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Introduction

Spectral sequences are a very powerful computational tool in Homological Algebra
and Algebraic Topology. They package information about relations between homology
groups. The aim of this exposition is to understand their construction and applications
in certain contexts. In Chapter II we shall explicitly construct the Spectral Sequence
associated with a filtered differential module. This discussion is based on Chapter
XV of [2]. It has the advantage of being elementary and thus helping a novice get
started. The Exact Couples of Massey, originally introduced in topology, form a
broader source of Spectral Sequences. We discuss them in Chapter III, following
Chapter VIII of [1]. Chapter IV explains how some of the familiar situations (Filtered
differential module, Filtered Chain complex etc.) give rise to exact couples and thereby
Spectral Sequences. We shall briefly discuss the question of convergence of spectral
sequence in Chapter V. But an explicit discussion will be limited to spectral sequences
associated with filtered chain complexes. Chapter VI discusses how double complexes
give rise to two different spectral sequences. Then we discuss some applications of
spectral sequences to give conceptual proofs of results proved by diagram-chasing
in Homological Algebra. The sixth Chapter introduces the Grothendieck spectral
sequence. The following is a schematic representation of, how the major topics of this
exposition is organized between chapters 1

F.C.C F.D.M SpectralSequences

Doub.Comp E.C .

II II

IVV I
III

One may read Chapter II independent of the rest.
We believe that from a practical point of view Exact Couples is the most efficient

set-up for theoretical constructions of spectral sequences. So in various expositions,
we have preferred to use them and total-degree in the construction instead of Filtered
differential modules and complementary degree. We have used complementary degree
when it shows up naturally such as in the Total complex of a bi-complex.

In the last few chapters, we give external applications of spectral sequences to
Topology. We construct spectral sequences arising in non-abelian categories like that
of groups, simplicial sets and topological spaces. To this end, in Chapter VIII, we
give the most essential introduction to simplicial sets.

1 F.C.C - Filtered Chain Complex; F.D.M - Filtered Differential Module;
E.C - Exact Couple; Doub. Comp - Double Complex.
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The focus audience of this thesis is beginners in Homological Algebra. Those who
are familiar with the subject may find this exposition rather lengthy. We request
them to read diagonally.
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Chapter I

Some category theory

Here we state some definitions and results which will be used in this exposition.
Nevertheless we shall assume familiarity with the definition of category and functor.
For further clarifications one may refer to [1] and [2].
Let C be a category. Let A,B in C be any two objects. We shall denote the set of
morphisms from A to B by C(A,B).

Definition 1 (Equaliser). Let φ1 and φ2 : A → B be two morphisms in C. An
equaliser of φ1 and φ2 is a pair (e, E) of an object E and a morphism e : E → A such
that:

(i) φ1e = φ2e,

(ii) e is universal with respect to the above property. ie If (e′, E ′) is another pair
of object and morphism satisfying (i). Then there exists a unique morphism
τ : E ′ → E such that the following diagram is commutative

E ′

E A.

τ
e′

e

Similarly we define the dual notion, a co-equaliser of morphisms φ1 and φ2 : A→
B.

Definition 2 (Co-equaliser). Let φ1 and φ2 : A → B be two morphisms in C. Then
the co-equaliser of φ1 and φ2 is a pair (c, C) of an object C and a morphism c : B → C
such that:

(i) cφ1 = cφ2,

(ii) c is universal with respect to (i). In long hand this means, if (c′, C ′) is another
pair of object and morphism satisfying (i). Then there exists a unique morphism
θ : C → C ′ such that the following diagram is commutative

C ′

B C.

c′

c
θ
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Definition 3 (Zero object). Let A be an object in C. We say that A is a zero object
if the sets C(A,B) and C(B,A) are singletons for any B in C.

Zero object, if exist will be unique.

Definition 4 (Zero morphism). Let f : A → B be a morphism in C. We say f is a
zero morphism if the following diagram is commutative

0

A B.
f

We will denote zero morphism by 0.

Suppose C has zero object. Then we can define kernel and co-kernel of morphisms.

Definition 5 (Kernel). Let φ : A → B be a morphism. Let (i,K) be a pair of an
object K and a morphism i : K → A. We say (i,K) is the kernel of φ if, (i,K) is the
equaliser of φ and 0.

Similarly co-kernel, (p, C) is defined as the co-equaliser of φ and 0.

Definition 6 (Monomorphism and Epimorphism). We say a morphism µ : M → A
is a monomorphism if for every morphism α, β : B → A;

µα = µβ ⇒ α = β.

Similarly ε : A→ C is an epimorphism if for all morphisms α, β : A→ B ;

αε = βε⇒ α = β.

Definition 7 (Product). Let Xi, i ∈ I, be a family of objects in the category C.
Here I is some indexing set. Then a product (X; pi) of the objects Xi is an object X,
together with:

(i) Morphisms pi : X → Xi, called projections,

(ii) Universal property: given any object Y and morphisms fi : Y → Xi, there exists
a unique morphism f = {fi} : Y → X with pif = fi.

Definition 8 (Additive Category). A category A is said to be additive if the following
are satisfied;

(i) It contains zero object,

(ii) Product exists for any finite collection of objects,

4



(iii) For any pair of objects A(−,−) is an abelian group. Moreover given any three
objects A, B, C, the composition

A(A,B)× A(B,C)→ A(A,C)

is bilinear. That is if f, g ∈ A(A,B) and h, j ∈ A(B,C) then

(f + g) ◦ (h+ j) = f ◦ h+ f ◦ j + g ◦ h+ g ◦ j

belongs to A(A,C).

Definition 9 (Abelian Category). An additive category is abelian if:

1. Every morphism has a kernel and a co-kernel.

2. Let µ : M → A be any monomorphism. Let (c, C) be it’s cokernel. Then the
kernel of c : A → C is (µ,M). Similarly suppose ε : A → C is an epimorphism
such that (K, i) is it’s kernel. Then the cokernel of i : K → A is (ε, C).

3. Any morphism f : A → B may be factored into an epimorphism π : A → I
followed by a monomorphism i : I → B.Thus we have the following commutative
diagram in A

I

A B

i

f

π

where i is a monomorphism and π is an epimorphism.

Condition two is usually expressed as ’every monomorphism is the kernel of it’s
cokernel; every epimorphism is the cokernel of it’s kernel’. Similarly condition three
is often expressed as ’every morphism is expressible as the composition of an epimor-
phism followed by a monomorphism’.

Example 0.1. Let R be a commutative ring with identity. Then the category of
modules over R is an abelian category. We will use R −Mod to denote category of
R-modules. When R is Z, the ring of integers, we have category of abelian groups.
We shall denote it by Ab. The category of R-complexes denoted, R−Comp is also an
abelian category.

Example 0.2. The category of groups is not an abelian category.

Example 0.3. The category of Topological spaces denoted by Top is not even additive.
Similarly the category of pointed topological spaces (Top∗) is also not additive.

We require the following proposition to define the notion of additive functor. For
proof one may look at [1, II.9.5].

5



Proposition 1. Let F : A → B be a functor from an additive category A to an
additive category B. Then the following conditions are equivalent:

1. F preserves product (of two objects),

2. for each A,A′ in A, F : A(A,A′)→ B(FA, FA′) is a homomorphism.

Definition 10 (Additive Functor). A functor which satisfies any of the conditions
given by Proposition 1 is said to be an additive functor.

Example 0.4. Let I be a fixed R-module and M an arbitrary R-module. Let Hom(I,M) :
R−mod→ Ab be a functor which associates M to the group of homomorphism from
I to M . This is an additive functor.

Example 0.5. Let S be the category of sets. Forgetful functor F : R−mod → S
which associates every module M to it’s underlying set is non-additive.

Example 0.6. The fundamental group functor π1 : Top∗ → G is also not additive.

Proposition 2. Let A, B be abelian categories. Let F : A → B be an additive
functor. Let

0→ K
k−→ A

p−→ B → 0

be a split exact sequence in A. Then

0→ FK
F (k)−−→ FA

F (p)−−→ FB → 0

is also a split exact sequence.

Proof. By definition we have maps τ : A→ K and θ : B → A such that

τ ◦ k = IdK

and
p ◦ θ = IdB.

Moreover A ∼= K ⊕B. Let us apply F to the split exact sequence. Then we have the
following

0→ FK
F(k)

�
F(τ)

FA
F(p)

�
F(θ)

FB → 0

in B. Since additive functor preserves finite sum

FA ∼= FK ⊕ FB.

Moreover
F (τ) ◦ F (k) = F (τ ◦ k) = F (IdK) = IdFK .

Similarly
F (p) ◦ F (θ) = IdFB.

Thus the split exactness is preserved.

6



Definition 11 (Differential Object). Let A be an abelian category. A differential
object in A is pair (A, d) consisting of an object A and an endomorphism d : A→ A
such that d2 = 0.

We may construct a category of differential object in A denoted (A, d) as follows.
The objects in (A, d) are precisely the differential objects (A, d) in A. Let (A, d) and
(A′, d′) be two differential objects in A. Then a morphism f : (A, d) → (A′, d′) is a
morphism in A(A,A′) such that the following diagram is commutative

A A′

A A′.

f

d d′

f

It can be shown that (A, d) is an abelian category. Moreover to every object (A, d)
we may associate the homology object, namely H(A, d) = ker(d)/im(d). One may
show that homology is an additive functor but we do not intend to elaborate on this
or provide justifications here.

Definition 12 (Covariant δ Functor). Let A be an abelian Category and C be an
additive Category. Let a and b be two integers (which can be equal to ±∞) such
that a + 1 < b. A covariant δ-functor from A to C in degrees a < i < b, is a system
T = (T i) of additive covariant functors from A to C , (a < i < b), such that the
following properties hold:

1. For any i such that a < i < b − 1 and for any exact sequence 0 → A′ → A →
A′′ → 0, there exist a morphism

δ : T i(A′′)→ T i+1(A′).

We call this morphism the ”boundary” or ”connecting” homomorphism.

2. If we have a second exact sequence 0 → B′ → B → B′′ → 0 and a morphism
from the first exact sequence to the second, then the corresponding diagram

T i(A′′) T i+1(A′)

T i(B′′) T i+1(B′)

δ

δ

commutes.

3. For any short exact sequence 0 → A′ → A → A′′ → 0, the associated sequence
of morphisms

· · · → T i(A′)→ T i(A)→ T i(A′′)→ T i+1(A′)→ · · ·

forms a complex. That is the composition of two consecutive morphism is zero.

7



Similarly one define a covariant δ∗-functor from A to C. The only difference is that
δ∗-functor decreases the degree by one. Homology functors {Hn} from the Category of
chain-complexes over a commutative ring R is clearly covariant δ∗-functor. Similarly
Homology functors {Hn} from the Category of co-chain-complexes over a commutative
ring R is clearly covariant δ∗-functor

Definition 13 (Adjoint of a functor). Let C and D be two categories. Let

F : D→ C

be a functor. Let A ∈ C and B ∈ D be two arbitrary objects. We say a functor

G : C→ D

is right adjoint to F if
C(F (A), B) ' D(A,G(B)),

as sets. In this context we may also say that F is left adjoint to G. We denote ”G is
right adjoint to F” by

F a G.

Lemma 0.1. Let A and B be additive categories. Consider the functor

F : C→ D.

Let
G : D→ C

be it’s right adjoint. If F preserves monomorphisms then G preserves injectives.

Proof. Let I be an injective object in D. Consider the following diagram in C

GI

A B

φ

µ

where µ is a monomorphism. Now applying F to the above diagram we shall obtain

I

FA FB

Fφ

Fµ

in D. By our hypothesis Fµ is a monomorphism. Since I is injective in C, so there
exists

ψ : FB → I

8



such that ψ(Fµ) = Fφ. Now since G adjoint to F this means that there exist

ψ∗ : B → FI

such that following diagram is commutative

GI

A B.

φ

µ

ψ∗

Example 0.7. Forgetful functor from category of groups to category of sets,

F : R : G→ S

forgets the group structure on a group and just remembers the underlying set. It admits
a left adjoint, namely the functor

L : S→ G

which sends each set to the free group over it.

A constant functor D(d) : C → D is a functor that maps each object of the
category C to a fixed object d ∈ D and each morphism of C to the identity morphism
of that fixed object.

Let I fixed small category and C be any category. Consider the functor category
CI, whose objects are co-variant functors from I to C and morphisms are natural
transformations between the functors.

The diagonal functor D : C → CI is that functor which sends each object c ∈ C
to the constant functor D(c), and each morphism f : c → c′ of C to the natural
transformation Df : Dc→Dc′.

Definition 14 (Limit and Co-limit). Let I fixed small category and C be any category.
Consider the functor category CI. Let D be the diagonal functor from C→ CI,

D : C→ CI.

We have (DA)i = A for all i.
We define the co-limit in C to be the left adjoint to D. We shall denote this functor

by colim. Similarly we define the limit in the category C to be the right adjoint to D.
We shall denote it by lim.

Pullback in a category is a special case of limit. Similarly Pushout is a special case
of co-limit.

9
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Chapter II

Filtered Differential Modules

In this chapter we explicitly construct (and define) the spectral sequence associated
with a Filtered Differential Module. We shall then treat the case of Filtered Chain
Complexes as Filtered Differential Modules together with the additional detail of
complementary degree q. The proofs are straightforward generalizations. Indeed,
we have tried to highlight this claim by reproducing the arguments highlighting the
complementary degree q.

One may construct Spectral Sequences with increasing or decreasing filtrations.
We choose to work with increasing filtrations. Similarly the case of filtered co-chain
complex will only be briefly discussed. Our treatment here does not assume a back-
ground in Homological Algebra.

1 Preliminaries

Let R denote a commutative ring with identity. Let C∗ be a chain-complex of R-
modules. Recall from homological algebra the functor

Hn : R− comp→ R−mod

which associate to every complex C∗ the nth homology module. Recall that if

0→ C∗ → D∗ → E∗ → 0

is a short exact sequence of R-complexes, then we have the following long exact
sequence of R-Modules

→ Hn(C∗)→ Hn(D∗)→ Hn(E∗)→ Hn−1(C∗)→ .

The following lemma shall play a crucial role in our discussion

Lemma 1.1. Let A,A′, A′′ be R-modules. Suppose they fit as in the following com-
mutative diagram

C

A′ A A′′

ψ
η=φ′◦ψ

φ φ′

11



such that the bottom row is exact. Then the canonical morphism

Im(ψ)

Im(φ)
→ Im(η)

is an isomorphism.

Proof. The proof follows from the following observation. Let A,B,C be R-modules
and f : A → B, g : B → C be R-linear maps such that ker(g) ⊂ Im(f). We have a

natural morphism from Im(f) to im(g ◦f) which factors through Im(f)
Ker(g)

. Then by the

so-called first isomorphism theorem in group theory, we have Im(g ◦ f) ∼= Im(f)
Ker(g)

.

2 Filtration and Associated Graded

In this section we define the notion of filtration of a module and it’s associated graded.
We will also see when and how in the case of differential modules a filtration at the
level of module induces a filtration at the level of homology.

Definition 2.1. By a filtration F of a module M we mean a family of sub-modules
{Fp}p∈Z of M with the following properties:

(i) ...Fp−1 ⊂ Fp...,

(ii)
⋃
Fp = M .

We call the above filtration the increasing filtration of M . If F p ⊂ F p−1, we call
the filtration a decreasing filtration.

Definition 2.2. An associated graded module of a Module M with respect to a
filtration F is

⊕
p Fp/Fp−1. We shall denote this associated graded module by

E0
p(M). (2.1)

Definition 2.3. A R-linear map d from a R-module M to itself is called a differen-
tiation if d ◦ d = 0. We call a module equipped with a differentiation as a differential
module.

Definition 2.4. Let M be a differential module and F be a filtration of M . We say
F is compatible with respect to d if

d(Fp) ⊂ Fp; ∀p.

We shall call such objects Filtered Differential modules.

We now make some simple but important constructions of complexes associated
with any Filtered Differential Module (M,d, F ):

12



1. Given a differential module (M,d) we may form a complex

· · · M M M · · ·d d d d .

We shall denote it by (M,d)∗.

2. Notice that restriction of d on Fp is a differentiation for each p. By abuse of
notation we shall denote d|Fp also by d. Thus for a fixed p

· · · Fp Fp Fp · · ·d d d d

forms a complex. We will denote it by (Fp, d)∗.

3. Let Fp/Fp−r, where r ≥ 1 be an arbitrary quotient. Let d̄ denote the differenti-
ation induced by d. Then,

· · · Fp/Fp−r Fp/Fp−r · · ·d̄ d̄ d̄

also forms a R-complex. We shall denote it by (Fp/Fp−r, d̄)∗.

Thus when we talk of homology of M , Fp and Fp/Fp−r, we mean the homology of any
term of the corresponding complex.

2.1 Filtration at the level of Homology

The inclusion of Fp into M induces a map at the level of homology. We shall denote

Im(H(Fp)→ H(M))

by Fp(H). Notice that Fp(H) is an increasing filtration of H(M). Therefore we may
view H(M) as a filtered module.

Proposition 2.1. The sequence of modules {Fp(H)}p∈Z is a filtration of H(M).

We will denote this filtration by F (H).

Proof. Clearly
⋃
Fp(H) ⊂ H(M). Let us now show the reverse inclusion,

⋃
Fp(H) ⊃

H(M). Let [z] be an element of H(M). Then we have z ∈M such that
(i) d(z) = 0 and
(ii) [z] is the homology class of z.
Plainly z ∈ Fp for some p. Under inclusion z ∈ Fp is mapped to z in M . Hence [z]
in H(M) is the image of [z] in H(Fp) under the induced map. So H(M) ⊂

⋃
Fp(H).

13



Now to check that the sequence of modules is increasing, let us consider the following
commutative diagram of modules

Fp−r

Fp M.

Now we shall erect the respective complexes over each module to obtain the following
commutative diagram of complexes

(Fp−r, d)∗

(Fp, d)∗ (M,d)∗.

Apply homology functor to the above diagram. Now we have the following commu-
tative diagram at the level of homology

H(Fp−r)

H(Fp) H(M).

From the diagram it follows that Fp−r(H) ⊂ Fp(H), ∀r > 1.

Let us denote the pth piece Fp(H)/Fp−1(H) by Ep(H). Then the associated graded
module of the homology module equipped with filtration is given by⊕

p

Ep(H).

We shall refer to this as the Graded of the Homology.

3 Spectral Sequence associated with a Filtered Dif-

ferential Module

In this section we construct the Spectral Sequence associated with a Filtered Differ-
ential Module. In the process we will see that the graded of homology namely⊕

p

Ep(H) =
⊕
p

Fp(H)/Fp−1(H)

14



can be obtained as a sub-quotient of homology of graded,

⊕pH(Fp/Fp−1).

Spectral sequences provides us with this passage from homology of graded to graded
of homology. We begin by giving two explicit descriptions of Ep(H) which is the pth

piece of graded of homology.

First description of Ep(H): Consider the following diagram

H(Fp)

H(Fp−1) H(M) H(M/Fp−1).

(3.1)

Observe that the diagram is commutative and the row is exact. Now by definition

Ep(H) = Fp(H)/Fp−1(H)

= Im(H(Fp)→ H(M))/Im(H(Fp−1)→ H(M)).

Applying Lemma 1.1 to the diagram (3.1) we see that

Ep(H) ∼= Im(H(Fp)→ H(M/Fp−1)). (3.2)

An alternate description of H(Fp)→ H(M/Fp−1). Let us apply homology func-
tor to the following commutative diagram of complexes with exact rows

0 (Fp−1, d)∗ (Fp, d)∗ (Fp/Fp−1, d̄)∗ 0

0 (Fp−1, d)∗ (M,d)∗ (M/Fp−1, d̄)∗ 0.

id

Now we obtain the following commutative diagram

H(Fp) H(Fp/Fp−1)

H(M) H(M/Fp−1).

(3.3)

Notice that the map H(Fp) → H(M/Fp−1) is given by the composition of the left
vertical arrow followed by the horizontal. Here below we make use of the up horizontal
followed by the vertical to obtain the second description.
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Second description of Ep(H): From here on we shall adopt the following con-
vention: the various complexes (C, d)∗ will be abbreviated to just C. Consider the
following commutative diagram of complexes with exact rows

0 Fp M M/Fp 0

0 Fp/Fp−1 M/Fp−1 M/Fp 0.

id (3.4)

From (3.4) we may obtain the following commutative diagram

H(M/Fp) H(Fp)

H(M/Fp) H(Fp/Fp−1) H(M/Fp−1).

id

δ

δ

(3.5)

Thus we have the following commutative diagram with exact row

H(Fp)

H(M/Fp) H(Fp/Fp−1) H(M/Fp−1).

δ
δ◦id−1

Here the dotted arrow is simply given by the composition of solid vertical followed by
solid horizontal. Applying Lemma 1.1 to above diagram we obtain,

Im(H(Fp)→ H(M/Fp−1)) ∼=
Im(H(Fp)→ H(Fp/Fp−1))

Im(H(M/Fp)→ H(Fp/Fp−1))
. (3.6)

To summarize, by definition

Ep(H) = Im(H(Fp)→ H(M))/Im(H(Fp−1)→ H(M)).

By (3.2) it is isomorphic to

Im(H(Fp)→ H(M/Fp−1)).

On the other hand by (3.3) and (3.6) it isomorphic also to

Im(H(Fp)→ H(Fp/Fp−1))

Im(H(M/Fp)→ H(Fp/Fp−1))
.

With it’s new description Ep(H) is clearly a sub-quotient of H(Fp/Fp−1), that is
quotient of sub-objects of H(Fp/Fp−1). If you recall, H(Fp/Fp−1) is homology of the
(pth piece of) associated graded. Thus we have obtained the graded of homology
as a sub-quotient of homology of graded!.
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Spectral sequences is a machine grinding these ideas to construct Gr ◦H(M) from
H ◦ Gr(M). To carry out this grinding let us give a name to key objects that have
appeared in the two constructions,

Z∞p (M) :=Im(H(Fp)→ H(Fp/Fp−1)), (3.7)

B∞p (M) :=Im(H(M/Fp)→ H(Fp/Fp−1)), (3.8)

E∞p (M) :=Z∞p /B
∞
p . (3.9)

Notice
Ep(H) ∼= E∞p (M).

The Construction: Consider the following short exact sequence of complexes

0→ Fp−1/Fp−r → Fp/Fp−r → Fp/Fp−1 → 0. (3.10)

Now generalizing Z∞p , we define

Zr
p(M) := Im(H(Fp/Fp−r)→ H(Fp/Fp−1)); r ≥ 1. (3.11)

Consider the following short exact sequence of complexes

0→ Fp/Fp−1 → Fp+r−1/Fp−1 → Fp+r−1/Fp → 0. (3.12)

Then at the level of homology we have a connecting homomorphism

H(Fp+r−1/Fp)
δ−→ H(Fp/Fp−1). (3.13)

Now generalizing B∞p we define

Br
p(M) :=Im(H(Fp+r−1/Fp)

δ−→ H(Fp/Fp−1)); r ≥ 1. (3.14)

Now we make a few simple observations. Setting r = ∞, the equations (3.11)
and (3.14) reduce to (3.7) and (3.8) are respectively. Setting r = 1, (3.11) becomes
the identity morphism on H(Fp/Fp−1) and (3.14) is zero. Therefore Z1

p(M)/B1
p(M)

is isomorphic to H(Fp/Fp−1).

Proposition 3.1. Let the objects be defined as above, then we have the following
increasing sequence of objects

...Br
p ⊂ Br+1

p ⊂ ... ⊂ B∞p ⊂ Z∞p ⊂ ... ⊂ Zr+1
p ⊂ Zr

p ⊂ ....

Proof. Proof shall be divided into five steps:
i)Br

p ⊂ Br+1
p , ii)Br

p ⊂ B∞p , iii)B∞p ⊂ Z∞p , iv)Z∞p ⊂ Zr
p , v)Zr+1

p ⊂ Zr
p . In view of

discussion thus far, we need not prove (iii). We will prove (i) now. Consider the
following commutative diagram of complexes with exact rows

0 (Fp/Fp−1) (Fp+r−1/Fp−1) (Fp+r−1/Fp) 0

0 (Fp/Fp−1) (Fp+r/Fp−1) (Fp+r/Fp) 0.

id
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We may apply homology functor to the above and obtain the following commutative
diagram

H(Fp+r−1/Fp) H(Fp/Fp−1)

H(Fp+r/Fp) H(Fp/Fp−1).

id

Notice, that the horizontal arrows are given by connecting homomorphisms. Given
the diagram above we clearly have Bp

r ⊂ Bp
r+1. Similar arguments can be constructed

to prove other inclusions.

In view of Proposition 3.1 we define

Er
p = Zr

p/B
r
p. (3.15)

Notice that Er
p is defined in such a way that E1

p = H(Fp/Fp−1), the homology of
graded.

We now let r run over values between 1 and ∞ in the equations (3.10) and (3.12).
Spectral sequences is an organizational principle that records the various relations that
emerge between Er

p. Now we make these remarks precise. Consider the commutative
diagram of complexes with exact rows given below,

0 Fp−r/Fp−r−1 Fp/Fp−r−1 Fp/Fp−r 0

0 Fp−1/Fp−r−1 Fp/Fp−r−1 Fp/Fp−1 0.

id (3.16)

Taking homology, we get

H(Fp/Fp−r−1) H(Fp/Fp−r) H(Fp−r/Fp−r−1)

H(Fp/Fp−r−1) H(Fp/Fp−1) H(Fp−1/Fp−r−1)

Id

δ

δ

(3.17)

where the dotted arrow is obtained by taking inverse of the identity morphism. Solidi-
fying the dotted morphism, we get the following diagram which satisfies the conditions
required by Lemma 1.1 where the dotted arrow is taken to be the composition of ver-
tical followed by the horizontal and the bottom exact row comes from the bottom
exact row of diagram (3.17)

H(Fp/Fp−r)

H(Fp/Fp−r−1) H(Fp/Fp−1) H(Fp−1/Fp−r−1).

(3.18)
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Now consider the following commutative diagram of complexes

0 Fp−r/Fp−r−1 Fp−1/Fp−r−1 Fp−1/Fp−r 0

0 Fp−r/Fp−r−1 Fp/Fp−r−1 Fp/Fp−r 0.

id

Taking homology we get

H(Fp−1/Fp−r) H(Fp−r/Fp−r−1) H(Fp−1/Fp−r−1)

H(Fp/Fp−r) H(Fp−r/Fp−r−1) H(Fp/Fp−r−1).

δ

id
Id−1◦δ

δ

(3.19)

Solidifying the dotted arrow, we get the diagram

H(Fp−1/Fp−r) H(Fp−r/Fp−r−1) H(Fp−1/Fp−r−1)

H(Fp/Fp−r)

δ

(3.20)

where the dotted arrow is given simply by the composing the North-East morphism
followed by horizontal. Further, the top exact row comes from the top exact row
of diagram (3.19). We are in a position to apply Lemma 1.1 to (3.20). Following
proposition plays a crucial role in the construction of spectral sequences.

Proposition 3.2. Both the quotients Zr
p/Z

r+1
p and Br+1

p−r/B
r
p−r are canonically iso-

morphic to
Im(H(Fp/Fp−r)→ H(Fp−1/Fp−r−1)).

Hence we have Zr
p/Z

r+1
p
∼= Br+1

p−r/B
r
p−r.

Proof. Recall by definition,

Zr
p = Im(H(Fp/Fp−r)→ H(Fp/Fp−1)).

So

Zr
p/Z

r+1
p =

Im(H(Fp/Fp−r)→ H(Fp/Fp−1))

Im(H(Fp/Fp−r−1)→ H(Fp/Fp−1))
.

Now in view of (3.18) and Lemma 1.1 we have

Zr
p/Z

r+1
p
∼= Im(H(Fp/Fp−r)→ H(Fp−1/Fp−r−1)).

Similarly by definition

Br
p = Im(H(Fp+r−1/Fp)→ H(Fp/Fp−1))
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so,

Br+1
p−r/B

r
p−r =

Im(H(Fp/Fp−r)→ H(Fp−r/Fp−r−1))

Im(H(Fp−1/Fp−r → H(Fp−r/Fp−r−1))
.

Now by (3.20) and Lemma 1.1 we have

Br+1
p−r/B

r
p−r
∼= Im(H(Fp/Fp−r)→ H(Fp−1/Fp−r−1)).

It remains to check that the two morphisms

Im(H(Fp/Fp−r)→ H(Fp−1/Fp−r−1))

corresponding to diagrams (3.18) and (3.20) are the same. From the diagram (3.17),
it follows that the following diagram commutes

H(Fp/Fp−r) H(Fp−r/Fp−r−1)

H(Fp/Fp−1) H(Fp−1/Fp−r−1).

δ

δ

(3.21)

We see that the dotted arrows of both diagrams (3.18) and (3.20) are equal because
they are equal to the dotted arrow of the diagram above.

Proposition 3.3. Let ε : Zr
p/B

r
p → Zr

p/Z
r+1
p denote canonical epimorphism. Let

µ : Br+1
p−r/B

r
p−r → Zr

p−r/B
r
p−r denote the canonical monomorphism. Define drp : Er

p →
Er
p−r as the composition of morphisms

Er
p = Zr

p/B
r
p

ε−→ Zr
p/Z

r+1
p
∼= Br+1

p−r/B
r
p−r

µ−→ Zr
p−r/B

r
p−r = Er

p−r.

Let Er denote ⊕pEr
p. Now dr = {drp}p is a differentiation of degree −r on Er.

Proof. It is enough to show that Im(drp) ⊂ ker(drp−r). We have

Im(drp) = Br+1
p−r/B

r
p−r

and
ker(drp−r) = Zr+1

p−r/B
r
p−r.

Clearly Im(drp) is a subset of ker(drp−r). Since the choice of r, so this holds for all
r.

Remark 1. Notice that the information about degree of dr is actually captured in the
isomorphism given by Proposition 3.2.

Now we compute the homology of Er with respect to the differentiation dr.

H(Er
p) = ker(drp)/im(drp+r) = (Zr+1

p /Br
p)/(B

r+1
p /Br

p) = Zr+1
p /Br+1

p = Er+1
p .

Our discussion so far shall be summarized in the following theorem.
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Theorem 3.4. For each r ≥ 1, dr is a differentiation of degree −r on Er. Moreover
Er+1 is isomorphic to the homology of Er with respect to dr.

Now we are in a position to define spectral sequence associated with a filtered(increasing)
differential module.

Definition 3.1. By a spectral sequence of a differential module corresponding to a
compatible filtration, we mean the sequence of graded modules

E2, E3, E4, ...

and differentiations d2, d3, d4... satisfying the relation H(Er, dr) = Er+1.

3.1 Decreasing Filtration

In Definition 2.1 set p = −p. Then

M ⊃ ... ⊃ F p ⊃ F p+1 ⊃ ...

is a decreasing filtration of M . To indicate the difference we opt for a slightly different
notation. We shall raise the index p and lower the index r. Now if we carry out similar
construction as in Section 3, we would obtain:

Zp
r :=Im(H(F p/F p+r)→ H(F p/F p+1)), (3.22)

Bp
r :=Im(H(F p−r+1/F p)→ H(F p/F p+1)), (3.23)

Ep
r :=Zp

r /B
p
r ; r ≥ 1. (3.24)

Notice that Zp
∞ and Bp

∞ shall remain the same. That is

Zp
∞ = Z∞p and Bp

∞ = Z∞p .

Proposition 3.3 can be now rewritten as follows.

Proposition 3.5. Let Er be ⊕pEp
r . Define dpr : Ep

r → Ep+r
r as composition of the

maps in the following diagram

Ep
r = Zp

r /B
p
r

ε−→ Zp
r /Z

p
r+1
∼= Bp+r

r+1/B
p+r
r

µ−→ Zp+r
r /Bp+r

r = Ep+r
r .

Now dr = {dpr}p is a differentiation of degree r on Er.

Similarly Theorem 3.4 in the context of decreasing filtration will read as:

Theorem 3.6. For each r ≥ 1, dr is a differentiation of degree r on Er. Moreover
Er+1 is isomorphic to the homology of Er with respect to dr.
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3.2 Cartan-Eilenberg system

The reader may check that the following axiomatization known by the name of Cartan-
Eilenberg system is a straightforward abstraction of our discussion thus far. A Cartan-
Eilenberg system consists of a module H(p, q) for each pair of integers, −∞ ≤ p ≤
q ≤ ∞ along with

1. a homomorphisms η : H(p′, p)→ H(p, q) whenever p ≤ p′ and q ≤ q′;

2. for −∞ ≤ p ≤ q ≤ r ≤ ∞, we have a connecting homomorphism δ : H(p, q)→
H(q, r);

3. the morphism H(p, q)→ H(p, q) is identity;

4. if p ≤ p′ ≤ p′′ and q ≤ q′ ≤ q′′, then the following diagram commutes:

H(p′′, q′′) H(p, q)

H(p′, q′)

5. if p ≤ p′, q ≤ q′ and r ≤ r′, then the following diagram commutes:

H(p′, q′) H(q′, r′)

H(p, q) H(q, r)

6. for −∞ ≤ p ≤ q ≤ r ≤ ∞, the following sequence is exact:

· · · → H(q, r)→ H(p, r)→ H(p, q)
δ−→ H(q, r)→ · · ·

7. H(−∞, q) is the direct limit of the system

H(q, q)→ H(q − 1, q)→ H(q − 2, q)→ · · · ...

With this definition we get a spectral sequence by letting

Zp
r = im(H(p, p+ r)→ H(p, p+ 1))

Bp
r = im(H(p− r + 1, p)→ H(p, p+ 1))

Ep
r = Zp

r /B
p
r . (3.25)

We see that a Filtered Differential Module (M,d, f) gives rise to a Cartan-Eilenberg
system by setting

H(p, q) = H(F p/F q).
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4 The Graded Case

Let M = (· · · →Mp →Mp−1 → · · · ) be a chain complex. In other words, M is a
graded module equipped with a differentiation of degree −1. Let Mp denote the pth

graded piece of M . As before, we shall work with an increasing filtration

Fp−1 ⊂ Fp ⊂ ... ⊂M

of M . We shall suppose that the filtration on M and the chain-complex structure are
compatible in the following sense: each module Fp in the filtration is the direct sum
of modules Mp+q

⋂
Fp i.e

Fp = ⊕qMp+q

⋂
Fp.

This compatibility condition has the advantage that the sub-module Fp of M with the
induced differentiation becomes a chain-complex in its own right! Further, Fp/Fp−r
will also become a chain-complex.

Here we call p the degree of filtration, q the complementary degree and p + q the
total degree. We will use bold face for the newly introduced index q. Henceforth, in
this section, we will work with the complementary degree. The motivation for doing
so comes from the case of double complexes where one wants to visualize Er

∗,∗ as the
r-th page or sheet over the double complex with Er

p,q lying over Bp,q.
The module E0

p(M) may be identified as the direct sum ⊕qE0
p,q(M). We introduce

the following notations: the piece with total degree p+ q of the chain-complex Fp will
be denoted as Fp,q. It is given by the formula

Fp,q := Mp+q ∩ Fp. (4.1)

Thus the piece of total degree p+ q of Fp−1 is given by Fp−1,q+1 = Mp+q ∩ Fp−1. The
p-th piece of the graded object of M is by definition the chain-complex Fp/Fp−1. Its
piece of total degree p+ q is given by

E0
p,q(M) := Fp,q/Fp−1,q+1. (4.2)

In the graded case, the homologies of M also acquire a degree. We define the p-th
filtered object of the homology Hp+q(M) which has total degree p+ q as

FpHp+q = Im(Hp+q(Fp)→ Hp+q(M)). (4.3)

Let E0
p,q(H) denote the p-th piece of the graded of homology Hp+q(M). It is given by

the formula
E0
p,q(H) = FpHp+q/Fp−1Hp+q.

Now the module Ep(H) is graded compatibly with the grading of Ep,q. Indeed, sum-
ming the morphism Hp+q(Fp)→ Hp+q(M) of (4.3) over q, we see that

FpH = Fp(⊕qHp+q) = Im(H(Fp) = ⊕qHp+q(Fp)→ ⊕qHp+q(M) = H(M)).
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As in Section 3, and working as always with complementary degree, for 1 ≤ r ≤ ∞
we define:

Zr
p,q :=Im(Hp+q(Fp/Fp−r)→ Hp+q(Fp/Fp−1)), (4.4)

Br
p,q :=Im(Hp+q+1(Fp+r−1/Fp)→ Hp+q(Fp/Fp−1)), (4.5)

Er
p,q :=Zr

p,q/B
r
p,q. (4.6)

Recall that the definition of Br
p involved a connecting morphism. This justifies the

change by −1 of total degree in the definition of Br
p,q. Now the module Zr

p is given by
the direct sum of modules Zr

p,q over q. Similarly the module Br
p is given by the sum

of modules Br
p,q over q. Hence we shall identify each of the module Ep

r with the direct
sum ⊕qEr

p,q. Setting r =∞, we may verify that the isomorphism E∞p,q
∼= Ep,q(H) still

holds.

Let us recall that in Proposition 3.3, we had defined the differentiation

dpr : Er
p → Er

p−r

as the composition of the morphisms in the following diagram

Er
p = Zr

p/B
r
p

ε−→ Zr
p/Z

r+1
p
∼= Br+1

p−r/B
r
p−r

µ−→ Zr
p−r/B

r
p−r = Er

p−r.

The degree of dr is dictated by the isomorphism Zr
p/Z

r+1
p
∼= Br+1

p−r/B
r
p−r. Similarly in

the graded case also we would like to determine the degree of dr. Here we know that
Zr
p and Br

p split as direct sums of Z and B with two indices. Looking closely at the
proofs of Section 3, for each q we would like to determine (if possible) a q′ such that

Zr
p,q/Z

r+1
p,q ' Br+1

p−r,q′/B
r
p−r,q′

canonically. So let us revisit the constructions we carried out in the case of Filtered
Differential Modules book-keeping, this time, the degree of the homology.

Consider the commutative diagram of complexes with exact rows given below,

0 Fp−r/Fp−r−1 Fp/Fp−r−1 Fp/Fp−r 0

0 Fp−1/Fp−r−1 Fp/Fp−r−1 Fp/Fp−1 0.

id (4.7)

Taking homology we get

Hp+q(Fp/Fp−r−1) Hp+q(Fp/Fp−r) Hp+q−1(Fp−r/Fp−r−1)

Hp+q(Fp/Fp−r−1) Hp+q(Fp/Fp−1) Hp+q−1(Fp−1/Fp−r−1).

Id

δ

δ

(4.8)
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Solidifying the dotted arrow, we may construct the following diagram

Hp+q(Fp/Fp−r)

Hp+q(Fp/Fp−r−1) Hp+q(Fp/Fp−1) Hp+q−1(Fp−1/Fp−r−1)

(4.9)

which satisfies the conditions required by Lemma 1.1. By definition we have,

Zr
p,q = Im(Hp+q(Fp/Fp−r)→ Hp+q(Fp/Fp−1)),

Zr+1
p,q = Im(Hp+q(Fp/Fp−r−1)→ Hp+q(Fp/Fp−1)).

Thus by (4.9) and Lemma 1.1 we have

Zr
p,q/Z

r+1
p,q
∼= Im(Hp+q(Fp/Fp−r)→ Hp+q−1(Fp−1/Fp−r−1)). (4.10)

Now consider the following commutative diagram of complexes

0 Fp−r/Fp−r−1 Fp−1/Fp−r−1 Fp−1/Fp−r 0

0 Fp−r/Fp−r−1 Fp/Fp−r−1 Fp/Fp−r 0.

id

Taking homology we get,

Hp−r+q′+1(Fp−1/Fp−r) Hp−r+q′(Fp−r/Fp−r−1) Hp−r+q′(Fp−1/Fp−r−1)

Hp−r+q′+1(Fp/Fp−r) Hp−r+q′(Fp−r/Fp−r−1) Hp−r+q′(Fp/Fp−r−1).

δ

id
Id−1◦δ

δ

(4.11)
Solidifying the dotted arrow, we can apply Lemma 1.1 to the following diagram

Hp−r+q′+1(Fp−1/Fp−r) Hp−r+q′(Fp−r/Fp−r−1) Hp−r+q′(Fp−1/Fp−r−1)

Hp−r+q′+1(Fp/Fp−r).

δ

(4.12)
By definition we have that

Br+1
p−r,q′ = Im(Hp−r+q′+1(Fp/Fp−r)→ Hp−r+q′(Fp−r/Fp−r−1)), (4.13)

Br
p−r,q′ = Im(Hp−r+q′+1(Fp−1/Fp−r)→ Hp−r+q′(Fp−r/Fp−r−1)).
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Now in view of diagram (4.12) and Lemma 1.1

Br+1
p−r,q′/B

r
p−r,q′

∼= Im(Hp−r+q′+1(Fp/Fp−r)→ Hp−r+q′(Fp−1/Fp−r−1)). (4.14)

We want the RHS of (4.10) and (4.14) to be the same. Clearly this is possible if and
only if p− r + q′ = p+ q − 1, i.e

q′ = q + r − 1.

Thus the bidegree of dr : Er → Er is (−r, r − 1).

So in the case of filtered chain-complex the spectral sequence is a sequence of bi-
graded differential objects

· · · (Er, dr) · · ·

with complementary bi-degree of dr given by (−r, r − 1).

Definition 4.1 (Homologically graded spectral sequence). A homologically graded
spectral sequence is a family of doubly graded differential modules {Er, dr} with

(i) bi-degree (dr) = (−r, r − 1),

(ii) H(Er, dr) = Er+1.

4.1 Filtered Co-chain Complex

Having constructed spectral sequences associated with filtered chain complexes, we
would like to understand it in the context of filtered co-chain complexes. The imme-
diate question is should one work with a decreasing or an increasing filtration. We
address this question first.

Choice of Filtration. Let

· · · Cp−1 Cp Cp+1 · · ·

be a co-chain complex. Let us denote it by M . Clearly M is a graded module of degree
of 1. A natural way to filter complexes (both chain and co-chain) is to truncate. The
following is M truncated from left, notice that the objects to the left of p are zero

· · · 0 0 Cp Cp+1 · · · .

Similarly if M is truncated from right we would have

· · · Cp−1 Cp 0 0 · · · .
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Let us set F p to be the complex truncated at p. Then we have a filtration of M .
As p increases the filtration is increasing if truncation is from right and deceasing
if from left. Most of the filtrations we encounter involves truncation in one way or
other. Clearly, for a co-chain complex, only the filtration obtained by left truncation
is compatible with differentiation. Similarly one may justify the choice of increasing
filtration for chain complex.

Spectral Sequence It is enough for us to specify the degree of the differentiation
dr. We already know that the degree change with respect to p in case of differential
module with decreasing filtration is r. If you compare a chain complex with a co-chain
complex all that has happened is a reversal in the direction of arrows. From which
we may infer that the degree change with respect to q will be 1 − r. Thus we have
the following definition.

Definition 4.2. [Co-Homologically graded spectral sequence] A co-homologically graded
spectral sequence is a family of doubly graded differential modules {Er, dr} with

(i) bi-degree (dr) = (r, 1− r),

(ii) H(Er, dr) = Er+1.

Notice that here we have lowered the index r and raised the indices p, q. So each
graded piece is represented as Ep,q

r . Thus for each value of p and q we have the map

dp,qr : Ep,q
r → Ep+r,q−r+1.
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Chapter III

Exact couples

Our aim in this chapter is to understand the more general setting of exact couples
introduced by Massey. Exact couples are pairs of objects and morphisms in abelian
category which forms an exact triangle. They are a natural source of spectral se-
quences arising in Topology. The material in this chapter must be accessible to any-
body familiar with proofs involving diagram chases. This chapter doesn’t depend on
chapter II. One may very well treat this as a new beginning. Even our definition of
spectral sequence in here will be independent of any prior construction.

1 Exact couples and Spectral sequence

We give a general definition of a Spectral sequence.

Definition 1.1 (Spectral Sequence). Let A be an abelian category. A spectral sequence
in A is a sequence of differential objects of A

..., (En, dn), (En+1, dn+1), ... (1.1)

such that En+1 = H(En, d).

We shall denote the above spectral sequence by E. Let E, E ′ be two spectral
sequences. Let φn : En → E ′n be a morphism from En to E ′n as differential objects.
Then φ = {φn} : E → E ′ is morphism of spectral sequences if H(φn) = φn+1 ∀n. It
can be easily verified that spectral sequences in A forms a category. We shall represent
the category of spectral sequences in A by E(A) or in short by E.

To generalise the construction of spectral sequences we define the following.

Definition 1.2 (Exact Couple). Let D,E be objects in A. Let α : D → D, β : D → E
and γ : E → D be morphisms. Then we say EC := {D,E, α, β, γ} is an exact couple
in A if the diagram

D D

E

α

β
γ

(1.2)

is exact at each object.
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A morphisms φ : EC → EC′ is a pair of morphisms κ : D → D′ and λ : E → E ′

such that
κα = α′κ; λβ = β′κ; γ′λ = κγ; (1.3)

It can be verified that exact couples in A also forms a category. But we won’t prove
it here. Consider the map d = β ◦ γ : E → E. Since γ ◦ β = 0 we have d ◦ d =
(β ◦ γ) ◦ (β ◦ γ) = 0. Thus d is a differential on E.

1.1 Deriving exact couples

Given an exact couple {D,E, α, β, γ} we construct another exact couple called it’s
derived couple. Set D1 = im(α : D → D) and E1 as the homology of E with respect
to d. Now define morphisms α1, β1, γ1 as follows:

1. By definition D1 = im(α) is a submodule of D. The morphism α1 : D1 → D1 is
defined as the restriction of α to D1. In this sense α1 is ’induced’ by α.

2. Let x1 ∈ D1. Now there exists x ∈ D such that x1 = α(x). We define β1 : D1 →
E1 by

β1(x1) = β1(α(x)) = the class ofβ(x) inE1 =: [β(x)].

In this sense β1 is ’induced’ by βα−1. We shall later verify that this map is well
defined i.e it is independent of the choice of preimage of x1.

3. Let [z] ∈ E1. Now [z] is the homology class of some z ∈ E. The morphism
γ1 : E1 → D1 is now defined by γ1([z]) = γ(z). So one may say γ1 is ’induced’
by γ.

Before proceeding one need to justify these definitions which apriori seem to depend
on choices.

Clearly α1 is a morphism from D1 to D1.
Well-definedness of β1: Now suppose x1 ∈ D1. Then by definition x1 = α(x) for

some x ∈ D. Define
β1(x1) = β1(α(x)) = [β(x)]. (1.4)

Where [β(x)] denotes the homology class of β(x). We claim β1(x1) ∈ E1. It is enough
to show that β(x) is a cycle in E. Now

dβ(x) = βγβ(x),

but since γβ = 0. Hence we have the claim. Now we must show that the definition is
dependent only on α(x) and not on x. Equivalently we need to show that if α(x) = 0
then [β(x)] is a boundary. Suppose α(x) = 0 then we have y ∈ E such that x = γ(y).
Thus β(x) = β(γ(y)). Hence

β1(α(x)) = [β(γ(y))] = [d(y)]

is a boundary.
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Well-definedness of γ1: We need to show that γ(z) ∈ D1 and the definition is
independent of choice of representative. Since z is a cycle we have d(z) = βγ(z) = 0.
But

kerβ = αD = D1.

So γ(z) ∈ D1. Now suppose [z1] = [z2], then z2 = z1 + βγ(y) for some y ∈ E. So

γ(z2) = γ(z1 + βγ(y)) = γ(z1).

Thus the definition make sense and we have the following diagram

D1 D1

E1.

α1

β1γ1
(1.5)

Theorem 1.1. The above diagram is exact.

Proof. Exactness at top left D1: Let [z] ∈ E1. Then,

α1γ1([z]) = αγ(z) = 0.

Conversely, let x ∈ D1 be such that α1(x) = 0. We know that α1 is induced by
α so α(x) = 0. Hence x = γ(z) for some z ∈ E. Now x ∈ D1 = kerβ. So
d(z) = βγ(z) = β(x) = 0. Thus z is a cycle in E. Hence we have [z] ∈ E1 such that
γ1([z]) = x.

Exactness at top right D1: Let x ∈ D1. Then β1α1(x) = [β(x)]. But x ∈ D1 =
ker(β) so [β(x)] = [0]. Conversely, suppose β1(x) is a boundary for some x ∈ D1,
that is, for x′ ∈ D such that α(x′) = x we have y ∈ E such that β(x′) = βγ(y). Thus
x′ = γ(y) + x0 for some x0 ∈ D1. Hence we have

x = αγ(y) + α(x0) = α(x0).

Thus given β1(x) is boundary we have produced a x0 ∈ D1 such that α1(x0) = α(x0) =
x.

Exactness at E1: Let α(x) ∈ D1 where x ∈ D. Then

γ1β1(α(x)) = γ1[β(x)] = γ(β(x)) = 0.

Conversely, let [z] ∈ E1 be such that γ1[z] = 0. Thus we have γ(z) = 0 so z = β(x)
for some x ∈ D. Hence we have

[z] = [β(x)] = β1(α(x)).

Thus given γ1[z] = 0 we have produced y = α(x) in D1 such that β1(y) = [z].
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Now if we express E1 in terms of cycles and boundary we have,

E1 = ker(βγ)/Im(βγ) = γ−1α(D)/βα−1(0). (1.6)

By iterating the process we shall obtain a sequence of (derived)exact couples EC1,
EC2, EC3,..., ECn,... where

ECn = {Dn, En, αn, βn, γn}. (1.7)

Further one makes the following observations:
Clearly (En, dn);n = 1, 2, 3... where dn = βnγn is a spectral sequence.

Theorem 1.2. En = γ−1(αnD)/βα−n(0) and dn : En → En is induced by βα−nγ.

Proof. We shall establish the claim by induction. Let us state our induction hypoth-
esis. We claim for any n ≥ 0 that

1. ECn = {Dn, En, αn, βn, γn} forms an exact couple.

2. By construction Dn is a sub-module of D. The morphism αn : Dn → Dn is the
restriction of α to Dn.

3. The morphism βn : Dn → En has the following property. Let xn ∈ Dn. Now
there exists x ∈ D such that xn = αn(x). We have βn(xn) = βn(αn(x)) equals
the class of β(x) in E. Actually the class of β(x) belongs to En. In this sense
β1 is ’induced’ by βα−n.

4. Let [z] ∈ En. We obtain En by taking homology of E repeatedly. So there
exists a z ∈ E such that it is a representative of the class [z]. The morphism
γn : En → Dn has the property that γn([z]) = γ(z). Actually γ(z) lies in
Dn ⊂ D. We may say thus that γn is induced by γ.

5. The last three properties characterize the morphisms αn,βn and γn.

From Theorem 1.1 and subsequent discussion we clearly have the theorem for
n = 0. Assume it’s true for indices upto n. So, we have derived exact couples only
upto n− 1. Therefore we have the nth derived couple ECn := {Dn, En, αn, βn, γn} of
EC. Let us derive it. So we set

Dn+1 = αn(Dn)

and
En+1 = H(En, βnγn).

Consider the derived couple

Dn+1 Dn+1

En+1.

αn+1

βn+1γn+1
(1.8)

Let us check the induction claim for n+ 1:
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1. the couple is exact because it is obtained by deriving the exact couple ECn.

2. the morphism αn+1 : Dn+1 → Dn+1 is induced by αn. This just means that
αn+1 is αn restricted to Dn+1 by the definition of deriving an exact couple. By
induction hypothesis αn is just α restricted to Dn. Thus afortiori αn+1 is also α
restricted to Dn+1.

3. the morphism βn+1 : Dn+1 → En+1 is induced by βnα
−1
n by definition of deriving

an exact couple. By induction hypothesis βn itself is β ◦ α−n and α−1
n is just α.

Thus βnα
−1
n equals β ◦ α−n ◦ α−1 = β ◦ α−(n+1),

4. the morphism γn+1 : En+1 → Dn+1 is induced by γn. By definition of deriving
an exact couple, this means that for any en+1 ∈ En+1 we take a pre-image class
en ∈ En and define γn+1(en+1) = γn(en). By induction hypothesis, γn(en) equals
γ(e) where e ∈ E is any element representing the class en ∈ En.

5. we have expressed αn+1, βn+1 and γn+1 in terms of these properties, above, by
the definition of deriving an exact couple combined with the characterizations
of αn,βn and γn themselves in terms of these properties.

Hence En+1 = H(En, dn) equals ker(βnγn)/Im(βnγn). Now, by exactness at Dn

on the right, we have ker(βn) = αn(Dn), which equals Dn+1. Thus ker(βnγn) =
γ−1
n (Dn+1). Recall that γn : En → Dn and Dn+1 ↪→ Dn is a sub-module. Now

clearly Dn+1 = αn+1D. Further let us recall the description of γn from the induction
hypothesis: let [z] ∈ En be a class. Let z ∈ E be a representative of this class. We
have γn([z]) which belongs to Dn is given by γ(z). Thus the inverse-image of Dn

through γn may be computed by taking the inverse image of Dn through γ. So

γ−1
n = γ−1|Dn .

Thus
ker(βnγn) = γ−1αn+1D.

By definition Im(βnγn) = βn(Im(γn). Since Im(γn) = ker(αn) = α−1
n (0), so we have

Im(βnγn) = βnα
−1
n (0).

Now the description of En+1 follows easily.
Finally, dn+1 = βn+1 ◦ γn+1 by definition. By induction hypothesis βn+1 is induced

by βα−(n+1) and γn+1 is induced by γ. So dn+1 is induced by βα−(n+1)γ.

Proposition 1.3. The process of associating an exact couple with a spectral sequence
defines a functor

SS : EC→ E, (1.9)

from category of exact couples to category of spectral sequences.

Proof. omitted
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2 A note on Limits E∞

Let us define the limit E∞ of a spectral sequence arising from an exact couple. Con-
sider the nth term of the spectral sequence En. Let us denote the cycles of dn by
En,n+1. So En,n+1 ↪→ En is a sub-module. Now

σn,n+1 : En,n+1 → En+1

is a surjection. Similarly let En,n+2 be the sub-module of En,n+1 consisting of those
elements whose image by σn,n+1 become cycles for dn+1. Thus we have a surjection
σn,n+2 : En,n+2 → En+2.

By abuse of language we may say that x ∈ En,n+1 is a cycle for dn, x ∈ En,n+2 is
a cycle for both dn and dn+1. More generally, using this abuse of language, we define
En,n+r as the sub-module of En consisting of those elements whose images are the
cycles for various dn+k for 0 ≤ k ≤ r. We shall denote by σn,n+r : En,n+r → En+r the
surjection.

Let En,∞ be such that it is the collection of all those x which are cycles for all
dn+r, r ≥ 0.
Restrict σn,n+1 to En,∞ then it’s a surjection on to En+1,∞. Thus we have the following
system,

...→ En,∞ → En+1,∞ → En+2,∞ → ...

where each arrow is an epimorphism. Define

E∞ = lim−→
n

(En,∞, σ). (2.1)

This object essentially is the collection of 0 and those x which is a cycle for every n
and boundary for no n.
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Chapter IV

From Filtered Differential Objects
to Exact couples

This chapter shall serve as the link between Chapters II and III. We would see how
the content of Chapter II fits inside the general setting developed in Chapter III. The
passage from Homology of graded to graded of homology which we briefly discussed
before shall be discussed in detail. One may notice a mismatch between indices here
and chapter II. A small note at the end of the chapter shall clarify this discrepancy. To
minimize confusion we would use {Cp}p∈Z to represent filtration of a differential ob-
ject. For most part of the discussion we will restrict ourselves to category of filtered
differential modules. Towards the end we shall show how does spectral sequences
associated with filtered chain complexes can be viewed as a special case under the
filtered differential modules. We recommend familiarity with the material discussed
in preceding Chapters.

1 Filtered Differential Objects and Spectral Se-

quences

Consider R−mod, the category of R-modules. Let (C, d) be a differential object in
R−mod. Let

... ⊂ Cp−1 ⊂ Cp... ⊂ C (1.1)

be a compatible filtration of (C, d). Recall that we say a filtration is compatible with
differentiation if

dC(p) ⊂ C(p) ∀p.

We shall denote this differential object equipped with compatible filtration by (C, d, f).

Let (C, d, f) and (C ′, d′, f ′) be two different filtered differential objects. Say φ is
a morphism from (C, d) to (C ′, d′) as differential objects. Now φ is morphism from
(C, d, f) to (C ′, d′, f ′) if

φ(Cp) ⊂ C ′p; ∀p.

Filtered differential objects in R−mod with morphism as defined above forms a cat-
egory. We shall denote this category by (R−mod, d, f). Given a filtered differential
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object C, we have the following exact sequence of differential objects

0 Cp−1 Cp Cp/Cp−1 0 . (1.2)

We know that Homology functor associates exact sequence of differential objects to
exact triangles of Homology objects. Thus we have the following exact triangle,

H(C(p−1)) H(C(p))

H(C(p)/C(p−1)).

α(p)

β(p)γ(p)
(1.3)

Let us suppress the indices and denote the graded modules ⊕pH(C(p)) by D and

⊕pH(C(p)/H(C(p−1)) by E. Let R−modZ denote the category of graded R-modules.

Then we have the following exact couple in R−modZ

D D

E.

α

β
γ

(1.4)

Remark. This process defines a functor say

H̄ : (R−mod, d, f)→ EC(R−modZ).

When we extract E out of the couple together with βγ we get a functor

E : (R−mod, d, f)→ ((R−mod, d)Z).

Notice that E is spectral sequence functor.
Let B = (R−mod, d) denote the category of differential objects in R−mod. Let

us denote the category of filtered objects in B by (B, f). To each object C in (B, f)
we shall associate it’s associated graded object. Plainly this defines a functor say, Gr
from (B, f) to BZ. We also know that the associated graded of a filtered differential
module is also a differential module(graded). Hence we can apply homology functor
on Gr(C), where C is an object in (R−mod, d). Observe that H ◦Gr yields E = E0,
first term of a spectral sequence.

On the other hand starting with a filtered differential object C in (R−mod, d, f)
we may pass directly to homology. Let us recall how H(C) gets filtered. The inclusion
Cp ⊂ C induces a map H(Cp) → H(C). Let FH(p) denote Im(H(C(p)) → H(C)).
Thus the homology object H(C) gets filtered as shown below

... ⊆ FH(p−1) ⊆ FH(p) ⊆ ... ⊆ H(C). (1.5)

Taking the associated graded of H(C) with respect to this filtration, we have a functor
Gr ◦ H from (R−mod, d, f) to R−modZ, which to C associates the graded object
⊕p(FH(p)).
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Let’s say we can determine H(C(p))/C(p−1)) to a significant extent. Then spectral
sequences shall provide us with information about the graded object associated with
H(C) filtered by it’s sub-object FH(p). Then a question arises, as to how much
information about H(C) we can recover. We shall have an informal discussion now.
For the graded object to adequately represent H(C), we would want the filtration to
satisfy two conditions:

i)
⋃
p

FH(p) = H(C) ii)
⋂
p

FH(p) = 0. (1.6)

For if (i) fails then there would be non-zero elements in H(C) which are not present
in any FHp. And if (ii) fails then there would be non-zero elements in H(C) which
are present in FH(p) for all p. Hence they will be lost in the graded object. If both
conditions are met then ∀ x ∈ H(C) we have a p such that

x /∈ FH(r) for r < p

and
x ∈ FH(r) for r ≥ p.

Thus for every x in H(C) we have an unique representative in Gr(H(C)). Conversely
every non-zero element in Gr(H(C)) represents an unique element in H(C). Thus all
we may lose is the information about the inclsions FH(p−1) ↪→ FHp of modules for
various p. Helas, there is no way we can determine these inclusions!

In Chapter V we shall determine conditions which will ensure finite convergence
of spectral sequence associated with a filtered chain complex, such that the above
conditions are met. That shall help us with a tool to determine homology of filtered
chain complexes.

1.1 Spectral Sequence of a Filtered chain complex via Exact
couples

Consider the category of graded modules, R−modZ. Let C denote the category of
differential objects in R−modZ. Let C be an object in C which is equipped with a
differentiation of degree −1. Then (1.1) is filtration of a chain complexes. Thus C
is a filtered chain complex. The following is an illustration of (1.2) in the context of
chain complex. Notice that it is a short exact sequence of chain complexes. Here p is
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the index of filtration and q is the index within each chain complex

0 Cp−1,q+1 Cp,q+1 (Cp/Cp−1)q+1 0

0 Cp−1,q Cp,q (Cp/Cp−1)q 0

0 Cp−1,q−1 Cp,q−1 (Cp/Cp−1)q−1 0.

(1.7)

This give rise to the following long exact sequence at the level of homology

Hq(Cp−1) Hq(Cp) Hq(Cp/Cp−1) Hq−1(Cp−1)
αp,q βp,q γp,q

. (1.8)

Let us set

Dp,q := Hq(Cp)

Ep,q := Hq(Cp/Cp−1).
(1.9)

Thus we may define the following graded modules

E =
⊕
p,q

Ep,q

D =
⊕
p,q

Dp,q.
(1.10)

To abbreviate, let us denote {αp,q} by α, {βp,q} by β and {γp,q} by γ. Now we have
the following exact couple in category of doubly graded modules denoted R−modZ×Z

D D

E.

α

β
γ

(1.11)

Notice that the bi-degrees of α, β, γ are as follows;

deg α = (1, 0), deg β = (0, 0), deg γ = (−1,−1). (1.12)

Then it follows from Theorem III.1.2 that in the nth derived couple associated with
the spectral sequence, we have

deg αn = (1, 0), (1.13)

deg βn = (−n, 0), (1.14)

deg γn = (−1,−1), (1.15)

deg dn = deg βn + deg γn = (−n− 1,−1). (1.16)
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In the next chapter we shall explore the conditions under which the associated spectral
sequence converges in finite number of steps.

1.2 Notational differences between Chapters II and IV

In this chapter and the previous one we have indexed spectral sequence to begin
with E0. Whereas in the first chapter we begun with E1. Recall the statement that
dn is induced by βα−nγ. It is convenient to have index n to be power of n. This
is essentially the reason to begin the indexing with 0. The difference is that Er+1

in chapter II has become the new Er. One may conclude this by comparing the
degrees of differentiations as well. Another difference is in q. In chapter I, q was the
complementary degree. Then we also had a notion of total degree (p + q). It is the
total degree of Chapter I which has become q in Chapter III. Suppose we denote the
q in Chapter I by q1 and the one in Chapter III by q3 then q1 = q3− p. These changes
in q and r change the bi-degree of differential as well owing to the formula in (1.16).
In chapter I bi-degree of dr was (−r, r − 1) but now it is (−r − 1,−1).
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Chapter V

Finite convergence of spectral
sequence associated with filtered

chain complexes

In Section 2 of Chapter III we defined the limit E∞ of a spectral sequence arising
from an exact couple. It is defined by taking limits over a possibly infinite indexing
set. So it becomes interesting to investigate conditions under which this limit may
be computed in finitely many steps. When this happens, we say that the spectral
sequence converges finitely to its limit. Our focus shall remain on finite convergence
of spectral sequences associated with filtered chain complexes. Our aim is to describe
sufficient conditions for finite convergence.

1 Finite convergence conditions

Consider a spectral sequence ..., (Er, dr), (Er+1, dr+1), .... Suppose dr = 0 for r ≥ n
for some positive integer n. Now the sequence is stationary (Er = Er+1) for r ≥ n.
We may call En the limiting term of sequence. We shall adopt a similar strategy to
make sure the spectral sequence converge in finitely many steps.

The problem of finite convergence of spectral sequence associated with a filtered
chain complex C can be stated as follows: to search for sufficient conditions under
which

(i) Gr ◦H(C) = E∞;

(ii)
⋃
p FHp = H(C) and

⋂
p FHp = 0 are satisfied;

(iii) The spectral sequence converges finitely, that is E∞ term is reached after finitely
many steps.

Let us recall the exact couple of IV.(1.11). We have

D =
⊕
p,q

Hq(Cp), (1.1)

E =
⊕
p,q

Hq(Cp/Cp−1) (1.2)
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such that the following is an exact couple

D D

E.

α

β
γ

Definition 1.1. Suppose for any given q, there exist a p0 (possibly dependent on
q) such that αp,q : Dp,q

∼−→ Dp+1,q is an isomorphism for p ≥ p0, then we say that
α : D → D is positively stationary. Similarly if for any given q, there exist a p0

(possibly dependent on q) such that αp,q : Dp,q
∼−→ Dp+1,q is an isomorphism for p ≤ p0,

then we say α : D → D is negatively stationary. We say α is stationary if it is both
positively and negatively stationary.

Theorem 1.1. If α is stationary, the spectral sequence associated with the exact couple
converges finitely: that is, given p, q there exists r such that Er

p,q = Er+1
p,q = ...E∞p,q.

Proof. Consider the following exact sequence

· · · → Dp−1,q
α−→ Dp,q

β−→ Ep,q
γ−→ Dp−1,q−1

α−→ Dp,q−1 → · · · . (1.3)

Fix q and assume p is sufficiently large. Since α is positively stationary, αp,q is an
isomorphism. Now ker(β) ∼= Dp,q and im(γ) = 0. Since the sequence is exact we have

Ep,q = ker(γ) = im(β) = 0.

That is, for fixed q and p sufficiently large we have Ep,q = 0. Similarly since α is
negatively stationary we have Ep,q = 0 for p sufficiently small as well. Now fix p, q
and consider

· · · → Er
p+r+1,q+1

dr−→ Er
p,q

dr−→ Er
p−r−1,q−1 → · · · . (1.4)

Now for r sufficiently large we have Er
p+r+1,q+1 = 0 and Er

p−r−1,q−1 = 0. Since En
∗,∗ is

always a sub-quotient of Er
∗,∗ for n ≥ r, so we have En

p+r+1,q+1 = 0 and En
p−r−1,q−1 = 0

for all n ≥ r. Thus for r sufficiently large we have, Er+1
p,q = H(Er

p,q, d
r) = Er

p,q. Observe
that the whole of Es

p,q is a cycle for every ds, s ≥ r and only 0 is a boundary for some
ds, s ≥ r. Hence Er

p,q = Er+1
p,q = .... Further these groups are isomorphic to E∞p,q by

subsection III2.

Let
... ⊂ Cp−1 ⊂ Cp... ⊂ C

be a filtered chain complex as given in IV.(1.1). We want to ensure, for the spectral
sequence associated with this filtered chain complex

(i) E∞p,q as defined in III.2 equals im(Hq(Cp)→ Hq(C))/im(Hq(Cp−1)→ Hq(C));

(ii) α is stationary.
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To this end, we begin by considering another exact couple. Consider the following
exact sequence of chain complexes

0 Cp/Cp−1 C/Cp−1 C/Cp 0 .

Setting D̄ be the object given by

D̄ =
⊕
p,q

Hq(C/Cp−1), (1.5)

the above sequence gives rise to an exact couple of bigraded objects

D̄ D̄

E.

ᾱ

β̄
γ̄

(1.6)

We have
degᾱ = (1, 0), degβ̄ = (−1,−1), degγ̄ = (0, 0). (1.7)

Since the constructions are very similar to the ones we have seen before, we simply
refer the reader to Subsection 1.1 of Chapter IV.

We now make a definition which will be applied to D,E and D̄.

Definition 1.2. A bigraded object A is said to be positively graded if for any given q
there exists p0 (possibly dependent on q) such that Ap,q = 0 if p < p0. Similarly we
say A is negatively graded if for any q there exists p0 (possibly dependent on q) such
that Ap,q = 0 for every p > p0.

Remark 1. Observe that if D is positively graded, then α is negatively stationary.
Similarly if D̄ is negatively graded, then ᾱ is positively stationary.

Theorem 1.2. The following conditions are equivalent:
(i) α is positively stationary;
(ii) E is negatively graded;
(iii) ᾱ is positively stationary.

Proof. In the course of proving Theorem 1.1 we had established that if α is positively
stationary then for a fixed q, and p sufficiently large Ep,q = 0. Thus (i) ⇒ (ii).
Conversely, consider the exact sequence

· · · → Ep,q+1 Dp−1,q Dp,q Ep,q → · · · .
γ α β

(1.8)

Suppose E is negatively graded. Fix q, then for p sufficiently large

Ep,q = 0 and Ep,q+1 = 0.

Thus α is an isomorphism for p sufficiently large. So we have (ii) ⇒ (i).
If we replicate the arguments for the exact couple (1.6) consisting of D̄ = Hq(C/Cp−1)
then we shall obtain the implication (ii) ⇔ (iii).
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Definition 1.3. Let

... ⊆ Cp−1 ⊆ Cp ⊆ ... ⊆ C, −∞ < p <∞ (1.9)

be a filtration of a chain complex C. We say this filtration is finite, if for each q, there
exists p0, p1 such that

(i) Cp,q = 0 for p ≤ p0,

(ii) Cp,q = Cq for p ≥ p1.
(1.10)

Definition 1.4. We say that the filtration is homologically finite, if, for each q, there
exist p0, p1 such that

(i) Hq(Cp) = 0 for p ≤ p0,

(ii) Hq(Cp) = Hq(C) for p ≥ p1.
(1.11)

Proposition 1.3. If the filtration of a chain complex C is finite, it is homologically
finite.

Proof. Clealy, (1.10) (i) implies (1.11) (i). Now (1.10) (ii) implies that, given q,

Cq−1,p = Cq−1, Cq,p = Cq, Cq+1,p = Cq+1; for p large.

Thus Hq(Cp) = Hq(C) for p large.

Theorem 1.4. If the filtration of the chain complex C is homologically finite, then:
(i) the associated spectral sequence converges finitely;
(ii) the induced filtration of H(C) is finite;
(iii) E∞ ∼= Gr ◦H(C). More precisely,

E∞p,q
∼= (Gr ◦Hq(C))p = im(Hq(Cp)→ Hq(C))/im(Hq(Cp−1)→ Hq(C)).

Proof. We claim that D̄p,q = Hq(C/Cp) is negatively graded. This can easily be
verified in view of (ii) of equation (1.11). Consider the following short exact sequence
of comlexes

0→ Cp → C → C/Cp → 0.

Let us apply homology to this short exact sequence to obtain the following long exact
sequence

· · · → Hq(Cp)→ Hq(C)→ Hq(C/Cp)→ · · · .

Fix q. Now for p sufficiently large we have Hq(Cp) = Hq(C) and Hq−1(Cp) = Hq(C).
Hence D̄p,q = Hq(C/Cp) = 0 for large p. Thus D̄ is negatively graded.

Let us check that the filtration is homologically finite. Fix q. Now for p sufficiently
small we have Dp,q = Hq(Cp) = 0. So D is positively graded.

Now by Remark 1, ᾱ : D̄ → D̄ is positively stationary. So by Theorem 1.2 α is
positively stationary. Since D is positively graded so α is also negatively stationary.
Thus α is stationary. Now we apply Theorem 1.1 to obtain (i).
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We now prove (ii). The filtration is homologically finite. So given any q there exist
p0 and p1 such that

Hq(C)p = im(Hq(Cp)→ Hq(C)) = 0; p ≤ p0

Hq(C)p = im(Hq(Cp)→ Hq(C)) = Hq(C); p ≥ p1.

Thus the induced filtration is finite.

We now prove (iii). Consider the following exact sequence from the nth derived
couple of the exact couple given by IV.1.11,

· · · → Dn
p+n−1,q

αn−→ Dn
p+n,q

βn−→ En
p,q

γn−→ Dn
p−1,q−1 → · · · . (1.12)

We fix p, q. Suppose n is large so that En
p,q = E∞p,q by (i). Now

Dn
p+n,q = αnDp,q = im(Hq(Cp)→ Hq(Cp+n)).

Since filtration of C is homologically finite so Hq(Cp+n) = Hq(C) for large n. Thus
for large enough n we have

Dn
p+n,q = im(Hq(Cp)→ Hq(C)).

Let us denote im(Hq(Cp)→ Hq(C)) by Hq(C)p. Similarly for large n we have

Dn
p+n−1,q = im(Hq(Cp−1)→ Hq(C)).

We denote im(Hq(Cp−1)→ Hq(C)) by Hq(C)p−1. It then follows that

αn : Dn
p+n−1,q → Dn

p+n,q

for large values of n induces the inclusion Hq(C)p−1 ↪→ Hq(C)p.
Similarly we have

Dn
p−1,q−1 = αnD0

p−n−1,q−1 = im(Hq−1(Cp−n−1)→ Hq−1(Cp−1)).

For n large this is zero by (1.11) (i). For any value of n, by the exact couple
(Dn, En, αn, βn, γn) we have the following exact sequence

· · · → Dn
p+n−1,q

αn−→ Dn
p+n,q

βn−→ En
p,q

γn−→ Dn
p−1,q−1 → · · · .

Now for large n we denoted Dn
p+n−1,q as Hq(C)p−1 and Dn

p+n,q as Hq(C)p and further we
proved that αn corresponds to the inclusion Hq(C)p−1 ↪→ Hq(C)p and Dn

p−1,q−1 = 0.
Thus the above exact sequence reduces to the following short exact sequence

0→ Hq(C)p−1
αn−→ Hq(C)p

βn−→ En
p,q

γn−→ 0.

From which it follows that for large n,

En
p,q
∼= imβn ∼= Hq(C)p/Hq(C)p−1 = (Gr ◦Hq(C))p.
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2 Only two column or two row spectral sequences

To explicitly illustrate the importance of convergence we discuss two rather simple
instances. These examples shows how convergence of spectral sequences helps us
understand homology objects better.

We begin by treating the case of two columns.

Proposition 2.1. Let C be a filtered chain complex. Suppose the associated spectral
sequence, {Er, dr}r converges. Further assume Er

p,q = 0 if p /∈ {0, 1}. Then we have
the following short exact sequence for each q

0→ E1
0,q → Hq(C)→ E1

1,q → 0.

Proof. Recall by equation (IV1.16) that bidegree of dr = (−r − 1,−1). For r = 1,
we get bidegree of d1 = (−2,−1). Since by our hypothesis Er

p,q 6= 0 if and only if
p ∈ {0, 1}, so

drp,q = 0 ∀ p, q and r ≥ 1.

Thus
E1 = E2 = · · · = E∞.

Since the spectral sequence converges, we have

Fp(Hq)/Fp−1(Hq) ∼= E∞p,q.

Let us drop ′ ∼=′ and write ′ =′ instead. Thus we have

Fp(Hq)/Fp−1(Hq) =


E1

0,q, p = 0

E1
1,q, p = 1

0, otherwise.

From above we may infer that the induced filtration on Hq(C) has following form

· · · = F−2(Hq) = F−1(Hq) ⊂ F0(Hq) ⊂ F1(Hq) = F2(Hq) = · · · ⊂ Hq(C).

We had assumed that the spectral sequence converges, hence we have ∩Fp(Hq) = 0
and ∪Fp(Hq) = Hq(C). This implies F−1(Hq) = 0 and F1(Hq) = Hq(C). Thus we
have

F0(Hq) = E1
0,q;

Hq(C)/F0(Hq) = E1
1,q.

In view of above we have the desired short exact sequence

0→ E1
0,q → Hq(C)→ E1

1,q → 0.
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Corollary 2.2. Suppose Er
p,q = 0 if p 6= 0 then E1

0,q = Hq(C).

This is description in terms of E1
p,q only. We would like to express E1

p,q in terms of
E0
p,q. By definition

E1
p,q =

ker(d0
p,q : E0

p,q → E0
p−1,q−1)

im(d0
p+1,q+1 : E0

p+1,q+1 → E0
p,q)

.

Now E0
p,q 6= 0 only if p ∈ {0, 1}. So

E1
0,q =

ker(d0
0,q : E0

0,q → E0
−1,q−1 = 0)

im(d0
1,q+1 : E0

1,q+1 → E0
0,q)

= cokernel(d0
1,q+1 : E0

1,q+1 → E0
0,q);

and

E1
1,q =

ker(d0
1,q : E0

1,q → E0
0,q−1)

im(d0
2,q+1 : E0

2,q+1 = 0→ E0
1,q)

= ker(d0
1,q : E0

1,q → E0
0,q−1).

From degree considerations one may see that similar situation can arise if we set
Er
p,q = 0 if q 6= p or q 6= p+ 1. This is the case of two rows.

Proposition 2.3. Let C be a filtered chain complex. Suppose that the associated
spectral sequence, {Er, dr}r converges. Further assume Er

p,q = 0 if q − p /∈ {0, 1}.
Then we have a long exact sequence as shown below

E1
p−1,p Hp(C) E1

p,p E1
p−2,p−1

Hp−2(C) E1
p−3,p−2 E1

p−1,p−1 Hp−1(C)

d

d

.

Proof. Recall by equation (1.16) that the bi-degree of drp,q for any p and q is given by
(−1− r,−1). Thus

drp,q : Er
p,q → Er

p−r−1,q−1.

Now Er
p,q is non-zero only when q = p or q = p+1. Thus for r ≥ 2 we will always have

either Er
p,q = 0 or Er

p−r−1,q−1 = 0. Thus drp,q = 0 whenever r ≥ 2. Thus E2
p,q = E∞p,q

for all p and q. We proceed to compute E2
p,q. Given our hypothesis we only need to

compute E2
p,p and E2

p,p+1. We first compute E2
p,p. Consider the following diagram

· · · → E1
p+2,p+1

d1p+2,p+1−−−−−→ E1
p,p

d1p,p−−→ E1
p−2,p−1 → · · · .

By definition E2
p,p = ker(d1

p,p)/im(d1
p+2,p+1). But E1

p+2,p+1 = 0 because (p+ 1)− (p+
2) /∈ {0, 1}. Hence

E2
p,p = ker(d1

p,p). (2.1)

To compute E2
p,p+1 we appeal to

· · · → E1
p+2,p+2

d1p+2,p+2−−−−−→ E1
p,p+1

d1p,p+1−−−→ E1
p−2,p → · · · .
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Notice that E1
p−2,p = 0 because p− (p− 2) /∈ {0, 1}. So

E2
p,p+1 = E1

p,p+1/im(d1
p+2,p+2). (2.2)

The spectral sequence is assumed to be convergent and since d3
p,q = 0 for all p, q ,

so for each p we have,

(i) Fp−1(Hp)/Fp−2(Hp) = E∞p−1,p by definition. By (2.1) this is isomorphic toE2
p−1,p =

E1
p−1,p/im(d1

p+1,p+1);

(ii) Fp(Hp)/Fp−1(Hp) = E∞p,p by definition. By (2.2) this is isomorphic to E2
p,p =

ker(d1
p,p).

Now Fp+r(Hp)/Fp+r−1(Hp) = E∞p+r,p by definition. We have shown that this is isomor-
phic to E2

p+r,p. Thus by our hypothesis E∞p+r,p 6= 0 only if r ∈ {−1, 0}. Now for each
value of p we have the following

· · · = Fp−2(Hp) ⊂ Fp−1(Hp) ⊂ Fp(Hp) = Fp+1(Hq) = Fp+2(Hq) = · · · ⊂ Hq(C).

Our spectral sequence converges, hence we have ∪Fp(Hq) = Hq(C) and ∩Fp(Hq) = 0.
Thus it follows that

Fp(Hp) = Hp(C)

and Fp−2(Hp) = 0. We summarise all relations we have obtained so far:

i) Fp(Hp) = Hp(C),

ii) Fp(Hp)/Fp−1(Hp) = ker(d1
p,p),

iii) Fp−1(Hp) = E1
p−1,p/im(d1

p+1,p+1).

Using the obvious short exact sequences

0→ Fp−1(Hp)→ Fp(Hp)→ Fp(Hp)/Fp−1(Hp)→ 0

and
0→ ker(d1

p,p)→ E1
p,p → im(d1

p,p)→ 0

for various p, we may construct the following long exact sequence using the above
relations:

· · · im(d1
p+1,p+1) E1

p−1,p Hp(C) ker(d1
p,p)

· · · im(d1
p,p) E1

p,p

µ ε

µ

µ ε

.

Here µ are monomorphisms and ε are epimorphisms. We may suppress them to obtain
the desired long exact sequence.

Corollary 2.4. Suppose Er
p,q = 0 if q 6= p, then E1

p,p = Hp(C).
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3 Only three column or row spectral sequences

Similarly we investigate the case of three column spectral sequence.

Proposition 3.1. Let C be a filtered chain complex. Suppose the associated spectral
sequence, {Er, dr}r converges. Further assume Er

p,q = 0 if p /∈ {0, 1, 2}. Then we have
the following short exact sequences for each q

0→ F1(Hq)→ Hq(C)→ E2
2,q → 0, (3.1)

0→ E2
0,q → F1(Hq)→ E2

1,q → 0. (3.2)

Proof. Recall by equation (IV1.16) that bidegree of dr = (−r − 1,−1). For r = 2,
we get bidegree of d2 = (−3,−1). Since by our hypothesis Er

p,q 6= 0 if and only if
p ∈ {0, 1, 2}, so

drp,q = 0 ∀ p, q and r ≥ 2.

Thus
E2 = E3 = · · · = E∞.

Since the spectral sequence converges, we have

Fp(Hq)/Fp−1(Hq) ∼= E∞p,q.

Let us drop ′ ∼=′ and write ′ =′ instead. Thus we have

Fp(Hq)/Fp−1(Hq) =


E2

0,q, p = 0

E2
1,q, p = 1

E2
2,q, p = 2

0, otherwise.

From above we may infer that the induced filtration on Hq(C) has following form

· · · = F−2(Hq) = F−1(Hq) ⊂ F0(Hq) ⊂ F1(Hq) ⊂ F2(Hq) = F3(Hq) = · · · ⊂ Hq(C).

The spectral sequence converges, hence we have ∩Fp(Hq) = 0 and ∪Fp(Hq) = Hq(C).
This implies F−1(Hq) = 0 and F2(Hq) = Hq(C). Thus we have:

F0(Hq) = E2
0,q,

F1(Hq)/F0(Hq) = E2
1,q,

Hq(C)/F1(Hq) = E2
2,q.

In view of above we have the desired short exact sequences

0→ F1(Hq)→ Hq(C)→ E2
2,q → 0,

0→ E2
0,q → F1(Hq)→ E2

1,q → 0.
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As before we try to write E2
p,q in terms of E1

p,q. Now the bi-degree is (−2,−1). So

E2
0,q = cokernel(d1

2,q+1 : E1
2,q+1 → E1

0,q),

and
E2

1,q = E1
1,q,

and
E2

2,q = kernel(d1
2,q : E1

2,q → E1
0,q−1).

Suppose that we carry out calculations given in proofs of Proposition 2.1 and 3.1
for an r-column spectral sequence. Then we shall obtain r− 1 short exact sequences.

Proposition 3.2. Let C be a filtered chain complex. Suppose that the associated
spectral sequence, {Er, dr}r converges. Further assume Er

p,q = 0 if q − p /∈ {0, 1, 2}.
Then for each p we have the following two short exact sequences

0 Fp−1(Hp) Hp(C) ker(d2
p,p) 0;

0
coker(d1p,p+1:E1

p,p+1→E1
p−2,p)

im(d2p+1,p+1:E2
p+1,p+1→E2

p−2,p)
Fp−1(Hp) E2

p−1,p 0.

Proof. Recall by equation (1.16) that the bi-degree of drp,q for any p and q is given by
(−1− r,−1). Thus

drp,q : Er
p,q → Er

p−r−1,q−1.

Now Er
p,q is non-zero only when q − p ∈ {0, 1, 2}. Thus for r ≥ 3 we will always have

either Er
p,q = 0 or Er

p−r−1,q−1 = 0. Thus drp,q = 0 whenever r ≥ 3. Thus E3
p,q = E∞p,q

for all p and q. We proceed to compute E3
p,q. Given our hypothesis we only need to

compute E3
p,p and E3

p,p+1 and E3
p,p+2. We first compute E3

p,p. Consider the following
diagram

· · · → E2
p+3,p+1

d2p+3,p+1−−−−−→ E2
p,p

d2p,p−−→ E2
p−3,p−1 → · · · .

By definition E3
p,p = ker(d2

p,p)/im(d2
p+3,p+1). But E2

p+3,p+1 = 0 because (p+ 1)− (p+
3) /∈ {0, 1, 2}. Hence

E3
p,p = ker(d2

p,p). (3.3)

To compute E3
p,p+1 we appeal to

· · · → E2
p+3,p+2

d2p+3,p+2−−−−−→ E2
p,p+1

d2p,p+1−−−→ E2
p−3,p → · · · .

Notice that E2
p−3,p = 0 because p − (p − 3) /∈ {0, 1, 2} and E2

p+3,p+2 = 0 because
(p+ 2)− (p+ 3) /∈ {0, 1, 2}. So

E3
p,p+1 = E2

p,p+1. (3.4)
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Now we compute E3
p,p+2. Consider the following diagram

· · · → E2
p+3,p+3

d2p+3,p+3−−−−−→ E2
p,p+2

d2p,p+2−−−→ E2
p−3,p+1 → · · · .

Since (p+ 1)− (p− 3) /∈ {0, 1, 2}, so E2
p−3,p+1 = 0. Hence we have

E3
p,p+2 = E2

p,p+2/im(d2
p+3,p+3 : E2

p+3,p+3 → E2
p,p+2). (3.5)

Since spectral sequence is assumed to be convergent and since d3
p,q = 0 for all p, q,

so for each p we have

(i) Fp−2(Hp)/Fp−3(Hp) = E∞p−2,p by definition. By (3.3) this is isomorphic toE3
p−2,p =

E2
p−2,p/im(d2

p+1,p+1).

(ii) Fp−1(Hp)/Fp−2(Hp) = E∞p−1,p by definition. By (3.4) this is isomorphic toE3
p−1,p =

E2
p−1,p.

(iii) Fp(Hp)/Fp−1(Hp) = E∞p,p by definition. By (3.5) this is isomorphic to E3
p,p =

ker(d2
p,p).

Now for each value of p we have the following series of inclusions

0 · · · = Fp−3(Hp) ⊂ Fp−2(Hp) ⊂ Fp−1(Hp) ⊂ Fp(Hp) = Fp+1(Hq) = · · · = Hq(C).

Our spectral sequence converges, hence we have ∪Fp(Hq) = Hq(C) and ∩Fp(Hq) = 0.
Thus it follows that

Fp(Hp) = Hp(C)

and Fp−3(Hp) = 0. We summarise all relations we have obtained so far:

i) Fp(Hp) = Hp(C),

ii) Fp(Hp)/Fp−1(Hp) = ker(d2
p,p),

iii) Fp−1(Hp)/Fp−2(Hp) = E2
p−1,p,

iv) Fp−2(Hp) = E2
p−2,p/im(d1

p+1,p+1).

Using the obvious short exact sequences

0→ Fp−1(Hp)→ Fp(Hp)→ Fp(Hp)/Fp−1(Hp)→ 0

and
0→ Fp−2(Hp)→ Fp−1(Hp)→ Fp−1(Hp)/Fp−2(Hp)→ 0

for various p, we construct the following short exact sequences:

0 Fp−1(Hp) Hp(C) ker(d2
p,p) 0;
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0
E2

p−2,p

im(d2p+1,p+1:E2
p+1,p+1→E2

p−2,p)
Fp−1(Hp) E2

p−1,p 0.

Further we can compute E2
p−2,p in terms of d1

p,p+1. By definition E2
p−2,p is given by the

equation

ker(d1
p−2,p : E1

p−2,p → E1
p−4,p−1)/im(d1

p,p+1 : E1
p,p+1 → E1

p−2,p).

Since (p− 1)− (p− 4) /∈ {0, 1, 2}, so E1
p−4,p−1 = 0. Thus we obtain E2

p−2,p as

coker(d1
p,p+1 : E1

p,p+1 → E1
p−2,p).

Now the proposition follows.
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Chapter VI

Double complexes

1 Filtered Double complex and Spectral sequence

Let A be an abelian category.

Definition 1.1. Let {Bx,y}(x,y)∈Z×Z be a collection of objects in A such that they fit
in the following diagram

B−2,2 B−1,2 B0,2 B1,2 B2,2

B−2,1 B−1,1 B0,1 B1,1 B2,1

B−2,0 B−1,0 B0,0 B1,0 B2,0

B−2,−1 B−1,−1 B0,−1 B1,−1 B2,−1

B−2,−2 B−1,−2 B0,−2 B1,−2 B2,−2

dv

dh

dv

dh

dv

dh

dv

dh

dv

dv

dh

dv

dh

dv

dh

dv

dh

dv

dv

dh

dv

dh

dv

dh

dv

dh

dv

dv

dh

dv

dh

dv

dh

dv

dh

dv

dh dh dh dh

. (1.1)

We call this diagram a double complex in A if the following are satisfied:

(i) dh ◦ dh = 0,

(ii) dv ◦ dv = 0,

(iii) dvdh + dhdv = 0.

We denote the above double complex by B. We shall call dh the horizontal and
dv the vertical differential of B.
Each square above is anti-commutative. So we have

(−1)xdhx,y−1d
v
x,y = (−1)x−1(dvx−1,yd

h
x,y).
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Remark. One may replace anti-commutative diagrams above with commutative dia-
grams. This shall be achieved by setting

d′h := dh (1.2)

d′v := (−1)xdv on Bx,y. (1.3)

By the following equalities, the commutativity follows

(d′h)x,y−1(d′v)x,y = (−1)xdhx,y−1d
v
x,y = (−1)x−1(dvx−1,yd

h
x,y) = (d′v)x−1,y(d

′h)x,y.

Given a double complex, by the total complex construction, we may construct a
chain complex. First we define graded module Tot B as follows:

(TotB)n =
⊕
x+y=n

Bx,y.

Observe, for example (TotB)0 is given by the diagonal elements of B. Now we shall
show that there is a differentiation of degree -1 on TotB. We define d : TotB→ TotB
as,

d = dh + dv.

Observe that dh(Bx,y) ⊆ Bx−1,y and dv(Bx,y) ⊆ Bx,y−1. So

d(Bx,y) ⊂ Bx−1,y ⊕Bx,y−1.

Hence d maps (TotB)n to (TotB)n−1 indeed. Further by the following equalities

d ◦ d = (dh + dv) ◦ (dh + dv) = dhdh + dvdh + dhdv + dvdv = 0 .

it follows that d is a differentiation operator of degree −1 on Tot B. So Tot B is a
chain complex indeed.

The complex Tot B may be filtered in two natural ways. The first filtration
through columns is denoted CFp(TotB). It is given by the following,

CFp(TotB)n =
⊕
x+y=n
x≤p

Bx,y. (1.4)

The diagram below illustrates this filtration. For each value of p only those objects
which are to the left of the lines will be part of CFp(TotB). One may easily see that
this filtration increases with p. We shall refer to this filtration as column filtration
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B−2,2 B−1,2 B0,2 B1,2 B2,2

B−2,1 B−1,1 B0,1 B1,1 B2,1

B−2,0 B−1,0 B0,0 B1,0 B2,0

B−2,−1 B−1,−1 B0,−1 B1,−1 B2,−1

B−2,−2 B−1,−2 B0,−2 B1,−2 B2,−2

p=0
.

Similarly we have the row filtration RFp(TotB)

RFp(TotB)n =
⊕
x+y=n
y≤p

Bx,y. (1.5)

Following is an illustration of (1.5)

B−2,2 B−1,2 B0,2 B1,2 B2,2

B−2,1 B−1,1 B0,1 B1,1 B2,1

B−2,0 B−1,0 B0,0 B1,0 B2,0

B−2,−1 B−1,−1 B0,−1 B1,−1 B2,−1

B−2,−2 B−1,−2 B0,−2 B1,−2 B2,−2

p=0

.

Again, notice that the filtration increases with p.

Remark. Both, column and row filtrations of TotB are increasing filtrations.

Notice that given a double complex B we may form partial chain complexes (B, dh)
and (B, dv). Let H(B, dh) denote the homology object of B with respect to dh. Then
dv induces a differential on H(B, dh). By abuse of notation let us denote this induced
differentiation also by dv. Thus we shall obtain H(H(B, dh), dv), the homology of
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H(B, dh) with respect to dv. Similarly we have H(H(B, dv), dh). Proposition 1.3
below relates these homology objects to spectral sequences associated with the above
filtrations. But let us prove first a technical result.

Let us abbreviate CFp(TotB) as Fp. From the diagram corresponding to column
filtration or otherwise one may see that the complex Fp/Fp−1 is given by the pth

column of B. That is Fp/Fp−1 as a graded module is given by

Fp/Fp−1 =
⊕
y

Bp,y (1.6)

(Fp/Fp−1)q = Bp,q−p. (1.7)

The second equality follows because the total degree must be q. Further, the differ-
ential induced by d = dh + dv on Fp/Fp−1 is simply induced by dv. Further, taking
homology of Fp/Fp−1, for any y, the differentials dh induce differentials on

Hy−1(Fp−1/Fp−2)
dh←− Hy(Fp/Fp−1). (1.8)

By abuse of notation, we will denote these differentials also by dh.
Now recall the following exact sequence from Chapter IV[eq. (1.8)] which gives

the differentials d on Hq(Fp/Fp−1) as β ◦ γ:

Hq(Fp/Fp−1) Hq−1(Fp−1) Hq−1(Fp−1/Fp−2)
γ β

. (1.9)

Let [b] be an element of Hq(Fp/Fp−1). We choose a representative b of [b] in
Fp/Fp−1. Then we have the following Lemma whose proof uses several facts specific
to the case of the total complex of a double complex.

Lemma 1.1. The homology class of βγ([b]) in Hq−1(Fp−1/Fp−2) is same as that of
dh(b) where dh is the differential induced by the horizontal differential on the homology
as in equation (1.8).

Proof. Consider

(Fp−1/Fp−2)q−1
dh←− (Fp/Fp−1)q,

which may alternatively be written as

Bp−1,q−1−(p−1)
dh←− Bp,q−p.

This map may be factorised as shown in the diagram below

Bp−1,q−1−(p−1)

⊕
x+y=q−1
x≤p−1

Bx,y

Bp,q−p.

β′

dh dh
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Here the morphism β′ is the usual surjection. We may rewrite as follows

(Fp−1/Fp−2)q−1 (Fp−1)q−1

(Fp/Fp−1)q.

β′

dh
dh (1.10)

From the digrams (IV 1.7) and (IV 1.8), setting our total complex as the complex
C there, it follows that the map induced by β′ at the level of homologies is precisely
β. Thus taking homology of diagram (1.10), we get

Hq−1(Fp−1/Fp−2) Hq−1(Fp−1)

Hq(Fp/Fp−1).

β

dh
H(dh) (1.11)

So to prove the lemma, it suffices to show that H(dh) = γ.
To this end, let us revisit the construction of γ from (IV 1.8), where it arises as

a connecting homomorphism. Consider the following commutative diagram

0 0

(Fp−1)q−1 (Fp−1)q

(Fp)q−1 (Fp)q

(Fp/Fp−1)q−1 (Fp/Fp−1)q

0 0

i1

dh+dv

i2

p1

dh+dv

p2

dv

(1.12)

in which columns are exact.
Recall that [b] ∈ Hq(Fp/Fp−1, d

v). We want to choose carefully a b ∈ (Fp/Fp−1)q =
Bp,q−p as its pre-image and then rather view it as an element in (Fp)q. In fact,
an element of Bp,q−p may be chosen as the pre-image b of [b]. Now following the
construction of the connecting homomorphism, in the diagram (1.12), we wish to
choose a pre-image of b, viewed as an element of Fp/Fp−1, in (Fp)q. We may in fact
choose this pre-image to be b itself. Indeed, we have b ∈ Bp,q−p ⊂ (Fp)q.

Recall that the differentiation dv on Fp/Fp−1 is induced by differentiation dh + dv

on Fp. Thus we have (dh + dv)(b) = dh(b) because dv(b) = 0. Now

p1d
h(b) = dvp2(b) = dv(b) = 0.
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Hence dh(b) is in the kernel of p1. But ker(p1) = im(i1) because the columns are exact.
So there exists a b′ in (Fp−1)q−1 such that i1(b′) = dh(b). In fact, b′ = i−1

1 (dh(b)). By
definition of the connecting homomorphism

γ([b]) = [b′] ∈ H((Fp−1)q−1, d
h + dv).

Since i1 is an inclusion, we may take b′ as dh(b) viewed as an element of (Fp−1)q−1.
Thus

[dh(b)] = [b′] = γ([b]). (1.13)

Here b ∈ Bp,q−p and Bp−1,q−p
dh←− Bp,q−p. Further Bp,q−p = (Fp/Fp−1)q, Bp−1,q−p ↪→

(Fp−1)q−1 and we have a connecting map from H(Fp/Fp−1)→ H(Fp−1) because of the
short exact sequence 0 → Fp−1 → Fp → Fp/Fp−1 → 0 of complexes. Thus equation
(1.13) means that the map

Hq−1(Fp−1, d
h + dv)

H(dh)←−−− Hq(Fp/Fp−1, d
v)

induced by dh at the level of homologies equals γ i.e

H(dh) = γ. (1.14)

Suppose we had chosen to work with row filtrations instead. Taking homology of
Fp/Fp−1, for any x, the differentials dv induce differentials on

Hx−1(Fp−1/Fp−2)
dv←− Hx(Fp/Fp−1). (1.15)

By abuse of notation, we will denote these differentials also by dv. Then we will
see that the corresponding βγ is same as the differential induced by the horizontal
differential dv. We state this as yet another Lemma. But we don’t intend to give a
proof.

Lemma 1.2. The map βγ(b) from Hq(
RFp/

RFp−1) to Hq−1(RFp−1/
RFp−2) is same

as dv, where dv is the differential induced by the vertical differential at the level of
homology as in equation (1.15).

Now we are in a position to state and prove the following Proposition.

Proposition 1.3. Let B be a double complex. Let Bp,∗ denote the p-th column and
B∗,p denote the p-th row. For the column spectral sequence associated with the filtration
(1.4), namely

CFp(TotB)n =
⊕
x+y=n
x≤p

Bx,y,

we have
CEp,q

0 = Hq−p(Bp,∗, d
v), CEp,q

1 = Hp(Hq−p(B, d
v), dh). (1.16)
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Similarly, for the row spectral sequence associated with the filtration (1.5), namely

RFp(TotB)n =
⊕
x+y=n
y≤p

Bx,y,

we have
REp,q

0 = Hq−p(B∗,p, d
h), REp,q

1 = Hp(Hq−p(B, d
h), dv). (1.17)

Proof. We prove (1.16). Let us abbreviate CFp(TotB) as Fp. We know [See ChapterIV
eq.(1.9)] that the first term of the spectral sequence associated with a filtered chain
complex is given byHq(Fp/Fp−1) . We compute Fp/Fp−1 first. The qth term (Fp/Fp−1)q
of Fp/Fp−1 is Bp,y such that p+ y = q. So we have

(Fp/Fp−1)q = Bp,q−p.

Thus
CEp,q

0 = Hq(
CFp(TotB)/CFp−1(TotB)) = Hq−p(Bp,∗, d

v).

Recall that the differential at E0 is given by βγ where γ and β are as given in (1.9).
Now by Lemma 1.1 the composition β ◦ γ agrees with the horizontal differential dh.
Thus we have

CEp,q
1 = Hp(Hq−p(B, d

v), dh).

Using similar arguments and Lemma 1.2 we may prove (1.17).

Remark. We may of course replace dh and dv in the above discussion with d′h and d′v.

Two column double complexes are the simplest examples of double complexes. To
illustrate the technique of filtering, we revisit this example. The reader will notice
that the approach of filtering with columns works out in a fairly elementary way.
However, filtering two columns by rows tantamounts to reinventing the wheel!

Proposition 1.4. Let B be a two column double complex. That is Bp,q is non-zero
only when p = 0 or p = 1. Then we have a short exact sequence:

0 CE1
0,q Hq(TotB) CE1

1,q 0.

Proof. (i) By proposition 1.3 we have

CE0
p,q = Hq−p(Bp,∗, d

v).

But Bp,∗ is non-zero only when p = 0 or 1. Thus

CE0
p,q =


Hq(B0,∗, d

v) if p = 0

Hq−1(B1,∗, d
v) if p = 1

0 otherwise.
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Let us denote the complex (B0,∗, d
v) by X and (B1,∗, d

v) by Y. Now

(TotBq) = B0,q ⊕B1,q−1.

So

0 Xq (TotB)q Yq−1 0

is a short exact sequence. Notice that there is a shift in the index of Y. We shall
denote the shifted complex by Y[−1]. Notice that Y [−1]q = Yq−1.

Remark. The following is a short exact sequence of complexes.

0 X TotB Y[−1] 0.i p

Whenever we have a short exact sequence of complexes we can have a long exact
sequence of homology objects. The following is that long exact sequence in our context

Hq(X) Hq(TotB) Hq(Y[−1])

Hq−1(X) Hq−1(TotB) Hq−1(Y[−1])

i∗ p∗

δ
i∗ p∗

.

By Lemma 1.1 the connecting homomorphism δ is same as the map induced by hor-
izontal differential at the level quotients. Recall that Y [−1]q = Yq−1, hence we may
rewrite the long exact sequence as follows,

Hq(X) Hq(TotB) Hq−1(Y)

Hq−1(X) Hq−1(TotB) Hq−2(Y)

i∗ p∗

δ
i∗ p∗

.

Consider the following short exact sequence

0 ker(p∗) Hq(TotB) im(p∗) 0 .

The long sequence is exact. So ker(p∗) = im(i∗). Now im(i∗) ∼= Hq(X)/ker(i∗).
Again by exactness of long sequence ker(i∗) = im(δ) and im(p∗) = ker(δ). Thus we
obtain a short exact sequence which is isomorphic to the one above

0 coker(δ) Hq(TotB) ker(δ) 0. (1.18)

Let us return to the spectral sequence now. The E1 level is given by

CE1
p,q = Hp(Hq−p(B, d

v), dh).
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In view of discussion thus far

CE1
p,q =


H0(Hq(X), dh) if p = 0

H1(Hq−1(Y), dh) if p = 1

0 otherwise.

But we know that the induced map dh and the connecting homomorphism δ are same.
Hence computing CE1

p,q essentially amounts to computing the homology of following
complex

0 Hq(X) Hq(Y) 0.
δ

Thus we have
H0(Hq(X), δ) = coker(δ)

and
H1(Hq(Y), δ) = ker(δ).

So the spectral sequence at E1 level is given by

CE1
p,q =


coker(δ) if p = 0

ker(δ) if p = 1

0 otherwise

We may now rewrite (1.18) to obtain

0 CE1
0,q Hq(TotB) CE1

1,q 0.

We now come to a natural question. When does the spectral sequences associated
with a double complex converge? Proposition 1.5 below gives a sufficient condition.

Definition 15. We say that the double complex B is positive if there exists n0 such
that

Bx,y = 0 if x < n0 or y < n0. (1.19)

Proposition 1.5. Let B be positive. Then both the first and second spectral sequence
converges finitely to the graded object associated with Hn(Tot B), suitably filtered.

Proof. In view of Theorem V.1.4 one only need to verify that the filtrations (1.4) and
(1.5) are finite. Given (1.19), for a fixed n such that n = r + s we have Br,s 6= 0 iff
n0 ≤ r ≤ n− n0. Thus,

CFp(TotB)n = 0 if p ≤ n0 − 1

CFp(TotB)n = (TotB)n if p ≥ n− n0 ;

and similarly for row filtration.
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2 Some Examples

We give alternate proofs for some familiar results in homological algebra using spectral
sequences. Our approach may be summarized as follows:

1. Given a diagram, one completes it to a double complex with arrows oriented as
in diagram (1.1).

2. Now one considers both the filtrations - by rows and columns and deduces the
two spectral sequences.

3. From E2 of one SS, one deduces information about E∞. From this one extracts
information about the other E2.

We recall the following Propositions and Corollaries from Chapter V. We shall use
them throughout this section.

Proposition 2.1. Let C be a filtered chain complex. Suppose the associated spectral
sequence, {Er, dr}r converges. Further assume Er

p,q = 0 if and only if p /∈ {0, 1}.
Then we have the following short exact sequence for each q

0→ E1
0,q → Hq(C)→ E1

1,q → 0.

Corollary 2.2. Suppose Er
p,q = 0 if when p 6= 0 then E1

0,q = Hq(C).

Proposition 2.3. Let C be a filtered chain complex. Suppose that the associated
spectral sequence, {Er, dr}r converges. Further assume Er

p,q 6= 0 if and only if q− p ∈
{0, 1}. Then we have a long exact sequence as shown below

E1
p−1,p Hp(C) E1

p,p E1
p−2,p−1

Hp−2(C) E1
p−3,p−2 E1

p−1,p−1 Hp−1(C).

d

d

Corollary 2.4. Suppose Er
p,q = 0 if q 6= p then E1

p,p = Hp(C).

Example 2.1 (Five Lemma). Consider the following commutative diagram

A B C D E

A′ B′ C ′ D E

α

f

β γ δ

g

ε

f ′ g′

(2.1)

with exact rows. Five lemma says:

(i) If β , δ are monomorphisms and α is an epimorphism, then γ is a monomor-
phism;

62



(ii) If β , δ are epimorphisms and ε is a monomorphism, then γ is an epimorphism.

Proof. We prove (ii) using spectral sequences. Let us rewrite (2.1) to obtain a positive
double complex;

0 0 0 0 0 0 0 0

coker(g) E D C B A ker(f) 0

coker(g′) E ′ D′ C ′ B′ A′ kerf ′ 0 .

ε δ

g

γ β α

f

g′ f ′

Clearly the above diagram is a double complex. Let us denote it by B. Thus by
Proposition 1.5 both the spectral sequences associated to TotB converges. Let us
first compute the spectral sequence associated with row filtration. The E0 level is
given by

RE0
p,q = Hq−p(B∗,p, dh).

Since the rows here are exact, so RE0
p,q = 0 for all p, q. Now we shall apply Corollary

2.2 to obtain Hq(TotB) = 0 for all q.
We want to show that coker(γ) = 0. Observe that

coker(γ) = H0(B3,∗, d
v).

Similarly

coker(β) = H0(B4,∗, d
v);

coker(δ) = H0(B2,∗, d
v);

ker(ε) = H1(B1,∗, d
v).

We are given that each of these objects is zero. Now consider the spectral sequence
associated with column filtration of TotB. We know from Proposition 1.3 that CE0

p,q =
Hq−p(Bp,∗, d

v). Hence we see that

CE0
3,3 = H0(B3,∗, d

v) = coker(γ)); (2.2)
CE0

4,4 = H0(B4,∗, d
v) = 0;

CE0
2,2 = H0(B2,∗, d

v) = 0;
CE0

1,2 = H1(B1,∗, d
v) = 0.

Clearly CE1
1,2 = 0. Recall that the differential d0 at E0 level has bidegree (-1,-1).

We obtain CE1
3,3 as the homology of CE0

3,3 with respect to d0. That is CE1
3,3 =

ker(d0
3,3)/im(d0

4,4). We illustrate these maps more clearly below

CE0
4,4

d04,4−−→ CE0
3,3

d23,3−−→ CE0
2,2.
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But the terms on either side are zero. So

CE1
3,3 = CE0

3,3 = coker(γ).

Moreover observe that our double complex have non-zero entries only in bottom two
rows. So Hq−p(Bp,∗, dv) is non-zero only when q = p or q = p+1. Thus we may invoke
Proposition 2.3 to obtain the following long exact sequence

→ CH3(TotB)→ CE1
3,3 → CE1

1,2 → .

The terms on either side of E1
3,3 is 0. So

coker(γ) = E1
3,3 = 0.

One may prove (i) similarly.

Our next example is of Snake Lemma. We don’t intend to give the entire proof
here. Usually the construction of connecting homomorphism involves a choice. Using
spectral sequence we eliminate the need for choice.

Example 2.2 (Snake Lemma). Snake lemma says, given the following commutative
diagram with exact rows;

A B C 0

0 A′ B′ C

α

f

β

g

γ

f ′ g′

we can obtain the following long exact sequence

0 ker(α) ker(β) ker(γ)

coker(α) coker(β) coker(γ) 0.
δ

Proof. As mentioned already we only intend to show how to construct δ. Consider
the following positive double complex

0 0 0 0 0 0 0

0 0 C B A ker(f) 0

0 coker(g′) C ′ B′ A′ 0 0 .

γ

g

β α

f

g′ f ′
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The rows are exact, so the horizontal homologies vanish. Thus RE∞p,q =R E0
p,q = 0. So

we have both spectral sequences converging to zero. If we perform our computations
as in the case of five lemma we shall see that the spectral sequence at CE0 level looks
as follows. We will show only the non-zero terms.

ker(γ) ker(β) ker(α) ker(f) 0

0 coker(g′) coker(γ) coker(β) coker(α) .

g∗ f∗

g′∗ f ′∗

It can be verified that both the rows are exact. We shall skip this verification. Since the
rows are exact, so CE1 shall have only two non-zero entries, coker(g∗) and ker(f ′∗).
Clearly coker(g∗) = CE1

2,3 and ker(f ′∗) = CE1
4,4. We have a map

d1
4,4 : CE1

4,4 → CE1
2,3.

Our double complex have non-zero entries only in bottom two rows. SoHq−p(Bp,∗, dv)
is zero if q 6= p or q 6= p + 1. Thus in view of Corollary 2.4 CE2

p,q =C E∞p,q = 0. This
(CE2

p,q = 0 ∀ p, q) is possible only if d1
4,4 is an isomorphism. Let us denote the

inverse of d1
4,4 by ψ. Now we define δ such that the square below is commutative

ker(β) ker(γ) coker(α) coker(β)

coker(g∗) kerf ′∗ .

g∗ δ f ′∗

ψ

Thus we have constructed δ such that the row is exact.

Example 2.3 (Balancing Tor). Let A be a right R-module and C be a left R-module.
Now A ⊗R − and −R ⊗ C are functors from Category of R-modules to Category of
R-modules. Consider the derived functors Torn(A,−) and Torn(−, C). Using spectral
sequences we prove that

Torn(A,−)(C) = Torn(−, C)(A).

Proof. Let

· · · P2 P1 P0 A 0

be a projective resolution of A. Similarly we choose a projective resolution

· · · Q2 Q1 Q0 B 0

of C. Define
Bp,q := Pp ⊗Qq.
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Let B = {Bp,q}p,q. Following is a diagrammatic representation of B

P0 ⊗Q2 P1 ⊗Q2 P2 ⊗Q2

P0 ⊗Q1 P1 ⊗Q1 P2 ⊗Q1

P0 ⊗Q0 P1 ⊗Q0 P2 ⊗Q0 .

Since Pp⊗− and −⊗Qp are functors, so B is a double complex. Projective modules
are flat. Hence rows and columns of B are exact.
Notice that B is positive. So both the spectral sequences associated with B converges.
We compute CE first. Recall that

CE0
p,q = Hq−p(Bp,∗, d

v).

The columns are exact, so we have non-zero entries coming from only the bottom row
of B. Now H0(Bp,∗, d

v) = H0(Pp ⊗Q∗). So

H0(Pp ⊗Q∗) = coker(Pp ⊗Q1 → Pp ⊗Q0).

Since Pp is flat, so we have

coker(Pp ⊗Q1 → Pp ⊗Q0) = Pp ⊗ C.

Hence we have

CE0
p,q =

{
Pp ⊗ C if p = q;

0 if p 6= q.

We illustrate CE0 below. We have the sequence

· · · ← E0
p−1,p−1 ← E0

p,p ← · · · .

In other words, we have the sequence

P0 ⊗ C P1 ⊗ C P2 ⊗ C · · · .

Now we compute CE1
p,p only, since the other terms are all zero. We know that

CE1
p,p = Hp(H0(B, dv), dh).

Hence
CE1

p,p = Hp(P∗ ⊗ C, dh).
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By definition Hp(Pp ⊗ C) is Torp(−, C)(A). Our spectral sequence clearly satisfies
Corollary 2.4. Thus we have CE1

p,p = Hp(TotB). Or in other words Hp(TotB) is
precisely Torp(−, C)(A).

Now we turn to the spectral sequence associated with row filtration. Again the
rows in B are exact. So only the last term from each row will survive after applying
homology. Thus we have

RE0
p,q =

{
H0(B∗,p, d

h) if q = p;

0 if q 6= p.

Clearly H0(B∗,p, d
h) = A⊗Qq. The following is a representation of RE0

...

A⊗Q2

A⊗Q1

A⊗Q0.

Notice that RE1
p,q is non-zero only when p = q. So we compute RE1

p,p only. Now RE1
p,p

is given by
Hp(H0(B, dh), dv) = Hp(A⊗Qp).

Thus by definition RE1
p,q is Torp(A,−)(C). Clearly RE also satisfies the Corollary 2.4.

Thus we have that Hp(TotB) = Torp(A,−)(C). So

Torp(A,−)C = Torp(−, C)(A).

Example 2.4 (Base Change for Tor). Let R, S be two rings. Let f : R → S be a
ring homomorphism. Now consider an R-module A and an S-module C. Via f we
can also consider C as an R-module. Our aim is to understand how TorRn (−, C) and
TorSn(−, C) are related. We employ spectral sequences for that.

As in previous example let

· · · P2 P1 P0 A 0

be a projective resolution of A. Let

· · · Q2 Q1 Q0 C 0

67



be a projective resolution of C as an S-module. We construct a positive double
complex B

P0 ⊗Q2 P1 ⊗Q2 P2 ⊗Q2

P0 ⊗Q1 P1 ⊗Q1 P2 ⊗Q1

P0 ⊗Q0 P1 ⊗Q0 P2 ⊗Q0 .

Notice that Qp need not be projective as R-module. Hence only the columns will be
exact this time. So as in previous example we obtain

Hq(TotB) = Torq(A,−)(C).

So in view of Proposition 1.5 the row spectral sequence REr converges to graded
associated with Torq(A,−)(C) = Torq(A,C) filtered row-wise.

We use Pp ⊗R Qq = (Pp ⊗R S)⊗S Qq to rewrite B as follows

(P0 ⊗R S)⊗S Q2 (P1 ⊗R S)⊗S Q2 (P2 ⊗R S)⊗S Q2

(P0 ⊗R S)⊗S Q1 (P1 ⊗R S)⊗S Q1 (P2 ⊗R S)⊗S Q1

(P0 ⊗R S)⊗S Q0 (P1 ⊗R S)⊗S Q0 (P2 ⊗R S)⊗S Q0 .

Since Qp is a projective S-module, so − ⊗S Qp is an exact functor. By definition
Hp(P∗ ⊗R S) = Torp(−, S)(A). Thus we have the following as our row spectral
sequence at E0 level

TorR0 (A, S)⊗S Q2 TorR1 (A, S)⊗S Q2 TorR2 (A, S)⊗S Q2 · · ·

TorR0 (A, S)⊗S Q1 TorR1 (A, S)⊗S Q1 TorR2 (A, S)⊗S Q1 · · ·

TorR0 (A, S)⊗S Q0 TorR1 (A, S)⊗S Q0 TorR2 (A, S)⊗S Q0 · · ·

.
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Here TorRq−p(A, S) ⊗S Qp is actually the RE0
p,q term. Now the complexes in these

columns are the ones used to calculate the derived functors of −⊗S C. So the pq-th
entry at the E1 level is

TorSp (TorRq−p(A, S), C).

Thus far we have proved the following proposition.

Proposition 2.5. Let R, S be two rings. Let f : R → S be a ring homomorphism.
Now consider an R-module A and an S-module C. Then there exist a spectral sequence
converging to the graded module associated with TorRq (A,C) such that

E1
p,q = TorSp (TorRq−p(A, S), C).

Corollary 2.6. Suppose S is flat as an R − module. Then TorRn (A, S) = 0 for
n > 0. Thus at E1 level only the bottom row of spectral sequence is non-zero. Hence
by Corollary 2.2 we have

TorSn(A⊗R S,C) = TorRn (A,C).

Example 2.5 (The Universal Coefficient Theorem). Let C = (C∗, d∗) be a a chain
complex consisting of free abelian groups. Let A be any abelian group. Then the
universal coefficient theorem predicts the existence of the following short exact sequence

0 Hn(C∗)⊗ A Hn(C∗ ⊗ A) Tor1(Hn−1(C), A) 0.

Proof. Let

· · · P2 P1 P0 A 0

be a projective resolution of A. We obtain a double complex B by setting Bp,q =
Pp ⊗ Cq

P0 ⊗ C2 P1 ⊗ C2 P2 ⊗ C2

P0 ⊗ C1 P1 ⊗ C1 P2 ⊗ C1

P0 ⊗ C0 P1 ⊗ C0 P2 ⊗ C0 .

We first look at the spectral sequence associated with filtration by columns. Since
Pp ⊗− is exact, so

Hq(Pp ⊗ C∗) = Pp ⊗Hq(C∗).
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Thus our the spectral sequence at E0 level looks as follows.

...
...

...

P0 ⊗H2(C) P1 ⊗H2(C) P2 ⊗H2(C)

P0 ⊗H1(C) P1 ⊗H1(C) P2 ⊗H1(C)

P0 ⊗H0(C) P1 ⊗H0(C) P2 ⊗H0(C)

Here Pp ⊗Hq−p(C) is the CE0
p,q term of spectral sequence.

These complexes along rows are the ones used for computing derived functors of A⊗−.
Thus

CE1
p,q = TorZp (A,Hq−p(C)).

Let us look at this more closely. Given a Cn we have the following short exact sequence

0 im(dn+1) ker(dn) Hn(C) 0 .

Let us apply A⊗− to this short exact sequence. Then we shall obtain the following
long exact sequence

Tor2(A, im(dn + 1)) Tor2(A, ker(dn)) Tor2(A,Hn(C))

Tor1(A, im(dn + 1)) Tor1(A, ker(dn)) Tor1(A,Hn(C))

Tor0(A, im(dn + 1)) Tor0(A, ker(dn)) Tor0(A,Hn(C)).

We may obtain such a long exact sequence for each n. Here ker(dn) and im(dn+1)
are subgroups of Cn. Since Cn is free, so it’s subgroups are also free. Free groups are
flat. Hence higher Tor groups of ker(dn) and im(dn+1) vanishes. Thus from the long
exact sequence we deduce that

Tori(A,Hn(C)) = 0 for i ≥ 2.

Recall that
CE1

p,q = TorZp (A,Hq−p(C)).

So we have CE1
p,q = 0 if p 6= 0 or p 6= 1. Recall that by Proposition 2.1 we have the

following short exact sequence

0 CE1
0,q Hq(TotB) CE1

1,q 0. (2.3)
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Substituting values of CE1
p,q calculated above, we get

0 A⊗Hq(C) Hq(TotB) TorZ1 (A,Hq−1(C)) 0 . (2.4)

We now compute Hq(TotB). For that we turn to the spectral sequence associated
with the row filtration. Since Cn are free, so the rows of B are exact. Hence at E0

level the only non-zero terms will be RE0
p,p. To make it clear recall that

RE0
p,q = Hq−p(B∗,p).

In our case
Hq−p(B∗,p) = Hq−p(P∗ ⊗ Cp).

Since the rows are exact so the above groups are non-zero only when q − p = 0. Let
us explicitly compute RE0

p,p:

RE0
p,p = Hq−p(P∗ ⊗ Cp)

= H0(P∗ ⊗ Cp)
= Tor0(A⊗ Cp)
= A⊗ Cp.

Now RE1
p,p = Hp(A ⊗ Cp). Notice that our spectral sequence satisfies Corollary

2.4, so Hq(TotB) =R E1
p,p. Hence

Hq(TotB) = Hq(A⊗ Cq).

Now we shall rewrite the short exact sequence given by (2.4) to obtain

0 A⊗Hq(C) Hq(A⊗ C∗) TorZ1 (A,Hq−1(C)) 0 .
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Chapter VII

The Grothendieck Spectral
Sequence

Alexander Grothendieck introduced a special kind of spectral sequence in his famous
Tohoku paper. Now it is named after him. Let F : A → B and G : B → C be two
additive functors between abelian categories. Under some assumptions, this spectral
sequence relates the composition of derived functors of G and F to derived functors
of G ◦ F as follows

(RpG)(Rq−pF )(A)⇒ Rq(GF )(A).

Familiarity with Chapter VI is essential to understand this Chapter. We would like
to remind the reader that in this Chapter we will be working with co-homologicaly
graded spectral sequences (cf. II.4.2).

1 Cartan - Eilenberg Resolution

Let A be an abelain category with enough injectives. Consider the category C of
co-chain complexes in A. Then C is an abelian category. Given an object, A ∈ A, we
can regard it as a complex concentrated in degree zero as follows:

· · · → 0→ A→ 0→ · · · .

Further, given an injective resolution of I∗ ofA we can regard it as a quasi-isomorphism
as follows:

· · · 0 A 0 0 · · ·

· · · 0 I0 I1 I2 · · ·

(1.1)

More generally, one can define injective objects in C. Moreover, we can also take
injective resolutions in C by the following procedure. Given a bounded-below object
say

C = · · · → 0→ C0 → C1 → C2 → · · · (1.2)

in C we will explain below how to construct a quasi-isomorphism

C→ I
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where I is an injective object in the category C. In fact, the complex I will be
constructed in terms of injective resolutions of {Cn}n∈Z. This is possible by the
following technique which goes by the name of Cartan-Eilenberg resolution. This is
an injective replacement of complexes. As a consequence of this procedure, we see
that the category C of complexes of objects in A also has enough injectives whenever
A has enough of them.

Let us denote the co-cycles of C by Zr and co-boundaries by Br. Then we have
two sets of obvious short exact sequences:

0→ Zr → Cr → Br+1 → 0; (1.3)

and
0→ Br → Zr → Zr/Br = Hr(C)→ 0. (1.4)

We make use of these short exact sequences to construct the desired injective replace-
ment of C.

Lemma 1.1. For each value of r we may resolve (1.3) and (1.4) as

0 Lr,1 Kr,1 Hr,1 0

0 Lr,0 Kr,0 Hr,0 0

0 Br Zr Hr 0

0 Kr,1 Jr,1 Lr+1,1 0

0 Kr,0 Jr,0 Lr+1,0 0

0 Zr Cr Br+1 0

(1.5)

such that each column is an augmented injective resolution of the object appearing at
it’s head. Furthermore for fixed values of x and y the sequences

(i) 0→ Kx,y → Jx,y → Lx+1,y → 0

(ii) 0→ Lx,y → Kx,y → Hx,y → 0

are split-exact.

Proof. We shall prove the proposition by induction on r. For r = 0, we have B0 = 0.
We choose an arbitrary injective resolution

0→ B0 → L0,0 → L0,1 → L0,2 → · · ·

of B0 by injective modules.
Similarly, we also choose

H0(C) H0,0 H0,1 · · ·

an arbitrary injective resolution of H0(C) = Z0/B0. Applying Horse shoe Lemma we
can obtain an injective resolution
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Z0 K0,0 K0,0 · · ·

of Z0 such that each row of the following diagram is exact

0 L0,1 K0,1 H0,1 0

0 L0,0 K0,0 H0,0 0

0 B0 Z0 H0 0.

Thus we have obtained an injective resolution of Z0 compatible with those of B0

and H0.
Similarly let

B1 L1,0 L1,1 · · ·

be an injective resolution of B1. By the Horse shoe Lemma(cf. Lemma [1, III.5.4])
we can obtain an injective resolution of C0

C0 J0,0 J0,1 · · ·

such that each row in the following diagram is exact in every row and column

0 K0,1 J0,1 L1,1 0

0 K0,0 J0,0 L1,0 0

0 Z0 C0 B1 0.

Thus we have shown the diagram (1.5) for r = 0. We may suppose by induction
that diagram (1.5) exists for values from 0 to r− 1. So one has an injective resolution
of Br at one’s disposal. Now, we let

Hr(C) Hr,0 Hr,1 · · ·

be an arbitrary injective resolution of Hr(C) = Zr/Br. As above, we can obtain an
injective resolution of Zr
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Zr Kr,0 Kr,1 · · ·

such that each row of the following diagram is exact

0 Lr,1 Kr,1 Hr,1 0

0 Lr,0 Kr,0 Hr,0 0

0 Br Zr Hr 0.

Thus we have obtained a resolution of Zr compatible with Br and Hr. We then
use an arbitrary resolution of Br+1 to construct an injective resolution of

0→ Zr → Cr → Br+1 → 0

such that each row is exact. This shows the diagram (1.5) for the value r. We have
thus proved the induction hypothesis. The assertion about split-exactness follows
immediately, by basic homological algebra, because the sequences are short exact by
construction and each of the modules involved is injective.

Notice that by construction

J0,y → J1,y → J2,y →...

is a co-chain complex for each y. By combining diagrams of the form

0 Kr,1 Jr,1 Lr+1,1 0

0 Kr,0 Jr,0 Lr+1,0 0

0 Zr Cr Br+1 0
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for two successive values of r, we obtain the Cartan-Eilenberg resolution of C

0 J0,1 · · · Jr,1 Jr+1,1 Jr+2,1

0 J0,0 · · · Jr,0 Jr+1,0 Jr+2,0

0 C0 · · · Cr Cr+1 Cr+2 .

(1.6)

Now we can set I = Tot(J∗,∗). Since J∗,∗ consists only of injective objects in each
bi-degree, I also consists only of injective objects in each degree. It is a standard fact
in homological algebra that I is an injective object in the category of complexes. This
can be proven by arguing on the degree of the given complexes starting from degree
0.

Proposition 1.2. Let I be as defined above. Then I is an injective object in Category
of co-chain complexes in the Abelian category A.

Proof. Let A be and D be two co-chain complexes. Suppose we have the following
diagram

A D

I

α

i

where i is a monomorphism.
We need to show that there exist a map β : D → I such that the diagram is

commutative. Now each In is given by direct sum of injective objects Jp,q such that
p+ q = n. Since direct sum of injective objects is injective, so each In is injective.

Consider αn : An → In and in : An → Dn. Since for each n, in is a monomorphism
and In is injective, so we have βn : Dn → In such that the following diagram is
commutative

An Dn

In.

αn

in

βn

Set β = {βn}. Thus we have produced the following commutative in category of
complexes

A D

I.

α

i

β
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Further we have a natural map of complexes

C→ I.

We claim that this map is a quasi-isomorphism. We may augment the complex C into
a positive double co-chain complex simply by adding the modules 0. Thus we have a
map of double co-chain complexes

C∗,∗ → J∗,∗. (1.7)

Associating a double complex to it’s total complex filtered either by column or row is
clearly functorial. By dual of equations 1.8 and 1.9 of Chapter IV we have a functor
which associates a filtered chain complex to an exact couple. Now recall by Proposition
III.1.3 that the process of associating a spectral sequence to an exact couple defines
a functor. Thus, by functoriality of the construction associating a spectral sequence
to a double complex , we obtain morphism of the column spectral sequences

CE(TotC)→C E(TotJ). (1.8)

Since both these complexes are positive, therefore by Proposition 1.5 of Chapter VI
, these spectral sequences converge to Hn(TotC) and Hn(TotJ) respectively. Let us
denote by B∗,∗ a double-complex when we want to make assertions on either of C∗,∗

and I∗,∗. Dualizing Proposition 1.3 of Chapter VI , for the column spectral sequence,
we have

CEp,q
0 = Hq−p(B

p,∗, dv).

It is (possibly) non-zero only when q − p = 0. In fact, we have

H0(B∗,∗, dv) = C∗

for both double complexes. Since by construction each column Jp,∗ resolves Cp, so via
(1.7), we see that the morphism of spectral sequences, at level 0, in (1.8) is actually
the identity morphism. Thus afortiori, we have the identity morphism in (1.8) at
level 1 also between the spectral sequences. Now since the degree for cohomological
spectral sequences at level r is (r + 1, 1), thus we see that both spectral sequences
collapse at level 1. This has two consequences. Firstly, Ep,q

1 = Ep,q
∞ for all values of

p and q. Secondly, Hp(TotB) is filtered by a filtration of length 1. So it is its own
graded. Therefore it is isomorphic to Ep,p

∞ which is isomorphic to Ep,p
1 . Since, the map

in (1.8) at level 1 is identity therefore we have

Hp(C
∗) = Hp(TotC

∗,∗) =C Ep,p
1 (C∗,∗)

id−→ CEp,p
1 (J∗,∗) = Hp(TotJ).

This proves the quasi-isomorphism.

2 Grothendieck spectral sequence

We shall need the following definition.
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Definition 2.1. We say an object B in B is right G-acyclic if;

RqG(B) =

{
G(B), q = 0;

0, q ≥ 1.
(2.1)

Theorem 2.1 (Grothendieck spectral sequence). Let F : A→ B, G : B→ C be addi-
tive functors between abelian categories. Assume that A and B have enough injectives
and for every injective object I of A the object F (I) is G-acyclic. Then there is a
spectral sequence En(A) corresponding to each object A in A, such that

Ep,q
1 = (RpG)(Rq−pF )(A)⇒ Rq(GF )(A). (2.2)

This spectral sequence converges finitely to the graded object associated with Rq(GF )(A),
suitably filtered.

Proof. Let A be an object in A. Let

I = I0 → I2 → · · ·

be an injective resolution of A. Then

F (I) = FI0 → FI1 → FI2 → (2.3)

is a cochain complex of objects in B. Let,

0 J0,1 J1,1 J2,1

0 J0,0 J1,0 J2,0

0 FI0 FI1 FI2

(2.4)

be a Cartan-Eilenberg resolution of (2.3) obtained by replacing the role of C in Lemma
1.1 with F (I). By applying G to (2.4) we obtain a double co-chain complex

0 GJ0,2 GJ1,2 GJ2,2 · · ·

0 GJ0,1 GJ1,1 GJ2,1 · · ·

0 GJ0,0 GJ1,0 GJ2,0 · · · .

dv

dh

dv

dh

dv

dh

dv

dh

dv

dh

dv

dh

dv

dh

dv

dh

dv

dh

(2.5)

Let us denote this double co-chain complex by B.
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Lemma 2.2. For the diagram (2.4), in the notation of Lemma 1.1, recall the complex
{Hx,y}x∈Z. We have

Hp(B
∗,q, dh) = GHp,q. (2.6)

Proof. We view the double complex B as a complex of vertical complexes {Bp,∗}p∈Z.
For all values of x and y we have the following split short exact sequence

0→ Kp,q → Jp,q → Lp+1,q → 0.

Since G is an additive functor, so it preserves split exactness(cf. I.2) . Thus

0→ GKp,q → GJp,q → GLp+1,q → 0

is also split exact. It follows that GJp,q → GJp+1,q the kernel identifies with GKp,q

and cokernel identifies with GLp+1,q. Thus

1. the complex Z̃p of p co-cycles identifies with G(Kp,∗).

2. Further, the complex B̃p of p co-boundaries identifies with G(Lp,∗).

Thus the complex of p cohomologies identifies with the complex G(Kp,∗)/G(Lp,∗).
For all values of x and y we have the following split short exact sequence

0→ Lp,q → Kp,q → Hp,q → 0.

Since G is an additive functor, so it preserves split exactness(cf. I.2) . Thus

0→ GLp,q → GKp,q → GHp,q → 0

is also split exact. Hence we have GKp,q/GLp,q ∼= GHp,q. Thus we have shown
Hp(B

∗,q, dh) = GHp,q.

Let us denote the r co-cycles and the r co-boundaries of the co-chain complex F (I)
by Zr and Br respectively. So by definition

RrF (A) = Hr(F (I)) = Zr/Br. (2.7)

We compute REp,q
1 by taking homology with respect to the differential induced by

vertical differential on RE0 . Recall by equation (1.17) of Chapter VI that

REp,q
1 = Hp(Hq−p(B, dh), dv).

By equation 2.6, taking homology of the complex G(Hq−∗,∗) we obtain

REp,q
1 = Hp(G(Hq−p,p)).

By Lemma (1.1), fixing q− p, we have an injective resolution of Hq−p(F (I)) given
by the complex

· · · → Hq−p,s → Hq−p,s+1 → · · · .
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Thus we have REp,q
1 = (RpG)(Hq−p(F I)) which by definition is

(RpG)(Rq−pF (A)). (2.8)

Since the double complex (2.5) is positive, so Proposition VI.1.5 assures finite
convergence.

Now we consider the spectral sequence arizing from column-wise filtration of TotB.
Thus CEp,q

0 is computed by filtering B vertically. Recall by equation (1.16) of Chapter
VI that

CEp,q
0 = Hq−p(Bp,∗, dv).

In the complex B above the term Bp,q is given by GJp,q. Hence

CEp,q
0 = Hq−p(GJp,∗, dv).

Since by our hypothesis FIp are G-acyclic so

CEp,q
0 = G(FIp), q − p = 0

= 0, q − p 6= 0.

Recall that equation (1.16) of Chapter VI says

CEp,q
1 = Hp(Hq−p(B, dv), dh).

Thus we have CEp,q
1 = Hq(GFI∗) if q − p = 0 and the module 0 otherwise. Further,

by definition Hq(GFI∗) = Rq(GF )(A). By dualizing the formula (1.15) of chapter IV
it follows that the bi-degree of dr is (r + 1, 1). Thus the spectral sequence collapses
at level 1. Consequently,

1. CEp,q
1 is possibly non-zero only when q − p = 0 and

2. CEq,q
1 =C Eq,q

∞

3. CEq,q
∞ = Rq(GF )A

4. Since B is positively graded, so by Proposition 1.5 of Chapter VI, the column
spectral sequence of B does indeed converge to Hq(TotB).

5. Applying Corollary 2.4 to Tot(B) we have CEq,q
1 = Hq(TotB).

So we have
Hq(TotB) = Rq(GF )A. (2.9)

The theorem now follows by applying Proposition 1.5 of Chapter VI to (2.8) and
(2.9) .
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2.1 Lyndon-Hochschild-Serre Spectral Sequence

In the following we give an application of Grothendieck spectral sequence in group
co-homology. The spectral sequence we will obtain is known as Lyndon-Hochschild-
Serre spectral sequence. In this discussion we will assume familiarity with group
co-homology. Readers lacking knowledge in Group cohomology are requested to refer
[3, 6].

Let H be a group and N be a normal subgroup of H. We shall denote the quotient
H/N by Q. Thus we have a short exact sequence of groups

0→ N
i−→ H

p−→ Q→ 0.

Let A be the category of H-modules and B be the category of Q-modules. Let
AN denote the subgroup of A fixed by N . Now we have the functors

F : A→ B (2.10)

and
G : B→ C, (2.11)

where F (A) = AN and G(B) = BQ. Notice that for a ∈ A and h ∈ H the assignment

(ph)(a) = ha

defines a Q-action on A. Hence we may regard AN as a Q-module.

Claim 2.3. The functors F and G are additive. Further GF (A) = AH .

Proof. The fact that these functors are additive follows from construction.
We now prove the second assertion. Given a group H and a H-module A, it is

well known fact that AH = HomH(Z, A), where the H-action on Z is trivial (cf. [3,
6.1.1]).

Similarly we know that given a ring homomorphism f : R → S and a fixed S-
module N , the functors HomR(N,−) : R−mod→ Ab and −⊗S N : S−mod→ Ab
forms an adjoint pair (cf. [3, 2.6.3]). Thus for an S-module M and R-module Q, we
have

HomR(M ⊗S N,Q) ∼= HomS(M,HomR(N,Q).

There is natural morphism from the group ring ZH to ZQ. Thus we may use the
above to obtain

GF (A) = HomQ(Z, HomH(Z, A) = HomH(Z⊗Q Z, A) = HomH(Z, A) = AH .

Lemma 2.4. Let ρ : B → A be the functor such that ρ(B) is a H-module with
H-action given by

hb = (ph)b.

Then F is right adjoint to ρ.
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Proof. Let A be an object in A and B be an object in B.
We need to show that

HomH(ρ(B), A) ∼= HomQ(B,F (A)).

Let f : B → F (A) = AN ∈ HomQ(B,F (A)). Thus by abuse of notation we have
a morphism f : B → AN of abelian groups. Consider B as a H-module via ρ. Let
us denote the H-linear map given by f from ρ(B) to AN ⊂ A by f ∗. Thus given a
f ∈ HomQ(B,F (A)) we have produced a f ∗ ∈ HomH(ρ(B), A).

Now let g : ρ(B) → A ∈ HomH(ρ(B), A). Consider b ∈ ρ(B). Now g(b) be-
longs to A. Let n ∈ N . Now ng(b) = g(nb). By definition of H-action on ρ(B),
g(nb) = g(p(n)b) = g(b) (because p(n) = 1) . Thus g(b) ∈ AN . Notice that ρ(B) is
essentially B equipped with an H-action. Thus the abelian groups ρ(B) and B are
same. Consider the morphism of ableian groups g : B → AN . Clearly this shall give
us a morphism g∗ : B → AN = F (A) of Q-modules. Thus given a g ∈ HomH(ρ(B), A)
we have produced g∗ ∈ HomQ(B,F (A)).

Now we are in a position prove the following theorem.

Theorem 2.5. Let H be a group and N be a normal subgroup of H. Consider an
H-module A, then there is a natural action of Q = H/N on the cohomology groups
Hn(N,A). Further there is a spectral sequence {En(A)} such that

Ep,q
1 = Hp(Q,Hq−p(N,A))⇒ Hq(H,A).

Proof. We shall first verify hypothesis of Theorem 2.1 for the functors F and G given
by equations (2.10) and (2.11). We have already showed that F and G are additive.
Now it remains to verify that if I is an injectiveH-module then F (I) = IN isG-acyclic.
By Lemma 2.4 we have that F is right adjoint to the forgetful functor ρ : B → A.
Clearly ρ preserves monomorphisms, so F preserves injectives (cf. Lemma I.0.1).
Thus for I injective in A, F (I) = IN is injective in B. Hence IN is plainly G-acyclic.

Now we shall apply Theorem 2.1 to the functors F and G.
Since ZH is a free ZN module, it follows that H-injective resolution of A is also

an N -injective resolution. Further given any H-injective resolution of A,

I0 → I1 → I2 → · · ·
we have the following Q-complex

HomN(Z, A)→ HomN(Z, I0)→ HomN(Z, I1)→ · · · .
Thus the cohomology groups Hm(N,A) also acquires the structure of Q-modules and

RmF (A) = Hm(N,A). (2.12)

By definition
RmG(B) = Hm(Q,B)

and
RmGF (A) = Hm(H,A).

Thus by Theorem 2.1 and equation (2.12) the result follows.
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Chapter VIII

Simplicial Sets

In this chapter we define the notion of Simplicial Sets and Simplicial Homotopy.
We introduce minimum machinery needed for the subsequent two Chapters, where
Spectral Sequences arise from Simplicial situations.

1 The definitions

For n ≥ 0, let [n] denote the ordered set {0, 1, · · · , n}. By ordinal maps [m]→ [n] we
shall mean non-decreasing maps of ordered sets. The category of ordinals has [n] as
objects and ordinal maps as morphisms. We shall denote this category by Ord.

Let C be a category.

Definition 1.1. A simplicial object in C is simply a contravariant functor Ord→ C.

This definition is good for defining simplicial objects and morphisms. The following
equivalent definition is better for computations.

Definition 1.2. A simplicial object in C is given by a sequence {Kn}n∈N of objects in
C, along with face maps

di : Kn → Kn−1,

and degeneracy maps
si : Kn → Kn+1,

satisfying the following simplicial identities:

didj = dj−1di, if i < j (1.1)

sisj = sj+1si, if i ≤ j (1.2)

disj = sj−1di, if i < j (1.3)

disi = id = di+1si, (1.4)

disj = sjdi−1, if i > j + 1. (1.5)

Definition 1.3. A simplicial map f : K → L between two simplicial objects K and
L in a category C consists of {fn} where fn : Kn → Ln is such that

fndi = difn+1 (1.6)

fnsi = sifn−1. (1.7)
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Definition 1.4. A semi-simplicial object in a category C is given by a sequence of
objects in C, {Kn}n∈N along with face maps

di : Kn → Kn−1,

satisfying (1.1) which are known as semi-simplicial identities.

Definition 1.5. A semi-simplicial map f : K → L between two semi-simplicial objects
K and L consists of {fn} where fn : Kn → Ln is such that

fndi = difn+1 (1.8)

Definition 1.6. For n ≥ 0, we shall denote by ∆[n] the simplicial set whose m-
simplices are

∆[n]m = {f : [m]→ [n]}.

The face and degeneracy maps are the obvious maps induced from ordinal maps [m]→
[m− 1] or [m]→ [m+ 1] respectively.

We shall denote by
◦
∆ [n] the simplicial set whose m-simplices are

{f : [m]→ [n]|f is not surjective }.

The face and degeneracy maps are those induced by the inclusion
◦

∆[n]↪→ ∆[n].
We shall denote by Λn

k the simplicial set called the k-th horn of ∆[n]. Its m-
simplices are

{f : [m]→ [n]|k /∈ Img(f)}.

The face and degeneracy maps are those induced by the inclusion Λn
k ↪→ ∆[n].

Geometrically the k-th horn corresponds to the skeleton of the n-simplex with the
face opposite the k-th vertex removed. One could represent Λ2

0 , for example, by the
picture

0

1 2

⊂
0

1 2

Definition 1.7. Let K be a simplicial set, and let k0 ∈ K0 be a 0-simplex. Then we
have a sub-simplicial set of K generated by k0 . For each n ≥ 0, there is exactly one
simplex in degree n

sn−1sn−2...s0k0.

We will use k0 to denote both the sub-simplicial set it generates as well as any of its
simplices. We shall call k0 a base point of the simplicial set K.

Simplicial sets with a distinguished base point is called a pointed simplicial space.
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2 Examples

Example 2.1 (Nerve of a Category). Let C be a small category. We define the
simplicial set called called nerve of the category C as follows:

NC0 =objects in C
NC1 =morphisms in C
NC2 =the collection of composable morphisms in C

...
NCn =the collection of n-times composable morphisms in C
The degeneracy map si : NCn → NCn+1 is defined as a map which takes a collec-

tion of n-composable morphisms and inserts identity at i-th position. That is given a
n-composable collection of morphisms {fi} in C we have

si(f0f1...fifi+1...fn) = f0f1...(id)fifi+1...fn.

The face map di : NCn → NCn−1 composes the i-th and i + 1-th morphims if
0 < i < n, and leaves out the first or last morphism for i = 0 or n respectively. That
is for 0 < i < n

di(f0f1...fifi+1...fn) = f0f1...(fi ◦ fi+1)...fn,

for i = 0
d0(f0f1...fifi+1...fn) = f1...fifi+1...fn,

for i = n
d0(f0f1...fifi+1...fn) = f1...fifi+1...fn−1.

One may easily see that Nerve of Category forms a simplicial set.

Example 2.2. We know that a group G can be considered as a category with one
object G and morphisms g : G → G for each element g ∈ G. Now we may define
nerve of a group. This way we can associate a simplicial set to a group.

Definition 2.1. A geometric braid on n strands(strings) is a subset β ⊂ R2 × [0, 1]
such that it is composed of n disjoint topological intervals (maps from the unit interval
into a space). Furthermore, β must satisfy the following conditions:

1. β ∩ (R2 × {0}) = {(1, 0, 0), (2, 0, 0), ..., (n, 0, 0)}

2. β ∩ (R2 × {1}) = {(1, 0, 1), (2, 0, 1), ..., (n, 0, 1)}

3. β ∩ (R2 × {t}) consists of n points for all t ∈ [0, 1]

4. For any string in β, there exists a projection p : R2 × [0, 1] → [0, 1] taking that
string homoeomorphically to the unit interval.

Taking a base of n distinct points in R2, geometric braids forms a group. Com-
position of braids is simply given by stacking one braid atop another.
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Example 2.3 (Simplicial structure on braids). Let Kn = Bn+1 be the braid group of
(n+ 1)-strands with faces and degeneracies given by:

the braid diβ is obtained by removing the (i+1)-th strand of β and siβ is the braid
obtained by doubling the (i+1)−th strand of β (that is the (i+1)-th strand is replaced
by two untwisted strands in its small neighborhood).

Then it can be easily verified that K = {Kn} is a simplicial set.

Example 2.4. From a simplicial set K, one may construct a simplicial abelian group
ZK, with (ZK)n equal to the free abelian group on Kn . The face and degeneracy
operators are the ones induced from K. We may associate a chain complex to ZK,
called its Moore complex also written ZK, with

(ZK)0
δ←− (ZK)1

δ←− (ZK)2
δ←− · · ·

and

δ =
n∑
i=0

(−1)idi

in degree n.

2.1 Basic Constructions

Let K and L be two simplicial sets. We define their product K × L as follows:

(K × L)n = Kn × Ln,

dK×Li = (dKi , d
L
i ) and sK×Li = (sKi , s

L
i ).

Claim 2.1. The set K × L is a simplicial set.

Proof. We need to show that {dK×Li } and {sK×Li } satisfy simplicial identities.
i) Now for i < j we have dK×Li ◦ dK×Lj = (dKi , d

L
i ) ◦ (dKj , d

L
j ) = (dKi d

K
j , d

L
i d

L
j ). By

the first simplicial identity this equals (dKj−1d
K
i , d

L
j−1d

L
i ) = (dKj−1, d

L
j−1) ◦ (dKi , d

L
i ) =

dK×Lj−1 ◦ dK×Li .

ii) For i ≤ j we have sK×Li ◦ sK×Lj = (sKi , s
L
i ) ◦ (sKj , s

L
j ) = (sKi s

K
j , s

L
i s

L
j ). By

the second simplicial identity this equals (sKj+1s
K
i , s

L
j+1s

L
i ) = (sKj+1, s

L
j+1) ◦ (sKi , s

L
i ) =

sK×Lj+1 ◦ sK×Li .

iii) For i < j we have dK×Li ◦ sK×Lj = (dKi , d
L
i ) ◦ (sKj , s

L
j ) = (dKi s

K
j , d

L
i s

L
j ). By

the third simplicial identity this equals (sKj−1d
K
i , s

L
j−1d

L
i ) = (sKj−1, s

L
j−1) ◦ (dKi , d

L
i ) =

sK×Lj−1 ◦ dK×Li .

iv) Now we have dK×Li ◦ sK×Li = (dKi , d
L
i ) ◦ (sKi , s

L
i ) = (dKi s

K
i , d

L
i s

L
i ). By the

fourth simplicial identity this equals (idK , IdL) = idK×L. Similarly one can show that
dK×Li+1 ◦ sK×Li = id.

v) For i > j + 1 we have dK×Li ◦ sK×Lj = (dKi , d
L
i ) ◦ (sKj , s

L
j ) = (dKi s

K
j , d

L
i s

L
j ).

By the fifth simplicial identity this equals (sKj d
K
i−1, s

L
j d

L
i−1) = (sKj , s

L
j ) ◦ (dKi−1, d

L
i−1) =

sK×Lj ◦ dK×Li−1 .
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Definition 2.2. Let K and L be pointed simplicial sets. The wedge K∨L of K and L
is the simplicial set obtained by identifying the basepoint of K with the basepoint of Y .
The smash product of K and L is defined to be the simplicial quotient X × Y/K ∨ L

Definition 2.3. Let K be a pointed Simplicial set. We define the reduced cone of K
by setting

(CK)n = {(x, q)|x ∈ Kn−q, 0 ≤ q ≤ n} with (∗, q) all identified to ∗,

di(x, q) =

{
(x, q − 1) for 0 ≤ i < q

(di−qx, q) for q ≤ i ≤ n
(2.1)

si(x, q) =

{
(x, q + 1) for 0 ≤ i < q

(si−qx, q) for q ≤ i ≤ n
(2.2)

where for x ∈ K0 , d1(x, 1) = ∗. By identifying x with (x, 0), we may see that K is a
simplicial subset of CK.

The reduced suspension ΣK of K is defined as the simplicial quotient

ΣK = CK/K.

We now give an alternate description of the cone CK. Let K be a simplicial set
with no chosen base point. Let x̃0 be a new point not in K. Let

(C̃K)n = Kn t s−1(Kn−1) t ... t sn−1(K0) t {sn0 x̃0} = {sn0 x̃0}
n∏
k=0

sk−1(Kn−k)

be a disjoint union as a set, where s−1Kj = Kj. Consider s−1 as a (−1)-st degenracy
by setting

dis−1 =

{
id if i = 0

s−1di−1 if i ≥ 0
(2.3)

sis−1 =

{
s−1s−1 if i = 0

s−1si−1 if i ≥ 0
(2.4)

We shall identify s−1x with (x, q). For x ∈ K0 set d1(s−1x) = x̃0. Now di and si
induces operations on C̃K which gives relations as in equations (2.1) and (2.2). We
shall call this simplicial set C̃K the unreduced cone of K. The reduced cone CK is
then the quotient given by the relations x0 ∼ x̃0 and (x0, 1) = s−1x0 ∼ (s0x0, 0) =
s0x0 ∼ s0x̃0 for the basepoint x0 ∈ K0.

3 Kan Complex

We now introduce the all-important Kan condition.
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Definition 3.1. We say that a collection of n many (n− 1)-simplices

x0, x1, ..., xk−1,−, xk+1, ..., xn

satisfy the compatibility condition if

dixj = dj−1xi,∀i < j, k /∈ {i, j}. (3.1)

A simplicial set is a Kan complex if for every collection of n, (n− 1)-simplices

x0, x1, ..., xk−1,−, xk+1, ..., xn

satisfying the compatibility condition, there exists an n-simplex y such that

diy = xi, ∀i 6= k.

Example 3.1. The standard n-simplex, is a simplicial set defined as the functor
HomOrd(−, [n]) where [n] denotes the ordered set 0, 1, ..., n.

Given a topological space X, let us denote the standard topological n-simplex by
∆n. We define a singular n-simplex of X to be a continuous map from ∆n to X,

f : ∆n → X.

We denote this simplicial set by S(X).
The union of any n+ 1 faces of ∆n+1 is a strong deformation retract of ∆n+1. So

any continuous function defined on these faces can be extended to ∆n+1. Hence S(X)
is a Kan complex.

In other words Horn of an n-simplex is a strong deformation retract of that simplex.
Therefore any continuous function defined on the horn of an n-simplex can be extended
to the n-simplex. For this reason Kan condition is also known as the ’Horn filler’
condition.

The following is an illustration of this fact for the case n = 1

∆2 =
0

1 2

r−→
0

1 2

Definition 3.2. A map of simplicial sets f : K → L is a Kan fibration if for every
collection of n many (n− 1)-simplices of K,

x0, xk−1,−, xk+1, ..., xn

which satisfy the compatibility condition of Definition 3.1, and for every n-simplex
y ∈ Ln such that

diy = f(xi), i 6= k,

there exists an n-simplex x ∈ Kn such that dix = xi, for all i 6= k and f(x) = y.
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Geometrically this condition is nicely summarized by the following diagram

Λn
k K

∆[n] L

(x0,··· ,xk−1,−,xk+1,··· ,xn)

f

y

x (3.2)

which is also known as the Horn-filler diagram. The solid arrows represent the given
data and the existence of the dotted arrow is the Kan condition.

The following lemma gives a natural example of a Kan complex.

Lemma 3.1. If G is a simplicial group, then the underlying simplicial set is a Kan
complex.

Proof. Suppose we are given (n+ 1) many n-simplices. That is we have

x0, x1, ..., xk−1,−, xk+1, ..., xn+1

elements in Gn such that

dixj = dj−1xi ∀i < j k /∈ {i, j}. (3.3)

We wish to find a g in Gn+1 such that

dig = xi ∀i 6= k. (3.4)

For n+ 1 ≥ r ≥ −1, it suffices to construct gr ∈ Gn+1 such that

digr = xi ∀i 6= k i ≤ r. (3.5)

Then the g sought will be gn+1. The gr will be constructed inductively.
Set g−1 = 1. Then the condition (3.5) is vacuously true. Suppose we have con-

structed gr−1 such that

digr−1 = xi ∀ i ≤ r − 1, i 6= k. (3.6)

If k = r then we take gr := gr−1. Now condition (3.5) holds for i ≤ r = k. Now we
assume r 6= k. We first consider the element

y = x−1
r (drgr−1) ∈ Gn.

Claim 3.2. We have di(y) = 1 ∀ i < r and i 6= k

Proof. We have by definition

di(y) = di(x
−1
r )didrgr−1 (3.7)

(1.1)
= di(xr)

−1dr−1digr−1 (3.8)

(3.6)
= di(x

−1
r )dr−1(xi) (3.9)

(3.3)
= di(xr)

−1di(xr) = 1. (3.10)
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Further by simplicial identity (1.3) we have

disry = sr−1diy ∀ i < r, i 6= k. (3.11)

We set
gr := gr−1(sry)−1. (3.12)

Let us check (3.5):
Case i < r we have by (3.12) that digr = di(gr−1sr(y

−1)) = di(gr−1)disr(y
−1)

(3.11)
= di(gr−1)sr−1di(y

−1)
3.2
= digr−1 = xi

Case i = r we have drgr = dr(gr−1sr(y
−1)) = drgr−1drsr(y

−1)
(1.4)
= drgr−1y

−1 = xr.
This verifies (3.5) for r.

This proves the Lemma.

4 Group structures

Definition 4.1. Let K be a simplicial set. Let x, x′ ∈ Kn be two n-simplices satisfying

djx = djx
′, ∀ 0 ≤ j ≤ n (4.1)

or equivalently, denoting
◦
∆ [n+ 1] the skeleton of the simplex ∆[n+ 1]

◦
∆ [n+ 1] K

(sn−1d0x,··· ,sn−1dn−1x,x,x′)
(4.2)

We shall say that they are homotopic if there exists y ∈ Kn+1 such that

dny = x (4.3)

dn+1y = x′ (4.4)

diy = sn−1dix = sn−1dix
′ for 0 ≤ i < n. (4.5)

We call the (n+ 1)-simplex y a homotopy from x to x′ and we write it as

x
y∼ x′.

More geometrically x
y∼ x′ means

◦
∆ [n+ 1] K

∆[n+ 1]

(sn−1d0x,··· ,sn−1dn−1x,x,x′)

y (4.6)
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Lemma 4.1. If K is a simplicial set satisfying the Kan condition then the homotopy
relation ∼ is an equivalence relation on Kn for each n ≥ 0.

Proof. Reflexivity: Let x be an n-simplex in K. We verify the existence of the mor-
phism

◦
∆ [n+ 1] K.

(sn−1d0x,··· ,sn−1dn−1x,x,x)
(4.7)

Clearly dj(x) = dj(x) for 0 ≤ j ≤ n. Set y := snx. Then dnsnx
1.4
= x and dn+1snx

1.4
= x

. Now by the simplicial identity (1.3) diy = disnx = sn−1dix for 0 ≤ i ≤ n.

Claim 4.2. To show that the relation is symmetric and transitive it suffices to prove
that if x′ ∼ x and x′′ ∼ x then x′ ∼ x′′.

Proof. For symmetry, we set x′′ := x. It follows by hypothesis that x ∼ x′. For
transitivity, suppose we are given x′ ∼ x and x ∼ x′′, then we apply symmetry to
x ∼ x′′ to get x′′ ∼ x. Then by hypothesis, in the claim, it follows that x′ ∼ x′′.

Now we check the claim. Let x, x′, x′′ ∈ Kn be n-simplices such that x′
y′∼ x and

x′′
y′′∼ x. In words, y′ ∈ Kn+1 is a homotopy from x′ to x and y′′ ∈ Kn+1 is a homotopy

from x′′ to x. Geometrically this means that we are given

◦
∆ [n+ 1] K

∆[n+ 1]

(sn−1d0x,··· ,sn−1dn−1x,x′,x)

y′ (4.8)

and
◦
∆ [n+ 1] K

∆[n+ 1]

(sn−1d0x,··· ,sn−1dn−1x,x′′,x)

y′′ (4.9)

In long hand, this means we have the following relations

dix
′ = di = dix

′′ for 0 ≤ i ≤ n (4.10)

diy
′ =


sn−1dix

′ 0 ≤ i < n

x′ i = n

x i = n+ 1

(4.11)

diy
′′ =


sn−1dix

′ 0 ≤ i < n

x′′ i = n

x i = n+ 1

(4.12)

For 0 ≤ j < n we set
zj := sn−1sn−1djx

′.
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Claim 4.3. The (n+ 2) many n+ 1-simplices

z0, z1 · · · zn−1,−, zn+1 := y′, zn+2 := y′′

satisfy the Kan condition. In other words, we have a morphism

Λn+2
n K.

(z0,z1···zn−1,−,y′,y′′)
(4.13)

Proof. We should check that for 0 ≤ i < j ≤ n + 2 such that n /∈ {i, j} we have

dizj = dj−1zi. (4.14)

Case j < n: We remark at the outset that

sn−1sn−1dj
1.3
= sn−1djsn = djsnsn. (4.15)

Thus for 0 ≤ i ≤ j < n we have

dizj = di(sn−1sn−1djx
′)

(4.15)
= di(djsnsnx

′)
1.1
= dj−1disnsnx

′ = dj−1(disnsnx
′)

4.15
= dj−1(sn−1sn−1dix

′)

= dj−1zi.

Case j = n+ 1: So for 0 ≤ i < n, we should check that

dj−1zi = dizj = dizn+1.

Now
dj−1zi = dnzi = dnsn−1sn−1dix

′ 1.3
= sn−1dix

′ = diy
′ = dizn+1.

Case j = n+ 2: So for 0 ≤ i < n+ 2 and i 6= n, we should check that

dj−1zi = dizj = dizn+2.

Sub case 0 ≤ i < n: we have

dj−1zi = dn+1zi = dn+1(sn−1sn−1dix
′) = (dn+1sn−1)sn−1dix

′)
1.5
= (sn−1dn)sn−1dix

′

= sn−1(dnsn−1)dix
′

1.3
= sn−1dix

′

= diy
′′ = dizn+2

Sub case i = n+ 1: so we should check

dj−1zi = dizj.

Now, dj−1zi = dn+2−1zn+1 = dn+1y
′ = x. On the other hand, dizj = dn+1zn+2 =

dn+1y
′′ = x.
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Therefore by the Kan property of K, there exist an (n+ 2)-simplex z such that

dn+2z = y′′ (4.16)

dn+1z = y′ (4.17)

diz = zi 0 ≤ i < n. (4.18)

In other words, we have

Λn+2
n K

∆[n+ 2]

(z0,z1···zn−1,−,y′,y′′)

z (4.19)

Claim 4.4. A homotopy from x′ to x′′ is given by dnz.

Proof. Let us check

◦
∆ [n+ 1] K

∆[n+ 1]

(sn−1d0x′,··· ,sn−1dn−1x′,x′,x′′)

dnz (4.20)

We have

1. dj(x
′′) = dj(x

′) for 0 ≤ j ≤ n clearly.

2. dndn+1z
1.1
= dndnz = dn(y′) = x′ and

dn+1dnz = dndn+2z = dny
′′ = x′′.

3. for 0 ≤ i < n, di(dnz) = dn−1diz = dn−1zi = dn−1(sn−1sn−1di)x
′ = (dn−1sn−1)sn−1dix

′ =
sn−1dix

′ = sn−1(dix
′) = sn−1(dix

′′).

We obtain symmetry by setting x′′ = x. And transitivity follows.

Let k0 be a basepoint (cf. Definition (1.7)) of a simplicial set K. If K is a Kan
complex, then we shall say that (K, k0) is a Kan pair.

Definition 4.2. Let (K, k0) be a Kan pair. Then we define

πn(K, k0) =
{x ∈ Kn|dix = k0}

∼

where ∼ is the equivalence relation described above.
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Let (K, k0) be a Kan pair. Let α, β ∈ πn(K, k0). We choose a representatives x
for α and y for β.

Claim 4.5. Then the (n+ 1) many n-simplices

z0 = k0, z1 = k0, ..., zn−2 = k0, zn−1 = x,−, zn+1 = y

satisfy the hypothesis of the Kan condition.

Proof. By definition, we should be able to define a morphism

Λn+1
n K.

(k0,k0,··· ,k0,x,−,y)
(4.21)

In other words, we should check that for 0 ≤ i < j ≤ n+ 1 and n /∈ {i, j} we have

dizj = dj−1zi.

Thus 0 ≤ i ≤ n− 1, so by hypothesis on x, y and k0, we have

dizj = k0 ∈ Kn−1,

and dj−1zi is also k0 ∈ Kn−1.

Therefore there exists an (n+ 1) simplex z such that

Λn+1
n K

∆[n+ 1]

(k0,k0,··· ,k0,x,−,y)

z (4.22)

or equivalently,
dn+1z = y, (4.23)

dn−1z = x, (4.24)

diz = k0 0 ≤ i < n− 1. (4.25)

We define αβ to be the homotopy equivalence class in Kn of dnz namely

αβ := [dnz].

For the case n = 1 the following diagram encodes multiplication geometrically.
When n = 1 we shall have no k0

0

z

1 2

d2=y [x][y]

d0z=x
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The relation d0z = x can be read from the diagram as: the face opposite to 0-th
vertex of z. Other relations can be read similarly. We obtain the product of [x] and
[y] as the face opposite vertex 1.

Lemma 4.6. The multiplication αβ is well defined.

Proof. We first check that the multiplication is well defined with respect to the horn
filler z. Let z′ be another (n + 1)-simplex. Suppose z′ also satisfies dn+1z

′ = y,
dn−1z

′ = x and di(z
′) = k0 for 0 ≤ i < n− 1. In other words, z′ also fits in

Λn+1
n K

∆[n+ 1]

(k0,k0,··· ,k0,x,−,y)

z′ (4.26)

Claim 4.7. Then the n+ 2 many (n+ 1)-simplices

a0 = k0, a1 = k0, · · · , an−1 = sndn−1z,−, an+1 = z, an+2 = z′

satisfy the hypothesis of the Kan condition i.e we have a morphism

Λn+2
n K.

(k0,k0,··· ,k0,sndn−1z,−,z,z′)
(4.27)

Proof. We should check that for 0 ≤ i < j ≤ n+ 2 and n /∈ {i, j}, we have

diaj = dj−1ai.

Notice that for i < n:

1. we have dik0 = k0,

2. now

dian−1 = disndn−1z

= disnx

= sn−1dix

= sn−1k0 = k0,

3. diz
(4.25)
= k0,

4. diz
′ = k0.

For i = n+ 1, we have j = n+ 2.

So, diaj = dn+1an+2 = dn+1z
′ = y

(4.23)
= dn+1z = dn+2−1an+1 = dj−1ai.
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Therefore by the Kan condition on K, there exists a (n+2)-simplex w commuting

Λn+2
n K

∆[n+ 2]

(k0,k0,··· ,k0,sndn−1z,−,z,z′)

w (4.28)

In long hand, we have

dn+2w = z′, (4.29)

dn+1w = z, (4.30)

dn−1w = sndn−1z, (4.31)

and
diw = k0 0 ≤ i < n− 1. (4.32)

Claim 4.8. The (n+ 1)-simplex dnw defines a homotopy from dnz to dnz
′.

Proof. We should check the commutativity of

◦
∆ [n+ 1] K

∆[n+ 1]

(sn−1d0dnz,··· ,sn−1dn−1dnz,dnz,dnz′)

dnw
(4.33)

In other words, we should check that

dndnw = dnz

dn+1dnw = dnz
′

didnw = sn−1didnz

= sn−1didnz
′ 0 ≤ i ≤ n− 1

Now

dndnw
(1.1)
= dn(dn+1w) = dnz

and
dn+1dnw

1.1
= dn(dn+2w) = dnz

′.

For i ≤ n − 1 we have didnw = dn−1diw = dn−1k0 = k0. On the other hand,
didnz = dn−1diz = dn−1 of k0, x or y. Thus it equals k0 so it’s sn−1 is also k0. So

[dnz] = [d′z]
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This completes the proof of the independence with respect to the Horn-filler.
Now we check independence with respect to the lift of β: Suppose we had chosen

another representative y′ of β. Then by considering

k0, ..., k0, x,−, y

as in Claim 4.5, we should have found a homotopy z′ from x to y′ commuting

Λn+1
n K

∆[n+ 1]

(k0,k0,··· ,k0,x,−,y′)

z′
(4.34)

Then we would define
αβ := [dnz

′].

Then since x
z′∼ y′,so in long-hand we have

dn+1z
′ = y, (4.35)

dn−1z
′ = x, (4.36)

diz
′ = k0 0 ≤ i < n− 1. (4.37)

Since y and y′ are in the same homotopy class (defined by β), so let y
w∼ y′ be

a homotopy between them. Or in other words we have the following commutative
diagram

◦
∆ [n+ 1] K

∆[n+ 1].

(sn−1d0y,··· ,sn−1dn−1y,y,y′)

w
(4.38)

Claim 4.9. : The n+ 2-many (n+ 1)-simplices

b0 = k0, b1 = k0, ..., bn−2 = k0, bn−1 := z, bn := z′,−, bn+2 = w

satisfy the hypothesis of Kan condition. In other words we have a morphism

Λn+2
n+1 K.

(k0,k0,··· ,k0,z,z′,−,w)
(4.39)

Proof. We should check that for 0 ≤ i < j ≤ n+ 2 and n+ 1 /∈ {i, j} we have

dibj = dj−1bi.

So i ≤ n.
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Case i ≤ n− 2: For any j we have dibj = k0 and since bi = k0 so

dj−1bi = k0.

Case i = n− 1:
Sub-case j = n:

dibj = dn−1bn = dn−1z
′ = x

On the other hand
dj−1bi = dn−1z = x.

Sub-case j = n+ 2:
dibj = dn−1bn+2 = dn−1w = y

and
dj−1bi = dn+1bn−1 = dn+1z = y

Case i = n:
We should check that dnbn+2 = dn+2−1bn.
Now dnbn+2 = dnw = y and also dn+1z = y.

Therefore by the Kan condition on K there exist an n+ 2-simplex u commuting

Λn+2
n+1 K

∆[n+ 2]

(k0,k0,··· ,k0,z,z′,−,w)

u
(4.40)

In other words, we have

diu = k 0 ≤ i < n− 1, (4.41)

dn−1u = z, (4.42)

dnu = z′, (4.43)

dn+2u = w. (4.44)

Consider the n+ 1-simplex v := dn+1u. We have div = k0 for 0 ≤ i < n− 1, because
div = didn+1u = dndiu = dn of k0 or z which are all k0.

Further

dn−1v = dn−1dn+1u = dndn−1u

= dnz = x, (4.45)

dnv = dndn+1u = dndnu

= dnz
′ (4.46)

dn+1v = dn+1dn+1u = dn+1dn+2u

= dn+1w = y (4.47)
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By (4.47) and (4.45), v along with z is also a horn filler of

k0, k0, ..., x,−, y.

Thus

[dnz] = [dnv]
(4.46)
= [dnz

′]

where the first equality follows from our first check that the group law does not depend
on the choice of the Horn filler z between x and y.

Proposition 4.10. Let (K, k0) be a Kan pair. Then with the above multiplication,
πn(K, k0) is a group for n ≥ 1.

Proof. (i). Neutral element Let us check that [k0] is the identity element. Let α ∈
πn(K, k0) and let x be a representative. So

dix = k0 ∀ i.

The set of n+ 1 many n-simplices

k0, k0, ..., x,−, k0

clearly satisfy the hypothesis of the Kan condition. In fact we can take sn−2x as the
Horn filler. Then for i < n−2 we have disn−2x = sn−3dix = k0. Further dn−2sn−2x = x
and dnsn−2x = sn−2dn−1x = sn−2k0 = k0. Now

[x][k0] = [dn(sn−1x)] = [x].

So we have showed that α[k0] = α.
Similarly we check that k0 is the left identity as follows. Consider

k0, ..., k0,−, x.

These satisfy the Kan filler condition because any face of any element of the above
collection is k0. Now as a horn filler we may take snx. Indeed for i ≤ n− 1

disnx = sn−1dix = sn−1k0 = k0

and
dn+1snx = x.

Thus [k0][x] = [dnsnx] = [x] = α itself. Similarly one checks that k0 is the right
identity.

(iii). Divisibility: Let α, β ∈ πn(K, k0). We choose a representative x for α and y
for β. The n+ 1 n-simplices

k0, ..., k0,−, y, x
satisfy the hypothesis of the Kan condition because the face of any element in the
above collection is k0. So there exists an n + 1 simplex z such that diz = k0 for
0 ≤ i ≤ n− 1, dnz = y and dn+1z = x. Then by definition of group law we have

[dn−1z]α = [dnz] = [y] = β.
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This proves left divisibility. Similarly the n+ 1 many n-simplices

k0, ..., k0, y, x,−

also satisfy the hypothesis of the Kan condition. So we have an n+ 1-simplex z such
that diz = k0 for 0 ≤ i ≤ n− 1, dn−1z = y and dnz = x. Now by definition of group
law we have

β[dn+1z] = [dnz] = [x] = α.

(ii). Associativity: Let x, y, z be representatives of α, β, γ ∈ πn(K, k0) respectively.
Using the extension conditions choose wn−1, wn+1 and wn+2 such that

diwj = k0 0 ≤ i < n− 1, (4.48)

dn−1wn−1 = x dn+1wn−1 = y, (4.49)

dn−1wn+1 = dnwn−1 dn+1wn+1 = z, (4.50)

dn−1wn+2 = y dn+1wn+2 = z. (4.51)

Geometrically, we have

Λn+1
n K

∆[n+ 1]

(k0,k0,··· ,k0,x,−,y)

wn−1
(4.52)

Λn+1
n K

∆[n+ 1]

(k0,k0,··· ,k0,dnwn−1,−,z)

wn+1
(4.53)

Λn+1
n K

∆[n+ 1]

(k0,k0,··· ,k0,y,−,z)

wn+2
(4.54)

In other words, we have homotopies x
wn−1∼ y, dnwn−1

wn+1∼ z and y
wn+1∼ z. Further,

the product [x][y] is represented by the class of dnwn−1

By compatibility relations in (4.48), it follows that we have a morphism

Λn+2
n K

(k0,k0,··· ,k0,wn−1,−,wn+1,wn+2)
(4.55)

Thus the hypothesis of the Kan condition is satisfied. So we may choose a u ∈ Kn+2

commuting

Λn+2
n K

∆[n+ 2]

(k0,k0,··· ,k0,wn−1,−,wn+1,wn+2)

u
(4.56)
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In long-hand, we may choose u ∈ Kn+2 such that diu = k0 for 0 ≤ i < n− 1 and
diu = wi for i = n− 1, n+ 1, n+ 2. Then

dn−1dnu = x,

dn+1dnu = dnwn+2

and
diu = k0 0 ≤ i ≤ n− 1.

We now explain a diagrammatic convention for a 3-simplex to reveal the meaning
of calculations proving associativity.

We will denote u being the 3-simplex which is a tetrahedron. We will denote by
wj = dju the faces opposite the vertex j. Since there is a natural order on the vertices,
so this will allow us to relabel the vertices of wj also. When we write dkwj we shall
mean the face opposite the k-th largest vertex of wj. Setting n = 1 has the advantage
that k0 terms are not there. Reader may verify that for n = 1 this information can
be encoded in the following diagram. As usual the solid arrows represent the given
data and the dotted arrows are constructed

0

1 3

2

z z(yx)

d1w0

y
x

We remark that from the arrows x,y and z there is only one way using the dotted
arrows to complete to a tetrahedron.

Therefore, for n = 1 we shall obtain the following diagram

0

1 3

2

z d1w2=d1d1u

d1w0=d0w2

y
x

which for an arbitrary n will read as follows:

(αβ)γ = [dnwn−1]γ = [dn−1wn+1]γ = [dnwn+1]

Similarly we have

0

1 3

2

z d1d1u

d2w1=d1w3

y
x
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And now for arbitrary n the above equality extends to

(αβ)γ = [dnwn−1]γ = [dn−1wn+1]γ = [dnwn+1] = [dndnu] = α[dnwn+2] = α(βγ).

We would like to remark here that the interior of the tetrahedron (u) gives 2-
isomorphisms between [α]([β][γ]) and ([α][β])[γ].

Proposition 4.11. The homotopy groups πn(K, k0) is Abelian if n ≥ 2.

Proof. Let w, x, y, z ∈ Kn respectively be the representatives of [w], [x], [y], [z] ∈
πn(Kn, k0).

The proof will be divided into three preparatory steps and one final step combining
the first step with the third. We remark that the second step is only an ingredient to
the third.

By the symbol [w, x, y, z] the reader may want to imagine a tetrahedron ”T such
that diT is these elements in this order. We invite the reader to put n = 2 in the
following proof.

(i) ”[w, x, y, k0] ⇒ [y][w] = [x]” Suppose there exists a vn+1 ∈ Kn+1 satisfying
divn+1 = k0 for 0 ≤ i < n − 2, dn−2vn+1 = w, dn−1vn+1 = x, dnvn+1 = y and
dn+1vn+1 = k0, then

Claim 4.12. We have [y][w] = [x].

Proof. Choose vn−1 ∈ Kn+1 with faces divn−1 = k0, for 0 ≤ i ≤ n− 2,

dnvn−1 = x

and
dn+1vn−1 = w.

Let t = dn−1vn−1. Let vi = k0, for 0 ≤ i < n − 2. Finally let vn−2 = snw and
vn+2 = sn−2w

Claim 4.13. The n+ 2 many (n+ 1)-simplices

v0, v1, ..., vn−1,−, vn+1, vn+2

satisfies the compatibility conditions. In other words we claim that the following map
exists

Λn+2
n K.

(v0,v1,...,vn−1,−,vn+1,vn+2)

Proof. It is enough to check the compatibility condition for j = n− 1, j = n+ 1 and
j = n+ 2. The other relations are easily obtained because vi = k0 for 0 ≤ i ≤ n− 2.

Case j = n− 1: We have divn−1 = k0 = dnvi for 0 ≤ i < n− 2. Now dn−2vn−1 =
k0. On the other hand dn−2vn−2 = dn−2snw = sn−1dn−2w = sn−1dn−2dn+1vn−1 =
sn−1dndn−2vn−1 = k0.

104



Case j = n+1: We have dn−2vn+1 = w. On the other hand dnvn−2 = dnsnw = w.
Now dn−1vn+1 = x = dnvn−1. When i ≤ n− 2 we clearly have both LHS and RHS of
compatibility relations equalling to k0.

Case j = n+ 2:
Subcase i = n− 2: We have

dn−2vn+2 = dn−2sn−2w = w = dn+1sn+1vn−2 = dn+1vn−2.

Subcase i = n− 1: We have dn−1vn+2 = dn−1sn−2w = w = dn+1vn−1.
Subcase i = n+ 1: We have

dn+1vn+2 = dn+1sn−2w = sn−2dnw =

sn−2dndn−2vn+1 = sn−2dn−2dn+1vn+1 = k0 = dn+1vn+1.

Therefore we have an n+ 2-simplex r satisfying

dir = vr i 6= n.

In other words the following diagram is commutative

Λn+2
n K

∆[n+ 2].

(v0,v1,...,vn−1,−,vn+1,vn+2)

r

Set vn := dnr. Now

divn = k0 for 0 ≤ i ≤ n− 2, dn−1vn = t, dnvn = y,

and dn+1vn = k0. Therefore [t][k0] = [y]; but by the choice of vn−1, [t][w] = [x], hence

[y][w] = [x].

(ii) ”[w, k0, y, z]⇒ [w][y] = [z]” Suppose vn ∈ Kn+1 satisfies divn = k0 for 0 ≤ i <
n− 2, dn−2vn = w, dn−1vn = k0, dnvn = y and dn+1vn = z.

Claim 4.14. We have [w][y] = [z].

Proof. Choose vn−1 ∈ Kn+1 with faces divn−1 = k0, for 0 ≤ i ≤ n− 2,

dn−2vn−1 = w,

and
dn−1vn−1 = k0 = dn+1vn−1.

Let t = dnvn−1. Let vi = k0, for 0 ≤ i < n− 2. Finally let

vn−2 = sn−2w

and
vn+2 = snz.
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Claim 4.15. We have the following map

Λn+2
n+1 K.

(v0,v1,...,vn−1,vn,−,vn+2)

In long hand, the n+ 2 many (n+ 1)-simplices

v0, v1, ..., vn−1, vn,−, vn+2

satisfies the compatibility conditions.

Proof. It is enough to check the compatibility condition for j = n − 1, j = n and
j = n+ 2. The other relations are easily obtained because vi = k0 for 0 ≤ i ≤ n− 2.

Case j = n−1: We have divn−1 = k0 = dnvi for 0 ≤ i < n−2. Now dn−2vn−1 = w.
On the other hand dn−2vn−2 = dn−2sn−2w = w.

Case j = n: We have dn−2vn = w. On the other hand dn−1vn−2 = dn−1sn−2w = w.
Now dn−1vn = k0 = dn−1vn−1. When i ≤ n− 2 we clearly have both LHS and RHS of
compatibility relation equalling to k0.

Case j = n+ 2:
Subcase i = n− 2: We have dn−2vn+2 = dn−2snz = sn−1dn−2z

= sn−1dn−2dn+1vn = sn−1dndn−2vn = sn−1dnw = dn+1sn−2w = dn+1vn−2

Subcase i = n−1: We have dn−1vn+2 = dn−1snz = sn−1dn−1dn+1vn = sn−1dndn−1vn =
k0 = dn+1vn−1.

Subcase i = n: We have

dnvn+2 = dnsnz = z = dn+1vn.

Therefore we have an n+ 2-simplex r such that the following diagram is commu-
tative

Λn+2
n+1 K

∆[n+ 2].

(v0,v1,...,vn−1,vn,−,vn+2)

r

That is we have an n+ 2-simplex r satisfying

dir = vi i 6= n.

Let vn+1 = dn+1r. Now

divn + 1 = k0 for 0 ≤ i ≤ n− 2, dn−1vn+1 = t, dnvn+1 = y,

and dn+1vn+1 = z. Therefore [t][z] = [y]; but by the choice of vn−1, and (i) [t][w] = [k0].
Hence

[w][y] = [z].
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(iii) ”[w, x, y, z] ⇒ [w]−1[x][z] = [y]” Suppose vn+2 ∈ Kn+1 satisfies divn+2 = k0

for 0 ≤ i < n− 2, dn−2vn+2 = w, dn−1vn+2 = x, dnvn+2 = y and dn+1vn+2 = z.

Claim 4.16. We have [w]−1[x][z] = [y].

Proof. Choose vn−2 ∈ Kn+1 with faces divn−2 = k0, for i 6= n− 2, n+ 1,

dn+1vn−2 = w

and let t = dn−2vn−2. Choose vn−1 ∈ Kn+1 with faces divn−1 = k0, for i 6= {n−2, n+1},

dn+1vn−1 = x,

t = dn−2vn−1.

Let u = dn−2vn−1. Let vi = k0, for 0 ≤ i < n− 2. Finally let

vn = sn.y

Claim 4.17. The n+ 2 many (n+ 1)-simplices

v0, v1, ..., vn−1, vn,−, vn+2

satisfies the compatibility conditions. In terms of diagram this means that we have the
following map

Λn+2
n+1 K.

(v0,v1,...,vn−1,vn,−,vn+2)

Proof. It is enough to check the compatibility condition for j = n − 1, j = n and
j = n+ 2. The other relations are easily obtained because vi = k0 for 0 ≤ i ≤ n− 2.

Case j = n−1: We have divn−1 = k0 = dnvi for 0 ≤ i < n−2. Now dn−2vn−1 = t.
On the other hand dn−2vn−2 = t.

Case j = n: We have dn−2vn = dn−2sny = sn−1dn−2dnvn+2 = sn−1dn−1w =
sn−1dn−1dn+1vn−2 = sn−1dndn−1vn−2 = k0. On the other hand dn−1vn−2 = k0.

Now dn−1vn = dn−1sny = sn−1dn−1dnvn+2 = sn−1dn−1dn−1vn+2

= sn−1dn−1x = sn−1dn−1dn+1vn−1 = sn−1dndn−1vn−1 = k0 = dn−1vn−1. When i ≤ n−2
we clearly have both LHS and RHS of compatibility relation equalling to k0.

Case j = n+ 2:
Subcase i = n− 2: We have dn−2vn+2 = w = dn+1vn−2.
Subcase i = n− 1: We have dn−1vn+2 = x = dn+1vn−1.
Subcase i = n: We have

dnvn+2 = y = dn+1sny = dn+1vn.
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Therefore we have an n+ 2-simplex r satisfying

dir = vi i 6= n+ 1.

Set vn+1 := dn+1r. In the language of diagrams this means that we have an n + 2-
simplex r such that the following diagram is commutative

Λn+2
n+1 K

∆[n+ 2].

(v0,v1,...,vn−1,vn,−,vn+2)

r

Now
divn+1 = k0 for 0 ≤ i ≤ n− 2, dnvn+1 = y,

and dn+1vn+1 = z. Set dn−1vn+1 =: u. Therefore [u][z] = [y]; but by the choice of
vn−1, and (i) [t][w] = [k0]. Now by (ii) we have [t] = [w] and [t][u] = [x]. Combining
we get

[w]−1[x][z] = [y].

Combining (iv) Set z = k0 in (iii). Then [w]−1[x] = [y]. By applying (i) to vn+2 of
(iii), we find [y] = [x][w]−1. Therefore for any [x] and [w],

[x][w]−1 = [w]−1[x].

4.1 Relative situation

Definition 4.3. Let K be a simplicial set. Let L be a sub-simplicial set of K. We
say that two n-simplices x, x′ of K are homotopic relative to L if

1. we have djx = djx
′ ∀ 1 ≤ j ≤ n,

2. d0x
y∼ d0x

′ in for a y ∈ Ln,

3. there exists w ∈ Kn+1 such that

d0w = y, dnw = x, dn+1w = x′,

diw = sn−1dix = sn−1dix
′ for 1 ≤ i < n.

We write x
w∼L x′ (or simply x ∼L x′) and we say that w is a homotopy from x to x′

relative to L.

Definition 4.4. Let K be a Kan complex with a ”base-point” k0. We call (K,L, k0)
a Kan triple if k0 ∈ L0 and L is a sub Kan complex of K.
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Definition 4.5. Let (K,L, k0) be a Kan triple, then we define the relative n-th ho-
motopy group

πn(K,L, k0) =
{x ∈ Kn|d0x ∈ Ln−1, dix = k0 1 ≤ i ≤ n}

∼L
.

For n ≥ 2, we define multiplication in πn(K,L, k0) in a way analogous to the absolute
situation as follows. Choose α, β ∈ πn(K,L, k0). Let x and y be representatives of α
and β respectively. Then d0x, d0y ∈ Ln−1 and, we have that [d0x][d0y] = [dn−1z] for
z ∈ Ln satisfying diz = k0 , i ≤ n − 3 and dn−2z = d0x, dnz = d0y. The n + 1-many
n-simplices

z, k0, ..., k0, x,−, y
satisfy the hypothesis of the Kan condition. Thus there exists w ∈ Kn+1 such that
diw = k0 for 1 ≤ i ≤ n− 2 and d0w = z, dn−1z = x, dn+1z = y. We define

αβ = [dnw].

As before this group law is well-defined for n ≥ 2. For n ≥ 3, we shall prove that
these relative groups are abelian.

Let [x] be a relative homotopy class in πn+1(K,L, k0). We define a map δ :
πn+1(K,L, k0)→ πn(L, k0) by setting

δ[x] := [d0x].

By definition of relative homotopy classes, it follows immediately that this assignment
is well-defined.

By exactness of a sequence A
f→ B

g→ C of pointed sets at B we shall mean that
g−1(∗) = Img(f).

Proposition 4.18. Let (K,L, k0) be a Kan triple. Then the sequence

· · · j−→ πn+1(K,L, k0)
δ−→ πn(L, k0)

i−→ πn(K, k0)
j−→ πn(K,L, k0)→ · · ·

of sets with distinguished element k0 is exact, where the maps i and j are induced by
inclusion.

Proof. i) Consider the following part of the sequence

· · · πn+1(K,L, k0)
δ−→ πn(L, k0)

i−→ πn(K, k0) · · ·

we shall prove that iδ = k0 :
Let [x] ∈ πn+1(K,L, k0). Let x ∈ Kn+1 be a representative of [x]. By definition

iδ[x] = i[δ0x].

Claim 4.19. The (n+ 2) many n+ 1 simplices

−, a1 = k0, a2 = k0, ..., an+1 = k0, an+2 = x

satisfy compatibility condition. In language of diagrams, we claim that we have the
following map

Λn+2
0 K.

(−,k0,··· ,k0,x)
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Proof. We should check that for i < j and 0 /∈ {i, j}, we have

diaj = dj−1ai.

So i ≥ 1 and therefore j > 1.
Case 1 < j < n+ 2 : Clearly diaj = k0 = dj−1ai.
Case j = n+ 2 : Let us consider dix. Since i ≥ 1, this is equal to k0 by definition

of relative homotopy. Thus the claim is verified.

Therefore we have an n+ 2 simplex z such that the following diagram is commu-
tative

Λn+2
0 K

∆[n+ 2].

(−,k0,··· ,k0,x)

z
(4.57)

In long hand this means diz = k0 for 1 ≤ i ≤ n+ 1 and dn+2z = x. Now we show that
d0z is a homotopy between d0x and k0. By the first simplicial identity, for 0 ≤ i < n+1
we have

did0z = d0di+1z = k0.

Further dn+1d0z = d0dn+2z = d0x. Furthermore since dix = k0, so we see that for
0 ≤ i < n we have

di(d0z) = k0 = sn−1dix.

Thus d0z is a homotopy between d0x and k0. In the language of diagram this means
that the following diagram commutes

◦
∆ [n] K

∆[n]

(k0,k0··· ,k0,k0,d0x)

d0z

So we shown that
iδ[x] = [d0x] = [k0].

ii) Consider the following part of the sequence

· · · πn+1(K,L, k0)
δ−→ πn(L, k0)

i−→ πn(K, k0)→ · · ·

we shall prove that Image δ = Kernel i:
Let [y] be an element of πn(L, k0) such that i[y] = k0. We choose a representative

y ∈ Ln of [y]. Clearly y ∼ k0 in K. Let z ∈ Kn+1 be the homotopy between k0 and y.
Then we have diz = k0 for 0 ≤ i ≤ n and

dn+1z = y.
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Claim 4.20. The following map exists

Λn+2
n+2 K.

(z,k0,k0,...,k0,−)

In long hand, the n+ 2 many n+ 1 simplices

b0 = z, b1 = k0, b2 = k0, ..., bn+1 = k0,−

satisfy the compatibility condition.

Proof. We should check that for i < j and n+ 2 /∈ {i, j}, we have

dibj = dj−1bi.

So j ≥ 1. When j = 1, we have d0b1 equals d0k0 = k0 just by substituting. On the
other hand d0b0 = d0z0 = k0 by substituting again. Now let us assume that j > 1.
Now j− 1 ≤ n. Thus, dividing in two cases i = 0 and i > 0, we see immediately from
hypothesis that dibj = dj−1bi = k0. Thus the claim is verified.

Therefore we have an n + 2 simplex w such that d0w = z and diw = k0 for
1 ≤ i ≤ n+ 1. Or in other words the following diagram commutes

Λn+2
n+2 K

∆[n+ 2]

(z,k0,k0,...,k0,−)

w
(4.58)

Let us consider dn+2w more closely. Now we have

didn+2w
1.1
= dn+1diw = dn+1k0 = k0 for 1 ≤ i ≤ n+ 1

d0dn+2w = dn+1d0w = dn+1z = y.

Thus δ[dn+2w] = [d0dn+2w] = [y]. So for an arbitary element [y] ∈ πn(L, k0) such
that i[y] = k0, we have produced an element t = [dn+2w] in πn+1(K,L, k0) such that
δt = [y].

iii)Consider the following part of the sequence

· · · πn(L, k0)
i−→ πn(K, k0)

j−→ πn(K,L, k0)→ · · ·

we shall prove that ji = k0:
Let y ∈ Ln be a representative of [y] ∈ πn(L, k0). we need to show that k0 is

relative homotopic to y.

Claim 4.21. The n+ 1 many n-simplices

−, k0, k0, ..., k0, y

satisfy the hypothesis of the Kan condition.

111



Proof. The statement is clearly true for 0 < i < j ≤ n. Indeed, by definition all faces
of y are k0.

Therefore there exists z ∈ Ln+1 which satisfies diz = k0 for 1 ≤ i ≤ n,

dn+1z = y

and further all faces of d0z are k0. Thus we see that z is a relative homotopy between
k0 and y.

iv) Consider the following part of the sequence

· · · πn(L, k0)
i−→ πn(K, k0)

j−→ πn(K,L, k0)→ · · ·

we shall prove that Image i = Kernel j:
Let [x] ∈ πn(K, k0) be such that j[x] = k0. We choose x ∈ Kn to be a representative

of [x]. We need to find a representative of [x] in Ln. To this end, we shall construct
an element dn+1v ∈ Ln and further, we have to show that dn+1v and x are homotopic
in K.

Since j[x] = k0 in πn(K,L, k0) so we may choose a n+ 1-simplex w such that

diw = k0 ∀ 1 ≤ i ≤ n (4.59)

dn+1w = x (4.60)

d0w = z ∈ Ln. (4.61)

Thus x
w∼L k0.

Claim 4.22. The n+ 1 many n-simplices

s0 := z, s1 := k0, ..., sn := k0,−

are compatible in L. In the language of diagrams this means we claim the existence
of following map

Λn+1
n+1 L

(z,k0,k0,...,k0,−)

Proof. We need to check that for i < j and n+ 1 /∈ {i, j} we have

disj = dj−1si.

For i ≥ 1, we have j ≥ 1. In this case, all si, and sj are k0 and so are their faces.

Now let us take i = 0. We have dj−1s0 = dj−1z = dj−1d0w
1.1
= d0djw. Now j ≥ 1, so

we have djw = k0 and thus so is d0djw.

Therefore there exists a n + 1-simplex v such that the following diagram is com-
mutative

Λn+1
n+1 L

∆[n+ 1] .

(z,k0,k0,...,k0,−)

v

Moreover d0v = z and div = k0 for 1 ≤ i ≤ n. We now relate v and w.
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Claim 4.23. The following map exists

Λn+2
n+2 K.

(sn−1z,k0,k0,...,v,w,−)

Or in other words the n+ 2 many n+ 1-simplices

a0 = sn−1z, a1 = k0, a2 = k0, ..., an = v, an+1 = w,−

satisfy the hypothesis of Kan condition.

Proof. We need to check that for i < j and n+ 2 /∈ {i, j}, we have

diaj = dj−1ai.

So j ≥ 1. Case j = 1: We have d0k0 = d0sn−1z = sn−1(d0z). In the proof of claim
4.22, setting j = 1, we obtain d0z = k0. Thus so is sn−1(d0z).

Case 1 < j < n: In this case for all i < j we clearly have diaj = dj−1ai = k0.
Case j = n: We have diaj = dian = div = k0 for 1 ≤ i < j by the construction of

v. On the other hand, dj−1ai = dn−1ai is clearly k0 for 1 ≤ i < j. Now we consider
the case (i, j) = (0, n). Here

d0an = d0v = z = dn−1sn−1z = dn−1a0.

Case j = n + 1: Thus i ≤ n. Let us treat the case 1 ≤ i ≤ n. We have
dian+1 = diw = k0 = dn+1−1ai. When i < n, this is clearly k0. When i = n, we also
have dnan = dnv = k0. Now let us check the case (i, j) = (0, n+ 1). Here

d0an+1 = d0w = z
1.4
= dnsn−1z = dna0 = dn+1−1a0.

Therefore we have a n+ 2-simplex t such that dit = k0 for 1 ≤ i ≤ n− 1,

d0t = sn−1z, dnt = v, dn+1t = w.

In other words the following diagram is commutative

Λn+2
n+2 K

∆[n+ 2]

(sn−1z,k0,k0,...,v,w,−)

t

Now we show that dn+2t is a homotopy between dn+1v and x. We have

dndn+2t
1.1
= dn+1dnt = dn+1v
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and
dn+1dn+2t = dn+1dn+1t = dn+1w = x.

Further
didn+1v = dix = k0 for 1 ≤ i ≤ n.

Furthermore we have for 0 ≤ i < n,

didn+2t = dn+1dit = k0 = sn−1dix = sn−1dit.

Thus we have shown
x
dn+2t∼ dn+1v.

v) Consider the following part of the sequence

· · · πn(K, k0)
j−→ πn(K,L, k0)

δ−→ · · ·

we shall prove that δj = k0:
Let [x] ∈ πn(K, k0). Let x be a representative . Then by definition δj[x] = [δ0x].

Since δ0x = k0 and j so we have [δ0jx] = [k0].
vi) Consider the following part of the sequence

· · · πn(K, k0)
j−→ πn(K,L, k0)

δ−→ · · ·

we shall prove that Image j = Kernel δ:
Let [x] ∈ πn(K,L, k0) be such that δ[x] = [d0x] = k0. Let x ∈ Kn+1 be a

representative of [x]. Since [d0x] = k0, so there exists an element z ∈ Ln such that
diz = k0, for 0 ≤ i < n and dnz = d0x.

Claim 4.24. The n+ 1 many n-simplices

z, k0, k0, ...,−, x

are compatible.

Proof. Since the only non-k0 entries are at 0-th and n + 1-th position, so the claim
follows from dn+1−1z = dnz = d0x.

Therefore we have a n + 1-simplex y such that d0y = z, diy = k0, for 0 ≤ i < n
and dn+1y = x. Thus x is homotopic to dny relative to L i.e

x
y∼L dny.

Now since didny = k0, 0 ≤ i ≤ n we have

[x] = j[dny].
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5 Simplicial homotopy

Definition 5.1. Let K and L be simplicial objects in a category C. Then two simplicial
maps f, g : K → L are simplicially homotopic (f is homotopic to g) if there exist
morphisms hi : Kn → Ln+1, for 0 ≤ i ≤ n such that

d0h0 = f, dn+1hn = g, (5.1)

dihj =


hj−1di if i < j

dihi−1 if i = j = 0,

hjdi−1 if i > j + 1

(5.2)

sihj =

{
hj+1si if i ≤ j

hjsi−1 if i > j.
(5.3)

We say h = {hi} is a simplicial homotopy from f to g and we write f ' g.

We may encode the definition of simplicial homotopy from f to g in the following
commutative diagram

K ×∆0 = K

K ×∆1 L

K ×∆0 = K

1×d1 f

h

1×d0 g

Definition 5.2. Let K and L be two semi-simplicial objects in a category C. Let
f, g : K → L be two semi-simplicial maps. We say h = {hi} is a semi-simplicial
homotopy from f to g if it satisfies only conditions (5.1) and (5.2) above.

Definition 5.3. Let K and L be two simplicial sets, and f : K → L a simplicial
map. We say that

1. f is a homotopy equivalence if there exists a simplicial map g : L → K such
that

g ◦ f ' idK

f ◦ g ' idL.

2. f is a weak homotopy equvialence if it induces isomoprhisms

πn(K, k0)→̃πn(L, f(k0))

for all n ≤ 0 and for all k0 ∈ K0.
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We say that two simplicial sets K and L are homotopy equivalent if there exists a
homotopy equivalence f : K → L. Homotopy equivalence implies weak homotopy
equivalence. Thus if K ' L we have that πi(K, k0)

∼
= πi(L, f(k0)).

Definition 5.4. Let K be a simplicial object in A. Then the path space of K is the
simplicial object PK. Thus PK is a simplicial object with (PK)n = Kn+1, and the
i-th face and degeneracy operators of PK, dPi and sPi are the di+1 and si+1 operators
of K. We have a simplicial map

p : PK → K

coming from the maps d0 : Kn+1 → Kn .

Lemma 5.1. Let K be a simplicial object. Then PK, the path space of K, viewed as
a semi-simplicial set is homotopy equivalent to the constant simplicial object at K0 .

Proof. We begin by defining simplicial maps

s = {sn} : C(K0)→ PK

which level-wise is given by

sn = sn+1
0 : C(K0)n = K0 → Kn+1 = (PK)n

and
d : PK → CK0

which level-wise is given by

dn : (PK)n → (CK0)n

as dP0 composed with itself n+ 1 times, that is

d1 ◦ · · · ◦ d1 : Kn+1 → K0.

By the simplicial identities, we have clearly

ds = IdK0 .

We show a semi-simplicial homotopy as follows . Define semi-simplicial maps

hi : (PK)n → (PK)n+1 for 0 ≤ i ≤ n

by setting
hj = sj+1

0 (dP0 )j,

where we follow the convention that raising index means so many fold composition of
the map with itself.

Notice that sj+1
0 (dP0 )j = sj+1

0 dj1. Let us check that {hj}0≤j≤n define semi-simplicial
homotopies idPK .
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By the simplicial identities we have

dP0 h0 = d1s0 = id (5.4)

and
dPn+1hn = dn+2(sn+1

0 dn1 ) = sn+1
0 dn+1

1 = sndn, (5.5)

where the last equality holds by definition.
Now let us check the remaining semi-simplicial identities. Let us consider dPi h

P
j

which by definition is di+1(sj+1
0 dj1).

Case i < j: This should be

hPj−1d
P
i = (sj0d

j−1
1 )di+1.

Now, di+1s
j+1
0

(1.5)
= s0dis

j
0

(1.5)
= · · · (1.5)

= si−1
0 d2

i s
j−i+2
0

(1.5)
= si0d1s

j−i+1
0

(1.4)
= sj0s

j−i
0 = sj0.

Thus we have established
di+1s

j+1
0 dj1 = sj0d

j
1.

On the other hand,

dj−1
1 di+1 =

(1.1)
= dj−2

1 did1
(1.1)
= dj−3

1 di−1d
2
1 · · ·

(1.1)
= dj−1−i

1 di+1−i
1 di1 = dj1.

Thus, (sj0d
j−1
1 )di+1 is also equal to sj0d

j
1.

Case i = j 6= 0: we have dPi h
P
i = di+1s

i+1
0 di1 by definition. This should be equal

to
dPi h

P
i−1

which is di+1s
i
0d
i−1
1

(1.5)
= d1s

i
0d1d

i−1
1 = d1s

i
0d
i
1. On the other hand, we have

di+1s
i+1
0 di1 = d1s

i
0d1s0d

i
1 = d1s

i
0(d1s0)di1

(1.4)
= d1s

i
0d
i
1.

Case i > j + 1: we have dPi h
P
j = di+1s

j+1
0 dj1. This should be equal to

hPj d
P
i−1 = sj+1

0 dj1di.

Now di+1s
j+1
0

(1.5)
= sj+1

0 di−j and di−jd
j
1

(1.1)
= dj1di. This proves this case.

We remark that one cannot upgrade this result to a simplicial homotopy. A counter
example to the condition (5.3) for small values is not hard to construct.

We define simplicial retraction in the spirit of usual retraction.

Definition 5.5. Let K be a simplicial set and let j : L ↪→ K be a simplicial subset of
K. We say K retracts to L if there exists a simplicial map

r : K → L

such that the composite r ◦ j = idK. In other words r restricted to K is identity. If
this happens we may also say that j admits a retraction.
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Proposition 5.2 (Contractibility). Let K be a pointed simplicial space. Let CK
denote it’s simplicial cone (cf. Definition (2.3) ) . Then the inclusion j : K ↪→ CK
admits a simplicial retraction if and only if there exists a function s−1 : Kn → Kn+1

for each n ≥ 0 such that s−1(∗) = ∗ and Identities (2.1) and (2.2) hold.

Proof. Suppose j admits a retraction. Then we have a map r : CK → K such that
r ◦ j = idK . Define s1(x) = r(x, 1) for x ∈ Kn. Then we check that identities (2.3)
and (2.4) holds:

dis−1(x) = dir(x, 1) = rdi(x, 1) = r(dis−1(x, 0)),

sis−1(x) = sir(x, 1) = rsi(x, 1) = r(sis−1(x, 0)).

Conversely, suppose s−1 is defined as such in the hypothesis. Then we define r :
CK → K by setting r(x, 0) = x and r(x, q) = sq−1x for q > 0. By identities (2.3) and
(2.4), r is a simplicial map. And the restriction of r to K is clearly the identity map
on X.
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Chapter IX

D’après Daniel Quillen

1 Introduction

Let X be a topological space with an open covering {Ui}i∈I . We begin by mentioning
two well known results.

The van Kampen theorem in algebraic topology describes the fundamental group
π1(X) as a push-out of those of Ui and their finite intersections.

Let us set U := ti∈IUi as the disjoint union of Ui. Thus we have a surjective
morphism U → X in the category of topological spaces. Let U l denote the l-th
fibered product

U ×X × · · · ×X U,

of U with itself over X. Then we know well how to associate a simplicial topological
space U∗ whose l−1-term is U l. Given any homology theory {Hq}n≥0, we may consider
the simplicial object

Hq(U∗)

in the category of abelian groups. Taking the p-th homology of the associated Moore
complex, we get

Hp(Hq(U∗)).

There is a well-known homological spectral sequence,

E2
p,q = Hp(Hq(U∗))⇒ Hp+q(X).

We omit the details here because in the next chapter, we shall explain the construction
of a spectral sequence associated with any simplicial topological space.

M.Artin and B.Mazur [8] gave generalization of the van Kampen theorem, in the
spirit of spectral sequence of homology, to higher homotopy groups. Varying l, for
each q ≥ 1, the q-th homotopy groups πq(U

l) form a simplicial group

πq(U∗).

Now taking the p-th homotopy of πq(U∗), one can define

πp(πq(U∗)) for p ≥ 0, q ≥ 1.

The theorem of Artin-Mazur may be stated as follows.
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Theorem 1.1. There is a spectral sequence of homological type whose terms E2
p,q is

πp(πq(U∗)) and whose abutment is the associated graded group of a certain filtration
of π∗(X) i.e

E2
p,q = πp(πq(U∗))⇒ πp+q(X).

We remind the reader that abutment and convergence are two different names for
the same concept of spectral sequences. This simply means here that πp+q(X) has a
filtration whose associated graded has p-th piece

F p(πp+q(X))/F p−1(πp+q(X))

is isomorphic to E∞p,q.
The original proof of this theorem was very complicated. Daniel Quillen provided

a simplified proof which is the object of this chapter. Given a double simplicial group
G∗,∗, he showed the existence of two spectral sequences converging to the homotopy
groups of the simplicial group ∆G∗,∗.

2 Double simplicial groups

We shall denote by e the final and initial object in the category of groups. Simplicial
groups are simplicial objects in Category of groups. We denote a simplicial group by
G∗ = {Gq, dj, sj}: here dj and sj are group homomorphism. Given a simplicial group
G∗ we define the following associated simplicial groups:

1. The simplicial group EG: The q-simplices of EG are given by

(EG)q = {x ∈ Gq+1|dq+1
0 = e}

and the degeneracy maps dj : (EG)q → (EG)q−1 for j ≤ q is induced by
dj : Gq+1 → Gq. Similarly, the face maps sj : (EG)q → (EG)q+1 is induced by
sj : Gq+1 → Gq+2;

2. The constant simplicial group Cπ0(G) with Cπ0(G)q = π0(G) for all p, q. We
set all sj and dj to be identity;

3. The morphism θq : (EG)q → Gq, as induced by dq+1 : Gq+1 → Gq;

4. The morphism jq : Gq → π0(G) as the composition Gq

dq0−→ G0 → π0(G).

Now we have an exact sequence of simplicial groups

0→ ΩG
i−→ EG

θ−→ G
j−→ Cπ0(G)→ 0 (2.1)

where i : ΩG→ EG is the kernel of θ.

Lemma 2.1. If K is a simplicial Kan set with base point then EK is contractible.
In fact there is a canonical homotopy h : EK×∆[1]→ EK functorial in K such that
h0 = id and h1 = ∗.
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Proof.

Actually we will only use the following corollary to the above lemma. We refer
the reader to Chapter 1 Section 7 of [7].

Corollary 2.2. We have πk(EK) = e for k ≥ 1.

Let IG be the image of θ. Then from the sequence (2.1) we can obtain the following
long exact homotopy sequences (cf. Chapter VIII, Proposition 4.18)

· · · → πp(ΩG→ πp(EG)→ πp(IG)→ πp−1(ΩG)→ · · ·

· · · → πp(IG)→ πp(G)→ πpC(π0(G))→ πp−1(IG)→ · · · .

Now by Corollary (2.2) for k ≥ 1 we have

πk(EG) = e.

So we have isomorphisms

πp−1(ΩG) ' πp(G), p ≥ 1. (2.2)

Now we turn to the case of double simplicial groups. Let

G∗,∗ = {Gp,q : dhj : Gp,q → Gp−1,q, s
h
j : Gp,q → Gp+1,q, d

v
j , s

v
j}

be a double simplicial group. By the p-th vertical simplicial group, we shall mean

Gp,∗ = {Gp,q : dvj : Gp,q → Gp,q−1, s
v
j : Gp,q → Gp,q+1}.

Applying π0 to vertical simplicial groups Gp,∗ for each p, we obtain groups which we
denote

πv0Gp,∗.

Note that {πv0Gp,∗}p≥0 actually form a simplicial group indexed by p and with face
and degeneracy maps induced by G∗,∗. Now we apply the functor C to each πv0Gp,∗.
We get thus a double simplicial group, which we denote as

Cvπ
v
0G.

We have a natural map of double simplicial groups

G→ Cvπ
v
0G.

We apply the construction of equation (2.1) to each of the vertical simplicial groups
Gp,∗ → πv0Gp,∗ and induce them with the horizontal face and degeneracy maps to get
now an exact sequence of double simplicial groups

0→ ΩvG
iv−→ EvG

θv−→ G
jv−→ Cvπv0G→ 0 (2.3)

121



where iv : ΩvG→ EvG is the kernel of θv.
We define the diagonal simplicial group ∆G of a double simplicial group G∗,∗ by

(∆G)n = Gn,n dj = dhj d
v
j sj = shj s

v
j . (2.4)

Letting IvG be the image of θv we obtain the long exact sequences

→ πp(∆ΩvG)→ πp(∆E
vG)→ πp(∆I

vG)→ πp−1(∆ΩvG)→ (2.5)

→ πp(∆I
vG)→ πp(∆G)→ πp(∆C

vπv0G)→ πp−1(∆IvG)→ (2.6)

Lemma 2.3. We have πp(∆E
vG) = 0 for all p.

Proof. We have ∆EvG = E∆G. Thus the result follows from Corollary 2.2.

As πp(∆C
vπv0(G) = πhpπ

v
0G, in view of Lemma 2.3 we shall obtain the following

long exact sequence from the sequences (2.5) and (2.6)

→ πp−1(∆ΩvG)→ πp(∆G)→ πhpπ
v
0(G)→ πp−1(∆ΩvG)→ (2.7)

Using πv0(Ωv
qG) = πvq (G) we set Dp,q = πp(∆Ωv

qG) and Ep,q = πhpπ
v
q (G). Now applying

(2.7) to the groups Ωv
qG, we obtain the following exact couple

πp−1(∆Ωv
q+1G) πp(∆Ωv

qG)

πhpπ
v
q (G)

We now compute the r for which Er
p,q = πhpπ

v
q−p(G). We see that dr is the composition

πhpπ
v
q (G)→ πp−1(∆Ωq+1

v G)→ πhp−1π
v
q+1(G)

and so r = 1.
The abutment of spectral sequence of this couple is πq(∆G) with the filtration

Fpπq−p(∆G) = Im(πp(∆Ωv
q−pG)→ πq(∆G)).

In other words since
F−1πq−p(∆G) = 0,

so the E∞ term (cf. Section 2 Chapter III ) is given by Graded associated with
πq(∆G) filtered by it’s sub-objects

Fpπq−p(∆G) = Im(πp(∆Ωv
q−pG)→ πq(∆G)).

So we have established the following

Theorem 2.4. If G is a double simplicial group, then there are two spectral sequences

E1
p,q = πhpπ

v
q−pG⇒ πq(∆G)

E1
p,q = πvpπ

h
q−pG⇒ πq(∆G)
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Chapter X

D’après Graeme Segal

1 Introduction

In this chapter we show how one may construct spectral sequences from a simplicial
topological space together with a (co)homology theory suitable for topological spaces.
The key observation is the geometric realization is naturally filtered. This construc-
tion generalizes vastly the second result stated in the last chapter about existence of
spectral sequence for Cech covers whenever we have a homology theory. For simplicity
we shall assume that our cohomology groups are vector spaces over a field.

2 Simplicial Topological spaces

By a simplicial space we shall mean a simplicial object in Category of Topological
Spaces. Let ∆p denote the standard p-simplex. It is defined as

∆p = {r = (r0, · · · , rp) ∈ Rp+1|
∑

ri = 1 ri ≥ 0}.

Let ∆p
d denote the (p−1) skeleton of ∆p. Similarly, for a simplicial set A let Adp denote

the degenerate part of Ap. It is defined as the union of the images of all face maps
Ap−1 → Ap.

We recall the geometric realization ∆A of a simplicial set A. One takes the disjoint
sum

tp∆p × Ap,

equipped with discrete topology on Ap and then takes the quotient topological space
by the following equivalence relation. Given θ : [p]→ [r], for x ∈ ∆p and a ∈ Ar, one
identifies

∆p × Ap 3 (x,A(θ)(a)) = (∆(θ)(x), a) ∈ ∆r × Ar. (2.1)

If A is a simplicial space its realization ∆A has a natural filtration

∆0A ⊂ ∆1A ⊂ ... ⊂ ∆A, (2.2)

where ∆p × Ap is the image of ∆p × Ap in A. (In fact ∆pA is a quotient space of
∆p × A.)
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Proposition 2.1. We have a relative homeomorphism

(∆p × Ap, (∆p × Adp) ∪ (∆p
d × Ap))→ (∆pA,∆p−1A).

Proof. By the relation used to make geometric realization of a simplicial set, we see
that any element of ∆p × Adp ⊂ ∆p × Ap is related to an element of ∆p−1 × Ap−1.
Similarly we see that any element of ∆p

d×Ap is also related to ∆p−1×Ap−1. Consider
the natural composition

∆p × Ap → ∆pA→ ∆pA/∆p−1A.

We see that the image of ∆p
d × Ap ∪∆p × Adp ⊂ ∆p × Ap becomes the distinguished

point of ∆pA/∆p−1A. So we have a factorization

∆p × Ap
∆p
d × Ap ∪∆p × Adp ⊂ ∆p × Ap

→ ∆pA

∆p−1A
.

By definition, this map is surjective. Let us check injectivity. So let us take a point
(q, a) ∈ ∆p × Ap such that x /∈ ∆p

d and a /∈ Adp. Let us consider the equivalence class
of (x, a). So let us pick another element (x′, a′) from it. With notation as in (2.1), we
have p = r. Further let us assume that for θ : [p]→ [p] we have

(x, a) = (x,A(θ)(a′)) = (∆(θ)(x), a′) = (x′, a′).

Since a is non-degenerate, so a′ is non-degenerate. This forces θ to be id : [p] → [p].
This means that x′ = x. So we have checked injectivity.

Recall that the usual suspension of a pair (X,A) is defined as

(X,A) ∧ (S1, 1) = (X × S1, A× S1 ∪X × 1).

Note that the pair (S1, 1) is relatively homeomorphic to (∆1,∆1
d). Further, the p-fold

suspension of (∆1,∆1
d) identifies with (∆p,∆p

d).

Proposition 2.2. The pair (∆pA,∆p−1A) can be identified with the p-fold suspension
of (Ap, A

d
p).

Proof. This follows immediately from Proposition 2.1.

3 The construction

Let X be a topological space and A be a closed sub-space. Let k∗ = {kq}q∈z denote
the co-homology theory defined on a category of pairs (X,A). We shall assume k∗

has the following properties:

1. It is a contravariant δ-functor.
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2. If f0 ' f1 : (X,A)→ (Y,B), then k∗(f0) = k∗(f1).

3. If f : (X,A)→ (Y,B) is a relative homeomorphism, in the sense that it induces
a homeomorphism X/A→ Y/B, then k∗(f) is an isomorphism.

4. Let t denote Topological sum. Then

k∗(tαXα)
'→ Παk

∗(Xα)

for any family of spaces {Xα}

The filtration (2.2) and the cohomology theory k∗ lead to a spectral sequence as
follows.

Proposition 3.1. To a simplicial space A is associated a spectral sequence whose
termination is k∗(∆A), with Ep,q

1 = Hp(kq(A)), the p-th co-homology group of the
simplicial co-chain complex kq(A)

In the proof below we have preferred to use complementary degree instead of total
degree because of an immediate relation with Cartan-Eilenberg systems as we shall
soon see.

Proof. Setting H(p, q) = kq(∆pA,∆p−1A) we get a Cartan-Eilenberg system (cf Chap-
ter II Subsection 3.2). Thus we have a spectral sequence.

Recall by Prop 2.2 that the pair (∆pA,∆p−1A) can be identified with the p-fold
suspension of (Ap, A

d
p). Thus,

Ep,q
1 ' kp+q(∆pA,∆p−1A) ' kq(Ap, A

d
p)

because suspension shifts degrees.
We will show below that the natural map Ep,q

1 → kq(Ap) is compatible with the
differential of the co-chain complex kq(A). Thus, the group Ep,q

2 can be calculated from
kq(A) as follows. The group kq(A,Adp) is a direct summand in kq(Ap) complementary
to the subgroup of degenerate co-chains: indeed denoting by S and T ordinal sets we
have

kq(AS) '
⊕
T

kq(AT , A
d
T ), (3.1)

where T runs through the quotient ordinal sets of S because our cohomology groups
are vector spaces.

Fixing q, we now show that for every p, the differential dp,q1 and that of the co-chain
complex kq(A) are compatible. This means we will show that the following diagram
is commutative

k∗(∆p × Ap,∆p
d × Ap) k∗(Ap)

k∗(∆p+1A,∆pA) k∗(Ap+1).
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This follows from the commutativity of the following diagram

k∗(∆p × Ap,∆p
d × Ap) k∗(Ap)

k∗(∆pA,∆p−1A)
∏

p k
∗(∆p × Ap+1,∆

p
d × Ap+1)

∏
p k
∗(Ap+1)

k∗(∆p+1A,∆pA) k∗(∆p+1
d × Ap+1,∆

p+1
dd × Ap+1)

k∗(∆p+1 × Ap+1,∆
p+1
d × Ap+1) k∗(Ap+1)

θ

Ep

θ

d

Ep

Σ

'

d

Ep+1

where: ∆p
d denotes the p− 1-skeleton of ∆p. Similarly ∆p

dd denotes the
p− 2-skeleton of ∆p,
the maps θ are induced by the p+ 2 injections [p]→ [p+ 1]
Ep denotes the p-fold suspension, and
Σ denotes the summation with alternating signs, so that the composition of the

right-most vertical arrows is the differential of the simplicial co-chain complex kq(Ap).
The horizontal arrows labeled by Ep and Ep+1 are all isomorphisms. The left-most
vertical vertical arrows are the differentials of Ep,q

1 . One checks that the diagram
commutes. So we have a spectral sequence

An astute reader would have observed that the spectral sequence in this chapter
starts at r = 1 while the one in the last chapter starts only at r = 2. This is
because working with vector spaces and cohomological functors, one is able to get a
decomposition as in (3.1) at level r = 1. This is not available in the set-up of double
simplicial groups.
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