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                          ABSTRACT 

 

The water dimer consists of two water molecules loosely bound by a hydrogen bond. The 

hydrogen bond in water dimer has received the most theoretical attention. The water 

dimer is small in size and obtaining experimental results for this species is difficult. So, it 

is an ideal candidate to be a model system for studying hydrogen bonding in water. In 

first part of this project, the water dimer, (H20)2, has been used as a model for 

optimization of the structure of dimers using electrostatics. A hydrogen bond network is 

also found in ammonia clusters and it plays a key role in understanding the properties of 

species which are embedded in ammonia. The structures of neutral ammonia clusters 

dictate this network. In the second part, we concentrated on hydrogen bonded neutral 

clusters of ammonia, (NH3)n (n = 2-6) and these clusters have been theoretically 

investigated employing the  basis set aug-cc-pvdz at the Hartree-Fock (HF) level as well 

as with M06L level of theory. 
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Chapter 1 

Introduction 

1.1. General 

 

Water is a universal solvent. It is essential to life on Earth. Water has many anomalous 

properties, including unusually high boiling point, low coefficient of thermal expansion, 

non-monotonic compressibility with temperature and the fact that water contracts upon 

melting (density maximum is at 277 K) and thus, it has attracted a lot of interest although 

it is very familiar. 

For the first part of this project, the water dimer has been used as a model for 

optimization of the structure of dimers. The two water molecules in water dimer are 

loosely bound by a hydrogen bond. A hydrogen bond actually consists of the interaction 

between the covalent A-H bond of one molecule and the lone electron pair of the B atom 

of another molecule, presuming both A and B are electronegative atoms like 0, N, or F. it 

is an ostensibly simple interaction and one of the most important in all of chemistry, as 

well as one of the most intriguing. The hydrogen bond plays a critical role in a wide range 

of chemical and biological phenomena. Moreover, it is important for describing the 

behaviour of many synthetic materials.  

 

The hydrogen bond found between two water molecules is the prototypical hydrogen 

bond and has received the most theoretical attention. The water dimer is very small in 

size and it is difficult to obtain experimental results for this species. Hence, it is an ideal 

candidate to be a model system for studying hydrogen bonding in water and it has been 

the target of so many theoretical and later experimental studies.   

 

Moreover, hydrogen bonding can also be observed in ammonia clusters. A hydrogen 

bond network in ammonia is dictated by the structures of neutral clusters and it plays a 

key role in understanding the properties of species which embedded in ammonia.  
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Fig. 1.1: Hydrogen bonding in Water dimer. 

            

                                    Fig. 1.2: Hydrogen bonding in ammonia dimer. 

 

 

It is known that structures of small ammonia clusters have been investigated both 

theoretically and experimentally
1-17

. In the second part of this project, we revised 

structures and interaction energies of hydrogen bonded neutral clusters of ammonia, 

(NH3)n (n = 2-6),  employing the  basis set aug-cc-pvdz at the Hartree-Fock (HF) and 

M06L levels of theory to compare their performances in the description of the structures. 
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1.2. Classical Electrostatics 

Consider an electric potential VE at a point r in a static electric field E, given by the line 

integral 

          VE  = -∫c E∙ dl                                                                                   (1.21) 

where C is an arbitrary path from r to the point with zero potential. When ∇ × E is zero, 

the line integral depends only on its end points, not on the specific path C chosen and the 

electric field is conservative. It is determined by gradient of the potential: 

           E = - ∇VE                                                                                                               (1.22) 

 

Then, by Gauss's law, the potential satisfies Poisson's equation: 

∇ ∙ E = ∇ ∙ - (- ∇VE) = - ∇2
VE  = ρ/ε0                                                    (1.23) 

,where ∇· denotes the divergence and ρ is the total charge density  which includes bound 

charge.  

Potential energy and the concept of electric potential are closely linked. An electric 

potential energy UE associated with a test charge q is given by 

UE = qV                                                                                                          (1.24) 

The electric potential at a distance r  (relative to the potential at infinity), generated by a 

point charge Q is  

 VE = (1/(4π ε0 ))×Q/r                                                                                 (1.25) 

                                                                                               

where ε0 is the electric constant . This is known as the Coulomb potential. 
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In the case of a system of point charges, the sum of the point charges’ individual electric 

potentials is equal to the electric potential due to the system of point charges. Owing to 

this fact, calculations have been simplified significantly as addition of the potential 

(scalar) fields is much easier than addition of the electric (vector) fields. 

1.3. Molecular Electrostatic Potential    

If the atoms in a dimer are considered as a set of point charges {qα} placed at {rα}, the 

interaction energy associated with this assembly of charges is given by      

                                                                   
 

 
  

       

         
                                 (1.31) 

      

 This can also be written as                   

                                                                  
 

 
     

    

         
                         (1.32) 

In order to avoid double counting of the electrostatic interactions, the inclusion of the 

factor 1/2 is necessary in Eqs. 1.31 and 1.32. Moreover, the term in the curly brackets in 

Eq.1.32 is the electrostatic potential Vj generated at rj by point charges {qi} located at 

sites {ri}. Thus, it can also be written as   

                                                          
 

 
                                                (1.33) 

                                                            

                 

1.4. Description of the code 

The code for optimizing dimers was written in c++ programming language. First, a grid 

was constructed and one of the molecules is placed fixed at the centre of the grid and the 

other at the grid points. Then, the latter is rotated at various angles using Euler Angles 

Rotation Matrix. The interaction energies for various angles are calculated and the 

energies are sorted. The geometry with the lowest energy is the most stable geometry. 
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1.4.1. Grid construction  

A grid of length ‘l’ units, breadth ‘b’ units and height ‘h’ units is constructed in such a 

way that the number of points along the length, the breadth and the height are m, n & o 

respectively and the origin is at the centre of the grid. The origin need not be a grid point.          

1.4.2. Rotation of the molecule  

One of the molecules is placed such that the centre of mass of the molecule is at the 

origin of the grid and the other so that its centre of mass is at the grid points. The latter is 

rotated using Euler angles rotation matrix.  

1.4.2.1. Euler Angles 

Euler angles are very useful means of representing the spatial orientation of any reference 

frame, which can either be a coordinate system or a basis, as a composition of three 

elemental rotations starting from a known standard orientation, represented by another 

frame, which is sometimes referred to as the original or fixed reference frame or standard 

basis. The reference orientation can be considered as an initial orientation from which the 

frame is virtually rotated to reach its actual orientation. In a coordinate system, the axes 

of the original frame are denoted as x,y,z and the axes of the rotated frame are denoted as 

X,Y,Z. The rotated coordinate system is considered to be rigidly attached to a rigid body 

and is called a "local" coordinate system. It represents both the position and the 

orientation of the body actually. 

The geometrical definition is based on the axes of the original reference frame, the axes 

of rotated reference frames and an additional axis called the line of nodes. The line of 

nodes (N) can be defined as the intersection of the coordinate planes of xy and XY. We 

can also say that it is a line passing through the common origin of both frames, and 

perpendicular to the zZ plane, on which both z and Z lie. The three Euler angles φ, θ and 

ψ are defined as the angle between the x axis and the N axis, the angle between the z axis 

and the Z axis the angle between the N axis and the X axis respectively. This definition  
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implies that φ, θ and ψ represent rotations around the z axis, the N axis and the Z axis 

respectively. 

 

 

 

                                          

                                                Fig. 1.3: Euler Angles 

                                     

The Rotation matrix R is 

 

     cosψ cosφ – cosθ sinφ sinψ      cosψ sinφ + cosθ cosφ sinψ     sinψ sinθ 

 R =        –sinψ cosφ – cosθ sinφ cosψ     –sinψ sinφ + cosθ cosφ cosψ    cosψ sinθ 

           sinθ sinφ                            –sinθ cosφ                             cosθ 

 

 

And the new co-ordinates of the rotated molecule is given by  

           A= R × X  where  R = Rotation matrix 

                                               X = Original co-ordinate matrix 
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1.4.3. Interaction Energy 

After the rotation of the second molecule, the interaction energy associated with the 

dimer is calculated. 

The interaction energy between the molecules is given by   

                                    
 

 
  

       

         
                                         (1.41) 

,where    and    are the charges of the i
th

 and the j
th

 atom and     is the distance between 

the two atoms. 

After calculating the energies at various angles of rotation, the energies are sorted either 

in ascending order or descending order. The geometry with minimum energy is the most 

stable geometry of all the geometries. 

1.5. Computational Methods 

For the ammonia clusters, computational methods have been implemented for revision of 

structures and interaction energies of hydrogen bonded neutral clusters of ammonia, 

(NH3)n (n = 2-6), and the structures have been studied with the  basis set aug-cc-pvdz at 

the Hartree-Fock (HF) level as well as with M06L level of theory employing the 

Gaussian 09
24

 suite of programs.   

 

1.5.1. Geometry Optimization  

Geometry optimization (or energy minimization) is the process of minimizing molecular 

potential energy E. For finding the local minimum of a function which depends on 

several variables, there are a lot of algorithms. A local minimum of E in the 

neighbourhood of the initial geometry provided can be found using these algorithms. 

Geometry optimizations are needed to be performed carefully. All the possible 

conformations of a molecule must be optimized carefully if the molecule has more than 

one conformation. This helps in locating the structure with global minimum. 

      

 

 

7 



 
 

1.5.2. The Computational Part  

For optimization of the geometry of a molecule, we usually start with a possible guess 

structure for the equilibrium geometry. In my work, this guess geometry is generated 

using Gabedit software. Once the guess geometry is provided, we look for the minimum 

nearest geometry in its neighbourhood. For solving the electronic Schrӧdinger equation to 

get E and its gradient at that guess geometry, a basis set is chosen and SCF MO or some 

other method is performed. Using the calculated E and its gradient ∇E, the geometry 

optimization program then creates a new set of values for the 3N-6 coordinates. This new 

set of values is more likely to be closer to the minimum geometry structure and the E and 

its gradient ∇E at the new set of values are calculated by the program. Again, another 

improved set is generated and SCF calculation is repeated using the calculated values of 

E and its gradient. This process is repeated until a value of ∇E which differs negligibly 

from zero is obtained. A value of ∇E which differs negligibly from zero is an indication 

that a minimum geometry may have been found. The threshold potential is decided 

beforehand and it can be varied. 

 

1.5.3. Hartree-Fock Theory 

 

In Hartree-Fock theory, the wave function Ψ0 is defined as a product of one electron 

wave functions which are referred to as molecular spin orbitals. The wave function Ψ0 is 

antisymmetric with respect to electron coordinate interchange. This is called a Slater 

determinant form of the wave function. The molecular spin orbitals can be expanded in 

terms of linear combination of atom centred basis functions. In this method, due to all 

other electrons, each electron moves in the average field. The molecular orbitals that we 

obtain from this calculation are the eigen functions of the Fock operator and its expansion 

coefficients are determined in a self consistent way. However, due to motions of different 

electrons, taking care of the correlation is not possible in HF theory. The correlation due 

to motions of opposite spin electrons is completely neglected in HF theory in spite of the 

fact that the inherent antisymmetry property of this type of wave function takes care of 

the correlation of electron of the same spin partially and thus, HF theory doesn’t account 

for a certain component of energy which is important to understand bonding and 

geometry even if it is able to account for the most of the total energy of a molecule. This  

8 



 
 

can be solved by the electron correlation techniques. The electron correlation energy has 

been defined as the difference between the HF energy and the exact nonrelativistic energy 

of a system. For the accurate understanding of molecular geometries and energies, 

electron correlation energy is necessary and should be taken into account.  

 

1.5.4. M06L Theory 

M06L level of theory is a DFT belongs to the M06 suite of functionals which
 
are M06-L, 

M06, M06-2X and M06-HF, with a different amount of exact exchange on each one. 

M06-L is fully local without HF exchange while M06, M06-2X and M06-HF has 27%, 

54% and 100% of HF exchange respectively. They are constructed with empirical fitting 

of their parameters, but constraining to the uniform electron gas. M06-L is fast and good 

for transition metals, inorganic and organometallics while M06 is mainly used for main 

group, organometallics, kinetics and non-covalent bonds. On the other hand M06-2X is 

used for main group and kinetics whereas M06-HF is for charge transfer TD-DFT and 

systems where self interaction is pathological. 

 

1.6. Aim of our Study 

In first part this project, we are trying to optimize the structure of dimers using 

electrostatics. The water dimer, (H20)2  , has been used as a model and we considered 

writing a program for optimisation of the structures of  dimers.  In the second part, we 

concentrated on hydrogen bonded neutral clusters of ammonia, (NH3)n (n = 2-6) and  

have been theoretically investigated employing the  basis set aug-cc-pvdz at the Hartree-

Fock (HF) level as well as with M06L level of theory. 
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CHAPTER 2 

Results and Discussions  

The clusters of ammonia, (NH3)n (n = 2-6), (along with a search for their corresponding 

energetically close isomers) were optimized at the HF and M06L levels of theory with the 

aug-cc-pvdz basis set to compare their performances in the description of the structures. 

Fig. 2.1-2.6 shows the optimized geometries of ammonia clusters: 

 
                           (a) NH3DIMER1                                      (b) NH3DIMER2 

 

Fig. 2.1: Two geometries for ammonia dimer, (a) “eclipsed” (b) “staggered”. 

 

Among the two geometries of ammonia dimer, the staggered geometry is more stable 

than the eclipsed geometry. 

 
Fig. 2.2: Single geometry for ammonia trimer 
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                   (a) NH3TETRAMER1                                (b) NH3TETRAMER2 
 

 

 

(c) NH3TETRAMER3 

 

Fig. 2.3: Three structures for ammonia tetramer. 

 

 

Among these three structures of ammonia tetramer, the first structure is the most stable 

since there is a full co-operative network of hydrogen bonds.   
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                     (a) NH3PENTAMER1                              (b) NH3PENTAMER2         

 
                    (c) NH3PENTAMER3                               (d) NH3PENTAMER4 

 

Fig. 2.4: Four structures of ammonia pentamer. 

 

Among these four structures of ammonia pentamer, the fourth structure is found to be the 

most stable. 
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                   (a) NH3HEXAMER1                                   (b) NH3HEXAMER2 

 
                  (c) NH3HEXAMER3                 (d) NH3HEXAMER4 

 
                                                        (e) NH3HEXAMER5 

 

Fig. 2.5: Five structures of ammonia hexamer. 

 

Among these five structures of ammonia pentamer, the third structure is found to be the 

most stable. 
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Table 2.1: Interaction Energies in kcal/mol of Ammonia clusters 

The energy (in au) values of NH3 at various levels are: RHF = -56.2056 ,                                                   

M06L = -56.5591 
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Cluster RHF                       M06L 

NH3DIMER1 -2.12                       -2.80 

NH3DIMER2 -2.08                       -2.76 

NH3TRIMER1 -6.94                     -10.18 

NH3TETRAMER1 -10.88                     -15.57 

NH3TETRAMER2 -8.62                     -12.48 

NH3TETRAMER3 -7.06                       -9.60 

NH3PENTAMER1 -10.11                     -14.44 

NH3PENTAMER2 -9.71                     -13.97 

NH3PENTAMER3 -12.38                     -17.58 

NH3PENTAMER4 -12.72                     -20.48 

NH3HEXAMER1 -12.41                     -17.09 

NH3HEXAMER2 -14.10                     -21.74 

NH3HEXAMER3 -16.10                     -24.21 

NH3HEXAMER4 -13.73                  Not found 

NH3HEXAMER5 -14.50                  Not found 
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