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Notation

Z the set of integers

R the set of real numbers

Rn the Euclidean n-space

C the set of complex numbers

X the characteristic function of the set E

df the distribution function of the function f

< u, f > the action of a distribution on a function f

‖T‖X→Y the norm of the (bounded) operator T : X → Y

f̂(n) = an nth Fourier coefficient

SN(f) partial sum of a Fourier series of function f

f ∗ g convolution

DN Dirichlet kernel

Pn Poisson kernel

FN Fejér kernel

A(r) Abel mean

f̂(ξ) Fourier transform

Lp(X,µ) the lebesque space over the measure space (X,µ)

C∞0 the space of smooth functions with compact support

S(R) the Schwartz space

S ′(R) the space of tempered distributions on Rn

Lp Lebesgue Space( p-norm for finite-dimensional vector spaces)

Mp the space of Lp Fourier multipliers, 1 ≤ p ≤ ∞
f̃ reflection of a function f

τtf translation of a function f by t

Dtf dilation of a function f

T [0, 1)

B(Rn) Euclidean balls

Hf Hilbert transform

Qj Cubes

NOTE : Standard mathematical notations are used.
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Abstract

The Hilbert transform is the most important operator in analysis. There is only one

singular integral in 1-D and it is Hilbert transform. The most important fact about

Hilbert transform is that it is bounded on Lp for 1 < p <∞. The aim is of this thesis

is to study the basic properties of the Fourier series of a function and see whether

partial sums of the Fourier series of a functions converges or not and under what

constraints the series converges(uniform, pointwise and in norm convergence).

Later we will see how Hilbert transform plays a crucial role in Lp norm convergence

of the partial sums of the Fourier series. At the end, I will try to see how the results

of 1-D works in the case of double Fourier series (that is, 2-D) and the summability

methods and their convergence.
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Chapter 1

Introduction to Fourier Series and

Integrals

1.1 Fourier series and Fourier coefficients

If f : [0, 1] −→ C then the nth Fourier coefficient of f is defined by

f̂(n) =

∫ 1

0

f(x)e−2πinxdx, n ∈ Z.

The Fourier series of f is given by

∞∑
n=−∞

f̂(n)e2πinx.

The N th partial sum of the Fourier series of f is given by

SN(f)(x) =
N∑

n=−N

f̂(n)e2πinx.

1.1.1 Dirichlet kernel

It is defined for x ∈ R by

Dn(x) =
N∑

n=−N

e2πinx
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. It can expressed as follows:

DN(x) =
(sin 2π(N + 1/2)x)

sin 2π(x/2)

DN(x) =
N∑
n=0

wn +
−1∑

n=−N

wn where, w = eix

=
1− wN+1

1− w
+
w−N − 1

1− w

=
w−N − wN+1

1− w

=
w−N−1/2 − wN+1/2

w−1/2 − w1/2

=
sin(2π(N + 1/2)x)

sin 2π(x/2)

1.1.2 Convolutions

Given two functions f and g in L1(R), we define their convolution f ∗ g by

f ∗ g(x) =

∫
R
f(y)g(x− y)dy =

∫
R
f(x− y)g(y)dy

Let us now see the partial sum of Fourier series in terms of convolutions.

SN(f)(x) =
N∑

n=−N

f̂(n)e2πinx

=
N∑

n=−N

(∫
R
f(y)e−2πinydy

)
e2πinx

=

∫
R
f(y)

( N∑
−n=N

e2πin(x−y)

)
dy

= (f ∗DN)(x)

1.1.3 Good kernels

A family of kernel{Kn(x)}∞n=1 defined on [0, 1] is said to be a family of good kernels

if it satisfies following properties:

2



1. For all n ≥ 0, ∫ 1

0

Kn(x)dx = 1

2. There exists M > 0 such that for all n ≥ 0,∫ 1

0

|Kn(x)|dx ≤M.

3. For every η > 0, ∫
|x|≥η
|Kn(x)|dx −→ 0, as n→∞

Theorem 1. Let f ∈ L1(R) . Then

lim
n→∞

(f ∗Kn)(x) = f(x)

whenever f is continuous at x.

Because of the above result, the family Kn is sometimes referred as approximation

to the identity.

Proof : As f is continuous at x, therefore for ε > 0 choose η such that |y| < η

implies |f(x− y)− f(y)| < ε. Then by (1) property of good kernels, we can write

|(f ∗Kn)(x)− f(x)| = |
∫ 1

0

Kn(y)[f(x− y)− f(x)]|dy

=

∫
|y|<η
|Kn(y)||f(x− y)− f(x)|dy

+

∫
|y|≥η
|Kn(y)||f(x− y)− f(x)|dy

= ε

∫ 1

0

|Kn(y)|dy + 2B

∫
|y|≥η
|Kn(y)|dy

where B is a bound for f . Using (2) property of good kernels, first term is bounded by

εM and by (3) property of good kernels, second term is < ε.

∴ |(f ∗Kn(x))− f(x)| ≤ Cε

Some Important results:We will be using the following results again and again for

proving further important theorems.
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• Fubini’s theorem:

Suppose A and B are complete metric spaces. Suppose f(x, y) is A × B mea-

surable. If
∫
A×B |f(x, y)|d(x, y) <∞, then∫

A

(∫
B

f(x, y)dy

)
dx =

∫
B

(∫
A

f(x, y)dx

)
dy =

∫
A×B
|f(x, y)|d(x, y)

• Dominated Convergence theorem:

Let {fn} be a sequence of real valued measurable functions on a measure space(X,µ).

Suppose that the sequence converges pointwise to a function f and is dominated

by some integrable function g in the sense that

|fn(x)| ≤ g(x).

Then f is integrable and

lim
n→∞

∫
R
fndµ =

∫
R
fdµ

• Hölder’s inequality:

Suppose f,g are integrable functions and p, q ∈ [1,∞) such that 1
p

+ 1
q

= 1. Then

‖fg‖L1 ≤ ‖f‖Lp‖g‖Lp

• Minkowski inequality:

Let 1 ≤ p ≤ ∞. For f ∈ Lp(Rn) and g ∈ L1(Rn). We have g ∗ f exists a.e and

satisfies

‖g ∗ f‖Lp ≤ ‖g‖L1‖f‖Lp

• Riemann-Lebesgue lemma

If f ∈ L1(R) then

lim
|ξ|→∞

f̂(ξ) = 0

• Gauss-Weierstrass Summation:

Suppose that f̂ ∈ L1. Then

f(0) = lim
ε→0

1

(2π)n

∫
f̂(ξ)e−ε|ξ|

2/2dξ

4



1.2 Convergence of Fourier Series

Introduction: The first question which comes to our mind is whether the partial sum

of the Fourier series of f converges to f pointwise. That is

lim
N→∞

SN(f)(x) = f(x) for every x?

Since we can change an integrable function at one point without changing the Fourier

coefficients, so at this point it is difficult to comment on the above statement. But

what if we take f to be a continuous and periodic function? Answer seems to be a

”yes”, but it came out as a surprise when it was showed that there exists a continuous

function whose Fourier series diverges at a point. What if we add more smoothness

conditions on f : We might assume that f is continuously differentiable. We will see

that in that case the Fourier series of f converges to f uniformly. Let us state few

results that will be used in proving uniform convergence of Fourier series of f.

Theorem 2. Uniqueness of Fourier series

Suppose that f is an integrable function with f̂(n) = 0 for all n ∈ Z. Then f(x0) = 0

whenever f is continuous at the point x0.

Corollary 1.1. If f ∈ L1(R) and f̂(n) = 0 for all n ∈ Z, then f = 0.

1.2.1 Uniform convergence of Fourier series

Corollary 1.2. Suppose f ∈ L1(R) and that the Fourier series of f is absolutely

convergent ,
∑∞

n=−∞ |f̂(n)| < ∞. Then, the Fourier series converges uniformly to f ,

that is,

lim
N→∞

SN(f)(x) = f(x) uniformly in x.

Proof : The assumption
∑∞

n=−∞ |f̂(n)| < ∞ implies that the partial sums of the

Fourier series of f converges absolutely and uniformly, and therefore the function g

defined by

g(x) =
∞∑

n=−∞

f̂(n)e2πinx = lim
N→∞

N∑
n=−N

f̂(n)e2πinx

is integrable. As a consequence of the uniform convergence of the series, the Fourier

coefficients of g are f̂(n) since we can interchange the integral with the infinite sum.

Therefore, the previous corollary can be applied to the function f − g yields f = g, as

required.
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1.2.2 Pointwise Convergence

Theorem 3. Let f be an integrable function on an interval [0, 1) which is differentiable

at a point x0. Then SN(f)(x0)→ f(x0) as N →∞.

[SS03]

Proof Define

F (t) =


f(x0−t)−f(x0)

t
if t 6= 0 and |t| < 1/2

−f̂(x0) if t = 0.

First F is bounded near 0 since f is differentiable there. Second, F is integrable in

the interval [−1
2
, 1

2
]. We know SN(f)(x0) = (f ∗ DN)(x0), where DN is the Dirichlet

kernel. Since
∫ 1

0
DN = 1, we find that

SN(f)(x0)− f(x0) =

∫ 1/2

−1/2

f(x0 − t)DN(t)dt− f(x0)

=

∫ 1/2

−1/2

[f(x0 − t)− f(x0)]DN(t)dt

=

∫ 1/2

−1/2

F (t)tDN(t)dt.

We recall that

tDN(t) =
t

sin 2π(t/2)
sin(2π(N + 1/2)t),

where the quotient t
sin2π(t/2)

is continuous in the interval [−1/2, 1/2], as sin function

is continuous on R. Since we can write

sin(2π(N + 1/2)t) = sin2π(Nt)cos2π(t/2) + cos 2π(Nt) sin 2π(t/2),

Now by applying Riemann-Lebesgue lemma to Riemann integrable functions F (t)tcos2π(t/2)/sin2π(t/2)

and F (t)t we get the desired result.

1.2.3 Convergence in norm

We will discuss about the norm convergence of the Fourier series of f in detail in later

chapters.
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1.3 Summability Methods

Since we have seen above that Fourier series may fail to converge at some points. Let

us try to overcome this failure by taking another summability criteria.

1.3.1 Cesàro Summability

Suppose we are given a series of complex numbers

c0 + c1 + ....... =
∞∑
k=0

ck.

Now define the nth partial sum sn by

sn =
n∑
k=0

ck.

We define the average of the first N partial sums by

σN =
s0 + s1 + .......+ sN−1

N
.

σN is called the N th Cesàro sum of the series
∑∞

k=0 ck. If σN converges to a limit σ as

N tends to ∞, we say that the series
∑
cn is cesàro summable to σ.

Fejér’s kernel

We know by definition N th Cesàro mean is

σN(f)(x) =
S0(f)(x) + S1(f)(x) + ......+ SN−1(f)(x)

N
.

Since Sn(f) = f ∗Dn, we find that

σN(f)(x) = (f ∗ FN)(x),

where FN(x) is the N-th Fejér kernel given by

FN(x) =
D0(x) +D1(x) + .....+DN−1(x)

N
.
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Another expression for Fejér kernel is

FN(x) =
1

N

sin2 2π(Nx/2)

sin2 2π(x/2)

which can be shown as follows:

Let w = e2πix

Dn(x) = w−n + .....+ w−1 + 1 + w1 + .......+ wn

= (w−n + .....+ w−1) + (1 + w1 + .......+ wn)

= w−1

(
w−n − 1

w−1 − 1

)
+

1− wn+1

1− w

=
w−n − 1

1− w
+

1− wn+1

1− w

=
w−n − wn+1

1− w

So,

NFN(x) =
N−1∑
n=0

w−n − wn+1

1− w

=
1

1− w

(N−1∑
n=0

w−n −
N−1∑
n=0

wn+1

)
=

1

1− w

(
w−N − 1

w−1 − 1
− w1− wN

1− w

)
=

1

1− w

(
w−N+1 − w

1− w
− w1− wN

1− w

)
= w

(
w−N − 2 + wN

(1− w)2

)
=

1

(w−1/2)2

(wN/2 − w−N/2)2

(1− w)2

=
(wN/2 − w−N/2)2

(w1/2 − w−1/2)2

=
−4 sin2 2π(Nx/2)

−4 sin2 2π(x/2)

FN(x) =
1

N

sin2 2π(Nx/2)

sin2 2π(x/2)

8



Lemma 1.1. The Fejér kernels, FN are good kernel.

Proof Since
∫ 1

0
e2πint = 1, if n = 0 and otherwise 0, we can clearly see that∫ 1

0
FN(t)dt = 1 and from the expression of FN we can see that FN > 0 and thus∫ 1

0
|FN(t)|dt = 1 for all N. Since FN(t) ≤ c

N
min(N2, t−2) using the property that

| sinnt| ≤ n| sin t|. So now we have∫
|t|≥η

FN(t)dt ≤
∫
|t|≥η

CN−1t−2dt ≤ C(ηN)−1.

As N →∞, integral tends to zero. Thus Fejér kernel is a good kernel.

Theorem 4. If f ∈ Lp, 1 ≤ p <∞, or if f is continuous and p =∞, then

lim
N→∞

‖σNf − f‖p = 0.

Proof FN are good kernel, so
∫
FN = 1, by Minkowski’s inequality we see that

‖σNf − f‖p =

∫ 1/2

−1/2

‖f(· − t)− f(·)‖pFN(t)dt

≤
∫
|t|<δ
‖f(· − t)− f(·)‖pFN(t)dt+ 2‖f‖p

∫
δ<|t|<1/2

FN(t)dt.

Since for 1 ≤ p <∞,
lim
t→0
‖f(· − t)− f(·)‖p = 0,

and the same limit holds for the case p = ∞ and f is continuous, the first term can

be made as small as possible by choosing a suitable δ. And by the (3) property of FN

being a good kernel i.e,

lim
N→∞

∫
δ<|t|<1/2

FN(t)dt = 0 if δ > 0,

therefore for fixed δ, the second term tends to 0.

1.3.2 Abel Summability

A series of complex numbers
∑∞

k=0 ck is said to be Abel summable to s if for every

0 ≤ r < 1, the series

A(r) =
∞∑
k=0

ckr
k

9



converges, and

lim
r→1

A(r) = s.

The quantity A(r) are known as Abel means of the series.

The Poisson kernel

We define Abel mean of the function f(x) ∼
∑∞

n=−∞ ane
2πinx by

Ar(f)(x) =
∞∑

n=−∞

r|n|ane
2πinx.

Just like Cesàro means, Abel means can be written as convolutions

Ar(f)(x) = (f ∗ Pr)(x),

where Pr(x) is the Poisson kernel given by

Pr(x) =
∞∑

n=−∞

r|n|e2πinx.

In fact,

Ar(f)(x) =
∞∑

n=−∞

r|n|ane
2πinx

=
∞∑

n=−∞

r|n|
(∫ 1

0

f(ϕ)e−2πinϕdϕ

)
e2πinx

=

∫ 1

0

f(ϕ)

( ∞∑
n=−∞

r|n|e−2πin(ϕ−x)

)
dϕ,

Poisson kernel can be expressed in another form as below:

Pr(θ) =
1− r2

1− 2r cos 2πθ + r2
.

10



As

Pr(θ) =
∞∑
n=0

wn +
∞∑
n=1

w̄n with w = re2πiθ,

=
1

1− w
+

w̄

1− w̄

=
1− w̄ + (1− w)w̄

(1− w)(1− w̄)

=
1− |w|2

|1− w|2

=
1− r2

1− 2r cos 2πθ + r2

1.4 Distribution Function

Definition 1.1. For a measurable function f on X, the distribution function of f is

the function df defined on [0,∞) as follows:

df (α) = µ({x ∈ X : |f(x)| > α}).

The distribution function provides us with the information about the size of f but not

about the behaviour of f itself.

Proposition 1.1. Let (X,µ) be a σ-finite measure space. Then for f in Lp(X,µ), 0 <

p <∞, we have

‖f‖pLp = p

∫ ∞
0

αp−1df (α)dα.

Proof : Let Eα = {x : |f(x)| > α}

p

∫ ∞
0

αp−1df (α)dα = p

∫ ∞
0

αp−1

∫
X

XEαdµ(x)dα

=

∫
X

∫ |f(x)|

0

pαp−1dαdµ(x)

=

∫
X

|f(x)|pdµ(x)

= ‖f‖pLp

11



Definition 1.2. For 0 < p < ∞, the space weak Lp(X,µ) is defined as the set of all

µ-measurable functions f such that

‖f‖Lp,∞ = inf{C > 0 : df (α) ≤ Cp

αp
for all α > 0}

= sup{γdf (γ)1/p : γ > 0}

is finite.
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Chapter 2

Fourier Transform and Schwartz

Space

2.1 L1 theory of Fourier transform

Introduction: In the previous chapter we have seen that the theory of Fourier series

applies to a periodic functions on R, or equivalently to functions on the circle. Here

we will develop an analogous theory for the study of functions which are non periodic

on the entire real line.Let us recall the Fourier coefficients an of a function f defined

on the circle which is given as follows

an =

1∫
0

f(x)e−2πinxdx.

Roughly speaking, continuous version of Fourier coefficients is Fourier Transform.

Definition: Given a function f ∈ L1(R), we define the Fourier transform as

f̂(ξ) =

∞∫
−∞

f(x)e−2πixξdx

Fourier transform has some nice properties. Let f, g ∈ L1(R).

13



1. If h(x) = f ∗ g(x), then

ĥ(ξ) =

∫
e−2πixξ

∫
f(y)g(x− y)dydx

=

∫
e−2πiyξf(y)dy

∫
e−2πizξg(z)dz

ĥ(ξ) = f̂(ξ)ĝ(ξ)

2. If τhf(x) = f(x+ h), then τ̂hf(ξ) = f̂(ξ)e2πihξ

3. If h(x) = f ′(x), then ĥ(ξ) = 2πiξf̂(ξ)

Proof :

ĥ(ξ) =

∫ N

−N
f ′(x)e−2πixξdx

= [f(x)e−2πixξ]N−N + 2πiξ

N∫
−N

f(x)e−2πixξdx

As N →∞ we get the desired result.

4. If f ∈ L1(R), then f̂ is continuous

Proof : For f ∈ L1, using Dominated Convergence Theorem,

|f̂(ξ + h)− f̂(ξ)| =
∫
f(x)(e−2πix(ξ+h) − e−2πixξ)dx

≤
∫
|f(x)|e2πixh − 1|dx

which tends to zero as h→ 0 as |e−2πixξ| = 1

5. r̂f(ξ) = rf̂(ξ), if r ∈ R; f̂ + g(ξ) = f̂(ξ) + ĝ(ξ), so f̂ is a linear operator.

6. ‖f̂‖L∞ ≤ ‖f‖L1

Proof : |f̂(ξ)| = |
∫∞
−∞ f(x)e−2πixξdξ| ≤

∫∞
−∞ |f(x)e−2πixξ|dξ = ‖f‖1

Therefore,

sup |f̂ | ≤ ‖f‖1

14



‖f̂‖L∞ ≤ ‖f‖L1

2.2 Schwartz functions and Fourier transform on

Lp

Roughly speaking, a function is Schwartz if it is smooth and all its derivatives decay

faster than the reciprocal of any polynomial at infinity.

Definition: A C∞ complex valued function f on Rn is called a Schwartz function if

for every pair of multi indices α, β there exists a positive constant Cα,β such that

ρα,β(f) = sup
x∈Rn
|xα∂βf(x)| = Cα,β <∞,

where xα = (xα1
1 , x

α2
2 , x

α3
3 , · · ·xαnn ) and ∂β = ∂β

∂xβ
.

The quantities ρα,β(f) are called the Schwartz seminorms of f. The set of all Schwartz

functions on Rn is denoted by S(Rn)

Key Point: The Fourier transform is often introduced as an operator on L1. Since the

Schwartz functions are C∞ functions whose derivatives decay faster than any poly-

nomials. Since D is sense in L1 space, Fourier transform and its properties remains

same for Schwartz functions.

2.2.1 The Schwartz Topology

The topology on S(R) is generated by the family of semi-norms {ρα,β}. . The functions

{ρα,β} are semi-norms on the vector space S(R), in the sense that

ρα,β(f + g) ≤ ρα,β(f) + ρα,β(g)

and

ρα,β(zf) = zρα,β(f)

for all f, g ∈ S(R), and z ∈ C. For this semi-norm, an open ball of radius r centered

at some f ∈ S(R) is given by

Bρα,β(f ; r) = {g ∈ S(R) : ρα,β(gf) < r}
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Thus each ρα,β specifies a topology τ(α, β) on S(R). A set is open according to τ(α, β)

if it is a union of open balls. The topologies τ(α, β) put all together, generate the

standard Schwartz topology τ on S(R). This is the smallest topology containing all

the sets of τ(α, β) for all α, β ∈ Z.

2.2.2 The Fourier transform on S

The Fourier transform of a function f ∈ S is defined by

f̂(ξ) =

∞∫
−∞

f(x)e−2πixξdx.

We use the following notation

f(x) −→ f̂(ξ)

which means that f̂ is the Fourier transform of f . Some properties of the Fourier

transform are stated in the following proposition.

Proposition 2.1. If f ∈ S(R), then:

(i) f(x+ h) −→ f̂(ξ)e2πihξ whenever h ∈ R.

(ii) f(x)e−2πixh −→ f̂(ξ + h) whenever h ∈ R.

(iii) f ′(x) −→ 2πiξf̂(ξ).

(iv) −2πixf(x) −→ d
dξ
f̂(ξ).

(v) ‖f̂‖L∞ ≤ ‖f‖L1

(vi) f(tx) −→ t−1f̂(t−1ξ) whenever t > 0.

Example: If f(x) = e−πx
2
, then f̂(ξ) = f(ξ).

Proof: Let us first check ∫ ∞
−∞

e−2πx2dx = 1.
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To see this let us proceed as follows:(∫ ∞
−∞

e−2πx2dx

)2

=

∫ ∞
−∞

∫ ∞
−∞

e−π(x2+y2)

=

∫ 2π

0

∫ ∞
0

e−πr
2rdrdθ

=

∫ ∞
0

2πre−πr
2

dr

=
[
− e−πr2

]∞
0

= 1.

Now we will prove the example.

F (ξ) = f̂(ξ) =

∫ ∞
−∞

e−πx
2

e−2πixξdx,

and using the above calculation we see that F (0) = 1. Using result (iv) of previous

proposition and the fact that f ′(x) = −2πxf(x), we see that

F ′(ξ) =

∫ ∞
−∞

f(x)(−2πix)e−2πixξdx = i

∫ ∞
−∞

f ′(x)e−2πixξdx

And again by using the(iii)property of the above proposition, we find that

F ′(ξ) = i(2πiξ)f̂(ξ) = −2πξF (ξ).

Let us define G(ξ) = F (ξ)eπξ
2
, and we see that G′(ξ) = 0, which shows that G is a

constant. Since F (0) = 1, we get the constant equals to 1, therefore F (ξ) = e−πξ
2
.

2.2.3 Some Important Results

(i) Multiplication Formula: If f, g ∈ S(R), then∫ ∞
−∞

f(x)ĝ(x)dx =

∫ ∞
−∞

f̂(y)g(y)dy

(ii) Fourier Inversion Formula: If f ∈ S(R), then

f(x) =

∫ ∞
−∞

f̂(ξ)e2πixξdξ

17



2.2.4 The Fourier transform on Lp, 1 < p ≤ 2

Theorem 5. Plancherel theorem

The Fourier transform is an isometry on L2; i.e, for f ∈ S

‖f̂‖2 = ‖f‖2

Proof For f ∈ S(R), define g(x) = f(−x). Then ĝ(ξ) = f̂(ξ). Let h = f ∗ g. Then

we have

ĥ(ξ) = f̂(ξ)ĝ(ξ) = |f̂(ξ)|2 and h(0) =

∫ ∞
−∞
|f(x)|2dx.

Now using Fourier Inversion Formula for x = 0,

h(0) =

∫ ∞
−∞

ĥ(ξ)dξ =

∫ ∞
−∞
|f̂(ξ)|2dξ.

This implies

‖f̂‖2 = ‖f‖2

Parceval’s Identity: For f, h in S(R)∫
S(R)

f(x)h(x)dx =

∫
S(R)

f̂(ξ)ĥ(ξ)dξ

2.3 The Class of Tempered Distributions[SW71]

The dual space(i.e the space of continuous linear functionals on the sets of test func-

tions) we introduced is denoted by

(S(Rn))′ = S ′(Rn)

Elements of S ′(Rn) are called Tempered Distributions.That is, it is a set of all

functions

f : S(R)→ C

which are linear and continuous.

• If < f, aϕ+ bψ > = a < f, ϕ > +b < f, ψ > for all ϕ, ψ ∈ S(R) and a, b ∈ C,

then f is linear.

• If ϕ = limn→∞ ϕn in S(R), then < f, ϕ >= limn→∞ < f, ϕn >, then f is

continuous.
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Definition: A linear functional u on S(Rn) is a tempered distribution iff there exists

C > 0 and k,m integers such that

| < u, f > | ≤ C
∑
|α|≤m
|β|≤k

ρα,β(f), for f ∈ S(Rn)

where action of distribution u on f is represented as < u, f >= u(f).

Definition 2.1. Let u ∈ S ′ and α is a multi-index. Define

< ∂αu, f > = (−1)|α| < u, ∂αf > .

The derivative in the sense of distributions is known as distributional derivatives.

Definition 2.2. For a tempered distribution u, we define the Fourier transform û and

Inverse Fourier transform u∨ by

< û, f > = < u, f̂ > and < u∨, f > = < u, f∨ >

Definition 2.3. The dilation Dtu, the translation τ tu and the reflection ũ of a tem-

pered distribution u is defined as follows:

< τ tu, f > = < u, τ−tf >,

< Dtu, f > = < u, t−nD
1
t f >,

< ũ, f > = < u, f̃ >,

for t ∈ Rn

Definition 2.4. Let u ∈ S ′ and h ∈ S.Define the convolution h ∗ u by

< h ∗ u, f > = < u, h̃ ∗ f >, f ∈ S

Next proposition will extend the properties of Fourier transform to tempered dis-

tributions.

Proposition 2.2. Given u, v in S ′(Rn), b a complex scalar, α a multi-index and

a > 0, we have

(i) û+ v = û+ v̂,
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(ii) b̂u = bû,

(iii) (ũ)∧ = (û)∼,

(iv) (û)∨ = u,

(v) f̂ ∗ u = f̂ û,

(vi) f̂u = f̂ ∗ û,

(vii) (τ yu)∧ = e−2πiyξû,

(viii) (e2πixyu)∧ = τ yû,

(ix) (Dtu)∧ = (û)t = t−nDt−1
û,

(x) (∂αu)∧ = (2πiξ)αû,

(xi) ∂αû = ((−2πix)αu)∧.
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Chapter 3

Hardy-Littlewood Maximal

Function

Introduction: The Hardy-Littlewood maximal function Mf : Rn −→ [o,∞) of a

locally integrable function f : Rn → (−∞,∞) is defined by

Mf(x) = supr>0
1

|Br|

∫
Br

|f(y)|dy,

where sup is over all r > 0. Here |Br| = |B(0, r)| denotes the volume of the ball

B(0, r).

We may also define maximal functions over cubes centered at x and cubes containing

x: If Qr = [−r, r]n is a cube, we define

M ′f(x) = supr>0
1

(2r)n

∫
Qr

|f(y)|dy

For n = 1,M and M ′ coincide. Furthermore, since the n-dimensional volumes of the

unit cube and unit ball are equal upto a multiplicative constant depending only on n,

it is immediate that Mf and M ′f are comparable in the sense that

cnM
′f(x) ≤Mf(x) ≤ CnM

′f(x).

for constants cn and Cn depending upon n. In fact, we can define a more general

maximal function

M ′′f(x) = supQ3x
1

|Q|

∫
Q

|f(y)|dy.
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One sometimes distinguishes between M ′ and M ′′ by referring to the former as the

centered and latter as the non-centered maximal operator.

3.1 Hardy Littlewood Maximal Theorem

Lemma 3.1. Vitali Covering Lemma

Let B1, B2, B3,....,BM be balls in Rn then there exists a sub collection of pairwise

disjoint balls, Bαj , such that
M⋃
α=1

Bα ⊂
m⋃
j=1

B∗αj

where B∗ is the ball with same centre as B, but three times the radius of B.

Proof We have a finite collection of balls B = {Bα}Mα=1. Now select Bα1 to has a

radius as large as possible(chosen from the given M balls). Having selected Bα1 , we

select Bα2 subject to two conditions that (1) it be disjoint from Bα1 and that (2) it

has a radius as large as possible.

Continue in the preceding fashion. If Bα1 , Bα2 , Bα3 ,......,Bαp have been selected, then

we select Bαp+1 such that (1) it is disjoint from Bα1 , Bα2 ,.....Bαp and (2) it has a radius

as large as possible i.e

Bαj ∩
( j−1⋃
i=1

Bαi

)
= ∅

Clearly, this process must stop because we have finite balls.

Let B́ = {Bαj}mj=1 be the sub collection of balls from the above selection process.

First, by design, the sub collection B́ is pairwise disjoint.

Second, whenever a ball Bα from the original collection is not chosen, then it must

intersect some chosen ball Bαj and be of smaller radius.Let B∗αj be one of the dilated

{3Bαj} balls.

Claim: These dilated balls cover each of the original Bαj balls

Proof of the claim: If Bα is equal to one of the selected balls Bαj , then of course it is

covered by the dilated balls {3Bαj}. If instead it is not one of the selected balls, then

let Bαq = B(cαq , rαq) be the first selected ball that intersect Bα = B(cα, rα). Then the

radius of rαq of Bαq must be at least as great as the radius rα of Bα, otherwise we

would have selected Bα instead of Bαq at the qth step. Now it follows from triangle
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inequality 3B(cαq , rαq) ≡ B(cαq , 3rαq) covers B(cα, rα) Therefore,

M⋃
α=1

Bα ⊂
m⋃
j=1

B∗αj

Lemma 3.2. Covering Lemma

Let {Iα}αεA be a collection of intervals in R and let K be a compact set contained in

their union. Then there exists a finite sub collection {Ij} such that

K ⊂
⋃
j

Ij and
∑
XIj(x) ≤ 2

Proof {Iα}αεA is a collection of open intervals. Using compactness of K, we can

say that {Iα} will be an open cover of K and therefore, there is a finite subcover

Iαj ; j = 1, 2, ..., n

⇒ K ⊂
n⋃
j=1

Iαj

To prove :
∑
XIj(x) ≤ 2

Denote {Iαj} = {Iα}
Let us take an interval {I1} = (a, b) with maximum length possible. Now, define

one interval {Ip} whose right bound is equal to the right most extreme point possible

(greater than b) and covering some part of {I1}. Similarly, define another interval

{Iq} whose left bound is equal to the left most extreme point possible(less than a)

and covering some part of {I1}. Intervals are selected in such a way that

Iα1 ∩ Iα2 = ∅

and those intervals which are completely inside one of the intervals can be removed

completely.

Repeat the above process and as there are finite sub collection of intervals, process

will end. Above selection of intervals shows that any point x can be in maximum of

two intervals. Thus, ∑
XIj(x) ≤ 2
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Theorem 6. The operator M is weak (1, 1) and strong (p, p), 1 < p ≤ ∞, i.e
(1)There exists a constant C > 0 depending only on n, such that for every f ∈ L1(Rn),

|{x ∈ Rn : Mf(x) > t}| ≤ C

t
‖f‖1 ∀t > 0

(2)For 1 < p ≤ ∞, there exists a constant Cp > 0 depending only on p and n, such

that for every f ∈ Lp(Rn)

‖Mf‖p ≤ Cp‖f‖p.

We will now see that maximal function has importance in the study of approxi-

mation of the identities which can be shown by the following result.

Proposition 3.1. Let φ be a function which is positive, radial, decreasing
(
as a

function on (0,∞)
)

and integrable. Then

sup
t>0
|φt ∗ f(x)| ≤ ‖φ‖1Mf(x).

Proof Let us assume that φ is a simple function, that is, it can be written as

φ(x) =
∑
j

ajXBrj (x)

with aj > 0. Let us check that φ satisfies the hypothesis.

Since aj are positive, therefore φ(x) > 0. Radial property of φ(x) can be seen as

follows:

For x 6= x′ we have d(x, 0) = d(x′, 0). But XBrj (x) = XBrj (x
′) ∀ rj, thus φ(x) = φ(x′).

Also to show decreasing property we need to show that for y ≥ x we have ϕ(y) ≤ ϕ(x)

This is easy to see because if x ∈ Brm then for all m′ > m, x ∈ Brm′
Let us take y > x

and y ∈ Brk then k > m and for all k > k′, y ∈ Brk′
Thus,

φ(x) =
∞∑
j=m

aj

and

φ(y) =
∞∑
j=k

aj

since aj > 0,
∞∑
j=k

aj <

∞∑
j=m

aj

24



=⇒ φ(x) < φ(y)

Now,

φ ∗ f(x) =
∑
j

aj|Brj |
1

|Brj |
XBrj ∗ f(x) ≤ ‖φ‖1Mf(x)

since ‖φ‖1 =
∑
aj|Brj | as aj > 0

An arbitrary function φ satisfying the hypothesis can be approximated by sequence

of simple functions and any further dilation φt will be another function with same

properties and same integral and thus satisfying the same inequality.

3.2 Marcinkiewicz Interpolation Theorem

Theorem 7. Let (X,µ) and (X, ν) be measure spaces and let 1 ≤ p0 < p1 ≤ ∞. Let

T be a sub-linear operator defined on the space Lpo(X) +Lp1(X) and taking values in

the space of measurable functions on Y. Assume that there exist two positive constants

A0 and A1 such that

‖T (f)‖Lp0,∞(Y ) ≤ A0‖f‖Lp0 (X) for all f ∈ Lp0(X),

‖T (f)‖Lp1,∞(Y ) ≤ A1‖f‖Lp1 (X) for all f ∈ Lp1(X).

Then for all p0 < p < p1 and for all f in Lp(X) we have the estimate

‖T (f)‖Lp(Y ) ≤ A‖f‖Lp(X),

where

A = 2

(
p

p− p0

+
p

p1 − p

) 1
p

A

1
p−

1
p1

1
p0
− 1
p1

0 A

1
p0
− 1
p

1
p0
− 1
p1

1 .

[Gra14]

Proof : Given f ∈ Lp, for each λ > 0 decompose f as f0 + f1, where

f0 = fX{x:|f(x)|>cλ} ,

f1 = fX{x:|f(x)|≤cλ} ;
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the constant c will be fixed later. Then f0 ∈ Lp0(µ) and f1 ∈ Lp1(µ). Furthermore,

|T (f)| ≤ |T (f0)|+ |T (f1)|,

which implies

{y ∈ Y : |T (f)(y)| > λ} j {y ∈ Y : |T (f0)(y)| > λ/2} ∪ {y ∈ Y : |T (f1)(y)| > λ/2},

and therefore

dT (f)(λ) ≤ dT (f0)(λ/2) + dT (f1)(λ/2)

Let us consider 2 cases.

Case 1 : p1 = ∞. Choose c = 1
2A1

, where A1 is such that ‖Tg‖∞ ≤ A1‖g‖∞. Then

aTf1(λ/2) = 0. Using weak (p0, p1) inequality,

aTf0(λ/2) ≤
(

2A0

λ
‖f0‖p0

)p0
;

hence,

‖Tf‖pp ≤
∫ ∞

0

λp−1−p0(2A0)p0
∫
x:|f(x)|>cλ

|f(x)|podµdλ

= p(2A0)p0
∫
X

|f(x)|p0
∫ |f(x)|/c

0

λp−1−p0dλdµ

=
p

p− p0

(2A0)p0(2A1)p−p0‖f‖pp.
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Case 2 : p1 <∞ Using given hypothesis and proposition 1.9 we obtain that

dT (f)(λ) ≤ A
p0
0

(λ/2)p0

∫
|f |>cλ |f(x)|p0dµ(x) +

A
p1
1

(λ/2)p1

∫
|f |≤cλ |f(x)|p1dµ(x).

‖T (f)‖pLp ≤ p(2A0)p0
∫ ∞

0

λp−1λ−p0
∫
|f |>cλ

|f(x)|p0dµ(x)dλ

+ p(2A1)p1
∫ ∞

0

λp−1λ−p1
∫
|f |≤cλ

|f(x)|p1dµ(x)dλ

= p(2A0)p0
∫
X

|f(x)|p0
∫ 1

c
|f(x)|

0

λp−1−p0dλdµ(x)

+ p(2A1)p1
∫
X

|f(x)|p1
∫ ∞

1
c
|f(x)|

λp−1−p1dλdµ(x)

=
p(2A0)p0

p− p0

1

cp−p0

∫
X

|f(x)|p0|f(x)|p−p0dµ(x)

+
p(2A1)p1

p1 − p
1

cp−p1

∫
X

|f(x)|p1|f(x)|p−p1dµ(x)

= p

(
p(2A0)p0

p− p0

1

cp−p0
+
p(2A1)p1

p1 − p
1

cp−p1

)
‖f‖pLp ,

Interchange of integrals can be done using Fubini’s theorem which uses the hypothesis

that (X,µ) is a σ-finite measure space. We pick c such that

(2A0)p0
1

cp−p0
= (2A1)p1cp1−p,

Thus proving the result for p1 <∞.
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Chapter 4

Hilbert Transform

4.1 The conjugate Poisson kernel

Let us define a Poisson kernel on the upper half plane;

F (x, y) = Py(x) =
1

π

y

x2 + y2
.

Poisson kernel on the upper half plane is a harmonic function. Harmonic function is

a twice continuously differentiable function which satisfies Laplace equation, i.e.

4F = 0.

Let us check that Poisson kernel is a harmonic function:

To prove:
∂2F

∂x2
+
∂2F

∂y2
= 0

∂F

∂x
= − 1

π

2xy

(x2 + y2)2

∂2F

∂x2
= − 2

π

[
(x2 + y2)2y − 4x2y(x2 + y2)

(x2 + y2)4

]
= − 2

π

[
y5 − 3x4y − 2x2y3

(x2 + y2)4

]
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Similarly,

∂F

∂y
=

x2 − y2

π(x2 + y2)2

∂2F

∂x2
= − 2

π

[
3x4y + 2x2y3 − y5

(x2 + y2)4

]

⇒ ∂2F

∂x2
+
∂2F

∂y2
= 0

We know that f ∈ S, f̂ ∈ S, then

f(x) =

∫
R
f̂(ξ)e2πixξdξ

and (
c

1 + x2

)∧
(ξ) = ce−|ξ|, where c is such that

∫
c

1 + x2
dx = 1.

Similarly,

Py(x) =
1

y
P

(
x

y

)
=

cy

y2 + x2

⇒ P̂y(ξ) = ce−2πy|ξ|.

where, P (x) = c
1+x2

Given a function f in S(R), u(x, y) = Py ∗f(x) is also an harmonic

function which can be proved using the following convolution property

D(f ∗ g) = Df ∗ g = f ∗Dg,

where f ∈ L1(R) and g is a differentiable function with bounded derivative.

Proof of the property:

lim
h→0

f ∗ g(x+ h)− f ∗ g(x)

h
= lim

h→0

∫
f(y)

g(x+ h− y)− g(x− y)

h
dy
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We can take the limit inside the integral using DCT provided f is in L1 and Dg is

bounded and differentiable.Thus,

lim
h→0

f ∗ g(x+ h)− f ∗ g(x)

h
=

∫
lim
h→0

f(y)
g(x+ h− y)− g(x− y)

h
dy

=

∫
f(y) lim

h→0

g(x+ h− y)− g(x− y)

h
dy

⇒ D(f ∗ g) = f ∗Dg

We can also write:

u(z) =

∫ ∞
0

f̂(ξ)e2πizξdξ +

∫ 0

−∞
f̂(ξ)e2πiz̄ξdξ,

=

∫ ∞
0

f̂(ξ)e2πixξe−2πyξdξ +

∫ 0

−∞
f̂(ξ)e2πixξe2πyξdξ,

=

∫ ∞
−∞

f̂(ξ)e2πixξe−2πy|ξ|dξ

where z= x+iy. If we now define,

iv(z) =

∫ ∞
0

f̂(ξ)e2πizξdξ −
∫ 0

−∞
f̂(ξ)e2πiz̄ξdξ,

v(z) =

∫ ∞
0

(−i)f̂(ξ)e2πizξdξ −
∫ 0

−∞
(−i)f̂(ξ)e2πiz̄ξdξ, (multiply by − i on both sides)

v(z) =

∫ ∞
0

(−i)f̂(ξ)e2πixξe−2πyξdξ −
∫ 0

−∞
(−i)f̂(ξ)e2πixξe2πyξdξ,

v(z) =

∫
R
−isgn(ξ)e−2πy|ξ|f̂(ξ)e2πixξd(ξ),

which is equivalent to

v(x, y) = Qy ∗ f(x)

Q̂y(ξ) = −isgn(ξ)e−2πy|ξ| (i)
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as

v(z) =

∫
R
−isgn(ξ)e−2πy|ξ|f̂(ξ)e2πixξd(ξ),

=

∫
R
Q̂y(ξ)f̂(ξ)e2πixξd(ξ)

=

∫
R

∫
t

Q̂y(ξ)f(t)e−2πiξte2πixξd(ξ)

=

∫
R

∫
t

Q̂y(ξ)e
2πi(x−t)ξf(t)d(ξ)

=

∫
R
Qy(x− t)f(t)dt

and Fourier transform of Qy is defined as Qy ∈ L2(R) which can be proved as follows:

If we prove Px = 1
1+x2

is in L2(R), then we know that after dilation also function

belongs to L2(R) and

Qy(x) =
1

x
P (
y

x
).

‖Px‖2 =

∫
R

1

(1 + x2)2
dx

=

∫
R

sec2 θ

sec4 θ
dθ substituting x = tan θ

=

∫
R

cos2 θdθ
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which is finite and thus Px ∈ L2(R)

Inverse Fourier Transform is:

Qy(x) =

+∞∫
−∞

−isgn(ξ)e−2πyξe2πixξdξ

=

+∞∫
0

−ie−2πyξe2πixξdξ +

0∫
−∞

ie−2πyξe2πixξdξ

=

+∞∫
0

−ie−2πξ(y−ix)dξ +

0∫
−∞

ie−2πξ(y+ix)dξ

=
−ie−2πξ(y−ix)

−2π(y − ix)

∣∣∣∣∞
0

+
ie2πξ(y+ix)

2π(y + ix)

∣∣∣∣0
−∞

=
−i

2π(y − ix)
+

i

2π(y + ix)

=
i

2π

(
−y +−ix+ t− ix

y2 + x2

)
=

−2i2x

2π(y2 + x2)

=
x

π(y2 + x2)

Qy(x) = 1
π

x
x2+y2

, is also known as the conjugate Poisson kernel. Now similar to u, v is

also harmonic in R2 and both u and v are real if f is. Furthermore, u+ iv is analytic,

so v is the harmonic conjugate of u and u+ iv = 2
∫∞

0
f̂(ξ)e2πizξd(ξ) is analytic.u+ iv

is analytic can be proved using Morera’s Theorem:

Morera’s Theorem:

Continuous complex valued function f defined on a connected open set D in the

complex plane that satisfies ∮
γ

f(z)dz = 0,
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for every closed pointwise curve γ in D must be holomorphic on D.

Proof of Analyticity:

∮ ∞∫
0

f̂(ξ)e2πizξd(ξ) =

∫ ∞∮
0

f̂(ξ)e2πizξd(ξ) (1)

= 0 (2)

First step is using Fubini’s Theorem and Second step is using Cauchy Integral Theorem

which states that:

If f(z) is analytic in some simply connected region R, then∮
γ

f(z)dz = 0

for any closed contour γ completely contained in R.

4.2 Principal value of 1/x

We define a tempered distribution called the principal value of 1/x, abbreviated

p.v.1/x, by

p.v.
1

x
(φ) = lim

ε→0

∫
1
ε
>|x|>ε

φ(x)

x
dx, φ ∈ S.

To see that this expression defines a tempered distribution, we rewrite it as

p.v.
1

x
(φ) =

∫
|x|<1

φ(x)− φ(0)

x
dx+

∫
|x|>1

φ(x)

x
dx;

this holds since the integral of 1/x on ε < |x| < 1 is zero(odd function).Further∣∣∣p.v.1
x

(φ)
∣∣∣ =

∣∣∣ ∫
|x|<1

φ(x)− φ(0)

x
dx+

∫
|x|>1

φ(x)

x
dx
∣∣∣

≤
∣∣∣ ∫
|x|<1

φ(x)− φ(0)

x
dx
∣∣∣+
∣∣∣ ∫
|x|>1

φ(x)

x
dx
∣∣∣

≤
∣∣∣ ∫
|x|<1

φ(x)− φ(0)

x
dx
∣∣∣+
∣∣∣ ∫
|x|>1

xφ(x)

x2
dx
∣∣∣∣∣∣p.v.1

x
(φ)
∣∣∣ ≤ C(‖φ′‖∞ + ‖xφ‖∞);
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where we get first term by Mean Value Theorem and second expression is bounded

as 1
x2

is integrable.

Proposition 4.1. In S
′
, lim
y→0

Qy = 1
π
p.v. 1

x
.

Proof For each ε > 0, the functions ψε(x) = x−1X{|x|>ε} are bounded and define

tempered distributions. It follows at once from the definition that in S
′
,

lim
ε→0

ψε = p.v.
1

x
.

Therefore, it will suffice to prove that in S
′

lim
y→0

(
Qy −

1

π
ψy

)
= 0.

Fix φ ∈ S; then

(πQy − ψy)(φ) =

∫
R

xφ(x)

y2 + x2
dx−

∫
|x|>y

φ(x)

x
dx

=

∫
|x|<y

xφ(x)

y2 + x2
dx+

∫
|x|>y

( x

y2 + x2
− 1

x

)
φ(x)dx

=

∫
|x|<1

xφ(yx)

1 + x2
dx−

∫
|x|>1

φ(yx)

x(1 + x2)dx.

If we take limit as y → 0 and apply DCT, we get two integrals of odd functions on

symmetric domains. Hence, the limit equals 0.

4.3 Different equivalent expressions for Hilbert Trans-

form

Suppose,

T : L2(R) −→ L2(R)

is an operator which satisfies following conditions:

(1) commutes with translation(is a multiplier)

(2) commutes with dilation and

(3) anti-commutes with reflection
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(3′) commutes with reflection

An operator satisfying condition 1,2,3′ is an Identity Operator,

T = CI

m(L2(R) ≈ L∞(R) and

(Tf)∧(ξ) = m(ξ)f̂(ξ).

Now,

TDδf = DδTf, where Dδf = f(δx)

(Dδf)∧(ξ) =

∫
f(δx)e−2πixξdx

=
1

δ

∫
f(y)e−2πiξ y

δ dy

=
1

δ
f̂(
ξ

δ
)

Then,

T (Dδf)∧(ξ) = m(ξ)(Dδf)∧(ξ)

= m(ξ)
1

δ
f̂(
ξ

δ
)

and

(DdegTf)∧(ξ) =
1

δ
(Tf)∧(

ξ

δ
)

=
1

δ
m(

ξ

δ
)f̂(

ξ

δ
)

⇒ m(ξ) = m(
ξ

δ
), ∀δ > 0

Now by Anti-Reflection property,

Rf(x) = f(−x),

RTf(x) = −TRf(x)
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and

(Rf)∧(ξ) = f̂(−ξ).

The above equation will imply

m(ξ) = −m(−ξ)

If all the three conditions 1,2 and 3 are satisfied, then the multiplier is given by

m(ξ) = csgn(ξ).

We take c = −i and m(ξ) = −isgn(ξ).

Given a function f ∈ S, we define its Hilbert transform such that

(Hf)∧(ξ) = −isgn(ξ)f̂(ξ). (4.1)

Other equivalent expressions for Hilbert Transform are:

Hf = lim
y→0

Qy ∗ f, (4.2)

Hf =
1

π
p.v.

1

x
∗ f, (4.3)

where as a result of above proposition we get that

lim
y→0

Qy ∗ f(x) =
1

π
lim
ε→0

∫
|t|>ε

f(x− t)
t

dt,

and using equation (i) we get

̂( 1

π
p.v.

1

x

)
(ξ) = −isgn(ξ)

The first expression also lets us define the Hilbert Transform of functions in L2R; it

satisfies

‖Hf‖2 = ‖f‖2, (4.4)

H(Hf) = −f, (4.5)∫
Hf.g = −

∫
f.Hg (4.6)
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Proof : Equation (4.4): Using Plancherel’s Theorem,

‖Hf‖2 = ‖Ĥf‖2

= ‖f̂‖2 (from equation (4.1))

= ‖f‖2

Equation (4.5):

̂(H(Hf))(ξ) = −ιsgn(ξ)(̂Hf)(ξ)

= (−ιsgn(ξ))(−ιsgn(ξ))f̂(ξ)

= −ιf̂(ξ)

Now, (H2f) = ̂(H(Hf))
∨

= (−f̂(ξ))
∨

= −f, for f ∈ S
Equation (4.6):

Hf ∈ L2 and g ∈ L2. Now,

〈Hf, g〉 = 〈Ĥf, ĝ〉

= 〈−ιsgn(.) ˆf(.), ĝ〉

= 〈f̂ , ιsgn(.) ˆg(.)〉

= −〈f̂ , Ĥg〉

4.4 Theorem of Kolmogorov

[Duo01]

Theorem 8. For f ∈ S(R), the following assertion is true:

H is weak (1,1):

|{x ∈ R : |Hf(x)| > λ}| ≤ C

λ
‖f‖1.

Before proceeding further, we need the following lemma:

Lemma 4.1. Calderón Zygmund Lemma

Let f ≥ 0, f ∈ L1(R) & λ > 0 There exists a countable collections of cube with sides

parallel to the axis,Qj with disjoint interior such that for each j,

λ <
1

|Qj|

∫
Qj

f(x)dx ≤ 2nλ
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Proof of theorem 8:

Fix λ > 0 and f is non negative and integrable function. Now, partition the space

into cubes of equal size.Notation,

fQ =
1

Q

∫
Q

f(x)dx

. If fQ > λ, choose the cube and if fQ < λ divide it further unto 4 sub-cubes and

repeat the process as we have countable cubes.

So, Ω = ∪Qj, where picked up Q’s are enumerated as Qj. Qj are mutually disjoint

a.e. Now, let us define
∼
Qj as a bigger cube of which Qj is one of the part out of four.

Form the Calderón- Zygmund decomposition of f ; this yields a sequence of disjoint

cubes {
∼
Qj} such that

1

|
∼
Qj|

∫
∼
Qj

f(x)dx ≤ λ

=
1

2n|Qj|

∫
∼
Qj

f(x)dx ≤ λ

Therefore,

λ <
1

|Qj|

∫
Qj

f(x)dx ≤ 1

|Qj|

∫
∼
Qj

f(x)dx ≤ 2nλ.

Let F = R2\Ω and

|Ω| ≤
∑
|Qj| ≤

1

λ

∫
Qj

f(x)dx ≤ 1

λ
‖f‖1 (4.7)

Now we decompose f as the sum of two functions, g and b, defined by

g(x) =

f(x) if x ∈ F,∑
fQjXQj(x) if x ∈ Ω; fQj = 1

|Qj |

∫
Qj
f(x)dx,

and

b(x) = f(x)− g(x)

=
∑
j=1

(
f(x)− fQj

)
XQj(x)

=
∑
j

bj.

39



Then g(x) ≤ 2nλ almost everywhere, and bj is supported on Qj. Since Hf = Hg+Hb,

|{x ∈ R : |Hf(x)| > λ}| ≤ |
{
x ∈ R : |Hg(x)| > λ

2

}
|+|
{
x ∈ R : |Hb(x)| > λ

2

}
|. (4.8)

We estimate the first term of the equation (4.8):

‖g‖2
2 =

∫
F

|g(x)|2 +

∫
Ω

|g(x)|2dx

First term of the above expression can b written as :∫
F

g(x)2 =

∫
F

f(x)2

≤ λ

∫
F

f(x)dx

≤ λ‖f‖1

Second term can be written as :∫
Ω

|g(x)|2 =
∑
j

∫
Qj

(fQj)
2dx

≤ 2nλ
∑
j

∫
Qj

fQjdx

≤ C‖f‖1

Therefore, ∫
R
|g(x)|2dx ≤ C

′‖f‖1

Now

|
{
x ∈ R : |Hg(x)| > λ

2

}
| ≤

(2

λ

)2
∫
R
|Hg(x)|2dx

=
4

λ2

∫
R
g(x)2dx

≤ C ′′

λ
‖f‖1. (4.9)

Let us now estimate the second term of the equation (4.8):

bj(x) =
(
f(x)− fQj

)
XQj
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and ∫
bj(x)dx =

∫
Qj

(f(x)− fQj)

= 0

Now,

Hb = H
(∑

j

bj
)

=
∑
j

Hbj(in the sense of L
2)

As,

|{x ∈ R : |Hbj(x)| > λ}| ≤ |Ω|+ |{x /∈ Ω : |Hbj(x)| > λ}|

Replace Ω by Ω∗ and Ω ⊂ Ω∗ = ∪Q∗j , where Q∗j has same center as Qj and of length

twice.

Now,

|Q∗j | ≤
∞∑
j=1

|Q∗j |

= 2
∞∑
j=1

|Qj|

= 2|Ω| (4.10)

Let us take x /∈ Ω∗ (x /∈ Q∗j).

Hbj(x) =

∫
y∈Qj

bj(x)

x− y

=

∫
y∈Qj

[
b(y)

x− y
− b(y)

x− cj

]
dy (where cj is the center)

=

∫
y∈Qj

b(y)
y − cj

(x− y)(x− cj)
dy

Since,

|cj − y| ≤
1

2
|x− cj| (4.11)
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and

|x− y| ≤ |x− cj| − |cj − y|

≥ 1

2
|x− cj| (Using equation 4.10)

Therefore,

|Hbj(x)| ≤ c

∫
y∈Qj

|bj(y)||l(Qj)|
|x− cj|2

dy

∫
R\Ω∗
|Hbj(x)| ≤ cl(Qj)

∫
|x−cj |>2l(Qj)

1

|x− cj|2

∫
Qj

|bj(y)|dy

≤ c′l(Qj)
1

l(Qj)
‖bj‖1

≤ c′‖bj‖1 (4.12)

Now,

|{x /∈ Q∗j : |Hbj(x)| > λ}| ≤ 1

λ

∫
R\Ω∗
|Hbj(x)|dx

≤ c

λ
‖bj‖1 (4.13)

As b is support on Qj,

‖b‖1 =
∑
‖bj‖1

So now,

|{x /∈ Ω∗ : Hb(x) > λ}| ≤ 1

λ
‖Hb‖1

≤ 1

λ

∫
R\Ω∗
|Hb(x)|dx

≤ 1

λ

∫
R\Ω∗

∑
j

|Hbj(x)|dx

≤ 1

λ

∑
j

∫
R\Ω∗
|Hbj(x)|dx

≤ c

λ

∑
j

‖bj‖1 (Using equation (4.13))
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As,

‖bj‖1 ≤
∫
Qj

|f(x)− fQj |dx∑
‖bj‖ ≤

∑∫
Qj

|f(x)− fQj |dx

≤ 2
∑
j

∫
Qj

|f(x)|dx

≤ 2‖f‖1

Therefore,

|{x /∈ Ω∗ : Hb(x) > λ}| ≤ C

λ
‖f‖1. (4.14)

From equation (4.9) and (4.14) we can say that:

|{x ∈ R : |Hb(x)| > λ}| ≤ C ′

λ
‖f‖1. (4.15)

This proves the weak(1,1)inequality:

|{x ∈ R : |Hf(x)| > λ}| ≤ C

λ
‖f‖1.

4.5 Norm convergence of Fourier Series

Theorem 9. For f ∈ Lp(Rn), 1 < p <∞,

Let

SNf(x) =

N∫
−N

f̂(ξ)e2πiξxdξ

=

∫
Rn

X∏
[−N,N ]f̂(ξ)e2πiξxdξ

Then,

SNf −→ f in Lp norm as N →∞ i.e

If f is such that supp f̂ is compact then for large N, SNf = f
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To Prove:

lim
N→∞

‖SNf − f‖p = 0

One of the key idea is that if we can show that the operators SN are uniformly bounded

in Lp(R).

Let us assume

‖SN‖ < C

for C be some constant independent of N . Start with F ∈ Lp, approximate by a

g ∈ S with compact support ĝ. Then,

‖f − SN‖p ≤ ‖f − g‖p + ‖g − SNg‖p + ‖SNg − SNf‖p

≤ ‖SN‖‖f − g‖+
ε

2 + 2C

≤ C ∗ ε

2 + 2C
+

ε

2 + 2C

≤ ε

2
+
ε

2

≤ ε

second term gets zero for large N. Now let us prove that SN are uniformly bounded

operators on Lp.

We know

SNf(x) =

∫
R

X[−N,N ]f̂(ξ)e2πiξxdξ

and
ˆHf(ξ) = −isgn(ξ) ˆf(ξ)

Let us take,

(S1f(ξ))∧ = X|x≤1|(ξ)f̂(ξ).

We see that

X(0,∞)(ξ) =
I + iH

2

and

X(−∞,0)(ξ) =
I − iH

2
.

Therefore, X(0,∞)(ξ) and X(−∞,0)(ξ) are multipliers too. Product of the two will be

multiplier too.

X[−1,1](ξ) = X(0,∞)(1− ξ) · X(−∞,0)(ξ − 1).
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So we can write S1 = H1H2

Now,

‖S1‖Lp→Lp = ‖H1‖Lp→Lp‖H2‖Lp→Lp

As we know that Hilbert transform is bounded on Lp for 1 < p < ∞, therefore we

can see that S1 is bounded on Lp for 1 < p < ∞. Due to scale invariance each SN

has same norm as X is scale invariant (value is 1 irrespective of interval length) thus

we can say that SN is uniformly bounded in Lp. Now using Uniform Boundedness

Principle which states that:

Let X, Y be Banach spaces.Let {Tα} be a family of bounded linear maps from X into

Y . If

sup
α
‖Tαx‖ <∞

for all x ∈ X, then

sup
α
‖Tα‖ <∞

Now we can say that SN are uniformly bounded operators on Lp(R)
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Chapter 5

Double Fourier Series

[Kra99] Definition: The Fourier series of f(x, y) can be written in the following form:

f(x, y) ∼
∞∑

m,n=−∞

Cm,ne
2i(mx+ny)

where,

Cm,n =
1

4π2

∫ ∫
R
f(x, y)e−i(mx+ny)dxdy

Method of Partial Summation: Square Summability

f̂(ξ, η) =

∫ ∫
f(x, y)e−2πiξxe−2πiηydxdy

Now we define,

SSqN f(x, y) ≡
∑
ξ,η≤N

f̂(ξ, η)e2πi(ξx+ηy)

So basic question will be whether SSqN f(x, y) −→ f(x, y) as N → ∞. So before

answering this question let us see how Fourier multiplier can be used to get the

answer of the above question.
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5.1 Application of Fourier Multiplier to summa-

tion of double Fourier series

Lemma 5.1. Fix 1 < p < ∞. Let QR be the R-fold dilate of the unit cube Q. If MQ

is bounded on Lp(Rn), then the operator

MQR : f 7−→ [XQR f̂ ]∨

is bounded on Lp(Rn), independent of R.

Corollary 5.1. If MQ is bounded on Lp(Rn) for some 1 < p <∞, then the operator

MQR : f −→
∑
j∈Z

XQR(−j)f̂(j)eijx

is bounded on Lp(Rn), is independent of R.

Proof : We take f to be in S(Rn) which is certainly dense in Lp, so we need not

worry about the convergence of the integrals. Now

[XQR f̂ ]∨(x) = (2π)−N
∫
XQR(ξ)f̂(ξ)e−ix.ξdξ

= RN(2π)−N
∫
XQR(Rξ)f̂(Rξ)e−ix.Rξdξ

= RN(2π)−N
∫
XQ(ξ)α̂Rf(ξ)(ξ)e−ix.Rξdξ

= RN [MQ(αRf)](Rx).

We have substituted ξ = Rξ in 2nd step of the above calculation and in the third

step fR(x) = Rf(Rx) = (Trf)x so here we have denoted Tr = αR that is, αR is an
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operator.Now let us calculate the Lp norm:

‖MQRf‖LP = RN

[ ∫
|MQ[αRf ](Rx)|pdx

]1/p

= RN ·R−N/p
[ ∫
|MQ[αRf ](x)|pdx

]1/p

≤ C ·RN ·R−N/p‖αRf‖Lp

= C ·RN ·R−N/p
[ ∫
|R−Nf(R−1x)|pdx

]1/p

= C ·RN ·R−N/p
[ ∫

RN ·R−Np|f(x)|pdx
]1/p

= C

[ ∫
|f(x)|pdx

]1/p

So we have proved the bound on the Lp norm of MQRf, depending on f and indepen-

dent of R.

Theorem 10. Let P be a point of R2, v ∈ R2 be a unit vector, and set

Ev = {x ∈ R2 : (x− P ) · v ≥ 0}.

Then the operator

f 7−→ (XEv · f̂)∨

is bounded on Lp, 1 < p <∞.

Proof We have proved in the previous chapter that Hilbert transform is bounded

on Lp(R) and we have used the operator, M = 1
2
(I + iH) because of its simple

multiplier m = X[0,∞). So now we will express the multiplier for a half space as an

amalgam of multipliers for the half-line using Fubini’s theorem. After the composition

of translation and rotation, we bring point P to the origin and v is the vector (0, 1)

which is shown as below:

Maf(x) = e2πiaxf(x)

(Maf)∧(ξ) = f̂(ξ − a)

(HMaf)∧(ξ) = (Maf)∧(ξ)X[0,∞)(ξ)− (Maf)∧(ξ)X(−∞,0](ξ),

= f̂(ξ − a)X[0,∞)(ξ)− f̂(ξ − a)X(−∞,0](ξ)
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[M−a(HMaf)]∧(ξ) = (HMaf)∧(ξ + a)

= (Maf)∧(ξ + a)X[0,∞)(ξ + a)− (Maf)∧(ξ + a)X(−∞,0](ξ + a)

= f̂(ξ)X[0,∞)(ξ + a)− f̂(ξ)X(−∞,0](ξ + a)

and an anti-clockwise rotation of a function by an angle implies that its Fourier

transform is also rotated anti-clockwise by the same angle.

Fix 1 < p <∞. Take f to be in S(R) since Schwartz functions are dense in Lp(R2).

Notation fx1(x2) ≡ f(x1, x2). Now we calculate

(XE f̂)∨(x1, x2) = (2π)−2
∫∞

0

∫
R

∫
R

∫
R f(t1, t1)× eiξ1t1eiξ2t2dt1dt2e−iξ1x1e−iξ2x2dξ1dξ2.

The two integrals give rise to a Schwartz function, so all integrals converge absolutely.

By Fubini’s theroem, the last line equals

1
2π

∫
R

∫
R

[
1

2π

∫∞
0

[ ∫
R f(t1, t1)eiξ2t2dt2

]
e−iξ2x2dξ2

]
e−iξ1x1dξ1e

iξ1t1dt1

= 1
2π

∫
R

∫
RM(f1)(x2)eit1ξ1dt1e−iξ1x1dξ1.

(5.1)

Also, ∫
t1∈R
‖Mft1(·)‖

p
Lp(R)dt1 ≤ C

∫
t1∈R
‖ft1(·)‖

p
Lp(R)dt1

= C‖f‖pLp(R2).

In particular, for almost every x2, the function

t1 7−→ Fx2(t1) ≡M(ft1)(x2)

lies in Lp(R). We can write the right hand side of equation (5.1) as

lim
ε→0

∫
R

1

2π

∫
R
Fx2(t1)eit1ξ1dt1e

−iξ1x1e−ε|ξ|
2

dξ1

using Gauss-Weierstrass summation. But this equals

lim
ε→0

1

2π

∫
R
F∨x2(−ξ1)e−iξ1x1e−ε|ξ|

2

dξ1 = Fx2(x1)

for almost every x1 and we have proved that the latter function is norm dominated

by C‖f‖Lp(R2)
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Theorem 11. The method of square summation is valid for double trigonometric

series in Lp norm, 1 < p <∞.

Proof : Let

E1 ≡ {(x, y) ∈ R2 : (−1, 0) · [(x, y)− (1, 0)] ≥ 0},

E2 ≡ {(x, y) ∈ R2 : (1, 0) · [(x, y)− (−1, 0)] ≥ 0},

E3 ≡ {(x, y) ∈ R2 : (0,−1) · [(x, y)− (0, 1)] ≥ 0},

E4 ≡ {(x, y) ∈ R2 : (0, 1) · [(x, y)− (0,−1)] ≥ 0}.

So the common intersection of the above 4 half planes is a unit square Q = {(x, y) :

|x| ≤ 1, |y| ≤ 1} in R2. Let Tj be the multiplier operator associated to XEj ,that is,

Tj : f −→ (XEj · f̂)∨.

Then the multiplier operator associated with this closed square is T1 ◦ T2 ◦ T3 ◦ T4.

As we have proved earlier that each Tj is bounded on Lp, 1 < p < ∞. As a result

T1 ◦ T2 ◦ T3 ◦ T4 is certainly bounded on Lp. Since the multiplier operator associated

with the unit square is bounded, we can say that square summation is valid for double

Fourier series, 1 < p <∞.
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