
Quantum Simulation of Quantum
Tunneling

Vikram Sharma

A dissertation submitted for the partial fulfilment
of BS-MS dual degree in Science

Indian Institute of Science Education and Research Mohali
December 2015

Certificate of Examination

This is to certify that the dissertation titled Quantum Simulation

of Quantum Tunneling submitted by Vikram Sharma (Reg. No.

MS10055) for the partial fulfillment of BS-MS dual degree programme of

the Institute, has been examined by the thesis committee duly appointed by

the Institute. The committee finds the work done by the candidate satisfac-

tory and recommends that the report be accepted.

Prof. Arvind Dr. Kavita Dorai Dr. Ramandeep S. Johal

(Supervisor) (Supervisor)

Dated: December 7, 2015

Declaration

The work presented in this dissertation has been carried out by me under

the guidance Prof. Arvind and Dr. Kavita Dorai at the Indian Institute of

Science Education and Research Mohali.

This work has not been submitted in part or in full for a degree, a diploma,

or a fellowship to any other university or institute. Whenever contributions

of others are involved, every effort is made to indicate this clearly, with due

acknowledgement of collaborative research and discussions. This thesis is a

bonafide record of original work done by me and all sources listed within

have been detailed in the bibliography.

Vikram Sharma

(Candidate)

Dated: December 7, 2015

In my capacity as the supervisor of the candidates project work, I certify that

the above statements by the candidate are true to the best of my knowledge.

Prof. Arvind Dr. Kavita Dorai

(Supervisor) (Supervisor)

4

Acknowledgment

First and foremost I wish to thank my advisors, Prof. Arvind and Dr.

Kavita Dorai for their excellent guidance. I have been amazingly fortunate

to have advisors like them who gave me the freedom to explore the subject

on my own and at the same time gave the valuable guidance and timely

advices to keep me going. I must thank them for their patience and en-

couragement when I was getting derailed from the path during the summer.

I could not have imagined having better advisors and mentors for my project.

I am also thankful to my committee member Dr. Ramandeep Singh Johal

for his insightful comments and questions during my presentations. I spe-

cially thank Prof. K.S. Viswanathan, who has been constantly addressing

to my questions related to academic as well as social life and suggesting

solutions to them. I am also very thankful to Dr. Rajeev Kapri, who has

been mentor for the last three years. His words gave me the much needed

motivation when I lost a semester due to a medical problem. Finally, I

need to thank Prof. N. Sathyamurthy for providing nice opportunities and

facilities at IISER Mohali.

I specially thank Harpreet Singh for helping me in the NMR experiments.

Also, I sincerely thank Amandeep Singh for the helpful discussions. I

would also like to thank the lab members: Debmalya Das, Shruti Dogra,

Navdeep Gogna, Satnam Singh, Rakesh Sharma, Jyotsana Ojha, Tara

George, Akshay Gaikwad, Jaskaran Singh, Atul Arora, Rajendra Bhati,

Kishor Bharti, Aakash Sherawat, Varinder Singh and Dr. Arun.

Friends are prized possessions. My journey at IISER Mohali would not have

been the same without my friends. First of all, I would like to thank Vivek

who has been an incredible friend to me over the years. I must mention the

name of Anju, who supported and helped me in times of trouble. I need

to further thank my friends: Samridhi, Jagdeep and Deepanshu, whom

I could always count on. They made my time at IISER Mohali unforgettable.

I fall short of words to thank my sisters for being very supportive and

encouraging throughout my whole life. Last but not the least; I would like

to thank my parents for all the support and unconditional love they have

provided me over the years. Without their supports and sacrifices, I would

have never gotten to where I am today. 5

6

List of Figures

1.1 Circuit representation of CNOT gate 5

1.2 Circuit swapping two qubits. 6

2.1 Quantum Circuit for Quantum Fourier transform. Swap gates are not

shown in the circuit. 13

2.2 Quantum Circuit for Phase Estimation 16

2.3 Classical Gradient Estimation using d+1 points : ∂f
∂xi
'
(
f(~x+l~ei)−f(~x)

l

)
where ~ei is the ith normalized vector 18

2.4 Quantum Circuit for solving the linear SystemA~x = ~b 26

3.1 Quantum Circuit for one time step of the simulation. 37

3.2 Probability distribution of the particle in a double well potential as a

function of time for the first ten steps of two qubit simulation. 39

3.3 Probability distribution of the particle as a function of time for the first

ten steps of three qubit simulation. 42

3.4 Probability distribution of the particle as a function of time for a free

particle (Two qubits). 44

3.5 Probability distribution of the particle as a function of time for a free

particle (Three qubits). 46

3.6 Probability distribution of the particle as a function of time (2 Qubits).

There is a potential barrier at site 3. 49

3.7 Probability distribution of the particle as a function of time with a

barrier at location 5(3 Qubits). 51

3.8 Probability distribution of the particle as a function of time (3 Qubits)

with barriers at location 3 and location 5. 54

3.9 Probability distribution of the particle (superposition initial state) as

a function of time (3 Qubits) with a barriers at location 3 and 5. 56

7

3.10 Probability distribution of the particle as a function of time (3 Qubits)

with three barriers at locations 3, 4 and 5. 58

3.11 Probability distribution of the particle (superposition initial state) as

a function of time (3 Qubits) with a barriers at locations 3, 4 and 5. . . 60

3.12 Probability distribution of the particle as a function of time for Dirac

Comb Potential. 62

4.1 Spectra for Hydrogen after the four rotations: II, IX, IY, XX 76

4.2 Spectra of Hydrogen after adding a phase of 900 for the four rotations:

II, IX, IY, XX . 77

4.3 Spectra for Carbon after the four rotations: II, IX, IY, XX 78

4.4 Spectra of Carbon after adding a phase of 900 for the four rotations:

II, IX, IY, XX . 79

4.5 Quantum State Tomography: Real part of the elements of Density matrix 80

4.6 Quantum State Tomography: Imaginary part of the elements of Density

matrix . 80

4.7 Quantum Circuit for two qubit simulation of quantum tunneling. . . . 81

4.8 Pulse sequence for Quantum Fourier Transform gate. 82

4.9 Pulse sequence for Kinetic energy gate. 82

4.10 Pulse sequence for Potential energy gate. 83

8

List of Tables

3.1 Probabilities at four positions for different time steps (Double Well

Potential- 2 Qubits) . 40

3.2 Probabilities at eight positions for different time steps (Double Well

Potential- 3 Qubits) . 42

3.3 Probabilities at four positions for different time steps (Free Particle - 2

Qubits) . 45

3.4 Probabilities at four positions for different time steps (Free Particle - 3

Qubits) . 47

3.5 Probabilities at four positions for different time steps (Potential Barrier

at Position 3) . 49

3.6 Probabilities at eight positions for different time steps (Potential barrier

at site 5.) . 52

3.7 Probabilities at eight positions for different time steps (Potential barrier

at site 3 and 5.) . 54

3.8 Probabilities at eight positions for different time steps(Potential barrier

at site 3 and 5.) . 56

3.9 Probabilities at eight positions for different time steps (Potential bar-

riers at site 3, 4 and 5.) . 59

3.10 Probabilities at eight positions for different time steps (Potential bar-

riers at site 3, 4 and 5.) . 61

3.11 Probabilities at eight positions for different time steps (Dirac Comb

Potential- 3 Qubits) . 63

i

Notation

I Identity Matrix(in appropriate dimensions)

σx Pauli-X Matrix

σy Pauli-Y Matrix

σz Pauli-Z Matrix

Rx Rotation along x-axis

Ry Rotation along y-axis

Rz Rotation along z-axis

H Hadamrd Gate

U Unitary Matrix

Tr[A] Transpose of matrix A

|0〉

(
1

0

)

|1〉

(
0

1

)

ii

Abstract

Quantum computer has the potential to solve certain problems which are hard for a

classical computer. It takes advantage of quantum mechanical phenomena such as su-

perposition and entanglement to achieve computations at significantly higher speeds.

Simulation of physical systems is one of the most important practical applications of

computation. It plays a crucial role in advancing the scientific knowledge and de-

veloping technologies. But as far as simulation of a quantum system is concerned,

the exponential increase of the Hilbert space with the system size forbids its efficient

simulation on a classical computer. The exponentially large basis set is needed to de-

scribe the system and it becomes too complicated to solve the Schrodinger equation

exactly. Quantum computer can make use of this exponential complexity of quantum

systems to simulate the dynamics of other quantum system. An exponential speed

up is achieved in simulation of a quantum system by a quantum computer. Here we

present the digital quantum simulation of quantum tunneling in certain one dimen-

sional potentials such as double well potential, Dirac comb potential, single potential

barrier in path, two potential barriers in path, and three potential barriers in path.

The algorithms are discussed for two qubit system as well as three qubit systems. For

potential barriers in path, results clearly demonstrate the tunneling of wave function

from one side of barrier to another. A similar behavior is observed for double well

potential where it tunnels from one well to another in addition to the oscillations

within the well. For the sake of comparison, we also simulated the evolution of free

particle with zero potential using the same schemes.

Other than the quantum simulation, we have discussed about quantum algorithms

and NMR quantum computing. Three recently developed quantum algorithms are dis-

cussed in detail: algorithm for estimating numerical gradients of a function, algorithm

to solve linear system of equations and algorithm to solve non-linear differential equa-

tions whose non-linear terms are polynomials. In NMR computing section, we have

discussed about pseudo state preparation, quantum state tomography, and simulation

of tunneling on an NMR quantum computer.

iii

iv

Contents

List of Figures 8

List of Figures i

Notation ii

Abstract iii

1 Quantum Computation 1

1.1 Introduction . 1

1.2 Quantum Bit/Qubit . 2

1.3 Quantum Gates: . 3

1.4 Measurement: . 7

2 Quantum Algorithms 9

2.1 Introduction . 9

2.2 Quantum Fourier Transform . 10

2.2.1 Discrete Fourier Transform . 10

2.2.2 Fast Fourier Transform . 10

2.2.3 Quantum Fourier Transform . 11

2.3 Phase Estimation . 14

2.3.1 Introduction . 14

2.3.2 Algorithm . 14

2.3.3 Circuit Diagram . 16

2.4 Algorithm for Numerical gradient estimation 17

2.4.1 Introduction . 17

2.4.2 Classical Algorithm . 17

2.4.3 Quantum Algorithm . 18

2.4.4 Computational Resources . 21

v

2.5 Algorithm to solve Linear Equations 22

2.5.1 Introduction . 22

2.5.2 Algorithm . 22

2.5.3 Circuit . 25

2.6 Algorithm to solve Non Linear Differential Equations 26

2.6.1 Introduction . 26

2.6.2 Algorithm . 27

2.6.3 Computational Resources . 30

2.6.4 Extension to Cubic or Higher Systems 30

2.7 Summary . 31

3 Quantum Simulation of Quantum Tunneling 33

3.1 Quantum Simulation . 33

3.2 Theoretical protocol for quantum simulation of quantum tunneling . . . 34

3.3 Results and Discussion . 38

3.3.1 Double Well Potential . 38

3.3.2 Free Particle . 42

3.3.3 Single potential barrier in the path 47

3.3.4 Two potential barriers in the path 52

3.3.5 Three potential barriers in path 56

3.3.6 Dirac Comb Potential . 61

4 NMR Quantum Computing 65

4.1 Introduction . 65

4.2 Pseudo-Pure State . 66

4.3 Single Qubit Gates . 68

4.4 Two Qubit Gates . 70

4.5 Quantum State Tomography . 72

4.6 Simulation of quantum tunneling on an NMR information processor . . 81

A Derivation of Fourier coefficient α which emerges after the Phase

estimation subroutine in Harrow’s algorithm 85

B Mathematica Codes 89

Bibliography 99

vi

Chapter 1

Quantum Computation

”It’s not a fantasy to explore this question about making computers that are much,

much, more powerful than the kind that we have sitting around now – in which a grain

of salt has all the computational powers of all the computers in the world.”

-Seth Lloyd

1.1 Introduction

Computer technology has improved over a long period of time. Its history involved a

long series of transformations from one type of physical realization to another: gears

to relays to valves to transistors to integrated circuits and so on. Today’s advanced

technology can produce chips with features only a fraction of micron wide. Soon,

the technology will yield even smaller parts and it is inevitable that a point will be

reached where the logic gates will be made up of only a handful of atoms. At these

length scales, the familiar classical laws of physics which determine the properties

of conventional logic gates no longer hold. The world at these tiny length scales

has entirely different behavior and is governed by laws of quantum mechanics. If

computers are to become smaller in future, quantum technology must supplant the

present conventional technology. The more interesting part is that this new quantum

technology can support an entirely new kind of computation where certain difficult

tasks that have been long thought intractable for a classical computer can be solved

quickly and efficiently [Ste97].

1

1.2 Quantum Bit/Qubit

The most fundamental unit of information in classical computation is bit. A bit is a

physical system which can be prepared in one of the two different states representing

two binary logical values: 0 or 1. Quantum computation is built upon an analogous

concept and the quantum analogue of bit is referred to as Qubit(quantum bit). Qubit

is a quantum system that encodes the ’0’ and the ’1’ into two distinguishable quantum

states. Unlike the classical bit, a qubit is not confined to its two basis states, but can

exist in a superposition state. The general state for a qubit can be written as:

|ψ〉 = α|0〉+ β|1〉 (1.1)

The numbers α and β are complex number which are constrained by the nor-

malization condition ||ψ|| = |α|2 + |β|2 = 1. All possible states of a qubit form a

two-dimensional complex vector space which can be visualized on a Bloch Sphere.

The special states |0〉 and |1〉 are called computational basis states.

The general state of a n-qubit system can be written as:

|ψ〉 =
2n−1∑
k=0

αk|k〉 (1.2)

where:
2n−1∑
k=0

|αk|2 = 1 (1.3)

The major properties that make qubits different from bits are the existence of

superposition states and the concept of entanglement.A quantum computer with n-

qubits can be in a state which is superposition of all the possible 2n states. This

superposition gives quantum computers their inherent parallelism. An operation on

this superposition state can be seen as on operation on 2n states simultaneously. In

contrast a classical computer can only be found in one of these 2nstates at any one

time. Thanks to superposition and entanglement, a quantum computer can thus

process a very large number of calculations simultaneously.

2

1.3 Quantum Gates:

The basic component of classical computer circuits are ”logic gates” which perform

manipulations of the information, converting it from one form to another. Similarly

in a quantum circuit, one must be able to manipulate the states of a qubit in order to

process the information. These manipulation are performed my quantum gates. Using

quantum gates one change the state of a qubit either unconditionally(eg. initialization

of qubit), or conditionally, depending on the previous state of the qubit (e.g., NOT

operation) or on the sate itself and state of another qubit (e.g., controlled rotation)

and so on. A lot of complicated gates can be imagined where the state of one or

more qubits depends on the state of arbitrary number of qubits. But all these compli-

cated gates/operation can be decomposed to a finite set of ”universal quantum gates”.

Only one- and two- qubit operations can be used to construct any arbitrary operation.

Although quantum gates follow Boolean Algebra, they differ from the classical logic

gates in a variety of ways. In a quantum system, the bit values are represented using

the quantum state of atomic system. Thus a logic gate can nether create or destroy

the state. So the possibility of gates such as AND is ruled out. Two peculiar proper-

ties which contribute to the uniqueness of the Quantum logic gates are:

(1) Reversibility:

The initial state of the qubit is transformed to the final state using only those pro-

cesses whose action can be inverted. This property is called reversibility.

(2) Unitarity: The transformation of the state through reversible operation is con-

strained by the condition that this operation must preserve the norm of vector which

is mapped from one orthonormal basis to another. Thus the transformation is unitary,

satisfying the following condition:

UU † = U †U = 1 (1.4)

Some basic logic gates widely used in quantum circuits are:

NOT Gate:

Similar to the classical case, a quantum NOT gate takes the state |0〉 to state |1〉

3

and vice versa. As it can be seen, it is a single qubit operator.

X : |x〉 −→ |x̄〉

X|0〉 −→ |1〉

X|1〉 −→ |0〉 (1.5)

In a matrix form the NOT gate can be written as:

X =

(
0 1

1 0

)
(1.6)

The action of X on a general qubit state α|0〉+ β|1〉 can be seen as:

X

[
α

β

]
=

[
β

α

]
(1.7)

Hadamard Gate:

It is a unique single-qubit gate with no classical analogue. Its uniqueness lies in

the fact that it transforms one computational basis state to a superposition of both

basis states.

H|0〉 =
1√
2

(|0〉+ |1〉)

H|1〉 =
1√
2

(|0〉 − |1〉) (1.8)

The matrix form for the Hadamard gate can be written as:

H =

(
1 1

1 −1

)
(1.9)

Hadamard gate is sometimes described as ’square root of NOT’ gate as it turns

|0〉 into halfway between |0〉 and |1〉 and has a similar effect on state |1〉.

CNOT gate:

4

The controlled-NOT or CNOT gate is a two-qubit quantum gate. Its two input qubits

are known as control-qubit and target-qubit. The action of CNOT gate may be de-

scribed as follow:

• If the control bit is in state |0〉, then the target bit is left alone.

• If the control bit is in state |1〉, then the target bit is flipped i.e., a NOT gate is

applied to the target bit.

In equations it can be written as:

CNOT : |00〉 −→ |00〉

CNOT : |01〉 −→ |01〉

CNOT : |10〉 −→ |11〉

CNOT : |11〉 −→ |10〉 (1.10)

or

CNOT : |x, y〉 −→ |x, x⊕ y〉 (1.11)

where ’⊕’ represents additional modulo two function.

The matrix form of CNOT-gate in the computational basis {|00〉, |01〉, |10〉, |11〉} is

written as:

CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 (1.12)

The circuit representation of CNOT- gate is shown in the figure[1.1]. Here the top

line represents the control qubit and the bottom line represents the target qubit.

Figure 1.1: Circuit representation of CNOT gate

5

SWAP gate:

It swaps the states of two qubits.

S|00〉 −→ |00〉

S|01〉 −→ |10〉

S|10〉 −→ |01〉

S|11〉 −→ |10〉 (1.13)

or

S : |x, y〉 −→ |y, x〉 (1.14)

In the computational basis {|00〉, |01〉, |10〉, |11〉}, it is represented by matrix:

S =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 (1.15)

The swap gate can be achieved using three CNOT gates as shown in figure 1.2

Figure 1.2: Circuit swapping two qubits.

The sequence of CNOT-gates has the following sequence of effects on a computa-

tion basis state |x, y〉:

|x, y〉 −→ |x, x⊕ y〉
−→ |x⊕ (x⊕ y) , x⊕ y〉 = |y, x⊕ y〉
−→ |y, (x⊕ y)⊕ y〉 = |y, x〉

(1.16)

6

The effect of the circuit is to interchange the state of two qubits i.e. a SWAP-gate.

1.4 Measurement:

The only irreversible operation which is possible in a quantum circuit is ’Measure-

ment’. Information about a state can be gathered only by making measurements but

the very act of measurement disturbs the system itself and its originality is hence lost.

The process of measurement is difficult to grasp as it involves the phenomenon at the

border quantum system and the environment. The issue of measurement serves as

the base for the problem of the interpretation of quantum mechanics. Measurement

is viewed in different ways among various interpretations of quantum mechanics. In

spite of philosophical differences, all these interpretations agree on the practical ques-

tion of what results form a routine measurement. The probability that a measurement

will yield a given result is given by Born rule.

The Born rule states if a measurement is made for an observable corresponding to

Hermitian operator A on a quantum system with normalized wave function |ψ〉,then:

• the measurement will yield one of the eigenvalues ’λ’ of matrix A.

• the probability of getting a particular eigenvalue ’λi’ is equal to |〈λi|ψ〉|2 where

|λi〉 is the ith eigenvector. Due to normalization condition we have: (
∑

i |〈λi|ψ〉|2) =

1. Immediately after the measurement, the state of the system is:

Pi|ψ〉
||Pi|ψ〉||

(1.17)

where Pi is the projection operator onto the eigenspace of A corresponding to

λi [Sak94].

Thus the measurement gates project the state of the system to the computational

basis i.e any measurement will yield either a zero or one. One cannot realize the

coefficients or the respective amplitudes of any of these possible states by a single

measurement.

7

8

Chapter 2

Quantum Algorithms

”There is something magical about quantum algorithms. This magic can make one, like

me, who is not an expert in quantum mechanics feel lost. Being puzzled seems to be the

first step toward showing that you understand quantum algorithms.”

-Dick Lipton

2.1 Introduction

An algorithm is a finite sequence of instructions, or a step-by-step procedure for solv-

ing a problem. A classical algorithm is one where each of these steps or instruction

can be executed on a classical computer. In the same way, a quantum algorithm

is a step-by-step procedure, where all these steps can be performed on a quantum

computer. Even though each and every classical algorithm can also be performed on

a quantum computer, the phrase quantum algorithm is typically used for those al-

gorithms which appear intrinsically quantum, or use some essential trait of quantum

computation such as quantum superposition or quantum entanglement.

All the problems which can be worked out on a quantum computer can also be

worked out on a classical computer. The undecidable problems on classical computer

remain undecidable on a quantum computer. The interesting part about quantum

algorithms is that in many cases these can be executed much faster than the clas-

sical counterparts. The most renowned quantum algorithms are : Shor’s algorithm

for factoring, and Grover’s algorithm for searching an unstructured database. While

the Shors algorithms is exponentially faster than its classical counterpart, Grovers

algorithm runs quadratically faster than the best known classical algorithm for the

9

same problem.

In the past few years, several other quantum algorithms have been developed

exploiting various algebraic structures, symmetries and geometries. In this chapter,

we have explored some of the recently given quantum algorithms such as algorithm

to find out the gradient of a function, algorithm to solve linear system of equations

and algorithm to solve non-linear differential equations. Key ideas such as Fourier

transform and phase estimation which are the building blocks to these algorithms are

also discussed.

2.2 Quantum Fourier Transform

2.2.1 Discrete Fourier Transform

The classical discrete Fourier transform maps a complex input vector with components

x0, x1, ..xN−1 to an output vector with components y1, y2, ..., yN−1 as per the following

formula [NC00] [SS08] :

yk =
1√
N

N−1∑
j=0

e
2πι
N
jkxj (2.1)

This transformation can be seen as N × N matrix multiplied to a N -dim vector

involving N2 multiplications. Let ωN = e
2πι
N be the N -th root of identity. Then

Fourier transform is a N × N matrix FN with (j, k)th entry = 1√
N
ωjkN . It can be

easily seen that FN is a unitary matrix. Since it is unitary and symmetric, the inverse

F−1
N = F ∗N only differs from FN by having a negative sign in the exponent of the

entries.

2.2.2 Fast Fourier Transform

A more efficient way of computing Fourier transform involves O(N log(N)) steps in-

stead of O(N2) steps. The algorithm is called Fast Fourier Transform (FFT). It is

based on the idea that by separating even and odd j in (2.1), one can reduce the

number of operations to half. The equation (2.1) can be rewritten in a following way

after separating even and odd j (Assuming N to be even):

10

yk =
1√
N

N
2
−1∑

l=0

e
2πι
N/2

klx2l + e
2πι
N
k

N
2
−1∑

l=0

e
2πι
N/2

klx2l+1

 (2.2)

The above equation can be seen as a discrete Fourier transform of twoN/2-dimensional

vectors leading to an operation count of 2×
(
N
2

)2
= 1

2
N2. Following that Fourier trans-

form of each N/2-dimensional vector can further be divided into two N/4-dimensional

vectors. This process can be continued further and further until no more divisions

can be made. Continuation of this process for N = 2n yields the FFT algorithm. As

mentioned earlier, it reduces the operation count from O(N2) to O(N log(N)).

2.2.3 Quantum Fourier Transform

The quantum Fourier Transform is an efficient quantum algorithm to perform Fourier

transform of quantum mechanical amplitudes. It is exactly the same transformation,

mapping an N-dimensional vector of amplitudes to another N-dimensional vector of

amplitudes. QFT is exponentially faster than even the FFT. It gives us the entries of

the Fourier transform only as the amplitudes of the resulting state.

The FN matrix can be seen as a linear operator which maps the basis state of

N-dimensional Hilbert space as:

|j〉 −→
N−1∑
j=0

e
2πι
N
jk|k〉 (2.3)

Quantum Fourier transform (FN) maps an arbitrary state to some other state as

following:
N−1∑
j=0

xj|j〉 −→
N−1∑
k=0

yk|k〉 (2.4)

where the amplitudes yk’s of the resulting state are the discrete Fourier transform of

the amplitudes xj’s of the initial state.

Product Representation

Suppose N = 2n and |0〉, |1〉, ..., |2n − 1〉 is the computational basis of a n-qubit

computer. Basis state can be represented by the integer j (0 ≤ j ≤ 2n−1) with binary

11

representation j = j1j2j3...jn. Quantum Fourier transform of |j〉 can be written as:

|j〉 −→ 2−
n
2

2n−1∑
k=0

e
2πι
2n

jk|k〉 (2.5)

Inserting the binary expansion of k leads to:

|j〉 −→ 2−
n
2

1∑
k1=0

...

1∑
kn=0

e
2πι
2n

j(
∑n
l=1 kl2

n−l)|k1...kn〉 (2.6)

= 2−
n
2

1∑
k1=0

...

1∑
kn=0

n⊗
l=1

e2πιjkl2
−l |kl〉 (2.7)

= 2−
n
2

n⊗
l=1

(
1∑

kl=0

e2πιjkl2
−l |kl〉

)
(2.8)

== 2−
n
2

n⊗
l=1

(
|0〉l + e2πιj2−l |1〉l

)
(2.9)

Also we know:

j2−l =
n∑
v=1

jv2
n−v−l = j1j2...jn−l.jn−l+1...jn (2.10)

The integer part can be discarded as eι2πk = 1. So quantum Fourier transform can be

written in a product form as:

|j〉 −→ 2−
n
2

(
|0〉1 + e2πι0.jn|1〉1

) (
|0〉2 + e2πι0.jn−1jn|1〉2

)
...
(
|0〉n + e2πι0.j1j2...jn−1jn|1〉n

)
(2.11)

Circuit

The quantum Fourier transform can be seen as qubit-wise phase shift . The |1〉 state

of each qubit gets an extra phase factor. Suppose gate Rk represents the unitary

transformation:

Rk =

[
1 0

0 e
2πι

2k

]
(2.12)

Fig 2.1 shows the circuit for QFT [NC00]:

12

Figure 2.1: Quantum Circuit for Quantum Fourier transform. Swap gates are not
shown in the circuit.

Application of Hadamard gate on first qubit of state |j1j2...jn〉 produces the state:

1

21/2

(
|0〉+ e2πι0.j1|1〉

)
|j2...jn〉 (2.13)

since e2πι0.j1 = (−1)j1 . The application of controlled-R2 produces the state:

1

21/2

(
|0〉+ e2πι0.j1j2 |1〉

)
|j2...jn〉 (2.14)

The further application of controlled-R3, R4,, Rn gates keep appending bits to the

exponent of the phase factor |1〉1, finally leading to:

1

21/2

(
|0〉+ e2πι0.j1j2...jn|1〉

)
|j2...jn〉 (2.15)

A similar procedure is performed on second qubit. The Hadamard gate generates:

1

22/2

(
|0〉+ e2πι0.j1j2...jn |1〉

) (
|0〉+ e2πι0.j2|1〉

)
|j3...jn〉 (2.16)

The application of controlled-R2, controlled-R3controlled-Rn−1 produces the state:

1

22/2

(
|0〉+ e2πι0.j1j2...jn|1〉

) (
|0〉+ e2πι0.j2j3...jn|1〉

)
|j3...jn〉 (2.17)

The procedure is continued for each qubits, giving the final state:

1

22/2

(
|0〉+ e2πι0.j1j2...jn|1〉

) (
|0〉+ e2πι0.j2j3...jn|1〉

)
...
(
|0〉+ e2πι0.jn|1〉

)
(2.18)

This state is identical to the state (2.11) except for the order of qubits. The order

13

of the qubits is reversed using the swap operations and we get the desired result.

The total number of operations/gates can be easily counted. The first qubit is acted

upon one Hadamard gate and (n − 1) controlled-R gates, making a total of n gates.

The next qubit needs one controlled-R gate less and so on. Thus the total number of

Hadamard and controlled-R gates = n + (n − 1) + (n − 2) + + 1 = n(n+1)
2

. Also

at last one need about n/2 swap gates and each swap gate can be made using three

CNOT gates. Thus the circuit needs O(n2) gates/operations which is exponentially

better than FFT which needs O(n2n) steps.

2.3 Phase Estimation

2.3.1 Introduction

Quantum Phase estimation algorithm is a key procedure for many other important

algorithms [NC00] [SS08]. Suppose we are given a unitary operator U on n-qubits

with a known eigenvector |u〉 and an unknown eigenvalue e2πιφ. The algorithm can

then be used to find the phase φ with of precision of m-bits.

U |u〉 = e2πιφ|u〉 (2.19)

where 0 < φ < 1.

It is assumed that two black-boxes are given which can prepare the state |u〉 and

perform the controlled - U2j operations (for j = 0, 1,). The algorithm requires

two registers. The first register consists of ’m’ number of qubits which decides the

accuracy and the success probability of the algorithm. It is initialized in the state |0〉.
The second register holds the state |u〉 and contains as many qubits as are necessary

to store the vector |u〉.

2.3.2 Algorithm

Step1: Hadamard Transformation

Hadmard-Transformation is applied on the first register to produce equal-weight and

equal-phase superposition state.

H⊗m|~0〉 =
1√
2m

2m∑
x=1

|x〉 (2.20)

14

Step2: Controlled Rotations

In the next step, controlled -U2k operations are applied on register 2, using the kth

qubit of the first register as control.

If the kth qubit is |0〉:
|u〉 =⇒ |u〉 (2.21)

If the kth qubit is |1〉:
|u〉 =⇒ e2πι2kφ|u〉 (2.22)

It can be seen that even after the application of controlled -U2k operations, register

2 stays in the state|u〉 upto some phase factors. These phase factors can be collected

next to the qubits of register 1. The state of the system can be written as :

|ψ1〉 =

(
1

2m/2

(
|0〉+ e2πι2m−1φ|1〉

)(
|0〉+ e2πι2m−2φ|1〉

)
..
(
|0〉+ e2πι20φ|1〉

))
|u〉

=

(
1

2m/2

2m−1∑
k=0

e2πιφk|k〉

)
|u〉(2.23)

Suppose that φ is a m-bit binary fraction, φ = 0.φ1φ2φ3....φm. The state of the system

can then be rewritten as:(
1

2m/2
(
|0〉+ e2πι0.φm |1〉

) (
|0〉+ e2πι0.φm−1φm |1〉

)
..
(
|0〉+ e2πι0.φ1φ2..φm−1φm|1〉

))
|u〉

(2.24)

Step 3: Inverse Fourier Transform

In the final step in which we do the inverse Fourier transform on the first register.

Equation (2.24) is similar to the product form of the Fourier transform (Equation

(2.11)). Thus after application of inverse Fourier transform the state of the first

register will be: |φ1φ2φ3....φm〉. The state of the system is thus:

|ψ2〉 = |φ1φ2φ3....φm〉|u〉 = |φ〉|u〉 (2.25)

A measurement on the register 1 thus gives us exactly the phase φ. If φ is longer than

m-bits , then we only get an estimate instead of exact value.

15

Suppose we use some state |ψ〉 instead of eigenstate |u〉 in the second register. |ψ〉
can be written as linear combination U -eigenstates:

|ψ〉 =
∑
u

cu|u〉, (2.26)

where

U |u〉 = e2πιφu|u〉 (2.27)

At the end of phase estimation algorithm, we will get the state of the system as:∑
u

cu|φ/u〉|u〉, (2.28)

where φ
/
u is an approximation to the phase φu.

2.3.3 Circuit Diagram

Fig 2.2 shows the circuit for the Phase estimation [NC00]:

Figure 2.2: Quantum Circuit for Phase Estimation

H here represents Hadamard Transformation and F.T−1 represents inverse Fourier

Transform. As described before, there are two registers of length m and n respectively.

16

2.4 Algorithm for Numerical gradient estimation

2.4.1 Introduction

Recently, Stephen P. Jordan proposed a fast quantum algorithm for estimating numer-

ical gradients [Jor05]. Jordan’s method needs a black box /oracle that can compute

the value of fuction f for an arbitrary input. In general, the efficiency of an algo-

rithm is often related to the black box complexity. The function evaluation steps

are generally the most time consuming steps of an algorithm. Lesser the number of

the function evaluation steps, better is the algorithm. Regardless of the number of

the dimensions d of the domain of f, Jordan’s algorithm can evaluate the gradient

using a single query to f. In contrast, the classical algorithm requires at least d+1

queries (when simple classical finite-difference scheme is used). The speed-up of the

quantum algorithm over the classical one is achieved by being able to sample all the

d dimensions in superposition.

2.4.2 Classical Algorithm

Numerical derivative techniques rely on computing the function at several discrete

points, and then using those values to estimate the true derivative [KAG09]. In the

finite- difference scheme, the first derivative in one dimension is given by the formula:

df

dx
≈ f(x+ l)− f(x)

l
(2.29)

Here l is assumed to be very small such that the quadratic and higher terms in f

can be neglected. For simplicity, now onwards we will discuss the gradient estimation

at the origin only, since the gradient at other points can be obtained by trivially

redefining f .
df

dx
≈ f(l)− f(0)

l
(2.30)

This can be easily generalized to d- dimensions. To estimate 5f in d-dimensions ,

one needs to evaluate f at least d+ 1 times, once at the origin and once at a distance

l along each axis.

17

Figure 2.3: Classical Gradient Estimation using d + 1 points : ∂f
∂xi
'
(
f(~x+l~ei)−f(~x)

l

)
where ~ei is the ith normalized vector

In d-dimensions, evaluations of f at each point xi gives a linear equation of the

form f(x) = f(0) + x.5 f . The equation has d + 1 unknowns , thus evaluating f at

d+ 1 distinct points is required.

∂f

∂x1

=
f(l, 0...0)− f(0, 0...0)

l
(2.31)

similarly other partial derivatives can be calculated.

The error is linear with respect to l and is contributed by the quadratic and the

higher terms in f .

For a lower magnitude of error, one can use a better method in which functions

are evaluated at ±l/2 from origin along each dimension. In this case 2d evaluations

are required. ∂f
∂x1

will be then given by:

∂f

∂x1

=
f(+l/2, 0...0)− f(−l/2, 0...0)

l
(2.32)

similarly other partial derivatives can be calculated.

Using the Taylor expansion of f it can be seen that the error is of the order of l2

in this case, which is better than the previous method.

2.4.3 Quantum Algorithm

The black box takes d binary strings as input. Each of the binary string is of length n,

where n is the precision we want in the final gradient. Apart from these n× d qubits,

there are n0 ancilla qubits which are all initialized to zero. The output of the black

box is written in these ancilla qubits using addition modulo N0 ≡ 2n0 . The input

qubit string represent the components of x in fixed point notation. Positive integers

18

δ represented by the input string and values of x ∈ Rd are related by:

x =
l

N

(
δ − N

2

)
(2.33)

here components of δ are n-bit integers ranging from 0 to N ≡ 2n and N is the d-

dimensional vector (N,N,N.....N) which serves to center the sampling region on the

origin.

Similar to the input , the output of the black-box represents the value of f in

fixed point notation. To achieve maximum precision with fewest qubits, one must

have an order of magnitude estimate of the range of f . In the present case f ranges

from f(0)−M l
2

to f(0) +M l
2

where M is the largest value of any of the first partial

derivatives of f . The value of f is scaled and the integer which gets added modulo

N0 to the output register is:

dNN0

ml
f(x)c (2.34)

where dc denotes rounding to the nearest integer and m is the estimate of M.

Step 1 : Hadamard Transformation

The algorithm starts with Hadamard transformation on the input registers to create

a uniform superposition. The state of the input registers is:

1√
Nd

N−1∑
δ1=0

N−1∑
δ2=0

...
N−1∑
δd=0

|δ1〉|δ2〉...|δd〉 (2.35)

which can be written in vector notation as:

1√
Nd

∑
δ

|δ〉 (2.36)

Step 2 : Plane wave

In the next step, ’1’ is written into the output register and then the Fourier transform

is performed on it to create a ”plane wave”. The state of the output register can

written as:
1√
N0

N0−1∑
a=0

e
ι2πa
N0 |a〉 (2.37)

19

The overall state of both the registers can be written as:

1√
NdN0

N−1∑
δ1=0

N−1∑
δ2=0

...
N−1∑
δd=0

|δ1〉|δ2〉...|δd〉
N0−1∑
a=0

e
ι2πa
N0 |a〉 (2.38)

=
1√
NdN0

∑
δ

|δ〉
∑
a=0

e
ι2πa
N0 |a〉 (2.39)

Step 3 : Phase Kickback

In this step, we use the black box to compute f at x = l
N

(
δ − N

2

)
for every integer

vector |δ〉 and then add (modulo N0) the integer dNN0

ml
f(x)c into the output register.

The addition of x corresponds to eigenvalue e
ι2πx
N0 . Thus we obtain a phase proportional

to f by writing into the output register via modular addition. This technique is known

as ”Phase Kickback”. The state of the system becomes:

1√
NdN0

∑
δ

e
ι2πN
ml

f [(l
n

)(δ−N
2

)]|δ〉 ⊗
∑
a=0

e
ι2πa
N0 |a〉 (2.40)

We can Taylor expand the phase of the above equation.The terms which are quadratic

or higher order in l can be neglected for sufficiently small l. The state can be thus

written as:

≈ 1√
NdN0

∑
δ

e
ι2πN
ml

(f(0)+(l/n)[δ−N/2].5f)|δ〉 ⊗
∑
a=0

e
ι2πa
N0 |a〉 (2.41)

Writing out the vector components, and ignoring the global phase, we can rewrite the

state of the input registers as:

=
1√
Nd

N−1∑
δ1=0

N−1∑
δ2=0

...

N−1∑
δd=0

e
(ι2π
m

)[δ1(∂f
∂x1

)+δ2(∂f
∂x2

)+...+δd(∂f
∂xd

)] × |δ1〉|δ2〉...|δd〉 (2.42)

The above state is separable and equals:

1√
Nd
×

(∑
δ1

e
(ι2π
m

)δ1(∂f
∂x1

)|δ1〉

)
...

(∑
δd

e
(ι2π
m

)δd(∂f
∂xd

)|δd〉

)
(2.43)

The global phase associated with the above state is:

φ(0) = 2π

(
N

lm
f(0)− N

2m
.5 f

)
(2.44)

20

Step 4: Inverse Fourier Transform

This is the final step in which the inverse Fourier transform is applied to each of the

d registers. The resultant state is :

= eιφ(0)

∣∣∣∣Nm ∂f

∂x1

〉 ∣∣∣∣Nm ∂f

∂x2

〉
...

∣∣∣∣Nm ∂f

∂xd

〉
(2.45)

= eιφ(0)

∣∣∣∣Nm 5 f

〉
(2.46)

A simple measurement in the computational basis can be used to obtain the compo-

nents of 5f with n bits of precision.

2.4.4 Computational Resources

In general , when r is the range of some quantity and θ is the minimum quantity which

one can resolve, then number of bits required to represent the quantity are given by:

n = log2

(r
δ

)
(2.47)

In the classical case, if the gradient is desired to n bits of precision, then the function

must be evaluated to:

log2

(
max(f)−min(f)

ml/2n

)
(2.48)

bits of precision.

For the quantum case, phase acquired by the system after the ”Phase kickback”

step is 2πN
ml
f . The function f must be evaluated to be within ± ml

2πN
θ for the phase to

be accurate to within ±θ.If the gradient is desired to n bits of precision, the function

must be evaluated to:

n0 = log2

(
max(f)−min(f)

(ml/2n)(θ/2π)

)
(2.49)

= nclassical + log2

(
2π

θ

)
(2.50)

qubits of precision.

It can be shown that the inner product between the ideal state and the actual state

after the inverse Fourier transform is atleast cos2θ if the phase is accurate to within

±θ. Therefore the success probability of the algorithm is atleast cos2θ. n0 differs from

the classical required precision by just an additive constant and in the limit of large

21

n the difference becomes negligible. For example, for θ = π/8, the algorithm succeeds

85% of the time and n0 will exceed the classically required precision by 4 bits.

2.5 Algorithm to solve Linear Equations

2.5.1 Introduction

Recently a quantum algorithm to obtain certain information about the solution of a

linear system A~x = ~b was presented by Aram W. Harrow, Avinatan Hassidim and

Seth Lloyd[AWHL09]. The algorithm considers the case where one does not need to

know the solution ~x itself, but rather an approximation of the expectation value of

some operator associated with ~x, e.g.,~x†M~x for some matrix M. Such functions can be

approximated on a quantum computer in a time which scales logarithmic in N (where

N is the total number of variables appearing in the system) and polynomial in the

condition number (κ) and desired precision (ε). The dependence on N is exponentially

better as compared to the classical algorithms while the dependence on the error is

worse. The dependence on the condition number is comparable.

2.5.2 Algorithm

In the problem of solving linear equations , we have a main matrix A, a vector of

unknown variables x and a vector of free values b, such that A|x〉 = |b〉. Here |x〉
and |b〉 are normalized quantum states and |b〉 can be written as |b〉 =

∑N
i=1 bi|i〉.

Matrix A is assumed to be N × N Hermition matrix with spectral decomposition∑N
j=1 λj|uj〉〈uj|. If A is not a Hermition matrix , we can build a Hermition matrix Â

out of the original matrix A as :

Â =

(
0 A

A† 0

)
(2.51)

and then solve for the following equation instead:

Â~y =

(
~b

0

)
(2.52)

where

~y =

(
0

~x

)
(2.53)

22

For the rest of the report we will simply assume that A is Hermition.

The state |b〉 and the unknown vector |x〉 representing the solution are represented

in the eigen-basis of matrix A. We have:

|b〉 =
N−1∑
j=0

βj|uj〉, (2.54)

|x〉 =
A−1|b〉
‖A−1|b〉‖

(2.55)

where βj = 〈uj|b〉
The condition number κ, is defined as the ratio between A’s largest and smallest

eigenvalues.The κ term is a measure as to how difficult the matrix A is to invert. For

large κ A becomes closer to a matrix which can not be inverted.

The algorithm can be broadly divided into five steps: Encoding vector ~b into

quantum state |b〉, Phase estimation subroutine, Non unitary operation on an ancillary

qubit (implemented by controlled rotation), Reverse phase estimation and finally,

measurement of an ancillary qubit.

State preparation of |b〉

For the algorithm to be efficient, one needs an efficient procedure to prepare state |b〉
. Currently there is no explicit method known to efficiently prepare a arbitrary state

for general cases. It is considered to be a very hard problem [YCK13]. To prepare

the state |b〉 from state |0....0〉, one needs a unitary U such that U |0....0〉 = |b〉. As an

arbitrary unitary operation can be decomposed into a product of elementary quan-

tum gates (single qubit rotations and CNOT gate),in general one needs O (poly(N))

elementary gates to prepare an arbitrary N-dimensional quantum state .

Regardless of the above stated fact, there are certain type of states which can be

efficiently prepared. Few notable examples are given in [GR02] [SS]. For the rest of

the report, we assume that certain techniques can be used to efficiently prepare the |b〉
state. Also the algorithm could be used a subroutine in a larger quantum algorithm

of which some other component is responsible for producing |b〉 .

Phase estimation

In this step, the technique of phase estimation is used to move the eigenvalues of the

matrix A into a quantum register and the vector |b〉 is decomposed in the eigenvector

23

basis of A (equivalently eιAt). Conditional Hamiltonian simulation of A is applied to

the |b〉 state controlled by some register |ψ0〉 which is defined as:

|ψ0〉 =

√
2

T

T−1∑
τ=0

sin
π(τ + 1

2
)

T
|τ〉 (2.56)

where T is some large number. Conditional Hamiltonian evolution
∑T−1

τ=0 |τ〉〈τ |⊗e
ιAτt0
T

is applied on |ψ〉 ⊗ |b〉 (where t0 = O(κ/ε) (ε is the error)) and the inverse Fourier

transform on the first register is done, which in turn gives the state:

N∑
j=1

T−1∑
k=0

αk|jβj|k〉|uj〉 (2.57)

|k〉 are the Fourier basis states here.

The coefficient αk|j is a complex number (Please see appendix for detailed math-

ematical derivation) and its magnitude |αk|j| is large if and only if λj ≈ 2πk
t0

. By

defining λ̃ := 2πk
t0

, the register |k〉 is relabelled to get:

N∑
j=1

T−1∑
k=0

αk|jβj|λ̃k〉|uj〉 (2.58)

For perfect phase estimation,αk|j = 1 if λ̃k = λj and zero otherwise. Assuming this

for now, we obtain:

|ψ1〉 =
N∑
j=1

βj|λj〉|uj〉 (2.59)

Thus the first register in the above equation now contains the eigenvalues of the matrix

A.

Controlled Rotation

In this step an ancilla qubit initialized at |0〉 state is introduced and |λj〉 state is used

to perform a controlled Y -rotation Ry(θj) = e
−ιθjY

2 (Y is the Pauli Y operator) onto

the ancilla qubit such that the state of the system is brought to:

|ψ2〉 =
N∑
j=1

βj|λj〉|uj〉

(√
1− C2

λ2
j

+
C

λj
|1〉

)
(2.60)

24

with the rotation angles θj = 2arcsin(C
λj

). C is a constant satisfying the condition

C ≤ minj|λj| = O(1/κ).

Reverse Phase Estimation

In this step,the inverse of the phase estimation subroutine in the beginning is applied

to effectively uncompute the eigenvalues in the first register. After undoing the phase

estimation we get:

|ψ3〉 =
N∑
j=1

βj|uj〉

(√
1− C2

λ2
j

+
C

λj
|1〉

)
(2.61)

Measurement

This is the last step in which the ancilla qubit is measured . If the outcome is 1, the

state collapses to the state:

|ψ4〉 =

√
1∑N

j=1 C
2|βj|2/|λj|2

N∑
j=1

βj
C

λj
|uj〉 (2.62)

which is nothing but |x〉 =
∑N

j=1 βjλ
−1|uj〉 upto a normalization factor. The proba-

bility of outcome to be 1 is
∑

j |βj|2.|
C
λj
|2 which scales as O(1

κ2
). If the outcome is 0 ,

the algorithm has failed and is to be repeated again.

Finally a measurement M is done whose expectation value 〈x|M |x〉 corresponds

to the feature of ~x we wanted to evaluate.

2.5.3 Circuit

The circuit diagram for solving linear equations is given below [YCK]:

25

Figure 2.4: Quantum Circuit for solving the linear SystemA~x = ~b

In the above figure, W represents Hadamard transform, , FT represents Fourier

Transform, Uλ represents the subroutine to compute the state |θ̃j〉 with θ̃j =2arcsin C
λj

for each |λj〉.

2.6 Algorithm to solve Non Linear Differential Equa-

tions

2.6.1 Introduction

A quantum algorithm was proposed by Sarah K. Leyton and Tobias J. Osborne to solve

system of non-linear differential equations whose non-linear terms are polynomials

[LO08]. The resource requirement for the algorithm are polylogarithmic in the number

of variables and exponential in the number of time-steps over which to perform the

simulation. The algorithm provide an exponential improvement over the classical

algorithms which run in time scaling linear with number of variables.

The algorithm is concerned with n first order ordinary differential equations (ODEs)

:
dz1(t)

dt
= f1(z1(t), z2(t), ..., zn(t))

dz2(t)

dt
= f2(z1(t), z2(t), ..., zn(t)) (2.63)

...

...

26

dzn(t)

dt
= fn(z1(t), z2(t), ..., zn(t))

with boundary condition z(0) = b. The non-linear terms are given by n polynomi-

als fα(z) in n variables zj, j = 1, 2, ..., n. The variables zj(t) are encoded in the

amplitudes of a quantum state |φ〉:

|φ〉 =
1√
2
|0〉+

1√
2

n∑
j=1

zj|j〉 (2.64)

where
∑n

j=1 |zj|2 = 1 ensures that the state is normalized. The state |φ〉 can be

encoded on a quantum computer using log(n) qubits. It is assumed that the initial

state |φ〉 can be efficiently prepared using certain techniques/methods.

2.6.2 Algorithm

The algorithm consists of two subroutines:

• Quantum Algorithm to effect a non-linear transformation of the amplitudes

• Quantum Implementation of Euler’s Method

Non-linear Transformation of the Amplitudes of a Quantum State

It is a non-deterministic algorithm to prepare a quantum state whose amplitudes are

non-linear function of the amplitudes of a input quantum state. Algorithm describes

the quadratic systems only. The extension to the higher degrees is a straightforward

task.

Suppose we have two copies of |φ〉. The product state is given by:

|φ〉|φ〉 =
1

2

n∑
j,k=0

zjzk|jk〉 (2.65)

where z0 = 1.In this expansion, every monomial z
lj
j z

lk
k , lj, lk ≤ 1, of degree less than

2 appears (more than once).

We want to iterate the following transformation:

z −→ F (z) (2.66)

27

where:

F (z) =


f1(z)

f2(z)

..

..

fn(z)

 (2.67)

Here fα (where α = 1, 2, ..., n) are quadratic polynomials:

fα(z) =
n∑

k,l=0

a
(α)
kl zkzl (2.68)

with a
(α)
kl = a

(α)
lk and f0(z) = 1. The main aim is to prepare the quantum state:

|φ′〉 =
1√
2

n∑
α=0

fα(z)|α〉 (2.69)

where for simplification, it is assumed that the transformation is measure preserving,

i.e.,
n∑
j=1

|zj|2 =
n∑

α=1

f ∗α(z)fα(z) = 1 (2.70)

Beyond the measure preserving assumption, there are several other assumptions which

are made in order to ensure the efficiency of the method. These assumptions are:

• The coefficient in the expansion of function is of the order of one , i.e.,

|aαkl| = O(1), k, l, α = 1, 2, ..., n. (2.71)

• Map F is sparse. Each fα(z) can involve at most s/2 monomials and each

variable can appear in at most s/2 polynomials fα(z) i.e., :

|{(k, l)|a(α)
kl 6= 0}| ≤ s/2, α = 1, 2, ..., n (2.72)

|{α|a(α)
kl 6= 0}| ≤ s/2, k, l = 1, 2, ..., n (2.73)

• Lipschitz constant in our system is of the order of one, i.e.. the number λ such

that:

||F (x− y)|| ≤ λ||(x− y)||

in the ball ||x||2 ≤ 1 and ||y||2 ≤ 1, is O(1).

28

Now consider an operator A:

A =
n∑

α,k,l,=0

aαkl|α0〉〈kl| (2.74)

Hamiltonian is set up using operator A and adjoining a qubit ”pointer” P :

H = −ιA⊗ |1〉P 〈0|+ ιA† ⊗ |0〉P 〈1| (2.75)

System is initialized in the state:

|ψ0〉 = |φ〉|φ〉|0〉P (2.76)

Hamiltonian simulation is done for the time t = ε. The evolution time depends on

the the sparsity of H and the desired error. After the evolution , state of the system

is:

|ψ1〉 = eιεH |φ〉|φ〉|0〉 (2.77)

=
∞∑
j=0

(ιεH)j

j!
|φ〉|φ〉|0〉 (2.78)

= |φ〉|φ〉|0〉+ εA|φ〉|φ〉|1〉 − ... (2.79)

As we know:

A|φ〉|φ〉 =
1

2

n∑
α,k,l=0

a
(α)
kl zkzl|α〉|0〉 (2.80)

=
1√
2
|φ′〉|0〉 (2.81)

Thus the state of the system after evolution is:

|ψ1〉 = |φ〉|φ〉|0〉+
ε√
2
|φ〉|0〉|0〉 − ... (2.82)

Now a measurement is made on the ancilla qubit. If the outcome is 0 , then the

algorithm has failed and the resulting state is discarded. If the outcome is 1, we get

our desired state. The probability of the outcome to be 1 ≈ 1
2
ε2 and the state of the

29

computational register in this case collapses to:

|ψ2〉 ≈ |φ′〉|0〉 (2.83)

Quantum Implementation of Euler’s Method

To integrate the equations described in (2.63) with initial condition z(0) = b, Euler’s

method is used.A small step size is picked to iterate the map:

zj −→ zj + hz′j = zj + hfj(z) (2.84)

Given a state |φ(t)〉, we aim to prepare:

|φ(t+ h)〉 = |φ(t)〉+ h|φ′(t)〉+O(h2) (2.85)

where:

|φ′(t)〉 =
1√
2

n∑
α=0

fα(z(t))|j〉 =
1√
2

n∑
α,k,l=0

a
(α)
kl zk(t)zl(t)|α〉 (2.86)

To implement the above transformation, we assumed that we have two copies of |φ(t)〉
and then the method of the previous section is used to implement the polynomial

transformation zj −→ zα + hfα(z(t)).

2.6.3 Computational Resources

The probability to get the desired state |φ′〉 after the measurement step of the first

section is ≈ 1
2
ε2. To ensure high success probability , the process should be repeated

on roughly 16
ε2

fresh |φ〉|φ〉 pairs. The success probability will be 80% in this case.

To integrate the set of equations in (2.63) using Euler’s method, time is discretized

into m steps(Step size = t/m). Thus we need to start with
(

16
ε2

)m
copies of initial

state |φ(0)〉. Now each state require log(n) qubits. Thus the total spatial resources

required by the algorithm scale as
(

16
ε2

)m
log(n).

2.6.4 Extension to Cubic or Higher Systems

In the algorithm, only quadratic systems were explained. The extension to the system

with cubic or higher non-linearity is very simple. To implement the cubic transfor-

mation (or higher transformations) one has to start with three (or more for higher

30

transformations) copies of state |φ〉 and rest of the procedure will be same.

2.7 Summary

• In this chapter , we have discussed three quantum algorithms: algorithm for

numerical gradient estimation, to solve linear system of equations and to solve

non-linear differential equations. All these algorithms provide a speed up over

their classical counterparts.

• The initial state is assumed to be given or efficiently preparable in the last

two algorithms. In practice it is hard problem to produce these initial states,

however in certain cases these states can be efficiently prepared.

• The algorithm to solve non-linear differential equations has a very poor scaling

in time. The resources consumed by the algorithm scale exponentially with

the inverse step size and the integration time. The dependence on degree of

nonlinearity is also exponential as well. So it will be hard to see a near future

experimental implementation of the algorithm without any modification on a

quantum computer such as NMR system where the number of qubits are limited.

• The algorithm for numerical gradient estimation can’t be run recursively to

efficiently obtain higher derivatives as there is a phase factor linked to the output

state. The technique for eliminating the global phase would require one more

black box query. This additional query necessitates 2n queries for evaluation of

nth partial derivative.

• The algorithm to solve linear system of equations (Harrow’s algorithm) provides

an exponential speedup over classical algorithms when the condition number κ

is a poly-logarithmic function of N, while the speeed up is only polynomial when

κ is polynomial in N.

• In a slightly modified form, Harrow’s algorithm was experimentally implemented

on a NMR quantum computer using 4-qubits [JP14]. In the experimental real-

ization, eigenvalue inversion subroutine was simplified in order to keep a check

on the number of qubits used. The matrix A in the experimental realization

was a simple 2× 2 matrix and its eigenvalues were power of 2.

• In Harrow’s algorithm, non-square matrices can also be inverted using the pro-

cedure to go from non-Hermition case to the Hermition one. The algorithm has

31

many potent applications such as to solve Poisson equation. One has to first

discretize the equation and then algorithm can be used to solve the resulting set

of linear equations.

32

Chapter 3

Quantum Simulation of Quantum

Tunneling

”Nature isnt classical, dammit, and if you want to make a simulation of nature, youd

better make it quantum mechanical, and by golly its a wonderful problem, because it

doesnt look so easy.”

-Richard P. Feynman

3.1 Quantum Simulation

Simulation of physical systems is one of the most important practical application of

computation. As far as simulation of a quantum system is concerned, the exponential

increase of the Hilbert space with the system size forbids its efficient simulation on

a classical computer. In 1981, Feynman delivered his famous visionary lecture ”Sim-

ulating Physics with computers” where he suggested the use of quantum system to

simulate the behavior of a another quantum system [Fey09]. The level of efficiency

reached in this case is way beyond the capability of a classical computer. In a quantum

simulation, one has an access to a controllable quantum system whose Hamiltonian

can be easily manipulated. NMR information processor is an example of such a sys-

tem. This controllable quantum system is then used to investigate the behavior and

properties of another less accessible or controllable quantum. Much progress has been

made in the field in last few years and Quantum simulation has been realized in var-

ious situations [Tra12].

33

A simulator is a physical device that reveal information about a mathematical func-

tion which represents a physical model. There are two types of simulators [THJJ14]

Digital Simulator:

In a digital quantum simulation, the universal unitary time evolution is replicated

via Trotter decompositions, to a circuit which can then be made arbitrarily accurate.

In other words, the whole time evolution of system is decomposed into a sequence of

simple local operations. In 1996, Lloyd showed that a quantum computer based on

this principle, can indeed act as a universal quantum simulator [S.L92]. By universal-

ity it is meant that except for changes in the programs, the same machine can tackle

vastly different problems and the accuracy with which a model is simulated can be

arbitrarily controlled.

Analogue Simulator:

Analogue simulators are devices whose Hamiltonians can be can be easily controlled

and tuned as desired. To perform quantum simulation, controlling parameters are

tuned to achieve a Hamiltonian which is equivalent to the Hamiltonian of model sys-

tem under study. Hilbert space of model system is directly mapped onto the Hilbert

space of simulator. Once the system is initialized in a desired state, the evolution

of state in simulator directly corresponds to the evolution of model system. These

type of simulators can act as a universal simulator, but rather are designed to explore

specific problems in quantum physics. Advantages of a analogue quantum simulator

is that it is much easier to implement as compared to a digital simulator.

3.2 Theoretical protocol for quantum simulation of

quantum tunneling

Quantum tunneling is a quantum mechanical phenomena where a particle tunnels

through a barrier which can’t be surmounted classically. It plays an essential role

in many important quantum phenomena and is widely used in modern devices such

as tunnel diode, scanning tunneling microscope and so on. Simulation of quantum

34

tunneling is of great significance as it is a unique fundamental concept in quantum

mechanics. In this section, the digital simulation protocol for tunneling is presented

[Sor][GF].

The Schrodinger equation for a particle moving in one dimension can be written

as:

ι
∂

∂t
|ψ(x, t)〉 =

[
P̂ 2

2m
+ V (X̂)

]
|ψ(x, t)〉 (3.1)

where X̂ and P̂ are position and momentum operators respectively. Here ~ is con-

sidered to be unity. If the Hamiltonian is independent of time, then the evolution of

wave function with time can be straightforwardly written as:

|ψ(x, t+4t)〉 = e
−ι
[
P̂2

2m
+V (X̂)

]
4t |ψ(x, t)〉 (3.2)

The standard digital quantum simulation encodes the continuous coordinate x in

n = log2N qubits, where N is the number of discretized particle locations [Zal98].

Suppose the wave function is continuous in the region 0 < x < L and have a periodic

boundary condition ψ(x+ L, t) = ψ(x, t). The wave function is stored in the n qubit

quantum register as:

|ψ(x, t)〉 −→
2n−1∑
k=0

ψ(xk, t) |k〉 (3.3)

where xk =
(
k + 1

2

)
4l and 4l = L

2n
. |k〉 is the lattice basis vector corresponding to

the binary representation of number k. Potential operator V (X̂) is a function of the

coordinate operator X̂. Thus it is a diagonal matrix in the coordinate representation.

It’s construction for the different cases are described in the last paragraph of this

section.

Similarly, the kinetic energy operator is a diagonal matrix in momentum represen-

tation. It is constructed in the coordinate representation with the help of a quantum

Fourier transformation (QFT). Suppose φ(p, t) is the wave function in momentum

representation. Similar to equation(3.3), we get:

|φ(p, t)〉 −→
2n−1∑
j=0

φ(pj, t) |j〉 (3.4)

35

where pjs are the eigenvalues of the momentum operator P̂P in the momentum rep-

resentation:

pj =

{
2πj
2n

for 0 ≤ j ≤ 2n−1

2π(2n−1−j)
2n

for 2n−1 ≤ j ≤ 2n

}
. (3.5)

P̂P can be thus written as:

P̂P =
2n−1∑
j=0

2πj

2n
j|j〉〈j|+

2n−1∑
j=2n−1+1

2π

2n
(
2n−1 − j

)
|j〉〈j| (3.6)

The kinetic energy operator in the coordinate representation is calculated using QFT

as:
P̂ 2

2m
= F−1 P̂

2
P

2m
F (3.7)

where F is the Fourier Transformation Operator which can be implemented in a quan-

tum circuit via a series of Hadamard gates and controlled phase gates [Cop94].

With the expressions for discretized forms of the wave function, the potential

operator and the kinetic energy operator in hand, time evolution of system within a

small interval 4t can be efficiently implemented using the Trotter formulae, which is

correct upto 4t. Equation (3.2) can be then approximated as:

|ψ(x, t+4t)〉 = e−ιV (X̂)4te−ι
P̂2

2m
4t |ψ(x, t)〉 (3.8)

Equation(3.7) can be used to calculate the first exponential term in above equation:

e−ι
P̂2

2m
4t = F−1e−ι

P̂2
P

2m
4tF

= F−1DF (3.9)

Combining equation(3.3), 3.8 and 3.9 we can write:

2n−1∑
k=0

|ψ(xk, t+4t)〉 = F−1DFQ
2n−1∑
k=0

|ψ(xk, t)〉 (3.10)

where Q = e−ιV (X̂)4t . This gives us the quantum circuit for the one time step of

the evolution:

36

Figure 3.1: Quantum Circuit for one time step of the simulation.

POTENTIAL OPERATOR :

The theoretical protocol developed here is not for some specific case, but is applicable

to all the systems in one dimension. By changing the structure of gate Q, different

kind of potentials can be implemented. A square- well potential can be implemented

with a single-qubit operator. A Z-rotation of the the highest order qubit can be

written as:

e−ιV4t = e−ιvσz4t ⊗ I ⊗ I...

where σz is the z-matrix, σz =

(
1 0

0 −1

)
and v is a parameter. The operator

e−ιV4t =

(
e−ιv4t 0

0 eιv4t

)
⊗ I ⊗ I... rotates the qubit states with |0〉 highest order

qubit, with a positive phase velocity v. Similarly it rotates the qubit states with |1〉
highest order qubit, with a negative phase velocity v. Thus relative to the state in the

second half of all the quantum states in the register, states in first half get a phase

velocity of +2v. If the z− rotation is implemented on second qubit instead of first,

then a double well potential is implemented. Similarly if it is acted upon the last

qubit, a Dirac-comb like potential will be implemented. To get the delta potential

like structure, a negative phase velocity is given to the only state where the potential

barrier is desired.

37

3.3 Results and Discussion

3.3.1 Double Well Potential

As explained in the previous section, simulations for double well potential are done

by implementing Z-rotation on the second qubit. The mass of particle ’m’ and height

of potential barrier ’v’ are taken to be 0.5 and 10 respectively. The evolution is cal-

culated for ten steps with a time step of 0.1.

(Programming codes are given in the appendix. While writing codes, we have used

the package QDENSITY [BD06].)

Two Qubit Case

The four basis states |00〉, |01〉, |10〉, |11〉 represent the four lattice sites 1,2,3,4 as

shown in the graph of two qubit case. The two potential wells are located at position

’2’ and position ’4’ marked in the graph.

38

Figure 3.2: Probability distribution of the particle in a double well potential as a
function of time for the first ten steps of two qubit simulation.

39

Numerical values for the probabilities shown in the Figure[3.2] are given in the

table below:

Position 1 Position 2 Position 3 Position 4
Time Step 0 0.0000 1.0000 0.0000 0.0000
Time Step 1 0.0517 0.8836 0.0484 0.0163
Time Step 2 0.0502 0.7994 0.0434 0.1069
Time Step 3 0.0002 0.7987 0.0003 0.2009
Time Step 4 0.0583 0.6123 0.0477 0.2817
Time Step 5 0.0503 0.4272 0.0366 0.4859
Time Step 6 0.0006 0.3570 0.0012 0.6413
Time Step 7 0.0613 0.2095 0.0501 0.6791
Time Step 8 0.0466 0.0733 0.0333 0.8468
Time Step 9 0.0014 0.0306 0.0024 0.9656
Time Step 10 0.0611 0.0047 0.0551 0.8791

Table 3.1: Probabilities at four positions for different time steps (Double Well
Potential- 2 Qubits)

Three Qubit Case

A approach similar to the two qubit case is followed for the three qubit states. The

eight basis states: |000〉, |001〉, |010〉, |011〉, |100〉, |101〉, |110〉, |111〉 represent the eight

lattice sites 1,2,3,4,5,6,7, 8 respectively. The two wells are located at position 3-4 and

position 7-8. All other parameters such as mass, time step and potential height are

taken to be same.

40

41

Figure 3.3: Probability distribution of the particle as a function of time for the first
ten steps of three qubit simulation.

Numerical values for the probabilities shown in the Figure[3.3] are given in the

table below:

Position 1 Position 2 Position 3 Position 4 Position 5 Position 6 Position 7 Position 8
Time Step 0 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Time Step 1 0.0045 0.0117 0.9046 0.0085 0.0150 0.0218 0.0140 0.0199
Time Step 2 0.0048 0.0137 0.7948 0.0270 0.0154 0.0216 0.0474 0.0752
Time Step 3 0.0034 0.0002 0.6667 0.0467 0.0024 0.0003 0.1023 0.1779
Time Step 4 0.0049 0.0093 0.4590 0.0621 0.0349 0.0085 0.1465 0.2749
Time Step 5 0.0058 0.0125 0.3164 0.0904 0.0197 0.0062 0.1778 0.3712
Time Step 6 0.0046 0.0005 0.2272 0.1141 0.0058 0.0002 0.2029 0.4448
Time Step 7 0.0222 0.0061 0.1974 0.1206 0.0299 0.0020 0.1783 0.4435
Time Step 8 0.0175 0.0089 0.2360 0.1576 0.0101 0.0067 0.1467 0.4164
Time Step 9 0.0010 0.0005 0.3424 0.2011 0.0047 0.0006 0.1144 0.3353
Time Step 10 0.0203 0.0026 0.4504 0.1989 0.0085 0.0162 0.0644 0.2387

Table 3.2: Probabilities at eight positions for different time steps (Double Well
Potential- 3 Qubits)

In both two qubit as well as three qubit case, it can be seen that the wave function

tunnels from one well to another in a matter of time. In the three qubit case, the

resolution is better as the dynamics of particle within the well can also be seen. As

expected, the probability of particle on the potential crests is negligible.

3.3.2 Free Particle

To understand the behavior in a double well potential better, a control simulation is

run where the potential is kept zero i.e., v = 0. In other words the potential matrix

Q is equal to identity.

42

Two qubit case

All the parameters such as mass, time step and potential height are taken to be

same are same as in the two qubit case of Double well potential.

43

Figure 3.4: Probability distribution of the particle as a function of time for a free
particle (Two qubits).

Numerical values for the probabilities shown in the Figure[3.4] are given in the

table below:

44

Position 1 Position 2 Position 3 Position 4
Time Step 0 0.0000 1.0000 0.0000 0.0000
Time Step 1 0.0517 0.8836 0.0484 0.0163
Time Step 2 0.1721 0.6039 0.1488 0.0751
Time Step 3 0.2745 0.3230 0.2132 0.1893
Time Step 4 0.2841 0.1898 0.1854 0.3408
Time Step 5 0.1950 0.2479 0.0882 0.4688
Time Step 6 0.0732 0.4181 0.0077 0.5010
Time Step 7 0.0036 0.5619 0.0240 0.4105
Time Step 8 0.0257 0.5759 0.1450 0.2535
Time Step 9 0.1077 0.4510 0.2939 0.1475
Time Step 10 0.1768 0.2608 0.3656 0.1968

Table 3.3: Probabilities at four positions for different time steps (Free Particle - 2
Qubits)

Three qubit case

All the parameters such as mass, time step and potential height are taken to be

same are same as in the three qubit case of Double well potential.

45

Figure 3.5: Probability distribution of the particle as a function of time for a free
particle (Three qubits).

46

Numerical values for the probabilities shown in the Figure[3.5] are given in the

table below:

Position 1 Position 2 Position 3 Position 4 Position 5 Position 6 Position 7 Position 8
Time Step 0 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Time Step 1 0.0045 0.0117 0.9046 0.0085 0.0150 0.0218 0.0140 0.0199
Time Step 2 0.0061 0.0471 0.6677 0.0237 0.0762 0.0742 0.0435 0.0616
Time Step 3 0.0111 0.0987 0.4032 0.0312 0.1803 0.1219 0.0620 0.0916
Time Step 4 0.0462 0.1521 0.2148 0.0286 0.2841 0.1325 0.0529 0.0888
Time Step 5 0.1256 0.1915 0.1356 0.0334 0.3300 0.1007 0.0244 0.0589
Time Step 6 0.2246 0.2062 0.1251 0.0762 0.2888 0.0509 0.0020 0.0261
Time Step 7 0.2885 0.1934 0.1184 0.1800 0.1847 0.0163 0.0059 0.0127
Time Step 8 0.2723 0.1593 0.0846 0.3365 0.0799 0.0119 0.0326 0.0229
Time Step 9 0.1808 0.1162 0.0464 0.4985 0.0305 0.0253 0.0580 0.0442
Time Step 10 0.0724 0.0778 0.0492 0.5997 0.0482 0.0324 0.0595 0.0609

Table 3.4: Probabilities at four positions for different time steps (Free Particle - 3
Qubits)

In both the two qubit as well as three qubit case, the results show a remarkable

difference between the present scenario where the particle is free to move and the

previous scenario where a double well potential was implemented. In the previous

case the probability of particle was confined to two wells, while here the probability

to find particle at one of the four positions is more random.

3.3.3 Single potential barrier in the path

In this section, we have shown the simulation of particle moving in one dimension with

a potential barrier in its path. Potential barrier is created by giving an appropriate

phase velocity to to the state where barrier is located.

Two Qubit

The barrier is placed at the location ’3’ and all the other parameters are kept same.

The height of the barrier is equal to the height of potential wells considered in the

two qubit case of the previous section.

47

48

Figure 3.6: Probability distribution of the particle as a function of time (2 Qubits).
There is a potential barrier at site 3.

Numerical values for the probabilities shown in the Figure[3.6] are given in the

table below:

Position 1 Position 2 Position 3 Position 4
Time Step 0 0.0000 1.0000 0.0000 0.0000
Time Step 1 0.0260 0.8709 0.0470 0.0561
Time Step 2 0.0605 0.6604 0.0869 0.1922
Time Step 3 0.1159 0.4299 0.0188 0.4353
Time Step 4 0.1434 0.1705 0.0217 0.6645
Time Step 5 0.1131 0.0653 0.0741 0.7476
Time Step 6 0.1004 0.0857 0.0360 0.7780
Time Step 7 0.1251 0.2131 0.0016 0.6601
Time Step 8 0.1610 0.4217 0.0145 0.4028
Time Step 9 0.1993 0.5279 0.0534 0.2194
Time Step 10 0.2823 0.5691 0.0509 0.0978

Table 3.5: Probabilities at four positions for different time steps (Potential Barrier at
Position 3)

49

Three qubits

There are eight locations and the potential barrier is placed at the location ’5’. The

height of the barrier is ten times the height of potential wells considered in the three

qubit case of the previous section i.e, v=100. Mass is kept same. Time step is doubled

(t=0.2).

50

Figure 3.7: Probability distribution of the particle as a function of time with a barrier
at location 5(3 Qubits).

Numerical values for the probabilities shown in the Figure[3.7] are given in the

table below:

51

Position 1 Position 2 Position 3 Position 4 Position 5 Position 6 Position 7 Position 8
Time Step 0 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Time Step 1 0.6677 0.0237 0.0762 0.0742 0.0435 0.0616 0.0061 0.0471
Time Step 2 0.2819 0.0533 0.2905 0.1594 0.0467 0.0664 0.0173 0.0845
Time Step 3 0.0707 0.1563 0.3463 0.1664 0.0460 0.0316 0.0719 0.1108
Time Step 4 0.1018 0.2755 0.2073 0.0421 0.0133 0.0094 0.1866 0.1640
Time Step 5 0.0892 0.5710 0.0211 0.0006 0.0082 0.0465 0.1112 0.1522
Time Step 6 0.1141 0.5759 0.1267 0.0018 0.0368 0.0295 0.0051 0.1101
Time Step 7 0.1386 0.3315 0.2539 0.0086 0.0713 0.0062 0.0839 0.1061
Time Step 8 0.0920 0.0965 0.2777 0.0771 0.0333 0.0338 0.3347 0.0549
Time Step 9 0.0500 0.0142 0.2274 0.2197 0.0027 0.0657 0.3530 0.0672
Time Step 10 0.1783 0.0883 0.3145 0.1505 0.0221 0.0191 0.1819 0.0454

Table 3.6: Probabilities at eight positions for different time steps (Potential barrier
at site 5.)

In both the two qubit as well as three qubit case, the particle tunnels from one

side to another despite the presence of potential barrier in its way. The increased

time step in the second case was necessary to find a simulation that captured the

significant tunneling.

3.3.4 Two potential barriers in the path

Here we have created two potential barriers in the path of particle. The barriers are

located at position ’3’ and postion ’5’. Here also the step size is taken to be 0.2

to cover a significant amount of tunneling. The potential height and mass are same

(v=10 and m=0.5). Here we have considered two cases:

Case 1

Here the initial state of particle is between the two potential barriers i.e., position

4. It is observed that the probability oscillates. In three time steps, probability to

find particle on either sides of barriers increases significantly at the cost of probability

at location between the two barriers. After few time steps, the probability at center

again increases. As expected, the probability at two barriers is negligible.

52

53

Figure 3.8: Probability distribution of the particle as a function of time (3 Qubits)
with barriers at location 3 and location 5.

Numerical values for the probabilities shown in the Figure[3.8] are given in the

table below:

Position 1 Position 2 Position 3 Position 4 Position 5 Position 6 Position 7 Position 8
Time Step 0 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000
Time Step 1 0.0616 0.0061 0.0471 0.6677 0.0237 0.0762 0.0742 0.0435
Time Step 2 0.0868 0.0228 0.0087 0.2265 0.0024 0.2886 0.2548 0.1094
Time Step 3 0.0131 0.2142 0.0909 0.0396 0.0002 0.3962 0.2004 0.0454
Time Step 4 0.0277 0.5466 0.0025 0.0275 0.0447 0.2822 0.0648 0.0040
Time Step 5 0.1623 0.6762 0.0307 0.0128 0.0169 0.0590 0.0230 0.0191
Time Step 6 0.1602 0.4350 0.0138 0.1868 0.0561 0.0018 0.1180 0.0283
Time Step 7 0.0757 0.1140 0.0030 0.6478 0.0019 0.0081 0.1423 0.0072
Time Step 8 0.0070 0.0086 0.0370 0.8180 0.0143 0.0042 0.0520 0.0589
Time Step 9 0.0818 0.0073 0.0053 0.5836 0.0113 0.1288 0.0134 0.1685
Time Step 10 0.1079 0.0305 0.0718 0.1767 0.0151 0.3621 0.0885 0.1474

Table 3.7: Probabilities at eight positions for different time steps (Potential barrier
at site 3 and 5.)

Case 2

54

Here we start with a state which is equal superposition of |000〉 and |001〉. It can

be seen that the rate of spread of wave function is lower. Within two time steps, the

probability at position ’4’ increases considerably and in next two steps probability at

the right side of second barrier also becomes significant.

55

Figure 3.9: Probability distribution of the particle (superposition initial state) as a
function of time (3 Qubits) with a barriers at location 3 and 5.

Numerical values for the probabilities shown in the Figure[3.9] are given in the

table below:

Position 1 Position 2 Position 3 Position 4 Position 5 Position 6 Position 7 Position 8
Time Step 0 0.5000 0.5000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Time Step 1 0.2990 0.2845 0.0169 0.1490 0.1021 0.0939 0.0434 0.0110
Time Step 2 0.0625 0.0791 0.0092 0.5413 0.0019 0.1773 0.0718 0.0567
Time Step 3 0.0380 0.0110 0.0514 0.5776 0.0581 0.0417 0.0139 0.2083
Time Step 4 0.2177 0.0056 0.0218 0.3071 0.0062 0.0049 0.0429 0.3938
Time Step 5 0.2521 0.0839 0.1085 0.0270 0.0408 0.1331 0.0734 0.2812
Time Step 6 0.1208 0.3274 0.0219 0.0662 0.0139 0.2239 0.0761 0.1496
Time Step 7 0.0506 0.5420 0.1177 0.1091 0.0321 0.0812 0.0647 0.0026
Time Step 8 0.1818 0.5136 0.0085 0.0135 0.0300 0.0068 0.2140 0.0317
Time Step 9 0.3082 0.1567 0.0284 0.0938 0.0054 0.0400 0.3259 0.0417
Time Step 10 0.2102 0.0023 0.0571 0.3556 0.0062 0.0678 0.2513 0.0494

Table 3.8: Probabilities at eight positions for different time steps(Potential barrier at
site 3 and 5.)

3.3.5 Three potential barriers in path

We have increased the number of barriers to three. The additional barrier is added to

position ’4’ (other two being at location ’3’ and ’5’). The height of the three barriers

56

is equal to each other as well as to the barriers considered in the previous section.

These three barriers can be considered as a single barrier of larger width. Time step

and mass are 0.2 and 0.5 respectively. Here also we have done simulations for the

similar two cases: one with a localized initial state and other with initial state as

superposition of two states:

57

Figure 3.10: Probability distribution of the particle as a function of time (3 Qubits)
with three barriers at locations 3, 4 and 5.

Numerical values for the probabilities shown in the Figure[3.10] are given in the

table below:

58

Position 1 Position 2 Position 3 Position 4 Position 5 Position 6 Position 7 Position 8
Time Step 0 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Time Step 1 0.6677 0.0237 0.0762 0.0742 0.0435 0.0616 0.0061 0.0471
Time Step 2 0.3281 0.0539 0.0505 0.0299 0.0002 0.3213 0.0095 0.2066
Time Step 3 0.1437 0.0070 0.0456 0.0105 0.0487 0.5504 0.0071 0.1871
Time Step 4 0.1501 0.0217 0.0623 0.0193 0.0052 0.4914 0.0683 0.1815
Time Step 5 0.2008 0.1150 0.0068 0.0649 0.0449 0.3667 0.0955 0.1054
Time Step 6 0.2457 0.2522 0.0128 0.0367 0.0116 0.2847 0.0699 0.0864
Time Step 7 0.1349 0.1839 0.0224 0.0615 0.0218 0.3505 0.0502 0.1748
Time Step 8 0.0258 0.0533 0.0624 0.1291 0.0049 0.4978 0.0788 0.1479
Time Step 9 0.0483 0.0076 0.0066 0.0060 0.0017 0.5432 0.2296 0.1570
Time Step 10 0.1869 0.1502 0.0285 0.0252 0.0052 0.2212 0.2376 0.1453

Table 3.9: Probabilities at eight positions for different time steps (Potential barriers
at site 3, 4 and 5.)

Case B: Superposition state

We start with a state which is equal superposition of state |000〉 and state |001〉. Here

the picture is much more clear and tunneling is much more clearly demonstrated.

59

Figure 3.11: Probability distribution of the particle (superposition initial state) as a
function of time (3 Qubits) with a barriers at locations 3, 4 and 5.

60

Numerical values for the probabilities shown in the Figure[3.11] are given in the

table below:

Position 1 Position 2 Position 3 Position 4 Position 5 Position 6 Position 7 Position 8
Time Step 0 0.5000 0.5000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Time Step 1 0.2990 0.2845 0.0169 0.1490 0.1021 0.0939 0.0434 0.0110
Time Step 2 0.1674 0.1100 0.0242 0.0776 0.0149 0.3319 0.2107 0.0634
Time Step 3 0.0160 0.0422 0.0452 0.0320 0.0418 0.4667 0.3013 0.0546
Time Step 4 0.0716 0.1662 0.0342 0.0658 0.0001 0.3701 0.1384 0.1537
Time Step 5 0.1401 0.2827 0.0094 0.0700 0.1141 0.2011 0.0651 0.1175
Time Step 6 0.2857 0.4164 0.0144 0.0266 0.0473 0.0187 0.0851 0.1058
Time Step 7 0.2233 0.2285 0.0217 0.1056 0.0660 0.0160 0.2475 0.0912
Time Step 8 0.0529 0.0338 0.0692 0.1610 0.0627 0.1002 0.4750 0.0454
Time Step 9 0.0134 0.0120 0.0193 0.0035 0.0034 0.2018 0.6497 0.0970
Time Step 10 0.1165 0.2365 0.0796 0.0760 0.0082 0.1171 0.3148 0.0512

Table 3.10: Probabilities at eight positions for different time steps (Potential barriers
at site 3, 4 and 5.)

3.3.6 Dirac Comb Potential

As explained earlier, Dirac Comb potential can be achieved by applying Z-rotation on

last qubit. We have done the simulations for the three- qubit case. It can be seen as

a four well potential with four wells located at positions 2,4,6 and 8. Here time step

is taken to be 0.1. So the tunneling is visible in the later time steps as compared to

the previous section where the time step was double.

61

Figure 3.12: Probability distribution of the particle as a function of time for Dirac
Comb Potential.

Numerical values for the probabilities shown in the Figure[3.12] are given in the

table below:

62

Position 1 Position 2 Position 3 Position 4 Position 5 Position 6 Position 7 Position 8
Time Step 0 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Time Step 1 0.0117 0.9046 0.0085 0.0150 0.0218 0.0140 0.0199 0.0045
Time Step 2 0.0137 0.8436 0.0069 0.0401 0.0216 0.0336 0.0180 0.0224
Time Step 3 0.0002 0.7703 0.0002 0.0853 0.0000 0.0904 0.0000 0.0535
Time Step 4 0.0192 0.5714 0.0065 0.1639 0.0209 0.1339 0.0163 0.0679
Time Step 5 0.0224 0.4613 0.0039 0.2042 0.0185 0.1681 0.0134 0.1081
Time Step 6 0.0005 0.3559 0.0010 0.2921 0.0001 0.2305 0.0002 0.1197
Time Step 7 0.0254 0.2337 0.0048 0.3526 0.0182 0.2208 0.0153 0.1292
Time Step 8 0.0285 0.2097 0.0010 0.3554 0.0144 0.2272 0.0119 0.1520
Time Step 9 0.0004 0.2365 0.0028 0.4110 0.0003 0.2172 0.0004 0.1314
Time Step 10 0.0268 0.2654 0.0043 0.3711 0.0175 0.1518 0.0156 0.1475

Table 3.11: Probabilities at eight positions for different time steps (Dirac Comb
Potential- 3 Qubits)

63

64

Chapter 4

NMR Quantum Computing

”Computers are physical objects, and computations are physical processes.”

- David Deutsch

4.1 Introduction

The quantum computation can be thought of as set of unitary operations acting on

a set of input qubits. To build a quantum computer, the main job is to find suitable

quantum systems, set them up in pure initial states and physically achieve Hamilto-

nians that produce these unitary transformations. Customary designs for quantum

computers consist of N two-level systems which are coupled to one another and have

some particular interaction with the outside world so that they can be examined and

controlled, but are otherwise isolated [DiV].

A molecule with N spin 1
2

nuclei can be thought as an N-bit quantum computer,

given that the spins are able to interact, one can control their states in a desired man-

ner and there is well defined scheme of reading out the outcome of the computation.

In contrast, NMR systems are rather different. An archetypal NMR sample consists

of not just one spin-system, but a large number of copies, one from each molecule

in the sample [Kee10]. Nuclear spins at thermal equilibrium are in a statistical mix-

ture of pure states, whereas quantum computing is typically performed on pure input

states. It was shown that quantum computing can be performed using a special kind

of mixed states i.e., ensembles in a pseudo pure state, as well. It will be discussed

in the next section. While Dirac bra and ket notation is usually used for quantum

65

computers, NMR systems are described using the density matrix approach because of

the statistical nature [Jon01].

4.2 Pseudo-Pure State

An ensemble with an each member represented by a same state vector corresponds

to a pure state. On the other hand, a mixed ensemble cannot be characterized by a

single vector in Hilbert space. The density matter approach is used to study these

situations. A density operator can be assigned to both pure as well as mixed state.

For a pure state with state vector |ψ〉, the density operator is given by:

ρ = |ψ〉〈ψ| (4.1)

For a mixed state, where fraction ’a’ of the members of ensemble are in state |ψ〉
and the rest of members are in state |φ〉, the density operator is given by:

ρ = a|ψ〉〈ψ|+ (1− a)|φ〉〈φ| (4.2)

Thus a density operator can always be associated with a general quantum me-

chanical system drawn from a general ensemble irrespective of whether it is pure or

mixed. For pure states, a sate vector can be associated with the system. It can be

seen that, for pure states we have:

ρ2 = ρ (4.3)

As discussed earlier, the quantum algorithms are usually devised in terms of pure

states. A quantum computer consisting of this pure state is thus an ensemble of

independent quantum computers, doing the same computation. The result in a mea-

surement is the average of all the computers registers (states of the spins). It can be

seen that for such average results, it can be problematic to work with mixed states as

this averaging can erase the results of a computation. This problem can be circum-

vented by creating a subsystem within the whole system that behaves precisely like a

pure state. These states are known as pseudo-pure states [KDK00].

Mathematically, pesudo-pure state can be written as a sum of unit operator and an

operator representing a pure state:

ρpp ∝ α1 + βρp (4.4)

66

where ρpp is the pseudo pure state ρp is a pure state. An NMR signal is an average

over all the spins present in the ensemble. This identity operator corresponds to equal

populations of all the levels and thus does not contribute to the signal. Only the ρp

parts contribute to the signal. Thus behavior of a pseudo pure state is exactly equal

to that of pure state. The coefficient β is largely determined by the polarization of

the spin system. It can be easily seen that a single spin is always in a pseudo pure state.

Different procedures have been proposed and experimentally implemented to cre-

ate a pseudo-pure state in NMR [Jon11]. These schemes to produce pseudo-pure state

can broadly classified into three categories: spatial averaging, temporal averaging, and

logical labelling.

D. Cory, A. Fahmy and T. Havel showed that a spatially averaged pseudo-pure

state can be created by a careful arrangement of rf gradients and pulses with different

flip angles [DGCH97]. It is called spatial because it creates a spatial distribution of

states across the ensemble whose mean density matrix is pseudo-pure. The scheme[
π
3

]2
x
− [4]z −

[
π
4

]1
x
−
[

1
2J

]
−
[
−π

4

]1
y
− [4]z leads to pseudo-pure matrix represented

by 1
2

[I1z + I2z + 2I1zI2z]. Here J is the coupling constant, 4z is a gradient in the z

direction and 1 & 2 are the spin labels.

Knill and co. showed that one can use several experiments with different prepa-

ration steps, whose averaged results give a pure state [EKL98]. It is called temporal

averaging scheme as these unitary transformations are executed sequentially in time.

For example, in equilibrium, the populations of four states for two coupled spins are:

|↑↑〉 −→ 1

4
+ ε

|↑↓〉 −→ 1

4

|↓↑〉 −→ 1

4

|↓↓〉 −→ 1

4
− ε (4.5)

The populations of three states (for e.g., |↑↓〉 , |↓↑〉 , |↓↓〉) can be equalized by

cyclically permuting them and adding the results. The timed average population can

67

be written as:

1

4


1

1

1

1

+ ε


1

−1
3

−1
3

−1
3

 =

(
1

4
− ε

3

)
1

1

1

1

+
4ε

3


1

0

0

0

 (4.6)

If the corresponding average density operator is calculated, it can be seen that it

corresponds to the sum of the unit operator and a pure state. Thus one effectively

achieves a pseudo pure state.

4.3 Single Qubit Gates

Single qubit gates correspond to rotations in single-spin subspaces. Any rotation of

this kind can be implemented by RF-pulses [JAJM]. For implementing a gate on a

single nucleus, one uses selective pulses. In case of simultaneously applying the gate

to large number of separate nuclei, hard pulses are used. In this case, gate can be

seen as product of one qubits gates, one for each affected nucleus.

In a rotating frame, a RF pulse can be represented by e−
ιHt
~ , where t is the duration

of the pulse and H is the Hamiltonian during this time. Generalized x-pulses can

be written as e−
ιφxSx

~ and generalized y-pulses can be written as e−
ιφxSy

~ . Here φ is

the flip angle. Using these two generalized rotations,one can implement an SU(2)

operation. For example, the set of rotations around the z axis, which cannot be

directly implemented by RF pulses, are employed by combing three rotations around

axis in xy-plane:

e−
ιφSz
~ = e−

ι π2 Sy
~ e

ιφSx
~ e

ι π2 Sy
~

= e−
ι π2 Sx

~ e−
ιφSy
~ e

ι π2 Sx
~ (4.7)

We now show the construction of some important single-qubit gates:

NOT gate

68

NOT gate can be implemented using a 180◦Ix pulse:

NOT −→ e−
ιπSx
~

=

(
0 −ι
−ι 0

)

= e−ι
π
2

(
0 1

1 0

)
(4.8)

Thus this NMR implementation of NOT gate is different from the actual NOT

gate by an overall phase of −π/2. But this overall phase doesn’t effect any observable

quantity and can not be observed itself. So, this implementation or any other such

implementation with a global phase is as good as a real NOT gate.

Hadamard Gate

Hadamard gate can be implemented using the following RF pulse:

e
−ι
(
π√
2

)
(Sx+Sz)

~ =
ι√
2

(
1 1

1 −1

)
(4.9)

As usual ignoring the global phase, it has the desired form. Alternatively it can

also be implemented by following three pulses:

45Iy − 180Ix − 45I−y (4.10)

When implementing quantum algorithms on NMR quantum computers, Hadamard

is many times replaced by the pseudo-Hadamard gate which is easier to implement.

The pseudo-Hadamard operator, h, which has the form:

h =
1√
2

(
1 1

−1 1

)
(4.11)

This can be implemented by 90Iy pulse. In many algorithms a pair of Hadamards

is replaced by pseudo Hadamard and its inverse. The pseudo Hadamard inverse is

given by:

h−1 =
1√
2

(
1 −1

1 1

)
(4.12)

69

As expected, it can be implemented by 90I−y pulse.

4.4 Two Qubit Gates

The gates described in the previous section perform rotations within the subspace

corresponding to a single spin. If employed using hard pulses, these gates can affect

many spins, but the overall result is that each spin rotates within its own subspace.

This way, the operation can be decomposed as the product of two or more one spin

operators. A true two qubit gate cannot be decomposed into a set of one qubit gates.

It corresponds to rotations within a subspace corresponding to two spins. These gates

are at the heart of quantum algorithms. Due to these gates the state of one spin can

become dependent on the state of another spin and thus we get a conditional dynamics.

CNOT Gate

Two qubit gates require coupling between the spins and can be implemented using

either ”soft pulses” or ”pulses plus free precession”. Controlled-Not gate is a funda-

mental two qubit gate. As described in chapter 1, it can seen as an application of NOT

gate to the target gate if the control gate is in state |0〉. There are number of methods

which can be described for implementing this gate. But we will consider a general

approach used in NMR to these kind of gates. It is well known that controlled gates,

such as CNOT, are related to controlled phase shifts by the Hadamard transform. As

an example, CNOT can be substituted by the following three gate network:

70

Here H are the usual one qubit Hadamard gates and π is given by:

π =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

 (4.13)

It thus performs the transformation |11〉 −→ −|11〉 and leave the other basis states

unchanged.

As explained earlier the pair of Hadamard gates in the above three gate network

can be replaced by pseudo Hadamard and pseudo Hadamard inverse. Hence the

CNOT can be achieved in NMR using the following sequence:

Controlled Phase Shift Gate

As discussed earlier, all the controlled gates in quantum computing are related to

controlled phase shifts by the Hadamard transform. An example of CNOT gate was

given in the previous section. Thus if one knows how to implement a controlled phase

gate, practically one knows how to implement any controlled gate.

A generalized phase shift gate can be written as:

φ =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 e−ιφ

 (4.14)

71

It thus performs the transformation |11〉 −→ e−ιφ|11〉 and leave the other basis states

unchanged. It can be easily decomposed as a product of diagonal operators:

φ = exp[−ι× 1

2
φ×

[
−
(

1

2
E

)
+ Iz + Sz − 2IzSz

]
] (4.15)

The first term which requires a Hamiltonian proportional to1
2
E is not important as

it simply imposes a global phase shift, and can be ignored. The last three terms are

unproblematic: Iz and Sz can be implemented as periods of free precession or by using

composite z-pulses, and 2IzSz is proportional to the scalar coupling Hamiltonian. The

matrix π used in the implementation of CNOT gate can be implemented as:

π = (90◦Iz) (90◦Sz) (−90◦2IzSz) (4.16)

It can be achieved in a variety of ways. The above three Hamiltonians can be applied

in any order as the three terms commute. Iz and Sz can be realized by free precession

or by one of the large variety of different composite pulses.

Two qubit gates can also bring in global phase shifts just like simple one qubit

gates. Such phase shifts can be disregarded as these are applied to the entire wave-

function and not just to the spins participating in the gate. Conceptually these phase

shifts can be thought of as coming up from the lack of frac12E expression in controlled

phase shift gates.

4.5 Quantum State Tomography

It is often essential to carry out a complete determination of the quantum state of

a qubit or a set of qubits to understand the results or physical process involved in

a quantum information processing. Quantum state tomography is the method of re-

building the quantum state (density matrix) by measurements on the systems coming

from the source. Measurements which are made on the system have to be tomograph-

ically complete in order to uniquely identify the state. In other words, measured

observables must form an operator basis on the Hilbert space of the system.

72

For a one qubit system, the density matrix of a system can be expanded in the

orthogonal pauli basis as:

ρ =
tr(ρ)1 + tr(ρσx)σx + tr(ρσy)σy + tr(ρσz)σz

2
(4.17)

It can be recalled that tr(ρσi)σi is the expectation value (not a result of single

measurement) of operator σi. Thus performing the measurements for Pauli matrices

can yield all the elements of the density operator [IOF11]. The generalization of this

procedure to an arbitrary number of qubits is straight forward:

ρ =
∑
~v

tr (σv1 ⊗ σv2 ⊗σvn .ρ)σv1 ⊗ σv2 ⊗σvn
2n

(4.18)

here the sum run overs all the vectors~v = v1, v2, ..., vn whose components are chosen

from the set of pauli matrices plus identity.

The measurement in an NMR system can only provide some off-diagonal matrix

elements of the density matrix. In order to obtain the rest of the elements of density

matrix, one has to rotate the original density matrix by applying rotational opera-

tions. For an example, lets consider the system of H and C-13 in chloroform as our

two qubit system. As only one spin be measured at one time, one has to carry out

the measurements separately for the two spins. One starts a computation and does a

measurement on H at some required stage. Next, the computation is restarted from

the beginning and one measures the signal for C. Again in the next step, the com-

putation is restarted from beginning, but this time before making the measurement,

density matrix is first rotated by applying a rotational operation and then the signals

are measured for H and P in independent experiments. This process in continued

until all the elements of density operator are obtained [Lee].

To make things clearer, let’s assume the density operator is given by:

ρ =


ρ11 ρ12 ρ13 ρ14

ρ21 ρ22 ρ23 ρ24

ρ31 ρ32 ρ33 ρ34

ρ41 ρ42 ρ43 ρ44

 (4.19)

But we know that the density operator is hermitian, thus its element in the i-th row

73

and j-th column is equal to the complex conjugate of the element in the j-th row and

i-th column. We can write it as:

ρ =


ρ∗11 ρ12 ρ13 ρ14

ρ∗12 ρ22 ρ23 ρ24

ρ∗13 ρ∗23 ρ33 ρ34

ρ∗14 ρ∗24 ρ∗34 ρ44



=


x1 x2 + ιx11 x3 + ιx12 x4 + ιx13

x2 − ιx11 x5 x6 + ιx14 x7 + ιx15

x3 − ιx12 x6 − ιx14 x8 x9 + ιx16

x4 − ιx13 x7 − ιx15 x9 − ιx16 x10

 (4.20)

(4.21)

In an experiment, one gets two peaks for each of the nuclear spin. In an experiment

corresponding to the nuclear spin of C, left peak corresponds to the element ρ12 and

right peak corresponds to ρ34. Similarly for nuclear spin of H, left peak corresponds

to the element ρ13 and right peak corresponds to ρ24. To obtain other elements in

the density matrix, we have to perform a rotation of density operator so that desired

elements to be measures come to positions labelled as 12, 13, 24 and 34. After this

rotation, measurement can be made to calculate the elements ρ12‘, ρ13‘, ρ24‘, ρ24‘ of the

rotated density matrix. These new elements are a linear combination of the elements

of original density matrix. More rotation are made so that we get enough equations

to solve for all the matrix elements [GLL].

Experimental Results:

We prepared a pseudo pure state which can be resolved as a sum of Identity part

and a pure state part. The pure states part corresponds to |01〉 in our case. The

procedure presented in the previous sections to prepare a spatially averaged pseudo

pure state is used to prepare state |00〉 and then a single qubit NOT gate is imple-

mented on second qubit to achieve the state |01〉. Here we show the experimental

results for state tomography of the state in detail. After the state preparation, we

acquired the spectra (labelled as II in the Figure [4.1] & Figure [4.3]and calculated the

intensity of peak by integrating the area under curve. Then we added a phase of 90ø

in the spectra and recalculated the intensities. We have shown it in Figure [4.2] and

74

Figure [4.4]. Both these steps were performed for both carbon as well as hydrogen. In

this way we got the details of elements ρ12, ρ13, ρ24, ρ24 of the density matrix. To get

the details about other elements we restarted the process from beginning and before

making the observation, we performed the ”IX’ rotation on density operator(here IX

means identity is acting upon spin under observation and NOT gate is acting upon

the other spin) and repeated the same procedure for both the spins. Similarly, we

performed the same procedure for ”IY” rotation and ”XX” rotation. The spectra for

these four kind of rotations (including II) are given in the Figure [4.1],Figure [4.2],[4.3]

and Figure [4.4].

75

Figure 4.1: Spectra for Hydrogen after the four rotations: II, IX, IY, XX

76

Figure 4.2: Spectra of Hydrogen after adding a phase of 900 for the four rotations: II,
IX, IY, XX

77

Figure 4.3: Spectra for Carbon after the four rotations: II, IX, IY, XX

78

Figure 4.4: Spectra of Carbon after adding a phase of 900 for the four rotations: II,
IX, IY, XX

Using the intensity values from the experiments mentioned above, we got the

required number of equations to solve for the all the elements of density matrix. We

79

solved these equations numerically and got the following density matrix:

ρ =


0.0141 0.0020 + 0.0011i 0.0023− 0.0005i 0 + 0.0032i

0.0020− 0.0011i 0.9777 0− 0.0109i 0.0023 + 0.0005i

0.0023 + 0.0005i 0 + 0.0109i 0.0037 0.0096 + 0.0114i

0− 0.0032i 0.0023− 0.0005i 0.0096− 0.0114i 0.0046


(4.22)

On a 3D bar chart, the elements of density matrix can be visualized as:

Figure 4.5: Quantum State Tomography: Real part of the elements of Density matrix

Figure 4.6: Quantum State Tomography: Imaginary part of the elements of Density
matrix

Thus complete determination of the quantum state of both qubits is achieved.

80

4.6 Simulation of quantum tunneling on an NMR

information processor

The theoretical protocol for simulation of tunneling on an NMR quantum computer

is same as the one given in section 3.2. The figure 3.1 gives the circuit diagram for

simulation quantum tunneling on a general n-qubit quantum computer. For ease, we

have redrawn it here :

For a two qubit system we can write the quantum circuit for double well potential

as:

Figure 4.7: Quantum Circuit for two qubit simulation of quantum tunneling.

Here Q = e−ιvσz4t (notation are similar to the one used in chapter 3). The first

block in the diagram is Fourier transform where R90 means conditional 90ø rotation.

81

The third block is just the inverse of first block. The second block is the kinetic

operator in the momentum basis. The three gates used in this block are [GF]:

φπ = e
−ιπ

2

2

(
Rπ

2

)2
4t

(4.23)

Z1 = eι
π2

8
σz⊗I4t (4.24)

Z2 = eι
π2

2
I⊗σz4t (4.25)

Now comes the part of implementing the above circuit diagram on an NMR quan-

tum computer. The radio frequency pulses can be used to implement the single qubit

gates and J-coupling evolution combined with refocusing pulses can be used to im-

plement two qubit gates. Q.F.T can be implemented by following sequence of pulses

and time evolutions:

Figure 4.8: Pulse sequence for Quantum Fourier Transform gate.

The pulse sequence for the second block, i.e., Kinetic energy operator, is given by:

Figure 4.9: Pulse sequence for Kinetic energy gate.

82

The potential gate for double well potential can be implemented as:

Figure 4.10: Pulse sequence for Potential energy gate.

For, other potentials (in 2 qubit cases) the structure of the gates other than the

potential gate will be the same. The pulse sequences for the delta like potentials is

more complicated as it requires control rotations. For potential gate in Dirac comb

potential in 3 qubits, the same sequence needs to be applied on last qubit.

83

84

Appendix A

Derivation of Fourier coefficient α

which emerges after the Phase

estimation subroutine in Harrow’s

algorithm

Conditional Hamiltonian evolution
∑T−1

τ=0 |τ〉〈τ | ⊗ e
ιAτt0
T is applied on |ψ〉 ⊗ |b〉 in the

”Phase estimation” subroutine of Harrow’s algorithm and we get:

(
T−1∑
τ=0

|τ〉〈τ | ⊗ eiAτt0/T
)

(|ψ0〉 ⊗ |b〉) =
N∑
j=1

T−1∑
τ=0

|τ〉〈τ |ψ0〉eiAτt0/Tβj|uj〉 (A.1)

=
N∑
j=1

T−1∑
τ=0

|τ〉〈τ |

(√
2

T

T−1∑
τ ′=0

sin

(
π(τ ′ + 1/2)

T

)
|τ ′〉

)
βj
(
eiAτt0/T |uj

)
(A.2)

=
N∑
j=1

T−1∑
τ=0

T−1∑
τ ′=0

√
2

T
sin

(
π(τ ′ + 1/2)

T

)
|τ〉〈τ |τ ′〉βjeiAτt0/T |uj〉 (A.3)

=
N∑
j=1

T−1∑
τ=0

√
2

T
βjsin

(
π(τ + 1/2)

T

)
eiλjt0/T |τ〉|uj〉 (A.4)

(A.5)

Inverse Fourier transform is defined as:

N−1∑
j=1

xj|j〉 →
N−1∑
k=1

yk|k〉 (A.6)

85

where

yk =
1√
N

N−1∑
j=1

(
e−ι2π/Nkj

)
xj (A.7)

Thus after applying inverse Fourier transform we get the state:

=
N∑
j=1

T−1∑
τ=0

√
2

T
βj|uj〉sin

(
π(τ + 1/2)

T

)
eiλjt0/T

1√
T

(
T−1∑
k=1

e
−i2π
T

τk|k〉

)
(A.8)

=
N∑
j=1

T−1∑
τ=0

T−1∑
k=0

√
2

T

1√
T
sin

(
π(τ + 1/2)

T

)
e
−i2πτk
T eiλjτt0/Tβj|k〉|uj〉 (A.9)

=
N∑
j=1

T−1∑
k=0

αk|jβj|k〉|uj〉 (A.10)

where

αk|j =
T−1∑
τ=0

√
2

T 2
sin

(
π(τ + 1/2)

T

)
e
−i2π
T

τkeiλjτt0/T (A.11)

αk|j =
T−1∑
τ=0

√
2

T 2
sin

(
π(τ + 1/2)

T

)
e
i
(

2π
T
τk+

τλjt0
T

)
(A.12)

=

√
2

T

T−1∑
τ=0

sin

(
π(τ + 1/2)

T

)
e
iτ
T

(−2πk+λjt0) (A.13)

=

√
2

T

T−1∑
τ=0

(
ei(

π(τ+1/2)
T) − e−i(

π(τ+1/2)
T)

2i

)
e
iτ
T

(λjt0−2πk) (A.14)

Put δ = λjt0 − 2πk

αk|j =
1

i
√

2T

T−1∑
τ=0

eiτδ/T
(
ei(

π(τ+1/2)
T) − e−i(

π(τ+1/2)
T)

)
(A.15)

=
1

i
√

2T

T−1∑
τ=0

(
e
i2τδ+iπ2τ+iπ

2T − e
i2τδ−iπ2τ−iπ

2T

)
(A.16)

=
1

i
√

2T

T−1∑
τ=0

e
ιπ
2T eιτ(

δ+π
T) − e

−ιπ
2T eιτ

(δ−π)
T (A.17)

86

As we know, the sum of a G.P. is given by-

N−1∑
n=0

a0r
n = a0

(1− rn)

1− r
(A.18)

We get:

αk|j =
1

i
√

2T

(
e
ιπ
2T

(
1− eι(δ+π)

1− eι δ+πT

)
− e

−ιπ
2T

(
1− eι(δ−π)

1− eι δ−πT

))
(A.19)

=
1

i
√

2T

(
e
ιπ
2T

(
1 + eιδ

1− eι δ+πT

)
− e

−ιπ
2T

(
1 + eιδ

1− eι δ−πT

))
(A.20)

=
1 + eιδ

i
√

2T

(
eι(

δ+π
2T)e−ιδ/2T

1− eι δ+πT
− eι(

δ−π
2T)e−ιδ/2T

1− eι δ−πT

)
(A.21)

=
1 + eιδ

i
√

2T

 e−ιδ/2T

e−ι(
δ+π
2T)

(
1− eι δ+πT

) − e−ιδ/2T

e−ι(
δ−π
2T)

(
1− eι δ−πT

)
 (A.22)

=
1 + eιδ

i
√

2T

(
e−ιδ/2T

e−ι(
δ+π
2T) − eι δ+π2T

− e−ιδ/2T

e−ι(
δ−π
2T) − eι δ−π2T

)
(A.23)

=
eιδ/2

(
e−ιδ/2 + eιδ/2

)
e−ιδ/2T

√
2T

(
1

2sin
(
δ+π
2T

) − 1

2sin
(
δ−π
2T

)) (A.24)

=
eιδ/2(1−1/T)

√
2T

cos(δ/2)

(
sin
(
δ−π
2T

)
− sin

(
δ+π
2T

)
sin
(
δ+π
2T

)
sin
(
δ−π
2T

)) (A.25)

=
e
ιδ
2

(1−1/T)

√
2T

cos(δ/2)

(
2cos

(
δ

2T

)
sin
(
π

2T

)
sin
(
δ+π
2T

)
sin
(
δ−π
2T

)) (A.26)

(A.27)

Put back δ = λjt0 − 2πk

αk|j =
e
ι(λjt0−2πk)

2
(1−1/T)

√
2T

cos((λjt0 − 2πk)/2)

 2cos
(
λjt0−2πk

2T

)
sin
(
π

2T

)
sin
(
λjt0−2πk+π

2T

)
sin
(
λjt0−2πk−π

2T

)


(A.28)

Thus

|αk|j| =
√

2

T

cos((λjt0 − 2πk)/2)cos
(
λjt0−2πk

2T

)
sin
(
π

2T

)
sin
(
λjt0−2πk+π

2T

)
sin
(
λjt0−2πk−π

2T

)
 (A.29)

87

88

Appendix B

Mathematica Codes

∗ProgramforQuantumTunnelinginaDoubleWellPotential∗∗ProgramforQuantumTunnelinginaDoubleWellPotential∗∗ProgramforQuantumTunnelinginaDoubleWellPotential∗

∗Programisgateresolved∗∗Programisgateresolved∗∗Programisgateresolved∗

∗TwoQubits∗∗TwoQubits∗∗TwoQubits∗

Needs[“QDENSITỲQdensitỳ”]Needs[“QDENSITỲQdensitỳ”]Needs[“QDENSITỲQdensitỳ”]

EffectiveGate = Module[{}, t = 0.1; v = 10;EffectiveGate = Module[{}, t = 0.1; v = 10;EffectiveGate = Module[{}, t = 0.1; v = 10;

Gate1 = (had[1, 1]⊗ Sigma0);Gate1 = (had[1, 1]⊗ Sigma0);Gate1 = (had[1, 1]⊗ Sigma0);

Gate2 =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 Exp
[

2∗π∗i
4

]


;Gate2 =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 Exp
[

2∗π∗i
4

]


;Gate2 =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 Exp
[

2∗π∗i
4

]


;

Gate3 = (Sigma0⊗ had[1, 1]);Gate3 = (Sigma0⊗ had[1, 1]);Gate3 = (Sigma0⊗ had[1, 1]);

Z0 =

 Exp
[
i∗π∗π∗t

8

]
0

0 Exp
[−i∗π∗π∗t

8

]
 ;Z0 =

 Exp
[
i∗π∗π∗t

8

]
0

0 Exp
[−i∗π∗π∗t

8

]
 ;Z0 =

 Exp
[
i∗π∗π∗t

8

]
0

0 Exp
[−i∗π∗π∗t

8

]
 ;

Gate4 = (Z0⊗ Sigma0);Gate4 = (Z0⊗ Sigma0);Gate4 = (Z0⊗ Sigma0);

Z1 =

 Exp
[
i∗π∗π∗t

4∗8

]
0

0 Exp
[
− i∗π∗π∗t

4∗8

]
 ;Z1 =

 Exp
[
i∗π∗π∗t

4∗8

]
0

0 Exp
[
− i∗π∗π∗t

4∗8

]
 ;Z1 =

 Exp
[
i∗π∗π∗t

4∗8

]
0

0 Exp
[
− i∗π∗π∗t

4∗8

]
 ;

Gate5 = Chop[(Sigma0⊗ Z1)];Gate5 = Chop[(Sigma0⊗ Z1)];Gate5 = Chop[(Sigma0⊗ Z1)];

89

∅01 = Chop


MatrixExp


−i∗π∗π∗4∗t

8
∗



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1






;∅01 = Chop


MatrixExp


−i∗π∗π∗4∗t

8
∗



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1






;∅01 = Chop


MatrixExp


−i∗π∗π∗4∗t

8
∗



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1






;

Gate6 = ∅01;Gate6 = ∅01;Gate6 = ∅01;

Gate7 = Gate3;Gate7 = Gate3;Gate7 = Gate3;

Gate8 = Adj[Gate2];Gate8 = Adj[Gate2];Gate8 = Adj[Gate2];

Gate9 = Gate1;Gate9 = Gate1;Gate9 = Gate1;

Pot =

 Exp[−i ∗ v ∗ t] 0

0 Exp[i ∗ v ∗ t]

 ;Pot =

 Exp[−i ∗ v ∗ t] 0

0 Exp[i ∗ v ∗ t]

 ;Pot =

 Exp[−i ∗ v ∗ t] 0

0 Exp[i ∗ v ∗ t]

 ;

Gate10 = Chop[(Sigma0⊗ Pot)];Gate10 = Chop[(Sigma0⊗ Pot)];Gate10 = Chop[(Sigma0⊗ Pot)];

GateArray = {Gate1,Gate2,Gate3,Gate4,Gate5,Gate6,Gate7,Gate8,Gate9,Gate10};GateArray = {Gate1,Gate2,Gate3,Gate4,Gate5,Gate6,Gate7,Gate8,Gate9,Gate10};GateArray = {Gate1,Gate2,Gate3,Gate4,Gate5,Gate6,Gate7,Gate8,Gate9,Gate10};

SuperGate = Chop[Gate2.Gate1];SuperGate = Chop[Gate2.Gate1];SuperGate = Chop[Gate2.Gate1];

For[j = 1, j ≤ 8, j++,For[j = 1, j ≤ 8, j++,For[j = 1, j ≤ 8, j++,

SuperGate = Chop[GateArray[[j + 2]].SuperGate]SuperGate = Chop[GateArray[[j + 2]].SuperGate]SuperGate = Chop[GateArray[[j + 2]].SuperGate]

];];];

SuperGateSuperGateSuperGate

];];];

Module[{}, state0 = (Ket[0]⊗ Ket[1]); density0 = (state0⊗ Adj[state0]);Module[{}, state0 = (Ket[0]⊗ Ket[1]); density0 = (state0⊗ Adj[state0]);Module[{}, state0 = (Ket[0]⊗ Ket[1]); density0 = (state0⊗ Adj[state0]);

Endstates =





0

0

0

0


,



0

0

0

0


,



0

0

0

0


,



0

0

0

0


,



0

0

0

0


,Endstates =





0

0

0

0


,



0

0

0

0


,



0

0

0

0


,



0

0

0

0


,



0

0

0

0


,Endstates =





0

0

0

0


,



0

0

0

0


,



0

0

0

0


,



0

0

0

0


,



0

0

0

0


,



0

0

0

0


,



0

0

0

0


,



0

0

0

0


,



0

0

0

0


,



0

0

0

0


,



0

0

0

0




;



0

0

0

0


,



0

0

0

0


,



0

0

0

0


,



0

0

0

0


,



0

0

0

0


,



0

0

0

0




;



0

0

0

0


,



0

0

0

0


,



0

0

0

0


,



0

0

0

0


,



0

0

0

0


,



0

0

0

0




;

90

Endstates[[1]] = state0;Endstates[[1]] = state0;Endstates[[1]] = state0;

For[l = 1, l ≤ 10, l++,For[l = 1, l ≤ 10, l++,For[l = 1, l ≤ 10, l++,

Endstates[[l + 1]] = Chop[SuperGate.Endstates[[l]]]Endstates[[l + 1]] = Chop[SuperGate.Endstates[[l]]]Endstates[[l + 1]] = Chop[SuperGate.Endstates[[l]]]

];];];

Enddensity =





0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


,



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


,



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


,Enddensity =





0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


,



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


,



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


,Enddensity =





0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


,



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


,



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


,



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


,



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


,



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


,



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


,



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


,



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


,



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


,



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


,



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


,



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


,



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


,



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


,



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


,



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


,



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


,



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0




;



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


,



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


,



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


,



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0




;



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


,



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


,



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


,



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0




;

Enddensity[[1]] = density0;Enddensity[[1]] = density0;Enddensity[[1]] = density0;

For[l = 1, l ≤ 10, l++,For[l = 1, l ≤ 10, l++,For[l = 1, l ≤ 10, l++,

Enddensity[[l + 1]] = Chop[SuperGate.Enddensity[[l]].Adj[SuperGate]]Enddensity[[l + 1]] = Chop[SuperGate.Enddensity[[l]].Adj[SuperGate]]Enddensity[[l + 1]] = Chop[SuperGate.Enddensity[[l]].Adj[SuperGate]]

];];];

];];];

Module[{},Module[{},Module[{},

prob =





0

0

0

0


,



0

0

0

0


,



0

0

0

0


,



0

0

0

0


,



0

0

0

0


,



0

0

0

0


,prob =





0

0

0

0


,



0

0

0

0


,



0

0

0

0


,



0

0

0

0


,



0

0

0

0


,



0

0

0

0


,prob =





0

0

0

0


,



0

0

0

0


,



0

0

0

0


,



0

0

0

0


,



0

0

0

0


,



0

0

0

0


,

91



0

0

0

0


,



0

0

0

0


,



0

0

0

0


,



0

0

0

0


,



0

0

0

0




;



0

0

0

0


,



0

0

0

0


,



0

0

0

0


,



0

0

0

0


,



0

0

0

0




;



0

0

0

0


,



0

0

0

0


,



0

0

0

0


,



0

0

0

0


,



0

0

0

0




;

For[j = 1, j ≤ 11, j++,For[j = 1, j ≤ 11, j++,For[j = 1, j ≤ 11, j++,

For[k = 1, k ≤ 4, k++,For[k = 1, k ≤ 4, k++,For[k = 1, k ≤ 4, k++,

prob[[j]][[k]] = (Abs[Endstates[[j]][[k]]])∧2prob[[j]][[k]] = (Abs[Endstates[[j]][[k]]])∧2prob[[j]][[k]] = (Abs[Endstates[[j]][[k]]])∧2

]]]

];];];

]]]

For[i = 1, i ≤ 11, i++,For[i = 1, i ≤ 11, i++,For[i = 1, i ≤ 11, i++,

p = ListPlot[Transpose[prob[[i]]],Filling→ Axis,PlotRange→ {0, 1},p = ListPlot[Transpose[prob[[i]]],Filling→ Axis,PlotRange→ {0, 1},p = ListPlot[Transpose[prob[[i]]],Filling→ Axis,PlotRange→ {0, 1},

Frame→ True,FillingStyle→ {Red},Frame→ True,FillingStyle→ {Red},Frame→ True,FillingStyle→ {Red},

FrameTicks→ {{{0, 0.25, 0.5, 0.75, 1},None}, {{1, 2, 3, 4, 5, 6, 7, 8},None}}];FrameTicks→ {{{0, 0.25, 0.5, 0.75, 1},None}, {{1, 2, 3, 4, 5, 6, 7, 8},None}}];FrameTicks→ {{{0, 0.25, 0.5, 0.75, 1},None}, {{1, 2, 3, 4, 5, 6, 7, 8},None}}];

Print[p]]Print[p]]Print[p]]

Three qubits

∗ProgramforQuantumTunnelinginaDoubleWellPotential∗∗ProgramforQuantumTunnelinginaDoubleWellPotential∗∗ProgramforQuantumTunnelinginaDoubleWellPotential∗

∗Three Qubits∗∗Three Qubits∗∗Three Qubits∗

Needs[“QDENSITỲQdensitỳ”]Needs[“QDENSITỲQdensitỳ”]Needs[“QDENSITỲQdensitỳ”]

Module[{}, L = 3; PotQubit = 2; v = 10; t = 0.1;m = 0.5];Module[{}, L = 3; PotQubit = 2; v = 10; t = 0.1;m = 0.5];Module[{}, L = 3; PotQubit = 2; v = 10; t = 0.1;m = 0.5];

Module[{}, state0 = Ket[1];Module[{}, state0 = Ket[1];Module[{}, state0 = Ket[1];

For[i = 2, i ≤ L, i++, If[i == PotQubit, state0 = (state0⊗ Ket[1]),For[i = 2, i ≤ L, i++, If[i == PotQubit, state0 = (state0⊗ Ket[1]),For[i = 2, i ≤ L, i++, If[i == PotQubit, state0 = (state0⊗ Ket[1]),

state0 = (state0⊗ Ket[0])]]; density0 = (state0⊗ Adj[state0])];state0 = (state0⊗ Ket[0])]]; density0 = (state0⊗ Adj[state0])];state0 = (state0⊗ Ket[0])]]; density0 = (state0⊗ Adj[state0])];

ControlP[L , q1 , q2 , k]:=ControlP[L , q1 , q2 , k]:=ControlP[L , q1 , q2 , k]:=

Module
[
{φ}, φ = Exp

[
2 ∗ π ∗ i

/
2k
]

;Module
[
{φ}, φ = Exp

[
2 ∗ π ∗ i

/
2k
]

;Module
[
{φ}, φ = Exp

[
2 ∗ π ∗ i

/
2k
]

;

92

1/4 ∗ ((3 + φ) ∗ TwoOp[L, q1, q2, 0, 0] + (1− φ) ∗ TwoOp[L, q1, q2, 3, 0]+1/4 ∗ ((3 + φ) ∗ TwoOp[L, q1, q2, 0, 0] + (1− φ) ∗ TwoOp[L, q1, q2, 3, 0]+1/4 ∗ ((3 + φ) ∗ TwoOp[L, q1, q2, 0, 0] + (1− φ) ∗ TwoOp[L, q1, q2, 3, 0]+

(1− φ) ∗ TwoOp[L, q1, q2, 0, 3] + (φ− 1) ∗ TwoOp[L, q1, q2, 3, 3])];(1− φ) ∗ TwoOp[L, q1, q2, 0, 3] + (φ− 1) ∗ TwoOp[L, q1, q2, 3, 3])];(1− φ) ∗ TwoOp[L, q1, q2, 0, 3] + (φ− 1) ∗ TwoOp[L, q1, q2, 3, 3])];

QFTGate = Module[{},QFTGate = Module[{},QFTGate = Module[{},

Ω = IdentityMatrix[2∧L]; For[i = 1, i ≤ L, i++,Ω = IdentityMatrix[2∧L]; For[i = 1, i ≤ L, i++,Ω = IdentityMatrix[2∧L]; For[i = 1, i ≤ L, i++,

Ω = had[L, i].Ω;Ω = had[L, i].Ω;Ω = had[L, i].Ω;

For[j = i+ 1, j ≤ L, j++,For[j = i+ 1, j ≤ L, j++,For[j = i+ 1, j ≤ L, j++,

Ω = ControlP[L, j, i, j − i+ 1].ΩΩ = ControlP[L, j, i, j − i+ 1].ΩΩ = ControlP[L, j, i, j − i+ 1].Ω

]]]

]; Ω];]; Ω];]; Ω];

InverseQFTGate = Adj[QFTGate];InverseQFTGate = Adj[QFTGate];InverseQFTGate = Adj[QFTGate];

PotentialGate = Module

{},Pot =

 Exp[−i ∗ v ∗ t] 0

0 Exp[i ∗ v ∗ t]

 ;PotentialGate = Module

{},Pot =

 Exp[−i ∗ v ∗ t] 0

0 Exp[i ∗ v ∗ t]

 ;PotentialGate = Module

{},Pot =

 Exp[−i ∗ v ∗ t] 0

0 Exp[i ∗ v ∗ t]

 ;

PotGate = IdentityMatrix[2];PotGate = IdentityMatrix[2];PotGate = IdentityMatrix[2];

If[PotQubit==1,For[i = 1, i ≤ L, i++,If[PotQubit==1,For[i = 1, i ≤ L, i++,If[PotQubit==1,For[i = 1, i ≤ L, i++,

If[i == 1,PotGate = Pot,PotGate = (PotGate⊗ Sigma0)]If[i == 1,PotGate = Pot,PotGate = (PotGate⊗ Sigma0)]If[i == 1,PotGate = Pot,PotGate = (PotGate⊗ Sigma0)]

],For[i = 2, i ≤ L, i++,],For[i = 2, i ≤ L, i++,],For[i = 2, i ≤ L, i++,

If[i == PotQubit,PotGate = (PotGate⊗ Pot),PotGate = (PotGate⊗ Sigma0)]If[i == PotQubit,PotGate = (PotGate⊗ Pot),PotGate = (PotGate⊗ Sigma0)]If[i == PotQubit,PotGate = (PotGate⊗ Pot),PotGate = (PotGate⊗ Sigma0)]

]]; Chop[PotGate]]]; Chop[PotGate]]]; Chop[PotGate]

];];];

KineticEnergyGate = Module[{},MomOp = IdentityMatrix[2∧L];KineticEnergyGate = Module[{},MomOp = IdentityMatrix[2∧L];KineticEnergyGate = Module[{},MomOp = IdentityMatrix[2∧L];

For[i = 0, i ≤ 2∧(L− 1), i++,For[i = 0, i ≤ 2∧(L− 1), i++,For[i = 0, i ≤ 2∧(L− 1), i++,

MomOp[[i+ 1]][[i+ 1]] = 2∗ π
2∧L
∗ i
]

;MomOp[[i+ 1]][[i+ 1]] = 2∗ π
2∧L
∗ i
]

;MomOp[[i+ 1]][[i+ 1]] = 2∗ π
2∧L
∗ i
]

;

For[i = 2∧(L− 1) + 1, i ≤ (2∧L)− 1, i++,For[i = 2∧(L− 1) + 1, i ≤ (2∧L)− 1, i++,For[i = 2∧(L− 1) + 1, i ≤ (2∧L)− 1, i++,

MomOp[[i+ 1]][[i+ 1]] = 2∗ π
2∧L
∗ (2∧(L− 1)− i)

]
;MomOp[[i+ 1]][[i+ 1]] = 2∗ π

2∧L
∗ (2∧(L− 1)− i)

]
;MomOp[[i+ 1]][[i+ 1]] = 2∗ π

2∧L
∗ (2∧(L− 1)− i)

]
;

MatrixExp
[
−i ∗ Chop

[
MatrixPower[MomOp,2]

2∗m

]
∗ t
]

MatrixExp
[
−i ∗ Chop

[
MatrixPower[MomOp,2]

2∗m

]
∗ t
]

MatrixExp
[
−i ∗ Chop

[
MatrixPower[MomOp,2]

2∗m

]
∗ t
]

];];];

93

SuperGate = Chop[PotentialGate.InverseQFTGate.KineticEnergyGate.QFTGate];SuperGate = Chop[PotentialGate.InverseQFTGate.KineticEnergyGate.QFTGate];SuperGate = Chop[PotentialGate.InverseQFTGate.KineticEnergyGate.QFTGate];

Module[{},EndVectorTemp = Range[2∧L]; EndVectorTemp = EndVectorTemp− EndVectorTemp;Module[{},EndVectorTemp = Range[2∧L]; EndVectorTemp = EndVectorTemp− EndVectorTemp;Module[{},EndVectorTemp = Range[2∧L]; EndVectorTemp = EndVectorTemp− EndVectorTemp;

Endstates = {EndVectorTemp,EndVectorTemp,EndVectorTemp,EndVectorTemp,Endstates = {EndVectorTemp,EndVectorTemp,EndVectorTemp,EndVectorTemp,Endstates = {EndVectorTemp,EndVectorTemp,EndVectorTemp,EndVectorTemp,

EndVectorTemp,EndVectorTemp,EndVectorTemp,EndVectorTemp,EndVectorTemp,EndVectorTemp,EndVectorTemp,EndVectorTemp,EndVectorTemp,EndVectorTemp,EndVectorTemp,EndVectorTemp,EndVectorTemp,EndVectorTemp,EndVectorTemp,

EndVectorTemp,EndVectorTemp};EndVectorTemp,EndVectorTemp};EndVectorTemp,EndVectorTemp};

Endstates[[1]] = state0;Endstates[[1]] = state0;Endstates[[1]] = state0;

For[l = 1, l ≤ 10, l++,For[l = 1, l ≤ 10, l++,For[l = 1, l ≤ 10, l++,

Endstates[[l + 1]] = Chop[SuperGate.Endstates[[l]]]Endstates[[l + 1]] = Chop[SuperGate.Endstates[[l]]]Endstates[[l + 1]] = Chop[SuperGate.Endstates[[l]]]

];];];

EndMatrixTemp = IdentityMatrix[2∧L];EndMatrixTemp = IdentityMatrix[2∧L];EndMatrixTemp = IdentityMatrix[2∧L];

Enddensity = {EndMatrixTemp,EndMatrixTemp,EndMatrixTemp,EndMatrixTemp,Enddensity = {EndMatrixTemp,EndMatrixTemp,EndMatrixTemp,EndMatrixTemp,Enddensity = {EndMatrixTemp,EndMatrixTemp,EndMatrixTemp,EndMatrixTemp,

EndMatrixTemp,EndMatrixTemp,EndMatrixTemp,EndMatrixTemp,EndMatrixTemp,EndMatrixTemp,EndMatrixTemp,EndMatrixTemp,EndMatrixTemp,EndMatrixTemp,EndMatrixTemp,EndMatrixTemp,EndMatrixTemp,EndMatrixTemp,EndMatrixTemp,

EndMatrixTemp,EndMatrixTemp};EndMatrixTemp,EndMatrixTemp};EndMatrixTemp,EndMatrixTemp};

Enddensity[[1]] = density0;Enddensity[[1]] = density0;Enddensity[[1]] = density0;

For[l = 1, l ≤ 10, l++,For[l = 1, l ≤ 10, l++,For[l = 1, l ≤ 10, l++,

Enddensity[[l + 1]] = Chop[SuperGate.Enddensity[[l]].Adj[SuperGate]]Enddensity[[l + 1]] = Chop[SuperGate.Enddensity[[l]].Adj[SuperGate]]Enddensity[[l + 1]] = Chop[SuperGate.Enddensity[[l]].Adj[SuperGate]]

];];];

];];];

Module[{},Module[{},Module[{},

prob = {EndVectorTemp,EndVectorTemp,EndVectorTemp,EndVectorTemp,prob = {EndVectorTemp,EndVectorTemp,EndVectorTemp,EndVectorTemp,prob = {EndVectorTemp,EndVectorTemp,EndVectorTemp,EndVectorTemp,

EndVectorTemp,EndVectorTemp,EndVectorTemp,EndVectorTemp,EndVectorTemp,EndVectorTemp,EndVectorTemp,EndVectorTemp,EndVectorTemp,EndVectorTemp,EndVectorTemp,EndVectorTemp,EndVectorTemp,EndVectorTemp,EndVectorTemp,

EndVectorTemp,EndVectorTemp};EndVectorTemp,EndVectorTemp};EndVectorTemp,EndVectorTemp};

For[j = 1, j ≤ 11, j++,For[j = 1, j ≤ 11, j++,For[j = 1, j ≤ 11, j++,

For[k = 1, k ≤ 2∧L, k++,For[k = 1, k ≤ 2∧L, k++,For[k = 1, k ≤ 2∧L, k++,

prob[[j]][[k]] = (Abs[Endstates[[j]][[k]]])∧2prob[[j]][[k]] = (Abs[Endstates[[j]][[k]]])∧2prob[[j]][[k]] = (Abs[Endstates[[j]][[k]]])∧2

]]]

94

];];];

]]]

For[i = 1, i ≤ 11, i++,For[i = 1, i ≤ 11, i++,For[i = 1, i ≤ 11, i++,

p = ListPlot[Transpose[prob[[i]]],Filling→ Axis,PlotRange→ {0, 1},p = ListPlot[Transpose[prob[[i]]],Filling→ Axis,PlotRange→ {0, 1},p = ListPlot[Transpose[prob[[i]]],Filling→ Axis,PlotRange→ {0, 1},

Frame→ True,FillingStyle→ {Red},Frame→ True,FillingStyle→ {Red},Frame→ True,FillingStyle→ {Red},

FrameTicks→ {{{0, 0.25, 0.5, 0.75, 1},None}, {{1, 2, 3, 4, 5, 6, 7, 8},None}}];FrameTicks→ {{{0, 0.25, 0.5, 0.75, 1},None}, {{1, 2, 3, 4, 5, 6, 7, 8},None}}];FrameTicks→ {{{0, 0.25, 0.5, 0.75, 1},None}, {{1, 2, 3, 4, 5, 6, 7, 8},None}}];

Print[p]]Print[p]]Print[p]]

Most of the structure of the programs for other potentials is same as that of

program for Double Potential except for the important changes in the potential gate

structure which are listed below:

(*Single Dirac Delta Potental *)(*Single Dirac Delta Potental *)(*Single Dirac Delta Potental *)

Module[{}, L = 2; PotState = 3; v = 10; t = 0.1;m = 0.5];Module[{}, L = 2; PotState = 3; v = 10; t = 0.1;m = 0.5];Module[{}, L = 2; PotState = 3; v = 10; t = 0.1;m = 0.5];

PotentialGate = Module[{},Pot = IdentityMatrix[2∧L];PotentialGate = Module[{},Pot = IdentityMatrix[2∧L];PotentialGate = Module[{},Pot = IdentityMatrix[2∧L];

For[i = 1, i ≤ 2∧L, i++, If[i == PotState,Pot[[i]][[i]] = 1,Pot[[i]][[i]] = −1]];For[i = 1, i ≤ 2∧L, i++, If[i == PotState,Pot[[i]][[i]] = 1,Pot[[i]][[i]] = −1]];For[i = 1, i ≤ 2∧L, i++, If[i == PotState,Pot[[i]][[i]] = 1,Pot[[i]][[i]] = −1]];

Chop[MatrixExp[−i ∗ v ∗ t ∗ Pot]]Chop[MatrixExp[−i ∗ v ∗ t ∗ Pot]]Chop[MatrixExp[−i ∗ v ∗ t ∗ Pot]]

];];];

(*Double Dirac Delta Potental *)(*Double Dirac Delta Potental *)(*Double Dirac Delta Potental *)

Module[{}, L = 3; PotQubit = 0; PotState1 = 3; PotState2 = 5; v = 10; t = 0.2;m = 0.5];Module[{}, L = 3; PotQubit = 0; PotState1 = 3; PotState2 = 5; v = 10; t = 0.2;m = 0.5];Module[{}, L = 3; PotQubit = 0; PotState1 = 3; PotState2 = 5; v = 10; t = 0.2;m = 0.5];

PotentialGate = Module[{},Pot = IdentityMatrix[2∧L];PotentialGate = Module[{},Pot = IdentityMatrix[2∧L];PotentialGate = Module[{},Pot = IdentityMatrix[2∧L];

For[i = 1, i ≤ 2∧L, i++, If[i == PotState1‖i == PotState2,Pot[[i]][[i]] = 1,For[i = 1, i ≤ 2∧L, i++, If[i == PotState1‖i == PotState2,Pot[[i]][[i]] = 1,For[i = 1, i ≤ 2∧L, i++, If[i == PotState1‖i == PotState2,Pot[[i]][[i]] = 1,

Pot[[i]][[i]] = −1]];Pot[[i]][[i]] = −1]];Pot[[i]][[i]] = −1]];

Chop[MatrixExp[−i ∗ v ∗ t ∗ Pot]]Chop[MatrixExp[−i ∗ v ∗ t ∗ Pot]]Chop[MatrixExp[−i ∗ v ∗ t ∗ Pot]]

];];];

(*Tripple DiracDeltaPotental− SuperpositionStart*)(*Tripple DiracDeltaPotental− SuperpositionStart*)(*Tripple DiracDeltaPotental− SuperpositionStart*)

95

Module[{}, L = 3; PotQubit = 0; PotState1 = 3; PotState2 = 4; PotState3 = 5;Module[{}, L = 3; PotQubit = 0; PotState1 = 3; PotState2 = 4; PotState3 = 5;Module[{}, L = 3; PotQubit = 0; PotState1 = 3; PotState2 = 4; PotState3 = 5;

pm1 = 1; pm2 = 1; pm3 = 1; v = 10; t = 0.2;m = 0.5];pm1 = 1; pm2 = 1; pm3 = 1; v = 10; t = 0.2;m = 0.5];pm1 = 1; pm2 = 1; pm3 = 1; v = 10; t = 0.2;m = 0.5];

Module
[
{}, state0 = KetV[{0,0,0}]+KetV[{0,0,1}]√

2
; density0 = (state0⊗ Adj[state0])

]
Module

[
{}, state0 = KetV[{0,0,0}]+KetV[{0,0,1}]√

2
; density0 = (state0⊗ Adj[state0])

]
Module

[
{}, state0 = KetV[{0,0,0}]+KetV[{0,0,1}]√

2
; density0 = (state0⊗ Adj[state0])

]
PotentialGate = Module[{},Pot = −1 ∗ IdentityMatrix[2∧L];PotentialGate = Module[{},Pot = −1 ∗ IdentityMatrix[2∧L];PotentialGate = Module[{},Pot = −1 ∗ IdentityMatrix[2∧L];

Pot[[PotState1]][[PotState1]] = pm1;Pot[[PotState1]][[PotState1]] = pm1;Pot[[PotState1]][[PotState1]] = pm1;

Pot[[PotState2]][[PotState2]] = pm2;Pot[[PotState2]][[PotState2]] = pm2;Pot[[PotState2]][[PotState2]] = pm2;

Pot[[PotState3]][[PotState3]] = pm3;Pot[[PotState3]][[PotState3]] = pm3;Pot[[PotState3]][[PotState3]] = pm3;

Chop[MatrixExp[−i ∗ v ∗ t ∗ Pot]]Chop[MatrixExp[−i ∗ v ∗ t ∗ Pot]]Chop[MatrixExp[−i ∗ v ∗ t ∗ Pot]]

];];];

(*Dirac Comb Potential*)(*Dirac Comb Potential*)(*Dirac Comb Potential*)

Module[{}, L = 3; PotQubit = 3; v = 10; t = 0.1;m = 0.5];Module[{}, L = 3; PotQubit = 3; v = 10; t = 0.1;m = 0.5];Module[{}, L = 3; PotQubit = 3; v = 10; t = 0.1;m = 0.5];

PotentialGate = Module

{},Pot =

 Exp[−i ∗ v ∗ t] 0

0 Exp[i ∗ v ∗ t]

 ;PotentialGate = Module

{},Pot =

 Exp[−i ∗ v ∗ t] 0

0 Exp[i ∗ v ∗ t]

 ;PotentialGate = Module

{},Pot =

 Exp[−i ∗ v ∗ t] 0

0 Exp[i ∗ v ∗ t]

 ;

PotGate = IdentityMatrix[2];PotGate = IdentityMatrix[2];PotGate = IdentityMatrix[2];

If[PotQubit==1,For[i = 1, i ≤ L, i++,If[PotQubit==1,For[i = 1, i ≤ L, i++,If[PotQubit==1,For[i = 1, i ≤ L, i++,

If[i == 1,PotGate = Pot,PotGate = (PotGate⊗ Sigma0)]If[i == 1,PotGate = Pot,PotGate = (PotGate⊗ Sigma0)]If[i == 1,PotGate = Pot,PotGate = (PotGate⊗ Sigma0)]

],For[i = 2, i ≤ L, i++,],For[i = 2, i ≤ L, i++,],For[i = 2, i ≤ L, i++,

If[i == PotQubit,PotGate = (PotGate⊗ Pot),PotGate = (PotGate⊗ Sigma0)]If[i == PotQubit,PotGate = (PotGate⊗ Pot),PotGate = (PotGate⊗ Sigma0)]If[i == PotQubit,PotGate = (PotGate⊗ Pot),PotGate = (PotGate⊗ Sigma0)]

]]; Chop[PotGate]]]; Chop[PotGate]]]; Chop[PotGate]

];];];

96

Bibliography

[AWHL09] A. Hassidim, A. W. Harrow, and S. Llyod, Quantum algorithm for linear

systems of equations, Phys. Rev. Lett. 103 (2009), 150502.

[BD06] F. Tabakin, B.J. Diaz, J.M. Burdis, Qdensity- a mathematica quantum

computer simulation, Comp.Phy.Comm. 174 (2006), 914–934.

[Cop94] D. Coppersmith, An approximate fourier transform useful in quantum factor-

ing, IBM Research Report (1994), RC19642.

[DGCH97] A. F. Fahmy, D. G. Cory, and T.F. Havelr, Ensemble quantum computing

by NMR-spectroscopy, Proc. Nat.Ac. of Sci., USA 94 (1997), 1634–1639.

[DiV] D. P. DiVincenzo, The physical implementation of quantum computation,

Physik 48, 771–783.

[EKL98] I. L. Chuang, E. Knill and R. Laflamme, Effective pure states for bulk

quantum computation, Phys. Rev. A 57 (1998), 3348.

[Fey09] R.P Feynman, Simulating physics with computers, Int. J. Theor.Phys. 21

(2009), 224102.

[GF] L. Hao, F.H. Zhang, G.L. Long, G.R. Feng, Y. Lu, Experimental simulation

of quantum tunneling in small systems, Sci.Rep. 3, 2232.

[GLL] Y. Sun, G. L. Long, H. Y. Yan, Analysis of density matrix reconstruction in

NMR quantum computing, J. Opt. B: Quantum Semiclass. Opt. 3.

[GR02] L. Grover and T. Rudolph, Creating superpositions that correspond

to efficiently integrable probability distributions, arXiv:[quant-ph] (2002),

0208112v1.

[IOF11] T. Bonagamba, E. Azevedo, I. Oliveira, R. Sarthour Jr. and J. C. C.

Freitasr, NMR quantum information processing, 2011.

97

[JAJM] R. H. Hansen, J. A. Jones, and M. Mosca, Quantum logic gates and nuclear

magnetic resonance pulse sequences, J. Magn. Reson. 135.

[Jon01] J. A. Jones, Quantum computing and nuclear magnetic resonance,

PhysChemComm 11 (2001).

[Jon11] J. A. Jones, Quantum computing with NMR, Prog. NMR Spectrosc. 59

(2011), 91–120.

[Jor05] S. P. Jordan, Fast quantum algorithm for numerical gradient estimation,

Phys. Rev. Lett. 95 (2005), 050501.

[JP14] X. Yao, Z. Li, C. Ju, H. Chen, X. Peng, S. Kais, J. Du J. Pan, Y. Cao,

Experimental realization of quantum algorithm for solving linear system of

equations, Phys. Rev. A. 89 (2014), 022313.

[KAG09] I. Kassal and A. Aspuru-Guzik, Quantum algorithm for molecular properties

and geometry optimization, J. Chem. Phys. 131 (2009), 224102.

[KDK00] K. Dorai, T. S. Mahesh, Arvind and A. Kumar, Quantum computation

using NMR, Curr. Sci. 79 (2000), 10.

[Kee10] J. Keeler, Understanding NMR spectroscopy, John Wiley and Sons, 2010.

[Lee] J. S. Lee, The quantum state tomography on an NMR system, Phy. Lett. A.

305, 349–353.

[LO08] S. K. Leyton and T. J. Osborne, A quantum algorithm to solve nonlinear

differential equations, arXiv:[quant-ph] (2008), 0812.4423v1.

[NC00] M. A. Nielsen and I. L. Chuang, Quantum computation and Quantum in-

formation, Cambridge University Press, Cambridge, England, 2000.

[Sak94] J. J. Sakurai, Modern quantum mechanics, Pearson Education, Inc., 1994.

[S.L92] S.Llyod, Universal quantum simulators, Science 273 (1992), 1073.

[Sor] A.T. Sornborgor, Quantum simulation of tunneling in small systems, Sci.Rep.

2, 597.

[SS] A. N. Soklakov and R. Schack, Efficient state preparation for a register of

quantum bits, Phys. Rev. A 73, 012307.

98

[SS08] J. Stolze and D. Suter, Quantum computing : A short course from theory to

experimentl, WILEY-VCH, Weinheim, 2008.

[Ste97] A. Steane, Quantum computing, arXiv:[quant-ph] (1997), 9708022v2.

[THJJ14] S. R. Clark, T. H. Johnson and D. Jaksch, What is quantum simulator?,

arXiv:[quant-ph] (2014), 1405.2831v1.

[Tra12] A. Trabesinger, Quantum simulation, N. Physics 8 (2012), 263.

[YCK] S. Frankel Y. Cao, A. Daskin and S. Kais, Quantum circuits for solving

linear systems of equations, arXiv:[quant-ph], 1110.2232v3.

[YCK13] I. Petras, J. Traub, Y. Cao, A. Papageorgiou and S. Kais, Quantum al-

gorithm and circuit design solving the poisson equation, New J. Phys. 15

(2013), 0130210.

[Zal98] C. Zalka, Simulating quantum systems on quantum computer, Proc. R. Soc.

Lond. A 454 (1998), 313–322.

99

	List of Figures
	List of Figures
	Notation
	Abstract
	Quantum Computation
	Introduction
	Quantum Bit/Qubit
	Quantum Gates:
	Measurement:

	Quantum Algorithms
	Introduction
	Quantum Fourier Transform
	Discrete Fourier Transform
	Fast Fourier Transform
	Quantum Fourier Transform

	Phase Estimation
	Introduction
	Algorithm
	Circuit Diagram

	Algorithm for Numerical gradient estimation
	Introduction
	Classical Algorithm
	 Quantum Algorithm
	Computational Resources

	Algorithm to solve Linear Equations
	Introduction
	Algorithm
	Circuit

	Algorithm to solve Non Linear Differential Equations
	Introduction
	Algorithm
	Computational Resources
	Extension to Cubic or Higher Systems

	Summary

	Quantum Simulation of Quantum Tunneling
	Quantum Simulation
	Theoretical protocol for quantum simulation of quantum tunneling
	Results and Discussion
	Double Well Potential
	Free Particle
	Single potential barrier in the path
	Two potential barriers in the path
	Three potential barriers in path
	Dirac Comb Potential

	NMR Quantum Computing
	Introduction
	Pseudo-Pure State
	Single Qubit Gates
	Two Qubit Gates
	Quantum State Tomography
	Simulation of quantum tunneling on an NMR information processor

	Derivation of Fourier coefficient which emerges after the Phase estimation subroutine in Harrow's algorithm
	Mathematica Codes
	Bibliography

