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Abstract

The issue of texture specific Quark mass matrices has been presented here by

incorporating Weak Basis Transformation. We have also thought to look the same

problem from another angle by using Poincare Theorem and Weyls Inequality.
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1
Introduction

The understanding of Fermion masses is one of the important problem of

flavor Physics. The biggest challenge in this theory is understanding of

fermion masses, spanning many orders of magnitudes in a unified frame-

work. The theoretical understanding of fermion masses goes along two

approaches.These are ’top-down’ and ’bottom-up’ approaches. There have

been made large number of attempts from top-down approach like Grand

Unification,Super symmetry,and super strings etc. But almost non of them

provide compelling concept for flavor dynamics. Here i have adopted The ’

bottom-up’ approach to understand this problem. In bottom-up approach, we

find phenomenological fermion mass matrices which are compatible with low

energy data i.e. compatible with physical observable like Quark and Lepton

masses. Texture specific mass matrices provide a good example bottom-up

approach.Many attempts have been made to find fermion mass matrices

which are compatible with low energy data and to integrate textures within

grand unified theory. However the findings of fermion mass matrices which

are compatible with low energy data and with texture framework has not

been found yet.

I have made an attempt to understand the fermion mass matrices which are

compatible with low energy data and with texture framework in agreement

with weak basis transformation.
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2
Weak Basis Transformation

2.1 Fermion Mass Matrices

In the standard model of strong, weak and electromagnetic interactions the

elementary particles are quarks and leptons and these are categorized in

three generations.

Quarks:

 u

d

,

 c

s

,

 t

b

,

Leptons:

 νe

e−

,

 νµ

µ−

,

 ντ

τ−



The spontaneous symmetry breaking of SU(2)× U(1) gauge group to U(1),

through the Yukawa couplings and the vacuum expectation value of the

neutral Higgs field provides masses to fermions. The Lagrangian of the

Yukawa sector of the standard model is [P1]:

L = Y ij
d Q̄

i
LφD

j
R + Y ij

u Q̄
i
Lφ̃U

j
R + Y ij

e L̄
i
LφE

j
R + h.c. (2.1)

where φ is the Higgs doublet under SU(2) and φ̃ = ιτ2φ
†

3



Here, Yu, Yd, Ye are 3× 3 matrices with 18 real parameters each. After the

spontaneous symmetry breaking, the Higgs acquire a vacuum expectation

value (VEV) v

φ = 1√
2

 0

v + h

 , φ̃ = 1√
2

 v + h

0

 (2.2)

which leads to the introduction of sensationalized 3× 3 quark mass matrices

(at present ignore the lepton part)

M ij
u = v√

2
Y ij
u (2.3)

M ij
d = v√

2
Y ij
d (2.4)

Each mass matrix contains 18 parameters in general but we know that a

complex matrix can be decomposed in to products of a hermitian and unitary

matrix. so we can write our mass matrices in to products of a hermitian and

unitary matrix. we can absorb the unitary part of it into right handed Quark

fields. Now our Each mass matrices are just a hermitian matrix with total 9

independent parameters.

2.2 The Mass Matrices of Quark

The matrices MU and MD are for the up and down sector of quarks.These

mass matirces total of 18 independent parameters , larger in number com-

pared to only 10 physical observables.These ten observables are six quark

masses, three mixing angles and CP violating phase. In the general case mass

terms are quadratic in terms of fermion fields. The quark mass terms, below

the electroweak symmetry breaking, is

Q̄ULMUQUR + Q̄DLMDQDR (2.5)

4 Chapter 2 Weak Basis Transformation



where QUL(R) and QDL(R) are left handed (right handed) quark fields for up

sector (u, c, t) and down sector (d, s, b) respectively. The matrices MU and MD

are for the up and down sector quarks respectively. The above equation has

to be re-expressed in terms of physical quark fields to make any sense. This is

achieved by diagonalizing the mass matrices via bi-unitary transformations.

V †ULMUVUR = MU
diag ≡ diag (mu,mc,mt) (2.6)

V †DLMDVDR = MD
diag ≡ diag (md,ms,mb) (2.7)

where mu,md, etc. are eigenvalues of the quark mass matrices which corre-

spond to physical quark masses. The equation (1.5) can be re-written using

Eqs. (1.6) and (1.7) as

Q̄ULVULM
diag
U V †URQUR + Q̄DLVDLM

diag
D V †UDQUD (2.8)

which in terms of physical fields are

Q̄phys
UL

Mdiag
U Qphys

UR
+ Q̄phys

DL
Mdiag

D Qphys
DR

(2.9)

where Qphys
UL

= V †ULQUL and Qphys
DL

= V †DLQDL and so on. The mismatch in

the diagonalization of up and down matrices leads to the definition of quark

mixing matrix, known as the Cabibbo-Kobayashi-Maskawa (CKM) matrix,

given by

VCKM = V †ULVDL (2.10)

The CKM matrix describes the weak interaction eigenstates (d′, s′, b′) of the

quarks in terms of their flavour eigenstates (d, s, b), e.g.,


d′

s′

b′

 =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb



d

s

b

 (2.11)

The CKM matrix is a unitary matrix which describes the transition of one

quark into another. A general n× n unitary matrix has n2 parameters, n(n−1)
2
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of these are the Eulers angles and remaining n(n+1)
2 are the phases. However,

some of these phases can be rotated away. So, in a n×n we are left with only
(n−1)(n−2)

2 measurable phases. Thus, in the case of three families of quarks,

the mixing matrix is expressed in terms of three angles and one phase, the

latter being responsible for CP violation.

The SM imposes the unitarity constraint on the quark mixing matrix. The

unitarity of CKM matrix leads to nine relations, three being the normalization

conditions and the rest six are non-diagonal relations which are defined in

the follwing way ∑
α=d,s,b

ViαV
∗
jα = δij (2.12)

∑
i=u,c,t

ViαV
∗
iβ = δαβ (2.13)

where the Greek indices run over the down type quarks (d, s, b) and the Latin

ones run over the up type quarks(u, c, t).

2.3 The Technology

The mass matrices in the Standard Model are completely arbitrary 3 × 3

complex matrices. However, they can be reduced to hermitian matrices with

less no. of indpendent parameters . However, the above prescription still

leaves us with 18 independent parameters which are still in excess when

compared to the number of physical observables -six quark masses, three

mixing angles and a CP violating phase. To account for this redundancy,

we require some additional assumptions. In this context the concept of

textures was introduced implicitly by Weinberg [S2] and explicitly by Fritzsch

[F1], where in certain elements of the mass matrices are assumed to be

highly suppressed or can be considered zero also. The zero elements of the

mass matrices can be characterized as texture zeros defined in a particular

manner.

6 Chapter 2 Weak Basis Transformation



A particular texture structure is said to be texture n zero, if it has n number of

non-trivial zeros,for example, if the sum of the number of diagonal zeros and

half the number of the symmetrically placed off diagonal zeros is n.

The Fritzsch’s-like texture specific hermitian quark mass matrices have the

following form.

MU =


0 AU 0

A∗U DU BU

0 B∗U CU

 , MD =


0 AD 0

A∗D DD BD

0 B∗D CD

 (2.14)

Here, Ai = |Ai|expιαi and Bi = |Bi|expιβi with i = U,D. Each of the above

matrix is texture 2 zero type.

One particular facility available to achieve texture zeroes is of the Weak Basis

Transformations. Branco et al [B14] initiated the idea of WB transforma-

tions to introduce the texture zeroes compatible with the SM so as to lend

predictability to the general mass matrices. Initially, texture zeroes were

introduced as ansatz. However, efforts have been made to deduce these

from symmetry considerations as well as from general considerations. In

this chapter we would attempt the introduction of textures though general

considerations.

In the SM one has the freedom to make a unitary transformation W on the

quark fields e.g.,

qL → UqL, qR → UqR, q
′
L → Uq′L, q

′
R → Uq′R (2.15)

under which gauge currents

LW = g√
2

(u, c, t)γµ


d

s

b


L

Wµ + hc (2.16)

2.3 The Technology 7



remain real and diagonal but the mass matrices transform as

Mu → U †MuU , Md → U †MdU (2.17)

2.4 The (1,1) Weak Basis Zero

In this section we present the results of Branco et al. [B14]. We discuss the

zeroes occurring at (1,1) position in up and down quark mass matrices. The

most general transformation that leaves the mass matrices hermitian is:

Mu −→M ′
u = U †MuU (2.18)

Md −→M ′
d = U †MdU (2.19)

where U is an arbitrary unitary matrix. In such a basis, we can always find

a set of unitary matrices {Uu, Ud} which can diagonalize the mass matrices

such that

D′u = U †uMuUu (2.20)

D′d = U †dMdUd (2.21)

where Du ≡ diag (mu,mc,mt) and Dd ≡ diag (md,ms,mb). We choose to

work in basis where Mu is diagonal and Md is hermitian, i.e.

Mu = Du (2.22)

Md = V DdV
† (2.23)

The matrix V is an arbitrary unitary matrix. Effecting a WB transformation

with U , under which Mu and Md transform as:

Mu −→M ′
u = U †DuU, (2.24)

Md −→M ′
d = U †V DdV

†U (2.25)

8 Chapter 2 Weak Basis Transformation



that (M ′
u)11 = (M ′

d)11 = 0. This requires the solution of the following system

of equations.

mu | U11 |2 +mc | U12 |2 +mt | U31 |2 = 0 (2.26)

md | X11 |2 +ms | X12 |2 +mb | X31 |2 = 0 (2.27)

| U11 |2 + | U12 |2 + | U13 |2 = 1 (2.28)

where X = V †U and thus:

|Xi1|2 = |V1i|2|U11|2 + |V2i|2|U21|2 + |V3i|2|U31|2+

2Re(V ∗1iU11V2iU
∗
21) + 2Re(V ∗1iU11V3iU

∗
31) + 2Re(V ∗2iU21V3iU

∗
31),

(i = 1, 2, 3)

(2.29)

The system of Eqs. (2.9) has a real solution only if, at least one of the mass

parameters mu,mc,mt and one of the parameters md,ms,mb is negative. For

the arbitrary mass matrices Mu andMd, one has to find a unique U satisfying

(2.9). It is not always possible to find analytic solutions for (Eqn 2.9). For the

simple case, when V = 1, X = U and we obtain the following solutions:

| U11 |2 = mcmb −msmt

∆ (2.30a)

| U21 |2 = mdmt −mumb

∆ (2.30b)

| U31 |2 = mums −mdmc

∆ (2.30c)

where

∆ = (mt −mu)(mb −ms)− (mt −mc)(mb −md) (2.31)

Next, if we choose V to be a realistic CKM matrix

V =


cosθ sinθ 0

−sinθ cosθ 0

0 0 1

 (2.32)

2.4 The (1,1) Weak Basis Zero 9



In this case, Eqs.(2.9) become

| X11 |2 = cos2θ | U11 |2 +sin2θ | U21 |2 −sin2θ U11U21 (2.33a)

| X21 |2 = sin2θ | U11 |2 +cos2θ | U21 |2 +sin2θ U11U21 (2.33b)

| X31 |2 = | U31 |2 (2.33c)

Using unitarity, we can write

(mu −mt) | U11 |2 +(mc −mt) | U21 |2 +mt = 0(2.34a)

(mdcos
2θ +mssin

2θ −mb) | U11 |2 +mdsin
2θ +mscos

2θ −mb) | U21 |2

+(ms −md) sin2θ U11U21 +mb = 0
(2.34b)

Parametrizing the solutions as:

√
mt −mu U11 = √mt cosφ (2.35a)
√
mt −mu U21 = √mt sinφ (2.35b)

Denoting

a = mb − (mb −mdsin
2θ −mscos

2θ) mt

mt −mc

(2.36a)

b = (ms −md)
mtsin2θ√

(mt −mu)(mt −mc)
, (2.36b)

c = mb − (mb −mdcos
2θ −mssin

2θ) mt

mt −mu

(2.36c)

introducing z ≡ tanφ, the solution is given by the quadratic equation

az2 + bz + c = 0 (2.37)

If θ = 0 and V = 1, we recover the results of Eqs. (2.11).

10 Chapter 2 Weak Basis Transformation



2.5 The (One Three, Three One) Problem

In this section we present our attempts and partial results to obtain texture

two zero matrices from the most general 3× 3 unitary matrix using the recipe

of weak basis transformations. Fritzch in his paper [F2] had discussed the

possibility of achieving the texture two form given below,

MU =


EU AU 0

A∗U DU BU

0 B∗U CU

 , MD =


ED AD 0

A∗D DD BD

0 B∗D CD

 (2.38)

starting from the hermitian mass matrices,

Mq =


Eq Aq Fq

A∗q Dq Bq

F ∗q B∗q Cq

 , (q = U,D) (2.39)

through a common unitary transformation. We tried to find out the exact

form of the unitary matrix which accomplishes this task. We start by choosing

a basis in which MU is diagonal and MD hermitian.

MU =


m11 0 0

0 m22 0

0 0 m33

 , MD =


µ11 µ12e

iη12 µ13e
iη13

µ12e
−iη12 µ22 µ23e

iη23

µ13e
−iη13 µ23e

−iη23 µ33


(2.40)

The unitary matrix for effecting the weak basis transformation is the following

:

U = U1


cosα cos γ sinα cos γ sin γei(α3−δ)

− sinα cos β − cosα sin β sin γeiδ cosα cos β − sinα sin β sin γeiδ sin β cos γ

sinα sin β − cosα cos β sin γeiδ − cosα sin β − sinα cos β sin γeiδ cos β cos γ

U2

(2.41)

2.5 The (One Three, Three One) Problem 11



where U1 and U2 are given by

U1 =


1 0 0

0 ei(α4−α3) 0

0 0 ei(α5−α3)

 , U2 =


eiα1 0 0

0 eiα2 0

0 0 eiα3

 (2.42)

The result of the weak basis transformation on the matrices is the following.

M ′
U = U †MUU (2.43a)

M ′
D = U †MDU (2.43b)

Since, we are interested in only (M ′
U)13 and (M ′

D)13, we study the transfor-

mation of only those elements.

(M ′
D)13 = U †1i(MD)ijUj3 (2.44)

, where i, j = 1, 2, 3 or

(M ′
D)13 = U †11{M11U13 +M12U23 +M13U33}+

U †12{M21U13 +M22U23 +M23U33}+

U †13{M31U13 +M32U23 +M33U33}

(2.45)
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which translates into

(M ′
D)13 = 0 = µ11 cosα cos γ sin γei(α3−α1−δ)+

µ22 sin β cos γ(sinα cos β − cosα sin β sin γe−iδ)ei(α3−α1)

+µ33 cos β cos γ(sinα sin β − cosα cos β sin γe−iδ)ei(α3−α1)

+µ12[cosα cos2 γ sin βei(α4−α1+η12)

+sinγ(sinα cos β − cosα sin γe−iδ)ei(2α3−α1−α4−η12−δ)]

+µ13[cosα cos β cos2 γei(α4−α1+η13)

+ sin γ(sinα sin β − cosα sin β sin γe−iδ)ei(2α3−α5−α1−η13−δ)]

+µ23[cos β cos γ(sinα cos β − cosα sin β sin γe−iδ)ei(α5+α3−α4−α1+η23)

+ sin β cos γ(sinα sin β − cosα cos β sin γe−iδ)ei(α4+α3−α5−α1−η23)]

(2.46)

Similarly, the other equation is:

(M ′
U)13 = 0 =m11 cosα cos γ sin γei(α3−α1−δ)

+m22 sin β cos γ(sinα cos β − cosα sin β sin γe−iδ)ei(α3−α1)

+m33 cos β cos γ(sinα sin β − cosα cos β sin γe−iδ)ei(α3−α1)

(2.47)

Now, we have to simultaneously solve Eqs. (2.27 & 2.28). We make the

following assumptions to simplify the above equations.

α3 = α1

δ = 0

α4 − α3 + η12 = 0

α5 − α3 + η13 = 0

α5 − α4 + η23 = 0

(2.48)

The assumptions of Eqn. (2.29), along with γ = 0 reduces Eqn. (2.28) to

m22 sinα sin 2β +m33 sinα sin 2β = 0 (2.49)

2.5 The (One Three, Three One) Problem 13



=⇒ either sinα = 0 or sin 2β(m22 +m33) = 0. If sinα 6= 0,then

sin 2β(m22 +m33) = 0 (2.50)

which gives β = 0, π2 . γ = 0 and β = 0, reduces Eqn. (2.27) to

µ13 cosα + µ23 sinα = 0 (2.51a)

tanα = −µ13

µ23
(2.51b)

whereas γ = 0 and β = π
2 , reduces Eqn. (2.27) to

tanα = −µ12

µ23
(2.52)

On the other hand, if sinα = 0 =⇒ α = 0

We obtain yet another solution with α = 0 and γ = 0 which is

tan β = −µ12

µ13
(2.53)

With γ = 0 β = π
2 and tanα = −µ12

µ23
, the matrix U becomes

U =


µ23√
µ2

12+µ2
23
− µ12√

µ2
12+µ2

23
0

0 0 1

− µ12√
µ2

12+µ2
23
− µ23√

µ2
12+µ2

23
0

 (2.54)

By virtue of Eqn. (2.24a), M ′
U becomes

M ′
U =


m33µ2

12
µ2

12+µ2
23

+ m11µ2
23

µ2
12+µ2

23

m33µ12µ23
µ2

12+µ2
23
− m11µ12µ23

µ2
12+µ2

23
0

m33µ12µ23
µ2

12+µ2
23
− m11µ12µ23

µ2
12+µ2

23

m11µ2
12

µ2
12+µ2

23
+ m33µ2

23
µ2

12+µ2
23

0

0 0 m22

 (2.55)

Similary, Eqn. (2.24b) leads to
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M
′ D

=

            

µ
23

( µ
11
µ

23
√

µ
2 12

+
µ

2 23
−

µ
12
µ

13
√

µ
2 12

+
µ

2 23

)
√
µ

2 12
+
µ

2 23
−

µ
12

( µ
13
µ

23
√

µ
2 12

+
µ

2 23
−

µ
12
µ

33
√

µ
2 12

+
µ

2 23

)
√
µ

2 12
+
µ

2 23
−
µ

12

( µ
11
µ

23
√

µ
2 12

+
µ

2 23
−

µ
12
µ

13
√

µ
2 12

+
µ

2 23

)
√
µ

2 12
+
µ

2 23
−

µ
23

( µ
13
µ

23
√

µ
2 12

+
µ

2 23
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We notice that Md has been put in the texture two zero form (Eqn. 2.19)

though the weak basis transformation but the same form couldn’t be achieved

for Mu. We have additional zeroes on symmetrical positions (2,3) & (3,2).

Efforts were made to get rid of these zeroes using another weak basis trans-

formation but that couldn’t be achieved without destroying zeroes at (1,3) &

(3,1) position.
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3
Weyls Ineqaulity

Within the framework of Grandunified theories We can Express The mass

matrices Me and Md as

Md = H + F (3.1)

Me = H − 3F (3.2)

Under the condition when CP Vialation is ignored

H and F are symmertic coupling matrices with real entries.We know Me and

Md both are hermitian Matrices. To understand the same problem with which

we have been struggling in above chapter, here we may look it from a different

angle. To investigate the problem from this end we need to understand some

theorem of linear algebra. The theorems are about, given two hermitian

operators(Say A & B) with their know values of Eigen values.

What will be the relationship between the eigenvaules of Operator which is

linear combination of those two operators (Say a A + b B) and eigenvalues

of A & B.

17



3.1 The Poincare Theorem

Consider a Hermitian operator A acting on an ’n’ Dimensional Vector Space

H. Let the Eigenvectors of Hermitian Operator A|ai > s are complete basis

set of space H with Eigenvalues α1 > α2 > ........ > αn.

3.1.1 The Theorem States

A. You can not Choose a k Dimensional Subspace M in H such that all its

Unit vector has

< X|A|X >> αk (3.3)

Proof : The proof is simple. souppse we span the subspace M by Egenvectors

of A then We need ot choose k vector out f n |a1 >, |a2 >, ......|an > .

Even if we choose first k eigen vectors, It will include |ak > hence <ak|A|ak>

= ak. In all other cases you have to choose atleast one bai. >such that i >

k

then in all those cases it Fallows

< X|A|X >≤ αk (3.4)

.

B. You cannot choose a k Dimentional subspace in H such that all its unit

vectors has < Y |A|Y > < αn−k+1.
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Proof : By using the same proof as above, but now from opposite end of

|a1 >, |a2 >, ......|an > .

3.2 The Weyls Ineqality

Consider three Hermitian operatrs A, B, C actingn on ’n’ Dimentional Vector

space where C = A + B.

Here we are intrested in understanding the realationship between Eigenvalue

of Operator C with eigenvalues of A & B .

Let |a1 >, |a2 >, ......|an >, and|b1 >, |b2 >, ......|bn >and |c1 >, |c2 >, ......|cn>

be the Eigen vectors and a1,a2, ......an, and b1,b2, ......bnand c1,c2,......cnbe the

Eigenvalues of A , B , C reespectively . Then The Weyls ineqality is

ci+j−1 = ai + bj (3.5)

where

i+ j − 1 < n (3.6)

Proof : To Understand this inequality consider 3 subspaces L, M, P spaned by

{ |ai >, ......|an >},{|bj >, ......|bn >}and {|c1 >, |c2 >, ......|ck>}.

The dimention of each subspace is n-i+1 , n-j+1 and k. If k = i+j-1 then

L Intrscsn Mintrscsn P � φ As sum of Dimentions is 2n+1 thus there are

vectors in L M P say X Such that X belnong to L M P.
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Then Poincare Theorem Says

ci+j−1 ≤< X|C|X >=< X|A+B|X >=< X|A|X > + < X|B|X > (3.7)

But we know

< X | A | X > ε[an, ai] (3.8)

,

< X|B|X > ε[bn, bj] (3.9)

and

< X|C|X > ε[ci+j−1, c1] (3.10)

thus

ci+j−1 ≤< X|C|X >=< X|A+B|X >=< X|A|X > + < X|B|X >≤ ai + bj

(3.11)

ci+j−1 ≤ ai + bj (3.12)

ie

c1 ≤ a1 + b1 (3.13)

.
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3.3 The More Genaralise Statement of Weyls

Ineqality

Cnsidering the same situation as above.Now we will study the more genar-

alised form of Weyls Ineqaulity.

ai + bn ≤ ci ≤ ai + b1 (3.14)

Proof : The right part of this Ineqaulity is trival and can be derived from

Weyls Ineqality by just putting j = 1 .

Now lets understand the left part

ai + bn ≤ ci (3.15)

Again consider 3 subspaces P Q R spaned by { |ci >, ......|cn>} , {|a1 >,

......|ai >} and {|bij >, ......|bn >}.The dimention of each subspace is n-i+1 ,

i , n-i+1.

The dimension of these subspaces are

n− i+ 1 + i+ n− i+ 1 = 2n+ 2− i > n (3.16)
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So Intersection of these 3 subspaces is not empty. Let say X belong to all

these spaces, Then

ci ≥< X|C|X >=< X|A+B|X >=< X|A|X > + < X|B|X > (3.17)

But we know

< X|A|X > ε[ai, a1] (3.18)

,

< X|B|X > ε[bn, bi] (3.19)

and

< X|C|X > ε[cn, ci] (3.20)

thus

ci ≥< X|A|X > + < X|B|X >≥ ai + bn. (3.21)

ci ≥ ai + bn (3.22)

.

Thus The form more genaralised form of Weyls Ineqaulity.

ai + bn ≤ ci ≤ ai + b1 (3.23)

22 Chapter 3 Weyls Ineqaulity



Eg:

c1 ≤ a1 + b1 (3.24)

.

cn ≥ an + bn (3.25)

.

3.4 The Genaral Result

Consider Three Hermitian operatrs A, B and C actingn n dimentional linear

vectr space Where C = A + B.Here we are intrested in understanding the

realationship between Eigenvalue of Operator C with eigenvalues of A & B

.

Let |a1 >, |a2 >, ......|an >, and|b1 >, |b2 >, ......|bn >and |c1 >, |c2 >, ......|cn>

be the Eigen vectors and a1,a2, ......an, and b1,b2, ......bnand c1,c2,......cnbe the

Eigenvalues of A , B , C reespectively .

Ĉ|ck >= (A+B)|ck > (3.26)

< cj|Ĉ|ck >=< cj|cA+B|ck > (3.27)

We can write

|ck >=
∑
i

< ai|ck > |ai > And < cj| =
∑
i

< cj|ai >< ai| (3.28)
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< cj|Ĉ|ck >=
∑
i

< cj|ai >< ai|(A+B)
∑
l

< al|ck > |al > (3.29)

=
∑
i

∑
l

< cj|ai >< al|ck >< ai|(A+B)|al > (3.30)

=
∑
i

∑
l

< cj|ai >< al|ck >< ai|A|al > +
∑
i

∑
l

< cj|ai >< al|ck >< ai|B|al >

(3.31)

=
∑
i

∑
l

< cj|ai >< al|ck > alδ
i
l + +

∑
i

∑
l

< cj|ai >< al|ck >< ai|B|al >

(3.32)

For k = j

ck =
∑
l

‖ < cj|al > ‖2al +
∑
i

∑
l

< ck|ai >< al|ck >< ai|B|al > (3.33)

But note

< ai|A,B|al >=< ai|(AB +BA)|al > (3.34)
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=< aib(AB)bal > + < aib(BA)bal > (3.35)

= ai < aibBbal > +al < aibBbal > (3.36)

Putting this result in above Eqation

ck =
∑
l

‖ < ckbal > ‖2al +
∑
i

∑
l

< ckbai >< albck >< aibA,Bbal >
1

ai + al
.

(3.37)

If we knw the anticmmutator f A & B say t then

ck =
∑
l

‖ < ckbal > ‖2al +
∑
i

∑
l

< ckbai >< albck >< aibtbal >
1

ai + al
(3.38)

.

ck =
∑
l

‖ < ckbal > ‖2al +
∑
i

∑
l

< ckbai >< albck >< aibal >
t

ai + al
(3.39)

.ck =
∑
l

‖ < ckbal > ‖2al +
∑
l

< ckbal >< albck >
t

ai + al
δil (3.40)

.

ck =
∑
l

‖ < ckbal > ‖2al +
∑
l

t

2al
‖ < ckbal > ‖2 (3.41)
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ck =
∑
l

‖ < ckbal > ‖2(al + A,B
1

2al
) (3.42)
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