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Abstract

According to Big-Bang theory, at the earliest of its expansion, universe existed as QGP. As

it cools down, the deconfined-confined phase transition occurred and hadrons were formed.

Study about these kind of a stage can lead us to understand the early stages of universe

formation. The transformation of matter at higher enough energies, from nucleons to con-

stituent quarks and gluons had been very interesting and equally very challenging.

Even though the energy scale is quite challenging, in heavy ion collisions we were trying to

create a similar system and studying various properties. Since the multiplicity of produced

particles is an important quantity to characterize the evolving system and its event to event

fluctuation may provide a distinct signal of the phase transition from hadron gas to QGP.

Higher moments of a distribution can give important information about the asymmetry of

the system. Considering the distributions of conserved quantities in this system, higher mo-

ment analysis provide a scope to understand some existing problems. In this work we are

looking at the higher moments of such multiplicity distributions.

ix





Chapter 1

Introduction

How do these massive objects are formed? It was an all time interesting question, which is

not yet completely answered. Always we were in a search for the building blocks of any-

thing and everything. Thought about the fundamental particles, from which all matter has

been built up, started for more that two thousand years ago. Then a field of science emerged

which deals about this kind of questions and trying to answer something very fundamental

in nature, that is the study of particles, the particle physics, began with the development of

atomic theory, followed by a much deeper understanding about the quantized atom, then

leading to the theory of the Standard Model and beyond. Through various experiments and

theoretical models, now we have a set of particles, and again classifying them will turn

out to remain on some elementary particles. The basic picture about particle physics will

not be completed until we know how these particles are interacting. There are four funda-

mental forces through which particles in this universe interacts, strong force, weak force,

electromagnetic force and gravitational force. This force is mediated by gauge bosons. The

complete picture of elementary particles include particles from lepton family, quark fam-

ily and these force carriers (figure 1.1). Each particle interacts with others differently, and

these interactions can be well understood from the field through which they are interacting

and the force carriers. There are different sub fields emerged which specifically explains

each type of interaction. Quantum electrodynamics deals about the electromagnetic inter-

actions while theory of weak interactions gives better understanding on weak interactions.

Gravitation is widely studied and large experiments were designed to detect signature for

this very weak force among the four. The field theoretical approach to understand strong

interactions is quantum chromo dynamics [Oer06].
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Figure 1.1: Diagrammatic representation of all elementary particles

1.1 Quantum Chromo Dynamics (QCD)

Quantum Chromo Dynamics is the field theoretical approach for describing the strong in-

teraction.The particle content of this scheme can be broadly divided into two, quarks and

gluons. Quarks are the set of fundamental particles which are the building blocks of mesons

and hadrons, where gluons are the strong force carriers in the system of quarks.

Three major concepts defines QCD and they are (i) coloured quarks, (ii) interaction between

coloured quarks results from exchange of spin one, coloured gluon fields and (iii) local

gauge symmetry. Briefly,

(i) Quarks comes under the fundamental constituents of matter with various intrinsic prop-

erties, including colour charge, electric charge,spin, and mass. There are six flavors

of quarks which are detected from various experiments, up (u), down (d), charm

(c), strange (s), top (t) and bottom (b). Quarks can come in three colours (e.g. red,

green and blue). Another interesting property of quarks is that they posses fractional

charges. But fractional charges, or simply, a single quark can not be observed in

isolation. It is an experimental fact, and this result was explained by including a

2



new concept in the theory, which is the colour confinement. Due to colour confine-

ment, we can not observe single quarks. Physically observable particles were formed

by combination of quarks, but these combinations are colour neutral,examples are

mesons, pions, kaons, protons and so on [O+14].

(ii) The mass less, spin one bosons are the mediators of strong force, the gluons. It is

analogous to the role of photons in QED. But the difference is, the photons are not

self-interacting, while gluons are. There are eight types of gluons. This can be un-

derstood if one note that quarks (anti-quarks) can carry three colour charges. They

can be combined in 9 different ways, one colourless state and eight coloured states.

Gluons can not occur in a singlet state, because the singlet state can not interact with

coloured states. Hence there are eight types of gluons mediating the strong force

between quarks.

(iii) QCD is a gauge theory, i.e. Lagrangian is invariant under a continuous group of

local transformations. SU(3) is the Gauge group corresponding to QCD. The QCD

Lagrangian is,

L = −1

4
F µν
a F a

µν +
∑

flavors

[
iψ̄γmu

(
∂µ − ig

λa
2
Aaµ

)
ψ −mψψ̄

]
(1.1)

with,

F a
µν = ∂µA

a
ν − ∂νAaµ + gfabcA

b
µA

c
ν (1.2)

Aaµ is the gluon gauge field of colour a (a = 1,2,...,8), m is the bare quark mass, ψ is

the quark spinor, and fabc is the structure constant of the gauge group[Cha14].

These are the most basic understanding about QCD. But in order to understand more about

the phenomena happening inside this theory, there we need to go deep into this basic prop-

erties and their physics. As discussed earlier, quarks interacts with each other by their

colour charge. Colour charge is not a scalar sum of individual charges, colour charge is

like a quantum vector charge. Even the quarks are fractionally charged, we can not observe

single quark in isolation, because of colour confinement. It is an important consequence

of low energy dynamics of strong interactions.Strong force increases with the increase of

distance.

V (r) ≈ α

r
+ σr (1.3)
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The strength of strong interaction is determined by the running coupling constant (αs)

which is analogous to the fine structure constant in quantum electrodynamics. As a con-

sequence of the renormalization procedure the value of αs depends on the amount of ex-

changed four-momentum between the interacting partons.

αs(|Q2|) =
12π

(11n− 2f)ln(Q2/Λ2)
(1.4)

where |Q2| is the square of the exchanged four-momentum (energy scale), n the num-

ber of colours in QCD (equal to 3), f the number of quark flavours (equal to 6) and

ΛQCD ∼ 300MeV/c is a constant calculated from experimental data.[Cha14] A key prop-

erty of QCD is that 11n− 2f > 0. As a consequence, αs decreases with increasing energy

scale (decreasing distance). This is called asymptotic freedom. When the energy of the

system increases, the coupling between the particles will reduce. As a result the particles

will be free to move over larger volume. This predicts a phase transition, from hadronic to

partonic matter[ABMRS17]. Experimentally also, this predictions valid. That means, if we

collide heavy nuclei with high energy, and thus creating same kind of a critical condition,

like an asymptotically free partonic matter. There are several attempts to understand about

this particular phase transition which is governed by quantum chromodynamics [BBC+90].

Both theoretical and experimental studies trying to get the phase diagram for this particular

transition. Lattice gauge theory is a theoretical approach while heavy ion collisions are

experimental approaches. But before that one needs to understand about the new phase of

matter.

1.2 Quark Gluon Plasma (QGP)

Let us begin with a very simple picture. We know nucleons are incompressible, and closely

packed by quarks, and it would contribute the high density limit of matter. Also we know

that, nucleons are really composite, bound states of point like quarks. Then, if we increase

the density some how, they will start to overlap. It will continue until we reach a state in

which each quark are no longer bound, and finds a considerable number of other quarks

within its immediate vicinity. There is no way to identify which of these had been its part-

ners in a specific nucleon at some previous state of lower density. So after a certain point,

the concept of a hadron thus loses its meaning, and the system transformed from nuclear

matter to a system whose basic constituents are unbound quarks. They can move freely over
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a nuclear volume rather than a nucleonic volume and the state of matter at that stage can

be described in terms of fundamental constituents like quarks and gluons. This deconfined

state of matter is commonly known as QuarkGluonP lasma (QGP)[Cha14][Sat11].It is a

nearly thermalised state of matter.

Figure 1.2: Hadrons to QGP transition[Sal09]

The mechanism of deconfinement can be explained by the screening of the colour charge.

It is analogous to the Mott transition[Cha14]. In dense matter, the long range coulomb

potential plays a role to bind ions and electrons into electrically neutral atom. It is partially

screened due to presence of other charges. Then the Coulomb potential become much more

short range,

V (r) = e20/r → e20/r × exp(−r/rD) (1.5)

here r is the distance from the probe to the test charge. rD is the Debye screening radius

and is inversely proportional to density,

rD ∼ n−1/3 (1.6)

At enough high density, rD can be smaller than the atomic radius. Then a given electron can

no longer feel the binding force of its ion, alternatively, at such density the Coulomb poten-

tial can no longer bind electron and ion into a neutral atom. The previously insulating matter

becomes a conducting matter then. This is the Mott transition in atomic physics[Cha14].

We expect deconfinement to be the quantum chromodynamic analogue of Mott transition.

The quarks can not be bound into a hadron, due to the screening of colour potential. The

wondering fact in this analogy is the very different nature of QCD and QED forces. Inter-

action potential in QED is,

QED : V (r) ∼ −e2/r (1.7)
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Comparing QED and QCD potential,in QED, potential decreases continuously with in-

creasing distance, while in QCD, it increases with distance. However, screening is a phe-

nomenon dominating at high density,which occurs at short distance. The difference in

QED and QCD at large distance does not have any consequence then. In QCD, interaction

strength decreases at short distances because of asymptotic freedom, thereby enhancing the

deconfinement.

1.2.1 Importance to study about QGP

There are several models, which tells about the origin of universe. Among those the most

prominent and well accepted theory is the Big-Bang Theory. According to this theory, QGP

was the first state of matter during the expansion of universe[Cha14].

Figure 1.3: Diagrammatic representation of Big-Bang, various stages and their time evolu-

tion

At the earliest time of universal expansion, temperatures are of the order of T ∼ 1019GeV

, it is the Plank scale temperature. We do not have much understanding on this time, but we

have better understanding of the later stage of evolution,around temperature T ∼ 1016GeV .

It is the Grand unification scale. In Grand unification scale, strong and electroweak interac-

tions are unified. The universe at this scale may also be super symmetric. As the universe

further expands and because of that it cools. Then the strong and electroweak interactions

are separated. At much lower temperature T ∼ 100GeV , electroweak symmetry break-

ing takes place. Baryon asymmetry may be produced here[Cha14]. Universe existed as

QGP, which is the deconfined state of quarks and gluons, that was the first state of matter.

Deconfinement-confinement transition occurred somewhere around T ∼ 100MeV , and

hadrons were formed. Relativistic Heavy Ion collider (RHIC) at Brookhaven National Lab-
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oratory (BNL), and Large Hadron Collider (LHC) at European Organization for Nuclear

Research (CERN), are designed to study matter around this temperature. At temperature

T ∼ 1MeV , nucleosynthesis starts and light elements were formed. This temperature

range is well studied in nuclear physics experiments. At temperature T ∼ 1 eV , universe

changes from ionized gas to a gas of neutral atoms and structures began to form. There are

predictions about the existence of QGP in celestial objects, such as at the core of a neutron

star. Neutron stars are remnants of gravitational collapse of massive stars. They are small

objects with radius ∼ 10Km, but very dense compared to normal nuclear matter. At such

high density hadrons will loss their identity and matter is likely to be in the form of QGP.

One important difference between QGP at the early universe and that in neutron stars is the

temperature. While in early universe, QGP was at temperature T ∼ 100MeV but at the

core of the neutron star it is cold QGP, temperature is about T ∼ 0MeV . Other signature

of QGP can be found in supernova explosions, where hot and dense matter with energy

density exceeding 1GeV/fm3[Cha14]. Collisions between neutron stars or between black

holes can also create such a condition.

1.3 Higher moments and QCD

Probability and statistical theory comes into picture when we have to deal with a number

of events, and to study about their properties. Since it is a collection of events, it will

follow a distribution, with some parameters. This parameters are the defining quantities

of that distribution and the number of parameters change from one distribution to other.

The main two parameters widely used are the mean (µ) and the standard deviation (σ).

The mean of a distribution gives the average value or the expected value of events, while

standard deviation indicates the variation of each events in that distribution from its mean

value. But the distribution we are getting from our day to day life may not be a perfect one.

That means, it can have deviations or asymmetries from the actual defined distributions of

that kind. So we need to have some measure on those asymmetries, which are done by

moment calculation. Mathematically, mean is the first moment, whereas σ is the square

root of second moment of the distribution. As we go to higher moments, which are more

sensitive towards the nature of distribution, we will get a good measure on the asymmetry

and through that a good understanding about the system under research.
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These higher moments play a very important role in heavy ion collisions also. Many ap-

proaches taken to understand the heavy ion collisions are based on statistical analysis. So

there the study of higher moments are successful in describing those system. Details about

higher moment study in heavy ion collisions and its relation with QCD is very important to

understand in this case[Taw13].

1.3.1 Mathematical framework of higher moments

Moments can be calculated from the probability density function. For all real valued ran-

dom number x, we can define a probability density function f(x). Then the raw moment

is,

m
′

n =

∫ +∞

−∞
xnf(x)dx⇒ m

′

n = 〈xn〉 (1.8)

There is another alternative to moments, that is cumulants. The relation which connects

moments and cumulants can be written from a recursion formula as given below,

Cn = m
′

n −
n−1∑
m=1

(
m− 1

n− 1

)
Cmm

′

n−m (1.9)

From this equation, the following is just a few examples of relation between moments and

cummulants up to fourth order.

c1 = m1 (1.10)

c2 = m2 (1.11)

c3 = m3 (1.12)

c4 = m4 − 3m2
2 (1.13)

These are the raw moments and cumulants. There is another quantity of interest is the

central moment. Central moments are calculated with respect to the mean value, where raw

moments are calculated with respect to zero. The nth order central moment can be written

as,

mn =

∫ +∞

−∞
(x− µ)n f(x)dx⇒ mn = 〈(x− µ)n〉 (1.14)

The common feature of these two kind of moments are, their zeroth order moment is always

one. In the case of central moment, the first order moment will be zero. The second central

moment is variance. Another interesting parameter is the skewness (S). The value of

skewness represent the asymmetry of the distribution in a particular direction. For example,
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a positively skewed distribution will have a longer tail in the right side and for negative value

of skewness will show a longer tail in left side. One more parameter we are using in this

work, Kurtosis (κ). it is used to quantify the peakedness of the distribution. Collectively,

the following relations are the defining structures of mean, variance, skewness and kurtosis

with the cumulants.

M = c1 (1.15)

σ =
√
c2 (1.16)

S =
c3

(c2)
3/2

(1.17)

κ =
c4

(c2)
2 (1.18)

Some ratios of these parameters are also very useful for statistical analysis, which are given

below,

κσ2 =
c4
c2

(1.19)

σ2

M
=
c2
c1

(1.20)

κσ

S
=
c4
c3

(1.21)

1.3.2 Connection of higher moments with QCD

We are approaching the problem in a statistical way, where we are considering the system

as an ensemble with some macroscopic parameters like pressure (P ), temperature (T ),

chemical potential (µ), volume (V ) and number of particles (N) [M07]. This number

of particles will also follow some distribution, and analyzing the properties of that dis-

tribution can lead us to the information about the existence of QGP and its properties.

There are three types of ensembles, in order to describe the system which we are studying

[M07]: canonical, micro canonical and grand canonical ensemble. In canonical ensemble

the system can exchange energy with the surroundings, but not the particles. But in micro

canonical ensemble, the energy and number of particles in the system is fixed, no exchanges

are allowed. In the case of grand canonical ensemble, the system and surrounding can ex-

change both the energy and the particle[Taw13]. There are three conserved quantities in

QCD, baryon number (B), strangeness (s), and the charge (Q). Conserved quantities

will give us an opportunity to study about the system in a different way. Their fluctuations

over system can give important results on the parameters which we are looking for. The
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susceptibility of the system plays an important role here. Susceptibility, χ, of a system

tells us the response of that system to some perturbation. The generalized susceptibility of

conserved quantities are obtained by taking the derivative of dimensionless pressure as,

χBSQlmn =
∂l+m+n

(
P
T 4

)
∂
(
µB
T

)l
∂
(
µS
T

)m
∂
(µQ
T

)n (1.22)

where B, S,Q are the conserved quantities of QCD, and l,m, n denotes the higher order

derivatives. This susceptibility is also related to the moments of the distribution. For large

number of events higher order moments can be calculated and it will give a good under-

standing about the QCD observables. Here are the the relation between susceptibility and

higher moments (up to fourth moment),

mean : M = 〈N〉 = V T 3χ1 (1.23)

variance : σ =
〈
(δN)2

〉
= V T 3χ2 (1.24)

skewness : S =
〈(δN)3〉
σ3

=
V T 3χ3

(V T 3χ2)3/2
(1.25)

kurtosis : κ =
〈(δN)4〉
σ4

− 3 =
V T 3χ4

(V T 3χ2)2
(1.26)

From above equations, we can write a more generalized expression for the connection be-

tween the susceptibilities of conserved quantities and the cumulants,

cn = V T 3χnq , q = B, s,Q. (1.27)

In the experiment, we can measure the net-baryon number (∆B), net-strangeness (∆s) and

net-charge (∆Q) on an event by event basis. This equation is a powerful expression, where

the left hand side is the experimental observable and the right hand side is QCD observable.

This is why the study of higher moments (cumulants) of conserved quantities is an excellent

tool to understand about QCD observables, and from there to get information about QGP

[Eji08]. There is another important assumption, which we are considering in the analysis of

heavy ion experiment. From the experiment, we are able to see only a section or a slice of

actual phase space. It is because of the technologies we have developed is not yet efficient

to create and measure the actual situation. So when we are studying the physics in that

slice, we are assuming that it will be similar in all other slices, in the case of conserved

quantities. If the system formed during collision is uniform, then the all slices of total

phase space should give equal result concerned about the conserved quantities.
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1.4 A short review on Fluctuations in QGP

The higher moment calculation in this case will be more error prone, because the number

which we are dealing is of the order of millions and more. So we did a review till sec-

ond order moment. There we focused on the fluctuation study, because the fluctuation is

an indication of the changes in the system, and it can give authentic explanations for the

importance to have a higher moment study. We mainly done a number-ratio fluctuation

[PGV02, CHS09].

The most straight forward way to check number-ratio fluctuations on an event-by-event

[Hei01, SRS99] basis is by the ratio Na

Nb
. Because this moments of this quantities will not

have any dependence with the unknown parameters like volume and temperature of the sys-

tem. So this can be used as good measure for fluctuation analysis. The relative multiplicity

can be defined as
(

Na

〈Na〉 −
Nb

〈Nb〉

)
. Variance of relative multiplicity can be written as,

ν(ab) = V

(
Na

〈Na〉
− Nb

〈Nb〉

)
(1.28)

=

〈(
Na

〈Na〉
− Nb

〈Nb〉

)2
〉
−
〈(

Na

〈Na〉
− Nb

〈Nb〉

)〉2

=
〈N2

a 〉
〈Na〉2

− 2
〈NaNb〉
〈Na〉 〈Nb〉

+
〈N2

b 〉
〈Nb〉2

(1.29)

the ν would also provide the statistical part of total fluctuations. The ν(stat) can be written

as,

ν(stat) =
1

〈Na〉
+

1

〈Nb〉
(1.30)

So the dynamical fluctuation is the difference of total fluctuation and the statistical fluctua-

tion.

ν(ab,dyn) = ν(ab) − ν(stat) (1.31)

=
〈N2

a 〉
〈Na〉2

− 2
〈NaNb〉
〈Na〉 〈Nb〉

+
〈N2

b 〉
〈Nb〉2

− 1

〈Na〉
+

1

〈Nb〉
(1.32)

ν(ab,dyn) =
〈Na (Na − 1)〉
〈Na〉2

− 2
〈NaNb〉
〈Na〉 〈Nb〉

+
〈Nb (Nb − 1)〉
〈Nb〉2

(1.33)

The following figures are obtained from this fluctuation study, were the ratios have been

taken for the major hadrons we are obtaining in the collision. It also used the results from

all available, leading heavy ion experiments for this. From the figure 1.4, it is evident that

there exist fluctuation. For low energy experiments it is less than zero, and for high energy
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Figure 1.4: Dynamical fluctuation with particle ratios[Ars16] (a) kaon-proton ratio,(b)

kaon-pion, (c) proton-pion

regime it is positive. The results from cross ratio not only shows the existence of fluctuation,

but also gives an indication that each quantum numbers are correlated during the creation.

A perfect cross over in the fluctuation graphs is another important feature. The plot is for

dynamical fluctuation, and the cross over is an indication of change in the system which

is not just non-equilibrium effects. This gives a scope for higher moment analysis in this

energy level [A+09, A+15].

1.5 Experimental background

From the QCD predictions, it was clear that we can create a system which is deconfined,

from the high energy and high density collisions of heavy nuclei. The experiments which

are designed to check this predictions are the key to unrevealing the physics behind the

QGP[Sal09]. The main motivation for this kind of experiment is that, in the collision at

very high energy, the colliding nuclei will have a large energy compared to their rest mass.

This energy is deposited over a small volume for a short interval of time. In this region the

density of energy is so large that it may favour the appearance of new forms of matter. The

search for these new forms of matter is the central objective of heavy-ion physics. We use

heavy nuclei because they are rich in quark content compared to proton.

Figure 1.5: Schematic representation of heavy ion collision[Cha14]
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The figure 1.5 shows the diagrammatic representation of what is happening exactly in the

experiment. After collision of two heavy nuclei, those two nuclei will collapse and form a

fireball. Since we are providing very high energy to this nuclei, that energy will be deposited

in this fireball, which is very dense by the quark matter of nuclei. This fireball is expected

to be in a deconfined state. But this state is very unstable, because we are depositing very

dense and highly energetic particles in such a small volume. So the existence of this state

will be very small. Because of the large internal pressure of the system itself, it will start

to expand hydro dynamically[JHZ16]. As the system expands, it will start to cools down

and that will result in the hadronization. Hadronization is the production of hadrons. These

producing hadrons will be detected using specially designed detectors with respect to their

momentum, energy, position and so on. Each particle produced in the event is know as a

track and the total number of outcoming particles in an event is known as the multiplicity

of that event[Sal09].

There are different ways to know whether the QGP is formed in this collisions or not. To

disentangle the short existence of this new state, we need to have different probes. We

can study about the two particle correlations, jet quenching, J/ψ production and looking

into the properties of the hadrons produced. There are many approaches for this and dif-

ferent experiments were running at different energy scales all over the world. Here I am

briefly discussing about the initiatives and experiments done and currently running in this

area[Cha14][Sal09].

1.5.1 Heavy ion collisions

In 1970, Lawrence Berkley national Laboratory was built at Bevalac, where a transport line

was built to bring heavy ions from Hilac (Heavy ion linear accelerator) to the Bevatron.

That was the starting point of heavy ion collisions. The demonstration that excited nuclear

matter could be studied gave birth to research programmes at Brookhaven National Labo-

ratory (BNL) and at the European Organization for Nuclear Research (CERN)[Sal09]. Ini-

tially, BNL carried out experiment at a center of mass energy,
√
s = 5GeV with gold (Au)

atoms, and followed by CERN did its experiment with lead (Pb) atoms at
√
s = 17GeV .

Those were fixed target experiments. Even though this energy was not sufficient to fully

create QGP, it showed the existence of collective behaviour in heavy ion collisions. There

were the signature of J/ψ suppression, which is an evidence for the colour screening. One
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biggest mile stone in the heavy ion experiment is the discovery of QGP in RHIC at BNL

in 2000. There are two detectors currently working in RHIC, STAR and PHENIX. The

PHOBOS and BRAHMS were completed their operation [RHI]. STAR is designed to aim

at the detection of hadrons while PHENIX is specialized in detecting rare and electromag-

netic particles. PHOBOS has the largest pseudo rapidity coverage and it is dedicated for

the bulk particle multiplicity measurements, while BRAHMS is designed for momentum

spectroscopy [wik]. With the beginning of heavy ion experiments in CERN, another im-

portant mile stone was created. The ALICE experiment, at LHC, has been designed for

this purpose. The energy at which LHC is working will be high enough to allow a careful

investigation of the properties of this new state of matter, QGP. The temperature achieved

will exceed by far from the critical value predicted for the transition to take place. The

major pathways in the experiment starts from Linear Accelerator 3 (LINAC 3). It started

up in 1994 and it is the starting point for the ions used in experiments at CERN [ALI]. It

provides lead ions for the Large Hadron Collider (LHC) and for fixed-target experiments.

Linac 3 will inject lead ions into the Low Energy Ion Ring (LEIR),which is used as a

storage and cooler. It is providing ions to the Proton Synchrotron (PS) Booster with an

energy of 72MeV/nucleon. Ions will be further accelerated by the PS and the SPS (Super

Proton Synchrotron) before they are injected into the LHC where they reach an energy of

2.76TeV/nucleon.

1.6 Kinematics of Heavy ion collision

The outcoming particles from heavy ion collision, are having the knowledge about the

system which is formed during the collision. So we have to study more about the properties

of these particles in order to understand the QGP phase. The particles produced in heavy

ion collisions are relativistic in nature. So we need to develop an analytical method to

deal with those relativistically energetic particles and their properties. Hence we have to

first understand the kinematics of heavy ion collisions, because we are trying to recreate

a scenario in the early universe using experimental technology available to us. Here I am

discussing a few key kinematic features used in heavy ion collisions.
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1.6.1 Space Time picture

The figure 1.6 is about the collision of two nuclei in (t,z) plane. Two Lorentz contracted

nuclei approaching each other with velocity of light and collide at (t=0,z=0). A fireball

is created in the collision process. It expands in space- time and going through various

processes till the created particles freeze-out.

 

Figure 1.6: A space-time diagram for the evolution of matter produced in relativistic heavy

ion collisions[Cha14]

In relativistic mechanics, we know ∆t and ∆x are not invariant distances, while the in-

variant quantity is ∆τ 2 = ∆t2 − ∆x2 . So we can redefine the coordinates in relativistic

collision,the proper time and space-time rapidity,

proper time : τ =
√
t2 − z2 (1.34)

space− time rapidity : ηs =
1

2
ln
t+ z

t− z
(1.35)

1.6.2 Rapidity variable and Pseudo-rapidity variable

In relativistic mechanics,rapidity variable is defined as,

y =
1

2
ln
E + pz
E − pz

(1.36)

=
1

2
ln

1 + pz
E

1− pz
E

= tanh−1(
pz
E

) = tanh−1(βL) (1.37)

is more appropriate than the longitudinal velocity (βL = pz
E

). Rapidity has the advantage

that they are additive under a longitudinal boost. That is better explained as, suppose that
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a particle with rapidity y in a given inertial frame. It will have a rapidity y + dy in another

frame which moves relative to the first frame with rapidity dy in the −z direction. One

can see this from the addition formula of relativistic velocity β1 and β2 [Cha14]. When a

particle is produced at an angle θ, we can redefine the rapidity variable in such way that it

use the information of the angle at which the particle has been formed.

y =
1

2
ln
E + pz
E − pz

=
1

2
ln

√
m2 + p2 + pcosθ√
m2 + p2 − pcosθ

(1.38)

At very high energy, the mass can be neglected (p >>> m),

y =
1

2
ln
p+ pcosθ

p− pcosθ

= −lntan(
θ

2
) ≡ η (1.39)

η is known as the pseudo-rapidity variable, and we need only θ to determine the pseudo-

rapidity variable[Cha14]. It is very convenient variable for experimentalist, when the details

of a particle such as its mass, momentum and so on are not know, but the angle at which it

is produced is known.

1.6.3 Collision centrality

Since we are dealing with nucleus in the experiment, we need to consider their extended

spatial orientation. One important parameter in this collision is the impact parameter (b).

It is the center to center perpendicular distance of two colliding nuclei. It can be zero to 2R,

where R is the radius of an atom, or the candidate in the collision[Sal09].

Figure 1.7: impact parameter (b)
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Depending on the impact parameter, there are different types of collisions can happen.

When two nuclei collide head on, it is a central collision, while a peripheral collision can

occur when only glancing interaction occur between the two nuclei. The system created

by these two types of collisions will be different qualitatively and quantitatively. So study-

ing heavy ion collisions as a function of impact parameter can reveal different aspects of

reaction dynamics.

We can not measure the impact parameter experimentally. But it is possible to have one

to one correspondence between the observables like particle multiplicity, transverse en-

ergy and so on with the impact parameter. For example, one can assume that multiplicity

or transverse energy is a monotonic function of the impact parameter. High multiplicity

or high transverse energy events are from central collisions, and low multiplicity or low

transverse energy events are from peripheral collisions[Cha14]. One can then group the

collisions according to multiplicity or transverse energy.
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Chapter 2

Statistical Analysis

2.1 Distributions and Models

In this work we are focusing on, how to deal with the multiplicity distribution of heavy ion

collisions. From section 1.3.1, one can get the idea about, how the outcoming particle are

important in the study of heavy ion physics. Since we do not have the information about the

system formed during the collision, these multiplicity tracks are the pathway which carries

the information about the system which we are interested[Taw13].

2.1.1 Binomial distribution

James Bernoulli (1654-1705) developed the understanding about binomial distribution. A

binomial distribution or model is characterized by Bernoulli trials which either ends in

success or failure. Suppose we have n trials and the probability of success on a trial is p

[Ros07]. Then the conditions for which it is a binomial distribution:

• The Bernoulli trials are independent of each other.

• The probability for success, p, remains same for all trials.

• The number of trials n should be finite.

• The events should be discrete.

Definition
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A random variable x is said to follow binomial distribution if it assumes non-negative values

and its probability mass function is given by [Poi],

P (X = x) =

(
n

x

)
px(1− p)n−x (2.1)

Properties

• If probability for success and failure are equal, the given distribution will be symmet-

rical. If not, the distribution will be a skewed distribution.

• Mean of the distribution = E(x) = np.

• Variance = V(x) = np(1-p).

2.1.2 Negative Binomial distribution

Negative binomial or Pascal distribution is a special case of binomial distribution. Let us

consider a set of Bernoulli trials. It is used to describe the probability of (r − 1) successes

and x failures in (x + r − 1) and (x + r) trials respectively. The NBD probability density

function is,

Pr,p(x) =

(
x+ r − 1

r − 1

)
pr(1− p)x (2.2)

In the case of multiplicity distribution in heavy ion collisions, negative binomial distribution

is a good approximation at the lower center of mass energy regime. At lower energy scale,

the multiplicity or the number of outcoming hadrons will be less. Even in binomial distribu-

tion, negative binomial distribution is the best match for multiplicity distributions[TW13].

2.1.3 Poisson distribution

Poisson distribution is also a discrete distribution were it counts the events over time. It

is the named after Simeon Denis Poisson (1781-1840). This distribution differs from the

binomial distribution in the sense that in binomial distribution, we count the number of

success and number of failures, while in Poisson distribution, the average number of success

in given unit of time or space is matters [Poi].

Definition

The probability that exactly x events will occur in a given time is as follows,

P (x) =
e−µµx

x!
, x = 0, 1, 2... (2.3)
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It is the probability mass function of Poisson distribution. Where µ is the average number

of occurrences per unit of time.

Condition for Poisson distribution

Poisson distribution is the limiting case of binomial distribution under the following as-

sumptions [Ros07].

• The number of trials n should be indefinitely large.

• The probability of success p for each trial is indefinitely small.

• np = µ, should be finite where µ is constant.

Properties

• Poisson distribution is defined by single parameter µ.

• Mean = µ.

• Variance = µ. (Mean and Variance are equal)

At very high energy, the multiplicity also increases. Then Poisson distribution is a good ap-

proximation to the multiplicity distributions in heavy ion collisions[ABMRS17][BMFK+12].

2.1.4 Skellam distribution

The distribution of the difference between two independent Poisson random variables was

derived by Irwin (1937) for the case of equal parameters. Skellam (1946) and Prekopa

(1952) discussed the case of unequal parameters. It is named as Skellam distribution.

Definition

It is the difference of two independent Poisson distributions with uncorrelated mean values.

If µ1 and µ2 are the means of two different Poisson distributions, then the corresponding

Skellam distribution’s probability mass function is follows,

P (k;µ1, µ2) = e−(µ1+µ2)(
µ1

µ2

)k/2 Ik(2
√
µ1µ2) (2.4)

where Ik is the modified Bessel function of first kind. From equation 1.27, we know how

the higher moments of conserved quantities are related to QCD observable. Each particles

produced in an event is best explained with Poisson distribution, at very high event rate. So
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the conserved quantities which are basically the difference of this particles in a defined way,

will give rise to a Skellam distribution[BMFK+12]. From the particle content, pions can

be termed as the proxy for charge, kaons for strangeness and protons for baryon number.

So the study of higher moments of Skellam distribution is essentially serving as a probe for

understanding the conserved quantities distribution across the event and their properties.

The first four moments of Skellam distribution and some of the ratios derived from them

are listed, in terms of the means of the Poisson distributions from which it is coming.

µ = µ1 − µ2 (2.5)

σ =
√
µ1 + µ2 (2.6)

S =
µ1 − µ2

(µ1 + µ2)
3/2

(2.7)

κ =
1

(µ1 + µ2)
(2.8)

Sσ =
µ1 − µ2

µ1 + µ2

(2.9)

κσ2 = 1 (2.10)

2.1.5 Central Limit Theorem

Definition

LetX1, X2, X3... are the random variables from a distribution with a mean of µ and variance

σ. Let X̄ be the sample average of X1, X2..etc. Then the distribution of X̄ will tend to be

a normal distribution with mean µ and variance σ√
n

as the n tend to infinity [Ros07] [Poi].

Properties

• The distribution of X̄ will tend to normal distribution as n is large. So the approxi-

mation improves as n get larger.

• The random numbers should be independent, and derived from a same distribution.

2.2 Monte Carlo Method

Since we are dealing with a probabilistic approach, Monte Carlo method is a good choice.

Monte Carlo methods are a class of algorithms that functioning with randomness of events.

Using randomness, this method is effectively trying to recreate and analyze some physical

22



system. In our experiment, the particles are coming in random fashion. Our objective is to

study about them, in our labs. So simulation is the best option in such a scenario. Monte

Carlo simulations are used because of this random nature. If we have probability distribu-

tion or a function, we can generate random numbers with respect to the given parameters.

This way we can study about the multiplicity distributions, in way of recreating the events.

In this work also we are using Monte Carlo simulations to generate events. Entire simula-

tion and analysis are being done using object oriented software package ROOT.

2.2.1 ROOT: data analysis framework

ROOT is an object oriented data analysis frame work developed by physicists. It provides

a very composite and fast platform for researchers to perform complicated and rigorous

calculations. In high energy physics, one needs to satisfy many conditions to say an analysis

tool is good. One important thing is to study about the experimental aspects, we need to

create or manipulate data for such a model. Several parameters may need to check, several

optimization conditions also. We can not try this things in actual experiment, because

it is highly expensive and complicated. So the trial and error method we have perform

in a model which is a miniature version of actual experiment. So the model validations

and setting parameters which satisfy actual condition is quite a big task. Even if we are

succeeded in that, how do we visualize the effects, the results of our various hypothesis.

So the next important feature is the visualization of things. So we need to incorporate

different visualization techniques, in this case graphs, plots, histograms, all these in all

three dimensions. One needs to satisfy editing techniques also. That will help to modify

the graphs and allows one to modify it i such a way that it is more efficient, accurate and

perfect. We may need to save these outputs in a minimal space and use it for some further

calculations. Another important feature is fitting data. The experimental outcomes are not

well understood at the first glance. So we need to analyze it by different methods. One

may needs to fit it with some predicted functions or may have to fit several functions to the

given data. All these features are satisfied by ROOT. It has some well defined classes which

enable the user to perform various analytical experiments with this. I will briefly explain

some of the libraries or classes which are basic and used for my work.

• TF1 : It enable the user to define one dimensional functions in the program. Here the

integral function is available as predefined and we used that for our calculations.
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• TFile : It is class dedicated for saving data to some file and reading data from a file.

• TH1F : This class is for plotting one dimensional histograms. We need to specify the

number of bins needed and the range of x axis.

• TH2F : This one is also for plotting purpose, dedicated for two dimensional his-

tograms. In a two dimensional histogram we need to specify number of bins in x and

y axes. It is a good tool to save large number of one dimensional histograms in a

compact form. It saves a lot of time while writing program and visualization is also

good. We can get the projections along any axis and profile of the histogram in any

direction, all these things are associated with this.

• TGraph : For the visualization of graphs we need to use this class. We can modify

the plots in different colour, different point markers, different style, and also labeling

and plotting multiple graphs in one chart is also included.

• TRandom : This class is very special for simulation studies. It is a powerful tool

which helps the user to create random numbers which satisfy the user provided con-

ditions. Different options are available even in this class, were TRandom3 is very

good for best randomness. Because the computer generated random numbers are not

exact random number, while they are pseudo random numbers.

• TCanvas : As the name indicates it gives a canvas for plotting all sorts of visualization

methods. We can add multiple graphs in one canvas by dividing it into desired number

of parts.

From these understandings, we can write a simple code in ROOT. Here comes the problem

of which computational language is supported by ROOT, and the most favorable feature of

ROOT is also that. It is basically built with a tolerance to C++ language but, one can write

programs in C, Python, and R also [ROO].
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Chapter 3

Data Analysis and Results

In order to calculate the higher moments, we need to create the multiplicity distribution

from actual experimental data. The particles have been detected according to their trans-

verse momentum, energy, position and so on. In this work we are focusing on the transverse

momentum distributions of outcoming particles in the most central events. Then we are an-

alyzing those data, extracted from experiments, to do Monte Carlo simulations using a data

analysis frame work called ROOT. The higher moments are calculated for net charge, and

validating CLT in this limit. All these computational work has been done for large number

of events, in the High Performance Cluster(HPC), newly developed in our institute. The

programs are really large, so we are showing only the part where the real calculations are

being done. These part of codes are shown in Appendix-A.

3.1 Transverse momentum distribution

The figure 3.1 shows the transverse momentum distribution of particle yield. The y axis of

the figure is a little complicated, but demonstrated in a very standard form. It is the rate of

change of particles in a particular pT bin collected in a defined rapidity window. Since we

are assuming the fireball created is spherically symmetric, here we are dividing it by 2π,

because of the azimuthal angle symmetry. Now we need to normalize the yield with respect

to the total number of events happened, then only those data points will give an event- by-

event scenario. Also, for further normalization with the momentum value, again it has to

be divided by pT [A+02].
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Figure 3.1: Transverse momentum distribution of hadrons[A+14](pion,kaons,protons)

Integrating these graphs, and multiplying that value with 2πPT will give the total number

of particles produced in that transverse momentum range in the preferred rapidity window.

3.2 Approach and Results

From the transverse momentum distributions, data points were extracted in the ROOT for-

mat. This is the input for the program. Two different programs were developed in order to

understand higher moments and to validate CLT. The data were available for pion, kaon,

proton and anti proton. From there we chose a transverse momentum range which is avail-

able for all particles, and done the calculations. The sum of all positively charged particles

(π+, k+, p+) will give the total number of positively charged particles in the selected pT

window. Total number of negatively charged particles can be calculated in a similar way.

Here we are dealing with four different particle id’s, charged, pions, kaons, proton and anti

proton as together, with two different charges, positive and negative [A+13].

3.2.1 Producing higher moments

For the higher moment calculations, we have to construct the multiplicity distribution. The

entire data set has been divided into ten pT windows. These different pT windows will

enable us to understand the behaviour in bin wise and accumulated pT range. Using pre-

defined integral tools in ROOT, the pT spectrum in each window has been integrated. This

integration will give the number of particle produced in that pT window. From the as-

sumption that, the particles will follow Poisson distribution, our next goal was to create the
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multiplicity distributions for those average number of particles obtained from the integra-

tion. Using Monte Carlo simulation, large number of events were generated and filled into

a two dimensional histogram. The projection of that histogram along y direction will be

a Poisson distribution with a mean of given value, which means it will be a multiplicity

distribution with average number of particles produced in that pT bin. Once we have the

similar integral values for positive and negative particles of similar kind, their difference

will give the net charge (Q) and sum will give total number of particles in that window. We

have an insight about the distribution of charge, which will be a Skellam distribution. This

procedure has been followed for all particle identities, and the projections about y axis have

been plotted together, which is provided below,
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Figure 3.2: Top left panel shows the multiplicity distribution for positively charged pions

whereas top right panel shows the multiplicity distribution of negatively charged pions.

Bottom left panel shows the distribution of total pions (< π+ + π− >) and bottom right

panel shows the distribution for net-particles (< π+ − π− >) estimated from the same

events.

The above four plots (figure 3.2) are obtained from pion data. Pions are the hadrons which

comprise around 80% of the total multiplicity. From the above plots, the top two are for
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positively charged pions and negatively charged pions respectively. Their trend is as we

were expected. Because, from the transverse momentum distribution, it is obvious that the

number of particles detected will be less as we go to higher momentum range. The axis

is in log scale, so the smaller plots have larger value. Bottom left figure corresponds to

the sum of pion plus and minus particles. It should also looks similar to the independent

distributions, just scaled up. The bottom right figure is the Skellam distribution for net-

charge from pions. As we decrease the momentum bin, the spread has been decreasing and

peaked distributions are obtained.
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Figure 3.3: Top left panel shows the multiplicity distribution for positively charged kaons

whereas top right panel shows the multiplicity distribution of negatively charged kaons.

Bottom left panel shows the distribution of total kaons (< k+ + k− >) and bottom right

panel shows the distribution for net-particles (< k+ − k− >) estimated from the same

events.

In the total multiplicity, kaons contribute around 17%. For kaons also the distribution trend

of positive and negative charged particles will look similar in the trend, and the sum of those

will also follow same kind of a trend. The plots we are getting also matching with this. And

here also, the net-charge distribution (bottom right figure) is showing a small spread as we
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go to smaller bin size. But the entire distribution is less spread compared to the net-charge

distributions for pions.
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Figure 3.4: Top left panel shows the multiplicity distribution for protons whereas top right

panel shows the multiplicity distribution of anti protons. Bottom left panel shows the dis-

tribution of (< p+ + p̄ >) and bottom right panel shows the distribution for net-particles

(< p+ − p̄ >) estimated from the same events.

In the case of proton and anti proton, these are very small percentage of total multiplicity

(∼ 2%). There has to be a decrease in the spread of the multiplicity distribution, which

is evident from the above figure, top two plots. Net-charge distribution became more nar-

rower, which pronounce correlation with respect to the particle abundance in the system.

Charged particles
Charged particle distribution is an enclosure of all three particle identities we discussed

earlier. So the expected trend for positive particles, negative particles and sum of particles

are satisfying. One can easily understand the correlation from other individual particle

distribution to this figures. The net-charge distribution is also matching with other same

kind of distributions. Here we need to calculate the higher moments, to understand about
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the spread and to get an idea about why it is like that.
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Figure 3.5: Top left panel shows the multiplicity distribution for positively charged particles

whereas top right panel shows the multiplicity distribution of negatively charged particles.

Bottom left panel shows the Distribution for total particles and bottom right panel shows

the distribution for net-particles (< P −N >) estimated from the same events.

Once we have the distributions for the interested quantities in the system, next step is to

calculate higher moments. In order to get higher moments from ROOT, we can use prede-

fined statistical tools. First four moments (M , σ, S, κ) were calculated and plotted together

for all four particle identities as defined initially in this section. The first plot is labeled

with particle id’s, for which colour code has been used, it is similar for all other plots.

By analyzing figure 3.6 and figure 3.7, mean and σ for the positive and negative particles

shows a decreasing behaviour with the decrease of momentum binsize. There is not much

difference in the higher moments of these two sets. These two moments are higher for large

sized particle identity, that is total charged particles, and small for protons. But the other

two moments showing a different trend, were the order is just reversed. This behaviour can

be understood from equations 1.17 and 1.18. The skewness and kurtosis is inversely related

to second moment. So those will be large for the set of data which is having smaller second
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moment. That is why we are getting the trend as like this. The figure 3.8 is for the sum of

particles, which is also behaving like the individual distributions.
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Figure 3.6: Higher moment plots for positively charged particles (π+, k+, p+, and positively

charged total particles).
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Figure 3.7: Higher moment plots for negatively charged particles (π−, k−, p̄, and negatively

charged total particles).
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Figure 3.8: Higher moments for total particles in the event
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Figure 3.9: Higher moments for net-charge.

In figure 3.9, mean is almost stable for protons, slight changes in kaon system, but its

very fluctuating for charged particles and pions. The second moment is again showing a

decreasing trend with respect to the number of particles in each set. The spread is very large

in charged particles while it is small in proton and anti proton distributions. Skewness is

almost similar for all particles except for kaons. In the case of kaons and protons, there are
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several anomalies in there production and behaviour. These hadrons are produced directly

from the system, but it is coming from the decay of certain other particles. The problem

is that, the direct production will have a non-biased number of both positive and negative

particles, but the production through decay will be biased. It will cause the changes in the

distribution and properties of these hadrons, which are not yet understood properly. The

kurtosis is also showing such a change.

3.2.2 Higher Moments for Other relations

The above quantities are used to calculate the traditional higher moments as the net-particles

are conserved in QCD. We propose some other quantities which are the ratios as well as

two-particle correlators of all those particles which represents the conserved quantities of

QCD. Namely, (1)
〈
P
N

〉
, (2)

〈
N
P

〉
, (3)

〈
P−N
P+N

〉
, (4)

〈
1− P

N

〉
, (5)

〈
1− N

P

〉
, (6)

〈
N−1
N
− P−1

P

〉
,

(7)
〈
P−1
P
− N−1

N

〉
, (8)

〈
N(N−1)

N
− P (P−1)

P

〉
, (9)

〈
P (P−1)

P
− N(N−1)

N

〉
. Although there are

many more combinations to estimate higher moments, but these are more prominent upto

two particle correlations. We have calculated the higher moments of each distribution for all

these quantities. The higher moment plots for these quantities are given below, calculated

by the same procedure as defined above. The labels are written in terms of positive (P) and

negative (N) particles.
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Figure 3.10: Higher moment plots for
〈
P−N
P+N

〉
.
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This is also for better understanding of fluctuation. All these figures shows the higher

moments upto fourth order for all these combinations, for example,
〈
P−N
P+N

〉
, the numerator

is the net-charge and the denominator is total number of particles. The fluctuation at small

pT bin is large, because the particle content in that is very small, hence the ratio will show

much fluctuation. Here also we can see the behaviour in proton and kaon system as changed

from other systems. The following figures are obtained from the simulation. We observe

that although the behaviour of each plot is not completely understood, but it shows a pattern

of enhanced fluctuations (almost all cases) when the transverse momentum windows are

reduced. It is something we are proposing from this work. If we could understand the

unusual behaviour in these quantities, which are significant in the fluctuation analysis, it

can give a much clear picture.
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Figure 3.11: Higher moments for
〈
P
N

〉
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Figure 3.12: Higher moments for
〈
N
P

〉
.
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Figure 3.13: Higher moments for
〈
1− P

N

〉
in the event

35



 windows
T

p
 2.95

↔
0.32 

 2.29
↔

0.32 
 1.64

↔
0.32 

 0.98
↔

0.32 
 2.29

↔
0.98 

 2.29
↔

0.98 
 1.64

↔
0.98 

 2.95
↔

1.64 
 2.29

↔
1.64 

 2.95
↔

2.29 

M
e

a
n

0.4−

0.2−

0

0.2

0.4

ch
  N π   

K   P   

〉 (1 ­ N/P) 〈        

 windows
T

p
 2.95

↔
0.32 

 2.29
↔

0.32 
 1.64

↔
0.32 

 0.98
↔

0.32 
 2.29

↔
0.98 

 2.29
↔

0.98 
 1.64

↔
0.98 

 2.95
↔

1.64 
 2.29

↔
1.64 

 2.95
↔

2.29 

σ

0

0.5

1

〉 (1 ­ N/P) 〈        

 windows
T

p
 2.95

↔
0.32 

 2.29
↔

0.32 
 1.64

↔
0.32 

 0.98
↔

0.32 
 2.29

↔
0.98 

 2.29
↔

0.98 
 1.64

↔
0.98 

 2.95
↔

1.64 
 2.29

↔
1.64 

 2.95
↔

2.29 

S

4−

2−

0

2
〉 (1 ­ N/P) 〈        

 windows
T

p
 2.95

↔
0.32 

 2.29
↔

0.32 
 1.64

↔
0.32 

 0.98
↔

0.32 
 2.29

↔
0.98 

 2.29
↔

0.98 
 1.64

↔
0.98 

 2.95
↔

1.64 
 2.29

↔
1.64 

 2.95
↔

2.29 
K

0

5

10

〉 (1 ­ N/P) 〈        

Figure 3.14: Higher moments for
〈
1− N

P

〉
in the event.
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Figure 3.15: Higher moments for
〈
N−1
N
− P−1

P

〉
in the event.
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Figure 3.16: Higher moments for
〈
P−1
P
− N−1

N

〉
.
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Figure 3.17: Higher moments for
〈
N(N−1)

N
− P (P−1)

P

〉
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Figure 3.18: Higher moments for
〈
P (P−1)

P
− N(N−1)

N

〉
.

In summary, we can speculate that, the higher order moments for all these combinations are

prominent. And it is not because of statistical fluctuations alone as we have checked with

several billions of events expecting the statistical error to minimum. These quantities can

be of good observables as most of them are in terms of ratios, which ensure that the partial

(may be complete) cancellation of inefficiencies due to detector system in real experiments.

3.2.3 Validation of Central Limit Theorem

From section 2.1.6, the criteria for the validation of CLT is clear. In our case we need

distributions with equal mean (Poisson distribution in our concern). In order to satisfy this

condition, the total number of particles produced in one event has been divided into several

parts, starting from two till 2700 times. For each such steps we performed Monte Carlo

simulation, and produced large event size. There we carried out two different approaches,

divided and flat sum approaches.

Since we are dividing the total number to, let say, n times, then the sum of these n small

particle number should add up to total number which we obtained for the full integration.
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For example, in the case of positive particles, the following relation should be valid.

P =
n∑
i=1

Pi (3.1)

N =
n∑
i=1

Ni (3.2)

where P is the total number of positive particles produced and Pi is the number of particles

in each division. So, in this method we divided the total number of particles into several

parts and added them. This step had done for large number of events and filled into a two

dimensional histogram. The projection of this two dimensional histograms will give the

expected distribution for positive and negative particles.

In figure 3.19, left panel is the two dimensional histogram for positive particle, where we

are essentially checking the validity of equation 3.1. It is expected to be a band, and we are

getting it nicely. The projection is the individual multiplicity distribution and it will look

like right panel of figure 3.19. The colour code is used to indicate the density of points,

value correspond to each colour is given at the right side of histograms. This indicator is

used for the rest of the two dimensional histograms.

Figure 3.19: Scattered plot for positive particles simulated in various transverse momentum

windows (decreasing width). Right panel is the projected distributions from each windows

of scattered plot.

The two dimensional histogram for negative particles is given in the right panel of the figure

3.20. It also came as expected, a band. Individual multiplicity distribution will look like

left panel of figure 3.20, corresponding to negatively charged particles.
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Figure 3.20: Scattered plot for negative particles simulated in various transverse momentum

windows (decreasing width). Right panel is the projected distributions from each windows

of scattered plot.

We can calculate the trend for net charge in this case in a similar way as we discussed

for higher moment calculation of them. In each event, we have to take the difference of

positive and negative particles and sum them up, fill into a two dimensional histogram. The

histogram we obtained is again a band of points (right panel of figure 3.21)and its projection

is given in the left panel of figure 3.21.

Figure 3.21: Scattered plot for net-charge simulated in various transverse momentum win-

dows (decreasing width). Right panel is the projected distributions from each windows of

scattered plot.

We need to check for another trend of these particles, when the number is not added up.

This has to be checked for positive and negative particles as well as for the net-charge dis-

tribution. For positive and negative particles, we are expecting a decreasing trend,because

we will get lesser number of particles in high pT range.
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Figure 3.22: Left panels are the 2D histogram for individual divisions of positive and neg-

ative particles,from top to bottom respectively.Right panels are the projections from the

scattered plots for each.

From figure 3.22, we are getting such a distribution for positive and negative particles. Left

panels shows the two dimensional view of the distribution for the positive and negative

particles. Right panel of figure 3.22 depicts the projections of those scattered plots in any

x bin. Since it is a sum of all divisions, any projection of scattered plots will look similar.

The behaviour for positive and negative particles may not have much importance, but in the

case of net- charge, it is relevant. We have to check whether the assumption we considered

initially, that is the physics of conserved quantities will be same in any section of phase

space, has to be checked. In this work we are looking at net-charge, it should be same in

any momentum window, as per one of our initial assumption. So we need to check whether

it is correct or not. We took the difference of positive and negative particles in each division

and plotted.
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Figure 3.23: left panel is the 2D histogram for individual divisions of net-charge and right

panel is the projection from the scattered plots

This result is very interesting. We are getting a converging trend as we go to higher number

of division. Right panel of figure 3.23 shows the net-charge distribution as we go from total

phase space to a 2700 times divided situation. It is completing the validation of central

limit theorem. Because, as we are increasing the number of divisions, it is tending towards

a normal distribution. So CLT is not violated. But one major assumption on which recent

studies in heavy ion physics has been done, may have to reconsider. The figure 3.23 is a

question towards the uniformity of phase space or more simply the physics of conserved

quantities are not changing over slices of phase space. From the result we are getting,

it is not the case. We can not hold that assumption for any small range of phase space,

because it is changing the physics. So we need to have some normalizing conditions, in

such a way that both CLT and this a prior assumption can be explained in the system. The

Projection shown in the right panel will give a better understanding towards the change in

the distribution as we go to higher divisions. There is less spread and more peaked around

zero.

We also calculated the higher moments for these distributions of net-charge. The following

plots contain the trend of higher moments for divided inputs and flat sum, both are colour

coded distinctly.

From figure 3.24, it is clear that, as we go to lower number of divisions, the moments are

increasing. The variance is changing very drastically compared to mean. The behaviour in

figure 3.25 is also similar to above case. The conserved quantities (here, net-charge) are not

showing a stable distribution as we decrease the window to very smaller.
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Figure 3.24: Left panel is the mean (M) and right panel is the σ of net-charge.

Figure 3.25: Left panel is the skewness (S) and right panel is the kurtosis (κ) of net-charge.

3.3 Summary

In tis work we mainly focused on the study of higher moments of multiplicity distributions

in heavy ion collisions. Here we are briefly collating all the results and important con-

clusions. From various assumptions and predictions, we developed the statistical analysis

method for heavy ion physics. From statistical mechanics, we got the idea to treat the sys-

tem formed during collision as an ensemble, and from there the possibilities of calculating

higher moments arose. We can connect the moments of the system to the susceptibility

of QCD, which is related to the macroscopic parameters of QGP system. But from the

equations, it was not clear that, doing such a calculation will be good for better understand-

ing. So we did a review till second order moment (section 1.4). The findings from that

study (figure 1.4) clearly showed that there is fluctuation, which is a measure of dynamical

changes happening inside the system, and the study of higher moments is relevant. There

we were able to see a crossover in the fluctuation as we go to higher energy regime.
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In order to calculate the higher moments, we need to understand the possible distributions

which can fit our multiplicity and conserved quantities. Poisson distributions can be a best

candidate for multiplicity distribution at higher energy regime, while negative binomial

distribution explains at lower energy regime. We are looking at ALICE data, which is an

experiment at LHC, were lead atoms are colliding at higher energy. We collected data for

the collision at 2.76TeV for three different particles, pions, kaons, proton and anti proton

from he transverse momentum distribution. From that data, with the help of a data analysis

frame work called ROOT, we were able to perform the calculation for higher moments.

The result we were getting was good and it has a clear signature of fluctuation and non-zero

higher moments, which is an indication of asymmetry. For representing the total system, we

have done the higher moment calculation for total charged particles. Some other quantities

like rations of particles, sum, ν dynamics and so on were calculated and looked into the

higher moment plots of those. Those are also used previously for fluctuation studies.

The first two moments have a clear dependence on the multiplicity. From figures of the

net-charge distributions for pions, kaons and protons system, the spread is decreasing. The

multiplicity is also in decreasing order for these particles. The deviation in M and σ is

less for protons while higher for total charged particles. Skewness and kurtosis shows a

reverse correlation, because of the bias nature in the production of kaon and proton. So

the fluctuations or higher moments will be large for small number of particles. Also we

can see a peak at the smaller pT bin, because, at small momentum, the number of particles

will be less, and it will arise fluctuations in calculations we have done. In the validation

of CLT, we got very good results. In the present situation which is developed from some

a prior assumptions can not be true in full sense if CLT has to be validated. If CLT is

holding then the uniform phase space concept has to redefine in such way that, using some

normalizing techniques, we have to clearly mark the range up to which the uniqueness of

physics, related to conserved quantities are valid. For that we have work more, it is not in

the scope of this work. Also we are looking forward to do the same kind of approach in

another energy scales also. Then it may help us to find some condition on the phase space

slices.
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Appendix A

Simulating the Events: Technical Part

We have written a set of codes using ’c++’ programming language and which uses ROOT

classes. Following are the main components of this monte carlo simulations.

• 1: The yields of individual particles are estimated from already published pT spectra

of each particle.

• 2: A monte-carlo event generator is written to generate both positive and negative

particles.

• 3: Several parallel jobs are submitted to IISER Mohali HPC facility via a newly

written qsub script

• 4: Further these outputs are collected and fed into a newly written parsing code to

produce the plots.

Followings are part of several codes and scripts:

A.0.1 Simulator

1 / / The i n t e g r a l p a r t ( x [ ] a r e t h e t r a n s v e r s e momentum )

2 TF1 f2 ( ” f2 ” , [ & ] ( d ou b l e ∗x , d oub l e ∗ ) { r e t u r n gr2−>Eval ( x [ 0 ] ) ; } , a , t , 0 ) ;

3 do ub l e P t o t a l = f2 . I n t e g r a l ( a , b ) ;

4 / / S e t t i n g t h e Random G e n e r a t o r

5 do ub l e n ;

6 n =( b−a ) / 4 ;

7 do ub l e BW[ 4 ] ;
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8 f o r ( i n t i =0 ; i <4; i ++){

9 BW[ i ] = 0 . 1 1 + n∗ i ;

10 }

11 TRandom ∗ranM [ d i v ] ;

12 TRandom ∗ ranP [ d i v ] ;

13

14 f o r ( i n t i = 0 ; i <4; i ++) {

15 ranM [ i ] = new TRandom3 ( ) ;

16 ranP [ i ] = new TRandom3 ( ) ;

17 }

18 / / H i s t o g r a m i n g

19 TH2F ∗ fHi s t M [ 4 ] ;

20 TH2F ∗ f H i s t Q [ 4 ] ;

21 TH2F ∗ f H i s t P [ 4 ] ;

22 / / G e n e r a t i n g e v e n t s

23 f o r ( i n t j =1 ; j<=z ; j ++){

24 ranM [ j−1]−>Se tSeed ( 0 ) ;

25 ranP [ j−1]−>Se tSeed ( 0 ) ;

26 do ub l e a l = BW[ i ] ;

27 do ub l e au = BW[ i ] + n∗ j ;

28 do ub l e y i e l d P = f2 . I n t e g r a l ( a l , au ) ;

29 do ub l e yieldM = f1 . I n t e g r a l ( a l , au ) ;

30 f o r ( i n t k =0; k<n e v t ; k ++){

31 m = ranM [ j−1]−>P o i s s o n ( yieldM ) ;

32 p = ranP [ j−1]−>P o i s s o n ( y i e l d P ) ;

33 q = p−m;

34 . . . . .

35 . . . . .

36 . . . . .

37 }

A.0.2 Simulator for CLT

1 / / G e n e r a t i n g CLT Ev en t s

2 TRandom ∗ranM [ d i v ] ;

3 TRandom ∗ ranP [ d i v ] ;

4

5 f o r ( i n t i = 0 ; i <d i v ; i ++) {

6 ranM [ i ] = new TRandom3 ( ) ;
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7 ranP [ i ] = new TRandom3 ( ) ;

8 ranM [ i ]−>Se tSeed ( 0 ) ;

9 ranP [ i ]−>Se tSeed ( 0 ) ;

10 }

11 . . . . .

12 . . . . .

13 do ub l e sumM, a10 = 0 ;

14 do ub l e sumP , a11 = 0 ;

15 f o r ( i n t i =1 ; i<= d i v ; i ++){

16 do ub l e meanP = P t o t a l / i ;

17 do ub l e meanM = M t o t a l / i ;

18 P r i n t f ( ” Running For : %d P:% f N:% f ” , i , meanP , meanM) ;

19 f o r ( i n t k =0; k<n e v t ; k ++){

20 sumP = 0 ;

21 sumM = 0 ;

22 f o r ( i n t j =0 ; j<i ; j ++){

23 a10 = ranM [ j ]−>P o i s s o n ( meanP ) ;

24 a11 = ranP [ j ]−>P o i s s o n (meanM) ;

25

26 sumP += a10 ;

27 sumM += a11 ;

28

29 f H i s t i P−>F i l l ( i −1, a10 ) ;

30 f H i s t i M−>F i l l ( i −1, a11 ) ;

31 f H i s t i Q−>F i l l ( i −1 ,( a10−a11 ) ) ;

32 }

33 do ub l e Q = sumP − sumM ;

34 f H i s t P−>F i l l ( i −1,sumP ) ;

35 fHis t M−>F i l l ( i −1,sumM) ;

36 fH i s t Q−>F i l l ( i −1,Q) ;

37

38 }

39 }

A.0.3 qsub script

1 # ! / b i n / bash

2 # ###############################

3 # Example t o use / tmp s p a c e − qsub s c r i p t
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4 # W r i t t e n f o r IISER HPC community

5 # Author : S . J ena

6 # S a t Mar 4 1 4 : 2 3 : 5 2 IST 2017

7 # ###############################

8 #

9 # ##### BEGIN SGE PARAMETERS − n o t e t h e ’#$ ’ p r e f i x ######

10 # ##### DO NOT SET THE −cwd f l a g f o r a / tmp j o b

11 #

12 #$ −S / b i n / bash

13 # s p e c i f y t h e name of t h e j o b d i s p l a y e d i n ’ q s t a t ’ o u t p u t

14 #$ −N a n j a l i

15 #

16 # ####### Where t o keep Log Outpu t #########

17 # Make s u r e you have a d i r e c t o r y l o g i n your HOME

18 #$ −o l o g /

19 #$ −e l o g /

20 # ##### BEGIN / tmp DIR CODE ######

21 # s e t t h e STDATA t o p o i n t t o t h e node− l o c a l / tmp d i r and make s u r e you

22 # p l a c e t h e f i l e s i n your own s u b d i r . ’ ${USER} ’ i s g l o b a l e n v i r o n m e n t

23 # v a r i a b l e i n h e r i t e d by a l l your p r o c e s s e s , so you shouldn ’ t have t o

24 # d e f i n e i t e x p l i c i t l y

25 #JOB ID g e t t h e j o b number and we keep o u t p u t i n f o l d e r w i th t h i s number

26 COPUT=”HM${JOB ID}”

27 STDATA=” / tmp / ${USER} / ${COPUT}”

28 MYAPP=” ${HOME} /hm / run . sh ”

29 FOUTPUTD=” ${HOME} /hm / o u t p u t ”

30 mkdir −p ${STDATA}

31 mkdir −p ${FOUTPUTD}

32 cd ${STDATA}

33 cd ${STDATA}

34 pwd

35 cp ${HOME} /hm / run . sh .

36 cp ${HOME} /hm / CLTupdated . C .

37 cp ${HOME} /hm / produceHistForHM . C .

38 pwd

39 sh run . sh

40 rm ∗ .C ∗ . sh ∗ . pcm ∗ . so ∗ . d

41 cd . . /

42 cp −r ${COPUT} ${FOUTPUTD} / .
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43 rm − r f ${COPUT}

A.0.4 Run Script

1 # ! / b i n / sh

2 # s o u r c e / o p t / c e r n / r o o t / b i n / t h i s r o o t . sh

3 # e x p o r t PATH=$PATH : / o p t / c e r n / r o o t / b i n

4 # e x p o r t LD LIBRARY PATH=$LD LIBRARY PATH : / o p t / c e r n / r o o t / l i b / r o o t

5 # module a v a i l

6 module l o a d c e r n / 1

7 r o o t −b << EOF

8 . L produceHistForHM . C+

9 produceHistForHM ( )

10 . q

11 EOF

12 f o r i i n { 0 . . 5 0 }

13 do

14 r o o t −b −q ’ CLTupdated . C( ’ ${ i } ’ ) ’ 2>&1 | t e e c h e c k $ { i } . l o g

15 done

16 hadd OutputHis tCLT . r o o t c l t o u t p u t ∗ . r o o t

17 rm c l t o u t p u t ∗ . r o o t

A.0.5 Submitting Job and Logs

We submit job using SGE job scheduler and it was done via following commands

[fontsize=\small]

#qsub run_job.qsub

Your job 17354 ("anjali") has been submitted

We submit several such jobs to achieve the statistics. Once jobs are submitted, it pass to the

computing nodes.

#qstat

job-ID prior name user state submit/start at queue slots/ja-task-ID

-------------------------------------------------------------------------

16754 0.55500 anjali sjena r 04/16/2017 11:06:52 all.q@compute-0-3 1

16755 0.55500 anjali sjena r 04/16/2017 11:06:52 all.q@compute-0-14 1

16756 0.55500 anjali sjena r 04/16/2017 11:06:52 all.q@compute-0-13 1

16757 0.55500 anjali sjena r 04/16/2017 11:06:52 all.q@compute-0-12 1
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16758 0.55500 anjali sjena r 04/16/2017 11:06:52 all.q@compute-0-6 1

16759 0.55500 anjali sjena r 04/16/2017 11:06:52 all.q@compute-0-16 1

16760 0.55500 anjali sjena r 04/16/2017 11:06:52 all.q@compute-0-9 1

16761 0.55500 anjali sjena r 04/16/2017 11:06:52 all.q@compute-0-11 1

16762 0.55500 anjali sjena r 04/16/2017 11:06:52 all.q@compute-0-5 1

16763 0.55500 anjali sjena r 04/16/2017 11:06:52 all.q@compute-0-4 1

16764 0.55500 anjali sjena r 04/16/2017 11:06:52 all.q@compute-0-7 1

16765 0.55500 anjali sjena r 04/16/2017 11:06:52 all.q@compute-0-7 1

16766 0.55500 anjali sjena r 04/16/2017 11:06:52 all.q@compute-0-4 1

16767 0.55500 anjali sjena r 04/16/2017 11:06:52 all.q@compute-0-5 1

$qstat -f (tells about slots and number of jobs)

queuename qtype resv/used/tot. load_avg arch states

-------------------------------------------------------------------

all.q@compute-0-0.local BIP 0/12/12 12.01 linux-x64

16823 0.55500 anjali sjena r 04/16/2017 11:06:52 1

16842 0.55500 anjali sjena r 04/16/2017 11:06:52 1

16861 0.55500 anjali sjena r 04/16/2017 11:06:52 1

16880 0.55500 anjali sjena r 04/16/2017 11:06:52 1

16899 0.55500 anjali sjena r 04/16/2017 11:06:52 1

16918 0.55500 anjali sjena r 04/16/2017 11:06:52 1

16937 0.55500 anjali sjena r 04/16/2017 11:06:52 1

16955 0.55500 anjali sjena r 04/16/2017 11:12:07 1

16960 0.55500 anjali sjena r 04/16/2017 11:12:07 1

16966 0.55500 anjali sjena r 04/16/2017 11:12:07 1

16970 0.55500 anjali sjena r 04/16/2017 14:26:07 1

16978 0.55500 anjali sjena r 04/16/2017 15:04:07 1

This produces two log files ’anjali.e16981’ and ’anjali.o16981’, which keep all the ’stdout’

of the ROOT simulator that is running.

[fontsize=\small]

/tmp/HM16981

/tmp/HM16981

------------------------------------------------------------

| Welcome to ROOT 6.02/05 http://root.cern.ch |
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| (c) 1995-2014, The ROOT Team |

| Built for linuxx8664gcc |

| From tag v6-02-05, 9 February 2015 |

| Try’.help’, ’.demo’,’.license’, ’.credits’, ’.quit’/’.q’ |

------------------------------------------------------------

Processing CLTupdated.C(0)...

Info in <TCanvas::MakeDefCanvas>: created default

TCanvas with name c1

p=2689.563987 m=2690.121991

Running For: 1 P:2689.563987 N:2690.121991

Running For: 2 P:1344.781993 N:1345.060995

A.0.6 Analysis and output Parsing Code

1 i v o i d mySe tGraphSty le ( ) ;

2 vo id myGraphSetUp ( TGraphEr ro r s ∗ c u r r e n t G r a p h =0 ,

3 F l o a t t c u r r e n t M a r k e r S i z e = 1 . 0 ,

4 i n t c u r r e n t M a r k e r S t y l e =20 ,

5 i n t c u r r e n t M a r k e r C o l o r =0 ,

6 i n t c u r r e n t L i n e S t y l e =1 ,

7 i n t c u r r e n t L i n e C o l o r =0) ;

8 vo id myPadSetUp ( TPad ∗ c u r r e n t P a d ,

9 f l o a t c u r r e n t L e f t = 0 . 1 1 ,

10 f l o a t c u r r e n t T o p = 0 . 0 4 ,

11 f l o a t c u r r e n t R i g h t = 0 . 0 4 ,

12 f l o a t c u r r e n t B o t t o m = 0 . 1 5 ) ;

13 vo id myLegendSetUp ( TLegend ∗ c u r r e n t L e g e n d =0 ,

14 f l o a t c u r r e n t T e x t S i z e = 0 . 0 7 ) ;

15 / /

16 vo id DrawProjHis to1Can ( TH2F∗ vHis t ,

17 c o n s t C h a r t ∗ f igname ,

18 c o n s t C h a r t ∗ s t r X a x i s ,

19 c o n s t C h a r t ∗ s t r Y a x i s ,

20 C h a r t ∗ s t r L e g [ kNpt ] ) ;

21

22 / /

23 vo id DrawGraph1Can4Pad ( TH2F ∗ l H i s t , I n t t type , c o n s t C h a r t ∗ f igname ) ;
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24 . . . . .

25 . . . . .

26 T F i l e ∗ f i l e = T F i l e : : Open ( ” OutputHistHM . r o o t ” ) ;

27 TH2F∗ f H i s t [ 4 ] [ 1 3 ] ;

28 f o r ( I n t t i P i d = 0 ; i P i d < 4 ; i P i d ++) {

29 f o r ( I n t t iPhy = 0 ; iPhy < 1 3 ; iPhy ++) {

30 f H i s t [ i P i d ] [ iPhy ] = ( TH2F∗ ) f i l e −>Get ( Form ( ”%s%d ” , hname [ iPhy ] ,

i P i d ) ) ;

31 c o u t << f H i s t [ i P i d ] [ iPhy]−>GetName ( ) << e n d l ;

32 }

33 }

34 . . . .

35 DrawProjHis to1Can ( f H i s t C l o n e [ 0 ] [ 0 ] , ” f i g D i s t C h a r g e P ” , ” #LT P #GT” , ” p ( n )

” , s t r L e g ) ;

36 . . . .

37 f o r ( I n t t i = 0 ; i < l H i s t−>GetNbinsX ( ) ; i ++) {

38 TH1D ∗htmp = (TH1D∗ ) l H i s t−>P r o j e c t i o n Y ( Form ( ” P h i s t%s%d ” , l H i s t−>

GetName ( ) , i ) , i +1 , i +1 , ” ” ) ;

39 xa [ i ] = i ;

40 me [ i ] = htmp−>GetMean ( ) ; mee [ i ] = htmp−>GetMeanError ( ) ;

41 s i [ i ] = htmp−>GetRMS ( ) ; s i e [ i ] = htmp−>GetRMSError ( ) ;

42 sk [ i ] = htmp−>GetSkewness ( ) ;

43 ku [ i ] = htmp−>G e t K u r t o s i s ( ) ;

44 }

45 . . .

46 . . .

47 TGraphEr ro r s ∗gr me = new TGraphEr ro r s ( kNpt , xa , me , 0 , mee ) ;

48 TGraphEr ro r s ∗ g r s i = new TGraphEr ro r s ( kNpt , xa , s i , 0 , s i e ) ;

49 TGraphEr ro r s ∗ g r s k = new TGraphEr ro r s ( kNpt , xa , sk , 0 , 0 ) ;

50 TGraphEr ro r s ∗ g r k u = new TGraphEr ro r s ( kNpt , xa , ku , 0 , 0 ) ;

51 . . . .

52 TCanvas ∗myCan = new TCanvas ( Form ( ” myCan %s ” , f igname ) , ” ” , 9 6 0 , 7 0 0 ) ;

53 myCan−>Draw ( ) ;

54 . . . .

55 gr me−>Draw ( ”SAME CP” ) ;

56 g r s i −>Draw ( ”SAME CP” ) ;

57 g r s k−>Draw ( ”SAME CP” ) ;

58 gr ku−>Draw ( ”SAME CP” ) ;
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1 / / Ana lyz ing and drawing CLT

2 vo id Draw2Dhisto ( c o n s t C h a r t ∗ f igname ,

3 TH2∗ h ,

4 c o n s t C h a r t ∗ s t r X a x i s ,

5 c o n s t C h a r t ∗ s t r Y a x i s ) ;

6 vo id DrawPro jHi s to ( c o n s t C h a r t ∗ f igname ,

7 c o n s t I n t t nHis t ,

8 TH1D∗ v H i s t [ n H i s t ] ,

9 c o n s t C h a r t ∗ s t r X a x i s ,

10 c o n s t C h a r t ∗ s t r Y a x i s ,

11 c o n s t C h a r t ∗ s t r L e g [ n H i s t ] ) ;

12

13 vo id DrawGraphComp ( c o n s t C h a r t ∗ f igname ,

14 c o n s t I n t t ngr ,

15 TGraphEr ro r s ∗ gr [ ngr ] ,

16 c o n s t C h a r t ∗ s t r X a x i s ,

17 c o n s t C h a r t ∗ s t r Y a x i s ,

18 c o n s t C h a r t ∗ s t r L e g [ ngr ] ) ;

19 . . . .

20 . . . .

21 T F i l e ∗ f i l e = T F i l e : : Open ( ” f u l l s t a t / OutputHis tCLT . r o o t ” ) ;

22 / / Reading a l l H i s t o g r a m s

23 TH2F ∗ f H i s t P C = ( TH2F∗ ) f i l e −>Get ( ” f H i s t P ” ) ;

24 TH2F ∗ fHist MC = ( TH2F∗ ) f i l e −>Get ( ” fHis t M ” ) ;

25 TH2F ∗ fHis t QC = ( TH2F∗ ) f i l e −>Get ( ” f H i s t Q ” ) ;

26 TH2F ∗ f H i s t i P C = ( TH2F∗ ) f i l e −>Get ( ” f H i s t i P ” ) ;

27 TH2F ∗ fHi s t iMC = ( TH2F∗ ) f i l e −>Get ( ” f H i s t i M ” ) ;

28 TH2F ∗ f H i s t i Q C = ( TH2F∗ ) f i l e −>Get ( ” f H i s t i Q ” ) ;

29 . . .

30 . . .

31 Draw2Dhisto ( ” P l u s ” , fHi s t PC , ”Number o f B inn ing ” , ” D i s t r i b u t i o n ( P ) ” ) ;

32 Draw2Dhisto ( ” Minus ” , fHist MC , ”Number o f B inn ing ” , ” D i s t r i b u t i o n (N

) ” ) ;

33 . . . .

34 f o r ( I n t t i = 0 ; i < nb in ; i ++) {

35 f h i s t P [ i ] = (TH1D∗ ) f H i s t P−>P r o j e c t i o n Y ( Form ( ” P h i s t%d ” , b i n p o s [ i

] ) , b i n p o s [ i ] , b i n p o s [ i ] , ” ” ) ;

36 f h i s t N [ i ] = (TH1D∗ ) fHis t M−>P r o j e c t i o n Y ( Form ( ” N h i s t%d ” , b i n p o s [ i

] ) , b i n p o s [ i ] , b i n p o s [ i ] , ” ” ) ;
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37 f h i s t Q [ i ] = (TH1D∗ ) fH i s t Q−>P r o j e c t i o n Y ( Form ( ” Q h i s t%d ” , b i n p o s [ i

] ) , b i n p o s [ i ] , b i n p o s [ i ] , ” ” ) ;

38 f h i s t I n P [ i ] = (TH1D∗ ) f H i s t i P−>P r o j e c t i o n Y ( Form ( ” i P h i s t%d ” , b i n p o s

[ i ] ) , b i n p o s [ i ] , b i n p o s [ i ] , ” ” ) ;

39 f h i s t I n N [ i ] = (TH1D∗ ) f H i s t i M−>P r o j e c t i o n Y ( Form ( ” i N h i s t%d ” , b i n p o s

[ i ] ) , b i n p o s [ i ] , b i n p o s [ i ] , ” ” ) ;

40 f h i s t I n Q [ i ] = (TH1D∗ ) f H i s t i Q−>P r o j e c t i o n Y ( Form ( ” i Q h i s t%d ” , b i n p o s

[ i ] ) , b i n p o s [ i ] , b i n p o s [ i ] , ” ” ) ;

41 f h i s t I n Q [ i ]−>Rebin ( 2 , ” ” ) ;

42 }

43 . . . . .

44 DrawPro jH i s to ( ” D i s t P ” , nbin , f h i s t P , ” #LT P #GT” , ” p ( n ) ” , s t r L e g ) ;

45 DrawPro jH i s to ( ” DistN ” , nbin , f h i s t N , ” #LT N #GT” , ” p ( n ) ” , s t r L e g ) ;

46 . . . .

47 / / S i m i l a r f u n c t i o n s l i n e HM a n a l y s i s a r e b e i n g used t o draw t h e r e s u l t s

.
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