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Abstract

Objective of this thesis work is to study the dynamics of an active interface. We

performed parallel-molecular dynamic simulations for several system sizes and for

different Péclet numbers on a minimal model for active systems. We have shown from

numerical studies that this active colloidal system phase separates. We determined

scaling exponents for the active solid-fluid interface (in (1+1) dimensions), formed as

a result of confining the active colloid system between two static boundaries. Results

obtained indicates that the interface does not belong to the KPZ universality class.
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Chapter 1

Introduction

Distinction between being “alive” or “not alive” has been a long-standing question in

the scientific community. German philosopher Immanuel Kant was the first to define

life as a self-organized, self-reproducing process. He distinguished living matter from

non-living matter as self-organized processes. But understanding of self organized dy-

namic systems remained an open topic. According to second law of thermodynamics,

natural choice of a system has to be a state with maximum entropy i.e. one with

maximum disorder. Ordered states such as crystals in thermodynamics are static.

In contrast living systems are open and energy flow through the system is used to

reduce entropy and to generate order. In the new era living systems are redefined as

dynamic organization emerges from the collective behavior of ‘agents’, the individual

properties of which can not account for the properties of the final dynamic pattern.

Modelling living matter is a novel area of research. Active matter physics has

arisen with the same motivation. Study of active systems is still at it’s infancy. Many

emergent properties of active systems lack a complete explanation mainly due to their

far from equilibrium nature.

In this project we present simulation and theory based studies of an active sys-

tem using a minimal model of self-propelled Brownian disks interacting only via the

excluded-volume repulsive potential. Aim of these studies is to characterize the dy-

namics and scaling properties of an active interface formed by these self-propelled

Brownian particles.
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1.1 Active Matter

Active particles contain internal degrees of freedom with the ability to take in and

dissipate energy and, in the process, execute systematic movement [Ramaswamy 10].

Active matter systems composed of active particles span a wide range of length scales

in nature, from elements of cytoskelton to school of fishes to human stampedes. Some

other examples for active matter systems are shown in Figure 1.1. These systems are

not in thermodynamic equilibrium due to the requirement of constant throughput of

energy, and are often far from equilibrium; therefore standard results of equilibrium

thermodynamics and statistical mechanics do not apply.

Figure 1.1: Examples of active matter systems. (left) Movement of fibroblast during
wound healing [Steffen 13], (middle) Flock of starlings [Popkin 16], (right) Bacterial
suspension [Hagan ].

Active systems exhibit diverse properties such as self-motility, self-healing, inter-

nally generated flows, synchronous dynamics, etc. Pioneering work in the field of

active matter belongs to Vicsek [Vicsek 95], he introduced a minimal model for active

systems. Viscek model shows emergence of dynamic self organized state, starting from

a disordered state. It has been used as a prototype model for different problems.

Several methods have been used to study active matter; including generalizations

of theoretical techniques from statistical physics and condensed matter, as well as com-

puter simulations and also laboratory experiments. Non-living synthetic self driven

particles, called Janus particles, are also being used for the study of active systems.

Active colloids are mixtures in which microscopic self-propelled particles move

through a viscous fluid by converting energy extracted from their environment. A

signature property of these active colloids is the formation of dynamic self-assembled
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states. Examples include tunable, self-healing colloidal crystals and membranes, self-

assembled microswimmers, etc. Active Brownian particles provide a reasonably good

stating point in modelling simple active colloidal systems. Numerical simulations on

these simple model systems shows phase separation and formation of complex self-

organized structures. Dynamic boundaries of these cluster states are fascinating and

we have tried to characterize such an active interface formed in an active colloidal

system.

Plan of Thesis

We have provided an introduction to Brownian dynamics and Langevin equation in

chapter 2, which is fundamental requirement for the study of active colloids. Basic

theories required for the study of active interface are discussed in chapter 3. We have

introduced the Edwards-Wilkinson equation and KPZ equation for nonequilibrium

interfaces in this chapter. Determination of scaling exponents using dynamic renor-

malization method is also included. Our model and simulation results are explained

in chapter 4 and 5. Finally we summarize our results in chapter 6.
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Chapter 2

Brownian Motion

The name Brownian motion is used to describe movement of particles suspended in

a fluid. The phenomena was first reported by Scottish botanist Robert Brown in

1827. He was observing pollen grains suspended in water under a microscope and he

noticed the jittery movement of particles ejected from pollen grains. But he was not

able to come up with a satisfactory reason for the random movement of particles on

water. Later in 1905, Albert Einstein provided a theoretical foundation for Brownian

motion [Einstein 56], just by using thermodynamic principles and basic kinetic theory

of gases.

2.1 Smoluchowski Equation

It is assumed that each particle moves independently of others and movements of

individual particles are uncorrelated at different time steps. According to Fick’s law,

particle flux is proportional to spatial gradient of concentration,

J(x, t) = −D∂f(x, t)

∂x
(2.1)

where, J is particle flux, f concentration of particles and D is called the diffusion

constant, which depends on system temperature and particle size,

D =
kBT

ζ
(2.2)
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where ζ is the friction constant. Equation (2.2) is known as Einstein’s relation. For a

spherical particle of radius a, in a fluid of viscosity η,

ζ = 6πηa (2.3)

f(x, t) has to obey the continuity equation, since number of particles in the system is

fixed,
∂f(x, t)

∂t
= −∂J(x, t)

∂x
(2.4)

Combining eqn (2.1) and eqn (2.4)

∂f(x, t)

∂t
= D

∂2f(x, t)

∂x2
(2.5)

i.e. concentration of suspended particles in a fluid satisfies the diffusion equation, so

f(x, t) has to have the particular functional form given by,

f(x, t) =
N√

4πDt
exp(
−x2

4Dt
) (2.6)

This implies 〈
X(t)2

〉
= 2Dt (2.7)

i.e. particles are spread out uniformly and the spread is proportional to the square

root of time.

In presence of an external potential U(x), particles will experience a force,

F = −∂U(x)

∂x
(2.8)

and the diffusion equation is modified,

∂f(x, t)

∂t
=

∂

∂x

1

ζ

(
kBT

∂f

∂x
+ f

∂U

∂x

)
(2.9)

Above equation is called the Smoluchowski equation.

This diffusion relation can be used to determine size of atoms and later for the

experimental discovery of the same, J.B. Perrin was awarded the Nobel prize in 1926.
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2.2 Langevin Equation

Time evolution of a free Brownian particle is best described by the Langevin equation,

mv̇ = −mγv + η(t) (2.10)

where m and v represent mass and instantaneous velocity of the Brownian particle,

γ is a measure of drag force exerted by the fluid onto the particle (comparing with

eqn.(2.3) mγ = ζ). Brownian particles are constantly being bombarded by the fluid

molecules, frequency of these collisions is very large (of the order of 1021 per second).

This rules out possibility of a deterministic equation for the Brownian particles. In

principle if we know position and velocity of all the fluid particles as a function of time,

the force is uniquely determined. But, keeping track of all these rapidly varying forces

is not a practical task. So, a stochastic variable η is introduced into the equation,

representing fluctuations (called noise term). An assumption is that there exists a

time interval dt = t− t′ such that η(t) and η(t′) are uncorrelated, but during which a

considerable change in v occurs.

〈
η(t)

〉
= 0 (2.11)

〈
η(t)η(t′)

〉
= Γδ(t− t′) (2.12)

where Γ determines strength of these fluctuations. Equation (2.11) implies that there

is no preferred direction for the random force.

Mean square displacement of a particle satisfying the Langevin equation is given by,

〈
X(t)2

〉
=

2kBT

mγ2
[γt− 1 + exp(−γt)] (2.13)

At very long times, as t→∞, particle is in the diffusion regime and

〈
X(t)2

〉
=

2kBT

mγ
t = 2Dt (2.14)

From the Langevin equation, velocity auto-correlation function can be obtained,

〈
v(t)2

〉
= v(0)2e−2γt +

Γ

2m2γ
[1− e−2γt] (2.15)
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At long times system reaches equilibrium and mean square velocity is given by the

Boltzmann distribution, 〈
v(t)2

〉
=
kBT

m
(2.16)

From eqn. (2.15) and eqn. (2.16),

Γ = 2mγkBT (2.17)

It is the fluctuation-dissipation relation. It relates magnitude of fluctuations (Γ) to

the strength of frictional force (γ) which causes dissipation.

In the presence of an external force F , Langevin equation becomes,

mv̇ = F −mγv + η(t) (2.18)
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Chapter 3

Interface Dynamics

Formation and growth of interfaces depends upon many factors and writing down

an explicit equation from the scratch is a formidable task. It is always better to

look for a course grained equation, which describes the growth. The interesting fact

about these interfaces is that they are generally self-affine fractals (i.e. invariant under

anisotropic transformations), so it is possible to accommodate different models in the

same universality class according to their scaling properties.

Below I’ve discussed scaling concepts and general approach in writing down a growth

equation of an interface, focusing on the ballistic deposition model.

3.1 Ballistic Deposition

This simple model generates a nonequilibrium interface. In the lattice version of the

BD model, a particle is released from a random position above the substrate, which

vertically falls onto the substrate and sticks to the first encountered site, either to site

directly below or to the nearest neighbor sites depending on their height with respect

to the former.

In order to characterize the interface formed by deposition of particles, we define,

Mean height of the interface

Mean height, h̄(t) =
1

L

L∑
i=1

h(i, t) (3.1)

where h(i, t) is the height of ith column at time t.

9



Interface Width

w(L, t) =

√√√√ 1

L

L∑
i=1

[h(i, t)− h̄(t)]2 (3.2)

w(L, t) describes roughness of the interface at time t, w is a function of the lattice size.

Initially interface width shows a power law dependence in time. Time at which growth

saturates and the saturation width, both depends on system size.

w(L, t) ∼ tβ, t� tx (3.3)

where tx is the saturation time and β is called the growth exponent, which contains

information about time dependent dynamics of the interface.

wsat(L) ∼ Lα, t� tx (3.4)

wsat is the mean width of the saturated interface, α is the roughness exponent, it

characterizes roughness of the saturated interface.

tx ∼ Lz (3.5)

tx is the saturation time and z is called the dynamic exponent.

In case of BD model, exponents α, β and z are not independent. They follow the

Family-Vicsek scaling relation. Consequently, interface width has the following form,

w(L, t) ∼ Lαf

(
t

Lz

)
(3.6)

where scaling function f(u), u = t
tx

[using eqn. (3.5)], has two domains

• For t� tx , u� 1

In this region, according to eqn.(3.4), f(u) should be a constant function.

• For t� tx , u� 1

10



In this region, f(u) is proportional to uβ,

w(L, t) ∼ Lαuβ = Lα
(
tβ

Lβz

)
But, from eqn. (3.3), we require,

α− βz = 0 ⇒ α

β
= z (3.7)

This leads to the conclusion that any interface obeying scaling relation (3.6), the

scaling exponents are related by equation (3.7).

3.2 The Edwards-Wilkinson Equation

Growth equation of interface for the BD model is assumed to have the following form,

∂h(x, t)

∂t
= G(h, x, t) + η(x, t) (3.8)

where h(x, t) is interface height at time t at position x. Gaussian white noise term

η(x, t) denotes intrinsic random nature of the interface.

In order to find out explicit dependence of variables h, x and t on G, we list out

symmetries associated with the interface.

• Time translational symmetry

• Translational symmetry along the growth direction

• Translational symmetry perpendicular to the growth direction

• Rotational symmetry about the growth direction

• Symmetry about the mean interface height

(i), (ii) and (iii) rules out the explicit time, height and position dependence of G

respectively. (iv) eliminates the possibility of odd order derivatives of h w.r.t. x in

G. Assuming that the interface is an equilibrium interface and there is no driving

force along growth direction leads to (v). Neglecting higher order derivatives, the EW

equation is given by,
∂h(x, t)

∂t
= v

∂2h

∂x2
+ η(x, t) (3.9)

11



We know scaling relations obeyed by the BD interface, it can be used along with

EW equation to determine values of the exponents. Since the interface is a self-affine

fractal,

h(x, t) = bαh(bx, bzt) (3.10)

Under this rescaling, noise term is modified as,〈
η(bx, bzt)η(bx′, bzt′)

〉
= 2Dδd(bx− bx′)δ(bzt− bzt′)

= 2D
1

bd
δd(x− x′)

1

bz
δ(t− t′)

(3.11)

thus, appropriate scaling for η is,

η(x, t) = b(d+z)/2η(bx, bzt) (3.12)

Plugging (3.10) and (3.12) into (3.9) we obtain,

bα−z
∂h(bx, bzt)

∂t
= vbα−2

∂2h(bx, bzt)

∂x2
+ b−(d+z)/2η(x, t) (3.13)

⇒ ∂h(bx, bzt)

∂t
= vbz−2

∂2h(bx, bzt)

∂x2
+ b−α−d/2+z/2η(x, t)

Since the interface is invariant under this transformation, exponents are given as,

α =
2− d

2
, β =

2− d
4

, z = 2 (3.14)

According to EW equation, 1-dimensional BD model is included in the universality

class having α = 0.5, β = 0.25 and z = 2.

However, values of exponents obtained from numerical simulations for the BD model

are different from analytical predictions of EW equation. This discrepancy is resolved

in the KPZ equation by introducing non-linear terms into EW equation. KPZ equation

and dynamic RG method are discussed in the following section.

3.3 The KPZ Equation

KPZ equation, named after Mehran Kardar, Giorgio Parisi and Yi-Cheng Zang[Kardar 86],

is a stochastic partial differential equation describing the evolution of a growing in-

terface(3.15). It introduces a non-linear term to the EW equation. In the BD model,

lateral growth is possible and this adds a non-linear term to the component of velocity

12



along the direction of overall growth.

∂h(x, t)

∂t
= v

∂2h

∂x2
+
λ

2

(
∂h

∂x

)2

+ η(x, t) (3.15)

Interface has a non-zero mean velocity,

ν =
λ

2

∫ L

0

ddx

〈(
∂h

∂x

)2〉
(3.16)

If we apply the scaling procedure used for the EW equation, we ran into trouble,

because here the parameters v, λ and D are not independent, they are coupled to

each other. So we have to find out the relationship between these parameters and

use a method called dynamic renormalization group to figure out the correct scaling

exponents.

3.4 Renormalization Group

Renormalization group is a mathematical tool to investigate changes of a physical

system during a scale transformation. Consider a system which is in a particular

state, described by parameters, say a,b,c [S(a,b,c)]. Now we rescale the system in en-

ergy/length or in some other parameter. If we can represent new state of the system

using the same set of variables [S′(a′,b′,c′)] then the system is said to be renormaliz-

able. In case of non-renormalizable systems rescaling requires additional parameters

to specify emerged state. Repeated application of RG transformation on a system

can lead to fixed points in parameter space. And thereby allowing to identify scaling

exponents.

3.5 Scaling Exponents for the KPZ Equation

For a stochastic equation we have to use the generalized dynamic renormalization

group method to determine fixed points.

In the first step, we expand the KPZ equation in Fourier space in powers of λ and

calculate first order corrections to the parameters (ṽ, λ̃, D̃).

(Note : only main steps involved are discussed, long calculations involving integrals

13



are skipped)

Upon rescaling the KPZ equation, we obtain,

∂h

∂t
= vbz−2

∂2h

∂x2
+
λ

2
bz+α−2

(
∂h

∂x

)2

+ b−d/2+z/2−αη (3.17)

Fourier Transforming (3.15) gives,

−iωh(k, ω) = −vk2h(k, ω)− λ

2

∫ ∫ [
ddqdΩ

(2π)d+1
q.(k− q)h(q,Ω)h(k− q, ω − Ω)

]
(3.18)

In momentum space, k has an upper cut-off Λ = 2π
a

, where a is lattice spacing in real

space.

Rearranging and defining G0(k, ω) = 1
vk2−iω we obtain,

h(k, ω) = G0(k, ω)η(k, ω)−λ
2
G0(k, ω)

∫ ∫ [
ddqdΩ

(2π)d+1
q.(k− q)h(q,Ω)h(k− q, ω − Ω)

]
(3.19)

Going from (3.18) to (3.19), it is assumed that noise is uncorrelated in the reciprocal

space.

When λ = 0, we have,

h(k, ω) = G0(k, ω)η(k, ω) (3.20)

We define, for λ 6= 0

h(k, ω) ≡ G(k, ω)η(k, ω) (3.21)

Now, equation (3.19) becomes,

G(k, ω)η(k, ω) = G0(k, ω)η(k, ω)− λ

2
G0(k, ω)

∫ ∫ [
ddqdΩ

(2π)d+1
q.(k− q){

G0(q, ω)G0(k− q, ω − Ω)η(q, ω)η(k− q, ω − Ω)

− λ

2
G0(q,Ω)G0(k− q, ω − Ω)η(q,Ω)∫ ∫ [
ddq′′dΩ′′

(2π)d+1
q′′.(q′ − q′′)G0(q

′′,Ω′′)η(q′′,Ω′′)

− λ

2
G0(q,Ω)G0(k− q, ω − Ω)η(k− q, ω − Ω)∫ ∫
ddq′dΩ′

(2π)d+1
q′.(q− q′)G0(q

′,Ω′)η(q′,Ω′) +O(λ)2
}]

(3.22)
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In order to eliminate η from the above equation, we multiply both sides with η(−k,−ω)

and average over all space. So, terms with odd number of η are averaged to zero and

others will lead to delta functions, since,

〈
η(k, ω)

〉
= 0 (3.23)

〈
η(k, ω)η(k′, ω′)

〉
= 2D(2π)dδd(k + k′)δ(ω + ω′) (3.24)

Resulting equation for G(k, ω) is,

G(k, ω) =G0(k, ω) + 4

(
−λ
2

)2

2DG2
0(k, ω)

∫ ∫
ddqdΩ

(2π)d+1
(−qk).q(k− q)

G0(k− q, ω − Ω)G0(q,Ω)G0(−q,−Ω +O(λ4))

(3.25)

After carrying out integration, in the hydrodynamics limit (i.e. t → ∞ and a → ∞)

we obtain,

G(k, 0) = G0(k, 0) +
λ2D

v2
G2

0(k, 0)
d− 2

4d
k2Kd

∫
dq qd−3 (3.26)

where,

Kd =
Sd

(2π)d
, Sd is the surface area of d-dimensional unit sphere (3.27)

Using the definition of G0(k, ω) and defining G(k, 0) = 1
ṽk2

, we obtain perturbative

correction to v,

ṽ = v

[
1− λ2D

v3
d− 2

4d
Kd

∫
dq qd−3

]
(3.28)

Similarly we can find corrections to λ and D and it comes out to be ,

λ̃ = λ (3.29)

D̃ = D

[
1 +

λ2D

v3
Kd

4

∫
dq qd−3

]
(3.30)

Perturbatively expanding second term in equation (3.19) will give correction to λ and

from eqn.(3.24) correction to D can be obtained. These corrected parameters satisfy

the scaling relation given in equation (3.17).
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Next step is to apply RG transformation to these variables and calculate the expo-

nents. Here k values range from 0 to Λ.

• In step 1 of RG fast modes with e−l < |k| < Λ (where b ≡ e−l) are integrated

out.

• Parameters are then rescaled as k′ = e−lk, t′ = e−zlt and h′(k′, t′) = e−αlh(k, t)

in step 2.

This procedure will lead to the following flow equations,

dv

dl
= v

[
z − 2 +Kdλ̄

22− d
4d

]
(3.31)

dD

dl
= D

[
z − d− 2α +Kd

λ̄2

4

]
(3.32)

dλ

dl
= λ[α + z − 2] (3.33)

where λ̄ = λ2D/v3 is the coupling constant.

Equation (3.34) immediately gives the relation between α and z,

α + z = 2 , independent of dimension (3.34)

We can obtain the flow of coupling constant using (3.31), (3.32) and (3.34)

dλ̄

dl
=

2− d
2

λ̄+Kd
2d− 3

4d
λ̄ (3.35)

In one dimensional case, non-zero fixed point of λ̄ is

λ̄∗ =

(
2

Kd

)2

(3.36)

Substituting (3.36) in (3.31) and (3.32), we obtain,

z =
3

2
α =

1

2
(3.37)

These are exact scaling exponents for the BD model in 1D. From equation (3.7),

β =
1

3
(3.38)
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Chapter 4

Phase Separation in Active

Colloids

This chapter includes simulation and theory based studies of a minimal model of

active particles. This active colloidal system phase separates into a solid region and

a fluid region as activities of individual particles are increased. We have successfully

reproduced this characteristic behavior of active systems.

4.1 Model and Simulation Method

Our model consists of self-propelled smooth disks immersed in a fluid and confined

to a plane [Redner 13]. Particles interact with each other via the excluded volume

potential only. No mutual alignment interactions are explicitly included.

Position(ri) and self-propulsion direction(θi) of particles completely specify state

of the system. Time evolution of particles is governed by the coupled overdamped

Langevin equations,

ṙi = Dβ[Fex(ri) + Fpv̂i] +
√

2DηTi (4.1)

θ̇i =
√

2Drη
R
i (4.2)

where, Fex(r) = −dUex(r)
dr

.

Uex(r) is called the WCA potential, given by,

Uex(r) =

4ε

[ (
σ
r

)12 − (σ
r

)6 ]
+ ε if r < 2

1
6

0 otherwise

(4.3)
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σ is particle diameter, ε = kBT .

D and Dr are translational and rotational diffusion coefficients. In the low Reynolds

number [Purcell 77] (a dimensionless parameter that compares the effect of inertial

and viscous forces) regime, i.e. in the overdamped regime, they are related as,

Dr =
3D

σ2
(4.4)

Since particles are being driven continuously with an external source of energy, there

exist a constant throughput of energy into the system. This makes the system intrin-

sically out of equilibrium. Fp is the constant driving force on particles (self-propulsion

force), Fp is not derivable from any potential. Action of Fp on a particle will move it

with a velocity,

vp = DβFpv̂i (4.5)

where,

v̂i =

(
cos θi

sin θi

)
, β =

1

kBT
(4.6)

η are the uncorrelated Gaussian noise,

〈
η
〉

= 0 and
〈
ηi(t)ηj(t

′)
〉

= 2Dδijδ(t− t′) (4.7)

Equations of motion are non-dimensionalized using σ, kBT and τ = σ2

D
as basic units

of length, energy and time respectively. The system is parametrised by two functions,

system density ρ ( ρ = N2

L2 , where N is number of particles in the system and L is

system length) and the Péclet number Pe 1. In this system Péclet number is same as

the non-dimensionalized self-propulsion velocity,

Pe =
vpτ

σ
(4.8)

We employed molecular dynamics simulation technique to integrate the equations

of motion. Integration of stochastic equations (4.1 and 4.2) were established using

the stochastic Euler scheme. Time constraint was one of the major difficulty we have

encountered during execution. For a system of N particles, calculation of resultant

1Péclet number is defined as ratio of bulk flow of a quantity to rate of diffusion of the same
quantity,

Pe =
rate of advection

rate of diffusion
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potential on a single particle requires time-steps of the order of N2. Parallel program-

ming techniques using OpenMP [Hermanns 02] were used to reduce simulation time

for calculating pair-wise interactions. We have successfully been able to reduce this

exponential time requirement by threading the loops.

4.2 Phase Separation

Despite the absence of mutual aligning interactions, the system undergoes nonequi-

librium clustering. Similar to an equilibrium system undergoing phase separation in

presence of attractive interactions, system phase separates here with system activity

Pe as the control parameter. As a reason, the starting fluid phase eventually leads to

a system with solid-fluid coexistence.

We employ simulations on a system with 4096 particles with average particle den-

sity 0.8 (corresponding system length is 70) for Pe values 10, 50, 90 and 150. Simu-

lations were carried out for 2 x 106 dt, where dt = 10−5, and collected data at regular

intervals after the system had reached steady-state. In this simulation we have waited

for the first 1 x 10−6 time-steps for the system to reach steady-state.

Obtained results are shown in Figure 5.1. For Pe = 10, system is in the single

phase region and the density distribution is peaked about the overall system density

0.8. i.e. for small Péclet numbers there is no particle accumulation in the system.

Density distribution broadens out as particles start clustering due to the increased

activity in the system. Further increase in system activity leads to phase separation

(two distinct densities can be seem for Pe = 150). This shows coexistence of solid

and fluid phases for larger Péclet numbers. Emergence of this non-intuitive phase

separation behavior is a signature of active fluids, as it has been observed in other

active system models. These observations suggest that, apart from achieving a density

larger than the critical density, the system requires a minimum activity in order for

cluster formation.

It has been shown that the dense phase exhibits structural signatures of a crys-

talline solid near crystal-hexatic transition point and anomalous dynamics including

supperdiffusive motion on intermediate time scales [Redner 13]. A microscopic the-

ory for the phase separation of self-propelled repulsive disks has been introduced by

Bialké, Löwen and Speck [Buttinoni 13].
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Figure 4.1: (left) snapshot of the system configuration for different Pe (right) corre-
sponding local density distributions. Distribution corresponding to the single density
broadens and flattens as Pe is increased and becomes binodal as the system phase
separates. N = 4096, L = 70, Average density = 0.80, Time-steps = 20 x 105dt.
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Chapter 5

Confined Active Colloid

5.1 Active Solid

Confining the active colloidal system discussed in chapter 4 between two static bound-

aries causes particle accumulation at the boundaries (Figure 5.1). This dense phase

has the characteristic properties of a 2D colloidal crystal [Redner 13] and is given the

name “active solid”. Formation of active solid separates the system into a solid phase

at the boundaries and a fluid phase in between.

 0
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 50

 60

 70

 0  10  20  30  40  50  60  70

Figure 5.1: Accumulation of particles at the boundaries, leaving a fluid region in the
center. (N = 4096, L = 70, Snapshot of system after 106 time-steps)
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5.2 Active Solid-Fluid Interface

Time evolution of this active solid-fluid interface shows same characteristics as that

of a BD interface. The interface grows as a power law in time before saturating

(Figure 5.2). In order to determine scaling exponents and the universality class

to which the interface belong, we have done simulations for different system sizes

70,80,90,100,110,120,130 and 150 (corresponding to 4096, 5184, 6400, 8100, 10000,

12100, 13225 and 18225 particles respectively) and for different Péclet numbers (100,

115, 135 and 150).
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Figure 5.2: Growth of interface width as a function of time for an active solid-fluid
interface (L = 70, N = 4096). Green line shows initial tβ dependence and blue line
corresponds to the mean saturated width. Point of intersection of these lines give the
crossover time tx.

5.2.1 Dependence on System Size

Plots for interface width as a function of time for different lengths and for different

Péclet values are shown in (Figure 5.3). From these simulations have obtained values

for beta, saturation width and saturation time for different system sizes. In Figure

5.4 we plot them as a function of system size for a given Péclet number (Pe = 150).
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Figure 5.3: Growth of interface for different lengths and for different Péclet numbers

Observations from Figure 5.3 and Figure 5.4 suggest that the growth exponent beta

is independent of system size whereas mean saturation width (wsat) and saturation

time (tx) follows a power law in length. At this point it is reasonable to assume that

scaling behavior of this active interface has same characteristics that of a BD interface.

i.e.

w ∼ tβ for t < tx

wsat ∼ Lα for t > tx and

tx ∼ Lz
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5.2.2 Variation of Exponents with Peclet number

From simulations we have determined scaling exponents (α, β and z) for different

Péclet numbers. Variations of these exponents as a function of system activity are

given below.

Roughness exponent increases as activity in the system increases. This implies that
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Figure 5.5: Top left : Variation of roughness exponent with Pe. Top right : Beta as
a function of Pe. Bottom left : Variation of Z with Pe. Bottom right :Variation of
α + z with Pe, blue line is the KPZ equation prediction

roughness of the interface is determined by activity in the system. We plotted the

value of α+z for different Pe values, in order to find out whether this interface belong

to the KPZ universality class. For KPZ interface, value of α+ z = 2, independent of

interface dimensions (equation 3.34).
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5.2.3 Rescaling

In order to figure out whether the interface follows any scaling relation, we rescaled

the curves. Shown below are the rescaled curves corresponding to different system

activities. Horizontal axis is rescaled with Lz and vertical axis with Lα.
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Figure 5.6: Rescaled curves for different Péclet numbers
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Chapter 6

Summary

We started with a minimal model for active systems and showed the existence of

dynamic self organization in the system. System phase separated into a solid-fluid

phase as we increase self propulsion velocities of individual particles. Later we showed

the formation of a solid phase near boundaries once the system is confined between

two static boundaries. Our focus was on the active interface formed by the active

solid in the system. We couldn’t find conclusive evidences to assure that the interface

is governed by the KPZ equation. We have to do simulations for larger system sizes

in order to obtain better results.

All codes, graphs and animations can be found here ‘ https://github.com/MSTHESIS/Active_
Matter’
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