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Abstract

Entanglement and Nonlocality play a very important role in Quantum Information.

Recently, a lot of focus has shifted to Continuous Variable Quantum Information,

mainly because, continuous variable systems like coherent and squeezed state of light

are easier to produce and do experiments with. In my thesis, I initially looked upon

the separability criterion of bipartite Gaussian States.

Then, I explored the nonlocality of a given general bipartite Gaussian state. To

examine the nonlocality of a continuous variable state, a continuous variable Bell-type

inequality is required. I used two such inequalitites for my study and tried to compare

them.

I also introduced noise in this study of nonlocality of Gaussian states. The main

reason was that in real experiments noise is very important. I introduced two types of

noise in the inequality. One in the form of thermal noise and other by using a beam

splitter model. Using these two models of noise, I explored how noise would affect the

nonlocality of a state and obtained some results.
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Chapter 1

Introduction

1.1 Background

The advent of Quantum Mechanics, about 90 years ago, has changed the perspective

through which the physicists look at nature. Postulates, as strong as the univer-

sal constancy of speed of light, on which the Special Theory of Relativity has been

built, have been challenged by the results or predictions of Quantum Mechanics. The

physics community got much closer towards the understanding of the working of na-

ture after the advance of Quantum Mechanics. Even engineers have also been using

Quantum Physics to bring improvements to the current technology. Now, in 21st

century, industries are designing chips at nanometer scale below which the quantum

effects like interference would be very prominent. In 1980s, Richard P. Feynman gave

the idea that, to simulate nature, we must have computers that work on the principles

of Quantum Mechanics. And from then, researchers have been trying in this direction

to build a quantum computer. Though, a quantum computer has not yet been built

but a lot of theory and a large number of quantum algorithms have been written down

and have been implemented in various ways like on NMR or ion trap or quantum dots

etc. Many problems which were considered to be NP hard(Non-deterministic Polyno-

mial time,i.e., if a given problem cannot be solved in polynomial time in any known

way it is NP hard problem) have been shown to be P(Polynomial time,i.e., P is the

set of all decision problems which can be solved in polynomial time by a deterministic

Turing machine) or at least have been shown to be solved in time less than NP by

the use of quantum algorithms.

The most central and also the most counter-intuitive postulate on which Quantum

Mechanics work is the Superposition Principle. It is neither an ‘OR’ event nor an ‘AND’
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event. For instance, in a standard Young’s Double Slit Experiment, the electron when

fired passes through the two slits provided, to reach the screen. Now, the results of

the experiments are such that they suggest that it cannot be the case that electron

passed through either 1st or 2nd slit. Also, it cannot be inferred that the electron

passed through both the slits. Though, on disturbing the electron or observing it

midway before it reaches the screen, changes the results. Hence, the physicists had to

settle down to the superposition principle and had to work with a counter-intuitive

physical reasoning.

Another central idea of Quantum Mechanics was Quantization. It was observed

earlier before the advance of Quantum Mechanics that at microscopic level, the nature

behaved in a discrete way. For instance, in 1921, Albert Einstein was awarded the

Noble Prize for his discovery of the law of photoelectric effect. This discovery opened

up answers to many questions and many other questions automatically surfaced. The

two main ideas conveyed with this discovery were that the light which was assumed to

have wave-like properties, was now known to have particle-like properties as well and

secondly, the quantization of electromagnetic radiation given by Planck was confirmed.

Once the idea of quantization got included in Quantum Mechanics, it was then not

difficult to map the classical fields to operators acting on quantum states.

Having been equipped with these two very important tools of Superposition Prin-

ciple and Quantization, many new ideas and applications were discovered. Ideas like

entanglement started to come into the picture. Because of quantization, the physics

community was able to talk about the particles associated to a given field. For in-

stance, photons were the particles of light having energy equal to an integral number

of ~ω.

Gradually as more and more research in this field continued, people studied Har-

monic Oscillators from this new perspective of quantization and discovered that there

are discrete levels of energy(or frequency) in a quantum harmonics oscillator. That is,

the photon can not go from some energy level to any other energy level as the jump

from one level to another requires a certain constant energy and hence, the levels are

not continuous. Also, due to quantization, researchers were able to associate operators

that could create or destroy a quanta of light. Then, later these energy levels were

associated with the number of photons and hence, became known as number states.

Now, this was a big leap as later people defined states like coherent states which were

a linear combination of all the number states starting from vacuum state and going

up to infinity. The ground state was the vacuum state with no photons but unlike
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classical fields, the vacuum state also had a finite energy.

1.2 Applications of Quantum Mechanics

Quantum Mechanics has a vast number of applications. It has revealed a lot about

the behaviour at the subatomic levels and has strongly influenced string theory.

Quantum Mechanics has strongly influenced the area of electronics. Many elec-

tronic devices are designed keeping in mind the results and predictions of Quantum

Mechanics. For example, making a LASER, transistor(and hence, the micro chips

that are used as processors these days), MRI(and similarly, NMR), Atomic-force mi-

croscope etc.

Quantum Tunneling, i.e., tunneling of a particle through a barrier, which is classi-

cally impossible, has found tremendous applications. Quantum tunneling is important

for nuclear fusion in stars, radioactivity, scanning tunneling microscope and to some

extent in quantum biology.

Even in the field of computer science, quantum mechanics has found its applica-

tions. Quantum algorithms have been written down for many problems in computer

science and have been shown to be more efficient than the classical ones. This emerg-

ing field which is the fusion of Quantum Mechanics and Computer Science is known as

Quantum Computation. Similarly, quantum mechanics has also found its applications

in Information theory and is known as Quantum Information. Quantum Information

in itself has a lot of interesting applications like Quantum Cryptography, Quantum

Teleportation etc. Cryptography is the art of enabling two parties to communicate in

private[NC00]. To achieve privacy, a cryptographic protocol or a cryptosystem is used.

But there is no completely secure public key cryptography. Though, with the use of

the principles of quantum mechanics, there are ways to show that secure quantum key

distribution can be done. Also, use of quantum mechanics allows us to detect whether

any Eavesdropping has happened. On the other hand, teleportation using Quantum

Mechanics is not at all what teleportation sounds like. The word ‘Teleportation’ has

been taken from science fiction where it means to teleport objects from one place to

another or from one time to another time. Quantum Teleportation does not transfer

objects or states. It just transfers the information from one quantum state to another.

But because of the no-cloning theorem, the information will no longer prevail in the

qubit, originally containing it.
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Quantum Cryptography and Quantum Teleportation work because quantum me-

chanics allows us to form a certain form of superposition called entanglement such that

by making measurements over one system, the state of the other system entangled to

it can be known without actually performing a measurement over it. Entanglement

has been discussed in Chap.(2)

1.3 Motivation

In my thesis, I have looked into the Entanglement and Nonlocality of General Gaus-

sian states. I started by understanding a result in Entanglement theory in Bipartite

Gaussian States given by R.Simon[Sim00]. The result stated that the Peres-Horodecki

Separability Criterion is a necessary and sufficient criterion for separability of bipar-

tite Gaussian states(Chap.(4)). Having known these results, a natural inclination was

to look into the nonlocality of the bipartite Gaussian states. Hence, I looked into two

Bell-type inequalities for Continuous Variable Systems and obtained a few results by

comparing the two inequalities.
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Chapter 2

Entanglement and Nonlocality

Since, quantum mechanics allows us to form superpositions of various states, we can

form superpositions such that the each particle can not be described independently of

the other particle irrespective of the fact that they are separated by a large distance.

This special type of superposition is known as Entanglement. With the emergence of

entanglement, it was observed that if two particles are entangled and measurements

are made on one particle, the other particle collapsed into a state such that the result

of the measurement on it is correlated to the other, even though the particle would

have been very far. But this violated the postulate of Special Theory of Relativity

which denies instantaneous transfer of information. Hence, the nonlocality also crept

into the picture of Quantum Mechanics.

2.1 Entanglement

2.1.1 History

In 1935, Albert Einstein, Boris Podolsky and Nathan Rosen published a result which

questioned the completeness of quantum mechanics[EPR35]. They named it as ‘EPR

Paradox’. But they were not the ones to coin the word ‘Entanglement’. Like Einstein,

Schrodinger was also dissatisfied by the concept of entanglement as it seemed to violate

the famous and well accepted postulate of Special Relativity that no information can

travel faster than light. Einstein called this ‘spooky action at a distance’.
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2.1.2 Entanglement in Pure states

The Hilbert state of a composite system made of two non-interacting systems A and

B is given as a tensor product as

H = HA ⊗HB (2.1)

If the state of the first system is |ψ〉A and the state of the second system is |φ〉B, then

the state of the composite system is |ψ〉A ⊗ |φ〉B. Such states where the state of the

composite system can be written as a product of the state of the first system and the

state of the second system are called separable states. If we cannot write the state of

a composite system as a product of the state of the first system and the state of the

second system, then the state is called entangled state.

The most general way to write a pure state for a composite system made of two

qubits is

|ψ〉AB =
1∑
j=0

1∑
i=0

cij|i〉A|j〉B (2.2)

where |i〉A and |j〉B are the orthogonal states for the first and the second qubit,

respectively. The state will be separable if we find cij = cAi c
B
j such that |ψ〉A =∑

i c
A
i |i〉A and |φ〉B =

∑
j c

B
j |j〉B. If we are unable to find such a combination for cij

then the state will not be separable or in other words, the state will be entangled.

For example, the following state is entangled

|ψ〉 =
1√
2

(|0〉A|1〉B − |1〉A|0〉B) (2.3)

2.1.3 Entanglement in Mixed states

Mixed states are just the density matrices on the Hilbert space HA⊗HB. Generalizing

the definition of separability of Eq.(2.2) from the pure case to mixed case, one can say

that a mixed state is separable if the density matrix can be written in the following

way

ρ =
∑
i

piρ
i
A ⊗ ρiB (2.4)

where
∑

i pi = 1. If we are not able to write a state in this way, then it is entangled.

But then, doing this decomposition for any given density matrix is hard. So, the

natural question to ask is if there exist a criterion to tell whether a given mixed state
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is entangled or not? The answer to this question was given by Asher Peres[Per96] and

is a part of Chap.(4).

2.2 Nonlocality

A possible resolution to the EPR Paradox was to assume that the results of the

measurement, somehow, depended on some kind of variables which contain the infor-

mation about the past interactions of the particles. These variables were termed as

‘hidden variables’. This would mean that the particles have all the information with

them and no information travels from one particle to the other when the measurement

is made on one particle.

In 1964, Bell showed that the predictions of Quantum Mechanics are incompatible

with any physical theory that satisfies a notion of locality[Bel64]. To show this, a

standard “Bell Experiment” is conducted. In this experiment, the two systems are

taken such that they have previously interacted and now, they are spatially separated.

Now, at each of the two sites where each system is placed, two measurements per site

are allowed. Also, the number of outcomes per measurement is restricted to two.

Such a system is described as (2, 2, 2) where the first entry describes the number of

parties, the second entry describes the number of measurements per party and the

third entry describes the number of outcomes per measurements. If a large number of

experiments are done, and if the local realist view or hidden variable theory is correct

then, then it should satisfy Bell’s inequality. But a large number of experiments have

been done on many quantum composite systems and it has been observed that there

are cases that do not satisfy Bell’s inequalities. Thus, Bell’s inequalities are a witness

for a state to be local or nonlocal.

2.2.1 Bell’s Inequality

Bell’s inequality, as stated above can be used as a nonlocality witness. The violation

of the inequality is suggestive of the nonlocal character of the state. A lot of Bell’s

inequalities can be found in the literature. A state is said to be nonlocal even if it

violates just one of the many inequalities. The most famous Bell’s inequality is the

CHSH inequality. The setup for this is that we have two parties say Alice(A) and

Bob(B) having sharing a composite system of two particles which have interacted in

the past. Now, both of them can perform two measurements on their particles. Say,

A can measure the spin along x and x′ direction and B can measure spin along y and
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The result obtained after measurement along x is a, along x′ is a′, along y is b and

along y′ is b′. Also, a, b, a′ and b′ can take only two values, i.e., a, a′, b, b′ ∈ {+1,−1}.
Now, the CHSH inequality reads as

a.b+ a.b′ + a′.b− a′.b′ ≤ 2 (2.5)

The above inequality has been written taking into account the locality condition and

the hidden variable model. If any violation to this found for any state, the state will

be called a nonlocal state.
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Chapter 3

Continuous Variable Quantum

Information

Systems associated with infinite dimensional Hilbert spaces are Continuous Variable

Systems. In other words, quantum systems that are defined by systems having a con-

tinuous spectrum, like position and momentum, are Continuous Variable Systems. A

continuous-variable (CV) system [EP03, BvL05, CLP07, AI07] of N canonical bosonic

modes is described by a Hilbert spaceH = ⊗Nk=1Hk whereHk is an infinite-dimensional

fock space associated with the mode k. As an example, we can take the following

Hamiltonian

Ĥ =
N∑
k=1

~ωk(â†kâk +
1

2
) (3.1)

The Hamiltonian in Eq.(3.1) describes a system of arbitrary number N of harmonic

oscillators of different frequencies, the modes of the field. The non-interacting quan-

tized electromagnetic field is one such case. In the above Eq.(3.1), â†k and âk are the

creation and annihilation operators of a photon in mode k (having frequency ωk).

They satisfy the following commutation relations

[âk, â
†
k] = δkk′ , [âk, âk′ ] = [â†k, â

†
k′ ] = 0 (3.2)

The quadrature operators (position and momentum) for each mode are defined as

q̂k = (âk + â†k)/
√

2 (3.3)

p̂k = (âk − â†k)/ι
√

2 (3.4)
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Figure 3.1: Phase-space Distributions

We can group together the canonical quadrature operators in the vector

R̂ = (q̂1, . . . , q̂N , p̂1, . . . , p̂N)T (3.5)

The above vector belongs to the real 2N -dimensional space called phase space. With

the help of these quadrature operators, the whole phase-space can be spanned.

We can also describe distribution functions in phase space. The geometry that

is followed in the phase space is Symplectic geometry and associated to it is the

Symplectic Group.

3.1 Phase Space Functions

Phase space brings out most clearly the differences in classical and quantum mechanics.[Sch05]

The complete description of any quantum state ρ of an infinite-dimensional system

can be provided by one of its s-ordered characteristic functions. For every specific

ordering there exists a given phase space distribution function as to obtain always the

correct quantum mechanical expectation value.

Mostly, the three phase space distributions(Figure 3.1) are used:

a.) Wigner Distributions

b.) Husimi Q-Representation

c.) Glauber-Sudarshan P-Representation

Wigner distribution is proper for the operators that are symmetric ordered a and a†.

Glauber-Sudarshan P-Representation and Husimi Q-Representation are appropriate

distribution for operators that expressed in terms of normally ordered a and a† and

anti-normally ordered a and a†, respectively.
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3.1.1 Wigner Distributions

Wigner phase-space distribution of a quantum state[Wig32] defined by a density op-

erator is given by

W (q, p) =
1

2π~

∫ ∞
−∞

dq′eipq
′/~〈q − q′

2
|ρ̂|q +

q′

2

〉
(3.6)

To represent a nth statistical moment of any operator, say Â, Wigner distribution

function can be used as:

〈
Ân
〉

= tr(ρ̂Ân) =

∫ ∫
W (q, p)An(q, p)dqdp (3.7)

where in the final form, An(q, p) is a function of q and p, and not an operator as given

by Weyl correspondence rule.

If an operator is given in terms of powers of q̂ and p̂, then

〈
S(q̂m, p̂n)

〉
= tr(ρ̂S(q̂m, p̂n)) =

∫ ∫
W (q, p)qmpndqdp (3.8)

where S denotes symmetric ordering of the function and so, after applying Weyl

corresponding rule, we get in the final form, the function as qmpn.

The Wigner distribution is not a true probability distribution function. The reason for

this is that it can also acquire negative values unlike the true probability distribution

functions which only acquire positive values. Therefore, it is referred as a quasi-

probability distribution function.

For a function to be a Wigner distribution function, it has to satisfy a few properties,

also known as Wigner qualities. The Wigner qualities are as follows:∫ ∞
−∞

dq

∫ ∞
−∞

dpW (q, p) = 1 (3.9)∫ ∞
−∞

dpW (q, p) =
〈
x|ρ̂|x

〉
≡ W (q) (3.10)∫ ∞

−∞
dqW (q, p) =

1

2π~

∫ ∞
−∞

dq

∫ ∞
−∞

dq′eipq
′/~〈q − q′

2
|ρ̂|q +

q′

2

〉
(3.11)

Also,

Tr(ρ̂1ρ̂2) = 2π~
∫ ∞
−∞

dq

∫ ∞
−∞

dp′Wρ̂1(q, p)Wρ̂2(q, p) (3.12)
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3.1.2 Q-Representation

Here, I have given just a brief note on Q-Representation as it has not been used in any

proof of the paper ’Peres-Horodecki Separability Criterion for Continuous Variable

system’. For further and more detailed description, one can check the references

[Hus40][Sch05][GK04].

Q-function of a pure quantum state |ψ〉 is defined as:

Q(αr, αi) ≡
1

π
|〈α|ψ〉|2 (3.13)

where αr and αi are the real and imaginary parts of the complex number α that

describe the coherent state. Therefore, generalizing it, we get:

Q(αr, αi) ≡
1

π
〈α|ρ̂|α〉 (3.14)

where the above is the Q-function to a mixed state with density operator ρ̂. Hence

the Q-function is the expectation value of the density operator in a coherent state.

3.1.3 P-Representation

As earlier stated, P-representation(or Glauber-Sudarshan P-representation)[Sud63][Gla63a]

is appropriate distribution for operators which are expressed in normal order of a and

a†. This representation uses the fact that the coherent states are overcomplete. Since,

the coherent states form an overcomplete, normal and non-orthogonal basis, we can

always represent any density matrix in a diagonal form[Gla63b][Meh67] as

ρ̂ =

∫
P (α)|α〉〈α|d2α (3.15)

Now, to find out the P -function, I refer to the way as done in C.L.Mehta’s paper[Meh67]

〈−u|ρ̂|u〉 =

∫
P (α)〈−u|α〉〈α|u〉d2α (3.16)

= e−|u|
2

∫
P (α)e−|α|

2

eα
∗u−αu∗d2α (3.17)

where |u〉 is a coherent state and u is a complex number. Now, by inverse Fourier

transform we see

P (α) =
e|α|

2

π2

∫
e|u|

2〈−u|ρ̂|u〉eu∗α−uα∗d2u (3.18)
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To emphasize again, Glauber-Sudarshan P-representation is not a true probability

distribution as it can acquire negative values. In particular, states with non-classical

features such as photon number states or squeezed states have negative value of P-

functions somewhere in the phase space. Thus, negativity and non-negativity is a

defining condition for classicality and non-classicality, respectively. So, states that are

classical in the quantum optics sense have a non-negative P-distribution function(P ≥
0). Example of classical states include coherent states.

3.2 Symplectic Groups

The group of transformations that keep the area preserved in a phase space are Sym-

plectic transformations. Also, symplectic groups preserve the basic kinematic rela-

tions such as the Poisson brackets in classical mechanics and commutation relations

in quantum mechanics.

So, if we define a 2n-component column vector ξ,ξ̂ as:

ξ = (q1, . . . , qn, p1, . . . , pn) (3.19)

ξ̂ = (q̂1, . . . , q̂n, p̂1, . . . , p̂n) (3.20)

Then, classical Poisson brackets and quantum commutation relations are defined as:

{ξa, ξb} = Ωab, (3.21)[
ξ̂a, ξ̂b

]
= i~Ωab (3.22)

and Ω = Ωab =

(
0n×n 1n×n

−1n×n 0n×n

)
(3.23)

Now, we can define a transformation by a matrix S such that theses relations are

preserved. The actions of this matrix are as follows:

S = (Sab) : ξa
′ = Sabξb (3.24)

ξ̂a′ = Sabξ̂b (3.25)
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Thus, it leads to a condition SΩST = Ω. So, the defining condition for the symplectic

group in 2n dimensions:

Sp(2n,R) =
{
S = real 2n× 2n matrix | SΩST = Ω

}
(3.26)

The matrix Ω is real, even-dimensional, anti-symmetric and non-singular. It is a

“symplectic metric matrix”.

Also, for each S ∈ Sp(2n,R) it is definitely possible to construct a unitary operator

U(S) acting on Hilbert space H such that:

ξ̂a′ = Sabξ̂b = U(S)−1ξ̂aU(S) (3.27)

and U(S)†U(S) = 1 on H.

This U(S) is arbitrary upto an S-dependent factor.

3.2.1 Properties of Sp(2n,R) Matrices

From the defining equation of Symplectic groups(3.26), the following properties follow:

(i) Sp(2n,R) is of dimension n(2n+ 1)

(ii) Ω ∈ Sp(2n,R)

(iii) S ∈ Sp(2n,R)⇒ −S, S−1, ST ∈ Sp(2n,R),

ST = ΩS−1Ω−1, (S−1)T = ΩSΩ−1, S−1 = ΩSTΩ−1

(iv) det S = +1

(v) S ∈ Sp(2n,R)⇒ eigenvalue spectrum of S is invariant under reflection about the

real axis, and through unit circle (reiθ → 1
r
eiθ)

3.3 Covariance matrix and the uncertainty Princi-

ple

Given a bipartite density operator ρ̂, let us define,

∆ξ̂ = ξ̂ − 〈ξ̂〉 (3.28)

∆ξ̂α = ξ̂α − 〈ξ̂α〉 (3.29)

where, 〈ξ̂α〉 = tr(ξ̂αρ̂). As for an example, 〈q̂1〉 = tr(q̂1ρ̂).

The uncertainties are defined as the expectations of the Hermitian operators as
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{
∆ξ̂α,∆ξ̂β

}
=

1

2
(∆ξ̂α∆ξ̂β + ∆ξ̂α∆ξ̂β) (3.30)

Now, since we know

Vαβ = 〈
{

∆ξ̂α,∆ξ̂β
}
〉 = tr(

{
∆ξ̂α,∆ξ̂β

}
ρ̂) =

∫
d4ξ∆ξαξβW (ξ) (3.31)

From the above eq. (3.31), we see the relation between density operator ρ̂, Wigner

distribution function W and the covariance matrix V whose elements are characterized

as Vαβ.

By the eq.(3.31), we can write the elements of the covariance matrix, a few examples

of which are

V11 = 〈
{

∆q̂1,∆q̂1
}
〉 = 〈q̂21〉 − 〈q̂1〉2

V12 = 〈
{

∆q̂1,∆q̂2
}
〉 = 〈{q̂1, q̂2}〉 − 〈q̂1〉〈q̂2〉

V13 = 〈
{

∆q̂1,∆p̂1
}
〉 = 〈{q̂1, p̂1}〉 − 〈q̂1〉〈p̂1〉

and so on for the rest of the elements. But from the Cauchy-Schwarz inequality, we

know,

∆2
A∆2

B ≥
∣∣∣∣ 1

2i
〈[A,B]〉

∣∣∣∣ (3.32)

Taking a few specific cases

∆q1∆q2 ≥ 0

∆q1∆p1 ≥ |
i~
2
|

⇒ ∆q1∆p1 + ∆p1∆q1 ≥
i~
2

⇒ V13 = 〈{∆q̂1,∆p̂1}〉 ≥
i~
2

Thus, we can calculate for rest of the elements of the covariance matrix. Hence, we

have the following compact form of the uncertainty principle(taking the natural sys-

tem of units, ~→ 1)

V + i
Ω

2
≥ 0 (3.33)
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3.4 Gaussian States

Gaussian states include, among others, coherent, squeezed and thermal states. Hence,

these states are very important in quantum information, quantum optics and quantum

communication with CV systems.

A state is called Gaussian if its Wigner function is a Gaussian. Since, the mean

value can be changed arbitrarily by phase space translations which are local opera-

tions, so to simplify we put the mean value as zero. So, the Wigner function for a

Gaussian state is given by

W (q, p) =
exp(−1

2
ξTV −1ξ)

4π2
√
det[V ]

(3.34)

Gaussian states are then entirely characterized by covariance matrix,V .

Correspondingly, the characteristic function with mean(〈ξ〉) zero, becomes

χ(λ, η) = Tr(ρ̂ exp(i(λ1q̂1 + λ2p̂1 + η1q̂2 + η2p̂2))) (3.35)

= exp(−1

2
(λ1, λ2, η1, η2)

TV (λ1, λ2, η1, η2)) (3.36)

we can write (3.36) as

χ(λ, η) = Tr(ρ̂exp(i(λ∗â+ λâ† + η∗b̂+ ηb̂†))) (3.37)

where

â =
1√
2

(q̂1 + ip̂1)

b̂ =
1√
2

(q̂2 + ip̂2)

λ =
1√
2

(λ1 + iλ2)

η =
1√
2

(η1 + iη2)

Now, representing the bipartite Gaussian density matrix in P -representable form

ρ̂ =

∫
d2α

∫
d2βP (α, β)|α, β〉〈α, β| (3.38)

where, â|α, β〉 = α|α, β〉, b̂|α, β〉 = β|α, β〉 and 〈α, β|α, β〉 = 1
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On substitution of (3.38) in (3.37) and by doing some simplification, we get

exp{−1

2
(λ1, λ2, η1, η2)(V−

1

2
)(λ1, λ2, η1, η2)

T} =

∫
d2α

∫
d2β P (α, β)exp{i(λ1α1+λ2α2+η1β1+η2β2)}

(3.39)

with α = α1+iα2√
2

and β = β1+iβ2√
2

Since, the equation (3.39) suggests that the P (α, β) is the inverse Fourier transform

of LHS, therefore, for the LHS to be a characteristic function corresponding to a non-

negative probability distribution, V − 1
2

has to be greater than or equal to zero,i.e.,

V − 1
2
≥ 0. Also, from this equation we can deduce that since the LHS for V − 1

2
≥ 0

is a positive Gaussian, the P (α, β) which is its Fourier transform will also be a non-

negative Gaussian as the Fourier transform of a Gaussian is a Gaussian. Thus,

V − 1

2
≥ 0⇔ P ≥ 0 (3.40)

And we know that a non-negative P (α, β) implies classicality. Therefore, a a Gaussian

state is classical if and only if V − 1
2
≥ 0
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Chapter 4

Entanglement in Continuous

Variable system

In entanglement theory, there are two central questions:

1. Is the state entangled?

2. If the state is entangled, then, how much entanglement does it have?

In my thesis work, I looked upon the first question in Continuous Variable Systems,

i.e., given a state with infinite dimensional Hilbert space, whether one can tell if

it is entangled or not. More precisely, I looked into bipartite Gaussian systems. For

bipartite Gaussian systems, R.Simon showed that there exist a necessary and sufficient

condition to check whether a state is entangled or not[Sim00]. I proving his important

theorem, Simon used the results of Peres as given below in Sec.(4.1).

4.1 Peres-Horodecki Separability Criterion

Peres Separability criterion[Per96] simply states that for a given separable bipartite

density matrix, if we take a partial transpose over one system, then we get a bonafide

density matrix. The important point here is that this is, in general, a one way state-

ment. So, if for any given bipartite density matrix the partial transpose is positive(i.e.,

it still turns out to be a positive density matrix), it does not imply that the original

density matrix is separable.

Horodecki[HHH96] made an addition to this result and showed that if the bipartite

system is 2 ⊗ 2 or 2 ⊗ 3 system, then this condition holds both ways, i.e., only check-

ing if the partial transpose is positive is sufficient to tell if the original density matrix
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is separable or not.

Hence, the Peres-Horodecki Separability Criterion is a necessary and sufficient condi-

tion to check if a given 2 ⊗ 2 or 2 ⊗ 3 system is separable or not.

We know that we can always form a Wigner distribution function for any given den-

sity matrix. Now, under the partial transposition, if the initial density matrix was

separable then the Wigner function formed from the partial transposed density matrix

would follow Wigner qualities and it would be a mirror reflection about either of the

‘p’ coordinates, i.e., if ρ is separable, then

ρ̂
Partial−−−−−−→

Transpose
ρ̂T ⇒ W (q1, q2, p1, p2)

Partial−−−−−−→
Transpose

W (q1, q2, p1,−p2) (4.1)

The proof for this is simple.

W (q1, q2, p1, p2) =

1

π2

∫
d2q′〈q1 − q′|〈q2 − q′|

∑
j

pj ρ̂j1 ⊗ ρ̂j2|q2 + q′〉|q1 + q′〉

exp(2i(q1
′p1 + q2

′p2))

(4.2)

⇒ W (q1, q2, p1, p2) =

1

π2

∫
dq1
′dq2

′
∑
j

pj〈q1 − q′|ρ̂j1|q1 + q′〉 ⊗ 〈q2 − q′|ρ̂j2|q2 + q′〉

exp(2i(q1
′p1))exp(2i(q2

′p2))

(4.3)

Now, taking the partial transpose over the 2nd system, we get

W ′ =

1

π2

∫
dq1
′dq2

′
∑
j

pj〈q1 − q′|ρ̂j1|q1 + q′〉 ⊗ 〈q2 − q′|ρ̂Tj2|q2 + q′〉

exp(2i(q1
′p1))exp(2i(q2

′p2))

(4.4)

=

1

π2

∫
dq1
′dq2

′
∑
j

pj〈q1 − q′|ρ̂j1|q1 + q′〉 ⊗ 〈q2 + q′|ρ̂j2|q2 − q′〉

exp(2i(q1
′p1))exp(2i(q2

′p2))

(4.5)

(4.6)
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Now let, q
′
2 → −q2′ ,

W ′ =
− 1

π2

∫ +∞

−∞
dq1
′
∫ −∞
+∞

dq2
′
∑
j

pj〈q1 − q′|ρ̂j1|q1 + q′〉 ⊗ 〈q2 − q′|ρ̂j2|q2 + q′〉

exp(2i(q1
′p1))exp(−2i(q2

′p2))

(4.7)

=

1

π2

∫ +∞

−∞
dq1
′
∫ +∞

−∞
dq2
′
∑
j

pj〈q1 − q′|ρ̂j1|q1 + q′〉 ⊗ 〈q2 − q′|ρ̂j2|q2 + q′〉

exp(2i(q1
′p1))exp(−2i(q2

′p2))

(4.8)

= W (q1, q2, p1,−p2) (4.9)

In simple terms, we can say that if initial density matrix ρ̂ is separable then:

ρ̂
Partial−−−−−−→

Transpose
ρ̂T ⇒ W (ξ)

Partial−−−−−−→
Transpose

W (Λξ) (4.10)

where, Λ = diag(1, 1, 1,−1)

Similarly, the Peres-Horodecki Separability criterion can be cast with the help of

Variance Matrix and the uncertainty principle we get from it. Since,

Vαβ = 〈
{

∆ξα,∆ξβ
}
〉 = tr(

{
∆ξα,∆ξβ

}
ρ̂) =

∫
d4ξ∆ξα∆ξβW (ξ) (4.11)

ρ̂
Partial−−−−−−→

Transpose
ρ̂T ⇒ V +

i

2
Ω ≥ 0

Partial−−−−−−→
Transpose

Ṽ +
i

2
Ω ≥ 0 (4.12)

where, Ω =

(
0 I

−I 0

)
and Ṽ = ΛV Λ .

Since, from the uncertainty principle discussed in section on Covariance Matrices, we

know that V ≥ 0 implies that the smallest eigenvalue of V should be greater than 0

and this one condition translates to the equation:

(detA)(detB) + (
1

4
− detC)2 − tr(AJCJBJCTJ) ≥ 1

4
(detA+ detB) (4.13)

Since, V has the following form:

V =

(
A C

CT B

)
where, A,B are 2×2 real symmetric matrices and C is a real matrix. Then, by virtue

of Williamson’s theorem, V can be brought to a form by multiplying V by some ST
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on the left and S on the right of V such that V takes the following form:


a 0 c1 0

0 a 0 c2

c1 0 b 0

0 c2 0 b


and where S ∈ Sp(2, R)⊗ Sp(2, R) ⊂ Sp(4, R) Now, after applying the partial trans-

position operation on this standard form of V , it goes to Ṽ = ΛV Λ, which changes the

sign of the determinant of the C matrix. Since, after applying transposition operation

A→ A, B → σ3Bσ3 and C → Cσ3. Therefore, equation(4.13) reads:

(detA)(detB) + (
1

4
− |detC|)2 − tr(AJCJBJCTJ) ≥ 1

4
(detA+ detB) (4.14)

This is the final form for the necessary condition of the Peres-Horodecki Separa-

bility criterion for a given bipartite system.

4.2 Peres-Horodecki-Simon Separability Criterion

for Bipartite Gaussian states

The main result of Simon’s paper[Sim00] was the theorem which he stated in his paper

and it read as ‘The Peres-Horodecki criterion (4.14) is a necessary and sufficient condition

for separability, for all bipartite Gaussian states.’

To show this, we first notice that states for which their P (α) in the P-representation

is positive are classical in the quantum optics sense. And bipartite states which are

classical in the quantum optics sense are separable. So, a Gaussian state is classical

if and only if V − 1
2
≥ 0 as P ≥ 0⇔ V − 1

2
≥ 0.

Since, we are using (4.14) as the final form of the necessary condition, so, we need to

put conditions on it and eventually see that if V − 1
2
≥ 0 for our bipartite Gaussian

states, then it is separable.

Since, the condition (3.33) implies that A ≥ 0 and B ≥ 0, i.e., the eigenvalues of

matrices A and B are positive. So, we can conclude that their determinant is also

positive. Thus, the only condition left is on the determinant if C. Simon in his paper

proved a lemma that ’Gaussian states with det C ≥ 0 are separable.’ The proof for this

lemma follows as:

In the standard form of V , we can arrange a ≥ b, c1 ≥ c2 > 0. To see the matrix
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operations to follow, we arrange our matrix in the (q1, q2, p1, p2) format which was

originally written in (q1, p1, q2, p2) format. So,


a 0 c1 0

0 a 0 c2

c1 0 b 0

0 c2 0 b

 rearranging−−−−−−−→


a c1 0 0

c1 b 0 0

0 0 a c2

0 0 c2 b


I have rearranged this matrix to simplify the calculations and to get a simple picture

in the block diagonal matrix form. Now, on this matrix lets apply a LOCAL canon-

ical transformation. Local transformations means that they only act individually on

one particle’s phase space and since, we have Local Canonical Transformations the

separability is preserved. It is only because the separability is preserved, we are using

such matrices for diagonalization. The matrix to act on this rearranged matrix has a

form1

Slocal = diag(x, x−1, x−1, x) (4.15)

This matrix corresponds to local reciprocal scaling. Thus,

SlocalV S
T
local =


x 0 0 0

0 x−1 0 0

0 0 x−1 0

0 0 0 x



a c1 0 0

c1 b 0 0

0 0 a c2

0 0 c2 b



x 0 0 0

0 x−1 0 0

0 0 x−1 0

0 0 0 x

(4.16)

=


x2a c1 0 0

c1 x−2b 0 0

0 0 x−2a c2

0 0 c2 x2b

 (4.17)

1Since, the second and the third diagonal elements are same in this matrix, so, the same matrix
acts on V in the (q1, q2, p1, p2) format
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Next, we apply the matrix S ′local = diag(y, y, y−1, y−1) which corresponds to com-

mon LOCAL scalings at both the subsystems2.

V ′ = S ′localSlocalV S
T
localS

′T
local (4.18)

=


y 0 0 0

0 y 0 0

0 0 y−1 0

0 0 0 y−1



x2a c1 0 0

c1 x−2b 0 0

0 0 x−2a c2

0 0 c2 x2b



y 0 0 0

0 y 0 0

0 0 y−1 0

0 0 0 y−1

 (4.19)

=


y2x2a y2c1 0 0

y2c1 y2x−2b 0 0

0 0 y−2x−2a y−2c2

0 0 y−2c2 y−2x2b

 (4.20)

Both the above scalings S and S ′ are local which means if earlier the state was sep-

arable it still would be separable and if it was entangled, it would remain entangled.

But, these local squeezings can take classical to non-classical state or non-classical

state to a classical state.

Here, x is chosen such that c1
x2a−x−2b

= c2
x−2a−x2b . That is x = [ (c1a+c2b)

c2a+c1b
]1/4. This x

is chosen so as to make the state classical. The choice of this x can be seen when

we take the commutation of the two block matrices obtained in (4.17) and to make

them commute put the off-diagonal terms to be zero, from where we get the condition

over x. We will choose y later on after making this matrix diagonal. Now, since the

two block matrices commute after the choice of x,so, we can do equal rotations in

q1 − q2 plane and p1 − p2 plane. This equal rotation is a compact non-local canoni-

cal transformation. This compact non-local transformation is caused by the maximal

compact unitary subgroup of noncompact SP (4, R). This matrix S ′′ is of the form

S ′′ = diag(X,X) where X is a 2×2 matrix and is the real part of U = X−iY ∈ U(n).

This compact transformation preserves the classicality of a state which means if the

state was classical it would be classical and if a state was non-classical it would re-

main non-classical after this transformation3. But, it does not take care of separability

which is to say, that it can take any separable state to an entangled one. So, putting

in straight words, the point-wise non-negativity of the P distribution is preserved.

So, after this compact canonical equal rotations in the q1 − q2 and p1 − p2 planes, we

2This matrix is used in the (q1, q2, p1, p2) format which we have rearranged. If we use the
(q1, p1, q2, p2) format, then the matrix would look like S′local = diag(y, y−1, y, y−1)

3Classical or non-classical in the quantum optics sense means P ≥ 0 or P < 0, respectively
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finally get

V ′ → V ′′ = diag(κ+, κ−, κ
′
+, κ

′
−) (4.21)

κ± = 1
2
y2
{
x2a+ x−2b± [(x2a− x−2b)2 + 4c21]

1/2
}

κ′± = 1
2
y−2
{
x−2a+ x2b± [(x−2a− x2b)2 + 4c22]

1/2
}

For V ′′, the uncertainty principle reads as V ′′+ i
2
Ω ≥ 0 since it is still a covariance ma-

trix as all the transformations(scalings, squeezings or compact rotations) were canoni-

cal. Recalling that earlier in the standard form of V we chose A = diag(a, a) and B =

diag(b, b) and a ≥ b and it turned out from the uncertainty principle that A ≥ 1/4 and

B ≥ 1/4. So, after the canonical transformations, in the transformed V i.e., V ′′, the

relations are preserved. Therefore, we have (κ+, κ−) ≥ (κ′+, κ
′
−) and κ′+κ

′
− ≥ 1/4.

Now, we can choose y such that κ′+, κ
′
− = 1

2
. So, y =

a
x2

+bx2−
√

( a
x2
−bx2)24c22

ax2+ b
x2
−
√

(ax2+ b
x2

)2+4c21
So, by

such a choice of y, we can write

V ′′ ≥ 1

2
⇒ V ′ ≥ 0 (4.22)

This implication is due to the fact that V ′′ and V ′ are related by a canonical rotation

and therefore same relations apply to both. Hence, V ′ corresponds to a non-negative

P -distribution implying classicality which in turn implies a separable state. And

since, the transformations that took V to V ′ only preserved separability, hence the

state corresponding to V are also separable. This can be illustrated in an easy way

as:

V ←→ V ′ ←→ V ′′

So, to sum it up, it can said that for the final state when we got, V ′′ ≥ 1
2
, it implied

that the the state corresponding to V ′′ was classical and since V ′′ and V ′ are related

by transformations that preserve classicality, therefore, for the same condition was

true for V ′. But, nothing can be commented about the separability of the original

states by just looking at V ′′ as the transformation from V ′ to V ′′ do not preserve

separability. So, now, we can say that V ′ ≥ 1
2

implies that the state corresponding

to it is classical. And since, classicality implies separability for Gaussian states and

because it came from V by transformations that preserve separability, so, the original

V must be separable.

Also, we notice that for det C > 0 satisfies the condition (4.13) and hence it satisfies

(4.14) as well. Thus, we can conclude that for detC > 0, the bipartite Gaussian state
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is separable. This completes the proof for detC > 0.

For detC = 0, the same procedure can be applied and it is very easily seen that for

detC = 0 as well, the Gaussian bipartite state is separable. Thus, this proves the

lemma that only knowing detC ≥ 0 tells us that the original bipartite Gaussian state

is separable.

Next, we consider the case detC < 0. First of all, the condition (4.14) has to be

satisfied for the states to be separable as it is the necessary condition. If it is not,

then the states are entangled. If it is satisfied then we have to see that in this condition

we have |detC| > 0, therefore it becomes positive and by virtue of (4.13), the condition

is satisfied. And so, the state is separable.

Thus, finally, it can be said that the condition (4.14) is a necessary and sufficient

condition for separability of bipartite Gaussian states. Also, if before checking this

condition, we notice that detC ≥ 0, then we can instantly say that the state is

separable.
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Chapter 5

Nonlocality in Continuous Variable

System

To know whether a state is nonlocal or not in the continuous variable space, various

Bell-type inequalities have been derived. In 1998, Arvind et.al.[AN99] used CHSH

inequalities to show that the inequalities work for Continuous Variable Systems in

4-modes. They wrote the Bell-type inequalities for Multiphoton states known as

Multiphoton inequalities.

In 2002, Chen et.al.[CPHZ02] proposed the idea of using pseudo-spin operators

and wrote a bell type inequality based on those operators. The main idea behind

these pseudo-spin operators is to divide the whole space in such a way that we only

get either of the two eigenvalues and thus, the continuous variable system resemble

the two dimensional Hilbert Space.

Another idea regarding testing of nonlocality in continuous variable system was

proposed in 2007(popularly known as CFRD inequalities) by E. G. Cavalcanti et.al.[CFRD07]

where they used the positivity of the variance in writing the inequalities.

All these and such other proposals giving the Bell-type inequalities for Continuous

Variable System have been shown to work for different states but still there is no

general inequality which uses the properties of the continuous variable system to tell

whether a given state is nonlocal or not. Thus, it is still an open question in this field

to find a set of general inequalities that work well for Continuous Variable systems.
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Figure 5.1: Setup to study Bell Inequality violation for states of 4-mode radiation
field

5.1 Multi-photon inequalities

To study violation of Bell’s inequalities, the setup used by Arvind et. al.[AN99]

consisted of 4-modes of the field with propagation in two different directions, and

arbitrary polarisations being allowed transverse to each direction. For photons in each

propagation direction a particular polarisation is selected by a variable polariser, and

finally coincidence counts are recorded using photo detector. The setup is as given in

Fig.(5.1). Their basic idea in identifying the operators required for correlation function

is based on the presence or absence of the photons. Using this idea, the following four

Hermitian operators are defined and each of the operator having eigenvalues 0 and 1

Â1 = (I2×2 − |00〉〈00|)k
Â2 = (I2×2 − |00〉〈00|)k′

Â1(θ1) = (Iθ1 − |0〉θ1θ1〈0|)Iθ1+π
2

Â2(θ2) = (Iθ2 − |0〉θ2θ2〈0|)Iθ2+π
2
. (5.1)

The subscripts θ1 and θ2 are the directions of the polarisers. The subscripts 1 and 2

represent the propagation direction k and k′, respectively. Thus, the operators Â1 and
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Â1(θ1) are the operators belonging to the first two modes with propagation direction

k and polarization along x or y (refer to Fig.(5.1)). Similarly, the operators Â2 and

Â2(θ2) are the operators belonging to the first two modes with propagation direction

k′ and polarization along x′ or y′. Also, the expectation values of these operators are

the probabilities of finding atleast one photon :

〈Â1〉 = probability of detecting atleast one photon at D1 with P1 removed,

〈Â2〉 = probability of detecting atleast one photon at D2 with P2 removed,

〈Â1(θ1)〉 = probability of detecting atleast one photon at D1 with P1 at θ1,

〈Â2(θ2)〉 =probability of detecting atleast one photon at D2 with P2 at θ2

The four types of coincidence count rates are:

(i)P (θ1, θ2) = The first polariser at θ1 and the second one at θ2 with respect to their

respective x axes.

(ii)P (θ1, ) = The first polariser at θ1 and the second one removed.

(iii)P ( , θ2) = The first polariser removed and the second one at θ2.

(iv)P ( , ) = Both the polarisers removed from the setup.

And they are related to the operators in the following way:

P (θ1, θ2) = 〈A1(θ1)A2(θ2)〉

P (θ1, ) = 〈A1(θ1)A2〉

P ( , θ2) = 〈A1A2(θ2)〉

P ( , ) = 〈A1A2〉 (5.2)

Now, lemma due to Clauser and Horne[CH74] states

if 0 ≤ x, x′ ≤ X and 0 ≤ y, y′ ≤ Y then,

−XY ≤ xy − xy′ + xy′ + x′y′ − Y x′ −Xy ≤ 0 (5.3)

Using this lemma, the following inequality can be derived:

−P ( , ) ≤ P (θ1, θ2)−P (θ1, θ
′

2)+P (θ
′

1, θ2)+P (θ
′

1, θ
′

2)−P (θ
′

1, )−P ( , θ2) ≤ 0 (5.4)

So, if a given quantum mechanical state does not obey this inequality then that

state has non-trivial quantum properties that cannot be accommodated in realist

hidden variable models based on locality.
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5.2 Pseudo-Spin Inequalities

Proposed in 2002 by Chen et. al.[CPHZ02] the idea was to use such operators that

divide the whole space into a set of two eigenvalues in a way that the properties of

the operators are analogous with properties of the Pauli Spin Operators. Chen et.al.

in their paper[CPHZ02] generalized Bell’s inequalities to the CV cases for the biparty

systems. They also showed that the EPR states

In two qubit case, the Bell operator reads:

Bqubit = (a.σ1)⊗ (b.σ2) + (a.σ1)⊗ (b
′
.σ1) + (a

′
.σ1)⊗ (b.σ1)− (a

′
.σ1)⊗ (b

′
.σ1) (5.5)

where σj is the Pauli matrix for the jth(j = 1, 2) qubit; a, a
′
, b, b

′
are four three-

dimensional unit vectors.

a.σ1 = axσx1 + ayσy1 + azσz1 (5.6)

b.σ1 = bxσx1 + byσy1 + bzσz1 (5.7)

Now it is easy to show that

B2
qubit = 4I + 4

[
(a× a′)σ1

]
⊗
[
(b× b′)σ2

]
(5.8)

and hence,

〈B2
qubit〉 ≤ 4 + 4 = 8 (5.9)

which implies that |〈Bqubit〉| with respect to 2-qubit states is bounded by 2
√

2 which

is the famous Cirel’son bound [Cir80].

5.2.1 “Pseudospin” Operators for photons

Chen et.al. introduced the following analogous operators:

sz =
∞∑
n=0

[
|2n+ 1〉〈2n+ 1| − |2n〉〈2n|] (5.10)

s− =
∞∑
n=0

|2n〉〈2n+ 1| (5.11)

s+ =
∞∑
n=0

|2n+ 1〉〈2n| (5.12)
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where |n〉 are the usual Fock states. And, s− and s+ are the parity flip operators.

It can easily be checked that

[
sz, s±] = ±2s±, (5.13)[
s+, s−] = sz (5.14)

From the commutation relations in Eq.(5.13, it is seen that these commutation

relations are identical to those of the spin-1/2 system. Therefore, the pseudo-spin

operator ŝ = (sx, sy, sz) can be regarded as a counterpart of the spin operator σ.

Now, choosing an arbitrary vector vector on the surface of a unit sphere

a = (sinθacosφa, sinθasinφa, cosθa)

θa being the polar angle and φa being the azimuthal angle of a. Also, defining

2s± = sx ± ιsy

So, we have

a.ŝ = sxsinθacosφa + sysinθasinφa + szcosθa (5.15)

= szcosθa + sinθa(e
ιφas− + e−ιφas+) (5.16)

Thus, a may be interpreted as the direction along which the parity spin ŝ is being

measured. From the commutation relations of Eq.(5.13), we get the following

(a.ŝ)2 = I (5.17)

The Eq.(5.17) lead us to conclude that the outcome of the measurement of the Her-

mitian operator a.ŝ(with eigenvalues +1 or −1) is 1 or −1. This shows that exist

complete analogy between Continuous-variable systems and spin-1/2 systems.

Thus, in the continuous-variable case, the Bell operator can be written as

BCHSH = (a.ŝ1)⊗ (b.ŝ2) + (a.ŝ1)⊗ (b
′
.ŝ1) + (a

′
.ŝ1)⊗ (b.ŝ1)− (a

′
.ŝ1)⊗ (b

′
.ŝ1) (5.18)
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Using this Bell operator, the correlation function is defined as E(a, b) = 〈(a.ŝ1) ⊗
(b.ŝ2)〉. Hence,

〈BCHSH〉 = 〈E(a, b)〉+ 〈E(a, b′)〉+ 〈E(a′, b)〉 − 〈E(a′, b′)〉 (5.19)

Using Eq.(5.15), the above Eq.(5.19) can be written as

〈BCHSH〉 = 〈E(θa, θb)〉+ 〈E(θa, θb′)〉+ 〈E(θa′ , θb)〉 − 〈E(θa′ , θb′)〉 (5.20)

This is the final form of the inequality that will be used, the violation of which

will tell us about the nonlocality of the state.

5.3 Comparison between Multiphoton inequalities

and the Pseudo-Spin Inequalities

To compare and see which is the stronger of the two inequalities, we need to take a

few states and apply the inequalities to both of them and analyze which inequality

tells more about the nonlocality properties of the state. There is a very crucial point

in the nonlocality of a quantum state, which is that a state does not have to violate

all the inequalities. It is sufficient for a state to violate a particular inequality to be

called nonlocal.

Now, to do the comparison, I took the NOPA states and 2-mode and 4-mode

Gaussian states with and without noise. As described by Chen et.al.[CPHZ02], the

NOPA(pulsed Nondegenerate Optical Parametric Amplifier) process The NOPA pro-

cess represents a nonlinear interaction of two quantized modes (denoted by the cor-

responding annihilation operators a1 and a2) in a nonlinear medium with a strong

classical pump field. In this process, the NOPA can generate the ‘two-mode squeezed

vacuum states’, i.e., the NOPA states[RD88] [WM94]

|NOPA〉 = er(a
†
1a
†
2−a1a2)|00〉 =

∞∑
n=0

(tanhr)n

coshr
|nn〉 (5.21)

where r > 0 is the squeezing parameter.

5.3.1 Testing of Non-locality with Pseudo-Spin inequalities

1. With NOPA states
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Using Eq.(5.20 and 5.21), Chen et. al.[CPHZ02] derived the correlation function

E(θa, θb) = 〈NOPA|s(1)θa ⊗ s
(2)
θb
|NOPA〉 (5.22)

= cosθacosθb +K(r)sinθasinθb (5.23)

and

s
(j)
θa

= sjzcosθa + sjxsinθa (5.24)

with K(r) = tanh(2r) ≤ 1

Now, choosing θa = 0, θa′ = 0 and θb = −θb′ , we get

〈BCHSH〉 = 2(cosθb +Ksinθb) (5.25)

Hence, the NOPA states always violate the Bell CHSH inequality(Eq.(5.20))

given r 6= 0.

2. With 2-mode Gaussian states

An n-mode general centered Gaussian has a Wigner distribution of the following

form:

W (ξ) =
1

πn
(DetG)1/2exp(−ξTGξ) (5.26)

where ξT = (q1, q2, . . . , qn, p1, p2, . . . , pn), G = 1
2
V −1 and V is the covariance

matrix and it satisfies

V + ιβ ≥ 0 (5.27)

where β =

(
0n×n In×n
−In×n 0n×n

)
.

Rewriting the expansion of Eq.(5.19), we see,

〈BCHSH〉 = 〈(a.ŝ1)⊗(b.ŝ2)〉+〈(a.ŝ1)⊗(b
′
.ŝ1)〉+〈(a

′
.ŝ1)⊗(b.ŝ1)〉−〈(a

′
.ŝ1)⊗(b

′
.ŝ1)〉

(5.28)

Taking all the azimuthal angles to be zero, we can write Eq.(5.15) as

〈a.ŝ1 ⊗ b.ŝ2〉 = 〈(s(1)z cosθa + sinθa(s
(1)
− + s

(1)
+ ))⊗ (s(2)z cosθb + sinθb(s

(2)
− + s

(2)
+ ))〉

= cosθacosθb〈s(1)z ⊗ s(2)z 〉+ sinθasinθb〈s(1)x ⊗ s(2)x 〉 (5.29)
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Since, we know that for any given two operators, Â and B̂(considering natural

units so that ~ = 1)

Tr(ÂB̂) =
1

2π

∫ ∫
dqdpwÂwB̂ (5.30)

where wÂ and wB̂ are the Weyl transforms of the operators, Â and B̂, respec-

tively. Therefore, for a given 2-mode Gaussian state,

〈s(1)µ ⊗ s(2)µ 〉 = tr(ρ̂(s(1)µ ⊗ s(2)µ )) (5.31)

=

∫
Wρ̂(ws(1)µ ⊗s(2)µ )dq1dq2dp1dp2 (5.32)

where µ = z or x.

Thus, knowing the values of 〈s(1)µ ⊗ s(2)µ 〉, we know Eq.(5.29) and eventually we

calculate the Bell operator, i.e., Eq.(5.19)

Now, G in Eq.(5.26) for two modes is defined as

G = U−1STG0SU (5.33)

G0 = κI4×4, 0 ≤ κ ≤ 1 (5.34)

κ = tanh
β

2
, β =

~ω
kT

(5.35)

Here, κ = 1 implies zero temperature and κ < 1 implies certain temperature.

S is a 2-mode squeezing symplectic transformation, which is a Sp(4, R) matrix,

and U is a passive symplectic U(2) transformation whose role is to produce

entanglement. Therefore, S and U can be chosen as

S =


e−u 0 0 0

0 ev 0 0

0 0 eu 0

0 0 0 e−v

 , U =
1

2


1 1 0 0

−1 1 0 0

0 0 1 1

0 0 −1 1

 (5.36)

Now, plotting B versus u for two different combinations of u and v,i.e., u = v

and u = −v, we can see in Fig.(5.2) that for u = v, we do not get any violation

whereas for u = −v, we get a violation. Both the plots have been taken for

θa = 1.13197, θb = 0.929911, θa′ = 3.65681 and θb′ = 3.31752. The covariance

matrix for the case u = −v resembles the covariance matrix for the two mode
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,

Figure 5.2: B vs u for u=v and u=-v for Pseudo Spin Inequalities

squeezed state.

5.3.2 Testing of Non-locality with Multiphoton inequalities

The given multiphoton inequality(Eq.(5.4)) require careful use of the four modes. The

inequalities do not work if the state in consideration has just two modes in entangled

state and two other modes are in separable states.

I analyzed the 4-mode Gaussian states with and without noise. (Please refer

Appendix A for a short discussion about noise).

In the analysis of the inequality, noise is introduced in two forms. First, as a

parameter which tells about the temperature. Second, by using the beam-splitter

which is described below in subsection(1c).

1. With 4-mode Gaussian states By the definition given for an n-mode Gaussian

state in the section above (Eq.(5.26)), the Wigner function of a 4-mode Gaussian

state is given as

W (ξ) =
1

π4
(DetG)1/2exp(−ξTGξ) (5.37)

where ξT = (q1, q2, q3, q4, p1, p2, p3, p4), G = 1
2
V −1 and V is the covariance ma-

trix. Now, defining G as

G = U−1STG0SU (5.38)

G0 = κI8×8, 0 ≤ κ ≤ 1 (5.39)

κ = tanh
β

2
, β =

~ω
kT

(5.40)

Here, κ = 1 implies zero temperature and κ < 1 implies certain temperature.

S is a 4-mode squeezing symplectic transformation, which is a Sp(8, R) matrix,

and U is a passive symplectic U(4) transformation whose role is to produce
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entanglement. As an example, S can be taken such that first and fourth mode

are squeezed by equal and opposite amount, u and second and third mode are

squeezed by equal and opposite amount, v. Hence,

S =



e−u 0 0 0 0 0 0 0

0 ev 0 0 0 0 0 0

0 0 e−v 0 0 0 0 0

0 0 0 eu 0 0 0 0

0 0 0 0 eu 0 0 0

0 0 0 0 0 e−v 0 0

0 0 0 0 0 0 ev 0

0 0 0 0 0 0 0 e−u


, U =

1

2



1 1 1 1 0 0 0 0

−1 1 −1 1 0 0 0 0

−1 −1 1 1 0 0 0 0

1 −1 −1 1 0 0 0 0

0 0 0 0 1 1 1 1

0 0 0 0 −1 1 −1 1

0 0 0 0 −1 −1 1 1

0 0 0 0 1 −1 −1 1


(5.41)

(a) Without Noise

Considering the case of no noise, we have to put κ = 1 in Eq.(5.38). Now,

testing the inequality for different combinations of u and v, we notice that

violations happen for some range of angles and not for all. Even a small

violation(at whatever angle) is a witness for the presence of nonlocality.

But it does not imply the other way round.

i. u = v

Keeping the amount of squeezing same, G takes the form such that

there is entanglement in 1-2 modes and 3-4 modes. Plotting the Bell

operator as a function of squeezing yields Fig.(5.3). The two graphs

in Fig.(5.3) are for two different angles and we see that there is no

violation of the multiphoton inequality of Eq.(5.4).

ii. u = 0 or v = 0

Making one of parameters of squeezing vanish, the G takes a form such

that there is entanglement in all the 4-modes. Hence, for some range

of angles, we see that there is violation of the inequality as is shown in

Fig.(5.4) where there is a small violation for a particular angle.

iii. u=-v

Making the amount of squeezing equal and opposite, G takes a form

such that there is entanglement in 1-3 modes and 2-4 modes. This
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,

Figure 5.3: B vs u for u=v

,

Figure 5.4: B vs u for v=0
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,

Figure 5.5: B vs u for u=- v

,

Figure 5.6: B vs u for vacuum in two modes

form of G is identical to keeping the two NOPA states, one in 1-3

mode and the other in 2-4 mode. Plotting, the Bell operator versus the

squeezing parameter, we see in Fig.(5.5) that the amount of violation

has increased.

iv. A Special Case:

Entangled states in two modes and separable states in the other two

modes

If we put an entangled state in any of the two modes and separable

state(be it a classical state like vacuum or coherent state or a non-

classical state like a squeezed state), we do not see any violation of

Eq.(5.4) for any set of angles.
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,

Figure 5.7: B vs u for squeezed vacuum in 2nd and 4th mode

In Fig.(5.6) and Fig.(5.7), I have put a two mode squeezed state in two

of the four modes of the setup of the multiphoton inequality and in

the remaining two modes, I have put vacuum and squeezed vacuum,

respectively.

In the first graph of Fig.(5.6), I have put vacuum in 1st and 3rd mode

and in the second graph, I have put vacuum in 2nd and 4th mode. In

both these cases, we see that the inequality is not being violated.

Similarly, I tried putting squeezed vacuum as well but did not get any

violation(See Fig.(5.7)). The first graph in Fig.(5.7) has same amount

of squeezing in 2nd and 4th mode whereas in the second graph, I have

put in different squeezing in the two modes. Hence, this proves the

fact that in the setup for multiphoton inequality, if we have two modes

with separable states and the remaining two have entangled states, the

inequality will not be violated.

(b) With Thermal Noise

To introduce some finite temperature, κ should be less than 1. I have taken

κ = 0.8 and then I got the following graphs(Fig.(5.8),Fig.(5.9),Fig.5.10)) of

the multiphoton inequalities for various combinations of parameters, i.e.,

u=v, u=0 or v=0 and u=-v, respectively.
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,

Figure 5.8: B vs u for u=v with κ = 0.8

,

Figure 5.9: B vs u for v=0 with κ = 0.8

,

Figure 5.10: B vs u for u=- v with κ = 0.8
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Figure 5.11: Action of a Beam Splitter

(c) Noise introduced by using beam-splitter

I introduce the noise by the use of a beam splitter with a certain amount of

transmittance. The action of a beam splitter is shown in Fig.(5.11) Math-

ematically, a beam splitter’s action, with a transmittivity of
√
T (where,

0 ≤ T ≤ 1), can be written as(
â2

â3

)
=

( √
T ι

√
1− T

ι
√

1− T
√
T

)(
â0

â1

)
(5.42)

where, â0 and â1 are the annihilation operators for the incoming modes

and likewise, â2 and â3 are the annihilation operators for the outgoing

modes.Modes associated to annihilation operators â0 and â2 are in a same

direction and modes associated to annihilation operators â1 and â3 are in

a same direction. Since, the annihilation operators can be written in terms

of position and momentum operators, hence(
â2

â3

)
=

( √
T ι

√
1− T

ι
√

1− T
√
T

)(
â0

â1

)
(5.43)(

q2 + ιp2

q3 + ιp3

)
=

( √
T ι

√
1− T

ι
√

1− T
√
T

)(
q0 + ιp0

q1 + ιp1

)
(5.44)
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,

Figure 5.12: B vs u(for u=-v) with a beamsplitter with Transmitivity of 0.9 and 0.8


q2

q3

p2

p3

 =


√
T 0 0 −

√
1− T

0
√
T −

√
1− T 0

0
√

1− T
√
T 0

√
1− T 0 0

√
T



q0

q1

p0

p1

 (5.45)

Now, the 4× 4 matrix in Eq.(5.45) can be further extended to include two

more modes and in this way, by the application of this matrix, I intro-

duced noise in the system. By introducing the noise in the following way

and then looking for the values of the Bell operator for the multiphotn

inequalities versus the squeezing parameter, I got the graphs in Fig.(5.12).

The first graph in Fig.(5.12) has transmittivity = 0.9 and the second graph

has transmittivity = 0.8, respectively. In both the graphs, for different

transmittance we see that the inequality is violated; though, the amount

goes down as the transmittance is decreased but the character of the graphs

remains same, ,i.e., there is no shift in the value of the Bell operator at the

origin, unlike the case with thermal noise.

5.3.3 Remarks and Conclusion

We analyzed the effect on non-locality by taking in thermal noise and beam-splitter

in the multiphoton inequalities.

When we introduced noise in the form of thermal noise, We notice from Fig.(5.10),

Fig.(5.8) and Fig.(5.9) that when we increase the temperature, the value if the Bell

operator itself goes below zero at the origin. This behaviour of the graph is such

that as we increase the temperature, the violation will eventually vanish. Thus, we
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can infer that as the temperature increases, the nonlocality decreases for a general

Gaussian state.

In the case when the noise is introduced by the beam-splitter model, we notice

from Fig.(5.12), that even though the transmittance is decreasing, there is some re-

gion where the value of the Bell operator is above zero indicating a violation. Also,

as mentioned above, the behaviour of the graph due to the beam splitter model noise

has not changed, meaning that the value of the Bell operator is still zero at origin.

Hence, only if the transmittance is completely blocked, then there will be no violation

of the multiphoton inequality. The reason to this is that only the vacuum state will

remain in the output modes which will not yield any violation.

By comparing the inequalities, we see that both the inequalities are violated for same

set of squeezing settings. Hence, it cannot be concluded which one of the two is

stronger. But since, the Multiphoton inequalities make use of 4-modes, hence, it can

be said that these inequalities generalize the 2-mode Pseudo-Spin Inequalities to some

extent.
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Appendix A

A Note on Noise

Noise, in general, refers to some unwanted random fluctuation that hinders with the

results of the ideal settings. In Quantum Mechanics, the noise(or quantum noise) is

due to the uncertainty of a physical quantity. Thus, in quantum optics, the noise is

because of dual nature of light as given by quantum theory of radiation.

The reason for introducing noise is that while doing real experiments, noise cannot

be excluded/avoided. Hence, the analysis of the inequality to detect non-locality of a

state is incomplete without taking into account the noise that can possibly creep in.

In my analysis of the multiphoton inequality, I have used thermal noise and the

noise included due to the beam splitter model.

A.1 Thermal Noise

A simple way to tell how temperature might effect the quantum system is to take

a an ideal closed cavity with heated walls[HK96]. These walls can emit and absorb

radiation. The field which is in thermal equilibrium can be regarded as damped

and generated by fluctuating currents in the walls. Thus, the ground state can be

described as the state when the walls are at zero temperature. Also, Charles H. Henry

and Rudolf F. Kazarinov have shown that the calculated emission from opaque walls

at zero temperature mimics the flux of vacuum fluctuations from empty space[HK96].

A.2 Noise due to beam splitter

To understand how noise gets in the experiment due to the action of a beam splitter,

let us first see what happens to a single photon when passed through a beam splitter.

45



So, to do this, let us first refer to Fig.(5.11) where we notice that there are two input

modes and two output modes. Now, let us consider Eq.(5.43) and assume that the

beam splitter is 50:50 beam splitter, i.e., its transmittance is 50%. Hence, we see that

the electron after passing through the beam-splitter is in a superposition of reflected

and transmitted state. Now, consider a continuous stream of photons thrown at

regular intervals. Having kept the detectors in both the output modes, one can easily

see that each detector registers a random sequence of photons. This simply implies

that keeping a beam splitter in the way of continuous beam of photons introduces

noise in the outgoing beams.

In regard to quantum optics, one would say that from the second input from where

no beam is incident, there is vacuum state coming in. Now, this vacuum is equally

divided by the beam-splitter and the noise occurring in the output modes can be

explained due to the fact that the vacuum has zero-point fluctuations.
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