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Abstract

The experimental implementation of quantum algorithms on a quantum computer

requires the breakdown of unitary operators. Here we considered this as an opti-

mization problem and used genetic algorithms. Genetic algorithms are stochastic

search algorithms and a global optimization technique which mimics the behavior

of biological evolution in nature. This optimization technique has been widely used

for quantum computing applications. We apply this optimization techniques for an

NMR quantum information processor and optimized the three-qubit unitary matrices.

The algorithm for an NMR quantum information processor was modified and de-

signed in such a way that the unitary matrices can be implemented using only hard

pulses and delays. We mainly focused on three-qubit quantum gates such as Toffoli

and Fredkin as they are universal for computation and has much application in various

algorithms and protocols. The pulse sequence corresponding to the unitary matrices

were time optimal and robust to cope up with the errors associated with the NMR

quantum information processing. The optimized pulse sequence for the three-qubit

unitary matrices was obtained with very high theoretical fidelity. We experimentally

implemented these optimized quantum gates on a system of three coupled NMR qubits

and computed the final fidelity.
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Chapter 1

Quantum Computation

“The most important application of quantum computing in the future is the computer

simulations of a quantum systems, because that’s an application where we know for sure that

quantum systems in general cannot be efficiently simulated on a classical computer.”

— David Deutsch

1.1 Introduction

The extraordinary progress in the development of the computer technologies usually

summarised in the form of Moore’s law [Moo65]. Moore’s law observes that the the

computer powers for a given sum of money doubles approximately every two years.

Like any form of exponential growth this doubling soon leads to enormous numbers:

computer power increases tenfold every five years, one hundred fold every decade,

and so on. It has now held true for almost fifty years and it is tempting to assume

that it can continue for many more years [AJ01]. This huge increase in computing

power require decrease in the size of electronic components. At these length scales,

the classical laws of physics will no longer hold. The world at these length scales has

very different properties and follow laws of quantum mechanics. The use of quantum

technologies will not only make computers small in size but also fast and efficient.

It will allow us to solve some of the problems which are not even possible for a

classical computer. In a way quantum computation is the field that investigates the

computational power and other properties of computers based on quantum mechanical

principles.
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1.2 Quantum Bits

A bit is a fundamental unit of information in a classical computer. It can have two

possible states: 0 or 1. The analogous concept for quantum computers is a quantum

bit or qubit. Just like bits, qubits also have a state. The difference between a bit

and a qubit is that it can be in a state other than 0 or 1. A qubit can be in a linear

combination of 0 and 1, generally known as superposition. The general state of a

qubit can be written as,

|Ψ〉 = α |0〉+ β |1〉 (1.1)

The numbers α and β are complex numbers having normalization condition |α|2 +

|β|2 = 1. The states |0〉 and |1〉 are known as computational basis which forms an

orthonormal basis for this vector space. A qubit can be easily visualized by a Bloch

sphere [NC11],

Figure 1.1: Bloch sphere representation of a qubit.

And the most general state as in equation(1.1) can be rewritten as,

|Ψ〉 = cos
θ

2
|0〉+ eiφ sin

θ

2
|1〉 (1.2)

where the terms θ and φ are as shown in the figure 1.1. The general state of a n-qubit

system can be written as,

|ψ〉 =
2n−1∑
k=0

αk|k〉 (1.3)

where,
2n−1∑
k=0

|αk|2 = 1 (1.4)
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In contrast to classical computation in which the state can be either in 0 or 1, the

superposition of states as shown in equation(1.3) means that the state |ψ〉 is in 2n

states simultaneously. This infers that a quantum computer can out perform a clas-

sical computer in terms of speed and efficiency.

1.3 Quantum Gates

Analogous to a classical computer which consist of logic gates to carry information,

quantum computers also has these logics known as quantum gates. These quantum

gates help to carry information and manipulate them. By combining these quantum

gates one can build a quantum circuit which can perform a desired operation. Some

properties of quantum gates are-

• Unlike many classical logic gates, quantum gates are reversible.

• Since the evolution of a quantum state is restricted by unitary, so the quantum

gates are represented by unitary matrices of order 2n × 2n, which follows the

following property,

|ψ(t)〉
′
= U |ψ〉 (1.5)

UU † = U †U = I (1.6)

Some of the most common quantum gates are given in the following sections.

1.3.1 Single Qubit Gates

• Pauli-X Gate (NOT Gate)

It is equivalent to classical NOT gate. The Pauli-X matrix is given by,

X=

[
0 1

1 0

]

The action of NOT gate is to take state |0〉 to state |1〉 and vice versa. Consider

the state given in equation(1.1) when written in matrix form will look like,

|Ψ〉=

[
α

β

]

3



The action of X on above state is,

X

[
α

β

]
=

[
β

α

]

• Pauli-Z Gate

The Pauli-Z matrix is given by,

Z=

[
1 0

0 −1

]

The action of Z gate is to take state |1〉 to -|1〉 keeping |0〉 state unchanged. It

will act on |Ψ〉 as follows,

Z

[
α

β

]
=

[
α

−β

]

• Hadamard Gate

It is a unique gate which does not have any classical analogue. Its uniqueness

takes state from one basis to another basis. It acts on state as,

H |0〉 =
|0〉+ |1〉√

2

H |1〉 =
|0〉 − |1〉√

2

(1.7)

The matrix representation of Hadamard(H) gate is given as,

H=

[
1 1

1 −1

]

1.3.2 Multiple Qubit Gates

• Controlled-NOT Gate

Controlled-NOT (CNOT) is a two qubit gate from which one of them is control

qubit and other one is target qubit. Target qubit is flipped when control qubit

is in state |1〉. Its circuit representation is given by,

4



Figure 1.2: Circuit representation of a CNOT gate.

Taking two qubits namely A and B. A is a control qubit and B is target qubit,

under the action of CNOT they will vary as,

CNOT |A,B〉 → |A,A⊕B〉 (1.8)

where ‘⊕’ represents addition modulo two function. In terms of the computa-

tional basis i.e. {|00〉 , |01〉 , |10〉 , |11〉} the matrix representation is given by,

CNOT=


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


CNOT gate when combined with a single qubit quantum gate forms a universal

set for quantum computing i.e. any multiple qubit gate may be composed from

CNOT and single qubit gates.

• Toffoli Gate

Tofoli is a three qubit gate from which two qubits acts as control and other one

acts as a target. Control qubits are unaffected by the action of Toffoli gate and

target qubit flips when both the control qubits are in state |1〉 under the action

of Toffoli. Its circuit representation is given by,

b
b

Figure 1.3: Circuit representation of a CNOT gate.

The action will change the qubits as,

U |A,B,C〉 → |A,B,C ⊕ AB〉 (1.9)

5



Toffoli gate’s matrix representation is given by,

U=



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0


Toffoli gate is a universal for classical computation. It can simulate any irre-

versible classical logic gate. And it can be easily proved by simulating NAND

gate which is a universal gate for classical computation from Toffoli gate.

U |A,B, 1〉 → |A,B, 1⊕ AB〉 (1.10)

The equation 1.10 is simulating NAND gate by considering first two qubits as

input and third qubit as output. Third qubit here acts as an ancilla state. So

it infers from above that Toffoli gate is a universal for classical computation.

The universality of Toffoli gate ensures that quantum computers are capable of per-

forming any computation which is a classical computer may do. There are many

muliple qubit quantum gates with different properties which we will come across in

the upcoming chapters. The next chapter will give an introduction of how one can do

quantum computation using a physical system.

6



Chapter 2

NMR Quantum Computing

“On the theoretical side, I was concerned with stochastic resonance.”

— Richard Ernst

The basic requirements for experimental quantum computing are well known and

are listed by DiVincenzo [DiV00]. In this chapter, we will see how nuclear magnetic

resonance (NMR) follows all of these criteria and why is it suitable for quantum com-

puting. Nuclear magnetic resonance differs from other implementations of quantum

computer as it uses an ensemble of systems. It uses the spin states of the molecule as

a qubit. And the output of an NMR measurement is an average over all the molecule’s

signal. In the next section, the theory behind nuclear magnetic resonance is explained.

2.1 Basic Concepts on NMR

Resonance is a phenomenon which can be defined as, when a system with natural

frequency is excited by an external periodic perturbation of frequency close to that

natural frequency then a strong increase in the amplitude of vibration takes place

[IO07]. When a particle having magnetic dipole moment is simultaneously placed in a

static magnetic field and an oscillating electromagnetic field, resonance occurs. This

phenomenon is known as magnetic resonance.

The phenomenon of NMR can be observed for a nuclei having non-vanishing total

angular momentum. If the number of protons and neutrons are even then nuclear

spin is zero. On the other hand, if there is only an unpaired nucleon then nuclear spin

is equal to the total angular momentum of that nucleon. All atomic nuclei having

7



non-zero nuclear spin posses a magnetic dipole moment (µ).

The Wigner-Eckart theorem gives the direct relation between magnetic dipole

moment and nuclear spin as,

µ = γn}I (2.1)

where γn is the gyromagnetic ratio of the nucleus and I is the total angular momen-

tum. In case of nucleus, total angular momentum commonly refers are spin angular

momentum or nuclear spin. Characteristic of nuclear spin are are given by the eigen-

values and the eigen vectors of I2 and its z-component Iz,

I2 |I,m〉 = I(I + 1) |I,m〉 (2.2)

Iz |I,m〉 = m |I,m〉 (2.3)

where I and m are angular momentum quantum number and magnetic quantum num-

bers respectively. And m can vary from −I to I taking 2I + 1 values.

The energy involved in NMR experiments is much smaller than the energy spacing

between the ground and excited states. One can consider that the nucleus is in ground

state permanently i.e fixed I. The energy of a nucleus in such a situation is therefore

determined only by magnetic quantum number (m).

2.1.1 Interaction with Static Magnetic Fields

Atomic nuclei with non-zero total angular momentum interact with electromagnetic

fields present in their environment through the nuclear magnetic dipole moment. The

basic interaction necessary to understand NMR is the Zeeman interaction. It is the

interaction between the nuclear magnetic dipole and an external static magnetic field

which gives rise to manifold of energy levels for the nucleus depending up on the ori-

entation with respect to the static magnetic field. The absorption and irradiation of

energy associated with transitions between these levels constitute the physical phe-

nomena observed in an experiment of magnetic resonance. The figure 2.1 describes

how a nucleus having a magnetic moment µ rotates in an external static magnetic

field B0.

8



Figure 2.1: Precession of a nucleus in a static magnetic filed.

The classic interaction between a body with magnetic dipole moment µ and an

external static magnetic field B0 is descried by potential energy(U) as,

U = −µ.B0 (2.4)

and have an associated torque (τ),

τ = µ×B0 (2.5)

When an atomic nucleus with magnetic dipole moment (µ) is placed in an external

static magnetic field B0, the nuclear states assume different energy values depending

on the orientation of the nuclear spin. This splitting is known as nuclear Zeeman

effect and the Hamiltonian corresponding to this is known as Zeeman Hamiltonian,

HZ = −µ.B0 = −µz.B0 = −γn}B0I = −}ωLIz (2.6)

where ωL is the Larmor frequency. Larmor frequency is defined as the frequency with

which the angular momentum vector precess about the external magnetic field. The

energy eigenvalues corresponding to the Hamiltonian is given by,

Em = −m}ωL (2.7)

Hence, there are 2I+1 energy levels equally spaced by }ωL.

9



2.1.2 Interaction with Radio Frequency Field

In NMR, for nuclear spins the Larmor frequencies are of the order of MHz, so the

excitation is achieved by radio frequency (RF) field. This can be understood by

considering the effect of a second time-dependent magnetic field B1(t) which is applied

perpendicular to the static magnetic field, say in x direction.

B1(t) = 2B1cos(ωrf t+ φ)̂i (2.8)

where ωrf and φ are the frequency and the phase respectively. The RF Hamiltonian

is give by,

HRF = −µ.B1(t) = −γn}B0Ix[2B1cos(ωrf t+ φ)] (2.9)

The result of this is that when the frequency of the RF field is close to the Larmor

frequency i.e., on resonance, the transition between the eigenstates are induced.

The semi classical interpretation for the excitation of nuclear is spin is obtained by

considering the linearly polarized magnetic field B1(t) as composed of two circularly

polarized fields rotating with same frequency but in opposite directions,

B1(t) = B+
1 (t) +B−1 (t) (2.10)

B+
1 (t) = B1[cos(ωrf t+ φ)̂i + sin(ωrf t+ φ)ĵ] (2.11)

B−1 (t) = B1[cos(ωrf t+ φ)̂i− sin(ωrf t+ φ)ĵ] (2.12)

In the condition of resonance, the field B−1 (t) rotates around z-axis, whereas B+
1 (t)

rotates in opposite sense. Consider a coordinate system rotating around z-axis with

frequency the same as B−1 (t) such that B−1 (t) is stationary and B+
1 (t) is rotates with

twice the Larmor frequency. Hence, B−1 (t) will have an effect on the nuclear spins.

If the frequency of RF is ωrf not equal to ωL, the precession of the magnetic

moments in the rotating frame in an effective magnetic field given by,

Beff = (B0 −
ωrf
γn

)ĵ +B1î (2.13)

This effective field will cause the net magnetization to deviate from z-axis. On res-

onance the magnetization (M) precess in the frame around x′- direction with the

nutation frequency given by ω1 = γnB1 and with angle θp = γnB1tp, where tp is the

10



time for which RF was on. This transient RF is known as a RF pulse, and tp is the

pulse duration. If θp = π/2 it is called a is π/2 pulse and θp = π is known as a π

Figure 2.2: The effect of the RF field on nuclear magnetization.

pulse as shown in figure 2.2. This can be also thought as a spin-1/2 system. The π/2

and π will work as equalization and an inversion of population. The return to equi-

librium needs the system give up some energy to the environment (generally named

the lattice). This process is termed relaxation and is detailed in the next section.

2.1.3 Relaxation

After a π/2 pulse, the collection of nuclear spins precess around plane perpendicular

to B0. This is a non-equilibrium situation and after some time the magnetization

returns to its equilibrium position. This thing is caused by two process which are

occurring simultaneously namely transverse and longitudinal relaxation.

The transverse relaxation is the process which causes the disappearance of compo-

nents of the nuclear magnetization M form axis perpendicular to B0. Due to the spread

11



in frequencies of nuclear spins the transverse magnetization causes the dephasing in

spins. This dephasing is known as spin-spin relaxation. In the spin-spin relaxation,

the spins distribute randomly and making the net transverse magnetization zero. The

differential equation corresponding to this is given by,

dMx,y

dt
= −Mx,y

T2
(2.14)

where T2 is the transverse or spin-spin relaxation time. The solution of this equation

is given as,

Mx,y = M0e
−t/T2 (2.15)

where M0 is the initial value of the magnetization.

Whereas the longitudinal magnetization will tend to return to its equilibrium

position. This restoring will need some energy to go to other level. There will be

an exchanged energy between system and environment named the lattice. Due to

this, it is known as spin-lattice relaxation. The differential equation is given as,

dMz

dt
= −M0−Mz

T1
(2.16)

where T1 is the spin-lattice relaxation time. The solution to such equation is given

by,

Mz = M0(1− et/T1) (2.17)

The relaxation times are parameters characteristics of each particular system and

magnitudes depend on factors such as temperature, physical state, magnitude of ex-

ternal magnetic field, etc.

2.1.4 Nuclear Spin Interactions

The nuclear spins are not at all isolated from each other and from the local envi-

ronment. These interaction influence the exact value of the resonance frequency of

each nucleus and its environment. During NMR experiment, the interactions between

nucleus and the electromagnetic fields present in the environment. This can be well

understood by the nuclear spin Hamiltonian (Hnuclear) which can be written as,

Hnuclear = Hext +Hint (2.18)
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where Hext represents the interactions of the nucleus with applied electromagnetic

fields and Hint corresponds to internal interactions with the environment of nucleus.

The external Hamiltonian can be written as,

Hext = HZ +HRF (2.19)

There are several contributions to the internal Hamiltonian which depends upon

the physical characteristics of the material. The internal Hamiltonian is given by,

Hint = HCS +HD +HJ +HQ (2.20)

where HCS is the chemical shift interaction of the nucleus with surrounding orbiting

electrons; HD is the dipolar interaction between nuclei; HJ is electron-mediated in-

teraction and HQ is the quadrupolar interaction for spin greater than 1/2. Now we

will discuss the terms in internal Hamiltonian one by one.

Chemical Shift

The magnetic field experienced by the nuclei is not equal to the external magnetic

field due to the presence of other orbiting electrons. The local magnetic field is given

by,

Bloc = (1− σ̃)B0 (2.21)

where σ̃ is known as the chemical shift tensor. For an isotropic liquid substance, the

average value of chemical shift known as isotropical chemical shift [IO07],

HCS
∼= γn}σisoB0Iz (2.22)

where σiso is known as isotropical chemical shift which is related to trace of σ̃.

There is a small correction added to the magnetic field due to the effect of the

chemical shift. The shift in resonance frequency away from Larmor frequency is given

by,

ω = ωL(1− σiso) (2.23)
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The resonance frequency is usually expressed as a relative shift measured with refer-

ence to the resonance frequency (ωref ) of the standard substance,

δ =
ω − ωref
ωref

(2.24)

where δ is called as the chemical shifts of the resonance lines which is usually expressed

in ppm (parts per million).

J-Coupling

The J-coupling is also known as indirect or scalar coupling is an interaction between

the nuclear magnetic dipole moments of neighbor nuclei. This interaction is mediated

by electron cloud involved in the chemical bond. The Hamiltonian for this kind of

interaction for two spins I1 and I2 for hetero-nuclear case is given by,

HJ = 2π}JI1zI2z (2.25)

When this Hamiltonian is taken into account as a perturbation in Zeeman Hamiltonian

with chemical shifts, it is observed that each line split in a multiplet which depends

on number of identical nuclei coupled. The J-coupling can be positive or negative

means the coupling can favor either an anti-parallel or parallel alignment of nuclear

spins.

2.1.5 NMR of Two Coupled Spins

Here we the NMR of two coupled spin-1/2 system. Consider two J-coupled spins

denoted as 1 and 2. Taking the magnitude of J-coupling to be much smaller than the

difference in resonant frequencies of the two nuclei this is for a hetero-nuclear system

which is usually named as ‘AX’ system. The Hamiltonian in the hetero-nuclear system

is given by,

H = −}ω1I1z −−}ω2I2z + 2π}I1zI2z (2.26)

The resonant frequencies includes the effect of chemical shifts. I1z and I2z are the

angular momentum operator in z-direction for both the spins. The energy levels

associated with this Hamiltonian are given by,

E+1/2,+1/2 = }
(
− ω1

2
− ω2

2
+
πJ

2

)
(2.27)
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E+1/2,−1/2 = }
(
− ω1

2
+
ω2

2
− πJ

2

)
(2.28)

E−1/2,+1/2 = }
(ω1

2
− ω2

2
− πJ

2

)
(2.29)

E−1/2,−1/2 = }
(ω1

2
+
ω2

2
+
πJ

2

)
(2.30)

These are the energy levels and transition between them are allowed according to

the selection rules. So there are four peaks in the spectrum corresponding to the

frequencies ω1 ± πJ and ω2 ± πJ . And the separation between each doublet is 2πJ .

The Hamiltonian and energy levels will vary according to the number of spins in the

system.

2.1.6 Density Matrix Formalism

The most appropriate approach to describe the NMR phenomena involves the use of

density matrix formalism from statistical mechanics. Here we will not have access

to individual particles but on an ensemble. The density operator ρ is a collection

of identical, independent nuclei. The expectation value of any observable over the

ensemble is given by,

〈A〉 = Tr{ρA} (2.31)

In an NMR experiment, the observables of interest are the components of nuclear

magnetization. These components are proportional to ensemble average values of

nuclear spin operator. Taking magnetization in x-direction for example, the observable

is given by,

〈Mx〉 ∝ Tr{ρIx} (2.32)

The time evolution density operator is given by the Liouville-von Neumann equation

as,
dρ

dt
=
ι

}
[ρ,H] (2.33)

where H is the Hamiltonian of the system. If H is time independent, then ρ is given

by,

ρ(t) = e−(ι/})Htρ(0)e(ι/})Ht (2.34)

the term e−(ι/})Ht is called the evolution operator. The above equation can be written

as,

ρ(t) = Uρ(0)U † (2.35)
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When the Hamiltonian is not time-independent then it can be split into a finite number

of time-independent terms. And it is useful in understanding the NMR experiments

which consists of sequence of RF pulses and free evolution time periods.

In an orthonormal basis, the density operator can be represented by a matrix,

known as density matrix,

ρ =


ρ11 ρ12 ρ13 . . . ρ1n

ρ21 ρ22 ρ23 . . . ρ2n
...

...
...

. . .
...

ρn1 ρn2 ρdn3 . . . ρnn


This density matrix must satisfy some of the requirements such as,

• It should be a Hermitian operator.

• The diagonal elements must be positive or zero.

• The trace should be unity.

The diagonal elements in the density matrix represents the population and off diagonal

elements are coherence. The element ρmm gives the probability of finding a member

of ensemble in that state of quantum number m. The coherence term is basically due

to the relaxation phenomena i.e. transverse magnetization and population are related

to longitudinal magnetization.

2.2 NMR Quantum Information Processor

2.2.1 Qubits in NMR

The basic requirement for qubit in any system is that they must be well characterized

and susceptible to manipulation by external perturbation. So that one can be able to

control them. A natural implementation in NMR of a qubit is an isolated spin 1/2 in

a magnetic field. Here we represent the general state as,

|φ〉 = α |+1/2〉+ β |−1/2〉 (2.36)

The state |+1/2〉 labeled as |0〉 and state |−1/2〉 as |1〉.
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For spin 1/2 system each qubit is associated to a spin. A system of n qubits can

be implemented by as system on n coupled spins 1/2, with the following Hamiltonian,

H = −
n∑
i

}ωiI iz + }2π
n∑
i 6=j

JijIizIjz (2.37)

It is difficult to obtain many qubits in NMR liquid state as they require a sample with

n NMR distinguishable spins in a single molecule, which is very difficult to obtain.

In NMR, system is not constituted of single molecule but an ensemble of molecules.

So one can think of NMR liquid sample as constituted by a huge number (≈ 1023) of

molecular quantum processor executing a kind of parallel processing.

2.2.2 DiVincenzo Criteria

The DiVincenzo criteria [DiV00] is a list of conditions that are necessary for construct-

ing a quantum computer on a real system. There are total seven criteria, first five

are for quantum computation and rest two are for quantum communication. We will

discuss on first five criteria. The NMR system very successfully follows these criteria.

The criteria are listed below-

• Characterizing Quantum system- In an NMR system the states are well char-

acterized by density matrices.

• Initialization- NMR is different from other systems where initialization is done

using pure states, here initialization is done using pseudo pure states. There

are several methods of preparing the pseudo pure state and will be discussed in

next section.

• Implementation of Quantum Gates- The quantum gates can be implemented

by the RF pulses in an NMR system

• Measurement- in NMR we are able to measure states and the measurement

results are processed by quantum state tomography.

• Decoherence- This is what limits the computation. In NMR, decoherence time

is order of milliseconds to seconds depending upon the sample and one can do

the computation in this range.
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In the next section we will understand the some of the basic things which are needed

for the physical realization of an NMR quantum information processor.

2.2.3 Preparation of Pseudo Pure States

The fact that NMR experiment are only sensitive to the traceless deviation density

matrix makes the idea of pseudo-pure states [DGCH97]. So, one might search for

transformations that are applied to thermal equilibrium density matrix to produce a

deviation density matrix with the same form as a pure state.

The density matrix corresponding to a pure state follows the following properties:

ρ = ρn and Tr(ρ2) = 1. For a mixed state it follows: ρ 6= ρn and Tr(ρ2) < 1. After

applying some unitary transformation the state transforms as ρ
′

= UρU †. And after

checking by trace condition it follows that it is not possible to obtain a pure state

from a mixed state by only using unitary transformations.

As discussed to prepare a pseudo pure state we need something more than a unitary

transformation such as non-unitary rotations etc. The methods to produce a pseudo

pure state is described here.

Temporal Averaging

In this method of preparation of pseudo pure states, states are prepared by applying

unitary transformations to a thermal state and are combined to produce an average

state that behaves like a pure state in NMR.

Let us consider a two-qubit system density matrix in the computational basis |00〉,|01〉,
|10〉,|11〉 as,

ρi =


a 0 0 0

0 b 0 0

0 0 c 0

0 0 0 d


Lets apply the unitary transformation U0, U1 and U2 on ρi which are given by,

U0 =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


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U1 =


1 0 0 0

0 0 1 0

0 0 0 1

0 1 0 d



U2 =


1 0 0 0

0 0 0 1

0 1 0 0

0 0 1 d


where U0 is an identity operator, U1 can be get by applying the two CNOT gates and

U2 is conjugate transpose of U1. The final resulting density matrices ρ0, ρ1 and ρ2

will be obtained after the action of unitaries. Taking the average over these states to

obtain the effective state,

ρ00 = ρ0 + ρ1 + ρ2 =


3a 0 0 0

0 b+ c+ d 0 0

0 1 b+ c+ d 0

0 0 0 b+ c+ d


since b+ c+ d = 1, so the matrix will change and we will get the final density matrix

as,

ρ00 = (1− a)1 + (4a− 1) |00〉 〈00| (2.38)

The first term on right side is proportional to the identity and is not detected in NMR

and neither affected by the RF field. The second term transform as under the action

of RF pulse and also contribute to detecting signal. Hence, this state will act like

a pure state. The other pseudo pure states can also be obtained by applying some

unitary operations.

This can be generalized to system with large number (n) of spins. In that case it

is necessary to combine 2n − 1 prepared states to create a pseudo pure state.

Spatial Averaging

The spatial averaging technique is based on dividing the system in spatially separated

sub-ensembles. These sub-ensembles can be accessed independently in NMR using

combination of RF pulses and pulsed gradients. The pseudo pure state obtained
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will be averaged over all the sub-ensembles. This is a single shot implementation for

pseudo pure state. The unitary for getting pseudo pure state ρ00 is given as,

U =
[
Gz(τ)

(π
4

)I1
−y
UJ

( 1

2J

)(π
4

)I1
x
Gz(τ)

(π
3

)I2
x

]
(2.39)

where Gz(τ) represents the gradient pulse for duration τ .

2.2.4 Generating Quantum Gates using RF Pulses

Quantum computation is based on a set of universal logic gates and they are nothing

but the unitary operations. In NMR, manipulation of spin states through unitary

transformation using RF pulses or evolution under internal interaction is possible.

The most elementary single-qubit operation which performs a rotation on single

spin and for which the rotation operator is given by,

Rn̂ = exp(−ιθn.I) (2.40)

where n is the unitary vector which defines the rotation axis, θ is the rotation angle

and I is the nuclear spin operator which is given by,

I = Ixî+ Iy ĵ + Izk̂ (2.41)

Since RF pulses are direct implementation of unitary operations, so the action of on

resonance pulse with phase φ and pulse duration tp is described by a pulse propagator

which is given by,

(θ)Iφ = exp(−ιΩtpIφ) = exp(−ιθIφ) (2.42)

where,

Iφ = Ixcos(φ) + Iysin(φ) (2.43)

and θ = Ωtp. This shows that any spin rotation in xy plane can be generated by RF

pulses of proper phase, amplitude and duration.

Some of the single-qubit gates which can easily be generated using RF pulses are,
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• NOT Gate- It can be generated via the π-pulse along the x-axis.

(π)Ix = exp(−ιπIx) = e−ιπ/2

[
0 1

1 0

]
(2.44)

• Phase Gate- This gate can be achieved from a z-rotation of arbitrary flip angle.

R(θ) =
(π

2

)I
x
(θ)Iy

(π
2

)I
−x

= e−ιθ/2

[
1 0

0 eιθ

]
(2.45)

when θ = π/4, π/2 and π we get T, S and Z gates respectively.

However in the case of multiple qubits the situations somewhat changes as now the

spins will interact with each other. For a hetero-nuclear case where different spins

have distinct NMR frequencies and are J-coupled with each other. In this case we

can apply a resonant pulse to one of them without affecting the other and if pulse

amplitude is much higher than the magnitude of J-coupling then we can neglect the

effect of that. These RF pulses act as a selective pulse to each spin and these are

known as hard pulses as the RF power used is high.

In the case of homo-nuclear system, where each nuclei have a close resonance fre-

quency to the other nuclei and to perform rotation of single spin it is necessary to

use RF pulses of narrow excitation profiles. These pulses have long durations and

low power so these are known as soft pulses. But the error associated with them is

because of their long duration so we can not neglect the evolution under J-coupling

which is not a desirable feature. The solution to this is apply a self-refocusing pulse

or setting up the pulse duration to be multiple of J-coupling evolution period. But

all these factors will only increase the time for pulse sequence which can lead to other

errors.

The construction of multiple qubit gates can be done using RF pulses and delays.

There are many different methods to generate the pulse sequence for these gates as

we will discuss in next chapter. Here we designed a new method for generating the

pulse sequence by optimization using genetic algorithms. In the upcoming chapters

this new method is introduced with results for some of the very important gates in

quantum computation and quantum information.
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Chapter 3

Optimization of Quantum Gates

“Computer programs that evolve in ways that resemble natural selection can solve complex

problems even their creators do not fully understand”

— J.H.Holland

3.1 Introduction

In NMR quantum information processor, to implement any process we apply unitary

operations and to apply unitary operations one need to break these operations into

pulse sequences. The pulse sequence in NMR system is applied through RF fields.

The process of breaking a unitary into a pulse sequence is not an elementary task. So

we consider this as an optimization problem to reach an optimum solutions of pulse

sequence to get the desired unitary process done.

Since an NMR quantum information processor is prone to different types of error

just like any other physical realization of quantum information processor. So some

times the processes are not as efficient as we want them to be. This loss of fidelity

is due to the errors associated with offset frequency, inhomogeneity, refocusing, deco-

herence etc. The main task here was to design an optimization algorithm to break

down the multiple qubits unitary into the high fidelity pulse sequences.

There were several attempts in development of pulse sequence such as, break down

of unitary into two qubit CNOTs and one qubit rotation gates [JAS96], GRAPE algo-

rithms [NK05], using transition pulses [XF02], using genetic algorithms [MK12][AA09],

Bang-Bang [GBM16] and many more. Some of the attempts are very successful in
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physical realization also. Here we developed an optimization scheme for pulse se-

quence using genetic algorithms. This algorithm break down the unitary into pulse

sequence by using only hard pulses and delays. The experimental results were also

obtained with high fidelity.

In the next section, we will try to understand the biologically inspired genetic

algorithm and how it can be used in optimization schemes.

3.2 Genetic Algorithm

3.2.1 Introduction

Genetic algorithm, which is a global optimization technique which mimics the be-

haviour of biological evolution in nature. It was developed by John Holland in 1970

[Hol92]. It is the subset of larger class of evolutionary algorithms. Genetic algorithms

are commonly used to generate high-quality solutions to optimization and search

problems by relying on biologically inspired operators such as mutation, crossover

and selection [Mit96].

The genetic algorithms are different from other classical algorithms which uses

local search optimization techniques in the following ways-

• Classical algorithm generates a point at each iteration and this point will lead to

a solution. Whereas, genetic algorithm generates a population at each iteration

and the best out of them will reach to a solution.

• In classical algorithms the next point is selected deterministically but in genetic

algorithms the next population is selected randomly.

It is able to solve both constrained and unconstrained optimization problems very

efficiently. It has been used in variety of fields and the range of applications of the

genetic algorithm are nearly boundless. From antenna design [G.S06] to the devel-

opment of solar tracking systems to maximize power harvesting [S.M08]. From the

development of muscle based control methods for bipedal creatures [T.G13] to the

optimization of molecular geometry [D.M95].

The genetic algorithms exploits the population (chromosomes) of candidate solu-

tions to an optimization problem to evolve towards a better solution. Each candidate
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has a set of properties (genotype) which can be altered or mutated. There are some of

the important features of algorithm which needs to be understood before designing it

for the purpose of pulse sequence development. The next sections will focus on these

features.

3.2.2 Initialization

Once the genetic representation is defined we need to initialize the problem by giving

population size. Initialization is a crucial step for the algorithm since the optimality

of the solution depends on this. Typically the initial population vary from a range

of hundreds to thousands but it heavily depends on the search space of the problem.

Often initial population is generated randomly so that it can cover the whole search

space and sometimes when we know where the solution exist the initial population

seeded according to that.

3.2.3 Fitness Function

Fitness function is a special type of objective function that is used to evaluate that

how close a given solution form a desired solution. It basically checks the overlap

between a given solution and desired solution. The fitness function depends upon the

type of problem one is addressing.

Figure 3.1: Figure of fitness landscapes. Arrows indicates the flow of population.
Points A and C are local optima and B is global optima.

The main aim of the genetic algorithm is to find the global optimum in a given

workspace for a given function. This optimum may either be a maximum or a mini-

mum. This choice rests solely on the user and the nature of the fitness function. A

way of looking the fitness function is in terms of fitness landscape as shown in figure

3.1. We have observed that,
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• The steeper the fitness landscape towards the global optimum, the harder it will

be for the algorithm to find it.

• The presence of local optima seek to divert the genetic algorithm to a state of

stagnation. Hence the phenomenon of fewer local optima in the fitness landscape

is desired.

3.2.4 Selection

During each successive iteration or generation some of the individuals are selected

based on their fitness to breed a new generation. It is based on the criteria of ‘survival

of the fittest’. Since the higher fit individual is more likely to get selected to breed.

The two main features which determine the direction the algorithm takes in the fitness

landscape are,

• Selection pressure- It influences the likelihood of the algorithm to move towards

or away from the local optima. Higher selection pressure [Bac94] chooses more fit

individuals for the processes breeding, thereby allowing extremely fit individuals

to get even fitter. This situation is useful when the algorithm has almost reached

the global optimum. On the other hand, selection pressure of lesser magnitude

allows for the algorithm to branch out and reach all areas of the workspace.

If the range of fitness values among the population is high, the lower selection

pressure will ensure that the algorithm does not get stuck on local optima.

• Stochastic Noise- As the term denotes, stochastic noise adds a random amount

of noise to ensure that the algorithm does not stagnate at any of the local optima.

If there are a large number of pockets of local optima, higher stochastic noise

will move larger amounts of the population away from the local optima. The

downside here is that even if a solution representing the global optimum is found,

the stochastic noise could make the algorithm take a wrong decision and hence

move away from the global optimum.

There are several selection methods [KJ13] such as Roulette wheel selection, stochastic

universal sampling and linear ranking etc. One can use the existing selection methods

or can generate their own method depending on the nature of the problem.
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3.2.5 Genetic Operators

The next thing after selection is the mixing of the population to create new generation.

The mixing of population is done so that the problem aim towards a solution. The

solution can be reached in such a way that the next generation will have different

chromosomes than the previous generation and will have a average high fidelity in this

way after some generations the algorithm will reach to an optimal solution. There are

several operators for this but some of them are inspired by genetics itself. Here are

the two operators which are widely used in genetic algorithm,

Crossover

The crossover is used to vary the genotypes of form one generation to the next. It is

similar to the crossover in biological systems where two individuals are selected to act

as a role of parents and the chromosomes of them recombined to produce an offspring.

Figure 3.2: Crossover operator in genetic algorithm

The steps involved in the crossover operation figure 3.2 are,

• Two members are chosen from the population based on one of the selection

methods introduced above.

• A locus (crossover point) point is chosen at the same point in both the individ-

uals.

• The portions after the locus are swapped.

Mutation

This is a genetic operator which is used to maintain the genetic diversity in the pop-

ulation so that the population does not stagnate at a point. Genetic algorithm can
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come to a better solution using mutation. Mutation involves randomly picking of an

individual and changing its genotype randomly as shown in figure 3.3.

Figure 3.3: Mutation operator in genetic algorithm

There is always a probability associated with the mutation. The mutations could

either be good or bad. But after the mutations, only the individuals with a higher

probability of survival, reproduced and their mutations persevered. Similar to that, we

introduce a stochastic noise in our system which implements the function of mutation.

An individual is chosen at random , and according to its representation scheme, a few

of its variables are changed.

3.2.6 Termination

The algorithm runs until some termination condition is being given. The termination

condition depends upon the representation schemes and the type of the problem one

is dealing with. The most common used termination condition is when we the desired

solution is obtained or number of generations passed the limit of maximum genera-

tions.

The next section will give an idea of how we incorporated the genetic algorithms

in solving the problem of pulse sequence development with great efficiency.
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3.3 Optimization using Genetic Algorithms

3.3.1 Introduction

As we have seen in the previous section that how genetic algorithm works and how

it reaches an optimal solution. This global optimization scheme is very efficient and

time saving. Here we seek to optimize quantum gates for implementing it on an NMR

quantum information processor. We need to first design an algorithm according to the

problem, the next step will be to incorporate genetic algorithm to solve this problem.

The liquid state NMR system Hamiltonian for a n spins system is composed of

terms which describes the interaction of spin with external magnetic field and inter-

actions of spins with each other. The rotating frame Hamiltonian is given by,

HNMR = −π
n∑
i=1

(νi − νirf )σiz +
n∑

i<j,=1

π

2
Jijσ

i
zσ

j
z. (3.1)

where νi are the chemical shifts, νirf are the rotating frame frequencies, Jij are the

scalar couplings between the spins and σz are the Pauli-z matrix which is related to

angular momentum operator (I) as,

Iz =
σz
2

(3.2)

For designing pulse sequences we exploited the NMR system Hamiltonian itself.

To proceed further and to make use of genetic algorithm in this problem we need

to define a fitness function. The fitness function we will used here is fidelity function

which is most commonly used in quantum computation and quantum information.

The fidelity function (F ) [NK05] is given by,

F =
∣∣∣Tr[(Uopt)(U †tar)]∣∣∣2 (3.3)

where Utar is the target unitary operator which is desired and Uopt is the derived uni-

tary operator. It is normalized such that when Uopt=Utar, the fitness is 1.

The derived unitary operator is the one we are optimizing and taking it close to

target unitary. This fidelity function will give some value for every optimized unitary
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which tells us how much it is overlapped with the target unitary. The derived unitary

operator (Uopt) is defined as,

Uopt =
N∏
l=1

exp[−i(HNMR + ΩIφlk)τl]exp[−iHNMRδl] (3.4)

where,

Iφl =
1

2
(σx cosφl + σy sinφl) (3.5)

σx and σy are the Pauli-x and Pauli-y matrices respectively. The equation 3.4 describes

the time evolution of Hamiltonian. The first term of the equation shows the time

evolution of system and RF field Hamiltonian and second term is related to time

evolution of system Hamiltonian in absence of RF field. The Ω is the power of the

pulse, τ is the width of the pulse and δ is delay between the pulses as shown in the

figure 3.4.

Æ

l

�

l

�

l

Figure 3.4: Propagator represents the lth pulse of τl width along phase φl followed by
delay δl.

The main idea is to develop a pulse sequence comprising of hard pulses and delays.

The term hard pulse is used because the RF field is greater than the size of reduced

field and the time for implementing them is less. This is done in order to minimize

the errors which results in a high experimental fidelity. To achieve this we fixed the

value of Ω to its full power and varied pulse width (τ), phase (φ) and delay (δ). So

this will act like a propagator as shown in figure 3.4 which will repeat itself N times

to reach a solution. The three parameters which are explained above were exploited

to reach an optimal solution for the pulse sequence.
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3.3.2 Representation Scheme

Every problem which needs to be solved with the genetic algorithm should be rep-

resented in an efficient way. The optimality of the solution depends upon the rep-

resentation scheme as well. In our optimization problem, each pulse sequence was

represented as a matrix of order N × 4 where N represents the number of operation

needs to be done in order to reach a desired unitary. Every row here represents a

hard pulse and a delay just like a propagator as shown in figure 3.4. The detailed

description of every column is given below,

• Column 1- This column represents the pulse width τ of a hard pulse. Since we

are keeping the power (Ω) full so the angle (θ) of the hard pulse which is θ = Ωτ

will vary by varying τ . Since θ is restricted in a range of {0, 2π} so width (τ)

will be adjusted accordingly.

• Column 2 and 3- These columns are basically associated with phase (φ) of

the pulse. Since φ is restricted in a range of {0, 2π} when taken in radians, we

divided it into two parts i.e. divided the search space to make it easy. The range

is divided into two parts as {0, π} and {−π, 0}. The second column will have

entries 0 or 1 which represents from which set do they belong and third column

will have values in range {0, 180}.

• Column 4- This column contains the value of delays (δ) between the hard pulses.

The values actually depends upon which unitary are we optimizing. The values

of delays are typically in range of microsecond to second.

In every pulse sequence the number of rows (N) will vary depending upon which

unitary is being optimized. Sometimes the number of hard pulses and delays are

less and sometimes more. The increase in number of rows increase the control over

the system. So giving a variable number of rows would be a good idea to start the

algorithm.

3.3.3 Selection

The selection of individuals for the processes of crossing over and mutation is of ma-

jor importance, as it describes the direction taken by the population in the fitness

landscape [Bac94]. Hence selection pressure at every generation is also of great im-

portance. We thus arbitrated that in the initial stages, a low selection pressure would
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be used to allow exploration of the candidate solutions in the workspace. If a po-

tentially viable solution was recognized, the intensity of the selection pressure would

be increased in order to allow for exploitation of neighbours of the recognized solution.

After attempting existing selection mechanisms as described previously we devised

our own selection mechanism called Luck-choose which allowed the algorithm to con-

verge to a solution much faster. It’s mechanism of operation involved first multiplying

pseudo-randomly generated weights to the fitness values of all individuals, and sub-

sequently determining the highest among the output values.

Now as the representation scheme and selection method is set we need to define

some genetic operators which will help in increasing the genetic diversity which will

directly help to get an optimal solution.

3.3.4 Crossover

As previously seen that how crossover which is inspired by genetics works. These

operations should be modified according to the representation scheme. In a matrix

representation scheme the crossover operation works as follows,

• Two members are chosen from the population using Luck-choose selection pro-

cess.

• Two numbers are randomly chosen within the maximum number of rows, and

two numbers are randomly chosen within the maximum number of columns.

• The first number of each corresponds to the starting point of crossover and the

second number corresponds to the ending point.

• Using the above four numbers we will be able to create a rectangular sub-

matrix inside a matrix. This sub-matrix of elements is swapped between both

the selected individuals.

One example of this kind of operation is as shown in the figure 3.5.

3.3.5 Flip

This is another kind of operation which was used in the optimization scheme. It exists

due to existence of the non-commutativity of each propagator with the other. It works

in the following way,

32



• One member is chosen from the population using Luck-choose selection process.

• Two random rows are chosen from the given number of rows.

• These chosen random rows swapped with each other.

The example for this kind of operation is as shown in the figure 3.5.
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Figure 3.5: Crossover and flip operations.

3.3.6 Mutation

This operation depends heavily on the amount of stochastic noise required in the sys-

tem as explained earlier. Stochastic noise adds a random amount of noise to ensure

that the algorithm does not stagnate at any of the local optima. In the initial stages,

low stochastic noise is preferred, so the mutation operation may be disabled. But

after the population explores the workspace through a few generations, the chances

of getting stuck in local optima increase, and hence the probability of occurrence of

the mutation operation is increased in steps, until a threshold value, above which the

stochastic noise would only serve to drive candidate solutions away from the global

optimum.

Mutation works in the following way- it takes a single member of population via

luck chose selection method, and changes all the data values of the chosen member.

The algorithm was designed as explained above. The algorithm terminates either

when it reaches an optimal value or when the number of generations crosses the max-

imum number of generations.
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3.4 Optimization Details

The algorithm was used to optimized three qubit unitary matrices. The implementa-

tion of the algorithm with the above modifications was done using MATLAB [MAT15]

and the flow chart is as shown in the figure 3.6. After running the genetic algorithm,

outputs are obtained with fidelity in the lower 80’s. Hence they are passed through a

local optimizer to obtain more precise outputs. This local optimizer randomizes the

values of the first, third and fourth columns within a small range of values around the

existing value. Crossover operations are performed again, to further increase efficiency

of optimization and outputs can be derived with fidelity above 0.99 by this method.

An iteration of the program running the algorithm for 15 rows and 500 chro-

mosomes, took an average time of 3 hours using a single core for processing, on an

i7-4700MQ processor with 8 GB of RAM. For parallel processing, the parallel com-

puting toolbox was used, enabling us to run 6 iterations simultaneously on 6 virtual

cores for approximately 4 hours. This reduced the average run-time per iteration to

approximately 40 minutes. The local optimizer however could be run from 10 minutes

to 15 hours depending on the final fidelity required and the fidelity of the starting

matrix.
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Figure 3.6: Flow chart for optimization scheme
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Chapter 4

Experimental Implementation of

Optimized Quantum Gates

4.1 Introduction

The three qubit unitary matrices were optimized using the optimisation technique

explained previously. Since the technique we have shown here can be used for any

number of qubits but we have shown the results for three qubit gates. From the

optimization, we got very high fidelity pulse sequence for unitary matrices. The

optimized pulse sequences was experimentally implemented on an NMR quantum

information processor with very high experimental high fidelity.

4.2 Experimental NMR Qubits

The three fluorine (19F) of molecule iodotrifluoroethylene are used to encode the three

qubits. The molecular structure with chemical shifts (νi) and scalar couplings (J) are

as shown in the figure 4.1.

Figure 4.1: Molecular structure of iodotrifluoroethylene with the measured chemical
shifts (νi) and scalar couplings (J)

37



All experiments were performed at 294 K on a 400 MHz NMR spectrometer. The

fluorine spin resonates at a Larmor frequency of 376.45 MHz. The rotating frame

Hamiltonian of the three qubit system can be written as,

HNMR = −π
3∑
i=1

(νi − νirf )σiz +
3∑

i<j,=1

π

2
Jijσ

i
zσ

j
z. (4.1)

where νi are the chemical shifts, νirf are the rotating frame frequencies of ith spin,

Jij are the scalar coupling constants between ith and jth spin and σz are the Pauli-z

matrix which are related to angular momentum operator (I) as σz = Iz/2.

For the experiment, the system we are chose was a homo-nuclear system since

the same three nuclei are being used as three qubits. So the all three spins will be

controlled simultaneously. In this case the optimized unitary (Uopt) will change as

follows,

Uopt =
N∏
l=1

exp[−i(HNMR + Ω(Iφl1 + Iφl2 + Iφl3))τl]

exp[−iHNMRδl]

(4.2)

In NMR experiment, the liberty to apply any pulse through any φ axis was exploited.

So, the phase φ was fixed in a range of {0, 2π} in radians. The power (Ω) of hard

pulse was kept fixed at 120.88 × 103 rad/s, the hard pulse angle was taken in range

of {0, 3π/2} and range for length of the pulse (τ) was adjusted according to these

two factors. The delay (δ) factor between the pulses was also taken in some range

depending upon which unitary is being optimized. So in the beginning we have to

start with a guess or some idea for the range of time factors.

For initialization, the three-qubit system was prepared into a pseudo-pure state

|110〉 via the spatial averaging technique whose density operator is given by,

ρ110 =
1− ε

8
I + ε |110〉 〈110| (4.3)

where thermal polarization (ε) is approximately 10−5 and I is a 8 × 8 identity ma-

trix. The experimentally created pseudo-pure state was tomographed with a fidelity

of 0.97. All the experimental density matrices were reconstructed using a reduced
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tomographic protocol and maximum likelihood estimation [HS16], with the set of op-

erations given by {III, IIY, IY Y, Y II,XY X,XXY,XXX}; which are sufficient to

determine 63 variable for three-qubit system. Where I is the identity operation, X

and Y are the single spin operator which can be implemented by applying a π/2 pulse

on the corresponding spin. All the operators for tomographic protocols were numer-

ically optimized using genetic programming, each having a length of approximately

200 µs and had an average fidelity of ≥ 0.99. The fidelity of experimental density

matrix was computed by measuring the projection between theoretical expected and

experimentally measured states using the Uhlmann-Jozsa fidelity measure given by,

F = Tr(
√√

ρtheoryρexpt
√
ρtheory) (4.4)

where ρtheory and ρexpt denote the theoretical and experimental density matrices re-

spectively.

4.3 Results

This section contains the optimized pulse sequence and experimental results for three

qubit unitary matrices. The results for these optimized unitary gates are given in a

tabular form for different gates, every row of table forms a propagator and number

of rows represents the number of propagators to be joined together to form a pulse

sequence.

4.3.1 90o selective pulse

In a homo-nuclear system, the applied operations will act simultaneously on all the

three spins. So, to rotate a single spin we need a selective excitation pulse. This

kind of pulse is used in quantum state tomography and other phenomenas. Here we

optimized the pulse sequence via genetic algorithms for 90o selective pulse on third

qubit along Y-axis. The pulse sequence contains only hard pulses and delays. The

unitary for the selective pulse is given by the matrix,
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Utar=



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1


The optimized pulse sequence for this unitary matrix is given in Table 4.1. The pulse

sequence was obtained with a theoretical fidelity of 0.998 and the pulse duration

corresponding to this unitary is 200µs.

l τl(µs) φl δl(µs)
1. 12 97.32 27
2. 36 17.26 8
3. 5 172.1 14
4. 36 328.2 27
5. 33 12.6 2

Table 4.1: Table representing the pulse sequence for selective pulse. First column
represents the number of propagators to be joined together to form a pulse sequence.
The second, third and fourth column represents the pulse width (τ), phase (φ) and
delay (δ) respectively.

This pulse sequence was experimentally implemented on an NMR quantum infor-

mation processor. The spectra for this is as shown in the figure 4.2. The figure shows

what was desirable i.e. the excitation of only the third spin.

Qubit 1 Qubit 2 Qubit 3

!

F

(in ppm)

−90.20 −90.25 −90.30 −90.35 −90.40 −90.45 −90.50 ppm −115.1 −115.2 −115.3 −115.4 −115.5 −115.6 −115.7 −115.8 ppm −151.9 −152.0 −152.1 −152.2 −152.3 −152.4 ppm

-90.2 -90.4 -115.2 -115.6 -152.0 -152.4

Figure 4.2: Experimentally implemented 90o selective pulse on third spin along Y-axis.
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4.3.2 Toffoli Gate

Toffoli gate which is commonly known as CCNOT gate is one of the important gates

in quantum computation, as it is a universal gate for computation i.e. it can simulate

any classical irreversible gate. This ensures that quantum computers are capable of

performing any computation which is a classical computer may do.

Here we optimized this three-qubit gate using genetic algorithms which only in-

corporated hard pulses and delays. The first two qubits of this gate was considered as

control qubits whereas the third qubit as a target. The unitary matrix corresponding

to this gate is given by-

Utar=



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0


The optimized sequence for this gate is as shown in Table 4.2. The optimized pulse

sequence was obtained with a fidelity of 0.995 and with a pulse duration of 27ms. The

pulse sequence was experimentally implemented on an initially prepared pseudo-pure

state |110〉. The final state was obtained as |111〉 as theoretically predicted with an

experimental fidelity of 0.93. The experimental tomographed results are as shown in

figure 4.3.

4.3.3 Implementation of Fredkin gate

Fredkin gate which is commonly known as CSWAP gate is a universal gate for classical

reversible computation. This gate is of interest because of its direct applications

in error correction, cryptography, measurements, polarization transfer in NMR and

some of the quantum algorithms. It was previously implemented by breaking it down

into five two qubit gates. There are attempts to implement it in three transition

pulses in NMR quantum information processor. But these attempts led to errors

which led to decrement in experimental fidelity. Here we optimized this gate in single

shot i.e. without breaking it down into other unitary using genetic algorithms which
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l τl(µs) φl δl(µs)
1. 32 243.22 539
2. 27 138.58 546
3. 39 2.47 499
4. 36 320.89 3488
5. 32 352.29 2495
6. 34 355.84 536
7. 37 175.98 1938
8. 29 20.45 1957
9. 34 354.75 542
10. 18 297.71 564
11. 15 215.55 2487
12. 27 308.2 550
13. 32 326.82 513
14. 13 122.09 541
15. 4 332.61 2518
16. 24 354.12 546
17. 36 310.6 3806
18. 32 210.97 1971
19. 30 3.74 504
20. 38 338.48 565

Table 4.2: Table representing the pulse sequence for Toffoli gate. First column repre-
sents the number of propagators to be joined together to form a pulse sequence. The
second, third and fourth column represents the pulse width (τ), phase (φ) and delay
(δ) respectively.

incorporated only hard pulses and delays. The Fredkin gate works in a way that the

first qubit acts as a control qubit and if control qubit is 1, then the other two qubits

swap their values. The unitary matrix corresponding to this gate is given by,

Utar=



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1


The optimized pulse sequence for this gate is as shown in Table 4.3. The optimized

pulse sequence was obtained with fidelity 0.99 and a pulse duration of 32ms.
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l τl(µs) φl δl(ms)
1. 29 108.63 1.584
2. 20 200.75 3.712
3. 11 258.7 0.639
4. 25 197.31 1.075
5. 9 172.69 4.568
6. 19 188.99 1.964
7. 31 265.02 4.416
8. 27 100.22 2.161
9. 12 86.57 3.276
10. 32 233.09 2.194
11. 10 186 1.569
12. 30 170.75 1.592
13. 17 4.55 3.269
14. 21 188.17 2.184
15. 28 36.37 2.152
16. 21 330.83 4.423
17. 7 46.59 2.194
18. 14 102.17 3.066
19. 28 295.24 1.574
20. 13 126.96 3.720

Table 4.3: Table representing the pulse sequence for Fredkin gate. First column
represents the number of propagators to be joined together to form a pulse sequence.
The second, third and fourth column represents the pulse width (τ), phase (φ) and
delay (δ) respectively.

The pulse sequence was experimentally implemented on initially prepared pseudo-

pure state |110〉. The output state was obtained as |101〉 with a fidelity of 0.96. The

experimental tomographed results are as shown in figure 4.3b.

43



000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

(a)

(b)

(
)

Real Imaginary

Figure 4.3: Real(left) and imaginary (right) parts of the experimental tomographs of
(a)|110〉 state prepared with fidelity 0.97. (b) after Fredkin(CSWAP) gate on |110〉
state state with fidelity 0.96 (c) after Toffoli gate on |110〉 state with fidelity 0.93.
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4.4 Conclusion and Future Scopes

The main aim of this work was to design the pulse sequence for the three qubit unitary

matrices and to implement them experimentally on an NMR quantum information

processor. The technique has only used hard pulses and delays, one can consider this

an on and off switch for RF field such that the RF field is turned on only for few

microseconds and then turned off and this process repeats until desired unitary is

reached. The optimization time for this algorithm was much less than the existing

optimization techniques. This optimization technique has helped to obtain the pulse

sequence with very high fidelity. The optimized sequence was time optimal and ro-

bust which helped to cope up with the different errors associated in NMR quantum

information processing. The pulse sequence was experimentally implemented and the

output was obtained with very high experimental fidelity.

This optimization technique can be used for optimizing the pulse sequence for any

number of qubits but only at the cost of optimization time. The algorithm can be

used for quantum state preparation and some of the other NMR experiments where

pulse sequence is required. Algorithm can also be used for some other architecture

for quantum computing but the changes should be done according to the system.
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Appendix A

MATLAB Codes

%Codes for optimization of quantum gates. This is the main file

%and rest are the function associated with this file.

%-------------------------------------------------------------------------%

%%Authors- Amit Devra, Prithviraj Prabhu, Harpreet Singh and Kavita

Dorai

%-------------------------------------------------------------------------%

tic;

z = [1/2 0;0 -1/2];

y = 0.5*[0 -1i;1i 0];

e = [1 0;0 1];

v1 = 34013.57255;%input(’freq of spin 1’);

v2 = 43480.0746;%input(’freq of spin 2’);

v3 = 57297.3935;%input(’freq of spin 3’);

vrf = 43480.0746;%input(’rf freq’);

J12 = 34.825*2; %input(’J12’);

J13 = 23.835*2; %input(’J13’);

J23 = -64.16*2; %input(’J23’);

iteration = 1;

B = cell(3,1);%for hamiltonian

B{1} = kron(kron(z,e),e);

B{2} = kron(kron(e,z),e);

B{3} = kron(kron(e,e),z);

CNOT = [1 0 0 0;0 1 0 0;0 0 0 1;0 0 1 0];

%Hamiltonian

H = 2*pi*((v1-vrf)*B{1}+(v2-vrf)*B{2}+(v3-vrf)*B{3}+J12*B{1}*B{2}
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+J13*B{1}*B{3}+J23*B{2}*B{3});

%A = kron(kron(p,e),e)+kron(kron(e,p),e)+kron(kron(e,e),p);

%kronecker of phi

U=[1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1];

%U = expm(-1i*pi/(2)*kron(kron(eye(2),y),eye(2)));

%U = kron(CNOT,eye(2));

nameOfFile = ’Controlled.txt’;

iterations = 6;

flagFitness = 6;

%rows(a)

%---------------------------------------------------------------------%

diary(nameOfFile);

diary on;

for iteration = 1:iterations

b = 4; %columns

a = 15;

%minRows = 16;

maxRows = 1;

FinalCells= cell(maxRows,1);

FinalFitCells=zeros(maxRows,1);

maxgen=300;

thresholdFitness = 0.97;

ShowAllFitMat=zeros(maxgen,maxRows);

%for a = minRows:maxRows

n = 1000;

Fitness=zeros(n,1);

k = 1;

TempArray=cell(maxgen,1);
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%contains the ax4 matrices with highest fitness in each

%generation

TempFitArray=zeros(maxgen,1);

%contains the fitness values coresponding to the above matrices

I = cell(n,1); %initial population array

J = cell(n,1); %temp population array

for k = 1:n

for q = 1:a

for w = 1:b

if w==1

I{k}(q,w)= 1*10^(-6)+rand(1)*(39*10^(-6)-1*10^(-6));

%random no. from 1to39micro secs.; for theta

elseif w==2

I{k}(q,w)=randi(2)-1;

elseif w==3

I{k}(q,w)=randi([0,180],1); %phi column

elseif w==4

I{k}(q,w)=rand(1)*(0.005); %delay column

%elseif w==5

% I{k}(q,w)= rand(1)*(0.005);%for delays 0.0100 is max for

delay

end

end

end

end

gen = 1;

while gen<maxgen+1

IntermArray=cell(9,1);

IntermFitArray=zeros(9,1);

r = rand(1);

if (gen>maxgen/10 &&r<0.5*gen/maxgen)%mutation of all numbers for

1/100 of the population

local = randi(n,round(n/100),1);

for p=1:n/100

for q=1:a

for w=1:b
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if w==1

I{local(p)}(q,w)=

1*10^(-6)+rand(1)*(39*10^(-6)-1*10^(-6));

elseif w==2

I{local(p)}(q,w)=randi(2)-1;

elseif w==3

I{local(p)}(q,w)=randi([0,180],1);

elseif w==4

I{local(p)}(q,w)=rand(1)*(0.005);

%elseif w==5

% I{local(p)}(q,w)= rand(1)*(0.005);%for delays

0.0100 is max for delay

end

end

end

end

%calculate fitness

[Fitness,x8]=fitness(a,n,I,U,flagFitness);

[val,idx] = max(Fitness);

if val>thresholdFitness

disp(’Done Done Done’);

disp(val);

disp(I{idx});

break;

end

IntermFitArray(1)=val;

IntermArray{1}=I{idx};

end

%cross1

lc=1;

while lc<n

if gen~=1

[Chosen1,Chosen2] = luckChoose(Fitness);

[J{lc},J{lc+1}] = crossover(4,a,I{Chosen1},I{Chosen2},1);

else

[J{lc}, J{lc+1}]=crossover(4,a,I{lc},I{lc+1},1);
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end

lc = lc+2;

end

I = J;

[Fitness,x8]=fitness(a,n,I,U,flagFitness);

[val,idx] = max(Fitness);

if val>thresholdFitness

disp(’DONE DONE DONE’);

disp(val);

disp(I{idx});

break;

end

IntermFitArray(2)=val;

IntermArray{2}=I{idx};

%cross2 %%added this

% lc=1;

% while lc<n

% [Chosen1,Chosen2] = luckChoose(Fitness);

% [J{lc}, J{lc+1}]=crossover(3,a,I{Chosen1},I{Chosen2},1);

% %lc=lc+2

% end

% I = J;

% [Fitness,x8]=fitness(a,n,I,U,flagFitness);

%

% [val,idx]=max(Fitness);

% if val>thresholdFitness

% disp(’DONE DONE DONE’);

% disp(val);

% disp(I{idx});

%

% end

% IntermFitArray(3)=val;

% IntermArray{3}=I{idx};

%flip1

I=Flip(I,a,n,Fitness);
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[Fitness,x8]=fitness(a,n,I,U,flagFitness);

[val,idx]=max(Fitness);

if val>thresholdFitness

disp(’DONE DONE DONE’);

disp(val);

disp(I{idx});

break;

end

IntermFitArray(4)=val;

IntermArray{4}=I{idx};

% %cross3

% lc=1;

% while lc<n

% [Chosen1,Chosen2] = luckChoose(Fitness);

% [J{lc}, J{lc+1}]=crossover(3,a,I{Chosen1},I{Chosen2},1);

% lc=lc+2;

% end

% I=J;

% [Fitness,x8]=fitness(a,n,I,U,flagFitness);

% [val,idx]=max(Fitness);

% if val>thresholdFitness

% disp(’DONE DONE DONE’);

% disp(val);

% disp(I{idx});

% end

%

% IntermFitArray(5)=val;

% IntermArray{5}=I{idx};

%

% %flip 2

% I=Flip(I,a,n,Fitness);

%

% [Fitness,x8]=fitness(a,n,I,U,flagFitness);

% [val,idx]=max(Fitness);

% if val>thresholdFitness

% disp(’DONE DONE DONE’);
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% disp(val);

% disp(I{idx});

% end

% IntermFitArray(6)=val;

% IntermArray{6}=I{idx};

% %cross4

%

% lc=1;

% while lc<n

% [Chosen1,Chosen2] = luckChoose(Fitness);

% [J{lc}, J{lc+1}]=crossover(2,a,I{Chosen1},I{Chosen2},1);

% lc=lc+2;

% end

% I=J;

% [Fitness,x8]=fitness(a,n,I,U,flagFitness);

% [val,idx]=max(Fitness);

% if val>thresholdFitness

% disp(’DONE DONE DONE’);

% disp(val);

% disp(I{idx});

% end

% IntermFitArray(7)=val;

% IntermArray{7}=I{idx};

%

% %cross5

%

% lc=1;

% while lc<n

% [Chosen1,Chosen2] = luckChoose(Fitness);

% [J{lc}, J{lc+1}]=crossover(1,a,I{Chosen1},I{Chosen2},1);

% lc=lc+2;

% end

% I=J;

% [Fitness,x8]=fitness(a,n,I,U,flagFitness);

% [val,idx]=max(Fitness);

%

% if val>thresholdFitness
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% disp(’DONE DONE DONE’);

% disp(val);

% disp(I{idx});

% end

% IntermFitArray(8)=val;

% IntermArray{8}=I{idx};

%

% second mutation

%%[I]=secondMutation(Fitness,n,a,b,I);

%%[Fitness,x8]=fitness(a,n,I,U,flagFitness);

%%[val,idx]=max(Fitness);

if val>thresholdFitness

disp(’DONE DONE DONE’);

disp(val);

disp(I{idx});

break;

end

IntermFitArray(9)=val;

IntermArray{9}=I{idx};

[val,idx]=max(IntermFitArray);

TempFitArray(gen)=val;

TempArray{gen}=IntermArray{idx};

% ShowAllFitMat(gen,a)=val;

disp(val);

gen=gen+1;

disp(gen);

end

a

[val,idx] = max(TempFitArray);

FinalCells{a}=TempArray{idx};

FinalFitCells(a)=val;

%end

[val, idx] = max(FinalFitCells);

FinalCell=FinalCells{idx};

[row,col]=size(FinalCell);

Y = cell(row,1);
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l=1;

for j = 1:row

COSINE=0.5*(cos(FinalCell(j,3)*pi/180));

SINE=0.5*((-1)^FinalCell(j,2))*1i*sin(FinalCell(j,3)*pi/180);

CS=COSINE-SINE;

CSM=COSINE+SINE;

%Y{l} =

expm(((-1)^FinalCell(j,1))*1i*FinalCell(j,2)*pi/180*(kron(kron([0

CS;CSM 0],e),e)+kron(kron(e,[0 CS;CSM

0]),e)+kron(kron(e,e),[0 CS;CSM

0])))*expm((-1)*1i*H*FinalCell(j,5));

%l = l+1;

Y{l} = expm(-1i*(H+(pi/(26*10^(-6)))*(kron(kron([0 CS;CSM

0],e),e)+kron(kron(e,[0 CS;CSM 0]),e)+kron(kron(e,e),[0

CS;CSM 0])))*FinalCell(j,1))*expm((-1)*1i*H*FinalCell(j,4));

l = l+1;

end

j=1;

C= Y{j};

for q = 1:row-1

C = C*Y{j+q};

end

disp(’Iteration’);

iteration

val

FinalCell

C

U

% for a=minRows:maxRows

% FinalCells{a}

% FinalFitCells(a)

% end

end

diary off;
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MsgBox=msgbox(’Finished’);

toc;

%%Fitness Function

function [fitnessOfPop,eightxeight]= fitness(a,n,I,U,flag)

%a = 5;

Y = cell(n*a,1);%cell for decomposed matrix(8*8)

Y = decompose(Y,a,n,I);

z = [1/2 0;0 -1/2];

e = [1 0;0 1];

v1 = 34013.57255;%input(’freq of spin 1’);

v2 = 43480.0746;%input(’freq of spin 2’);

v3 = 57297.3935;%input(’freq of spin 3’);

vrf = 43478.655;%input(’rf freq’);

J12 = 34.825*2; %input(’J12’);

J13 = 23.835*2; %input(’J13’);

J23 = -64.16*2; %input(’J23’);

B = cell(3,1);%for hamiltonian

B{1} = kron(kron(z,e),e);

B{2} = kron(kron(e,z),e);

B{3} = kron(kron(e,e),z);

H = 2*pi*((v1-vrf)*B{1}+(v2-vrf)*B{2}+(v3-vrf)*B{3}+J12*B{1}*B{2}

+J13*B{1}*B{3}+J23*B{2}*B{3});

C = cell(n,1); %product matrix

C = product(C,Y,a,n);

f1 = zeros(n,1);

D = cell(n,1);

if flag==1

for v = 1:n

D{v} = ctranspose(C{v});

end

for g = 1:n

f1(g) = 1/trace(abs(D{g}*U-ctranspose(U)*U));

end

%original fidelity function

elseif flag==6 %currently using
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C1=zeros(1,n);

for loopc=1:n

C1(loopc) = (abs(trace(ctranspose(C{loopc})*U)/8)); % the "abs"

gets rid of the global phase

f1(loopc) = C1(loopc);

end

elseif flag==7

C1=zeros(1,n);

for loopc=1:n

C1(loopc)=real(trace(ctranspose(C{loopc})*U)/8); % the "abs"

gets rid of the global phase

f1(loopc) = C1(loopc);

end

end

[val,idx]=max(f1);

eightxeight=C{idx};

fitnessOfPop=f1;

%%Decompose Function

function decomposition = decompose(Y,a,n,I)

z = [1/2 0;0 -1/2];

e = [1 0;0 1];

v1 = 34013.57255;%input(’freq of spin 1’);

v2 = 43480.0746;%input(’freq of spin 2’);

v3 = 57297.3935;%input(’freq of spin 3’);

vrf = 43478.655;%input(’rf freq’);

J12 = 34.825*2; %input(’J12’);

J13 = 23.835*2; %input(’J13’);

J23 = -64.16*2; %input(’J23’);

B = cell(3,1);%for hamiltonian

B{1} = kron(kron(z,e),e);

B{2} = kron(kron(e,z),e);

B{3} = kron(kron(e,e),z);

H = 2*pi*((v1-vrf)*B{1}+(v2-vrf)*B{2}+(v3-vrf)*B{3}+J12*B{1}*B{2}+

J13*B{1}*B{3}+J23*B{2}*B{3});

%decompose into a 8x8 Matrix

l = 1;

for k = 1:n
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for j = 1:a

COSINE=0.5*(cos(I{k}(j,3)*pi/180));

SINE=0.5*((-1)^I{k}(j,2))*1i*sin(I{k}(j,3)*pi/180);

CS=COSINE-SINE;

CSM=COSINE+SINE;

Y{l} = expm(-1i*(H+(pi/(26*10^(-6)))*(kron(kron([0 CS;CSM

0],e),e)+kron(kron(e,[0 CS;CSM 0]),e)+kron(kron(e,e),[0 CS;CSM

0])))*I{k}(j,1))*expm((-1)*1i*H*I{k}(j,4));

l = l+1;

end

end

decomposition=Y;

%%Crossover Function

function[X,Y] = crossover(n,a,X,Y,flag)

b=4; %number of columns

f1 = randi(b,1);%upper bound

g1 = randi(b,1); %lower bound

% if (g1>f1)

% temp=f1;

% f1=g1;

% g1=temp;

% end

f = randi(a,1);%upper bound

g = randi(a,1); %lower bound

% if (g>f)

% temp=f;

% f=g;

% g=temp;

% end

%cross

if (g1>f1)||(g>f)

if (g1>f1)&&(g>f)

for l=g1:b

for j=g:a

[X(j,l),Y(j,l)] = deal(Y(j,l),X(j,l));
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end

for j=1:f

[X(j,l),Y(j,l)] = deal(Y(j,l),X(j,l));

end

end

for l=1:f1

for j=g:a

[X(j,l),Y(j,l)] = deal(Y(j,l),X(j,l));

end

for j=1:f

[X(j,l),Y(j,l)] = deal(Y(j,l),X(j,l));

end

end

elseif (g1>f1)&&(g<f)

for l=g1:b

for j = g:f

[X(j,l),Y(j,l)] = deal(Y(j,l),X(j,l));

end

end

for l=1:f1

for j = g:f

[X(j,l),Y(j,l)] = deal(Y(j,l),X(j,l));

end

end

elseif (g1<f1)&&(g>f)

for l = g1:f1

for j=g:a

[X(j,l),Y(j,l)] = deal(Y(j,l),X(j,l));

end

for j=1:f

[X(j,l),Y(j,l)] = deal(Y(j,l),X(j,l));

end

end

end

else

for l = g1:f1

for j = g:f

[X(j,l),Y(j,l)] = deal(Y(j,l),X(j,l));
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end

end

end

%%Flip Function

function I = Flip(I,a,n,Fitness)

[temp,sortIndex] = sort(Fitness);

Isorted = I(sortIndex);

if n~=1

for q=n/2:n

if a~=1

temp1=randi(floor(a/2));

for w=1:temp1

i=randi(a);

j=i;

while j==i

j=randi(a);

if j~=i

break;

end

end

Isorted{q}([i j],:) = Isorted{q}([j i],:);

end

end

end

else

if a~=1

temp1=randi(floor(a/2));

for w=1:temp1

i=randi(a);

j=i;

while j==i

j=randi(a);

if j~=i

break;

end

end
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Isorted{1}([i j],:) = Isorted{1}([j i],:);

end

end

end

I = Isorted;

%%Product Function

function productfinal=product(C,Y,a,n)

%give the product of different matrices to give a 8x8 final matrix

v = 1;

j = 1;

for j = 1:a:n*a-a+1

C{v} = Y{j};

for q = 1:a-1

C{v} = C{v}*Y{j+q};

end

v = v+1;

end

productfinal=C;

%%This is a Local Optimizer named as ’Member Checker’ used for checking

fitness of member having subjectively high fitness. Process each

member through it to increase fitness.

%%Member Checker

tic;

z=[1/2 0; 0 -1/2];

e=[1 0; 0 1];

y = 0.5*[0 -1i;1i 0];

v1 = 34011.917;%input(’freq of spin 1’);

v2 = 43479.26035;%input(’freq of spin 2’);

v3 = 57296.2954;%input(’freq of spin 3’);

vrf = 43479.26035;%input(’rf freq’);

J12 = 34.825*2; %input(’J12’);

J13 = 23.835*2; %input(’J13’);

J23 = -64.16*2; %input(’J23’);
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%p = [0

0.5*(cos(f*pi/180)+i*sin(f*pi/180));0.5*(cos(f*pi/180)-i*sin(f*pi/180))

0];%phi

%a = 10; %rows

iteration = 1;

B = cell(3,1);%for hamiltonian

B{1} = kron(kron(z,e),e);

B{2} = kron(kron(e,z),e);

B{3} = kron(kron(e,e),z);

CNOT = [1 0 0 0;0 1 0 0;0 0 0 1;0 0 1 0];

%Hamiltonian

H = 2*pi*((v1-vrf)*B{1}+(v2-vrf)*B{2}+(v3-vrf)*B{3}+J12*B{1}*B{2}+

J13*B{1}*B{3}+J23*B{2}*B{3});

% U= [ 1 0 0 0 0 0 0 0

% 0 1 0 0 0 0 0 0

% 0 0 1 0 0 0 0 0

% 0 0 0 1 0 0 0 0

% 0 0 0 0 1 0 0 0

% 0 0 0 0 0 0 1 0

% 0 0 0 0 0 1 0 0

% 0 0 0 0 0 0 0 1];

%U = expm(-1i*pi/(2)*kron(kron(eye(2),eye(2)),y));

%U = kron(CNOT,eye(2));

%

----------------------------------START----------------------------------

Q =[3.00000000000000e-05 1 38.1900000000001 0.000277000000000000

3.30000000000000e-05 1 39.2500000000001 6.90000000000000e-05

3.00000000000000e-06 0 59.0200000000001 1.00000000000000e-06

3.90000000000000e-05 0 66.2800000000001 0.000636000000000000

2.90000000000000e-05 1 53.9400000000001 0.000292000000000000

9.00000000000000e-06 1 57.8800000000003 1.90000000000000e-05

3.90000000000000e-05 1 47.1900000000001 0.00175500000000000

1.10000000000000e-05 1 65.8800000000001 1.00000000000000e-06

3.90000000000000e-05 1 63.8400000000002 0.000636000000000000

1.00000000000000e-06 0 157.809999999997 0.000256000000000000

4.00000000000000e-06 1 88.0300000000001 0.000305000000000000

3.90000000000000e-05 1 30.1400000000001 1.10000000000000e-05

1.40000000000000e-05 1 7.44000000000000 8.30000000000000e-05
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2.40000000000000e-05 1 0.620000000000000 0.000657000000000000

1.00000000000000e-06 0 2.50000000000000 0.00174800000000000

6.00000000000000e-06 0 55.0200000000001 6.90000000000000e-05

4.00000000000000e-06 1 47.5500000000001 2.00000000000000e-06

3.70000000000000e-05 1 50.9300000000001 9.60000000000000e-05];

%Q=Q*100;

alpha=0;% if alpha is 0, it just checks fidelity, if alpha is 1, it

does one iteration of local optimizer. if alpha is 2, it does

mutiple iterations

if alpha==0

FinalCell=Q;

[row,col]=size(FinalCell);

Y = cell(row,1);

l=1;

for j = 1:row

COSINE=0.5*(cos(FinalCell(j,3)*pi/180));

SINE=0.5*((-1)^FinalCell(j,2))*1i*sin(FinalCell(j,3)*pi/180);

CS=COSINE-SINE;

CSM=COSINE+SINE;

%Y{l} =

expm(((-1)^FinalCell(j,1))*1i*FinalCell(j,2)*pi/180*(kron(kron([0

CS;CSM 0],e),e)+kron(kron(e,[0 CS;CSM 0]),e)+kron(kron(e,e),[0

CS;CSM 0])))*expm((-1)*1i*H*FinalCell(j,5));

%l = l+1;

Y{l} = expm(-1i*(H+(pi/(26*10^(-6)))*(kron(kron([0 CS;CSM

0],e),e)+kron(kron(e,[0 CS;CSM 0]),e)+kron(kron(e,e),[0 CS;CSM

0])))*FinalCell(j,1))*expm((-1)*1i*H*FinalCell(j,4));

l = l+1;

end

j=1;

C= Y{j};

for q = 1:row-1

C = C*Y{j+q};

end

C
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Fidelity=abs(trace(ctranspose(C)*U)/8);

disp(’Fitness’);

fprintf(’%.12f ’, Fidelity);

%--------------------testing a population of

matrices------------------

elseif alpha==1

%create population

%call fitness 3

iterations=1;

for iteration=1:iterations

maxgen=10;

n=2000;

flagFitness=6;

J = cell(n, 1); %temp pop array

% the next two variables are used to determine the matrix with the

% highest fitness among all generations

Pop=cell(n,1);

[rows,cols]=size(Q);

a=rows;

TempArray=cell(maxgen,1);

%contains the ax4 matrices with highest fitness in each generation

TempFitArray=zeros(maxgen,1);

%contains the fitness values corresponding to the above matrices

colindex=2;

%prepare initial population

for popcount=1:n

Pop{popcount}=Q;

for row=1:rows

if colindex==5

Pop{popcount}(row,5)=Q(row,5)+rand(1)*0.00001-0.000005

;%----------changed this

else

Pop{popcount}(row,colindex)=Q(row,colindex)+rand(1)*10-5;

end
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end

end

disp(’created pop’);

gen=1;

[Fitness,x8]=fitness(a,n,Pop,U,flagFitness);

while gen<maxgen+1

% do cross 4/5

lc=1;

while lc<n

[ First,Second ]= luckChoose(Fitness);

[J{lc},

J{lc+1}]=Cross(colindex,rows,Pop{First},Pop{Second},0);

%Cross(X,rows....) where X is the index of the column

needing crossing over

lc=lc+2;

end

Pop=J;

[Fitness,x8]=fitness(a,n,Pop,U,flagFitness);

[val,idx]=max(Fitness);

TempFitArray(gen)=val;

TempArray{gen}=Pop{idx};

disp(val);

disp(gen);

gen=gen+1;

end

[val ,idx]=max(TempFitArray);

Fitval=val;

Fit=TempArray{idx};

Fit

FinalCell=Fit;

[row,col]=size(FinalCell);

Y = cell(row,1);

l=1;

for j = 1:row

COSINE=0.5*(cos(FinalCell(j,3)*pi/180));
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SINE=0.5*((-1)^FinalCell(j,2))*1i*sin(FinalCell(j,3)*pi/180);

CS=COSINE-SINE;

CSM=COSINE+SINE;

%Y{l} = expm(((-1)^FinalCell(j,1))*1i*FinalCell(j,2)

%*pi/180*(kron(kron([0 CSM;CS 0],e),e)+kron(kron(e,[0 CSM;CS

0]),e)+kron(kron(e,e),[0 CSM;CS

0])))*expm((-1)*1i*H*FinalCell(j,5));

%l = l+1;

Y{l} = expm(-1i*(H+(pi/(26*10^(-6)))*(kron(kron([0 CS;CSM

0],e),e)+kron(kron(e,[0 CS;CSM 0]),e)+kron(kron(e,e),[0

CS;CSM 0])))*FinalCell(j,1))*expm((-1)*1i*H*FinalCell(j,4));

l = l+1;

end

j=1;

C= Y{j};

for q = 1:row-1

C = C*Y{j+q};

end

C

Fidelity=(abs(trace(ctranspose(C)*U)/8))^(2);

disp(’Fitness’);

fprintf(’%.12f ’, Fidelity);

end

MsgBox=msgbox(’Finished’);

elseif alpha==2

iterations=1;

for iteration=1:iterations

QQ=Q;

ite=1;

colindexArray=[3 1 3 4];

indexCol=randi(length(colindexArray)-1);

colIndexFailure=0;

Fidelity0=0;

Fidelity1=0;

col4start=0.000005;

col3start=10;
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col1start=0.000003;

col4startby2=col4start/2;

col3startby2=col3start/2;

col1startby2=col1start/2;

FinalCell=zeros(12,5);

while(1)

if (ite~=1 )&&(colIndexFailure==0)

QQ=FinalCell;

end

maxgen=8;

n=200;

flagFitness=6;

J = cell(n, 1); %temp pop array

% the next two variables are used to determine the matrix with

the

% highest fitness among all generations

Pop=cell(n,1);

[rows,cols]=size(QQ);

a=rows;

TempArray=cell(maxgen,1);

%contains the ax4 matrices with highest fitness in each

generation

TempFitArray=zeros(maxgen,1);

%contains the fitness values corresponding to the above matrices

colindex=colindexArray(indexCol)

%prepare initial population

for popcount=1:n

Pop{popcount}=QQ;

for row=1:rows

if colindex==4

Pop{popcount}(row,4)=QQ(row,4)+rand(1)*col4start

-col4startby2;%----------changed this

elseif colindex==3

Pop{popcount}(row,colindex)=QQ(row,colindex)

+rand(1)*col3start-col3startby2;%--------alpha 2!!

elseif colindex==1

Pop{popcount}(row,colindex)=QQ(row,colindex)

+rand(1)*col1start-col1startby2;%--------alpha 2!!
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end

end

end

disp(’created pop’);

gen=1;

[Fitness,x8]=fitness(a,n,Pop,U,flagFitness);

while gen<maxgen+1

% do cross 4/5

lc=1;

while lc<n

[ First,Second ]= luckChoose(Fitness);

[J{lc},

J{lc+1}]=Cross(colindex,rows,Pop{First},Pop{Second},0);

%Cross(X,rows....) where X is the index of the column

needing crossing over

lc=lc+2;

end

Pop=J;

[Fitness,x8]=fitness(a,n,Pop,U,flagFitness);

[val,idx]=max(Fitness);

TempFitArray(gen)=val;

TempArray{gen}=Pop{idx};

% disp(val);

% disp(gen);

gen=gen+1;

end

[val ,idx]=max(TempFitArray);

Fitval=val;

FinalCell=TempArray{idx};

FinalCell

[row,col]=size(FinalCell);

Y = cell(row,1);

l=1;

for j = 1:row
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COSINE=0.5*(cos(FinalCell(j,3)*pi/180));

SINE=0.5*((-1)^FinalCell(j,2))*1i*sin(FinalCell(j,3)*pi/180);

CS=COSINE-SINE;

CSM=COSINE+SINE;

%Y{l} =

expm(((-1)^FinalCell(j,1))*1i*FinalCell(j,2)*pi/180*(kron(kron([0

CSM;CS 0],e),e)+kron(kron(e,[0 CSM;CS

0]),e)+kron(kron(e,e),[0 CSM;CS

0])))*expm((-1)*1i*H*FinalCell(j,5));

%l = l+1;

Y{l} = expm(-1i*(H+(pi/(26*10^(-6)))*(kron(kron([0 CS;CSM

0],e),e)+kron(kron(e,[0 CS;CSM 0]),e)+kron(kron(e,e),

[0

CS;CSM0])))*FinalCell(j,1))*expm((-1)*1i*H*FinalCell(j,4));

l = l+1;

end

j=1;

C= Y{j};

for q = 1:row-1

C = C*Y{j+q};

end

C

Fidelity=abs(trace(ctranspose(C)*U)/8);

disp(’Fitness’);

fprintf(’%.12f ’, Fidelity);

if (ite~=1 )&&(colIndexFailure==0)

Fidelity1=Fidelity0;

end

Fidelity0=Fidelity; %Fidelity0 must be greater than Fidelity1;

if Fidelity1>=Fidelity0

colIndexFailure=colIndexFailure+1;

if colIndexFailure==length(colindexArray)

disp(’No better solutions found. Sorry. Check if you

want.’);

col4start=col4start/1.5;

col3start=col3start/1.5;

col1start=col1start/1.5;
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col4startby2=col4start/2;

col3startby2=col3start/2;

col1startby2=col1start/2;

colIndexFailure=0;

% break;

end

else

colIndexFailure=0;

end

indexCol=indexCol+1;

if indexCol>length(colindexArray)

indexCol=1;

end

ite=ite+1;

colIndexFailure

col3start

end

MsgBox=msgbox(’Finished’);

end

elseif alpha==3

ite=1;

colindexArray=[3 1 4];

indexCol=randi(length(colindexArray)-1);

colIndexFailure=0;

Fidelity0=0;

Fidelity1=0;

while(1)

if (ite~=1 )&&(colIndexFailure==0)

Q=FinalCell;

end

n=100;

flagFitness=6;

maxgen=10;

J = cell(n, 1); %temp pop array

% the next two variables are used to determine the matrix with the

% highest fitness among all generations
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Pop=cell(n,1);

[rows,cols]=size(Q);

a=rows;

TempArray=cell(maxgen,1);

%contains the ax4 matrices with highest fitness in each generation

TempFitArray=zeros(maxgen,1);

%contains the fitness values corresponding to the above matrices

colindex=colindexArray(indexCol)

%prepare initial population

for popcount=1:n

Pop{popcount}=Q;

for row=1:rows

if colindex==4||1

Pop{popcount}(row,colindex)=Q(row,colindex)

+randi(3)*0.000001-0.000002;

%you must always give randi(odd_number)-(odd_number+1).

because, for example, if you take randi(2)-1, the only

possible values are 0,1. but if you take rand(3)-2,

you get -1,0,1.

maxgen=25;

else

Pop{popcount}(row,colindex)=Q(row,colindex)+randi(501)*0.01-2.51;

maxgen=10;

end

end

end

disp(’created pop’);

gen=1;

[Fitness,x8]=fitness(a,n,Pop,U,flagFitness);

while gen<maxgen+1

% do cross 4/5

lc=1;

while lc<n

[ First,Second ]= luckChoose(Fitness);

[J{lc},

J{lc+1}]=Cross(colindex,rows,Pop{First},Pop{Second},0);

%Cross(X,rows....) where X is the index of the column

needing crossing over
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lc=lc+2;

end

Pop=J;

[Fitness,x8]=fitness(a,n,Pop,U,flagFitness);

[val,idx]=max(Fitness);

TempFitArray(gen)=val;

TempArray{gen}=Pop{idx};

disp(val);

disp(gen);

gen=gen+1;

end

[val ,idx]=max(TempFitArray);

Fitval=val;

Fit=TempArray{idx};

Fit

FinalCell=Fit;

[row,col]=size(FinalCell);

Y = cell(row,1);

l=1;

for j = 1:row

COSINE=0.5*(cos(FinalCell(j,3)*pi/180));

SINE=0.5*((-1)^FinalCell(j,2))*1i*sin(FinalCell(j,3)*pi/180);

CS=COSINE-SINE;

CSM=COSINE+SINE;

%Y{l} =

expm(((-1)^FinalCell(j,1))*1i*FinalCell(j,2)*pi/180*(kron(kron([0

CSM;CS 0],e),e)+kron(kron(e,[0 CSM;CS

0]),e)+kron(kron(e,e),[0 CSM;CS

0])))*expm((-1)*1i*H*FinalCell(j,5));

%l = l+1;

Y{l} = expm(-1i*(H+(pi/(26*10^(-6)))*(kron(kron([0 CS;CSM

0],e),e)+kron(kron(e,[0 CS;CSM 0]),e)+kron(kron(e,e),[0

CS;CSM 0])))*FinalCell(j,1))*expm((-1)*1i*H*FinalCell(j,4));

l = l+1;

end
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j=1;

C= Y{j};

for q = 1:row-1

C = C*Y{j+q};

end

C

Fidelity=abs(trace(ctranspose(C)*U)/8);

disp(’Fitness’);

fprintf(’%.12f ’, Fidelity);

if (ite~=1 )&&(colIndexFailure==0)

Fidelity1=Fidelity0;

end

Fidelity0=Fidelity; %Fidelity0 must be greater than Fidelity1;

if Fidelity1>=Fidelity0

colIndexFailure=colIndexFailure+1;

if colIndexFailure==length(colindexArray)

disp(’No better solutions found. Sorry. Check if you want.’);

break;

end

else

colIndexFailure=0;

end

indexCol=indexCol+1;

if indexCol>length(colindexArray)

indexCol=1;

end

ite=ite+1;

colIndexFailure

end

MsgBox=msgbox(’Finished’);

end

toc;
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