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Abstract

In the present thesis, we explore the relevance of the prior information in clas-

sical thermodynamic processes with limited information to estimate their perfor-

mance characteristics. We followed the Bayesian approach where all uncertainty

is treated probabilistically and a probability may be assigned to an uncertain

parameter taking up a possible value. The corresponding probability distribu-

tion is simply known as a prior. In the present context, we propose appropriate

priors in case of limited information about the thermodynamic coordinates of the

process. First we consider the process of reversible work extraction with identical

thermodynamic systems in which input heat from the source is converted into

work with delivery of the waste heat into sink, preserving the total entropy of the

composite system. The work extracted and efficiency of the engine is estimated.

The estimates show good agreement with the optimal work extracted and the

corresponding efficiency especially near equilibrium. The inference approach also

extended to non-identical systems reproduces the optimal behavior to a good

extent. Next, we consider the well-known process of pure thermal interaction

between the two systems with fixed total energy. The main quantity of interest

is the estimated net entropy production which matches with the corresponding

optimal value upto third order. An intuitive interpretation for the prior is also

proposed.
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Chapter 1

Introduction

Inference may be defined as a mode of reasoning which seeks to arrive at logical

conclusions from the premises known or assumed to be true. We perform inference

in many every day activities, for example, we infer that it will rain when we see the

sky is covered with clouds. Inference is based upon one’s prior state of knowledge

about the nature of the system and/or information from some measurement.

Inferences can be obtained with deductive as well as inductive reasoning.

Deductive inference

Deductive inference specifies assertions or premises in terms of sentences which

take the truth values and thus provides a procedure which leads to conclusions

that are certain, based on the given assertions. Here, we can conclude that some

event or hypothesis is either true or false.

Inductive inference

This kind of inference is traditionally associated with the word “probably”. It

specifies assertions or premises in terms of sentences which takes the possible

(plausible) values and thus provides an inference procedure which leads to the

highly plausible conclusions based on the given assertions. Here, we infer that
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some event or hypothesis may be true only with a certain probability.

1.1 Statistical inference

Statistical inference [1, 2, 3] is based on a probabilistic modelling of the observed

phenomenon. So, statistical inference is basically a process of deriving conclusions

regarding the phenomenon about which we have partial knowledge. It plays an

essential role in understanding the world around us and thus helps us to make

decisions. However, the field of statistical inference has remained a subject of

debate since there exist many competing approaches. There are two major schools

of thought in statistical inference: frequentism and Bayesianism.

1.1.1 Nature of probability and modes of inference

What is probability?

Probability measures the degree of uncertainty that whether an event will occur

or not. There are two major competing interpretations of probability, which we

discuss below:

• Frequentist probability: This interpretation of probability is based on

objective belief of the observer. Frequentist probability interprets probabil-

ity as the limit of relative frequency of occurence of a certain event in a

large number of trials. The school of thought in statistical inference associ-

ated with frequentist interpretation of probability is termed as frequentist

inference.

• Bayesian probability: This interpretation of probability is based on sub-

jective belief or rational degree of belief of the observer in the occurence or

non-occurence of the events. However, to identify or to measure the ob-

server’s belief in numerical terms, an operational approach is mandatory.
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Thus, Bayesian probability includes one’s rational belief as well as sample

data to form probability judgements. The school of thought in statistical

inference associated with subjective interpretation of probability is termed

as Bayesian inference.

1.1.2 Limitation of frequentist inference over Bayesian in-

ference

In frequentist approach to inference, almost all prior knowledge i.e. the knowl-

edge already existing before any experimental data is collected, is ignored as we

are only concerned with the relative frequency of the outcomes. The frequentist

approach can be used only in cases where trials are repeatable. Further, the

definition of frequentist probability is true for an infinite sequence of repeatable

trials while in real situations, we are constrained to deal with finite number of

trials. But, there are certain events which are not repeatable and so it becomes

difficult to apply the frequentist interpretation of probability. Consider the ques-

tion: What is the probability that it will rain today? Now, the occurence of rain

which although is a repeatable event, does not occur under identical conditions

as a large number of ‘todays’ is not feasible for the application of frequentism.

Similarly, some other examples of such events are: Will Sachin score a century in

the next match against Australia? Is there any life on Mars? etc. Such kind of

events can be dealt probabilistically only within Bayesian approach where prob-

ability is defined as the observer’s degree of rational belief in the event, based

on the knowledge she is having. If the observer finds conditions appropriate for

rain such as clouds, thunderstorm etc., she will be more sure that it will rain.

Thus, for a frequentist, the locus of uncertainty described by the probability lies

in the events but for a Bayesian, the locus of uncertainty is in the agent/observer.

Actually, more precisely, we can argue that Bayesians consider each event as a

unique event and what is sought is how plausible a certain inference can be with
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respect to that event.

1.2 Bayesian inference

Bayesian inference is based on the subjective interpretation of probability as dis-

cussed in the preceding Section. In recent years, Bayesian inference, also known

as “Science of Prior information” [4, 5], has gained immense popularity over the

established ‘Frequentist approach’ to inference. Bayesian methods have found

applications in many different areas of research, such as physics [6, 7, 8], eco-

nomics [9], machine learning [10], human cognition [11], quantum probabilities

[12, 13] and so on. Even physical theories such as classical and quantum mechan-

ics can be regarded as a manifestation of Bayesian inference [14, 15]. It has also

become a major part of statistics. Let us now discuss an overview of the Bayesian

approach to inference [16]:

1.2.1 Bayes methodology

We begin the discussion by presenting the famous theorem known as Bayes’

Theorem which underpins the entire Bayesian approach.

A brief history and philosophy

Bayesian approach was introduced by Thomas Bayes in a well-known paper pub-

lished posthumously [17]. Richard Price discovered the notes of Bayes and sent

them to the Royal Society under the title “Note on the Solution of a Problem in

a Doctrine about an event”. This work was reprinted later in 1958 [17]. Later in

1959, R. A. Fisher gave a detailed account of Bayes’ work in [18]. The philosophy

of Bayes’ approach is based on the connection between inductive and deductive

reasoning (or inference). Jeffreys considered deductive reasoning as a special case

of inductive reasoning [19]. He gave the argument that knowledge gained from
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deductive logic contains the information of past observations which are going to

be used for the prediction of future events and this act of generalisation of past

experiences and prediction of future is actually Inductive inference.

Bayes’ theorem

Bayes’ theorem gives a general description for inversion of probabilities and thus

introduced the concept of Bayesian inference. The theorem is the foundation for

Bayesian inference and can be illustrated with the following statements:

• Prior information is a piece of knowledge about the system before any

measurement or an experiment is performed to collect data. It happens

rarely that we do not know anything about the system or its control pa-

rameters which define the conditions of the experiment or the measurement.

We assign a probability distribution for the system’s parameter on the basis

of certain constraints governing the system, such as the parameter may be

positive valued or restricted to a finite range.

• The probabilities proposed for a parameter on the basis of prior information

in the problem at hand are called prior probabilities or simply prior. The

choice of a prior in Bayesian analysis is a crucial step as it incorporates

the available partial information as well as the uncertainty underlying the

problem to be studied. Prior information plays a significant role in the

derivation of a prior.

• The modified or updated probabilities for the parameter obtained after

unifying the prior with the observed data by Bayes theorem are called

posterior probabilities.

This can be illustrated with the application of Bayes’ rule as follows:

p(θ|x) =
f(x|θ)p(θ)∫
f(x|θ)p(θ) dθ

, (1.1)
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p(θ) is continuous probability density function for θ to quantify the uncertainty in

the parameter θ, and thus is called prior. The function f(x|θ) is called likelihood

function which is basically a formalization for all observed data x given θ, and

finally, p(θ|x), which is an updated or modified version of p(θ) in the light of new

data x is called posterior distribution.

1.2.2 Types of priors

The choice of an appropriate prior [19, 20, 21] has been a crucial issue in the

Bayesian epistemology, which has hampered its development and general accep-

tance for a long time [22]. So its appropriate determination is the most important

step in the whole inference procedure. Even if the uniqueness of a prior corre-

sponding to a given problem is hard to establish, however, an appropriate prior

can still be proposed based on certain principles of coherence or from symmetry

contained within the problem. Priors can be broadly divided into two categories

:

• Informative priors

When the priors for the uncertain parameters are assigned by making use

of the prior information, then such priors are termed as informative priors.

Depending upon the available prior information, priors can be categorised

as:

(1) MaxEnt priors

MaxEnt prior was proposed by Jaynes [20]. This kind of priors are derived

from the Maximum Entropy Principle (MEP) [23, 24]. The basic idea

of MEP is to assign a prior distribution which maximizes the Shannon-

information entropy [25], subject to the given information:

S = −
n∑
i=1

P (xi) lnP (xi), (1.2)
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where the quantity x can take on discrete values {x1...xn}. The information

about the quantity x places a number of constraints on the probability

distribution P (xi). MaxEnt priors are generally derived by the constraints

on the moments of the distribution (MR), where MR =
n∑
i=1

xRi P (xi) is Rth

moment of the probability distribution. A few examples of distributions

are discussed below:

– Assume the zeroth moment, M0 = 1, which is in fact the normalization

condition for the distribution. This constraint will lead to a uniform

distribution over the interval as:

P (xi|M0) =
1

(b− a)
. (1.3)

– In addition to M0 = 1, suppose we have been given another constraint

on the first moment of the distribution, M1. Maximizing Shannon

entropy with these constraints will lead to an exponential distribution

as:

P (xi|M0,M1) =
exp (−βxi)
n∑
i=1

exp (−βxi)
, (1.4)

where Lagrange multiplier (β) is evaluated from the constraint on the

first moment of the distribution.

(2) Conjugate priors

Conjugate priors were introduced by Howard Raiffa and Robert Schlaifer

[26]. When the posterior probability distribution p(θ|x) happens to belong

to the same family as the prior distribution p(θ), we say that prior is a

“conjugate prior” or prior and posterior are conjugate distributions. For

example, the normal distribution is a conjugate prior since it leads to a

normal posterior distribution for a given likelihood function. This can be

understood from the equation (1.1), in which, we can see that posterior
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is the output of the product of prior and the likelihood function. If we

represent our prior knowledge about λ by a gamma distribution [4]

P (λ|α, β) =
βαλα−1

Γ(α)
e−βλ, (1.5)

where α > 0, β > 0 are the specified parameters of the distribution, then

the posterior distribution P (λ|x1, x2...xn) is also a gamma distribution with

parameters α + nx and β + n; and x = (1/n)
n∑
i=1

xi is the sample mean.

The sample data, Xn = {x1, x2, ...xn}, has been chosen from the Poisson

distribution, with λ as the mean of the distribution.

• Non-informative priors[27]

When no prior information is available to us, then prior distributions must

be derived from the sample distribution and hence, the priors derived are

called non-informative priors. Non-informative priors can be divided into:

(1) Laplace prior

Laplace priors are based on the “Principle of Insufficient Reason” [28]. This

principle says that if there is no reason to believe that out of a set of possible,

mutually exclusive events, no event is preferable over any other, then one

should assign equal probabilities to all the allowed events. For example,

consider that you are throwing a die [29]. Since we do not believe that

one side is more likely to occur than any other, we regard all probabilities

as equal. And indeed, a large number of times throwing shows that this

is correct. Laplace priors were addressed with a criticism of the problem

of non-invariance under bijective reparametrization [30], since a one-to-one

transformation from one parameter to another does not lead to a uniform

prior in new parameter. To illustrate, consider a one-to-one transformation

g where we switch from θ to φ as φ = g(θ). If prior for θ is π(θ) = 1, then

8



corresponding prior for φ is given by the Jacobian formula as:

π∗(φ) =

∣∣∣∣ ddφg−1(φ)

∣∣∣∣ , (1.6)

But, π∗(φ) is usually not a uniform distribution and thus Laplace prior does

not satisfy reparametrization invariance.

(2) Jeffreys prior

Harold Jeffreys proposed a class of non-informative priors [31] in order to

meet the demand of invariance [30]. Jeffreys prior is constructed with the

Fisher information contained in the model. The Fisher information (I(θ)),

is a measure of the amount of information, contained in the probability

distribution (f(X|θ)) of random variable X, given the parameter θ:

I(θ) = −
∫ [

∂2 ln f(X|θ)
∂θ2

]
f(X|θ) dX, (1.7)

in the one-dimensional case. The Jeffreys prior is given as

π(θ) ∝ I1/2(θ), (1.8)

defined up to normalization constant. Thus Jeffreys prior is defined as the

square root of the Fisher information. The main motivation behind the

choice of Jeffreys prior is that it satisfies the invariant reparametrization

requirement. Jeffreys prior can be generalized to the case, when θ is a

multidimensional parameter. In such a case, prior is proportional to the

square root of the determinant of Fisher information matrix as shown:

π(θ) ∝ [det(I(θ))]1/2, (1.9)

where I(θ) has the following elements,
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Iij(θ) = −
∫ [

∂2

∂θi∂θj
ln f(X|θ)

]
f(X|θ) dX, (1.10)

for i, j = 1, 2...k. However, in the multidimensional case, Jeffreys approach

leads to some problems and incoherences [32]. Thus Jeffreys approach works

well only in case of single parameter models.

(3) Reference prior

Reference priors were introduced by Bernardo [33]. It was basically a modi-

fication of the Jeffreys approach, This method leads to Jeffreys’ prior in the

one-dimensional case, but it works well even for multidimensional param-

eters as well. These priors are estimated by maximizing the intrinsic dis-

crepancy between the posterior and prior probabilities. For this, Bernardo

defines a reference prior as Π maximizing

K∗(Π) = 〈K(Π)〉, (1.11)

where K(Π) is the Kullback-Leibler divergence between the prior and the

corresponding posterior as :

K(Π) =

∫
Π(θ|x) ln

(
Π(θ|x)

Π(θ)

)
dθ, (1.12)

and the expectation is taken over the marginal distribution of x. In Eq.

(1.12), Π(θ) is a prior distribution proposed for θ and the Π(θ|x) is an

updated or posterior probability distribution for θ.

1.2.3 Information processing and Bayes theorem

The information processing approach in statistical inference involves the formu-

lation of some criterion functions. The latter, when optimized, leads to certain

optimal information processing rules (IPRs) and one of which is Bayes’ Theorem
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[34]. These optimal IPRs are 100% efficient in the sense that output information

is exactly equal to the input information. The following criterion function was

employed:

∆[g(θ|y)] = Output Information - Input Information, (1.13)

where g(θ|y) is a proper density function for θ, y being the observed data. After

optimizing the functional (1.13), we obtain the Bayes’ theorem as optimal IPR:

g∗(θ|y) =
π(θ|I)l(y|θ)

h(y)
, (1.14)

where π(θ|I) is the prior density and I is the prior information, l(y|θ) is the

likelihood function and h(y) is the marginal density of the observations.

Quality adjusted priors and likelihood function

Zellner [35] introduced the terms, quality adjusted priors and likelihood function,

namely, q1(π) and q2(l) and these two terms are introduced in (1.13). Minimizing

this equation with respect to the choice of g, subject to the constraint of its being

proper, we obtain the result as :

ga ∝ q1(π)q2(l). (1.15)

In the above case, Zellner has assumed that q1(π) ∝ πa and q2(l) ∝ lb such that a

and b take values in the interval [0, 1]. Now, if a = 0 then ga ∝ lb and it indicates

that prior information is of very low quality and we consider information in the

sample data or likelihood function only. On the other hand, consider the case

when sample information is of poor quality i.e. b = 0, in that case ga ∝ πa. This

shows that the information is in the prior density only. Thus one can choose the

values of a and b accordingly.
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1.3 Information in thermodynamics

There are two fundamentally different concepts of information : Symbolic infor-

mation and Physical information. Symbolic information is based on the symbols

created to incorporate knowledge, facts, data etc. While on the other hand,

physicists mostly consider the term information to indicate conditions which do

not involve any symbols and it is Physical information. It refers to the concept of

physical differences. These physical differences can be any type of non-uniformity

in the physical parameters, say, for example, this difference may include the dis-

tinction between two objects, difference between energy states etc. There exists

a relationship between Physical information and Thermodynamic entropy, how-

ever, it is still controversial. This link specifically appears suggestive because

of a significant likeness between Shannon entropy (Eq. (1.2)) and Boltzmann’s

thermodynamic entropy, although the origins and motivations behind these two

kinds of entropy are different. Thus, the definition of entropy based on thermo-

dynamics can be considered as a subset of physical information. In this Section,

we discuss the role of information in thermodynamics.

1.3.1 Maxwell’s demon and its history

Maxwell’s demon was first introduced by James Clerk Maxwell in 1871 in his book

“Theory of Heat” [36]. It played a key role in establishing a connection between

information and thermodynamics. It was introduced as a contradiction to the

second law of thermodynamics or to illustrate the statistical nature of second law

which is based on the Clausius’s premise that no spontaneous process can lead

to the transfer of heat from a body at lower temperature to a body at higher

temperature without the help of any external agency. But Maxwell thought an

experiment in which he showed a violation of the second law by introducing a

hypothetical creature which became popular as Maxwell’s Demon.
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What is Maxwell’s demon?

Maxwell’s Demon [37] is a hypothetical intelligent being of molecular size who can

observe the individual molecules without expenditure of any work. To describe

this intelligent being, Maxwell thought of an experiment which consists of a vessel,

containing air molecules at uniform temperature, divided into two portions A

and B (shown in the Fig. 1.1). There is a friction-free trap door in the division

from where molecules from one half can pass to the other half. Now, Maxwell

assumed a demon sitting near the trap door and trying to control the movement

of molecules. The demon is intelligent in the sense that it observes the molecules

so sharply so as to allow the faster molecules from B to A, and only the slower

molecules to go from A to B. Thus a tiny intelligent being would create a

temperature difference by allowing only the swifter molecules to enter one half

and only slower molecules to leave it. Hence, in this way, the second law of

thermodynamics can be violated. However, according to Maxwell, the second

law has only a statistical nature according to which a mechanical interpretation

based on dynamical laws would not be feasible.

1.3.2 Landauer’s principle: A saviour for the Second law

The puzzle of Maxwell’s demon has been approached from the viewpoint of infor-

mation theory. Initial arguments were given by Szilard [38] and Brillioun [39, 40]

which gained wide acceptance: In order to operate, the demon must accumulate

information and process of information acquisition is sufficiently dissipative to

save the second law. Later, Bennett [41] proposed the demon requires a memory

to observe the molecules and must clear the memory periodically. Thus the sec-

ond law is saved by the argument that erasing and resetting the memory of the

demon is accompanied by an entropy increase in the environment. He argued that

the information acquisition need not to be dissipative, but information erasure

is a dissipative operation. This idea follows from Landauer’s Erasure Principle
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Figure 1.1: Maxwell’s Demon violating the second law by creating a temper-
ature gradient from which work can be extracted

.

[42], according to which there is a minimal energy required to erase one bit of

information, which in turn, results in heat generation in the environment, given

by kT ln 2, where k is Boltzmann’s constant and T is the temperature of the

environment. There is a net increase in entropy of the system plus environment,

after the completion of each thermodynamic cycle without violating the second

law. Hence, Landauer’s principle restores the validity of second law and results

in exorcism of Maxwell’s demon [41, 43]. With this advent, a specific relationship

between information theory and physics (especially thermodynamics) has been

explored.

1.3.3 Information and stochastic thermodynamics

In recent years, the role of information in thermodynamics has become interesting

specially in the realm of Stochastic Thermodynamics [44, 45]. The idea of extract-

14



ing maximum work within a finite time by employing the information gained from

measurements has been explored in [46, 47, 48, 49, 50, 51, 52]. The idea is based

on the profound connection between statistical mechanics and information theory

[23, 53, 54, 55]. In paper [56], the proposition was revisited within the framework

of stochastic thermodynamics. The model considered was a Brownian particle in

a time-dependent harmonic trap. The notion that work can be extracted from

a single bath by exploiting the information available through measurements was

investigated further in [57, 58, 59, 60]. Thus, it is possible to extract more work

than the corresponding free-energy difference in a thermodynamic process with

feedback. Mathematically,

W ext ≤ −∆F + kTI, (1.16)

where W ext is the work extracted from the system in contact with a heat bath

at temperature T . ∆F is the free-energy difference between initial and final

equilibrium states. The relation (1.16) is known as Generalized Second Law in-

equality which involves mean information (I) acquired through measurements.

The equality in Eq.(1.16) is achieved for a feedback-reversible process.

1.4 Finite-time thermodynamics

Sadi Carnot, a French engineer, in 1826, found that the maximum efficiency of

a heat engine operating between a hot and a cold reservoir is attained only for

a reversible process. The power of such a reversible heat engine is zero as it

takes infinite time to complete the cycle. In finite-time models, heat engines are

optimized with respect to maximum power output although the Carnot efficiency

is compromised to get work done in finite time.

The breakthrough in Classical thermodynamics came with a new universal

efficiency called Curzon-Ahlborn efficiency [61] in 1975. This work was done by
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F.L. Curzon and B. Ahlborn in which they made an attempt to optimise the

real heat engines. They considered a model of heat engine which they called

as ‘endoreversible heat engine’. The term ‘endoreversible’ originates from the

assumption that engine is subjected to only external irreversibilities and does

not allow for any internal irreversibility. The finite-rate of heat transfer during

isothermal expansion/compression branches of Carnot cycle are the causes for the

external irreversibilities. This results in efficiency of engine which is less than the

Carnot efficiency. The heat engine is optimized with respect to maximum power

and the efficiency obtained at maximum power output is called Curzon-Ahlborn

(CA) efficiency given by the expression ηCA = 1−
√
Tc/Th, where Th and Tc are

the temperatures of hot and cold baths respectively. Near-equilibrium (Th ≈ Tc),

CA efficiency behaves as:

ηCA = 1−
√

1− ηc ≈
ηc
2

+
η2
c

8
+O[ηc]

3, (1.17)

where ηc = 1−Tc/Th is the Carnot bound. After the work of Curzon and Ahlborn,

many people studied more realistic models of heat engines by taking into account

the internal friction, finite reservoirs, finite-rate and thus a new branch called

“Finite-time Thermodynamics” (FTT) was introduced in 1975.

The validity and generality of CA efficiency were the questions of long-standing

debate since the result obtained was model specific using on endoreversible ap-

proximation. Recently, CA efficiency was shown to be a universal efficiency at

maximum power output, without any approximation, from the theory of lin-

ear irreversible thermodynamics [62, 63]. In the linear response regime, it was

proven that efficiency at maximum power is bounded from above by ηCA as

η ≤ ηCA ≈ ηc/2. The upper limit is reached for a specific class of models which

are perfectly coupled i.e. heat flux is directly proportional to the work-generating

flux [64, 65, 66]. Thus, for strongly coupled systems, universality of coefficient

1/2 in the near-equilibrium expansion of efficiency can be recovered.
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The efficiency at maximum power has also been studied in the context of

stochastic heat engines [67], Feynman’s ratchet as a heat engine [68], nanosystems

with perfectly coupled fluxes such as quantum dot [69], and so on. The striking

feature of these studies is the emergence of universal character of efficiency up

to second order (Eq. (1.17)) when expanded close to equilibrium. In Ref. [70],

it was investigated that universal feature of the efficiency at maximum power in

the second order of ηc can be attributed to a kind of left-right symmetry in the

strong-coupling models. When there exists a certain kind of symmetry in the

model, only then the term η2
c/8 is recovered. For example, depending upon the

value of Einstein coefficients, the efficiency of a maser [71] at maximum power

may be different from CA efficiency but, if the Einstein coefficients are equal,

then efficiency shows universality up to quadratic order. This universality has

also been observed in low-dissipation engines performing finite-time Carnot cycles

[72] between hot and cold reservoirs. The efficiency at maximum power of such

heat engines in near-equilibrium regime is:

ηo =
ηc
2

+
η2
c

4 + 4
√

σc
σh

+O[ηc]
3, (1.18)

where σc (σh) is the entropy production in the cold (hot) reservoir, when the

engine is in contact with the reservoir(s) for a finite-time. When there is a

symmetric dissipation in hot and cold reservoirs i.e. σc = σh, we recover the

coefficient 1/8 in the quadratic term of efficiency (Eq. (1.18)). Hence, symmetric

dissipation in time-dependent cycles of heat engines is analogous to the left-right

symmetry on the fluxes.

1.5 Thesis overview

The motivation to study the role of prior information in heat engines comes

from the paper [73], in which a two-level quantum system [74] is studied from
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the Bayesian approach and the interesting result obtained is that the inferred

efficiency at maximum expected work turns out to be CA efficiency [61]. CA

efficiency has been observed as a universal efficiency as discussed in Section 1.4.

But in Bayesian approach, optimization has not been done explicitly, only the

ignorance about the parameters of the engine is quantified in terms of probabil-

ity distribution which is further used to estimate the thermodynamic quantities

like work and efficiency. Such type of behavior has also been observed in some

other models of quantum heat engine within Bayesian framework [75]. Motivated

by this work, we implemented this approach to infer optimality in constrained

thermodynamic processes [76, 77, 78, 79]. In particular, we have studied entropy-

conserving and energy-conserving processes. Following the inference approach,

we propose appropriate priors based on limited information about the thermody-

namic coordinates of the process under consideration. We estimate the thermo-

dynamic quantities like work, efficiency and entropy production depending upon

the process under consideration. An analogy between the quantum thermody-

namic machines and their corresponding classical models has also been studied

by using this approach [80], where quantum machines display classical thermody-

namic behavior with suitable choice of prior for given information. This Section

comprises the layout of present thesis work.

In Chapter 2, we discuss the inference procedure for constrained thermody-

namic process of maximum work extraction for a pair of identical finite reservoirs.

The total entropy of the whole system remains conserved. The ignorance is as-

sumed about the intermediate temperatures, T1 and T2, of the finite reservoirs.

The constraint of entropy conservation gives a one-to-one relation between T1

and T2 as T1 = F (T2), which serves as a prior information. Using this constraint,

we assign a prior probability distribution to the unknown temperature(s). Thus,

we may imagine two observers, one of whom chooses T1 as an uncertain variable

while the other chooses T2. But, since the two reservoirs are identical, estimates

made by both the observers are equally preferable. We estimate the work and
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efficiency of the heat engine. The inferred quantities are compared with their

corresponding optimal values and the results shown with derived prior are in

good agreement with their optimal values. This was really a striking feature in

the estimation procedure as we have also shown the estimated results with uni-

form prior and the deviations observed for the results are quite significantly far

from equilibrium. However, near-equilibrium, both priors are equally good. The

universal feature of efficiency beyond the linear term, η ≈ ηc/2 + ηc
2/8, is also

inferred within this approach, where ηc is Carnot efficiency.

In Chapter 3, we apply the inference approach to another constrained ther-

modynamic process in which the two finite reservoirs are in thermal contact with

each other such that the total energy of the whole system remains conserved. The

prior for the unknown temperatures is derived by making use of the constraint

of energy conservation. The thermodynamic quantity to be estimated is the net

entropy production in the two reservoirs. For this process also, we are able to

reproduce the optimal characteristics within this inference approach.

In Chapter 4, we reconsider the entropy conserving process with maximum

work extracted from the finite source/sink set-up obeying the relation of the form

S = κUω1 , where κ is a proportionality constant. In this case, source and sink

are non-identical [79] unlike in Chapter 2. Thus, the problem of inference is not

symmetric with respect to T1 and T2. In Chapter 2, systems were identical and

hence γ = 1, where γ = κ2/κ1, κ1 and κ2 are the two proportionality constants

for finite source and sink respectively. We perform the inference for different

values of γ. It has been observed that estimates of efficiency by the two observers

are not symmetric about efficiency at optimal work, instead one observer gives

better estimate as compared to the other depending upon the value of γ. In the

limiting cases when one reservoir becomes very large as compared to the other,

exact optimal behavior of the system is recovered.

In Chapter 5, the summary of present work and the conclusions have been

discussed with remarks on the future perspectives of present work.
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Chapter 2

Inference in entropy-conserving

process

2.1 Introduction

We propose inference procedure for entropy-conserving process in which a system

is taken from a specified initial configuration to a final configuration while pre-

serving entropy of the whole system. The system consists of two finite reservoirs

as subsystems which interact via a reversible work source to deliver work from this

set-up. Thus whole set-up works like a heat engine in which one reservoir acts as

a source while the other acts as a sink. Heat is extracted quasi-statically from the

the source, converted into useful work and the rest is ejected into the sink. Ac-

cording to Maximum work theorem [81], of all the thermodynamic processes,

the work delivered is maximum and the delivery of rejected heat is minimum for

a reversible process. The process which delivers the maximum work correspond-

ingly rejects the minimum amount of heat to the sink and this results in the least

possible increase in the entropy of the sink or we can say of the entire system.

The least possible change in entropy of total system implies ∆Stot = 0. Thus,

an entropy preserving process yields the upper bound for the work. Maximum
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work extraction problem from a pair of finite source/sink has been investigated

in the literature before in papers [81, 82, 83, 84, 85, 86, 87]. In this chapter, we

will investigate the maximum work extraction process from a probabilistic point

of view motivated by Bayesian reasoning (Section 1.2) which serves as a power-

ful tool to treat the situations with incomplete information. Bayesian inference

methods seek to quantify uncertainty due to incomplete prior knowledge about

the system [19, 30]. The uncertainty may be in regard to specific values taken

by the system parameters. The incomplete information is quantified as a prior

probability distribution, or simply known as a prior and interpreted in the sense

of degree of belief about the likely values of the uncertain parameter. Thus, to

formulate the problem in the present context, we assume the ignorance of cer-

tain thermodynamic coordinates of the process due to limited information about

them. Then we develop procedures to assign priors to quantify the uncertainty in

the likely values of these thermodynamic coordinates. Once priors have been as-

signed, we draw inferences for the thermodynamic quantities like extracted work,

efficiency and so on.

To perform inference, consider a pair of thermodynamic systems acting as

finite reservoirs as mentioned above. We consider a situation in which we are

ignorant about the final state of the two reservoirs. This ignorance corresponds

to the ignorance of the exact value of any parameter(s) of the system or in the

process governing the interaction between the reservoirs. In our case, it is the

temperatures of the reservoirs which are the uncertain parameters since final

temperatures of the reservoirs are assumed to be not known to us. So treating

this situation from Bayesian point of view, we treat an unknown parameter as

a random variable. A prior probability distribution is assigned for the unknown

temperatures by making use of the prior knowledge about the constraints of the

process. We define the estimates of temperatures as the average values with re-

spect to proposed prior. These expected values of the final temperatures are used

to estimate work and efficiency. Our main result of this study is that the esti-
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mates for these quantities show remarkable agreement with their corresponding

optimal values which are obtained by extremum principles. Particularly, near

equilibrium, interesting feature of this study is the emergence of agreement with

efficiency at optimal work beyond linear response, when the estimated efficiency

is expanded near equilibrium.

To draw a comparison, we followed the same procedure with uniform prior for

the unknown temperature. This prior is a minimally informative prior as it does

not incorporate any other information except for the parameter’s range. The sig-

nificance of taking into account the prior information can be seen from the results

with uniform prior in far from equilibrium regime, where the proposed prior gives

better agreement with optimal results than uniform prior which involves minimal

information.

This Chapter is organized as follows. In Section 2.2, we discuss the outline of

the inference procedure applied to entropy-conserving process with finite reser-

voirs. We list the various assumptions and the prior information we possess to

derive the prior for the uncertain parameter(s). The prior is derived in general

form under conservation of total entropy of the reservoirs. In Section 2.3, we

present a model for the finite thermodynamic reservoirs obeying the fundamental

relation S ∝ Uω1 . In Section 2.4, the prior is assigned with this model and then

we discuss the method and results of estimation of thermodynamic quantities like

work, efficiency with their comparative plots in succeeding subsections. Section

2.5 is devoted to the discussion of another model of reservoirs as N spin-1/2

systems. In the succeeding subsections, we discuss the numerical as well as ana-

lytical results in high-temperature limit for the estimation of work and efficiency.

Further in Section 2.6, we consider classical Otto cycle as our model and per-

form the inference to obtain certain well-known thermal efficiencies. Finally, in

Section 2.7, we make some concluding remarks regarding our inference approach

in thermodynamic processes with uncertainty in the control parameters of the

process.
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2.2 Outline

2.2.1 Entropy-conserving process

Consider a pair of identical finite thermodynamic systems, each in its own equi-

librium state, acting as source and sink. The systems are identical in all aspects,

except that their initial temperatures are T+ and T−, respectively. Assume that

T+ > T−. The pictorial representation for the entropy-conserving process is

shown in Fig. 2.1.

2.2.2 Assignment of prior

Let us assume the situation in which we are uncertain about the extent to which

the work extraction process has proceeded so that we are ignorant about the

final state of the composite system. Here, this ignorance implies that we are

lacking information about the final temperatures of the reservoirs, say T1 and T2

respectively. In view of incomplete information about the temperatures, we first

propose prior probability distribution for these temperatures.

To identify the prior information, consider a system which depends on two

parameters T1 and T2. Assume that the constraint in the problem leads to a

one-to-one relation between the values of T1 and T2 given by :

T1 = F (T2). (2.1)

Given a value of one parameter, it implies a specific value of the other due to

the relation (2.1). However, if we assume the values to be uncertain, due to the

relation F (·), essentially there is only one uncertain parameter in the problem.

Our approach is to assign prior probabilities for the likely values of T1 or T2 since

there is only one uncertain parameter due to (2.1). This information is essentially

the prior information about the problem i.e. information already exists in the
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Figure 2.1: Set-up works like a heat engine, where one reservoir at temperature T+

acts as source from which a small amount of heat (Qin) is ejected quasi-statically,
converted into work, W = Qin − Qout, and rest waste amount of heat (Qout) is
discarded into the other reservoir at temperature T− acting as a sink.

considered problem before any measurement is performed over the system.

To proceed, it is convenient to consider two observers A and B for

T1 and T2 respectively and make the following assumptions:

(1) Two observers are in the same state of knowledge since each parameter

has been specified within the same interval and also the nature of T1 and T2

is assumed to be identical. This is because both T1 and T2 represent the same

physical quantity, but for different subsystems. Thus the problem is symmetric

with respect to T1 and T2. So, we assume the same form of prior distribution,

P (T1) and P (T2), for each parameter.

(2) For a certain pair of values, related by T1 = F (T2), one may assign the

same probabilities corresponding to these values of T1 and T2. This principle

implies the following:

P (T1)dT1 = P (T2)dT2. (2.2)
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The above relation assigns the equal probabilities for T1 and T2 to be in the range

[T1, T1 + dT1] and [T2, T2 + dT2] respectively. The task ahead of us is to solve for

the function, P , by making use of the prior information using the relation F (·).

(3) The range of possible values for uncertain temperature is decided by in-

voking the information that the set up works like an engine and work must be

extracted, W = −∆U ≥ 0. From this constraint, we obtain the range for allowed

values of Ti, say [Ti,min,Ti,max], where i = 1, 2.

It is apparent from Eq. (2.2), that a relation between T1 and T2, should

determine the form of prior. In particular, we should know the rate of change of

T2 with respect to T1 as:

P (T2) = P (T1)

∣∣∣∣dT1

dT2

∣∣∣∣ , (2.3)

when we assume P (T ) to be monotonic function of T . Let us illustrate by as-

suming a particular constraint on the process.

An entropy-conserving process requires dS = 0, where S is the total entropy

of the reservoirs. Due to the additive property of entropy, we can write

dS1 + dS2 = 0, (2.4)

and further as:

(
∂S1

∂U1

)
V1

(
∂U1

∂T1

)
V1

dT1 +

(
∂S2

∂U2

)
V2

(
∂U2

∂T2

)
V2

dT2 = 0. (2.5)

We assume that no work is performed on or by the heat reservoirs. Using the def-

inition of temperature, (∂S/∂U)V = 1/T and heat capacity at constant volume,

(∂U/∂T )V = C(T ) in the above equation, we get:

dT1

dT2

= −C2(T2)

T2

(
C1(T1)

T1

)−1

. (2.6)

The above equation relates an infinitesimal change in one of the temperatures to
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a corresponding change in the other. The negative sign indicates the fact that

if one temperature decreases the other must increase. Clearly, the above ratio is

suggested by the constraint on the physical process, and forms part of the prior

information. The next step in the assignment of a prior, is to identify this ratio

with the rate of change as Eq. (2.3). Thus a plausible prior, consistent with the

rate of change of Eq. (2.6), may be given by P (Ti) ∝ Ci(Ti)/Ti, where i = 1, 2.

To satisfy normalisation, we must have

P (Ti) = N−1Ci(Ti)

Ti
, (2.7)

where N =
∫ Ti,max
Ti,min

Ci(Ti)/Ti dTi. With this prior, we make estimates for temper-

atures and other thermodynamic quantities like work and efficiency.

2.3 Model

Let the fundamental thermodynamic relation of each reservoir be given by S ∝

Uω1 , where the constant of proportionality may depend on some universal con-

stants and/or volume, particle number of the system and so on. Using (∂S/∂U)V =

1/T , we get: U ∝ T 1/(1−ω1) and C(T ) ∝ T ω, where ω = ω1/(1−ω1). Alternately,

we can write S ∝ T ω. We restrict to the case 0 < ω1 < 1, which implies that

the systems have a positive heat capacity and this is consistent with the third

law of thermodynamics. Some well-known physical examples in this framework

are the ideal Fermi gas (ω1 = 1/2), the degenerate Bose gas (ω1 = 3/5) and the

black body radiation (ω1 = 3/4)[88]. Classical ideal gas can also be treated as

the limit, ω1 → 0.

Consider the process of maximum work extraction in which two subsystems

interact reversibly so as to conserve the total entropy of the composite system

[81]. This implies ∆S = ∆S1 + ∆S2 = 0, where ∆S ≡ Sfinal − Sinitial. While

interacting, the temperatures of the two systems take on the values T
′
1 and T

′
2
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respectively.

One can extract work (W
′
) in this process, which is given as W

′
= Qin−Qout.

The expression for work (up to a constant of proportionality) is:

W
′

= (T+

1
1−ω1 − T ′1

1
1−ω1 )− (T

′

2

1
1−ω1 − T−

1
1−ω1 ), (2.8)

where Qin = T+

1
1−ω1 − T ′1

1
1−ω1 , and Qout = T

′
2

1
1−ω1 − T−

1
1−ω1 . Defining θ = T−/T+,

T1 = T
′
1/T+, T2 = T

′
2/T+ and W = W

′
/T+

1
1−ω1 , Eq. (2.8) can be written as:

W =
(

1 + θ
1

1−ω1 − T1

1
1−ω1 − T2

1
1−ω1

)
. (2.9)

The constraint of entropy conservation leads to a relation of the form (Eq. (2.1)):

T1 = (1 + θω − T2
ω)

1
ω . (2.10)

For this class of systems, there exists a closed form solution for the constraint

equation. We derived a general prior (Eq. (2.7)), which is useful, in particular,

when there does not exist explicit functional relation between T1 and T2 as we

discuss in Section 2.5.

Substituting the value of T1 from Eq. (2.10) into Eq. (2.9), we may regard

W as a function of T2 only:

W (T2) =
(

1 + θ
1

1−ω1 − (1 + θω − T2
ω)

1
ω1 − T2

1
1−ω1

)
, (2.11)

for fixed θ. Same expression can be written in terms of T1 also and this does not

reveal to which reservoir T1 or T2 belong.

The efficiency of the engine is given as η = W/Qin and can be written as:

η = 1− (T2

1
1−ω1 − θ

1
1−ω1 )

(1− T1

1
1−ω1 )

. (2.12)
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One may continue to extract more work till the two reservoirs achieve a common

temperature Tc i.e. T1 = T2 = Tc. We call this as the optimal work extractable

from the initial set-up, where the final temperature of the reservoirs are given by:

Tc =

(
1 + θω

2

) 1
ω

, (2.13)

and the optimal extracted work can be written by substituting Eq. (2.13) in Eq.

(2.9) to obtain:

Wo = 1 + θ
1

1−ω1 − 2

(
1 + θω

2

) 1
ω1

. (2.14)

Similarly, efficiency at optimal work (ηo) is given by substituting Eq. (2.13) in

Eq. (2.12) as:

ηo = 1−

(
(1+θω

2
)

1
ω1 − θ

1
1−ω1

)
(

1− (1+θω

2
)

1
ω1

) . (2.15)

2.4 Inference

2.4.1 Prior

As discussed in Section 2.2.2, we are ignorant about the final temperatures T1

and T2 and hence make a rational guess about their likely values by assigning a

prior. The range for Ti (i = 1, 2) is decided by the constraint W (Ti) ≥ 0 by using

Eqs. (2.9) and (2.10). Then we find that an uncertain temperature (Ti) is allowed

to take values in the interval [θ, 1]. This can be shown graphically as well in the

Fig. 2.2. The heat capacity, C(T ) = (∂U/∂T )V , for our model (U ∝ T 1/(1−ω1))

is given as:

Ci(Ti) ∝ Ti
ω. (2.16)

Using Eq. (2.7) and (2.16), we can write the normalized prior as:

P (Ti) =
ωTi

ω−1

(1− θω)
. (2.17)
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Figure 2.2: Work as a function of T1 and T2 for ω1 = 3/5, θ = 0.1. The two
curves merge together. W (Ti) ≥ 0 in the interval [θ,1].

The prior obtained is of power-law form.

The prior will be directly used to estimate temperatures of the subsystems.

The estimate for Ti is defined as its average value:

T i =

∫ 1

θ

TiP (Ti) dTi. (2.18)

After solving the above integral, we obtain

T i = ω1
(1− θ

1
1−ω1 )

(1− θ
ω1

1−ω1 )
. (2.19)

Minimally informative prior

It is expected that estimated behavior depends on the prior used. For comparison,

we consider uniform prior as an alternative. The power-law prior is derived by

making use of Eq. (2.10) in Eq. (2.2). However, if we ignore this assumption

and consider only assumption 1, then we may use uniform prior which is a prior

with minimal information. This prior might appear as a natural choice in case
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the only information about the uncertain parameter is its range, [θ, 1]. Thus,

uniform prior is written as:

P (Ti)dTi =
dTi

(1− θ)
. (2.20)

The expected value of Ti with uniform prior is given as:

T i =
1 + θ

2
. (2.21)

Once the prior for the unknown temperature(s) is assigned, the next step is to

make the estimation for work and efficiency.

2.4.2 Estimation of work

With incomplete information, estimation of work is done by two methods as

discussed below:

First method

The usual choice for the estimates of work is the average value in the standard

way as, W (T2) =
∫ 1

θ
W (T2)P (T2)dT2, where W (T2) is given by Eq. (2.11). For

power-law prior,

W p = 1 + θ
1

1−ω1 − 2

(
ω1

1 + ω1

)(
1− θ

1+ω1
1−ω1

1− θ
ω1

1−ω1

)
, (2.22)

and for uniform prior,

W u = 1 + θ
1

1−ω1 −
(

1− ω1

2− ω1

)(
1− θ

2−ω1
1−ω1

1− θ

)
− (1 + θω)

1
ω1

(1− θ)[
2F1

(
−1 +

1

ω1

,− 1

ω1

;
1

ω1

;
1

1 + θω

)
− θ 2F1

(
−1 +

1

ω1

,− 1

ω1

;
1

ω1

;
θω

1 + θω

)]
,

(2.23)
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where 2F1(a, b; c; z) is the ordinary hypergeometric function [89]. Here subscript

p refers to the power-law prior while u refers to uniform prior.

The next step is to compare these estimates of work with the optimal ex-

tracted. In case of complete information, the maximum work extracted from the

set-up is the optimal work (Wo) given by Eq. (2.14). Figure 2.3 shows the results

for Wo, W p, and W u for different values of ω1. However, near-equilibrium (θ
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Figure 2.3: Work as a function of θ. The dashed curve is for Wo, thin curve is
for W p, and thick curve is for W u.

close to unity), estimation with this method show identical behavior for both the

priors as shown:

W p ≈ W u ≈
1

(1− ω1)

(1− θ)2

6
+

(1− 2ω1)

(1− ω1)2

(1− θ)3

12
+O[1− θ]4. (2.24)
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Similary, expanding Wo about θ close to 1, we get:

Wo ≈
1

(1− ω1)

(1− θ)2

4
+

(1− 2ω1)

(1− ω1)2

(1− θ)3

8
+O[1− θ]4. (2.25)

Thus, with this method of estimation, we observe that power-law estimates are

slightly better than estimates with uniform prior. However, near-equilibrium (Eq.

(2.24)), both the priors are equally good. Still, these estimates do not estimate

the optimal behavior as clear from Eq. (2.25). We will now discuss another

method of estimation which estimates the optimal behavior of the process to a

remarkable extent.

Second method

As shown in Fig. 2.2, the work expression is a concave function in the range [θ,

1], so that we can apply Jensen’s inequality (See Appendix A), W (T ) ≤ W (T ).

This gives an upper bound to the usual estimate for work. In this sense, we

estimate maximum work as the maximal value of the average work. Let us now

discuss the estimation procedure for work with the other method in which the

estimation is done by replacing the value of a variable with its average value in

the work expression.

Note that when an observer estimates a temperature (say of reservoir 2) by the

above averaged value with any of the prior distributions, then his/her estimate for

the temperature of the other reservoir (labelled 1) will be given as T̃1 = F (T 2),

see Fig. 2.4. This pair of estimated values of temperatures (T̃1, T 2) automatically

satisfy the entropy conserving condition. Then using these estimates for the final

temperatures, each observer can estimate other thermal quantities, like the work

extracted and efficiency of the process. We briefly summarise the main steps in

the estimation procedure.

1) Assign a prior for the uncertain temperatures and calculate the expected value

of temperature from Eq. (2.18).
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Figure 2.4: Schematic of the work extraction process, in which given one final
temperature, say T2, the other temperature is determined as T1 = F (T2), where
the map F is invertible. The same map is used to make estimate by an observer
if the estimate of one temperature is taken as the average value of temperature
over the prior, T i. This leads to identical estimates of work by each observer, but
their estimates for heat exchanged by the reservoirs are in general different.

2) Using the constraint of entropy conservation, various quantities such as

extracted work, are written as function of one of the temperatures, say Ti.

3) The estimate of a physical quantity such as work, W̃ , is obtained by re-

placing the uncertain temperature with its expected value as W̃ = W (T i).

4) Once work is estimated, efficiency (η = W/Qin) can be estimated.

The estimates of work with power-law prior as well as with uniform prior are
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written as:

W̃p = 1 + θ
1

1−ω1 −

[
1 + θω −

(
ω1

1− θ
1

1−ω1

1− θ
ω1

1−ω1

)ω] 1
ω1

−

(
ω1

1− θ
1

1−ω1

1− θ
ω1

1−ω1

) 1
1−ω1

,

(2.26)

and

W̃u = 1 + θ
1

1−ω1 −
[
1 + θω −

(
1 + θ

2

)ω] 1
ω1

−
(

1 + θ

2

) 1
1−ω1

. (2.27)

Figure 2.5 shows comparative plots for Wo, W̃p, and W̃u for different values of

ω1.
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Figure 2.5: Work as a function of θ. The dashed curve is for Wo, thin curve is
for W̃p, and thick curve is for W̃u.

35



From the plots, it is clear that estimates with power-law prior show remarkable

agreement with the optimal behavior as compared to the uniform prior. However,

near-equilibrium, deviations between the results inferred with both the priors are

quite insignificant. In fact, expanding W̃p, W̃u and Wo about θ = 1 up to third

order, we obtain, in each case

W̃p ≈ W̃u ≈
1

(1− ω1)

(1− θ)2

4
+

(1− 2ω1)

(1− ω1)2

(1− θ)3

8
+O[1− θ]4. (2.28)

We have observed that in the near-equilibrium regime, estimates of work with

both priors approach maximum or optimal value.

Thus, apart from considering the inference with different priors, we have also

seen the deviations observed in the results obtained with the two methods of

estimation. The ratio of the estimates of work up to third order (Eq. (2.24) and

Eq. (2.28)) comes out to be 2/3. The either estimate of work, W̃ or W , is less

than or equal to the optimal work which seems reasonable as the uncertainties in

the temperatures will yield less work than the maximum work extracted in the

presence of full available information (Tc). Even so, irrespective of the method of

estimation, the estimation with power-law prior is better than a uniform prior.

However, for the Fermi gas, derived power-law prior is equivalent to uniform prior

in the range [θ, 1] and hence the estimates coincide in Figures 2.3 and 2.5.

2.4.3 Estimation of efficiency

To estimate efficiency, we rewrite the input heat (Qin) which is given by the

difference of the initial and the final energies of the initially hotter system. It can

be rewritten (dimensionless form) in terms of scaled temperatures, T1 and T2, in

two equivalent ways as:

Qin(T1) = 1− T1

1
1−ω1 , (2.29)
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or in terms of T2 from Eq. (2.10):

Qin(T2) = 1− (1 + θω − T2
ω)

1
ω1 . (2.30)

Unlike the expression for work, which is symmetric in T1 and T2, Qin is asymmet-

ric with respect to T1 and T2. In contrast to the work expression, the expressions

for heat exchanged require a specific knowledge about the labels on the ener-

gies/temperatures. However, this information is not available here. So there is

no unique way to assign Qin or Qout, from the expression for work [90]. Thus ef-

ficiency, will depend on the choice of uncertain parameter (T1 or T2). Now, from

the assumption 1 in Section 2.2.2 which states that T1 and T2 represent same

physical quantities, the form of prior for T1 or T2 is same. The expectation value

for each uncertain parameter is same (2.19). If we do the analysis either with T1

or T2, we obtain Qin(T 1) and Qin(T 2) as two different estimates for input heat,

respectively. These two estimates will lead to different estimates for efficiency

unlike in case of work, where estimates of work are not affected by the choice

of uncertain parameter. It follows that the efficiency can be estimated in two

ways: η̃1 = W̃/Qin(T 1) or η̃2 = W̃/Qin(T 2). The complete behavior of efficiency

estimates for different systems is shown in Fig. 2.6. For efficiency, let us focus on
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Figure 2.6: Blue dashed curve is for efficiency at optimal work (ηo), red curve is
for η̃p,2(η̃u,2) and black curve is for η̃p,1(η̃u,1) for ω1=3/4.
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the behavior near-equilibrium. Treating T1 as an uncertain parameter and then

expanding η̃p,1 and η̃u,1 about θ = 1 up to 2nd order, we obtain

η̃p,1 =
ηc
2

+
(4− 5ω1)

(1− ω1)

η2
c

24
+

(8− 19ω1 + 9ω1
2)

(1− ω1)2

η3
c

96
+O[ηc]

4, (2.31)

η̃u,1 =
ηc
2

+
(2− 3ω1)

(1− ω1)

η2
c

8
+

(12− 31ω1 + 17ω1
2)

(1− ω1)2

η3
c

96
+O[ηc]

4. (2.32)

Treating T2 as an uncertain parameter and then expanding η̃p,2 and η̃u,2 about

θ = 1 up to 2nd order, we get

η̃p,2 =
ηc
2

+
(2− ω1)

(1− ω1)

η2
c

24
+

(4− 7ω1 + ω1
2)

(1− ω1)2

η3
c

96
+O[ηc]

4, (2.33)

η̃u,2 =
ηc
2

+
ω1

(1− ω1)

η2
c

8
+

(5− 7ω1
2)

(1− ω1)2

η3
c

96
+O[ηc]

4. (2.34)

If we compare the above estimates of efficiency with the efficiency at optimal

work (ηo) in the near equilibrium regime, then equations match only up to first

order in ηc as can be seen from the expression of ηo (Eq. (2.12)) :

ηo =
ηc
2

+
η2
c

8
+

(6− 13ω1 + 5ω1
2)

(1− ω1)2

η3
c

96
+O[ηc]

4. (2.35)

Thus, we have seen that the optimal work can be estimated up to third order

(Eq. (2.28)) while in case of efficiency, estimates match only up to linear term.

This discrepancy is observed due to the asymmetric nature of the input heat Qin

in T1 and T2. On the other hand, if we define a mean estimate for efficiency as

η̃m = (η̃1 + η̃2)/2, then the agreement of this mean with the optimal behavior

is up to third order. The use of a mean estimate can be justified as follows.

We have two hypotheses, whether the heat extracted is given by Eq. (2.29) or

(2.30). According to Laplace’s principle of insufficient reason [28], when we do

not have a specific reason to prefer one hypothesis over another, then we should

assign equal weights to each inference following from these hypotheses. In our

case, we have assumed a complete ignorance about the labels attached with the
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final temperatures and so each expression for Qin above is equally valid. In this

sense, it is reasonable that the most unbiased estimate be an equally-weighted

mean of the different estimates. The near-equilibrium behavior of mean estimate

of efficiency is:

η̃p =
ηc
2

+
η2
c

8
+

(17− 35ω1 + 11ω1
2)

(1− ω1)2

η3
c

288
+O[ηc]

4, (2.36)

η̃u =
ηc
2

+
η2
c

8
+

(3− ω1 − 7ω1
2)

(1− ω1)2

η3
c

96
+O[ηc]

4. (2.37)

In this fashion, near-equilibrium behavior of efficiency at optimal work can be

reproduced beyond linear term in ηc in the inference approach. Apart from

these quasi-static processes, such a universal behavior has been observed before

in different finite-time models of heat engines [61, 67, 68, 69, 70, 72], where

this response occurs when efficiency is optimized at maximum power output as

discussed in Section 1.4.

On the other hand, if the estimates of work and input heat are calculated as

W and Qin respectively, then the efficiency may also be estimated as the ratio,

ηav = W/Qin. However, this definition for the estimation of efficiency does not

reproduce the efficiency at optimal work even in first order. This can be seen

clearly from the near-equilibrium expansions of ηavp and ηavu as below:

ηavp =
ηc
3

+
η2
c

9
+O[ηc]

3, (2.38)

ηavu =
ηc
3

+
η2
c

9
+O[ηc]

3, (2.39)

where ηav is the mean estimate of efficiency defined as (ηav1 +ηav2 )/2 and ηav1 (ηav2 )

is the estimated value of efficiency by the observer A (B). The interesting thing

which is to be noted here is that the power-law prior ensures that Qin has the

same value irrespective of whether T1 is the variable of integration or T2. Thus the

information regarding the labels of the temperatures, which can be distinguished
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in the function Qin (Eqs. (2.29) and (2.30)), is lost with the use of power-law

prior [90].

2.5 Results for spin-reservoirs

Let us now focus our study on the inference procedure with spin-reservoirs as now

we do not have closed form relation between T1 and T2, but which could in princi-

ple, be determined numerically. However, apart from numerical calculations, we

also perform the analytical calculations in high-temperature limit (a � T ) i.e.

when parameter a is quite small compared to the reservoir temperatures. Let us

first illustrate the model below.

We consider two finite heat reservoirs at temperatures T+ and T−, each con-

sisting of N non-interacting localized spin-1/2 particles. A spin-1/2 particle can

be regarded as a two-level system with energy levels (0, a). The mean energy for

such reservoir at temperature T , is given by [91]:

U =
Nae−a/kT

1 + e−a/kT
, (2.40)

where k is Boltzmann’s constant.

The heat capacity at constant volume, is given by:

C = Nk
( a

kT

)2 e−a/kT

(1 + e−a/kT )2
. (2.41)

The entropy of a reservoir can be written as:

S = Nk

[
ln (1 + e−a/kT ) +

a

kT

e−a/kT

1 + e−a/kT

]
. (2.42)

In the following, we set k = 1. Using such systems as the heat source and the sink

at hot (T+) and cold (T−) temperatures respectively, we reconsider the process

of maximum work extraction by coupling them to reversible work source.
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The entropy conservation condition, ∆Stot = 0, for spin-reservoirs reads as:

f1f2 ln

(
f1f2

(f1 − 1)(f2 − 1)

)
+ f1 ln (f2 − 1) + f2 ln (f1 − 1) + cf1f2 = 0,

(2.43)

where

f1 = 1 + e−a/T1 , (2.44)

f2 = 1 + e−a/T2 , (2.45)

c = −
[

ln
[
(1 + e−a/T+)(1 + e−a/T−)

]
+

a

T+

(
e−a/T+

1 + e−a/T+

)
+

a

T−

(
e−a/T−

1 + e−a/T−

)]
. (2.46)

Eq. (2.43) cannot be solved in a closed form for T1 in terms of T2 for arbitrary

value of a. However, in the limit of high temperatures or a to be small compared

with the energy scales set by the reservoir temperatures i.e. a � T , we have

analytic approximations.

High-temperature limit

In this limit, the constraint equation can be solved in a closed form for T1, in

terms of T2. Keeping terms only up to (a/T )2, we get simplified forms for various

quantities as follows:

U ≈ N

[
a

2
− a2

4T

]
, (2.47)

S ≈ N

[
ln 2− a2

8T 2

]
, (2.48)

C ≈ N

[
a2

4T 2

]
. (2.49)
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The explicit form of relation T1 = F (T2) can be found in the high temperatures

limit, by solving S1 + S2 = S+ + S−, to obtain:

T1 =
1√

1 + 1
θ2
− 1

T2
2

. (2.50)

Here, for brevity we use scaled temperatures: T+ = 1 and T− ≡ θ, such that

0 ≤ θ ≤ 1.

Now, by using Eq. (2.47), we can write the work extracted (W ) as:,

W =
Na2

4

(
1

T1

+
1

T2

− (1 + θ)

θ

)
. (2.51)

In terms of a single variable, using (2.50) we have

W (T2) =
Na2

4

(√
1 +

1

θ2
− 1

T2
2 +

1

T2

− (1 + θ)

θ

)
. (2.52)

At the optimality condition, T1 = T2 = Tc, and Tc = θ
√

2/(1 + θ2). So the

optimal value of work, Wo, in the high temperature limit, is given by:

Wo =
Na2

4θ

[√
2(1 + θ2)− (1 + θ)

]
. (2.53)

The efficiency at optimal work, ηo, in this limit is

ηo =

√2(1 + θ2)− (1 + θ)√
1+θ2

2
− θ

 . (2.54)

2.5.1 Prior

We write the normalized prior for Ti (i = 1, 2) by using Eqs. (2.7) and (2.49) as

P (Ti) =
2θ2

(1− θ2)

1

Ti
3 , (2.55)
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which can further be used in Eq. (2.18) to obtain the estimate for one of the

temperatures (T2) as:

T 2 =
2θ

1 + θ
. (2.56)

The range for Ti’s is [θ, 1] as determined from the condition W ≥ 0. Then the

other temperature T1 is estimated from (2.50), by substituting T2 = T 2, yielding

T̃1 = 2θ/(
√

3θ2 − 2θ + 3).

2.5.2 Estimation of work

The estimate for work, W̃ , is obtained by substituting the expected value of T2

in Eq. (2.52). Thus using (2.56), we obtain:

W̃p =
Na2

8θ

[√
3θ2 − 2θ + 3− (1 + θ)

]
. (2.57)

For a comparative study, we also consider the uniform prior over the range [θ, 1]

as P (T2)dT2 = dT2/(1 − θ), which gives T 2 = (1 + θ)/2. For the choice of a

uniform prior, Eq. (2.52) yields:

W̃u =
Na2

4θ(1 + θ)

[√
(1 + θ2)(1 + θ)2 − 4θ2 − (1 + θ2)

]
. (2.58)

Note that the above estimates for work are the same for both the observers, again

due to symmetry in the work expression (2.51), with respect to. T1 and T2. Fig.

2.7 illustrates the comparison of the ratio of estimated to optimal work, using

different priors. Further, the agreement between different estimates of work in

the near-equilibrium regime, can be studied by expanding the work estimates

about θ = 1:

W̃p ≈ W̃u =
Na2

16
(1− θ)2 +

3Na2

32
(1− θ)3 + O[1− θ]4. (2.59)

These estimates of work also agree with the optimal work, Eq. (2.53), up to third
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Figure 2.7: Ratio of estimated work (W̃ ) to the optimal work Wo (Eq. (2.53)), as
function of θ, in the high temperature limit. The lower curve is with estimate W̃u

using Eq. (2.58), while the upper curve is by using the estimate W̃p, Eq. (2.57).
The estimates with the derived power-law prior are closer to the optimal work.
The curves match in the near equilibrium regime (θ ≈ 1), where the estimates
agree with optimal work, as shown by Eq. (2.59).

order in (1 − θ). Thus, we see that in the near equilibrium regime for small a

values, the uniform prior as well as the non-uniform derived power-law prior both

replicate the optimal properties of the work to terms beyond linear response.

As discussed in Section 2.4.2, W given by Eq. (2.51) has a unique maximum

and thus a concave function in the interval [θ, 1]. Hence, Jensen inequality implies

W̃ ≥ W . We have discussed the results for the work estimates as W̃ since it gives

better approximation to optimal values than the usual definition of estimate as

W =
∫ 1

θ
W (Ti)P (Ti)dTi. The explicit expressions for the estimated work defined

as W are:

W p =
(1− θ)2

3θ(1 + θ)
, (2.60)

and

W u =
1

1− θ

[
ln

(
1

θ

)
+ tan−1(θ)− tan−1

(
1

θ

)]
. (2.61)
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Near-equilibrium, above estimates of work can be expanded as:

W p ≈ W u ≈
Na2

24
(1− θ)2 +

Na2

16
(1− θ)3 + O[1− θ]4. (2.62)

On comparing Eq. (2.62) with Eq. (2.59), which reproduces optimal behavior up

to third order, we observe that estimates defined by standard averaging procedure

do not show better agreement with optimal features.

2.5.3 Estimation of efficiency

In order to estimate efficiency, we have to first evaluate the amount of heat

exchanged with the hot reservoir, Qin. Following Section 2.4.3, Qin can be written

in two alternate ways as

Qin(T1) =
Na2

4

[
1

T1

− 1

]
, (2.63)

and, using Eq. (2.50)

Qin(T2) =
Na2

4

[√
1 +

1

θ2
− 1

T2
2 − 1

]
. (2.64)

It follows that the efficiency can be estimated in two ways: η̃1 = W̃/Qin(T 1) or

η̃2 = W̃/Qin(T 2), where W̃ is given by Eq. (2.57). Explicitly, we obtain

η̃1 =

√
3θ2 − 2θ + 3− (1 + θ)

1− θ
, (2.65)

η̃2 =

√
3θ2 − 2θ + 3− (1 + θ)√

3θ2 − 2θ + 3− 2θ
. (2.66)

We now compare the above estimates with the efficiency at optimal work given

by Eq. (2.54), for which we can write near-equilibrium expansion as:

ηo ≈
ηc
2

+
ηc

2

8
+O[ηc

4]. (2.67)
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The estimates expanded near equilibrium are as follows:

η̃1 ≈
ηc
2

+
ηc

2

4
+
ηc

3

16
+O[ηc

4], (2.68)

η̃2 ≈
ηc
2
− ηc

3

16
+O[ηc

4], (2.69)

In this situation, Eqs. (2.68) and (2.69) agree with the optimal behavior only up

to first order. If we define a mean estimate for efficiency as η̃m = (η̃1 + η̃2)/2,

then the agreement of this mean with the optimal behavior is up to third order

in ηc.

It is to be noted that this property also emerges with the use of a uniform

prior. Thus we can see analytically that in the near equilibrium case and for

small a values, the uniform prior as well as the non-uniform prior both replicate

the optimal properties of the work as well as efficiency to terms beyond linear

response.

Let us now define the estimate of efficiency as ηav = W/Qin, where W is

given by Eqs. (2.60) and 2.61 for derived power-law prior and uniform prior

respectively. However, efficiency estimated in this way does not reproduce ηo

even in first order and close to equilibrium, ηav behaves as:

ηav =
ηc
3

+
η2
c

9
+O[ηc]

3. (2.70)

where ηav is the mean estimate of efficiency as discussed in Section 2.4.3.

2.5.4 General case: Numerical results

Now we turn to the general solution of the estimation problem, for arbitrary

values of a and θ. In general, the relation between T1 and T2 is transcendental

following from the entropy conservation condition. Thus even if the average

temperature, Eq. (2.18), can be calculated analytically, the value of the other
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has to be evaluated numerically (Appendix B). The optimal temperature is also

evaluated numerically. Fig. 2.8 compares different expressions for work, such as

optimal value Wo, and the estimates W̃p and W̃u, for general values of parameter

a. As is expected, the estimates are close to the optimal work in the near-
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Figure 2.8: Work, scaled by N , as a function of θ for different values of a; (a) a
= 0.2, (b) a = 0.8, (c) a = 1.5, (d) a = 2.4. The dotted curve is for Wo, solid
curve is for W̃p, and dotdashed curve is for W̃u.

equilibrium regime. However, far from equilibrium, only the estimates from the

derived power-law prior provide, in general, a better estimation of the optimal

work than those obtained from a uniform prior, thus signifying the use of prior

information in the assignment of the prior.

Similarly, we can extend the calculation to the estimation of efficiency. We
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evaluate the estimates for each observer and also the mean estimate by using

equal weights, similar to the procedure in the high temperature limit. Fig. 2.9

compares the estimates using the derived power-law prior with the efficiency at

optimal work. The numerical calculations for the general case show that the
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Figure 2.9: Efficiency as a function of θ for different values of a; (a) a = 0.2,
(b) a = 0.8, (c) a = 1.5, (d) a = 2.4. The dotted curve is for η̃1, and dotdashed
curve is for η̃2. The middle, solid curve is for ηo and the thin, dashed curve
closely following it is the mean estimate of efficiency.

estimates with the non-uniform prior provide visibly better agreement with the

behavior of efficiency at optimal work, than the uniform prior.
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Figure 2.10: Pressure-Volume diagram of a reversible Classical Otto cycle
.

2.6 Inference in classical Otto cycle

2.6.1 Introduction

The Otto cycle was built by a German engineer, Nikolaus Otto in 1876. It is a

four-stroke internal combustion engine. Classical Otto cycle is a reversible model

of heat engine which operates at maximum work output per cycle. The Otto

cycle consists of four branches, two of which are adiabatic while two others are

isochoric (constant volume). The working fluid is an ideal gas with constant heat

capacity (Cv). The cycle is as shown in Fig. 2.10 [92]:

The idealized cycle consists of two reversible adiabatic segments 1 → 2 and

3 → 4 and two reversible constant volume segments 2 → 3 and 4 → 1. The

cycle does not have isothermal segments and the reservoir temperatures T3 and

T1 correspond to maximum and minimum temperatures, respectively, along each

cycle. The temperature varies from T2 to T3 and from T4 to T1 along the heating
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and cooling segments respectively. The heat transfers to the fluid along the paths

2→ 3 and 4→ 1 are:

Qin = Cv(T3 − T2),

Qout = Cv(T4 − T1).

Because the cycle is reversible, the fluid’s entropy change per cycle is zero:

∆S = Cv ln
T3

T2

+ Cv ln
T1

T4

= 0. (2.71)

This gives

T4 =
T1T3

T2

. (2.72)

Since T1 and T3 are the fixed temperatures, thus only variables are T2 and T4.

But due to the relation (2.72), there is only one independent parameter. The

work done per cycle, W = Qin −Qout, is given by:

W = Cv(T3 + T1 − T4 − T2). (2.73)

Similarly efficiency, η = W/Qin, using (2.72) can be written as:

η = 1− T1

T2

. (2.74)

For fixed values of T1 and T3, we will see for what values of T2 and T4, W is

maximized. Using Eq. (2.72) in (2.73) and setting ∂W/∂T2 = 0 to give T ∗2 as:

T ∗2 = (T1T3)
1
2 , (2.75)

which can further be used in Eq. (2.72) to obtain T ∗4 as [81]:
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T ∗4 = (T1T3)
1
2 . (2.76)

Using the above values of T ∗2 and T ∗4 in (2.73), we obtain the expression for

maximum work:

Wmax = CvT3[1−
√
θ]2, (2.77)

where θ = T1/T3.

Efficiency at maximum work is given by η∗ = 1−
√
θ. This is CA-efficiency.

In general, we can write
W

T3Cv
=
η(ηc − η)

1− η
. (2.78)

where ηc = 1−T1/T3 is the Carnot efficiency. This expresses the relation between

W and η. For a given ηc,

lim
η→0

[W ] = lim
η→ηc

[W ] = 0. (2.79)

Thus the Otto cycle gives zero work output at both its maximum and minimum

efficiencies.

2.6.2 Inference

To consider a situation where we have partial or incomplete information about

the system, we have to identify the thermodynamic control parameters of the

problem. The expression for work (2.78) is only a function of efficiency η, if we

assume that the reservoir temperatures T1 and T3 (or ηc) are held fixed. Thus if

efficiency is also specified then there is no uncertain parameter in the problem.

However, there are intermediate temperatures (T2 and T4) of the working fluid

which vary during the heat cycle. Due to the cyclic process, there is only one

independent temperature, which we take as T2. Now in the case of complete
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knowledge of the value of T2, we can calculate all thermal quantities of interest

for the cycle. Here we want to consider the other extreme situation where we do

not specifically know T2, except for the fact that it lies in the range [T1, T3]. We

treat this as a problem in statistical inference and follow the Bayesian approach.

At this point, there is no general rule available to assign the prior. It may seem

reasonable to assume a uniform distribution for T2 in the range [T1, T3], in the

absence of any other information or one may adopt Jeffreys’ prior (Section 1.2.2)

for T2.

Now, we argue for assigning Jeffreys’ prior for T2 or T4. Again, consider two

observers A and B who assign priors for T2 and T4 respectively. Each parameter

lies in the range [T1, T3]. As the state of knowledge of the two observers is same,

they can assign same functional form for their priors. Further due to Eq. (2.72),

we have a one-to-one relation between T2 and T4, hence Eq. (2.2) can be rewritten

as:

P (T2)dT2 = P (T4)dT4. (2.80)

By using Eq. (2.72) in above expression, we obtain the prior as P (Ti)dTi ∝ dTi/Ti

(i = 2, 4), which is Jeffreys’ prior. This is the prior for classical ideal gas with

the constraint of entropy conservation.

Of interest here is the expected value of efficiency which is defined as 〈η〉 =∫ T3
T1
ηP (T2)dT2. Then for Jeffreys’ choice, we have

〈η〉 = 1 +
(1− θ)

ln θ
, (2.81)

whereas with the uniform prior, it is given by

〈η〉 = 1 +
θ ln θ

(1− θ)
. (2.82)

Finally, it is interesting to observe the effect of using a generalised power-law prior

for classical case as for quantum case [73], this prior serves to incorporate the
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uniform prior and the Jeffreys’ prior in a unified way. Thus assigning a power-law

probability distribution for the unknown temperature T2:

P (T2) =
1/T b2∫ T3

T1
1/T b2 dT2

P (T2) =

(
1− b

1− θ1−b

)
1

T b2
. (2.83)

where b = 0 (uniform) and b = 1 (Jeffreys) represent special cases.

The expected efficiency corresponding to the power-law prior is given by:

〈η〉 = 1 +
(1− b)
b

(θ − θ1−b)

(1− θ1−b)
. (2.84)

Table I shows the expressions for 〈η〉 for different values of b.

Table I

b 〈η〉 Comments

-∞ 1− θ Carnot efficiency.

-1 1−θ
1+θ

ηc/(2− ηc) [72].

0 1 + θ ln θ
1−θ Finite source and infinite sink[83, 84].

1
2

1−
√
θ CA efficiency [61].

1 1 + 1−θ
ln θ

Finite heat sink and infinite source [84].

2 1−θ
2

ηc/2.

∞ 0 Zero efficiency.

It has been seen that 〈η〉 is a monotonic function of b, and interpolates between

Carnot efficiency and zero value as b ranges from −∞ to ∞. Figure 2.11 shows
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Figure 2.11: 〈η〉 vs. θ for different b’s values. 〈η〉 is a monotonic decreasing
function of b as shown in the table. Here, the uppermost curve corresponds to ηc
and then plotted for b = -1, 0, 0.5, 1, 2. The dashed line shows the efficiency
with Jeffreys’ prior (b = 1) and solid curve is for uniform prior (b = 0).

the behavior of expected efficiency of Otto cycle for different values of b. For θ

close to equilibrium, 〈η〉 can be expanded as:

〈η〉 =
ηc
2

+
1

12
(2− b)η2

c +O[ηc]
3. (2.85)

Hence, near-equilibrium (θ ≈ 1), 〈η〉 exhibits a universal form independent of

b in first order. Thus, it is interesting to note that the efficiency for the Otto

cycle is estimated by the standard definition of averaging since this method yields

some of the well-known thermal efficiencies of heat engines obtained in different

contexts.

2.7 Conclusion

Thus, we have discussed the relevance of prior information in estimating the

optimal performance characteristics of heat engines. The prior information is

incorporated in terms of prior probabilities which reflect the degree of belief of
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an observer. In the present context, the uncertainty is introduced through lack of

knowledge about the exact values of the thermodynamic control parameters of the

process. It is really prominent to observe that the estimated behavior obtained

by quantifying ignorance of the control parameters in a process are actually very

close to the optimal behavior seen in the case of complete information.

In our study, we followed the inference procedure to estimate the optimal-

ity in classical thermodynamic process of entropy conservation. We consider a

completely reversible model of heat engine with identical finite reservoirs acting

as heat source and sink. Then we assume the ignorance of the final tempera-

tures, T1 and T2, of the reservoirs. Uncertainty in the likely values of T1 and T2

is treated from probabilistic point of view by assigning prior probabilities. The

prior probability is assigned by taking into account the prior information about

the functional relation between T1 and T2. This yields an explicit formula for the

prior. The estimated values of the thermal quantities like work, efficiency with

the use of derived power-law prior show remarkable agreement with their optimal

behavior.

In our analysis, we have discussed the two methods of estimating the thermal

quantities. The standard method defines the estimates as the average value of

the quantity over the prior P (Ti). The other method, we explored, is to estimate

the quantities by replacing the uncertain parameter Ti with its average value T i.

It is observed that latter method of estimation yields estimates of the quantities

which are much closer to their optimal values than the usual method of averaging.

To show the relevance of prior information, we derive estimates with uniform

prior as well and it has been noted that the uniform prior estimates are always

lower than the optimal values. This is consistent with the reasoning of incor-

porating the prior information so that utilizing more information makes us to

expect higher work output, in contrast to uniform prior which involves minimal

information. However, near equilibrium, both the priors show similar behavior

up to third order.
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In near-equilibrium regime, universal behavior in efficiency as η ≈ ηc/2+η2
c/8

is reproduced within inference approach. Such type of behavior has been ob-

served in many different models of heat engines where this response occurs for

efficiency at maximum power output. The coefficient 1/2 is observed in case of

perfectly coupled systems [64, 65, 66]. The coefficient 1/8 is indeed universal for

strong coupling models that possess a left-right symmetry on the fluxes [70] and

some other finite-time models where there is a symmetric dissipation with respect

to hot and cold reservoirs [72]. However, our process is quasi-static and has no

analogy to finite-time models but it is interesting to observe the optimal features

of efficiency. Our analysis shows that this universality can be anticipated from in-

ference approach applied to reversible thermodynamic model but with incomplete

information of the thermodynamic coordinates in the concerned physical process.

The interesting thing is that this universal behavior in efficiency in the present

context is also attributed to certain symmetry, which is to assign equal weightage

to estimated input heat. Without this symmetry, the universality holds up to

linear response only.

We also implemented the inference procedure to Classical Otto cycle in which

classical ideal gas is a working medium. The intermediate temperatures of the

ideal gas during the cycle are treated probabilistically and thus priors were as-

signed for their likely values. For the classical Otto cycle, the power-law type of

priors upon averaging suggest many well known expressions for efficiency which

have been previously observed from very different approaches such as finite-time

thermodynamics, finite heat source/sink set-up for engines and so on. Thus we

have discussed an intriguing connection between prior probabilities and thermal

efficiencies of heat engines in the context of Classical Otto cycle.

While concluding this Chapter, we can emphasise on the point that infer-

ence approach yield good results for estimates in constrained thermodynamic

processes. The whole analysis can also be looked at in terms of macrostates.

Consider the basic question in equilibrium thermodynamics [81]. Given that en-
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tropy is conserved for a bipartite system whose total energy is allowed to vary,

what is the most likely state of the system? The answer is given as the equilibrium

state which has minimum total energy for the given value of the total entropy. In

terms of work, it translates into an extraction of maximum work. The agreement

of our estimates with the optimal work and the corresponding efficiency, shows

that we are able to estimate the equilibrium state consistent with the constraints,

without explicitly doing an optimization. Optimization techniques formulate the

problems in a mathematical model where the variables to be optimized are the

control parameters of the problem which requires concrete realisation for all con-

trol parameters. As we know that lack of full information is a greatest hindrance

in the optimization, so to deal with the situations with incomplete information,

inference techniques can be implemented for optimization. Thus inference based

approach seems to be applicable to more general situations with analogous form

of constraints. It may be useful in estimating the optimal performance character-

istics in a more efficient way, where the optimal solution cannot be determined

in a closed form and one usually has to resort to numerical optimization.

57



58



Chapter 3

Inference in energy-conserving

process

3.1 Introduction

In this chapter, we propose inference procedure for another well-known thermo-

dynamic process with a constraint on total energy conservation. In this process,

two systems interact directly in such a way so as to preserve the total energy of

the composite system. This corresponds to an increase in the total entropy of

the whole system. This process involves the spontaneous transfer of heat from

hot reservoir to cold reservoir. The rate at which heat flows is sufficiently slow

(quasi-static) such that the temperature remains spatially homogeneous within

each reservoir. While interacting thermally, the entropy of initially hotter system

decreases and that of the colder system increases. The main physical effect of

thermal contact between the reservoirs is the entropy production in the whole

isolated system. Thus, the point which is to be noted is that, although the

interaction progresses quasi-statically still it is an irreversible interaction.

Inference is performed for energy-conserving process in an analogous manner

for entropy-conserving process in Chapter 2. A prior is derived for the thermo-
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dynamic coordinates of the process about which we do not have full information.

We consider that the final state of the two reservoirs, in the considered process, is

not specified and the task at hand is to derive the prior probabilities for the final

temperature. The prior for the uncertain temperature(s) is assigned by incorpo-

rating the prior information in the energy conservation constraint. The estimate

of the temperature(s) is defined as the average value over the proposed prior.

For this process, the thermodynamic quantity to be inferred is the total entropy

production in the two systems by using the estimated values of the unknown

temperatures. The estimation is performed with the derived prior and with the

uniform prior which only incorporates the information about the range of the

parameter. Near-equilibrium, both types of priors replicate the optimal behavior

up to third order in (1 − θ). However, far from equilibrium, estimated behavior

with the derived prior matches closely with the optimal behavior, thus signifying

the use of prior by incorporating the prior information about the process. We also

discuss the estimation of entropy production by the standard averaging method

like in Chapter 2.

This Chapter is organized as follows. Section 3.2 outlines the framework for

inference procedure applied to energy-conserving process by taking into consid-

eration the various assumptions and constraints. The prior is proposed for the

unknown final temperature(s) of the reservoir. Thus, the uncertainty in the ther-

modynamic coordinates of the process can be formulated in terms of the proposed

prior and this is helpful in estimating the optimal features of the process. In Sec-

tion 3.3, we present the model for the reservoirs obeying the fundamental relation

S ∝ T ω. In Section 3.4, we assign the prior for this model and discuss the re-

sults obtained for the estimated entropy production in succeeding subsections.

In Section 3.5, another model of N spin-1/2 systems is studied within this prior-

based framework and then we discuss analytical as well as numerical results for

estimated entropy production. Finally, Section 3.6 is devoted to discussion and

summary of the inference procedure applied to the energy-conserving process.
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3.2 Outline

3.2.1 Energy-conserving process

Consider a pair of identical finite thermodynamic systems at initial temperatures

T+ and T− (< T+), respectively. A small amount of heat (Q) is quasi-statically

removed from the reservoir at T+ and deposited in the same manner with other

reservoir at T−. As is known, there is a net entropy production in the reservoirs,

which is also the main quantity of interest here. The pictorial representation for

the energy-conserving process is shown in Figure 3.1.

Figure 3.1: Set-up illustrating the transfer of heat from one reservoir to another
at different initial temperatures but with fixed total energy of the combined system.

3.2.2 Prior

We assume ignorance of final temperatures, T1 and T2, of the reservoirs and

propose prior probabilities for their likely values. The constraint of energy con-

servation in the problem leads to a one-to-one relation, F (·), between the values of
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T1 and T2 analogous to Eq. (2.1). As discussed in Section 2.2.2, imagine two ob-

servers A and B interpreting uncertainty in terms of T1 and T2 respectively. The

first two assumptions involved in the derivation of prior in Section 2.2.2 remain

the same while the third assumption to determine the range for Ti’s (i = 1, 2)

is different. The range for Ti is determined from the condition ∆S ≥ 0, which

specifies the process and yields a permissible range for Ti, say [Ti,min, Ti,max].

The prior π(T ) is derived from the prior information that the transfer of quasi-

static transfer of heat energy from one reservoir to another, does not change the

total energy i.e. dU = 0, which further can be written as

dU1 + dU2 = 0, (3.1)

which can be written as:

(
∂U1

∂T1

)
V1

dT1 +

(
∂U2

∂T2

)
V2

dT2 = 0. (3.2)

This yields |dT1/dT2| = C2(T2)/C1(T1), using the definition of heat capacity at

constant volume, C(T ) = (∂U/∂T )V . Thus, constraint on energy conservation

yields a ratio for the infinitesimal changes in the two temperatures and thus forms

a part of the prior information for this process. Again analogous to Eq. (2.3),

we have

π(T2) = π(T1)

∣∣∣∣dT1

dT2

∣∣∣∣ . (3.3)

Identifying the two rates of change and using the separation of variables, we

obtain the prior for each temperature as

π(Ti) =
Ci(Ti)∫
Ci(Ti)dTi

, (3.4)

where i = 1, 2 and N =
∫
Ci(Ti) dTi is the normalisation constant.
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3.3 Model

Let us first discuss the model where entropy of each reservoir satisfies the relation

of the form S ∝ T ω as considered in Chapter 2, where ω = ω1/(1 − ω1) and

0 < ω1 < 1, and T is the temperature of the reservoir.

Now, in the considered process, from the initial temperatures T+ and T−,

assume that the temperatures of the two reservoirs take on values T
′
1 and T

′
2

respectively. The net entropy produced, ∆S
′

= S1 + S2 − S+ − S−, (up to

constant of proportionality) can be written as:

∆S
′
= (T

′

1

ω
+ T

′

2

ω
)− (T ω+ + T ω−), (3.5)

or

∆S = (T ω1 + T ω2 )− (1 + θω), (3.6)

where we define θ = T−/T+, T1 = T
′
1/T+, T2 = T

′
2/T+ and ∆S = ∆S

′
/T+

ω. The

constraint of energy conservation, ∆U = 0, gives a relation F (·) of the form:

T1 = (1 + θ1+ω − T 1+ω
2 )

1
1+ω . (3.7)

For this process also, we have an explicit relation between T1 and T2 similar to

the case of entropy-conserving process in Chapter 2 (Section 2.3). Substituting

the value of T1 in Eq. (3.6), we can write:

∆S(T2) = (1 + θ1+ω − T 1+ω
2 )

ω
1+ω + T2

ω − (1 + θω). (3.8)

Similarly, ∆S can be expressed as a function of T1 only. Note that the expression

for entropy change (Eq. (3.6)) is symmetric with respect to T1 and T2. The heat

will continue to flow from hot system to cold system till the two systems reach a
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common final temperature, T1 = T2 = Tc, which is given as:

Tc =

(
1 + θ1+ω

2

) 1
1+ω

, (3.9)

which is the optimal process. The maximal or optimal entropy production (∆So)

is given by substituting Eq. (3.9) in Eq. (3.6):

∆So = 2

(
1 + θ1+ω

2

) ω
1+ω

− (1 + θω). (3.10)

3.4 Inference

3.4.1 Prior

The heat capacity of the reservoir is of the form C(T ) ∝ T ω. Hence, using Eq.

(3.4), we can write the normalized prior as:

π(Ti) =
(1 + ω)

(1− θω+1)
Ti
ω, (3.11)

where the range of scaled temperature Ti, is [θ, 1] as determined from the con-

straint ∆S ≥ 0 (Eq. (3.8)). The expected value of Ti with the above prior is

given by:

T i =

(
ω + 1

ω + 2

)(
1− θω+2

1− θω+1

)
, (3.12)

whereas for a uniform prior, the expected value is simply

T i =
(1 + θ)

2
. (3.13)

3.4.2 Estimation of entropy production

Similar to Section 2.4.2, we perform the estimation of entropy production by two

methods as follows:
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Standard averaging

Let us first define the estimates of entropy production by their average values

as ∆S =
∫ 1

θ
∆Sπ(Ti)dTi. The corresponding expression for the estimates with

power-law prior is

∆Sp = 2

(
ω + 1

2ω + 1

)(
1− θ2ω+1

1− θω+1

)
− (1 + θω), (3.14)

and with uniform prior,

∆Su =

[
2F1

(
1

ω + 1
,− ω

ω + 1
;
ω + 2

ω + 1
;

1

1 + θω+1

)
−θ 2F1

(
1

ω + 1
,− ω

ω + 1
;
ω + 2

ω + 1
;

θω+1

1 + θω+1

)]
(

1

ω + 1

)(
1− θω+1

1− θ

)
− (1 + θω). (3.15)

Figure 3.2 illustrates the results obtained with the two prios their comparison

with the optimal entropy production (Eq. (3.10)).

From the plots, it becomes clear that power-law prior yields better results

as compared to uniform prior, however, when θ is close to 1 (near-equilibrium),

estimation with both the priors agree up to third order as shown:

∆Sp ≈ ∆Su ≈
ω

6
(1− θ)2 +

ω(2− ω)

12
(1− θ)3 +O[1− θ]4. (3.16)

Near-equilibrium expansion of ∆So is given as:

∆So ≈
ω

4
(1− θ)2 +

ω(2− ω)

8
(1− θ)3 +O[1− θ]4. (3.17)

On comparing Eqs. (3.16) and (3.17), we observe a scale factor of 2/3 similar to

the work estimation in Section 2.4.2. Thus, with this method, optimal behavior

of the process is not reproduced to a good extent although non-uniform prior
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Figure 3.2: Entropy production as a function of θ. The dashed curve is for ∆So,
thin curve is for ∆Sp, and thick curve is for ∆Su.

gives slightly better approximation to the optimal values than uniform prior.

Second method

The other method to estimate the entropy production is given by replacing Ti with

Ti (Eq. (3.12)) in the expression 3.8. The process of estimation is implemented

as follows.

1) Calculate the expected value of one of the temperatures, (say T 2).

2) From constraint of energy conservation, the estimate of T1 (denoted as T̃1)

corresponding to estimate of T2 equal to T 2, is made.

3) From the knowledge of T̃1 and T 2, entropy production is estimated as ∆̃S =

∆S(T 2).

The estimated value of entropy production with both the priors are given as
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follows:

∆̃Sp =

[
1 + θ1+ω −

(
ω + 1

ω + 2

)1+ω (
1− θω+2

1− θω+1

)1+ω
] ω

1+ω

+

(
ω + 1

ω + 2

)ω (
1− θω+2

1− θω+1

)ω
− (1 + θω), (3.18)

and

∆̃Su =

[
1 + θ1+ω −

(
1 + θ

2

)1+ω
] ω

1+ω

+

(
1 + θ

2

)ω
− (1 + θω). (3.19)

Figure 3.3 shows the results for estimated entropy production for different values

of ω1. The results show that estimation with the use of power-law prior closely
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Figure 3.3: Entropy production as a function of θ. The dashed curve is for ∆So,
thin curve is for ∆̃Sp, and thick curve is for ∆̃Su.

matches with the optimal behavior in comparison with the uniform prior. But,
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near-equilibrium, estimates with both the priors agree up to third order with the

optimal entropy production (Eq. (3.17)) as shown:

∆̃Sp ≈ ∆̃Su ≈
ω

4
(1− θ)2 +

ω(2− ω)

8
(1− θ)3 +O[1− θ]4. (3.20)

With both of the methods of estimation, it has become clear that estimates

obtained with the second method show remarkable agreement with the optimal

features than the estimates defined as the expected value of the entropy produc-

tion. This can be attributed to the fact that ∆S is a concave function in the

interval [θ, 1] and thus from Jensen inequality, ∆̃S ≥ ∆S. Thus, similar to work

expression in Chapter 2, this inequality gives upper bound to the usual estimate

for entropy production.

3.5 Entropy production with spin-reservoirs

We study another model for the reservoirs for which no explicit relation exists

between T1 and T2. So, we have to carry out numerical calculations to solve

constraint equation. We consider the reservoirs as N non-interacting, localized

spin-1/2 particles at temperatures T+ and T−. A spin-1/2 particle can be regarded

as a two-level system, with energy levels (0, a). The expressions for mean internal

energy, heat capacity and entropy of the spin reservoirs have been given earlier

in Eqs. (2.40), (2.41) and (2.42). We reconsider the energy-conserving process

with these reservoirs.

Using Eq. (2.40) in the constraint dU = 0 for energy conservation in pure

thermal interaction, we obtain:

2f1f2 − (f1 + f2) + c′f1f2 = 0, (3.21)
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where f1, f2 are given as

f1 = 1 + e−a/T1 , (3.22)

f2 = 1 + e−a/T2 , (3.23)

and

c′ = −
(

e−a

1 + e−a
+

e−a/θ

1 + e−a/θ

)
. (3.24)

Here also, we use scaled temperatures as T+ = 1 and T− ≡ θ. Eq. (3.21) is also

an implicit equation and cannot be solved for T1 in terms of T2. For general a’s

values, only numerical solution can be found. In this case also, we perform the

estimation in the high-temperature limit to illustrate the utility of incorporating

the prior information. The numerical results for the estimated entropy production

also show good agreement with the optimal entropy production as we discuss in

Section 3.5.3.

High-temperature limit

In the case of high temperatures, i.e. a << Ti, we can perform analytic calcu-

lations. The expressions for mean internal energy, heat capacity and entropy of

the spin reservoirs in this limit have been given earlier in Eqs. (2.47), (2.48) and

(2.49). The explicit relation between T1 and T2 is obtained by using Eq. (2.47)

and energy conservation condition on the reservoirs. This yields

T1 =

(
1 +

1

θ
− 1

T2

)−1

. (3.25)

The entropy produced can be written using Eq. (2.48) as:

∆S =
Na2

8

(
1 +

1

θ2
− 1

T1
2 −

1

T2
2

)
. (3.26)
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Alternately, for high temperature case, we can express Eq. (3.26) as function of

one variable, using Eq. (3.25). For the optimal process, T1 = T2 = Tc, where

Tc = 2θ/(1 + θ). In this case, we have

∆So =
Na2

16θ2
(1− θ)2. (3.27)

3.5.1 Prior

The normalized form of prior can be written using Eqs. (3.4) and (2.49) as:

P (Ti) =
θ

(1− θ)
1

Ti
2 . (3.28)

The average value, Ti, is calculated as:

T i =
θ

(1− θ)
ln

(
1

θ

)
, (3.29)

and with uniform prior, the expected value is simply (1 + θ)/2. The condition

∆S ≥ 0 determines the range of Ti as [θ, 1].

3.5.2 Estimation of entropy production: High-temperature

limit

The estimate for entropy production, ∆̃S, is given by replacing, say, T2 with T 2

in Eqs. (3.25) and (3.26), which gives:

∆̃Sp = 2

[
1− θ2

θ2 ln
(

1
θ

) − (1− θ)2

θ2 ln
(

1
θ

)2 −
1

θ

]
, (3.30)

∆̃Su =
2(1− θ)2

θ(1 + θ)2
. (3.31)

Fig. 3.4 illustrates the comparison between the estimated and optimal entropy

production, with the use of different priors. The derived prior estimates the
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Figure 3.4: Ratio of estimated entropy production (∆̃S) to the optimal value ∆So
(Eq. (3.27)), as a function of θ, in the high temperature limit. The lower curve is

for estimate ∆̃Su using a uniform prior, while the upper curve uses the estimate
∆̃Sp due to the derived prior. The latter estimates are closer to the maximal
entropy production. The curves agree in the near equilibrium regime, where the
lower order terms match with optimal values, as given by Eq. (3.32).

maximal entropy production much more closely than the non-informative uniform

prior. Further, when we expand the estimates for entropy production in near-

equilibrium regime, we get:

∆̃Sp ≈ ∆̃Su =
Na2

16
(1− θ)2 +

Na2

8
(1− θ)3 +O[1− θ]4. (3.32)

The above estimates match with the maximal entropy production, up to third

order.

Following Section 3.4.2, here also, we discuss the estimates defined as the

corresponding expected values with the use of non-uniform as well as uniform

prior as follows:

∆Sp =
(1− θ)2

3θ2
, (3.33)

∆Su =
2
[
(1 + θ) ln(1

θ
)− 2(1− θ)

]
θ(1− θ)

. (3.34)
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Near-equilibrium behavior of the estimates as

∆Sp ≈ ∆Su ≈
Na2

24
(1− θ)2 +

Na2

12
(1− θ)3 +O[1− θ]4, (3.35)

clearly shows that these estimates do not match with the maximal entropy pro-

duction (Eq. (3.32)) due to a scale factor of 2/3 between these two expansions.

3.5.3 General case: Numerical estimation

Now we turn to the general solution of the constraint equation, for arbitrary

values of a and θ. In general, there is no explicit relation between T1 and T2

following from the constraint of energy conservation condition. Thus even if

we calculate the average temperature, T i, analytically, the value of the other

has to be evaluated numerically. The optimal temperature has to be evaluated

numerically. The net entropy production, in general, can be written as:

∆S = N

[
ln

(
(1 + e−a/T1)(1 + e−a/T2)

(1 + e−a)(1 + e−a/θ)

)
+

a

T1

e−a/T1

(1 + e−a/T1)

+
a

T2

e−a/T2

(1 + e−a/T2)
− a e−a

(1 + e−a)
− a

θ

e−a/θ

(1 + e−a/θ)

]
. (3.36)

Fig. 3.5 shows the comparative numerical plots for entropy production. Thus for

general values of a, the numerical calculations using the derived prior show that

the estimated entropy production is in good agreement with the optimal entropy

production, in a manner similar to the findings of the previous section.

3.6 Discussion and summary

In this Chapter, we have discussed the inference based approach to estimate

the performance of a thermodynamic process in which the two identical finite

systems at different initial temperatures are in thermal contact with each other
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Figure 3.5: Entropy production as a function of θ for different values of a; (a)
a = 0.2, (b) a = 0.8, (c) a = 1.5, (d) a = 2.4. The top, dotted curve is the

optimal entropy production, the middle, solid curve is the estimate ∆̃Sp, and

lower, dotdashed curve is for the estimate ∆̃Su.

with no change in the total energy of the composite system. We assign priors

for the unknown final temperatures, T1 and T2, of the reservoirs. We argued for

and proposed a general prior while incorporating the prior information about the

process which is the constraint of energy conservation. We proposed a procedure

to assign prior while incorporating two essential elements of the prior information:

(i) inference of the rate of change dT1/dT2 from the constraint; (ii)the range of

allowed values for the uncertain temperature. For this process, the range for

allowed values of T1 and T2 is determined from the physical condition of ∆S ≥ 0
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i.e. there will be a net entropy production in the system. It is [θ, 1] for both T1

and T2.

Once the priors are assigned, then we estimated the entropy produced in the

whole system with the derived prior as well as with uniform prior. Similar to

entropy-conserving process in Chapter 2, we followed the two methods of estima-

tion. And due to concave nature of the function ∆S in the interval [θ, 1], entropy

production estimated as ∆S(T i) is always higher and hence, closely matches with

maximal entropy production as compared to the estimates defined as expected

values, 〈∆S(Ti)〉, of the entropy production. We consider two models for the fi-

nite reservoirs. For spin-reservoirs, analytical solution of the constraint equation

does not exist and thus we perform numerical calculations for general values of a

(energy spacing) as well as analytical calculations in the high temperatures limit.

The agreement of estimated values with the optimal values are shown in high

temperatures limit, as well as by numeric calculations.

It is well-known that the optimal process considered can be regarded in terms

of respective equilibrium state of the bipartite system subject to the given con-

straint of energy conservation. Thus under conservation of total energy, the

equilibrium state is the one with the maximum total entropy. The agreement

of our estimates with the optimal values shows that we are able to estimate the

equilibrium state without following an optimization procedure. Concluding, we

can say that inference approach works well to estimate the optimal behavior in

energy-conserving process also.
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Chapter 4

Inference of engine performance

with non-identical finite source

and sink

4.1 Introduction

In Chapter 2, we addressed the problem of maximum work extraction [81, 82,

83, 84, 85, 86, 87] with finite source/sink within inference approach motivated by

Bayesian reasoning. A pair of identical finite systems were considered for the pur-

pose of a source and a sink with different initial energies and hence temperatures.

The fundamental thermodynamic relation obeyed by the systems is taken to be

S = κUω1 , where κ may depend on some universal constants and/or volume,

particle number of the system. The range 0 < ω1 < 1, implied systems with a

positive heat capacity. The optimal or maximum work extracted from this set-up

by coupling it to some work source was estimated. The efficiency at optimal work

was also inferred up to second order as η ≈ ηc/2+ηc
2/8 [61, 67, 68, 69, 70, 72], in

near-equilibrium regime. A generalisation of this approach can be thought of by

considering the non-identical systems as reservoirs. In Ref. [93], finite reservoirs
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are modelled by perfect gas systems with different constant heat capacities. Thus,

the new information about relative sizes of source and sink can be utilized in the

assignment of prior for the uncertain temperatures. The ranges of allowed values

for T1 and T2 are different in this case. In this Chapter, we consider two dissimi-

lar systems obeying a thermodynamic relation of the form Si = κiU
ω1
i (i = 1, 2)

and reconsider the maximum work extraction process within inference approach.

We derive the temperature and efficiency estimates for this model which show

remarkable agreement with their optimal values.

This Chapter is organized as follows. In Section 4.2, we discuss the model for

finite reservoirs. Section 4.3 outlines the discussion on the permissible range and

thus the form of prior for T1 and T2. In Section 4.4, we estimate the temperature of

the source and the sink. It also comprises of the discussion on inference of special

cases when one system becomes very large in comparison to the other. Section

4.5 describes the near-equilibrium analytical estimation for the arbitrary values

of γ (see the line below Eq. (4.1)). Section 4.6 discusses the numerical results

for the estimates of efficiency for arbitrary sizes of reservoirs. Finally in Section

4.7, we make some concluding remarks on our extended inference approach in the

case of non-identical systems.

4.2 Model

To model finite reservoirs, consider a pair of thermodynamic systems obeying a

relation of the form Si = κiU
ω1
i , where U is the internal energy of the system

and ω1 is some known constant. Using the basic definition : (∂S/∂U)V = 1/T ,

we get: U = (ω1κT )1+ω. Alternately, we can write : S = κ1+ω(ω1T )ω, where

ω = ω1/(1− ω1).

Since the thermodynamic relation obeyed by the two systems remains the

same, the two may be non-identical only if they differ in their volumes, num-

ber/nature of particles etc. Thus, it is the constant of proportionality, κ, which
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is different for the two systems. Let T+ and T− (< T+) be the initial temper-

atures of, say, source and sink with κ1 and κ2 as the proportionality constants

respectively.

To perform inference, examine an arbitrary intermediate stage of the process

when the temperatures of the two are T
′
1 and T

′
2 respectively. The work extracted

from the engine is W = Qin −Qout, which can be written as:

W = (κ2ω1)1+ω
[
γ−(1+ω)(T+

1+ω − T ′1
1+ω

)− (T2
′1+ω − T−1+ω)

]
, (4.1)

where γ = κ2/κ1, and

Qin = (κ1ω1)1+ω(T+
1+ω − T ′1

1+ω
); Qout = (κ2ω1)1+ω(T

′
2

1+ω − T−1+ω).

For convenience, we define γ1+ω = σ, θ = T−/T+, T1 = T
′
1/T+ and T2 = T

′
2/T−.

Thus, work can be rewritten as:

W = (κ2ω1T+)1+ω
[
σ−1(1− T1

1+ω) + (θ1+ω − T2
1+ω)

]
. (4.2)

The constraint of entropy conservation, S1 + S2 = S+ + S−, gives

T1 =
[
1 + σ(θω − T2

ω)
] 1
ω
, (4.3)

or equivalently,

T2 =
[
θω + σ−1(1− T1

ω)
] 1
ω
. (4.4)

By making use of above equations, work can be written as a function of one

variable (say T2) only:

W (T2) = (κ2ω1T+)1+ω

[
σ−1
(

1−
(

1 + σ(θω − T2
ω)
) 1+ω

ω
)

+
(
θ1+ω − T2

1+ω
)]

.

(4.5)

A similar expression of work can be written as a function of T1 also.
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The optimal work can be extracted from the engine when the two systems

reach a common temperature. The common temperature, Tc is given from Eq.

(4.3) with T1 = T2 = Tc as:

Tc =

(
1 + σθω

1 + σ

) 1
ω

. (4.6)

The efficiency of the engine is given as η = 1−Qout/Qin. Thus, for any arbitrary

value of γ, efficiency at any intermediate stage of the process can be given as:

ηγ = 1− σ (T2
1+ω − θ1+ω)

(1− T1
1+ω)

. (4.7)

For efficiency at optimal work (η∗γ), we substitute T1 = T2 = Tc in above equation

to obtain:

η∗γ = 1− σ (Tc
1+ω − θ1+ω)

(1− Tc1+ω)
. (4.8)

Let us discuss the efficiency in the limiting cases:

(a) In the limit γ → 0 i.e. when heat source is very large as compared to heat

sink, temperature of source remains constant at T
′
1 = T+ or T1 = 1 while the

temperature of sink approaches this value at optimal work extraction. We write

efficiency as a function of T2 as

η0 = 1−
(

ω

1 + ω

)(
T2

1+ω − θ1+ω

T2
ω − θω

)
. (4.9)

Efficiency at optimal work in this limit is given by substituting T2 = 1 in above

equation as:

η∗0 = 1−
(

ω

1 + ω

)(
1− θ1+ω

1− θω

)
. (4.10)

(b) In the limit γ → ∞ i.e. when heat sink is very large in comparison to heat

source, the sink stays at temperature (T− ≡ θ) and source approaches this value

at optimal work extraction. The efficiency can be expressed in terms of T1 as:
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η∞ = 1− θ
(

1 + ω

ω

)(
1− T1

ω

1− T1
1+ω

)
. (4.11)

For the optimal process, substitute T1 = θ in above expression to obtain:

η∗∞ = 1− θ
(

1 + ω

ω

)(
1− θω

1− θ1+ω

)
. (4.12)

4.3 Assignment of prior

The inference is performed by assigning the prior probability distributions for the

uncertain parameters T1 and T2, since we assume ignorance of the actual values

of T1 and T2 or the extent to which the process has proceeded. As before, we

assume two observers, A and B, for T1 and T2 respectively. Let us summarise

the prior information we possess before making the inference:

(i) There exists a one-to-one relation between T1 and T2 given by Eq. (4.3) or

(4.4) which suggests that probability of T1 to lie in small range [T1, T1 + dT1] is

same as the probability of T2 to lie in [T2, T2 + dT2], so we can write :

P1(T1)dT1 = P2(T2)dT2, (4.13)

or we can identify the ratio of rate of change of temperatures as P2(T2) =

P1(T1) |dT1/dT2|, where P1 and P2 are the normalised prior distribution func-

tions for T1 and T2.

(ii) The set-up works like a heat engine and thus W ≥ 0.

With identical systems, we had an additional assumption on the identical form

of prior distribution, P , for T1 and T2. However, since now the two systems are

not identical, this information has to be incorporated while assigning the prior.

This information can be incorporated in the allowed values of the range of T1

and T2. Now, the allowed range for T1 and T2 is not [θ, 1]. It will be different

for both the parameters for different values of γ (6= 1). Thus, say, T1 ranges in
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[Tm, 1] and T2 ranges in [θ, TM ] respectively satisfying the constraint W ≥ 0 [93].

This is shown graphically in Figure 4.1 for the two cases with γ < 1 and γ > 1.
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Figure 4.1: Work is plotted as a function of T1 (Dashed Curve) and T2 (Solid
Curve) for ω1 = 0.1, θ = 0.4. Region γ < 1 corresponds to the case of larger
source as compared to sink while the region γ > 1 corresponds to the case of larger
sink as compared to source.

For γ < 1 (larger source in comparison to sink), the range of allowed values of

T1 is narrower than the range for T2. In the limiting case of γ → 0 (infinite source

and finite sink), [Tm, 1] shrinks to a point T1 = 1 which is expected for an infinite

source as now the temperature of the source stays at T+ = 1. Similarly, for γ > 1

(larger sink in comparison to source), the range for T2 shrinks in comparison to

the range for T1, and [θ, TM ] shrinks to a point T2 = θ for γ → ∞ (infinite sink

and finite source). This information on the range of uncertain parameters will
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be incorporated to determine the normalisation constants for prior distributions

and thus we can write P1 and P2 as [93]:

P1(T1) =
f(T1)∫ 1

Tm
f(T1)dT1

, (4.14)

P2(T2) =
f(T2)∫ TM

θ
f(T2)dT2

, (4.15)

where the form of f is common to both the priors and the required prior is

determined as discussed in Chapter 2 as

Pi(Ti) =
Ci(Ti)/Ti

Ni

, (4.16)

for i = 1, 2 and Ni =
∫
Ci(Ti)/Ti dTi is the normalisation constant.

With our model (Ci ∝ Ti
ω), the functional form of the prior distribution can be

written as

Pi(Ti) ∝ Ti
ω−1. (4.17)

4.4 Estimation of temperature

The expected value of a temperature is:

Ti =

∫ Ti,max

Ti,min

TiP (Ti)dTi, (4.18)

where i = 1, 2. Taking into account the respective ranges of allowed values of T1

and T2, identified above, we obtain:

T 1 =

(
ω

1 + ω

)(
1− Tm1+ω

1− Tmω
)
, (4.19)

T 2 =

(
ω

1 + ω

)(
TM

1+ω − θ1+ω

TM
ω − θω

)
. (4.20)
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To determine Tm or TM , we solve Eq. (4.2) by setting W (T1) = 0 or W (T2) = 0

respectively.

In general, Eq. (4.2) has to be solved numerically for arbitrary values of ω1.

For ideal Fermi gas (ω1 = 1/2), it can be solved analytically [94] and thus we

obtain:

T1 ∈
[

1− γ2 + 2γ2θ

1 + γ2
, 1

]
, (4.21)

T2 ∈
[
θ,

2− θ + γ2θ

1 + γ2

]
. (4.22)

Due to Eq. (4.3), we can write one-to-one relation between Tm and TM as:

1− Tmω = σ(TM
ω − θω). (4.23)

Using above equation in W (TM) = 0, we obtain:

1− Tm1+ω = σ(TM
1+ω − θ1+ω). (4.24)

From Eqs. (4.19), (4.20), (4.23) and (4.24), we can write:

T 1 = T 2. (4.25)

However, firstly we will solve Eq. (4.2) for the limiting cases when one of the

systems become very large in comparison to the other system.

4.4.1 Infinite source and finite sink

This case corresponds to the limit γ → 0. Here the only uncertain parameter

is T2 as temperature of source stays at T+ = 1 while the temperature of sink

approaches T+ at optimal work extraction. To discuss this limit, we set Eq. (4.5)

as W (T2) = 0 and obtain:
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T2
1+ω − θ1+ω =

1

σ

[
1−

(
1 + σ(θω − T2

ω)
) 1+ω

ω

]
. (4.26)

Taking the limit γ → 0, the above equation gets simplified to:

ω
(
T2

1+ω − θ1+ω
)

= (1 + ω) (T2
ω − θω) , (4.27)

whose trivial solution is T2 = θ. The other solution is TM so we write:

ω
(
TM

1+ω − θ1+ω
)

= (1 + ω) (TM
ω − θω) . (4.28)

Consistency between Eqs. (4.20) and (4.28) demands that we must have:

T 2 = 1. (4.29)

Thus expected sink temperature exactly matches with temperature of heat source

for optimal process. The efficiency is estimated by replacing T2 in Eq. (4.9) by

Eq. (4.29) and estimate for efficiency is same as Eq. (4.10). Hence, inference

approach reproduces the optimal behaviour exactly in the limit γ → 0.

4.4.2 Finite source and infinite sink

Consider the case of infinite sink in comparison to source (γ → ∞). Here, the

sink stays at temperature T−(≡ θ) and the temperature of source approaches T−

for optimal work extraction. Hence T1 is the only uncertain parameter in this

limiting case. The range for T1 is determined by using Eq. (4.4) in Eq. (4.2) and

then setting W (T1) = 0, we get:

1− T1
1+ω = σ

[(
θω + σ−1(1− T1

ω)
) 1+ω

ω − θ1+ω

]
. (4.30)

In the limit γ →∞, the above equation gets simplifies to:
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ω
(
1− T1

1+ω
)

= θ(1 + ω) (1− T1
ω) . (4.31)

The trivial root of above equation is T1 = 1 and other root (Tm) satisfies:

ω
(
1− Tm1+ω

)
= θ(1 + ω) (1− Tmω) . (4.32)

From Eqs. (4.19) and (4.32), we obtain:

T 1 = θ. (4.33)

It is clear from the Eq. (4.33) that the average temperature of the source exactly

matches with the temperature of the infinite sink which happens in case of max-

imum work extraction. Further, efficiency at optimal work (η∗∞) is also inferred

exactly due to Eqs. (4.11) and (4.33). Thus, we are able to infer exactly the

optimal behaviour of the system when sink is infinitely large in comparison with

source.

4.5 Near-equilibrium estimation

In this Section, we approximate the values of Tm and TM when θ is close to unity.

For this, consider the case 0 < γ < 1. Let us examine the observer B. Since close

to equilibrium, TM is also close to unity so we can introduce a small parameter

ε > 0 such that

TM = θ (1 + ε). (4.34)

Rewriting Eq. (4.5) as W (TM) = 0:

1 + σθ1+ω[1− (1 + ε)1+ω] =
(

1 + σθω[1− (1 + ε)ω]
) 1+ω

ω
. (4.35)
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Making series expansion in ε and keeping terms only up to second order, we get

a quadratic equation in ε (See Appendix C):

(1− ω)
[
σ2θ2ω + 3σθω − ω(1− θ) + 2

]
ε2 − 3 [σ − ω(1− θ) + 1] ε+ 6(1− θ) = 0.

(4.36)

For instance, if we take limit ω → 0 in above equation, we reproduce the case for

perfect gas as:

(γ + 1)(γ + 2)ε2 − 3(γ + 1)ε+ 6(1− θ) = 0, (4.37)

whose acceptable solution [93] is approximated up to second order in ηc as:

ε =
2

1 + γ
ηc +

4(2 + γ)

3(1 + γ)2
η2
c . (4.38)

Similarly, Eq. (4.36) can be solved for ε and the solution can be approximated

as:

ε =
2

1 + σ
ηc +

2[4− ω + σ(ω + 2)]

3(1 + σ)2
η2
c . (4.39)

From the value of ε, we can determine TM , which in turn determines Tm due to

Eq. (4.3). Let us now discuss the near-equilibrium estimation of the estimated

temperatures of the reservoirs.

Suppose T̃1 (T̃2) are the estimates for T1 (T2) by the observer B (A) by making

use of Eqs. (4.3) and (4.4). Close to equilibrium, estimated temperatures of

reservoirs behave as

T 2 = 1− σ

1 + σ
ηc −

σ(1− ω)

3(1 + σ)2
η2
c +O[η3

c ], (4.40)

T̃2 = 1− σ

1 + σ
ηc −

(1 + 3σ)(1− ω)

6(1 + σ)2
η2
c +O[η3

c ], (4.41)
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T̃1 = 1− σ

1 + σ
ηc −

σ(3 + σ)(1− ω)

6(1 + σ)2
η2
c +O[η3

c ], (4.42)

while the optimal temperature, Tc behaves as

Tc = 1− σ

1 + σ
ηc −

σ(1− ω)

2(1 + σ)2
η2
c +O[η3

c ]. (4.43)

In the above case, we have seen that both estimates, T 2 (by observer B) and T̃2

(by observer A), match with Tc only up to first order. Let us define the estimated

value of the temperature of one reservoir (say sink) as the weighted mean of the

estimates by two observers. It will be given as

T2,m = w1T̃2 + w2T 2, (4.44)

where w1, w2 are the weights satisfying the condition w1 + w2 = 1. If we choose

weights w1 and w2 so as to obtain agreement up to second order, then the weights

to be assigned are:

w1 =
σ

1 + σ
, (4.45)

w2 =
1

1 + σ
. (4.46)

Interestingly, this weighted mean (T2,m) for the the sink shows remarkable agree-

ment with Tc up to third order in ηc close to equilibrium. Further, for γ → 0, T2,m

becomes exactly equal to T 2 showing that estimation is done only by observer B

as the other reservoir corresponding to observer A (source) becomes infinite in

comparison and hence, its temperature stays constant at T+ and no uncertainty

exists in its value. Similarly in the limit of γ →∞, mean estimate of temperature

becomes exactly equal to the expected temperature of the source.
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4.5.1 Estimation of efficiency

Efficiency is estimated by replacing T 2 in Eqs. (4.3) and (4.5) to obtain efficiency

estimate by observer B (η̃2). Similarly, denote the efficiency estimate by observer

A as (η̃1). Expanding the estimates of efficiency close to equilibrium as

η̃1 =
ηc
2

+
2(1 + σ) + ω(σ − 2)

12(1 + σ)
η2
c +O[η3

c ], (4.47)

η̃2 =
ηc
2

+
(1 + σ) + ω(2σ − 1)

12(1 + σ)
η2
c +O[η3

c ], (4.48)

while the efficiency at optimal work behaves as

η∗γ =
ηc
2

+
(1 + 2σ) + ω(σ − 1)

12(1 + σ)
η2
c +O[η3

c ]. (4.49)

where ηc = 1 − θ is Carnot efficiency. It is clear from the above expressions

that estimates of efficiency either by observer A or by observer B matches with

efficiency at optimal work (η∗γ) only up to first order in ηc. With non-identical

systems, quadratic term (η2
c/8) in the efficiency at optimal work does not appear

and becomes dependent on value of γ. However, mean efficiency (η̃m) defined as

η̃m = w1η̃1 + w2η̃2, (4.50)

matches with efficiency at optimal work up to second order, where w1 and w2

are the weights assumed for the estimation done by observer A and observer B

respectively, similar to the case of temperature estimation. For the special case of

identical systems (γ = 1), the assigned weights are equal to 1/2 as in Chapter 2.

In this case, quadratic term is also recovered. The non-identical weights chosen

above are also consistent in the extreme cases, when one system becomes very

large as compared to the other, say, for example, γ → 0 makes w1 = 0 and thus

estimation is performed over the temperature of sink only, as the temperature

of source stays at its initial value. Similarly, in the limit γ → ∞, estimation is
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performed over the temperature of source since w2 = 0. For these limiting cases,

we obtain the exact estimates for efficiency at optimal work respectively.

4.6 Numerical results for arbitrary γ

We have observed that optimal behavior of the process can be estimated exactly

for the case when one system is very large in comparison to other. It is then of

interest to compare the estimated values with the optimal values for arbitrary

values of γ. For this, Eq. (4.5) has to be solved to numerically. The trivial root

is θ while the other root, TM , can be determined numerically for given values of

ω1, γ, and θ. Then, we obtain numerical estimates of efficiency by observer A

and observer B for arbitrary values of γ. Figure 4.2 shows the comparative plots

of efficiency for different values of γ.

From the numerical plots, it becomes clear that in the 0 < γ < 1 regime, esti-

mates made by observer B give better estimation to optimal values as compared

to the observer A, the agreement is exact in the limit γ → 0. Similarly, in the

region γ > 1, observer A reproduces the optimal behavior to a remarkable extent

than observer B. In the limit γ →∞, the exact optimal behavior is estimated by

observer A. However, close to equilibrium, estimates by both the observers (Eqs.

(4.47) and (4.48)) agree up to first order with optimal behavior (Eq. (4.49)).

As discussed in Section 4.5.1, mean efficiency matches with efficiency at optimal

work up to second order in ηc. It can be easily seen from the plots also, where

the mean efficiency closely matches with optimal value in both the regions.

4.7 Conclusion

Earlier in Chapter 2, we observed that prior probabilities play an important role

in the estimation of optimal performance characteristics of quasi-static thermo-

dynamic process with constraints where two identical finite systems acting as

88



Region γ < 1

Γ = 0.2

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Θ

E
ff
ic
ie
n
cy

Γ = 0.8

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Θ

E
ff
ic
ie
n
cy

Region γ > 1

Γ = 1.5

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Θ

E
ff
ic
ie
n
cy

Γ = 4

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Θ

E
ff
ic
ie
n
cy

Figure 4.2: Efficiency as a function of θ for ω1 = 0.1. The uppermost dashed
curve is for η̃1, lowermost curve is for η̃2, dotted curve is for efficiency at optimal
work while the middle solid curve is for mean efficiency (η̃m) which closely follows
ηo.

source and sink undergo a reversible process of maximum work extraction. In

this Chapter, we have extended our inference-based approach to the process of

reversible work extraction from a set-up of non-identical finite heat source/sink.

The entropy of each reservoir satisfies the relation S ∝ T ω. Then ignorance is

assumed about the intermediate temperatures T1 and T2 of source and sink re-

spectively and uncertainty in the values of T1 and T2 is quantified in terms of

prior probabilities. With non-identical sizes of systems, we can distinguish and

label the two systems acting as source and sink. Note that this information was

missing in earlier studies with similar reservoirs. This also results in the ranges

89



of allowed values of T1 and T2 with the constraint W ≥ 0 being different unlike

with identical sizes of the systems, where the ranges for T1 and T2 are same and

equal to [θ, 1].

We observed that estimates match exactly with their optimal values when

one of the reservoir becomes very large as compared to the other. For arbitrary

values of γ, we performed the numerical calculations. These calculations show

that information incorporated in the prior distributions reproduce the optimal

behaviour of the system, however, now the efficiency estimates made by two ob-

servers are not symmetrically distributed about the efficiency at optimal work

unlike in the case with similar reservoirs (γ = 1). Instead, estimates made by

one observer lie closer to the optimal value as compared to the other depend-

ing upon the value of γ. While generalising this approach, we focused mainly

on the estimation of efficiency at optimal work. Recently, the near-equilibrium

universality of efficiency at maximum power in finite-time models of heat engines

has attracted a lot of attention as mentioned in Section 1.4. With non-identical

reservoirs, it has been observed that universality with term η2
c/8 in efficiency,

close to equilibrium, does not hold and it becomes system dependent. It can be

attributed to the fact that now the two reservoirs are not identical and hence

the symmetry in the problem of inference has lost since equal weights (1/2) for

the mean efficiency were assigned due to identical nature of the reservoirs. Fur-

ther, the efficiency at optimal work can be reproduced up to second order by

defining mean efficiency with non-identical weights for the efficiency estimates by

the two observers. Thus, with non-identical systems also, we have been able to

quantify the prior information and use it to estimate the optimal performance in

thermodynamic process of entropy conservation.
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Chapter 5

Discussion and future directions

The main motivation of the present thesis is to quantify the prior information in

the estimation of the optimal state in a bipartite system undergoing a constrained

thermodynamic process. In particular, we have considered entropy-conserving

and energy-conserving processes. Our approach is motivated by inductive rea-

soning. In this kind of reasoning, as the premises provide only a partial informa-

tion, we cannot make conclusions that are certain but only the ones that seem

highly plausible. Bayesian inference, an extension of this approach, regards the

probability of occurrence/truth of an event or a hypothesis, as a measure of our

degree of rational belief in the truth of that hypothesis [95]. The prior distribu-

tion is sought as a measure of the a priori state of knowledge of the observer. In

my work, the limited information on thermodynamic coordinates of the process

is quantified as an uncertainty in the problem and thus appropriate priors have

been proposed for these coordinates.

In Chapters 2 and 3, entropy-conserving and energy-conserving processes were

discussed respectively. The reservoirs acting as source and sink were modelled by

a pair of thermodynamic finite identical systems but at different initial temper-

atures. The priors were proposed for the final unknown temperatures of the two

systems which were related by a one-to-one relation due to the constraint in the
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problem. We estimated the optimal work as well as efficiency at optimal work

within the inference procedure quite accurately for entropy conserving process

while for energy conserving process, the main quality to be inferred was the net

entropy production.

In Chapter 4, we re-examined the entropy-conserving process to generalise

inference approach to finite non-identical thermodynamic systems. Interesting

results were obtained when one of the system becomes very large in comparison

to the other and we reproduced the exact optimal behavior of the process. For

arbitrary sizes of the reservoirs also, we were able to estimate the optimal features.

We have also tried to gain an insight into the form of prior proposed for the

constrained thermodynamic processes. In the following, we discuss the form of

prior and meaning of the temperature estimates. First we note that the prior for

final temperature in the entropy-conserving process is

P (T )dT = N−1C(T )dT

T
, (5.1)

where N =
∫ T+
T−

C(T )/T dT . Choosing entropy as an uncertain parameter, above

prior can be re-expressed as:

p(S)dS =
dS

(S+ − S−)
. (5.2)

Thus the derived prior is equivalent to a uniform prior in terms of the entropy,

defined over the interval [S−, S+]. Similarly, the prior for the energy-conserving

process,

π(T )dT =
C(T )dT∫ T+
T−

C(T )dT
, (5.3)

implies a uniform prior over the energy of a reservoir:

p(U)dU =
dU

(U+ − U−)
. (5.4)
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Thus our particular choice of prior for temperature, implies a uniform prior den-

sity for the quantity being conserved in the process.

Secondly, the proposed prior lends a specific meaning to the final common

temperature (Tc). For the optimal entropy-conserving process, the change in

entropy of a reservoir, ∆S1 = −∆S2, is given by: S+ − Sc = Sc − S−. This can

be written in integral form as:

∫ S+

Sc

dS =

∫ Sc

S−

dS. (5.5)

As the prior density is uniform in terms of entropy, so we can write

∫ S+

Sc

p(S)dS =

∫ Sc

S−

p(S)dS, (5.6)

where p(S) = 1/(S+−S−). Thus our choice of prior implies that we are assigning

equal probability (one-half each) that entropy S of a reservoir may lie in the

interval [S−, Sc], or in the interval [Sc, S+]. A similar statement can be made in

terms of Tc. Thus Tc is the median of prior P (T ), on either side of which we

expect equal chances that the final temperature may lie.

Finally, let us analyse the expected value of temperature as defined by T =∫ T+
T−

TP (T ) dT . For the entropy conserving process, by using Eq. (5.1), the

estimate for temperature has the general form:

T =
1

N

∫ T+

T−

C(T ) dT

=
1

N

∫ U+

U−

dU

=
(U+ − U−)

(S+ − S−)
, (5.7)

where N =
∫ T+
T−

C/T dT . This suggests that T is the estimate for the derivative

of the function U(S) whose values at two points, U+(S+) and U−(S−), have been
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given. We note that the above intuitive meaning arises naturally within the

energy representation [81]. Similarly, if we consider pure thermal interaction,

while there is no simple interpretation for the expected value of T in this case,

however the expected value of the inverse temperature β = 1/T , is given simply

as

β =
(S+ − S−)

(U+ − U−)
. (5.8)

So here, β can be regarded as an estimate for the derivative of the function

S(U), when its values at two points, S+(U+) and S−(U−), have been given. It

is interesting to note that whereas T serves as the fundamental variable in the

energy representation, it is the inverse temperature β, which may be regarded

as more fundamental in the entropy representation defined by the fundamental

relation S(U) [81, 96].

An integral part of Bayesian analysis is updating using Bayes theorem, in

which the prior probabilities may be updated to posterior probabilities by in-

corporating fresh information from experiment or data. Our point of view is

Bayesian insofar as we seek to assign an appropriate prior for our incomplete

knowledge about the system. This is where we make use of the prior information

about the given process. But our approach differs from the usual Bayesian in-

ference where the priors can be updated to posterior probabilities. For instance,

within the Bayesian approach for estimating the temperature of a system in con-

tact with a heat reservoir [96, 97], it is appreciated that temperature itself is

not an observable. The inference about temperature may be made indirectly by

measuring the energy of the system. Then the quantity of interest is the posterior

probability p(T |E)dT , for the temperature given that the measured energy of the

system is E. This quantity is obtained from Bayes’ theorem as

p(T |E)dT =
p(E|T )π(T )dT

p(E)
, (5.9)
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where p(E) =
∫
p(E|T )π(T )dT , and p(E|T ) is the probability (likelihood func-

tion) for the energy of the system to be E, if the temperature of the reservoir is

T . Thus to do the analysis, one has to assign a prior π(T ) for temperature, that

reflects our initial state of knowledge, for example, use of uniform prior [96] and

1/T prior [97] have been argued with ideal gas systems.

However, our purpose in this thesis is to highlight the estimates obtained only

from the priors. Inference based on priors may be regarded as a particular case

of Bayesian inference theorem using quality-adjusted priors and likelihood func-

tions, as discussed in Section 1.2.3. The latter procedure may be justified when

the authenticity or “quality” of the information from the prior or the likelihood

function is not ensured. Then the posterior probabilities in a generalized form

may be given by p(T |E) ∝ [p(E|T )]b[π(T )]a, where 0 ≤ a, b ≤ 1. The standard

Bayes’ theorem corresponds to the choice a = b = 1. If the prior information

is of very low quality, then one sets a → 0, and so any prior essentially turns

into a uniform prior. In the present paper, we discount any information from the

likelihood function (b = 0). As observed in the applications [73, 76, 77, 78, 79],

this approach leads to estimates which are comparable to the optimal features of

the concerned process. We also observed that the estimate of the temperature,

say, in an entropy-conserving process, takes on a natural meaning of an estimate

for the derivative, (∂U/∂S)V . It turns out that the assigned prior is equivalent

to a uniform prior over the quantity held constant in the constraint on the pro-

cess. Moreover, the prior is such that the optimal temperature Tc emerges as the

median of the prior distribution.

It will be interesting to extend this approach to general scenarios to further

investigate the relevance of prior information for the optimal characteristics of

constrained systems. We have given concrete proposals for two extremal pro-

cesses: entropy-conserving and energy-conserving. For more general processes

which lie between these two limits, it would be interesting to formulate priors

which interpolate between these two extremes, and thus to estimate the amount
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of dissipation. This may have implications for situations where due to non-

equilibrium environment, the temperature is not well defined [98, 99]. So a prior

for temperature can be motivated from the nature of energy exchange between

system and environment as well as taking into account the possible range of

temperature values. Other possible lines of investigation can be to perform infer-

ence using the posterior probabilities that incorporate the information from some

measurement, to generalize the priors to multipartite systems or the treatment

of non-identical reservoirs which may obey different fundamental relations.
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Appendix A

Jensen’s inequality

Jensen’s inequality was proved by Johan Jensen, a Danish mathematician in 1906.

This inequality relates the value of a convex/concave function of an expectation

value to the expectation value of the convex/concave function. In other words,

for a convex function f , we can write:

f(〈x〉) ≤ 〈f(x)〉, (A.1)

where x is a random variable and 〈...〉 denotes the average or expectation value.

The above inequality gets reversed for a concave function.

A function is said to be convex on some interval, say, I if the secant line of

that function lies on or above the graph of the function over [x1, x2], where x1,

x2 ∈ I as shown in Fig. A.1. Thus, we write:

f(tx1 + (1− t)x2) ≤ tf(x1) + (1− t)f(x2). (A.2)

The above inequality can also be regarded as Jensen’s inequality for two points.

This can be generalized to n points as follows:

f(λ1x1 + λ2x2 + ....λnxn) ≤ λ1f(x1) + λ2f(x2) + ....λnf(xn), (A.3)
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Figure A.1: Jensen’s inequality for two points
.

where f is some convex function on some interval I, xi ∈ I, λi ≥ 0, i = 0, 1.....n

and
∑

iλi = 1. In context of probability theory, Jensen’s inequality is generally

stated in the following form: If x is some random variable and f is some convex

function, then

f(E[x]) ≤ E[f(x)], (A.4)

where E denotes the expectation value with respect to probability distribution of

x.
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Appendix B

Numerical estimation

As discussed in Section 2.5, the entropy-conservation condition for spin-reservoirs

cannot be solved analytically. Rewriting the equation as:

f1f2 ln

(
f1f2

(f1 − 1)(f2 − 1)

)
+ f1 ln (f2 − 1) + f2 ln (f1 − 1) + cf1f2 = 0,

(B.1)

where

f1 = 1 + e−a/T1 , (B.2)

f2 = 1 + e−a/T2 , (B.3)

c = −
[

ln
[
(1 + e−a/T+)(1 + e−a/T−)

]
+

a

T+

(
e−a/T+

1 + e−a/T+

)
+

a

T−

(
e−a/T−

1 + e−a/T−

)]
, (B.4)

where T+ (T−) is the temperature of the hot (cold) reservoir and a is the energy-

level spacing. We find the numerical solution of constraint equation for T1 when

T2 is substituted by its average value (T 2) and then we get the corresponding

estimate of T1 as T̃1.
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Mathematica code

We use scaled temperatures: T+ = 1 and thus T− ≡ θ, such that 0 ≤ θ ≤ 1. For

some arbitrary of a, calculate T 2 which is given as

T 2 =
1

1+ea
− 1

1+ea/θ(
1
θ
− 1
)

+
(

1
1+ea
− 1

θ(1+ea/θ)

)
+ 1

a
ln
(

1+ea

1+ea/θ

) , (B.5)

and set T2 = T 2; T1 = T̃1 in Eq. (B.1). To determine T̃1 :

For

[
θ = 0.01, θ < 1, θ = θ + 0.01,FindRoot

[
f1f2 ln

(
f1f2

(f1 − 1)(f2 − 1)

)
+f1 ln (f2 − 1) + f2 ln (f1 − 1) + cf1f2 == 0,{

T̃1, θ + 0.01, θ, 1
}]]

.

(B.6)

Thus T̃1 is obtained numerically by running iterations over small intervals of θ

for different values of a. The work can be estimated as W̃ by replacing (T1, T2)

with (T̃1, T 2) in the expression of work given below:

W = Na

[(
e−a

1 + e−a
+

e−a/θ

1 + e−a/θ

)
−
(

e−a/T1

1 + e−a/T1
+

e−a/T2

1 + e−a/T2

)]
.

(B.7)

Similary, with uniform prior, one may use T 2 = (1 + θ)/2 to estimate work.

For optimal process, T1 = T2 = Tc and thus Eq. (B.1) gets simplified as:

2f ln

(
f

f − 1

)
+ 2 ln (f − 1) + cf = 0, (B.8)

where f = 1+e−a/Tc . A program similar to B.6 can be developed for the numerical

solution of Eq. (B.8) to obtain Tc and hence we can calculate optimal work, Wo.

Similarly, efficiency at optimal work can be estimated numerically.
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Appendix C

Near-equilibrium estimation

Following the inference with non-identical finite source and sink as discussed

in Section 4.5, we estimate the near-equilibrium optimal behavior of the engine

analytically. Consider the case 0 < γ < 1. Close to equilibrium, we can write

TM = θ (1 + ε), where ε > 0 is a small parameter. To calculate TM analytically,

we determine ε in the near-equilibrium regime. For this, rewrite W (TM) = 0 and

substitute the value of TM in terms of ε

1 + σ[θ1+ω − T 1+ω
M ] =

(
1 + σ[θω − T ωM ]

) 1+ω
ω
,

1 + σ[θ1+ω − θ1+ω(1 + ε)1+ω] =
(

1 + σ[θω − θω(1 + ε)ω]
) 1+ω

ω
,

1 + σθ1+ω[1− (1 + ε)1+ω] =
(

1 + σθω[1− (1 + ε)ω]
) 1+ω

ω
. (C.1)

Expanding both sides as a series in ε, we get :

1− ε(1 + ω)σθ1+ω
[
1 +

ε

2
ω +

ε2

6
ω (ω − 1)

]
=

(
1− εωσθω

[
1 +

ε

2
(ω − 1) +

ε2

6
(ω − 1) (ω − 2)

]) 1+ω
ω

.

(C.2)
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Expanding the right hand side of above equation and keeping terms only up to

second order in ε, we get :

1 − ε(1 + ω)σθ1+ω

[
1 +

ε

2
ω +

ε2

6
ω (ω − 1)

]
= 1 − ε(1 + ω)σθ1+ω

[
1

θ

(
1 +

ε

2
(ω − 1) +

ε2

6
(ω − 1) (ω − 2)

)
− εσθω−1

2

(
1 + ε (ω − 1)

)
− ε2σ2θ2ω−1

6
(ω − 1)

]
. (C.3)

After simplifying the above equation, we get quadratic equation in ε as :

(1− ω)
[
σ2θ2ω + 3σθω − ω(1− θ) + 2

]
ε2 − 3 [σ − ω(1− θ) + 1] ε+ 6(1− θ) = 0.

(C.4)

Above equation is quadratic of the form aε2 + bε+ c = 0, where

a = (1− ω)
[
σ2θ2ω + 3σθω − ω(1− θ) + 2

]
, (C.5)

b = −3 [σ − ω(1− θ) + 1] , (C.6)

c = 6(1− θ). (C.7)

Eq. (C.4) can be solved for ε and whose solution is given as:

ε± =
−b±

√
b2 − 4ac

2a
. (C.8)

Near-equilibrium, ηc = 1 − θ is a small parameter, so the solution ε can be

expanded as series in the powers of ηc. Substitute the values of a, b and c in

above solution and expanding ε− up to second order in ηc, we get :

ε− =
2

1 + σ
ηc +

2[4− ω + σ(ω + 2)]

3(1 + σ)2
ηc

2. (C.9)
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The other solution, ε+ is not acceptable since it does not give ε as a small param-

eter as it has a constant term in the expansion about ηc close to zero as shown

below:

ε+ =
6(1 + σ)

2(1− ω)(2 + 3σ + σ2)
−
(

2

1 + σ
+

3ω(1− σ)

(1− ω)(2 + σ)2

)
ηc. (C.10)
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