin framework.

1.4 Organization of the Thesis

Employing the cross-polarization experiment as a case study, an analytic model is

proposed in this thesis to describe the mechanism of polarization transfer among

heteronuclear spins in ssNMR. To unravel the mechanism of polarization transfer

and quantify the experimental data in strongly coupled systems, models beyond

the isolated two-spin framework are mandatory. With this objective, an analyti-

cal model based on effective Hamiltonians is proposed to describe the polarization

transfer to a target spin arising from multiple spin sites. Through the concept of

truncated effective Hamiltonians76, the dimensionality of the problem is reduced in

the spin space thereby facilitating an analytic description of the spin dynamics in a

reduced subspace. Since bio-molecular applications of ssNMR entail the availabil-

ity of higher magnetic field strengths and faster spinning modules, implementation

of CP experiments at faster spinning frequencies become mandatory51–54,56. Con-

sequently, design of experiments involving RF modulations occurring at competing

timescales with respect to MAS modulations become inevitable.

In the second chapter, the theory of CP experiments under MAS conditions

is described in terms of Floquet theory67. In the past, the Floquet approach has

been successfully employed for describing pulse experiments employing modula-

tions that are synchronized with the spinning frequency65,77. Alternatively, here

15



in this thesis, we present a framework for describing sequences that employ modu-

lations that are incommensurate with the spinning frequency. Employing a model

spin system comprising of two-spins, polarization transfer in both zero-quantum

(ZQ) and double-quantum (DQ) experiments is described in terms of simple an-

alytic expressions. The interplay between the various anisotropic interactions is

illustrated through simulations by comparing the results obtained from exact nu-

merical methods with those obtained from analytic methods based on effective

Hamiltonians. Employing multi-mode Floquet theory68, an analytic description

of phase/amplitude modulated CP experiments is presented in the third chapter.

In the fourth chapter, the scope of the analytic description presented in the

second chapter is extended beyond the isolated two-spin framework. Employing

the concept of truncated effective Hamiltonians76, the mechanism of polarization

transfer among spins in a strongly coupled network is described. Through appro-

priate model systems, the important role of dipolar truncation78 in the propagation

of spin polarization in CP experiments is outlined through rigorous comparisons

with numerical and analytic simulations.

Finally, the fifth chapter contains the summary of the research work with

possible extensions of this work as future prospects.
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Appendix-1

Theory (static case)

To describe the CP experiment, we begin our discussion with a model system

comprising of two spins (I-S). In the laboratory frame, the Hamiltonian for such

a system is represented by,

H = HI +HS +HIS (1.15)

where, HI and HS are single spin Hamiltonians, while HIS denotes the inter-

action Hamiltonian between the spins. The single spin Hamiltonian depicts the

interactions between the nuclear spin magnetic moment with both the static and

oscillating magnetic fields.

HI = −~ω0IIz − 2~ωRF,I cos(ωspec,It)Ix (1.16)

HS = −~ω0SSz − 2~ωRF,S cos(ωspec,St)Sx (1.17)

In the above expressions (Eqns. 1.16 & 1.17) ‘ω0I ’ (or ω0S) represents the Larmor

frequency while ωRF,I (or ωRF,S) and ‘ωspec,I ’ (or ωspec,S) denote the amplitude

and frequency of the oscillating magnetic field. The interaction among the spins

is denoted by the dipolar Hamiltonian given below,

HIS = 2ωISIzSz (1.18)
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where, ‘ωIS’ is the dipolar constant represented by,

ωIS =
µ0γIγS~
4πr3

IS

(
1− 3cos2θ

)
(1.19)

In the above equation θ denotes the angle between the dipolar vector and the

static magnetic field. To describe the evolution of the system under its internal

Hamiltonian, the Hamiltonian defined in Eq. 1.15 is transformed into a rotating

frame through the transformation function U1 = exp(iωspec,ItIz) exp(iωspec,StSz)

HI,R = U1HIU
−1
1 (1.20)

In the rotating frame, the single spin Hamiltonian comprises of a static and a

time-dependant terms,

HI,R = ~(−ω0I + ωspec,I)Iz − 2~ωRF,I cos(ωspec,It) [Ix cos(ωspec,It)− Iy sin(ωspec,It)]

(1.21)

Under secular approximation, the time-dependent terms in the above Hamiltonian

are ignored and Eq. 1.21 reduces to a much simpler form given below,

HI,R = −~∆ωIIz − ~ωRF,IIx (1.22)

where, ‘∆ωI ’ is the chemical-shift offset for spin-I.

Due to commuting nature of the transformation function U1 and HIS, the

two-spin Hamiltonian remains invariant in the rotating frame.

HIS,R = 2ωISIzSz (1.23)

When the oscillating fields on the two-channels are applied on resonance, the

Hamiltonian in the rotating frame reduces to a much simpler form,

HR = −~ωRF,IIx − ~ωRF,SSx + 2ωISIzSz (1.24)
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(A) Spin Dynamics in the Tilted Rotating Frame

Since the magnitude of the RF fields often exceeds the dipolar coupling constant,

the Hamiltonian in the rotating frame is tilted through a unitary transformation,

U2 = exp(iπ
2
Iy) exp(iπ

2
Sy) such that the effective fields on individual spins are

quantized along the z-axis.

HTR = U2HRU
−1
2 (1.25)

Consequently, the dipolar Hamiltonian gets modified and is expressed in terms of

zero-quantum (ZQ) and double-quantum (DQ) operators.

HTR = ωRF,IIz + ωRF,SSz +
ωIS
2

[
I+S− + I−S+

]︸ ︷︷ ︸
ZQ

+
ωIS
2

[
I+S+ + I−S−

]︸ ︷︷ ︸
DQ

(1.26)

To have a consistent description, both the initial density operator (ρ(0) = Ix) and

the detection operator ‘Sx’ during the CP mixing period are transformed by the

unitary transformations U1 and U2.

ρTR(0) = Iz (1.27)

Sx,TR = Sz (1.28)

Subsequently, the polarization transfer (from spin I to S) during the CP mixing

period is calculated by evaluating the standard expression given below,
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〈Sz(t)〉 = Tr [ρTR(t).Sz]

= Tr
[
exp(− i

~HTRt)ρTR(0) exp( i~HTRt).Sz
]

=
(ωIS)2

(ωIS)2 + (∆)2 sin2


√

(ωIS)2 + (∆)2t

2


− (ωIS)2

(ωIS)2 + (
∑

)2 sin2


√

(ωIS)2 + (
∑

)2t

2

 (1.29)

〈Iz(t)〉 = Tr [ρTR(t).Iz]

= Tr
[
exp(− i

~HTRt)ρTR(0) exp( i~HTRt).Iz
]

=1−


(ωIS)2

(ωIS)2 + (∆)2 sin2


√

(ωIS)2 + (∆)2t

2


− (ωIS)2

(ωIS)2 + (
∑

)2 sin2


√

(ωIS)2 + (
∑

)2t

2




(1.30)

where, ∆ = ωRF,I − ωRF,S and
∑

= ωRF,I + ωRF,S. Employing the above expres-

sions, the optimal matching conditions for efficient polarization transfer in CP

experiments could be deduced as described below,

(1) ZQ matching condition (ωRF,I = ωRF,S)

When the amplitude of the RF fields are identical, (i.e. ∆ = 0) the above Eqns

(1.29 , 1.30) reduce to a much simpler form.

〈Sz(t)〉 = sin2

(
ωISt

2

)
(1.31)
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〈Iz(t)〉 = 1− sin2

(
ωISt

2

)
(1.32)

(2) DQ matching condition (ωRF,I = −ωRF,S)

In a similar vein, when the amplitudes of the RF fields are phase-shifted (i.e.∑
= 0) we get the double-quantum matching condition.

〈Sz(t)〉 = −sin2

(
ωISt

2

)
(1.33)

〈Iz(t)〉 = 1 + sin2

(
ωISt

2

)
(1.34)

Based on the above analytic results, it is clear that the exchange trajectories in

CP experiments depend on both the matching conditions as well as the magnitude

of the dipolar coupling constant. Employing the above expressions (eqns. 1.31 and

1.33) polarization transfer in CP experiments are calculated and is depicted below

through simulations.

As depicted in eq. 1.33, when the mismatch between the RF amplitudes in-

creases, (∆ in the ZQ-CP and
∑

in the case of DQ-CP), the efficiency of polar-

ization transfer decreases in CP experiments.

(B) Spin Dynamics in the Tilted RF interaction

frame

The calculations in the tilted rotating frame could further be simplified by trans-

forming into an interaction frame defined by the transformation function, U3 =

exp(iωRF,ItIz) exp(iωRF,StSz)

HTRF = U3HTRU
−1
3 (1.35)
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Figure 1.5: Simulations depicting polarization transfer from spin-I (1H) to spin-S
(13C) in CP (static) experiments under (A) ZQ and (B) DQ matching conditions at
600MHz 1H Larmor frequency. For the sake of simplicity, the chemical shift anisotropy
is ignored in the simulations. The dipolar coupling between the spins was set to 2901
Hz and the RF field employed on both the channels was 10kHz

In the tilted ‘RF’ interaction frame the Hamiltonian of the system is purely dipolar

in nature and is represented by,

HTRF =
ωIS
2

[
I+S+ exp{−i(ωRF,I + ωRF,S)t}+ I−S− exp{i(ωRF,I + ωRF,S)t}

]︸ ︷︷ ︸
DQ

+
ωIS
2

[
I+S− exp{−i(ωRF,I − ωRF,S)t}+ I−S+ exp{i(ωRF,I − ωRF,S)t}

]︸ ︷︷ ︸
ZQ

(1.36)

When the ‘ZQ’ matching condition is satisfied (ωRF,I = ωRF,S) the above Hamilto-

nian reduces to a time-independent Hamiltonian containing only the ZQ operators.

Heff =
ωIS
2

[
I+S− + I−S+

]
(1.37)
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Employing the transformed density operator and detection operator (eqns. 1.27

and 1.28), the polarization transfer from I to S is given by,

〈Sz(t)〉 = Tr [ρTRF (t).Sz] (1.38)

= sin2

(
ωISt

2

)

In a similar vein, when (ωRF,I = −ωRF,S) , the effective Hamiltonian reduces to a

much simpler form comprising of DQ operators,

Heff =
ωIS
2

[
I+S+ + I−S−

]
(1.39)

Subsequently, the polarization transfer to spin ‘S’ is given by,

〈Sz(t)〉 = Tr [ρTRF (t).Sz] (1.40)

= −sin2

(
ωISt

2

)

A thorough description of the CP experiment under MAS conditions in the pres-

ence of anisotropic interactions will be presented in the second chapter of this

thesis.
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Chapter 2

Analytic Theory of CPMAS
Experiments

2.1 Background

After its successful demonstration in 1973, the CP-MAS experiment1 has be-

come an integral part of many multi-dimensional experiments. In a typical multi-

dimensional experiment involving less sensitive nuclei, the initial cross-polarization

step involves the transfer of the abundant 1H polarization to one of the less abun-

dant nuclei, say 15N (or 13C). Following this step, a sequential transfer of po-

larization from 15N to 13C (or 13C to 15N) is established through a second CP

process. With the availability of faster spinning modules, sample heating and

degradation has become an important issue to deal with in ssNMR experiments.

To this end, several new approaches have emerged in recent years to address the

above mentioned issues2–7. The sequences developed so far could be classified

into two main categories (1) first order recoupling (2) second order recoupling.

In the first order recoupling schemes, polarization transfer between two groups

of spins is established (through the dipolar interactions) when one of the match-

ing conditions
∣∣υRF,S ± υRF,I∣∣ = υr or 2υr is satisfied. Such schemes in principle
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could be designed by employing either (a) higher RF powers at moderate spinning

frequencies (b) higher spinning frequencies with lower RF powers. To facilitate

analytic descriptions based on Average Hamiltonian theory (AHT)8,9, the time-

periods associated with the modulations (namely due to RF irradiation) are often

synchronized with the sample spinning frequency i.e. υRF,I = pυr , υRF,S = rυr (p

and r are chosen to be integers).

Employing AHT formalism, suites of dipolar recoupling methods have emerged

wherein, the amplitudes of the RF fields employed on the two channels are cho-

sen carefully to avoid matching conditions that result in the reintroduction of the

CSA interactions. When the sum ( υRF,I + υRF,S = mυr, (DQ matching condi-

tion) or the difference (
∣∣υRF,I − υRF,S∣∣ = mυr (ZQ matching condition) between

the RF fields is matched to the spinning frequency, a time-independent dipolar

Hamiltonian is obtained (See Eq. 2.12) suggesting the reintroduction of dipolar

interactions under MAS. Since the time-period of the modulations employed on

the two channels are commensurate ( τc = Nτr ) with the rotor period, the DQ

matching condition is never easily satisfied in MAS experiments. Consequently,

dipolar recoupling experiments satisfying only the ZQ matching condition have

emerged.10–12 To prevent the reintroduction (or recoupling) of the CSA interac-

tions, the indices p and r in ZQ experiments should differ by m (i.e., p, r > 2

and |p− r| = 1 or 2 . Hence, the amplitude of the RF fields employed on the

two channels should be significantly greater than the sample spinning frequency

(i.e. υRF ≥ 3υr ). Since bio-molecular applications of ssNMR necessitate higher

magnetic field strengths and faster spinning frequencies13,14 (for improved spectral
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resolution), sequences that are synchronized with sample spinning frequency are

of limited utility.

2.2 Definition of the Problem

With this objective, an analytic theory is proposed for designing CP experiments

that employ modulations that are incommensurate with the spinning frequency.

Since the RF and MAS modulations are incommensurate, we resort to Floquet the-

ory15. In the Floquet treatment, the time-dependent Hamiltonian is transformed

into a time-independent Hamiltonian via Fourier series expansion. Subsequently,

the spin dynamics could be described either in the Floquet state space or the

Floquet operator (Liouville) space. To present a general description of the spin

dynamics, the multipole formulation of Floquet theory (MMFT)16 is employed in

the present study. In the past, the MMFT approach has been employed to de-

scribe the spin dynamics in the Floquet-Liouville space16–19. Alternatively, in this

thesis we present a formalism to describe schemes that employ RF modulations

that are incommensurate with the spinning frequency. Specifically, the polariza-

tion transfer in CP experiments is described in the Floquet-state space through

simple analytic expressions.

2.3 Discussion

2.3.1 Spin Hamiltonians under MAS conditions

To explain the transformations of the internal spin Hamiltonians under rotations,

spherical tensor operator basis is routinely employed in solid-state NMR20,21. Such

a description, presents a suitable framework for understanding the effects of sample
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spinning on the various interactions in the solid state. Following the standard

procedure20–22, the spatial and spin parts of the interactions are expressed in

terms of irreducible spherical tensor operators, as given below,

Hλ = Cλ

2∑
k=0

k∑
q=−k

(−1)qR
(k)−q
λ T

(k)q
λ (2.1)

In the above equation, ‘λ’ represents spin interactions (such as chemical shift,

dipole-dipole interaction, spin-spin coupling, quadrupolar interaction etc.) and

‘Cλ’ the physical constants specific to a particular spin interaction ‘λ’. The spa-

tial and spin parts are expressed in terms of R
(k)−q
λ and T

(k)q
λ (wherein ‘k’ denotes

the rank and ‘q’ the corresponding component) operators respectively. Since the

nuclear spin interactions result from interactions among vector quantities, the spa-

tial part of the interactions are expressed in terms of second rank tensors, R
(2)−q
λ .

To minimize the complexity involved in the description, spatial tensors (R
(k)−q
λ )

are often described in the principal axis system (PAS). Hence, a series of transfor-

mations is necessary for a unified description. Under secular approximation, the

general form of the interaction Hamiltonian depicted in Eq. 2.1 is truncated to a set

of terms/operators that commute with the Zeeman interaction i.e.
[
Iz, T

(k)q
]

= 0

(implies, q = 0)

Hλ =
2∑

k=0

k∑
q=−k

(−1)qR
(k)−q
λ (t)T

(k)q
λ

=R
(0)0
λ T

(0)0
λ +R

(1)0
λ (t)T

(1)0
λ +R

(2)0
λ (t)T

(2)0
λ (2.2)

The first term ‘R
(0)0
λ ’ is isotropic and invariant under rotations, while the sec-

ond term ‘R
(1)0
λ (t)’ has no effect on the spectrum as only symmetric and traceless
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quantities are measured in NMR spectroscopy. Hence, the only term that con-

tributes to the spectrum in MAS experiments is ‘R
(2)0
λ (t)’22. Since, spatial tensor

operators are described in the PAS, a series of coordinate transformations are per-

formed to obtain the MAS Hamiltonian in the laboratory frame (from the PAS

to Molecular Axis System (MolAS) to Rotor Axis System (RAS) and finally to

Laboratory Axis System (LAS)).

PAS
D(2)(ΩPM )−−−−−−→ molAS

D(2)(ΩMR)−−−−−−→ RAS
D(2)(ΩRL)−−−−−−→ LAS

Employing the spatial tensor operators defined in the PAS the operators in the

LAS are derived systematically using Wigner rotation matrices23,

R
(k)0
λ,LAS (t) =

k∑
q,q1,q2=−k

D(k)
q2q1

(ΩPM)D(k)
q1q

(ΩMR)D
(k)
q0 (ΩRL)R

(k)q2
λ,PAS (2.3)

In the above equation, D(k)(ΩAB) denotes the Wigner rotation matrix23 of order

‘k’ which describes the transformations of irreducible spherical tensor components

among various axis systems.

In the case of chemical shift anisotropy (CSA), the spatial component in the

laboratory axis system for ith nucleus is represented as,

R
(2)0
CS,LAS,i (t) =

2∑
m,m1,m2=−2

D(2)
m2m1

(ΩPM)D(2)
m1m

(ΩMR)D
(2)
m0(ΩRL)R

(2)m2

CS,PAS,i

=
2∑

m,m1,m2=−2

D(2)
m2m1

(ΩPM)D(2)
m1m

(ΩMR)R
(2)m2

CS,PAS,ie
imωrt

=
2∑

m=−2

ω
(m)
i eimωrt (2.4)

In the case of CSA interactions, the following components of the spatial tensor are
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non-zero in the PAS.

R
(2)0
CS,PAS,i = δanis (2.5)

R
(2)±2
CS,PAS,i = − 1√

6
δanisη (2.6)

(‘δanis’ and ‘η’ represent the ‘chemical shift anisotropy’ and ‘asymmetry parameter’

respectively).

In a similar vein, the transformation relating the spatial component of the

dipolar interaction between ith and jth nuclei is represented by,

R
(2)0
D,LAS,ij (t) =

2∑
m,m1,m2=−2

D(2)
m2m1

(ΩPM)D(2)
m1m

(ΩMR)D
(2)
m0(ΩRL)R

(2)m2

D,PAS,ij

=
2∑

m,m1,m2=−2

D(2)
m2m1

(ΩPM)D(2)
m1m

(ΩMR)R
(2)m2

D,PAS,ije
imωrt

=
2∑

m=−2

ω
(m)
ij eimωrt (2.7)

where,

R
(2)0
D,PAS,ij =

√
6ωij (2.8)

(ωij =
µ0γiγj~

4πr3ij
is the dipolar coupling constant) is the only non-zero term in the

dipolar principal axis frame.

2.3.2 Theory of CP-MAS experiments at faster spinning
frequencies

To deduce the matching conditions in CPMAS experiments, we begin our discus-

sion employing a model system comprising of two-spins. In the rotating frame

the MAS spin Hamiltonian for an isolated two-spin heteronuclear (I-S) system is

represented by,
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Figure 2.1: Pulse sequence depicting the polarization transfer in double cross-
polarization (DCP)24–27 experiments. The RF amplitude is not synchronized with the
sample spinning frequency i.e., υ 6= Nυr.

H(t) =
2∑

m=−2

ω
(m)
I eimωrtIz +

2∑
m=−2

ω
(m)
S eimωrtSz +

2∑
m=−2,
m 6=0

2ω
(m)
IS e

imωrtIzSz

+ ωRF,IIx + ωRF,SSx (2.9)

The spatial anisotropy associated with the chemical shift and dipolar interactions

are represented by ω
(m)
λ ( λ = I, S ) and ω

(m)
IS , respectively. For the sake of conve-

nience, the isotropic part of the chemical shift interaction (represented by ω
(0)
λ ) is

included along with the anisotropic part in our description. In the rotating frame,

the oscillating radiofrequency (RF) field is time-independent, (ωRF,I and ωRF,S rep-

resent the RF amplitudes on the spins I and S, respectively). To simplify the de-

scription, the above Hamiltonian is transformed into a tilted frame (also described

in Appendix-1) defined by the transformation operator, U1 = exp(iπ
2
Iy) exp(iπ

2
Sy)

as,

H̃(t) = U1H(t)U−1
1 (2.10)
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H̃(t) =ωRF,IIz + ωRF,SSz +
2∑

m=−2,
m6=0

2ω
(m)
IS e

imωrtIxSx

− ω(0)
I Ix −

2∑
m=−2,
m 6=0

ω
(m)
I eimωrtIx

− ω(0)
S Sx −

2∑
m=−2,
m6=0

ω
(m)
S eimωrtSx (2.11)

In the tilted rotating frame the RF part of the Hamiltonian is quantized along the

z-axis (i.e., diagonal) while the chemical shift and the dipolar interactions are off-

diagonal. To deduce the optimum CP conditions (describe the recoupling process),

the Hamiltonian in the tilted frame is further transformed into the RF interaction

frame defined by the transformation operator U2 = exp(iωRF,ItIz) exp(iωRF,StSz)

. Subsequently, the Hamiltonian in the tilted RF interaction frame is further split

into single-spin and two-spin interactions . The single-spin Hamiltonian depicts

both the isotropic and anisotropic chemical shift interactions and is expressed in

terms of single-quantum (SQ) operators, while the two-spin Hamiltonian comprises

of the dipolar-interactions and is expressed in terms of DQ and ZQ operators:

˜̃H(t) = −
2∑

m=−2,

ω
(m)
I

2
ei(mωr±ωRF,I)tI± −

2∑
m=−2

ω
(m)
S

2
ei(mωr±ωRF,S)tS±

+
1

2

2∑
m=−2,
m 6=0

ω
(m)
IS

[
I+S+ei(ωRF,I+ωRF,S)t + I−S−e−i(ωRF,I+ωRF,S)t

]
eimωrt

+
1

2

2∑
m=−2,
m6=0

ω
(m)
IS

[
I+S−ei(ωRF,I−ωRF,S)t + I−S+e−i(ωRF,I−ωRF,S)t

]
eimωrt (2.12)

In contrast to static CP experiments, the internal spin Hamiltonians in the tilted

RF interaction frame are modulated by both MAS and the RF irradiation. When

the amplitudes of the RF fields are adjusted to one of the matching conditions28–30
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(|υRF,S ± υRF,I | = υr or 2υr), a part of the two-spin Hamiltonian (refer to Eq 2.12)

becomes time-independent under MAS conditions (commonly referred to as ‘re-

coupled Hamiltonian’). To maximize the polarization transfer among spins, the

amplitudes of the RF fields are adjusted to avoid undesired matching conditions

that result in the reintroduction of CSA interactions. In theoretical descriptions

based on AHT8,9, the undesirable matching conditions are avoided when the RF

amplitudes exceed the spinning frequency (i.e., νRF > 2νr). From an experi-

mental standpoint, the RF requirements on the probes increase with the MAS

frequency, thereby limiting the implementation of first order CP experiments at

faster spinning frequencies. Since, biomolecular applications of ssNMR entail the

implementation of CP experiments at faster spinning frequencies, alternate strate-

gies in the form of second-order CP experiments have emerged in recent past31–34.

As an alternative to this current trend, we reinvestigate the entire CP process

using Floquet theory with the objective of finding alternate recoupling conditions.

In contrast to the AHT approach, Floquet theory presents a more general frame-

work without any constraints on the magnitude of the RF modulations on the

system. To facilitate analytic description, the Hamiltonian in the RF interaction

frame (Eq. 2.12) is re-expressed in terms of multipole operators20.
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Table 2.1: Description of product operators in terms of Multipole operators20,35

Single-spin Iz = −iT (1)0(I), I±1 = ±i
√

2T (1)±1(I)

Two-spin (DQ) I+S+ = −T (2)2(IS), I−S− = −T (2)−2(IS)

Two-spin (ZQ)

I+S− = 1√
3
T (0)0(IS) + 1√

2
T (1)0(IS) + 1√

6
T (2)0(IS)

I−S+ = 1√
3
T (0)0(IS)− 1√

2
T (1)0(IS) + 1√

6
T (2)0(IS)

2IzSz = 1√
3
T (0)0(IS)−

√
2
3T

(2)0(IS)

˜̃H(t) =
1∑

q=−1

2∑
m=−2

−q√
2
ω

(m)
I eiqωRF,I tiT (1)q(I)

+
1∑

q=−1

2∑
m=−2

−q√
2
ω

(m)
S eiqωRF,StiT (1)q(S)

−1

2

2∑
m=−2,m 6=0

ω
(m)
IS

 T (2)2(IS)ei(ωRF,I+ωRF,S)t

+
T (2)−2(IS)e−i(ωRF,I+ωRF,S)t

 eimωrt

+
1

2

2∑
m=−2,m 6=0

ω
(m)
IS




1√
3
T (0)0(IS)+

1√
2
T (1)0(IS)+

1√
6
T (2)0(IS)

 ei(ωRF,I−ωRF,S)t

+
1√
3
T (0)0(IS)−

1√
2
T (1)0(IS)+

1√
6
T (2)0(IS)

 e−i(ωRF,I−ωRF,S)t


eimωrt (2.13)

The relation between the product operators and the spherical tensor opera-

tors20,35 is described in table 2.1. A detailed description of the Spherical Tensor

Operators in the multipole basis is given in Appendix-2. For convenience we follow

the above convention. Employing Floquet theorem, the time-dependent Hamilto-

nian (as depicted in Eq. 2.13) is transformed into a time-independent Hamiltonian

via Fourier series expansion. The transformed Hamiltonian (commonly referred to
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as Floquet Hamiltonian) is defined in an infinite dimensional vector space using

the irreducible Floquet tensor operator (IFT) basis16.

HF =ωrI
(m)
F + ωRF,II

(n1)
F + ωRF,SI

(n2)
F

+
1∑

q=−1,q 6=0

2∑
m=−2


∞∑

n1=−∞

G(1)q
m,qn1

(I)iT (1)q
m,qn1

(I)+

∞∑
n2=−∞

G(1)q
m,qn2

(S)iT (1)q
m,qn2

(S)



+
2∑

m=−2,m6=0

∞∑
n1,n2=−∞

G(2)2
m,n1,n2

(IS)T (2)2
m,n1,n2

(IS)+

G
(2)−2
m,−n1,−n2

(IS)T
(2)−2
m,−n1,−n2

(IS)



+
2∑

k=0

2∑
m=−2,m6=0

∞∑
n1,n2=−∞

G(k)0
m,n1,−n2

(IS)T
(k)0
m,n1,−n2

(IS)+

(−1)kG
(k)0
m,−n1,n2

(IS)T
(k)0
m,−n1,n2

(IS)


(2.14)

The IFT operator basis is constructed from a direct product between the spin

( T (k)q(α) )20 and the Fourier operators ( F
(k)
nk )36. The indices m,n1, n2 represent

the Fourier indices associated with MAS, RF modulation on spin ‘I’ and RF mod-

ulation on spin ‘S’, respectively. The underlying theoretical framework and their

utility in the description of ssNMR experiments are well documented and would

not be elaborated upon any further in this thesis17,18,37. Since, the Hamiltonian is

off-diagonal both in the spin (q 6= 0) and the Fourier dimension (m,n1, n2 6= 0) ,

effective Hamiltonians based on the method of contact transformation have been

employed in the present work to reduce the complexity in the Floquet space17–19,38.

In the effective Hamiltonian approach based on contact transformation, the
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Floquet Hamiltonian in Eq. 2.14 is re-expressed as a sum involving a zero order

and a perturbing Hamiltonian. The zero order Hamiltonian comprises of operators

that are diagonal in the Fourier dimension, while the perturbing Hamiltonian

contains operators with off-diagonality in the Fourier dimensions as represented

below. The non-zero coefficients involved in H1 are tabulated in Table 2.2

H0 = ωrI
(m)
F + ωRF,II

(n1)
F + ωRF,SI

(n2)
F (2.15)

H1 =
1∑

q=−1

2∑
m=−2


∞∑

n1=−∞
G

(1)q
m,qn1(I)iT

(1)q
m,qn1(I)+

∞∑
n2=−∞

G
(1)q
m,qn2(S)iT

(1)q
m,qn2(S)



+
2∑

m=−2
m 6=0

∞∑
n1,n2=−∞

 G
(2)2
m,n1,n2(IS)T

(2)2
m,n1,n2(IS)+

G
(2)−2
m,−n1,−n2

(IS)T
(2)−2
m,−n1,−n2

(IS)



+
2∑

k=0

2∑
m=−2
m 6=0

∞∑
n1,n2=−∞

 G
(k)0
m,n1,−n2r(IS)T

(k)0
m,n1,−n2

(IS)+

(−1)kG
(k)0
m,−n1,n2

(IS)T
(k)0
m,−n1,n2

(IS)


(2.16)

To reduce the complexity in the Floquet space, an effective Hamiltonian is pro-

posed by transforming the original Floquet Hamiltonian (Eq. 2.14) through a

unitary transformation defined by the operator, U = eiλS1 .

Heff
F = UHFU

−1 = eiλS1HF e
−iλS1 (2.17)

H(1)
n = Hn +

n−1∑
m=0

in−m

(n−m)!
[S1,[S1...︸ ︷︷ ︸

n−m

[S1, Hm] ...]] (2.18)

In Eq. 2.18, S1 represents the transformation function, Hm the various perturba-

tion terms (arranged in the decreasing order of magnitude) and H
(1)
n the pertur-

bation corrections in terms of operators corresponding to a given order depicted
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Table 2.2: The non-zero ‘G’ coefficients employed in the Floquet Hamiltonian

Single-spin G
(1)q
m,qn1(I) = −q√

2
ω

(m)
I , G

(1)q
m,qn2(S) = −q√

2
ω

(m)
S

Two-spin (DQ) G
(2)±2
m,n1,n2(IS) = −1

2 ω
(m)
IS

Two-spin (ZQ) G
(0)0
m,n1,n2(IS) = 1

2
√

3
ω

(m)
IS

G
(1)0
m,n1,n2(IS) = 1

2
√

2
ω

(m)
IS

G
(2)0
m,n1,n2(IS) = 1

2
√

6
ω

(m)
IS

by ‘n’. As a general procedure38, the transformation function, S1 is expressed in

terms of a complete basis set of operators employed for describing H1 and is cho-

sen carefully to compensate the off-diagonality present in H1 . Depending on the

choice of the matching conditions, both zero-quantum (ZQ) and double-quantum

(DQ) sequences could be developed in the double cross-polarization (DCP)24–27

experiments. To minimize the complexity in the derivation of the transformation

function in recoupling experiments, we express the recoupled part of the Hamilto-

nian as a diagonal term in H1
19,39. Consequently, the transformation function S1

is chosen only to compensate the off-diagonality due to H1,off−dia. Depending on

the type of experiments (ZQ or DQ), the higher order corrections are calculated

accordingly. For example, in the case of ZQ recoupling sequences, the second or-

der corrections involve a complete set of operators T
(0)0
(0) (IS), T

(1)0
(0) (IS), T

(2)0
(0) (IS)

, T
(1)0
(0) (I) and T

(1)0
(0) (S) that span the ZQ space, while in DQ experiments, the sec-

ond order corrections comprise of the T
(2)±2
(0) (IS) , T

(1)0
(0) (I) and T

(1)0
(0) (S) operators.

A brief description of the underlying spin dynamics in ZQ and DQ recoupling

experiments is presented in the next sub-section.
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Zero-quantum recoupling sequences

In the first order ZQ recoupling experiments, the difference in the RF fields

(
∣∣υRF,I − υRF,S∣∣ = mυr) is matched to the spinning frequency. As described in

the earlier section, the Floquet Hamiltonian is rewritten as a sum comprising of

H0, H1,dia and Hoff−dia ,

H0 = ωrI
(m)
F + ωRF,II

(n1)
F + ωRF,SI

(n2)
F (2.19)

H1,dia = G
(0)0
(0) (IS)T

(0)0
(0) (IS) +G

(1)0
(0) (IS)T

(1)0
(0) (IS) +G

(2)0
(0) (IS)T

(2)0
(0) (IS) (2.20)

The recoupled part of the Hamiltonian is included in H1,dia, while, the off-diagonal

terms are retained in H1,off−dia (Eq. 2.16). Depending on the indices ‘p’ and ‘r’

(in υRF,I = pυ, υRF,S = rυ ), the Fourier coefficients in the Floquet Hamiltonian

differ and could be deduced from Eq. 2.14. The ‘G’ coefficients present in the re-

coupled Hamiltonian H1,dia , depend on the value of ‘m’ in the matching condition

(
∣∣ωRF,I − ωRF,S∣∣ = mωr) i.e. for m = 1, G

(k)0
(0) (IS) ∝ ω

(1)
IS , m = 2, G

(k)0
(0) (IS) ∝ ω

(2)
IS

. The off-diagonal contributions/corrections emerging from H1,off−dia are folded

by the transforming function S1 as discussed below,

S1 =i
1∑

q=−1,q 6=0

[∑
m,n1

C(1)q
m,qn1

(I)iT (1)q
m,qn1

(I) +
∑
m,n2

C(1)q
m,qn2

(S)iT (1)q
m,qn2

(S)

]

+i
2∑

k=0

∑
m,n1,n2

C(k)0
m,n1,n2

(IS)T (k)0
m,n1,n2

(IS)+

i
∑

m,n1,n2

[
C(2)2
m,n1,n2

(IS)T (2)2
m,n1,n2

(IS) + C(2)−2
m,n1,n2

(IS)T (2)−2
m,n1,n2

(IS)
]

(2.21)

The ‘C’ coefficients corresponding to a particular operator T
(k)q
m,n1,n2(IS) in the

transformation function S1 are obtained by solving Eq. 2.22 and are tabulated in
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Table 2.3: The ‘C’ coefficients involved in the transformation function, S1.

Single-spin C
(1)±1
m,±n1

(I) =
G

(1)±1
m,±n1

(I)

(mωr±n1ωRF,I) , C
(1)±1
m,±n2

(S) =
G

(1)±1
m,±n2

(S)

(mωr±n2ωRF,S)

Two-spin (DQ) C
(2)2
m,n1,n2(IS) =

G
(2)2
m,n1,n2

(IS)

(n1ωRF,I+n2ωRF,S+mωr)

C
(2)−2
m,−n1,−n2

(IS) =
G

(2)−2
m,−n1,−n2

(IS)

(−n1ωRF,I−n2ωRF,S]+mωr)

Two-spin (ZQ) C
(k)0
m,n1,n2(IS) =

G
(k)0
m,n1,n2

(IS)

(mωr+n1ωRF,I]−n2ωRF,S)

Table 2.3

0 = H1,off−dia + i [S1, H0] (2.22)

Subsequently, the second order corrections (represented by H
(1)
2 ) are obtained in

terms of operators by evaluating Eq. 2.18,

H
(1)
2 = i

2
[S1, H1,off−dia]

=iT
(1)0
0 (I)A1 + iT

(1)0
0 (S)A2 (2.23)

To second-order, the effective Floquet Hamiltonian describing ZQ-CPMAS exper-

iments (see Table 2.4 for coefficients) is represented by,

Heff
F =H0 +H1,dia +H

(1)
2

=iT
(1)0
0 (I)A1 + iT

(1)0
0 (S)A2+

G
(0)0
0 (IS)T

(0)0
0 (IS) +G

(1)0
0 (IS)T

(1)0
0 (IS) +G

(2)0
0 (IS)T

(2)0
0 (IS) (2.24)

Employing the effective Floquet Hamiltonian, polarization transfer in ZQ ex-

periments were described in the past using a set of differential equations in the

Floquet-Liouville space. As an alternative, here in this thesis, the polarization

transfer in CP-MAS experiments is described in the Floquet-state space through
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the equations given below,

〈Sz(t)〉 = Tr
[
ρeffF (t).Sz,F

]
(2.25)

〈Sz(t)〉 =
ω2
IS

ω2
IS + (A1 − A2)2 sin2


√
ω2
IS + (A1 − A2)2t

2

 (2.26)

In Eq. 2.26, ‘ωIS’ represents the coefficient associated with the two-spin ZQ

operators. In contrast to the result presented in Appendix-1 (see chapter-1) the

‘dipolar coupling-constant’ is an ensemble average over all possible orientations

present in a powdered sample.

Double-quantum recoupling sequences

In DQ recoupling experiments, the sum of the RF fields employed on the two

channels (
∣∣ωRF,I + ωRF,S

∣∣ = mωr) is matched to the spinning frequency. Exper-

imentally, this is realized only when the amplitude of the RF modulations are

incommensurate with the sample spinning frequency. Following the description in

the ZQ case, the recoupled Hamiltonian in DQ experiments is represented by,

H1,dia = G
(2)2
0 (IS)T

(2)2
0 (IS) +G

(2)−2
0 (IS)T

(2)−2
0 (IS) (2.27)

Depending on the value of ‘m’ in the matching condition (
∣∣ωRF,I + ωRF,S

∣∣ =

mωr), the ‘G’ coefficients in H1,dia differ i.e. for m = 1, G
(2)±2
0 (IS) = −1

2
ω

(∓1)
IS ,

m = 2, G
(2)±2
0 (IS) = −1

2
ω

(∓2)
IS . The transformation function S1 and the associated

coefficients are derived in an identical fashion as represented in Eq. 2.22. Following

the procedure described in the previous section, the effective Floquet Hamiltonian
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Table 2.4: Coefficients involved in the effective Hamiltonian (Eq. 2.24 & 2.28)

A1 − q
2C

(1)q
m,qn1

(I)G
(1)−q
−m,−qn1

(I)︸ ︷︷ ︸
csa×csa

+



q1
4 C

(2)q1
m,n1,n2(IS)G

(2)−q1
−m,−n1,−n2

(IS)

− 1
2
√

3

(
C

(2)0
m,n1,n2(IS)G

(1)0
−m,−n1,−n2

(IS)

−C(1)0
m,n1,n2(IS)G

(2)0
−m,−n1,−n2

(IS)

)

+ 1√
6

(
C

(1)0
m,n1,n2(IS)G

(0)0
−m,−n1,−n2

(IS)

−C(0)0
m,n1,n2(IS)G

(1)0
−m,−n1,−n2

(IS)

)


︸ ︷︷ ︸
dipolar×dipolar

A2 −qC(1)q
m,qn2

(S)G
(1)−q
−m,−qn2

(S)︸ ︷︷ ︸
csa×csa

+



q1
4 C

(2)q1
m,n1,n2(IS)G

(2)−q1
−m,−n1,−n2

(IS)

+ 1
2
√

3

(
C

(2)0
m,n1,n2(IS)G

(1)0
−m,−n1,−n2

(IS)

−C(1)0
m,n1,n2(IS)G

(2)0
−m,−n1,−n2

(IS)

)

− 1√
6

(
C

(1)0
m,n1,n2(IS)G

(0)0
−m,−n1,−n2

(IS)

−C(0)0
m,n1,n2(IS)G

(1)0
−m,−n1,−n2

(IS)

)


︸ ︷︷ ︸
dipolar×dipolar

G
(0)0
0 (IS) 1

2
√

3

(
ω

(−1)
IS + ω

(1)
IS

)
G

(1)0
0 (IS) 1

2
√

2

(
ω

(−1)
IS − ω(1)

IS

)
G

(2)0
0 (IS) 1

2
√

6

(
ω

(−1)
IS + ω

(1)
IS

)
G

(2)2
0 (IS) 1

2ω
(−1)
IS

G
(2)−2
0 (IS) 1

2ω
(1)
IS

describing the spin dynamics in DQ CP-MAS experiment is represented by,

Heff
F =H0 +H1,dia +H

(1)
2

=iT
(1)0
0 (I)A1 + iT

(1)0
0 (S)A2 +G

(2)2
0 (IS)T

(2)2
0 (IS) +G

(2)−2
0 (IS)T

(2)−2
0 (IS)

(2.28)

Similar to the description in the ZQ case, the polarization transfer in the case of

DQ experiments is described in the Floquet-state space.

〈Sz(t)〉 = Tr
[
ρeffF (t).Sz,F

]
(2.29)

where,

ρeffF (t) = exp

{
− i
~
Heff
F t

}
ρF (0) exp

{
i

~
Heff
F t

}
(2.30)
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In the above equation, ρF (0) ' Iz represents the initial density operator in the

Floquet-state space. Evaluating the above expression, results in a compact ex-

pression.

〈Sz(t)〉 = − ω2
IS

ω2
IS + (A1 + A2)2 sin2


√
ω2
IS + (A1 + A2)2t

2

 (2.31)

In contrast to the description in the Floquet-Liouville space, the analytic ex-

pressions presented in this section are computationally robust and provide better

insights into the spin physics in CPMAS experiments. In the following section,

the simulations emerging from the analytic theory are compared with numerical

simulations based on SPINEVOLUTION40.

2.3.3 Simulations

Figure 2.2: Crystal Structure of N-Acetyl-L-Valine-L-Leucine
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C / 2π

Figure 2.3: In the simulations presented, polarization transfer from 15N to 13C is
calculated under constant mixing time, τmix = 2ms. The RF amplitudes employed

correspond to the ZQ matching condition
∣∣∣υRF,13C − υRF,15N

∣∣∣ = υr with υRF,13C =

pυ, υRF,15N = rυ . In panel (A1) υr = 10kHz , red (p=5, r=4), blue (p=4, r=5),
(A2) υr = 20kHz , red (p=5/2, r=3/2), blue (p=3/2, r=5/2) (A3) υr = 40kHz , red
(p=4/3, r=1/3), blue (p=1/3, r=4/3) and (A4) υr = 40kHz , red (p=5/4, r=1/4),
blue (p=1/4, r=5/4). The following chemical shift parameters were employed in the
simulations: α(C)

PM
= 64.90, β(C)

PM
= 37.50, γ(C)

PM
= −28.80, ηC = 0.98, δC = 19.4ppm;

ηN = 0.17, δN = 10.1ppm, α(N)
PM

= −83.30, β(N)
PM

= −79.00, γ(N)
PM

= 0.00. The dipolar
coupling between the spins was set to 890 Hz ( r12 = 1.5A0 ) and correspond to the
coupling found in glycine. The solid lines represent the analytic simulations while the
circles represent the numerical simulations based on SPINEVOLUTION40.

Following the theoretical description in the previous section, we outline the

factors that govern the polarization transfer from 15N→13C , (see Figure 2.1)

in CP experiments. In all the simulations presented, polarization transfer from

15N→13C is calculated as a function of the frequency offset (under constant mixing

time, 2ms) at a field strength of 11.7 T (500 MHz 1H-Larmor frequency) under

idealized decoupling conditions (i.e. the heteronuclear dipolar interactions between

13C−1H and 15N−1H is neglected). The amplitude of the RF powers employed

in the simulations (constant phase) are in conformity with the current available
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C / 2π

Figure 2.4: The notations and parameters employed are identical to the one employed
in Figure except for δN = 99ppm and dipolar constant of 800 Hz ( r12 = 1.56A0 ).
The simulations model the 15N (Amide) →13 Cα system. The solid lines represent
the analytic simulations while the circles represent the numerical simulations based on
SPINEVOLUTION40.

technology and are chosen to be incommensurate with the spinning frequency.

To illustrate the role of CSA interactions, simulations depicting the polarization

transfer in 15N(glycine)→13 Cα (see Figure 2.3), 15N (Amide)→13 Cα (see Figure

2.4), and 15N (Amide) →13 C0 (see Figure 2.5) resembling the spin pair in the

peptide backbone11 is presented at different spinning frequencies ranging from

10-40 kHz. For the sake of illustration, the results emerging from the standard

experiments ( υRF,13C = 50kHz, υRF,15N = 40kHz, panel A1 in Figure 2.3 - 2.5)

are compared with schemes that employ modulations that are incommensurate

with the spinning frequency.

Although, the recoupled dipolar Hamiltonian is identical in all of the ZQ

schemes presented (Figures 2.3 - 2.5), the bandwidth of polarization transfer dif-

fers. This difference in the bandwidth is due to the presence of residual longi-
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Figure 2.5: The notations and parameters employed are identical to the one employed
in Figure 2.3 except for δC = −76ppm,δN = 99ppm and dipolar constant of 900 Hz (
r12 = 1.56A0 ). The simulations model the 15N (Amide) →13 C0 system found in the
peptide backbone. The solid lines represent the analytic simulations while the circles
represent the numerical simulations based on SPINEVOLUTION40.

tudinal single spin operators (say Iz), resulting from the second order contribu-

tions emerging from the cross terms between the chemical shift off set terms (say

[I+, I−] ∝ Iz). This behavior is prominently observed in schemes that employ

modulations that are incommensurate with the spinning frequency and could also

be deduced from the ‘C’ coefficients, C
(1)±1
m,±n1

(I) =
G

(1)±1
m,±n1

(I)

(mωr±n1ωr)
(see Table 2.4) asso-

ciated with single spin operators. Hence, the bandwidth decreases progressively

as we go from n1 = 3/2, 1/3, 1/4 as depicted in Figure 2.3 corresponding to the panels

A2, A3 and A4 respectively. The decrease in the efficiency of transfer could be

quantitatively explained based on the effective Hamiltonians and the analytic ex-

pressions presented in the previous section. As described in Eq. (2.26), when the

magnitude of the coefficients associated with the longitudinal single spin operators

(see A1, A2 ) in the effective Hamiltonian (see Eq. 2.24) are larger in comparison
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Figure 2.6: Analytic simulations depicting the polarization transfer in 15N (Amide)
→13 C0 system in the absence of the CSA x CSA cross terms. The notations and
parameters employed are identical to the one employed in Figure 2.5.

to the recoupled dipolar Hamiltonian (dipolar coefficients), the prefactor in Eq.

(2.26) decreases in magnitude. Hence, the efficiency of transfer decreases with

increase in the off-sets.

To illustrate the effects of CSA interactions, additional simulations depicting

polarization transfer in 15N (Amide) →13 Cα and 15N (Amide) →13 C0 were per-

formed. The ZQ matching conditions and other dipolar parameters are similar

to the ones employed in the simulations depicted in Figure 2.3. As depicted in

Figures 2.4 and 2.5, the efficiency of transfer decreases along with a dip in the

exchange profile with increase in the magnitude of the CSA interactions. This dip

is particularly severe (see Figure 2.5) when the magnitude of the CSA interactions

of both 13C and 15N are dominant. To explain this observation, it is important

to understand the other anisotropic contributions to the longitudinal single spin

operators. To second order, the corrections to the longitudinal single spin oper-
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Figure 2.7: In the simulations presented, polarization transfer from 15N to 13C is
calculated under constant mixing time, τmix = 2ms. The RF amplitudes employed

correspond to the DQ matching condition
∣∣∣υRF,13C + υRF,15N

∣∣∣ = υr with υRF,13C =

pυ, υRF,15N = rυ . In panel (A1) υr = 60kHz , blue (p=4/5, r=1/5), red (p=1/5,
r=4/5), (A2) υr = 60kHz , blue (p=3/4, r=1/4), red (p=1/4, r=3/4) (A3) υr = 60kHz
, blue (p=2/3, r=1/3), red (p=1/3, r=2/3) and (A4) υr = 60kHz , red (p=1/2, r=1/2).
The CSA and dipolar parameters are identical to those employed in Figure 2.3. The
solid lines represent the analytic simulations while the circles represent the numerical
simulations based on SPINEVOLUTION40.

ators result from (a) cross terms between the isotropic chemical shift terms (b)

cross-terms between the CSA interactions (c) cross-terms between the dipolar in-

teractions (see Table 2.4). In particular, the ‘C’ coefficients associated with the

isotropic chemical shift and CSA interactions are dependent on the indices n1

and n2 (i.e. C(1)±1(I) ∝ (mυr ± n1υ1)−1, C(1)±1(S) ∝ (mυr ± n2υ2)−1 When the

amplitudes of the RF modulations employed on the two channels are incommensu-

rate with the spinning frequency, the magnitude of the cross-terms ([I+, I−] ∝ Iz)

increase, resulting in lower transfer of polarization. This is in agreement with

the simulations depicted in Figures 2.4 - 2.5. As depicted in Figure 2.5, with the

increase in the magnitude of the CSA interactions, the dip observed is more pro-
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Figure 2.8: In the simulations presented, the DQ matching condition∣∣∣υRF,13C + υRF,15N

∣∣∣ = υr is satisfied. The value of ‘p’ and ‘r’ in the panels (A1-A4) are

identical to the one employed in Figure 2.7. The CSA and dipolar parameters are iden-
tical to those employed in Figure 2.4. The solid lines represent the analytic simulations
while the circles represent the numerical simulations based on SPINEVOLUTION40.

found resulting in lesser transfer efficiencies. At the exact resonance condition (i.e.

13C-offset frequency is zero) the magnetization exchange is diminished due to the

presence of the non-zero cross-terms between the CSA interactions associated with

the two spins. As the magnitude of the chemical shift off-set terms increase, the

cross-terms between the chemical shift off-set terms compensate the cross-terms

resulting from the CSA interactions of the two spins resulting in a symmetric pat-

tern of transfer as depicted in Figure 2.5 (see panels A1, A2). This explanation is

justified through analytic simulations (see fig 2.6) wherein, the cross-terms from

the CSA interactions (both 13C and 15N) have been ignored. In ZQ experiments,

the residual difference term (A1−A2) associated with the longitudinal single spin

operators are primarily responsible for both depolarization and the observed dip in
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Figure 2.9: In the simulations presented, the DQ matching condition∣∣∣υRF,13C + υRF,15N

∣∣∣ = υr is satisfied. The value of ‘p’ and ‘r’ in the panels (A1-A4) are

identical to the one employed in Figure 2.7. The CSA and dipolar parameters are iden-
tical to those employed in Figure 2.5. The solid lines represent the analytic simulations
while the circles represent the numerical simulations based on SPINEVOLUTION40.

the profile. As depicted in Figure 2.6, in the absence of the CSA cross-terms, there

is no dip observed in the profile and the off-resonance behavior observed is solely

due to the cross terms between the chemical shit off-set terms. In comparison

to experiments that are chemical shift selective, the fractional matching condi-

tions are suitable for studies in systems where broadband transfer is preferred in a

controlled fashion. Such modifications are less feasible in the standard sequences

(p = 5, q = 4) due to the synchronization conditions.10 Hence, the bandwidth in

ZQ experiments is mainly controlled by a residual term (A1−A2) proportional to

the difference in the effective fields associated with longitudinal single spin opera-

tors resulting from the cross terms between the transverse components (inclusive

of CSA and chemical shift off set) of the single spin interactions.
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C / 2π

Figure 2.10: Analytic simulations depicting the polarization transfer in DQ experi-
ments corresponding to 13C0→15N (Amide) system at υr = 30kHz . The notations and
parameters employed are identical to the one employed in Figure 2.9

To design experiments at faster spinning frequencies, we explore the double-

quantum (DQ) matching condition. Although chemical shift selective versions of

double quantum (DQ) homonuclear27,41–43 and heteronuclear recoupling44 schemes

exist in the literature, the theory presented along with the simulations, predict the

existence of a band-selective heteronuclear DQ recoupling scheme. As described

in the previous section, the recoupling in DQ experiments is achieved by matching

the sum of the RF fields to the spinning frequency. The polarization transfer in

DQ experiments is depicted in Figures 2.6 - 2.8. In contrast to the ZQ recoupling

schemes, the spinning frequencies employed in the DQ schemes are higher and are

extremely useful for high field solid-state NMR experiments with faster MAS fre-

quencies. Additionally, the efficiency of polarization transfer in the DQ sequences

is much higher in all the CSA regimes (see Figures 2.7 - 2.9).

Analogous to the ZQ recoupling sequences (depicted in Figures 2.3 - 2.5), the
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bandwidth in the DQ sequences could be altered by suitable choice of p and r

as depicted in Figures 2.7 - 2.9. In the extreme CSA regimes, the efficiency of

polarization transfer observed in the DQ experiments (Figure 2.9) is higher than

those observed in ZQ experiments (Figure 2.5). Hence, the DQ experiments could

be important at higher magnetic field strengths wherein the CSA interactions

play an important role in the spin dynamics. To explain the better performance

of DQ over ZQ recoupling sequences, simulations depicting the DQ polarization

transfer at lower spinning frequency (say υr = 30kHz ) is presented in Figure

2.10. The simulations depict the polarization transfer in the high CSA regime

corresponding to the 15N (Amide) →13 C0 system. As depicted, the efficiency of

transfer decreases with a pronounced dip in the exchange profile. This decrease

in the efficiency is due to the presence of the longitudinal single spin operators

resulting from the cross terms between the CSA interactions. In contrast to the

ZQ recoupling schemes, the coefficients associated with depolarization are propor-

tional to the sum of the effective fields (A1 +A2) resulting from the second order

cross terms between single spin interactions (namely CSA, chemical shift off set).

Since, the residual contributions to the depolarization emerging from the CSA in-

teractions are additive, the efficiency of transfer is significantly diminished in DQ

recoupling sequences. Hence, the implementation of DQ DCP experiments entails

faster spinning frequencies. Depending on the spinning frequency, several ZQ and

DQ matching conditions could be designed from the effective Hamiltonians and

the ‘C’ coefficients presented in Table 2.4 and the theory presented herein could

serve as a guiding tool to develop better schemes.
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The analytic theory presented, provides a convenient framework for quantitative

interpretation of the exchange trajectories in DCP experiments that employ mod-

ulations incommensurate with the spinning frequency and could be employed of

measuring 13C−15N distances in uniformly labeled solids. The implementation

of DCP experiments based on first order recoupling at faster spinning frequencies

could be of extreme importance in the design of sequences without decoupling

field on the proton channel. Such an approach minimizes sample-heating effects

and could in principle improve the efficiency of polarization transfer.

2.4 Conclusions

In summary, a theoretical formalism for describing sequences that employ RF mod-

ulations that are incommensurate with the spinning frequency has been presented.

The underlying spin physics in the ZQ and DQ case is thoroughly investigated in

terms of effective Hamiltonians and could be employed as a tool for understanding

the performance of DCP experiments at different conditions. The simulations pre-

dict the requirement of higher spinning frequencies for the implementation of DQ

DCP experiments. The factors responsible for depolarization are outlined in terms

of operators resulting in better understanding of the experiments. We believe, that

the theory presented herein could be employed as a tool for quantitative interpre-

tation of DCP experiments. The analytic model based on the Floquet approach

presented in this article is suitable for describing the dynamics of spins subjected

to multiple modulations and provides avenues for better design of sequences at

higher magnetic field strengths with faster spinning frequencies.
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Appendix-2

Table 2.5: Multipole Operators for coupled spin systems

Single spin system

(I = 1/2)
T (1)q(1)

}
Single spin Operators

Two - spin system

(I1 = I2 = 1/2) T (1)q(10), T (1)q(01)
}

Single spin Operators

T (2)q(11), T (1)q(11), T (0)0(11)
}

Two spin Operators

Three - spin system

(I1 = I2 = I3 = 1/2)

T
(1)q
{1} (100), T

(1)q
{1} (010), T

(1)q
{0} (001)

}
Single spin Operators

T
(2)q
{2} (110), T

(1)q
{1} (110), T

(0)0
{0} (110),

T
(2)q
{1} (101), T

(1)q
{1} (101), T

(0)0
{1} (101),

T
(2)q
{1} (011), T

(1)q
{1} (011), T

(0)0
{1} (011)

Two spin Operators

T
(3)q
{2} (111), T

(2)q
{2} (111), T

(1)q
{2} (111),

T
(2)q
{1} (111), T

(1)q
{1} (111), T

(0)0
{1} (111),

T
(1)q
{0} (111)

Three spin Operators

Note: T (k)q is representative of all operators ranging from q = −k to+ k.
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Chapter 3

Description of phase-modulations
in heteronuclear recoupling
experiments in solid-state NMR

3.1 Background

Following the description presented in the previous section, the next stage in our

study was to develop a formalism for describing multiple pulse experiments in

ssNMR using Floquet theory1. In the past, multiple pulse experiments in ssNMR

were extensively designed using AHT2,3. To facilitate analytic description, the

cycle time of the multiple pulse scheme is synchronized with the MAS rotor pe-

riod. Subsequently, employing Magnus expansion4, a time averaged Hamiltonian

to the desired order of accuracy is derived over the MAS rotor period. Although

the AHT approach has been quite successful in the design of sophisticated pulse

schemes3,5,6, its extension to pulse schemes at faster spinning frequencies is less

straightforward. Specifically, at faster spinning frequencies, the concept of a time-

averaged Hamiltonian breaks down due to competing nature of the MAS rotor

period and the cycle time of a multiple pulse scheme. Under such conditions, the

analytic insights emerging from AHT2,3 could be misleading. From an experimen-
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tal perspective, implementation of ssNMR experiments (as described in chapter-2)

at faster spinning frequencies is essential for both improving the resolution as well

as extending its utility in the study of biological systems. With this objective, an

analytic framework is presented in the following sections to elucidate the effects of

multiple pulses in MAS NMR experiments. Specifically, we confine our discussion

to multiple-pulse based implementation of CP experiments.

3.2 Definition of the problem

(A)

(B)

Figure 3.1: Pulse sequence depicting the polarization transfer in CP experiments with
phase-modulated RF amplitudes. (A) No phase difference between the RF amplitudes
on the two channels, (B) phase difference of 1800 between the RF amplitudes on the
two channels.

As described in chapter-2, the CP-matching conditions under MAS are ex-
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tremely sensitive to the sample spinning frequency. Depending on the amplitudes

of the RF fields employed on the two channels, the sample spinning frequency is

adjusted to satisfy one of the matching conditions corresponding to the first and

second-sidebands in a typical CP profile. Although, such an approach facilitates

the reintroduction of the dipolar interactions under MAS, they are extremely sen-

sitive to the RF inhomogeneities present in the system. Hence, alternate strategies

in the form of amplitude and phase modulations were developed in the past to

broaden the CP matching condition in addition to improving the matching con-

dition corresponding to the centre band in the CP profile7–18. From a conceptual

viewpoint, the theory of multiple-pulse based CP schemes remains a challenge

owing to the complexity introduced by the time-dependent RF fields in the rotat-

ing frame. This aspect has been the main motivation behind our investigation.

For demonstrative purposes, we employ the phase modulated version of the CP

experiment in our study. The utility of the synchronisation condition (imposed

by AHT) in PM-CP MAS experiments is thoroughly investigated to elucidate the

mechanism of polarization transfer in CP experiments. To realize this objective,

we employ the concept of effective Hamiltonians based on multimodal Floquet

theory19. The theoretical framework presented in this chapter is quite general

and could be extended to describe RF modulations that are independent of the

MAS frequency.
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3.3 Discussion

3.3.1 Theory

To illustrate the effects of phase modulated RF fields, we begin our discussion with

a model system comprising of two spins. Following the description in chapter-2,

the Hamiltonian in the rotating frame is transformed into a tilted frame defined by

the transformation function, U1. Although the form of the internal Hamiltonians

are identical to those depicted in chapter-2, the amplitude of the RF fields in the

tilted rotating frame are time-dependent. Hence, the transformation into the RF

interaction frame is less straight forward. To facilitate analytic description, and

elucidate the role of the time-dependent fields on the internal Hamiltonians, the

amplitude of the RF modulation in the rotating frame is expanded and expressed

in terms of a Fourier series. In the rotating frame, the amplitude of the RF field

resembles a square-wave modulation and is conveniently expressed in terms of a

Fourier series expansion, as illustrated below.

ωRF,I(t) =
4

π
ωRF,I

∞∑
n1=1,3,5

1
n1

sinn1ωIt (3.1)

(where, ωRF,I denotes the amplitude of the RF field and ωI the frequency of

the modulation on the ith channel). The methodology presented in this chapter is

equally applicable to any kind of periodic modulations (either phase or amplitude

or both). In a similar vein, the RF modulation on the S channel is expressed by,

ωRF,S(t) =
4

π
ωRF,S

∞∑
n2=1,3,5

1
n2

sinn2ωSt (3.2)
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To describe the evolution of the system under RF fields, the Hamiltonian is further

transformed into the RF interaction frame. In the RF interaction frame, the

internal Hamiltonians are modulated by both the sample spinning frequency as

well as the modulation frequency of the RF fields. The final form of the various

spin Hamiltonians in the RF interaction frame are illustrated below.

˜̃HI(t) =
1∑

q=−1, 6=0

2∑
m=−2

∞∑
n1=−∞

−q√
2
ω

(m)
I iT (1)q(I)eimωrtein1ωI teiqωRF,I tg(1)q

n1
(I) (3.3)

˜̃HS(t) =
1∑

q=−1, 6=0

2∑
m=−2

∞∑
n2=−∞

−q√
2
ω

(m)
S iT (1)q(S)eimωrtein2ωSteiqωRF,Stg(1)q

n2
(S) (3.4)

The terms g
(1)q
n1 (I) and g

(1)q
n2 (S) represent the coefficients in the RF interaction

frame and are derived using the Bessel function approach20,21. In the case of the

dipolar interactions, the Hamiltonian in the RF interaction frame is modulated by

the two modulation frequencies (ωI , ωS) in addition to the MAS frequency (ωr).

˜̃HDip(t) = ˜̃HZQ(t) + ˜̃HDQ(t) (3.5)

˜̃HZQ(t) =
1

2

2∑
m=−2,m 6=0

1∑
k=0

∞∑
n1,n2=−∞


ω

(m)
IS T

(k)0(IS)∗ eimωrtein1ωI tein2ωSt∗

ei(ωRF,I−ωRF,S)t


g(k)0

n1,n2
(IS) (3.6)

˜̃HDQ(t) = −1

2

2∑
m=−2,m 6=0

2∑
q=−2

∞∑
n1,n2=−∞


ω

(m)
IS T

(2)q(IS)∗ eimωrtein1ωI tein2ωSt∗

ei
q
2

(ωRF,I+ωRF,S)t


g(2)q

n1,n2
(IS) (3.7)
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As an alternative to the AHT approach, we employ multimode Floquet theory to

describe phase modulated CP experiments. Such an approach provides a frame-

work for describing modulations that are commensurate/incommensurate with the

spinning frequency.

Extending the procedure described in chapter-2, the Floquet Hamiltonian for

the PM-CP experiment comprising of three modulations is derived and is repre-

sented below.

HF = ωrI
(m)
F + ωII

(n1)
F + ωSI

(n2)
F

+
1∑

q=−1,q 6=0

2∑
m=−2

[
∞∑

n1=−∞

G
(1)q
m,n1,0

(I)iT
(1)q
m,n1,0

(I) +
∞∑

n2=−∞

G
(1)q
m,0,n2

(S)iT
(1)q
m,0,n2

(S)

]

+
2∑

m=−2,m 6=0

∞∑
n1,n2=−∞

[
G(2)2
m,n1,n2

(IS)T (2)2
m,n1,n2

(IS) +G(2)−2
m,n1,n2

(IS)T (2)−2
m,n1,n2

(IS)
]

+
2∑

k=0

2∑
m=−2,m 6=0

∞∑
n1,n2=−∞

G(k)0
m,n1,n2

(IS)T (k)0
m,n1,n2

(IS)+

(−1)kG(k)0
m,n1,n2

(IS)T (k)0
m,n1,n2

(IS)


(3.8)

In the above equation the Fourier indices, m,n1, n2 represent the coefficients

associated with MAS, RF modulations on channels I and S respectively. In con-

trast to the CWCP experiment, the Floquet Hamiltonian in PM-CP experiments

is highly off-diagonal and as such is unsuitable for any analytic description. To

this end, we propose an effective Floquet Hamiltonian based on the method of

contact transformation procedure. As discussed in the previous chapter, the zero

order Hamiltonian mainly comprises of operators that are diagonal in the Fourier

dimension. The off-diagonal contributions due to MAS and RF modulations are

incorporated along H1. Subsequently, employing the standard procedure the effec-
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tive Floquet Hamiltonian to the desired order is derived systematically as described

below,

H
(1)
0 = H0

H
(1)
1 = H1 + i [S1, H0]

H
(1)
2 = H2 + i [S1, H1]− 1

2
[S1, [S1, H0]]

H
(1)
3 = −1

2
[S1, [S1, H1]]− i

6
[S1, [S1, [S1, H0]]]

(3.9)

In cases where the off-diagonal contributions to second order are significant, a

second transformation in the form of exp(iλ2S2) is applied to the Hamiltonian. The

transformation function ‘S2 is chosen to compensate the off-diagonal contributions

to order λ2 and does not affect the corrections to order λ.

Heff = e(iλ2S2)e(iλS1)HF e
(−iλS1)e(−iλ2S2) (3.10)

Heff = e(iλ2S2)
[
H

(1)
0 + λH

(1)
1 + λ2H

(1)
2 + λ3H

(1)
3

]
e(−iλ2S2) (3.11)

Equating like powers of ‘λ’ the following relations are obtained.

λ0 → H
(2)
0 = H

(1)
0 = H0

λ1 → H
(2)
1 = H

(1)
1 = H1 + i [S1, H0]

λ2 → H
(2)
2 = H

(1)
2 + i [S2, H0]

λ3 → H
(2)
3 = H

(1)
3 + i

[
S2, H

(1)
1

]
λ4 → H

(2)
4 = H

(1)
4 + i

[
S2, H

(1)
2

]
− 1

2!
[S2, [S2, H0]]

(3.12)

In the above equations, the perturbation corrections are expressed in terms of

Hamiltonians ‘H
(k)
j ’ with ‘j’ denoting the order and the super-script ‘k’ depicting

the number of transformations.
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Depending on the sample spinning frequency and the modulation frequencies

employed on the two channels, the form of the effective Hamiltonian differs. For

e.g, when the modulation frequency is equal to the spinning frequency (τc = τr),

the effective Hamiltonian to zeroth-order comprises of both the dipolar and the

CSA interactions as described below.

Heff = ωrI
(m)
F + ωII

(n1)
F + ωSI

(n2)
F

+
1∑

q=−1,q 6=0

G
(1)q
−1,1(I)i

[
T (1)q(I)

]
0,0

+G
(1)q
1,−1(I)i

[
T (1)q(I)

]
0,0

+

G
(1)q
−1,1(S)i

[
T (1)q(S)

]
0,0

+G
(1)q
1,−1(S)i

[
T (1)q(S)

]
0,0



+
∑
q=±2

G
(2)q
2,−1,−1(IS)

[
T (2)q(IS)

]
2,−1,−1

+

G
(2)q
−2,1,1(IS)

[
T (2)q(IS)

]
−2,1,1



+
2∑

k=0

G
(k)0
2,−1,−1(IS)

[
T (k)0(IS)

]
2,−1,−1

+

G
(k)0
−2,1,1(IS)

[
T (k)0(IS)

]
−2,1,1



(3.13)

A detailed description of the various matching conditions along with simula-

tions is described in the following section.

3.3.2 Simulations

To illustrate the role of phase modulations in CP experiments, a set of simula-

tions under different experimental conditions is presented in this section. In all

the simulations presented, polarization transfer from 15N to 13C is calculated as

a function of mixing time under constant spinning frequency and RF amplitudes.

As described in the previous section, the dipolar Hamiltonian in the RF interac-

tion frame depends on the magnitudes of the sample spinning frequency (ωr) and

the modulation frequencies employed on the two channels (say ωI and ωS). Based
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on this description, in the absence of CSA interactions, the efficiency of transfer

should depend only on the matching condition and be independent of the magni-

tude of the RF amplitudes employed on the two channels. This result is verified

through a set of simulations depicted in Figure 3.2.
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Figure 3.2: In the simulations presented, polarization transfer from 15N to 13C is cal-
culated as a function of mixing time, τmix. The RF amplitudes employed correspond to

the ZQ matching condition
∣∣∣υRF,13C − υRF,15N

∣∣∣ = υr. In all the panels, black corresponds

to υr = 10kHz, υRF,13C = 50kHz, υRF,15N = 40kHz, and red corresponds to υr = 10kHz,

υRF,13C = 30kHz, υRF,15N = 20kHz with variation in the modulation frequencies, (A1)

ωI = 0, and ωS = 0 (CWCP), (A2) ωI = ωr, and ωS = ωr, (A3) ωI = ωr
2 and ωS = ωr

2 ,
(A4) ωI = ωr

10 and ωS = ωr
10 . The CSA interactions were ignored in the simulations and

the dipolar coupling between the spins was set to 292 Hz ( r12 = 2.188A0 ). The solid
lines represent the simulations from SPINEVOLUTION22, while the dots represent the
analytic simulations.

For illustrative purposes, the simulations emerging from CW-CP experiments

(see panel (A1)) are compared with PM-CP schemes employing modulation fre-

quencies, ωr panel (A2), ωr
2

panel (A3) and ωr
10

panel (A4). In the case of zero-

quantum (ZQ) CW-CP experiments, the dipolar interactions are reintroduced
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under MAS when the RF amplitudes are adjusted to satisfy one of the matching

conditions given by the relation
∣∣ωRF,I − ωRF,S∣∣ = ωr or 2ωr. Interestingly, in

the case of PM-CP experiments, the matching condition depends on both the RF

amplitudes as well as the modulation frequencies. For example, in the case of ZQ

PM-CP experiments, the matching condition in the RF interaction frame is gov-

erned by the relation, mωr +ωRF,I − ωRF,S +n1ωI +n2ωS, while in the DQ version

the matching condition is given by, mωr + ωRF,I + ωRF,S + n1ωI + n2ωS. As de-

picted in Figure 3.2, the simulations emerging from our analytic theory (Eq. 2.26)

are in excellent agreement with those emerging from exact numerical methods. In

the absence of CSA interactions, the efficiency of transfer in PM-CP experiments

is lower (0.5) than that of CW-CP experiments (0.7). This decrease in efficiency

is attributed to the fact that the CW-CP experiment is γ encoded23, whereas the

PM-CP experiment in non-γ encoded (i.e. both the m = 1 and 2 components of

the dipolar interaction are reintroduced under MAS).

The next stage in our study was to elucidate the role of CSA interactions in

the exchange dynamics. In Figure 3.3 the effect of CSA interactions is illustrated

through simulations depicting the polarization transfer fron 15N to 13C. The CSA

parameters employed in the simulations correspond to the amine/amide nitrogens

and aliphatic/aromatic carbon atoms encountered in a typical amino acid residue.

Although, the CSA matching conditions in the case of CW-CP experiments

have been carefully avoided in the simulations, the efficiency of transfer decreases

with increase in the magnitude of the CSA interactions. This decrease in efficiency

is mainly due to the presence of longitudinal single-spin operators (refer to chapter-
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2) resulting from second order cross-terms between the CSA interactions. By

contrast, the CSA interactions in the case of PM-CP experiments seem to have

a profound role in the exchange dynamics. As depicted in Figure 3.3 (panel

(A2)), the efficiency of transfer decreases drastically when the magnitude of the

modulation frequency is equal to the sample spinning frequency. This decrease

in efficiency is due to the reintroduction of CSA interactions in the exchange

dynamics and could be explained based on the analytic theory presented in the

previous section. In the RF interaction frame, the CSA interactions in PM-CP

experiments are introduced to first-order when the RF amplitudes and modulation

frequencies satisfy one of the matching conditions i.e. mωr +ωRF,I + n1ωI . In the

PM-CP schemes depicted in Figure 3.2 (see panels (A2), (A3) and (A4)), the

CSA interactions are reintroduced to first order and are primarily responsible for

the decrease in the efficiency of transfer. When the magnitude of the modulation

frequency is comparable to the sample spinning frequency (see panel A2), the

efficiency of transfer decreases drastically. At lower modulation frequencies (panels

A3, A4), the scaling factor asssociated with the CSA Hamiltonian is reduced

resulting in better transfer of polarization. As depicted, in the higher CSA regimes,

the drop in efficiency is significant in all the four panels.
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Figure 3.3: In the simulations presented, polarization transfer from 15N to 13C is
calculated as a function of mixing time, τmix. The RF amplitudes employed cor-

respond to the ZQ matching condition
∣∣∣υRF,13C − υRF,15N

∣∣∣ = υr. In all the panels,

υr = 10kHz, υRF,13C = 50kHz, υRF,15N = 40kHz, with variation in the modula-

tion frequencies, (A1) ωI = 0, and ωS = 0 (CWCP) (A2) ωI = ωr, and ωS = ωr,
(A3) ωI = ωr

2 and ωS = ωr
2 , (A4) ωI = ωr

10 and ωS = ωr
10 . The following chemi-

cal shift parameters were employed in the simulations: black ηC = 0.0, δC = 0.0ppm;
ηN = 0.0, δN = 0.0ppm, red ηC = 0.98, δC = 19.4ppm; ηN = 0.17, δN = 10.1ppm, green
ηC = 0.98, δC = 19.4ppm; ηN = 0.17, δN = 99ppm, blue ηC = 0.98, δC = −76ppm;
ηN = 0.17, δN = 99ppm. The following orientation parameters were employed for
the CSA interactions in the simulations: α(C)

PM
= 64.90, β(C)

PM
= 37.50, γ(C)

PM
= −28.80;

α(N)
PM

= −83.30, β(N)
PM

= −79.00, γ(N)
PM

= 0.00. The dipolar coupling between the spins
was set to 292 Hz ( r12 = 2.188A0 ). The solid lines represent the simulations from
SPINEVOLUTION22, while the dots represent the analytic simulations.

To minimize the role of CSA interactions, implementation of CP experiments

at faster spinning frequencies seem mandatory. From an experimental aspect,

this is accomplished when the amplitudes of the RF fields employed on the two

channels are phase-shifted by 1800 (see Figure 3.1, panel (B)). As depicted in

Figure 3.4, the efficiency of transfer decreases in both CW (panel A1) and PM-

CP (panels A2, A3) with the inclusion of the CSA interactions. In contrast to
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CW-CP experiment, the depolarization effects due to CSA interactions are quite

significant in the PM-CP schemes depicted in panels A2 and A3. At the outset,

this result seems intriguing considering the observation that the CSA interactions

remain unaveraged even at faster spinning frequencies (say 50 kHz).
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Figure 3.4: In the simulations presented, polarization transfer from 15N to 13C is
calculated as a function of mixing time, τmix. The RF amplitudes employed correspond

to the ZQ matching condition
∣∣∣υRF,13C − υRF,15N

∣∣∣ = υr. In all the panels, υr = 50kHz,

υRF,13C = 20kHz, υRF,15N = 30kHz, with variation in the modulation frequencies, (A1)

ωI = 0, and ωS = 0 (CWCP) (A2) ωI = ωr, and ωS = ωr, (A3) ωI = ωr
2 and ωS = ωr

2 ,
(A4) ωI = ωr

10 and ωS = ωr
10 . The following chemical shift parameters were employed

in the simulations: black ηC = 0.0, δC = 0.0ppm; ηN = 0.0, δN = 0.0ppm, red ηC =
0.98, δC = 19.4ppm; ηN = 0.17, δN = 10.1ppm, green ηC = 0.98, δC = 19.4ppm; ηN =
0.17, δN = 99ppm, blue ηC = 0.98, δC = −76ppm; ηN = 0.17, δN = 99ppm. The Euler
angles and dipolar coupling employed correspond to those used in fig. 3.3. The solid
lines represent the simulations from SPINEVOLUTION22, while the dots represent the
analytic simulations.

Since biophysical applications of ssNMR entail the availability of higher mag-

netic field strengths (for improved resolution), minimizing the role of CSA in-

teractions is very essential in enhancing the overall polarization transfer in CP
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experiments. Interestingly, the efficiency of polarization transfer in the simula-

tions depicted in panel A4 remains unaffected in the presence of CSA interactions.

This observation (through numerical simulations) could be explained by a com-

parison of the various coefficients present in effective Hamiltonian depicted in Eq.

3.13. When the modulation frequency is much lower than the sample spinning

frequency (see panel A4), the CSA contributions in the effective Hamiltonian (Eq.

3.13) are scaled significantly (higher order Bessel functions), resulting in enhanced

efficiency of polarization transfer. However, as the modulation frequency of the

multiple-pulse scheme increases and competes with the sample spinning frequency

(see panels A2, A3), the depolarization effects due to the recoupled CSA interac-

tions become prominent (higher scaling factors) and are primarily responsible for

the poor transfer efficiencies observed in the simulations. Hence, to maximize the

efficiency of polarization transfer in CP experiments (at faster spinning freqeun-

cies), the modulation frequencies employed on the two channels have to be much

smaller in comparison to the sample spinning frequency. This principle could be

employed in the design of the cycle times in multiple pulse schemes and could

be employed as an optimization procedure in the design of MAS experiments at

faster spinning frequencies.

3.4 Conclusions

In summary, the analytic framework describing the effects of multiple-pulses in

ssNMR experiments yields results in agreement with simulations emerging from

exact numerical methods. In the rotating frame, the Fourier series expansion of
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the RF interaction seems to be an attractive approach towards the derivation of

effective Hamiltonians in the RF interaction frame. In contrast to the AHT ap-

proach, the framework presented in this chapter does not impose any restrictions

on the choice of the cycle time of a typical multiple pulse scheme. We believe that

the Fourier decomposition of the RF Hamiltonian in the rotating frame could be

quite handful in the derivation of effective Hamiltonians in schemes that employ

adiabatic and RAMP modulations of the RF fields. In contrast to constant ampli-

tude CW-CP experiments, the phase-alternated PM-CP experiment seems to be

a better alternative for improving the efficiency of polarization transfer at higher

magnetic field strengths and faster spinning frequencies. In systems with larger

chemical shift anisotropies, implementation of PM-CP depends on (a) the RF

amplitudes (b) spinning frequency and (c) modulation frequency. The methodol-

ogy presented in this chapter is quite general and could be extended for studying

experiments that employ both phase as well as amplitude modulations.
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Chapter 4

Understanding Multispin effects
in Cross-Polarization (CP) NMR
experiments through Dipolar
Truncation

4.1 Background

Understanding the mechanism of polarization transfer among nuclear spins re-

mains an exciting area of research1–3, primarily due to its utility in design and

interpretation of NMR experiments/experimental data. Although, measurements

in NMR are made in bulk, the underlying theory routinely employed to de-

scribe/interpret experiments, often comprises of finite number of spins. In general,

analytic description of polarization transfer in a strongly coupled spin system is

complicated due to the presence of non-commuting Hamiltonians in the system.

From an experimental view-point, quantifying polarization transfer in strongly

coupled systems is hindered owing to the co-existence of stronger and weaker cou-

plings in the system. Consequently, polarization transfer to weakly coupled spins

is diminished by the influence of other stronger couplings in the system, a phe-

nomenon commonly referred to as dipolar truncation4 in NMR. Hence, analytic
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treatments based on isolated spin-pair models yield ambiguous results and are of

limited utility in the weak-coupling regime. To this end, thermodynamic models5

based on the concept of spin temperature3,6 have also been invoked in the past to

explain the experimental observations in CP experiments.

As an alternative to existing methods, an analytic model built on the concept

of “dipolar truncation” is proposed to explain the propagation of spin polarization

in CP experiments.

4.2 Definition of the Problem
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Figure 4.1: Model systems employed for describing the polarization transfer in CP
experiments.

To describe the propagation of spin polarization from 1H→ 13C in CP experi-
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ment, a pedagogical description comprising of two (CαHβ1), three (CαCβHβ1), four

(CαCβHβ1Hβ2 ; CαCβHβ1Hγ; CαHαCβHβ1) and five (CαHαCβHβ1Hβ2) spin model

systems is employed (See Figure 4.1. Since the 13C−1H, 1H−1H dipolar coupling

constants in the chosen model systems are prototypes of the coupling constants

prevalent in typical amino acid residues/peptides, we believe that the current

study would improve our understanding of the mechanism of polarization transfer

among spins in ssNMR experiments.
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Figure 4.2: CP Simulations depicting the polarization transfer to Cα in the model sys-
tems presented in Figure 4.1. The RF amplitudes correspond to υRF,S = 40kHz, υRF,I =

20kHz and the phases shifted by 1800. All the simulations were performed at υr = 60kHz
. The solid lines correspond to analytic simulations, while dots represent numerical sim-
ulations (6044 angle-sets) based on SPINEVOLUTION.7

To begin with, numerical simulations (based on SPINEVOLUTION7) depict-
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ing polarization transfer from 1H→13C in first-order CP experiments are pre-

sented in Figure 4.2. To facilitate the implementation of experiments at faster

spinning frequencies (for better resolution), the amplitudes of the RF fields em-

ployed in the simulations were adjusted to satisfy the ZQ matching condition∣∣υRF,S − υRF,I∣∣ = υr, i.e. (υr = 60kHz, υRF,I = 20kHz, υRF,S = 40kHz) and

are phase shifted by 1800 (i.e. the signs of the amplitudes differ in the rotating

frame). To explain the nuances of polarization transfer in first-order based CP

experiments, we begin our discussion with the profiles depicted in panels B and

C (Figure 4.2). As depicted, polarization transfer to 13Cα in the three-spin sys-

tem CαCβHβ1 (see panel B) is diminished significantly in contrast to the isolated

spin pair system (panel A). This decrease in the CP efficiency is attributed to the

presence of the stronger Cβ − Hβ1 dipolar coupling and is commonly referred to

as dipolar truncation4 in ssNMR. Interestingly, inclusion of an additional proton

to the beta carbon (Cβ) (four spin model, Figure 4.1(C)) improves the overall

transfer efficiency to Cα (see Figure 4.2(C)). This result seems counter-intuitive in

view of the fact that the model three-spin system, CαCβHβ1 (Figure 4.1(B)) com-

prises of fewer stronger couplings (Cβ−Hβ1) in comparison to the four-spin model

CαCβHβ1Hβ2 (stronger couplings in the form of Cβ−Hβ1 and Cβ−Hβ2). Hence,

an analytic theory is essential for understanding the mode of polarization transfer

from multiple spin sites (say 1H) to the desired target spin (say 13C) in strongly

coupled systems.
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4.3 Discussion

4.3.1 Theory

To elucidate the mechanism of polarization transfer in CP-MAS experiments, a

model system (INSM) comprising of N -carbons (I =13 C) and M -protons (S =1

H) is employed. Under sample rotation, the nuclear spin Hamiltonian is time-

dependent,8 and is conveniently expressed in the rf interaction frame in terms of

single-spin and two-spin interactions.

H(t) =
∑
λ=I,S

Hλ(t) +HIS(t) +HRF (4.1)

As discussed earlier, the single-spin Hamiltonian depicts both the isotropic and

anisotropic chemical shift interactions and is expressed in terms of single-quantum

(SQ) operators.

H̃Single(t) =− 1√
2
.
(√

2
)N+M−2

2∑
m=−2

N∑
i=1

ω
(m)
Ii

 iT (1)1(Ii) exp (i [mωr + ωRF,I ] t)

−iT (1)−1(Ii) exp (i [mωr − ωRF,I ] t)

 (4.2)

In a similar vein, the two-spin interactions comprising of Homonuclear and Het-

eronuclear dipolar interactions are expressed in terms of zero-quantum (ZQ) and

double-quantum (DQ) operators.
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H̃
(DQ)
Hetero(t) = −1

2

(√
2
)N+M−2

N∑
i=1

M∑
j=1

2∑
m=−2,
m 6=0

ω
(m)
IiSj


T (2)2(IiSj) exp

(
i

[
mωr+
(ωRF,I + ωRF,S)

]
t

)
+

T (2)−2(IiSj) exp

(
i

[
mωr−
(ωRF,I + ωRF,S)

]
t

)


(4.3a)

H̃
(ZQ)
Hetero(t) =

(√
2
)N+M−2

N∑
i=1

M∑
j=1

2∑
m=−2,
m6=0

1
2
ω

(m)
IiSj




1√
3
T (0)0(IiSj)

+ 1√
2
T (1)0(IiSj)

+ 1√
6
T (2)0(IiSj)

 ∗
exp

(
i

[
mωr+
(ωRF,I − ωRF,S)

]
t

)
+

1√
3
T (0)0(IiSj)

− 1√
2
T (1)0(IiSj)

+ 1√
6
T (2)0(IiSj)

 ∗
exp

(
i

[
mωr−
(ωRF,I − ωRF,S)

]
t

)



(4.3b)

H̃DQ
Homo(t) =− 3

4
.
(√

2
)N+M−2

N∑
i,j=1
i<j

2∑
m=−2,
m6=0

ω
(m)
IiIj

[
T (2)2(IiIj) exp (i [mωr + 2.ωRF,I ] t) +
T (2)−2(IiIj) exp (i [mωr − 2.ωRF,I ] t)

]
(4.4a)

H̃
(ZQ)
Homo(t) =

√
3

8
.
(√

2
)N+M−2

N∑
i,j=1
i<j

2∑
m=−2,
m6=0

ω
(m)
IiIj
T (2)0(IiIj) exp (imωrt) (4.4b)

Following the description in chapter-2, the corresponding Floquet Hamiltonian
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for the above model system is derived.

H
(I)
F =

∑
m,n1

N∑
i=1

1∑
q=−1,q 6=0

G(1)q
m,n1

(Ii)iT
(1)q
m,n1

(Ii)+

N∑
i,j=1,
i<j

∑
m,n1

2∑
k=0

k∑
q=−k

[
G(k)q
m,n1

(IiIj)T
(k)q
m,n1

(IiIj)
]

(4.5a)

H
(S)
F =

∑
m,n2

M∑
i=1

1∑
q=−1,q 6=0

G(1)q
m,n1

(Si)iT
(1)q
m,n2

(Si)+

M∑
i,j=1,
i<j

∑
m,n2

2∑
k=0

k∑
q=−k

[
G(k)q
m,n2

(SiSj)T
(k)q
m,n2

(SiSj)
]

(4.5b)

H
(IS)
F =

∑
m,n1,n2

N∑
i=1

M∑
j=1

2∑
k=0

k∑
q=−k

[
G(k)q
m,n1,n2

(IiSj)T
(k)q
m,n1,n2

(IiSj)
]

(4.5c)

The ‘G’ coefficients in Eq. 4.5 could be deduced from the coefficients described in

Eqns (4.2 - 4.4) inclusive of the numerical constants and are similar to our earlier

descriptions in chapter-2.

4.3.2 Effective Floquet Hamiltonians for first-order and
second-order CP experiments

As mentioned in the previous chapter, when the amplitudes of the RF fields are

adjusted to one of the matching conditions9–11 (|υRF,S ± υRF,I | = υr or 2υr), a part

of the two-spin Hamiltonian (refer to Eq. (4.3)) becomes time-independent under

MAS conditions (commonly referred to as ‘recoupled Hamiltonian’) . In such

cases, the recoupled Hamiltonian is included as a diagonal contribution12,13 along

H1 and the transformation function is carefully chosen only to compensate the
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off-diagonal contributions in H1. The second-order corrections (H
(1)
2 ) to the zero-

order Hamiltonian comprises of single-spin, two-spin and three-spin operators.

For a given system, the single-spin operators (to second-order) result from cross-

terms between (a) single-spin operators (say CSA X CSA) (b) two-spin operators

associated with the same spin pair. The cross-terms between single-spin and

two-spin operators in (CSA X dipolar interactions) result in two-spin operators.

The cross-terms between different pairs of dipolar interactions (with at least one-

spin being common) result in three-spin operators. A detailed description of the

second-order contributions is summarized in Table 4.1 (Appendix-4), along with

a generalization to N-coupled spin (I = 1/2) systems.

Employing the results summarized in Table 4.1(Appendix-4), the first-order

contribution to the effective Hamiltonian in CP experiments is expressed in terms

of two-spin operators.

H
(1)
1 = H1,dia =

N∑
i=1

M∑
j=1

2∑
k=0

A(k)0(IiSj)T
(k)0(IiSj)︸ ︷︷ ︸

Two−Spin

(4.6)

In a similar vein, the second-order contributions are composed of single spin and

three-spin operators as represented below

H
(1)
2 =

∑
λ=I,S

∑
i

B(1)0(λi).iT
(1)0(λi)︸ ︷︷ ︸

Single−spin

+

N∑
i

M∑
r,j=1
j<r

B
(k)0
1 (IiSjSr)T

(k)0(IiSjSr) +
N∑

i,j=1
i<j

M∑
r=1

B
(k)0
1 (IiIjSr)T

(k)0(IiIjSr)

︸ ︷︷ ︸
Three−Spin

(4.7)

Based on Eq. 2.24, the effective Hamiltonian describing first-order CP experiments
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is represented by

Heff
F = H

(1)
0 +H

(1)
1 +H

(1)
2 (4.8)

Depending on the choice of the model spin systems, the number of opera-

tors increases in the effective Hamiltonian framework. Consequently, descriptions

based on the effective Hamiltonian approach are less suited for studying polariza-

tion transfer among strongly coupled spin systems. To alleviate this problem, an

alternate approach in the form of “truncated effective Hamiltonians” employing

fewer operators is proposed in the following section.

4.3.3 Concept of Truncated Effective Hamiltonians

To describe the mechanism of polarization transfer in strongly coupled systems, the

effective Hamiltonians derived in the previous section are restructured based on the

phenomenon of dipolar truncation. Employing this approach, truncated effective

Hamiltonians are proposed by retaining only the dominant contributions in the

effective Hamiltonians. Although, such an approach facilitates the description in

the Floquet state-space, the validity of such approximations could only be verified

through a comparison between analytic simulations emerging from the truncated

Hamiltonians and the exact numerical simulations comprising of the entire spin

system of interest. Employing the model systems depicted in Figure 4.1, trun-

cated effective Hamiltonians are proposed for describing the polarization transfer

observed in first-order and second-order CP experiments.
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First-order CP experiments

As illustrated through the simulations depicted in Figure 4.2(B), the stronger dipo-

lar interaction due to Cβ−Hβ1 (ωCβHβ1) truncates the polarization transfer to Cα

(i.e. ωCβHβ1 > ωCαHβ1 ) in the three-spin system CαCβHβ1 . Consequently, a trun-

cated effective Hamiltonian (in the form H
(eff)T
F,Three) comprising of T (k)0(CβHβ1) and

single-spin operators T (1)0(Cβ), T (1)0(Hβ1) is proposed for describing the polariza-

tion transfer observed in CαCβHβ1 (Figure 4.1(B)). Due to the smaller magnitude

of the second-order coefficients (see Table 4.1), the contributions from the three-

spin operators are neglected and the truncated effective Hamiltonian comprises

only of single-spin and two-spin operators:

H
(eff)T
F,Three,Cβ

=
2∑

k=0

A(k)0(CβHβ1)T
(k)0(CβHβ1) +

∑
λ=Cβ ,Hβ1

B(1)0(λ).iT (1)0(λ) (4.9)

Such approximations simplify the description in the Floquet-state space and

result in analytic expressions similar to those derived in chapter-2. To test the va-

lidity of this approach, analytic simulations based on Eq. 4.9 depicting polarization

transfer from Hβ to Cα and Cβ in the model three-spin system CαCβHβ1 are com-

pared in Figure 4.3 with exact numerical simulations (inclusive of all three-spins).

For illustrative purposes, the analytic simulations emerging from truncated (panel

B1) Hamiltonian is compared with exact numerical simulations. In contrast to the

effective Hamiltonian approach, polarization transfer to Cβ (depicted in panel B1)

is simulated within a reduced subspace comprising of spins Cβ and Hβ1 . Hence,

the truncated effective Hamiltonian approach provides an alternate framework

90



for describing the dipolar truncation effect observed in CαCβHβ1 . To explain the

enhanced polarization transfer observed in CαCβHβ1Hβ2(see Figure 4.2(C)), we

propose a model, wherein, polarization transfer to Cβ results from only one of the

protons, say Hβ1 in CαCβHβ1Hβ2 . Consequently, the polarization from Hβ2 is read-

ily transferred to Cα without the destructive influence of the stronger Cβ − Hβ2

dipolar coupling. Based on this model, the truncated effective Hamiltonians de-

scribing polarization transfer to Cβ and Cα is derived and represented by

H
(eff)T
F,Four,Cβ

=
2∑

k=0

A(k)0(CβHβ1)T
(k)0(CβHβ1) +

∑
λ=Cβ ,Hβ1

B(1)0(λ).iT (1)0(λ) (4.10)

H
(eff)T
F,Four,Cα

=
2∑

k=0

A(k)0(CαHβ2)T
(k)0(CαHβ2) +

∑
λ=Cα,Hβ2

B(1)0(λ).iT (1)0(λ) (4.11)

Figure 4.3: Simulations depicting the polarization transfer to Cα (red) and Cβ (black)
in the model three-spin system (CαCβHβ1). The analytic simulations from truncated
Hamiltonian are compared with the numerical simulations (indicated by dots).

In a similar vein, the stronger coupling in the form of Cβ −Hβ1(ωCβHβ1) trun-

cates the Cβ −Hγ dipolar coupling in CαCβHβ1Hγ (Figure 4.1(D)) and facilitates
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the propagation of spin polarization to Cα. Hence, based on the truncated effec-

tive Hamiltonian approach, polarization transfer to Cβ and Cα in the model four-

spin system CαCβHβ1Hγ, should result primarily from Hβ1 (Hβ1 → Cβ through

T (k)0(CβHβ1)) and Hγ (Hγ → Cα through T (k)0(CαHγ)), respectively.

To verify the validity of the proposed models based on truncated effective

Hamiltonians, analytic simulations emerging from truncated Hamiltonians are

compared with exact numerical simulations. Since the truncated effective Hamil-

tonians comprise of only single-spin and two-spin operators, the polarization trans-

fer to the desired spin in the Floquet-state space is conveniently described using

the analytic expressions derived in chapter-2 (see Eq. 2.26). In contrast to the

Floquet-operator space approach, the analytic expressions in the Floquet-state

space are computationally less intensive and could be beneficial in the fitting of

experimental trajectories involving multiple fit parameters. In Figure 4.4, polar-

ization transfer to Cα in CαCβHβ1Hβ2 is calculated from the truncated effective

Hamiltonian and compared with exact numerical methods (indicated by dots). As

depicted (in Figure 4.4), the analytic simulations emerging from the truncated

effective Hamiltonians (comprising of Cα and Hβ2) are in good agreement with

the four-spin numerical simulations in CαCβHβ1Hβ2 . Hence, the truncation effect

imposed by the stronger Cβ − Hβ1 coupling on Cβ − Hβ2 , indirectly influences

(facilitates) the transfer of polarization from Hβ2 to Cα in CαCβHβ1Hβ2 . While

the efficiency of transfer from Hβ2 → Cα in CαCβHβ1Hβ2 is higher in contrast to

the three-spin simulations depicted in Figure 4.1(B), it is still diminished in com-

parison to the simulations depicting polarization transfer in an isolated spin pair
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(see Figure 4.2(A)). This reduction in efficiency is attributed to the influence of

the passive spin Hβ1 through the Hβ1 −Hβ2 dipolar coupling in CαCβHβ1Hβ2 . Al-

though, matching conditions (say ωRF,S = 1
2
ωr ) corresponding to the reintroduc-

tion of Hβ1 − Hβ2 dipolar interactions are avoided in CP-MAS experiments, their

manifestations through second-order cross-terms are inevitable in strongly cou-

pled systems. As summarized in Table 4.2, second-order cross-terms between the

1H−1H dipolar interactions (HHβ1−Hβ2 × HHβ1−Hβ2) result in longitudinal single-

spin operators T (1)0(Hβ1) and have been incorporated in the truncated effective

Hamiltonians (Eqns (4.7- 4.8)) for better agreements with exact numerical simula-

tions. Hence, the truncated effective Hamiltonian approach provides an adequate

framework for the inclusion of both passive and active spins in a reduced subspace

within the Floquet-state space. In general, depending on the magnitude of the

Figure 4.4: Simulations depicting polarization transfer to Cα in CαCβHβ1Hβ2 . The
analytic simulations emerging from the truncated effective Hami1tonian (comprising of
only CαHβ2) are compared with the exact numerical simulations (dots) involving all the
four spins in CαCβHβ1Hβ2 .
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1H−13C dipolar-coupling constants, the influence of passive spins in CP experi-

ments varies. To illustrate this aspect, polarization transfer to Cα in CαCβHβ1Hβ2

(Figure 4.5(A1)), CαCβHβ1Hγ (Figure 4.5(B1)) and CαHαCβHβ1 (Figure 4.5(C1))

is depicted (see Figure 4.5) both in the presence (indicated red) and absence (indi-

cated in blue) of the second-order cross-terms resulting from the 1H−1H dipolar

interactions. As depicted in Figure 4.5, the analytic simulations from the truncated

effective Hamiltonians (indicated in red) are in good agreement with the numerical

simulations (dots) in all the model four-spin systems. Due to smaller magnitude

of the Cα −Hβ2 dipolar coupling constant, the second-order cross terms resulting

from 1H−1H dipolar interactions have a prominent role in the efficiency of polar-

ization transfer in CαCβHβ1Hβ2(depicted in blue in panel A1). Hence, polarization

transfer to Cα in the model four-spin systems (depicted through Figures 4.1(C-E))

could in principle be described within an isolated two-spin framework comprising

of Cα−Hβ2 , Cα−Hγ and Cα−Hα dipolar couplings, respectively. The truncated

effective Hamiltonians are represented by,

H
(eff)T
F,Four,Cα

=
2∑

k=0

A(k)0(CαHα)T (k)0(CαHα) +
∑

λ=Cα,Hα

B(1)0(λ).iT (1)0(λ) (4.12)

H
(eff)T
F,Four,Cβ

=
2∑

k=0

A(k)0(CβHβ1)T
(k)0(CβHβ1) +

∑
λ=Cβ ,Hβ1

B(1)0(λ).iT (1)0(λ) (4.13)

In a similar vein, polarization transfer to Cα in the model five-spin system

CαHαCβHβ1Hβ2 was simulated using truncated effective Hamiltonians (see Fig-

ure 4.6). Based on the extensive analytic simulations, a schematic decomposition

of polarization transfer in the chosen model systems is summarized through Fig-
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Figure 4.5: Simulations highlighting the role of 1H−1H-homonuclear dipolar interac-
tions on polarization transfer to Cα in (A1) CαCβHβ1Hβ2 (B1) CαHγCβHβ1 and (C1)
CαHαCβHβ1 . The analytic simulations based on the truncated effective Hamiltonian
(solid lines in red) are compared with the exact numerical simulations (dots) involving
all the four spins in the chosen model systems. The analytic simulations depicted in
blue represent the absence of second-order cross terms resulting from the 1H−1H dipolar
interactions in the truncated Hamiltonian.

ure 4.7. Hence, in a strongly coupled system, dipolar truncation seems to be

the driving force behind the propagation of spin polarization in first-order based

CP experiments.In the following section, we explore the suitability of truncated

effective Hamiltonians in understanding the propagation of spin polarization in

second-order CP experiments14.
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Figure 4.6: Simulations depicting polarization transfer to Cα in the model five-spin
system (CαHαCβHβ1Hβ2). The analytic simulation (solid lines) comprising of the trun-
cated effective Hami1tonians are compared with five-spin numerical simulations.

Second-order CP experiments

To minimize the effects of sample heating (due to RF fields) and facilitate imple-

mentation of CP-MAS experiments at faster spinning frequencies, schemes based

on second-order recoupling were preferred over first-order CP experiments . In con-

trast to first-order based schemes, the three-spin operators (see Table 4.1) resulting

from cross-terms between different pairs of dipolar interactions such as (a) Het-

ernonuclear X Heteronuclear dipolar interactions (say C1−H1XC1−H2) (b) cross

terms from Homonuclear X Heteronuclear interactions (such as C1−H1XH1−H2)

facilitate the propagation of polarization in second-order based schemes. For e.g.

in PAIN-CP15 type experiments, polarization transfer from carbon to nitrogen is

mediated through a proton that is coupled to both the spins (i.e. second-order

cross-terms resulting from C1−H1XN−H1), while in SOCP14 experiments cross-
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Figure 4.7: Schematic decomposition of polarization transfer in the model systems
depicted in Figure 4.1.

terms from both (a) and (b) aid polarization transfer. In Figure 4.8, analytic

simulations (based on effective Hamiltonians) depicting polarization transfer to

Cα in SOCP experiments in model three (CαHβ1Hβ2), four (CαCβHβ1Hβ2) and

five-spin (CαHαCβHβ1Hβ2) systems is compared with exact numerical simulations

(represented by dots).

Based on the effective Hamiltonian approach, polarization transfer in SOCP ex-

periments is described in the Floquet-Liouville space through differential equations

comprising of single-spin (e.g.Φ
(1)
0 (λ, t), λ = I1, I2, S) and three-spin polarizations
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Figure 4.8: Simulations depicting the polarization transfer to Cα in (A1) CαHβ1Hβ2

(B1) CαCβHβ1Hβ2 and (C1) CαHαCβHβ1Hβ2 based on second-order recoupling (SOCP).
The simulations were performed at υr = 60kHz and υRF,C = υRF,H = 18kHz.

(Φ
(k)
0 (IiIjS, t))

i~
d

dt
Φ

(1)
0 (λ, t) =

∑
P (k)0(IiIjS)Φ

(k)
0 (IiIjS, t)

(4.14)

i~
d

dt
Φ

(k)
0 (IiIjS, t) =

∑
P (k1)0(IiIjS)Φ

(1)
0 (λ, t) +

∑
P (1)0(λ)Φ

(k1)
0 (IiIjS, t)

Since polarization transfer in SOCP experiments is facilitated through three-spin

operators, analytic descriptions based on the concept of effective Hamiltonians

become less insightful when extended to larger groups of spin systems.

To explore the utility of truncated effective Hamiltonians in SOCP experi-

ments, we begin our discussion with numerical simulations depicting polarization

transfer to Cα in (A1) CαHβ1Hβ2 (B1) CαHβ1Hγ and (C1) CαHαHβ1 in Figure 4.9.

The above three-spin models have been carefully chosen to illustrate the combined

effects of homonuclear and heteronuclear dipolar couplings in the propagation of

spin polarization in second-order CP experiments. Since three-spin operators (re-

sulting from (a) C1−H1 X C1−H2) (b) C1−H1 X H1−H2)) facilitate the propa-
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gation of spin polarization in SOCP experiments, the simulations depicting the

polarization transfer to Cα in CαHβ1Hβ2 are bit counter-intuitive, given that the

magnitude of the second-order three-spin coefficients (refer Table 4.1) in CαHβ1Hβ2

is greater in comparison to the three-spin models depicted in panels B1 and C1.

To explain this anomalous result, we revisit the differential equations presented in

Eq. 4.15.
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Figure 4.9: Simulations depicting the polarization transfer to Cα in model three-spin
systems (A1) CαHβ1Hβ2 (B1)CαHβ1Hγ and (C1) CαHαHβ1 based on second-order re-
coupling (SOCP). The simulations were performed at υr = 60kHz and υRF,C = υRF,H =
18kHz.The analytic simulations depicted in blue represent the absence of second-order
cross-terms resulting from 1H−1H dipolar interactions in the truncated effective Hamil-
tonian.

In accord with the description of first-order based schemes16–22, the coupled

differential equations (see Eq. 4.15) reduce to a much simpler form, when the
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magnitude of the coefficients associated with single-spin operators exceeds the

magnitude of the three-spin coefficients (i.e.P (1)0(Ii) > P (k)0(IiIjS)).

i~
d

dt
Φ

(1)
0 (λ, t) = 0

(4.15)

i~
d

dt
Φ

(k)
0 (IiIjS, t) =

∑
P (1)0(Ii)Φ

(k1)
0 (IiIjS, t)

Consequently, transfer of polarization among spins is inhibited in CP experiments.

This aspect is exemplified in Figure 4.9 through a series of analytic simulations

both in the presence (red) and absence of (depicted in blue) the second-order

cross-terms resulting from the 1H−1H dipolar interactions. As illustrated (see pan-

els 4.9(B1), 4.9(C1)), in strongly coupled systems (a condition satisfied in systems

comprising of directly bonded 13C and 1H) the second-order cross-terms due to

1H−1H dipolar interactions are of lesser consequence. Hence, in the weak-coupling

limit, the stronger homonuclear coupling (1H−1H) truncates the heteronuclear

coupling (13C−1H) and is primarily responsible for the depolarization observed in

both first-order and second-order CP experiments. The above observations are in

accord with our earlier description of polarization transfer from carbon to nitrogen

in presence of protons13. Hence, the magnitude of the single-spin operators, have

a profound effect on the efficiency of polarization transfer in both first-order and

second-order schemes. To further substantiate the utility of the truncated effective

Hamiltonians, polarization transfer to Cα in model four-spin systems (depicted in

Figure 4.10) were investigated.

To minimize the complexity in the description, truncated effective Hamilto-
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Figure 4.10: Simulations depicting the polarization transfer to Cα in model four-spin
systems (A1) CαCβHβ1Hβ2 (B1)CαCβHβ1Hγ and (C1) CαHαCβHβ1 based on second-
order recoupling (SOCP). The simulations were performed at υr = 60kHz and υRF,C =
υRF,H = 18kHz.The analytic simulations depicted in black are derived from the three-
spin model based on reduced effective Hamiltonian. The simulations depicted in red
correspond to the four-spin model with solid lines depicting the analytic simulations
(complete effective Hamiltonian) and dots denoting four-spin numerical simulations.

nians comprising of T (k)0(CβHβ2Hβ1) and single-spin operators (i.e. the stronger

coupling due to T (k)0(CβHβ2Hβ1) (resulting from cross-terms between CβHβ1 ×

Hβ1Hβ2 ) truncates ((resulting from cross-terms between CαHβ1 × Hβ1Hβ2)) were

employed to describe the polarization transfer observed in CαCβHβ1Hβ2 . As de-

picted in Figure 4.10, the analytic simulations based on the truncated effective

Hamiltonians (indicated in black) are in better agreement in CαCβHβ1Hβ2 (panel

A1) and CαHαCβHβ1(panel C1)). The deviations observed in CαCβHβ1Hγ (panel

B1), may be due to stronger correlations among protons and are of lesser conse-

quence in real systems. Hence, the polarization transfer to Cα in CαHαCβHβ1 is

modeled by

H
(eff)T
F,Four,Cα

=
2∑

k=0

A(k)0(CαHβ1Hα)T (k)0(CαHβ1Hα)+

∑
λ=Cα,Hβ1 ,Hα

B(1)0(λ).iT (1)0(λ) (4.16)
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In contrast to first-order based schemes, the 1H−1H dipolar interactions play an

influential role in the propagation of spin polarization in second-order CP ex-

periments. When the magnitude of the homonuclear coupling (among protons)

exceeds the heteronuclear coupling, truncation (through second-order cross-terms)

is observed both in first-order and second-order based schemes. On the contrary,

as illustrated through models depicted in Figures 4.1(C) and 4.1(D), the dipolar

truncation between heteronuclear spin pairs (13C−1H) facilitates the propagation

of spin polarization in first-order based CP schemes. Hence, dipolar truncation re-

mains the main driving force behind the propagation of polarization among spins

in strongly coupled systems.

4.4 Conclusions

In summary, the current study elucidates the important role of dipolar truncation

in the propagation of polarization from protons to carbons in CP experiments.

Based on the phenomenon of truncation, an alternate framework in the form of

truncated effective Hamiltonians is proposed to describe the propagation of spin

polarization in strongly coupled systems. In contrast to the effective Hamiltonian

approach, the present model facilitates the analytic description even in strongly

coupled systems. Employing this approach, polarization transfer in first-order

based CP experiments is described by a pseudo two-spin model comprising of the

active (13C, 1H) and passive spins. The effects of the 1H−1H dipolar interactions

are incorporated through the longitudinal single-spin operators (protons) within

the two-spin framework. In contrast to first-order based schemes, the 1H−1H-
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dipolar interactions play a dual role in the propagation of the spin polarization in

second-order schemes. Hence, in a strongly coupled network, propagation of spin

polarization across the sample is predominantly facilitated through the weakly

coupled protons (1H−1H interaction) in the system. The current study presents

a probable mechanism of propagation of spin polarization in CP experiments and

could well be employed to build theoretical models for quantifying polarization

transfer in strongly coupled spin systems.
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Appendix-4

In the following page Table 4.1 depicts the Second-order corrections to the ef-

fective Hamiltonian for a model three-spin system I1I2S. The spherical tensor

operators have been constructed by sequential coupling23 of the angular momen-

tum vectors between the spins24. The constant ‘N’ in the pre-factors associated

with the operators represents the number of spins and the results presented could

be generalized for N-coupled (spin 1/2) systems. The indices p and r (can be inte-

gers/fractions) defined in the operators are due to ωRF,I = pωr, ωRF,S = rωr. In all

the calculations and simulations in this chapter the following values of p and r have

been employed: p = 2
3
, r = 1

3
(in first-order schemes) and p = r = 1 (in second-

order schemes). The indices p and r correspond to the indices n1 and n2 in eq. 4.5.
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Table 4.1: Summary of Second-order corrections

Types of commutators Coefficients Operators

Single-spin operators

(i)
[
T

(1)±1
m±p (I1), T

(1)∓1
−m∓p(I1)

]
︸ ︷︷ ︸

CSA×CSA

G
(1)±1
m±p (I1).G

(1)∓1
−m∓p(I1)

mωr±ωRF,I
∓
(

1√
2

)N−2
i
2T

(1)0
{1} (I1)

(ii)
[
T

(2)±2
m±2p(I1I2), T

(2)∓2
−m∓2p(I1I2)

]
︸ ︷︷ ︸

DQHomo×DQHomo

G
(2)±2
m±2p(I1I2).G

(2)∓2
−m∓2p(I1I2)

mωr±2ωRF,I
±
(

1√
2

)N−2
i
2

[
T

(1)0
{1} (I1) + T

(1)0
{1} (I2)

]

(iii)
[
T

(2)±2
m±p±r(I1S), T

(2)∓2
−m∓p∓r)(I1S)

]
︸ ︷︷ ︸

DQHet×DQHet

G
(2)±2
m±p±r(I1S).G

(2)∓2
−m∓p∓r)(I1S)

mωr±ωRF,I±ωRF,S
±
(

1√
2

)N−2
i
2

[
T

(1)0
{0} (I1) + T

(1)0
{0} (S)

]

Three-spin operators

(i)
[
T

(2)±2
m±2p(I1I2), T

(2)∓2
−m∓p∓r(I1S)

]
︸ ︷︷ ︸

DQHomo×DQHet

G
(2)±2
m±2p(I1I2).G

(2)∓2
−m∓p∓r(I1S)

mωr±2ωRF,I

(
1√
2

)N−3
i
2


± 1

2
√

5
T

(3)0
{2} (I1I2S) +

1
2
√

2
T

(2)0
{2} (I1I2S)± 1

2

√
3
10T

(1)0
{2} (I1I2S)

− 1
2
√

6
T

(2)0
{1} (I1I2S)∓ 1

2
√

2
T

(1)0
{1} (I1I2S)− 1

2
√

3
T

(0)0
{1} (I1I2S)



(ii)
[
T

(2)±2
m±2p(I1I2), T

(2)∓2
−m∓p∓r(I2S)

]
︸ ︷︷ ︸

DQHomo×DQHet

G
(2)±2
m±2p(I1I2).G

(2)∓2
−m∓p∓r(I2S)

mωr±2ωRF,I

(
1√
2

)N−3
i
2


± 1

2
√

5
T

(3)0
{2} (I1I2S) +

1
2
√

2
T

(2)0
{2} (I1I2S)± 1

2

√
3
10T

(1)0
{2} (I1I2S)

+ 1
2
√

6
T

(2)0
{1} (I1I2S)± 1

2
√

2
T

(1)0
{1} (I1I2S) +

1
2
√

3
T

(0)0
{1} (I1I2S)



(iii)
[
T

(2)±2
m±p±r(I1S), T

(2)∓2
−m∓p∓r(I2S)

]
︸ ︷︷ ︸

DQHet×DQHet

G
(2)±2
m±p±r(I1S).G

(2)∓2
−m∓p∓r)(I2S)

mωr±ωRF,I±ωRF,S

(
1√
2

)N−3
i
2


± 1

2
√

5
T

(3)0
{2} (I1I2S)∓ 1√

30
T

(1)0
{2} (I1I2S) +

1√
6
T

(2)0
{1} (I1I2S)

− 1
2
√

3
T

(0)0
{1} (I1I2S)± 1√

6
T

(1)0
{0} (I1I2S)


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Types of commutators Coefficients Operators

Three-spin operators

(iv)
[
T (2)0
m (I1I2), T

(2)0
−m∓p±r(I1S)

]
︸ ︷︷ ︸

ZQHomo×ZQHet

G
(2)0
m (I1I2).G

(2)0
−m∓p±r(I1S)

mωr

(
1√
2

)N−3
i
2

[
− 1

2
√

2
T

(2)0
{2} (I1I2S) +

1
2
√

6
T

(2)0
{1} (I1I2S)− 1

2
√

3
T

(0)0
{1} (I1I2S)

]

[
T (2)0
m (I1I2), T

(2)0
−m∓p±r(I2S)

]
︸ ︷︷ ︸

ZQHomo×ZQHet

G
(2)0
m (I1I2).G

(2)0
−m∓p±r(I2S)

mωr

(
1√
2

)N−3
i
2

[
− 1

2
√

2
T

(2)0
{2} (I1I2S)− 1

2
√

6
T

(2)0
{1} (I1I2S) +

1
2
√

3
T

(0)0
{1} (I1I2S)

]

(v)
[
T (2)0
m (I1I2), T

(0)0
−m∓p±r(I1S)

]
︸ ︷︷ ︸

ZQHomo×ZQHet

G
(2)0
m (I1I2).G

(0)0
−m∓p±r(I1S)

mωr

(
1√
2

)N−3
i
2

[
−1

2T
(2)0
{2} (I1I2S)− 1

2
√

3
T

(2)0
{1} (I1I2S)

]

[
T (2)0
m (I1I2), T

(0)0
−m∓p±r(I2S)

]
︸ ︷︷ ︸

ZQHomo×ZQHet

G
(2)0
m (I1I2).G

(0)0
−m∓p±r(I2S)

mωr

(
1√
2

)N−3
i
2

[
−1

2T
(2)0
{2} (I1I2S) +

1
2
√

3
T

(2)0
{1} (I1I2S)

]

(vi)
[
T

(2)0
m±p∓r(I1S), T

(2)0
−m∓p±r(I2S)

]
︸ ︷︷ ︸

ZQHet×ZQHet

G
(2)0
m±p∓r(I1S).G

(2)0
−m∓p±r(I2S)

mωr

(
1√
2

)N−3
i
2

[
− 1√

6
T

(2)0
{1} (I1I2S)− 1

2
√

3
T

(0)0
{1} (I1I2S)

]

(vii)
[
T

(2)0
m±p∓r(I1S), T

(0)0
−m∓p±r(I2S)

]
︸ ︷︷ ︸

ZQHet×ZQHet

G
(2)0
m±p∓r(I1S).G

(0)0
−m∓p±r(I2S)

mωr

(
1√
2

)N−3
i
2

[
1
2T

(2)0
{2} (I1I2S)− 1

2
√

3
T

(2)0
{1} (I1I2S)

]

(viii)
[
T

(0)0
m±p∓r(I1S), T

(2)0
−m∓p±r(I2S)

]
︸ ︷︷ ︸

ZQHet×ZQHet

G
(0)0
m±p∓r(I1S).G

(2)0
−m∓p±r(I2S)

mωr

(
1√
2

)N−3
i
2

[
−1

2T
(2)0
{2} (I1I2S)− 1

2
√

3
T

(2)0
{1} (I1I2S)

]

(ix)
[
T

(0)0
m±p∓r(I1S), T

(0)0
−m∓p±r(I2S)

]
︸ ︷︷ ︸

ZQHet×ZQHet

G
(0)0
m±p∓r(I1S).G

(0)0
−m∓p±r(I2S)

mωr

(
1√
2

)N−3
i
2

[
1√
3
T

(0)0
{1} (I1I2S)

]

106



References

[1] U. Haeberlen, High-Resolution NMR in Solids: Selective Averaging, Aca-

demic, New York, 1976.

[2] M. Mehring, Principles of High Resolution NMR in Solids, Springer Verlag,

Berlin, 1999.

[3] A. Abragam, The Principles of Nuclear Magnetism, Clarendon, Oxford, 1961.

[4] M. J. Bayro, M. Huber, R. Ramachandran, T. C. Davenport, B. H. Meier,

M. Ernst and R. G. Griffin, J. Chem. Phys., 2009, 130, 114506.

[5] B. Meier, Chem. Phys. Lett., 1992, 188, 201 – 207.

[6] C. P. Slichter, Principles of Magnetic Resonance, Springer, Heidelberg, 1990.

[7] M. Veshtort and R. G. Griffin, J. Magn. Reson., 2006, 178, 248 – 282.

[8] M. Maricq and J. S. Waugh, J. Chem. Phys., 1979, 70, 3300–3316.

[9] E. Stejskal, J. Schaefer and J. Waugh, J. Magn. Reson., 1977, 28, 105 – 112.

[10] J. Schaefer and E. O. Stejskal, J. Am. Chem. Soc., 1976, 98, 1031–1032.

[11] J. Schaefer, E. Stejskal, J. Garbow and R. McKay, J. Magn. Reson., 1984,

59, 150 – 156.

107



[12] R. Ramachandran and R. G. Griffin, J. Chem. Phys., 2006, 125, 044510.

[13] M. K. Pandey and R. Ramachandran, Molecular Physics, 2011, 109, 1545–

1565.

[14] A. Lange, I. Scholz, T. Manolikas, M. Ernst and B. H. Meier, Chem. Phys.

Lett., 2009, 468, 100 – 105.
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Chapter 5

Summary and Conclusions

Development of analytic methods to study the dynamics of coupled spins in NMR

spectroscopy is essential for both quantifying experimental results as well as de-

signing new experiments. With the advent of higher magnetic field strengths and

faster spinning modules, the stringent conditions of synchronization (between the

MAS rotor period and the cycle time of a multiple pulse scheme) imposed by

AHT seem less useful in the optimal design/implementation of ssNMR experi-

ments. As an alternative, we explore the role of Floquet theory in the design of

NMR experiments. In the past, analytic descriptions based on Floquet theory

were limited primarily owing to the complexity arising from the infinite dimen-

sionality of the problem in the Floquet Hilbert space. However, the advent of

effective Hamiltonians derived from the contact transformation procedure seems

to have totally mitigated the problem of infinite dimensionality in Floquet de-

scriptions. For demonstrative purposes, the CPMAS experiment is employed as a

case study in this thesis. In contrast to existing descriptions based on AHT, the

effective Floquet Hamiltonians derived in this thesis predict the existence of sev-

eral matching conditions that presumably would be impractical within the AHT
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framework. The matching conditions (both zero-quantum and double-quantum)

derived from our theory facilitate the implementation of CP experiments at faster

spinning frequencies with nominal RF requirements. The predictions emerging

from our theory are thoroughly substantiated using numerical simulations under

different experimental conditions.

The second stage of our study focuses on the development of an analytic ap-

proach for describing multiple-pulse experiments under MAS. In contrast to de-

scriptions involving constant RF amplitudes, analytic theory of multiple pulse

experiments is complicated due to varying RF amplitudes in the rotating frame.

In a typical multiple-pulse sequence, the phase and amplitude of the oscillating

magnetic field plays an important role in the time-evolution of the spin system

of interest. In particular, understanding the role of the modulation frequency

(encountered during phase modulation/amplitude modulation experiments) with

respect to the sample spinning frequency is essential in the optimal design of ex-

periments. Often the synchronization condition imposed by the requirements of

AHT seem to be the main hindrance in the design of new experiments. To address

this issue, an alternate framework based on multimode-Floquet theory is presented

in this thesis for describing multiple pulse experiments in ssNMR. As a test case,

phase modulated CP experiment was employed in our study. The framework pre-

sented in this thesis is quite general and well suited for analytic description of

schemes that involve modulations both synchronous and asynchronous with re-

spect to the sample spinning frequency. The interplay between the modulation

frequency and spinning frequency is outlined in terms of effective Hamiltonians
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are well corroborated through exact numerical simulations. The final stage of our

study focussed on developing mathematical models for quantifying polarization

transfer among spins in ssNMR. As the number of constraints available in the

solid state is limited due to limited spectral resolution, the accuracy of the mea-

surements/interpretation of the experimental results becomes very critical. Based

on the phenomenon of “dipolar truncation”, truncated effective Hamiltonians are

proposed to account for the multi-spin effects observed in a strongly coupled net-

work. In contrast to the effective Hamiltonian approach, this model facilitates

analytic description even in strongly coupled systems. Employing this approach,

polarization transfer in first-order based CP experiments is described by a pseudo

two-spin model comprising of the active (13C, 1H) and passive spins. The ef-

fects of the 1H−1H dipolar interactions are incorporated through the longitudinal

single-spin operators within the two-spin framework. Hence, in a strongly coupled

network, propagation of spin polarization across the sample is predominantly facil-

itated through the weakly coupled protons (1H−1H interaction) in the system. To

test the validity of the models, analytic simulations are compared with numerical

simulation programs based on SPINEVOLUTION. The current study presents a

probable mechanism of propagation of spin polarization in CP experiments and

could well be employed to build theoretical models for quantifying polarization

transfer in strongly coupled spin systems. Such possibilities need to be explored

in the near future.
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