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Notation 

 

N  Number of neurons in the network 

C  Average in-degree per neuron 

J  Strength of excitation (EPSP amplitude) 

g  Relative strength of inhibition to excitation 

τm  Membrane time constant 

τs  Synaptic time constant 

τr  Absolute refractory period of neuron 

θ  Firing threshold of the neuron 

Vreset  Reset potential of the neuron 

Cm  Membrane capacitance 

Rm  Membrane resistance 

μ0  Constant offset voltage provided to every neuron 

T  Total simulation time 

EPSP  Excitatory Post Synaptic Potential 

IPSP  Inhibitory Post Synaptic Potential 

A  Population Activity 

ISI  Interspike Interval 

CV  Coefficient of Variation 
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Abstract 

 

Over past few years, experimental findings have shown that there exists self-sustained 

background activity in the cortex of the brain even if the brain is not involved in any kind 

of task. The role of this activity is not understood till date and has become one of the 

interesting questions in the field of computational neuroscience. Such activity has been 

predicted to be a result of competition between excitatory and inhibitory synaptic inputs. 

In this thesis, we have studied the properties of a homogeneous network of excitatory and 

inhibitory leaky integrate-and-fire neurons. It was shown in a computational study that such 

activity can only arise in inhibition dominated regime. We have studied the mean 

population activity as a function of network parameters such as network size, sparsity, the 

strength of excitation, the relative strength of inhibition to excitation, refractory period, 

membrane time constant and synaptic time constant. We confirmed the existence of two 

types of asynchronous network states as reported in a recent paper. We also found splitting 

of the coefficient of variation distribution at the transition point that showed that beyond 

the transition point the neural population splits in two. The input-output characteristics of 

the network were studied in response to various types of input pulses. We observed that 

before the transition point the network efficiently transmits the signal and beyond the 

transition point it transforms the input which was also reported in a study.  
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Chapter 1 

Introduction 

 

1.1 History of Neural Networks 

 

By the middle of the 19th century, it was known that plant and animal tissues consisted of 

discrete functional units called “cells”. When the nerve tissue was observed under a 

microscope, cell bodies having many tangled projections were found. It was concluded 

from these observations that the fibers emerging from different cell bodies fused to form a 

continuous network known as “Reticulum” (Figure 1.1 (a)). Reticular theory [1] of the brain 

was accepted at that time and brain couldn’t be split into distinct structural units.  

 

Figure 1.1 (a) Depiction of reticular brain structure, (b) Sketch of real neural network by 

Ramón y Cajal [2]
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In 1887, Santiago Ramón y Cajal used an inefficient stain, which was discovered by 

Camillo Golgi, that stained only a few cell bodies and their processes in the tissue sample. 

This method revealed the complete single cell structure and its exact arrangement within 

the tissue in the background of unstained tissue. Cajal made detailed sketches of single cells 

which were called “Neurons”. He also made sketches of neural networks within the tissue 

(Figure 1.1 (b)) and this was the first evidence of the existence of network structure within 

the nervous system and this discovery marked an end to the Reticular theory.  

 

 

1.2 Biological Neuron 

 

A neuron is an example of electrically excitable system. It is the fundamental unit of 

computation in the nervous system. The currency of information exchange among neurons 

is action potential or a spike. The electrical excitability arises from the interplay of various 

time constants governing kinetics of various channels embedded within neuronal 

membranes. Every neuron has three basic structures (Figure 1.2(a)): 

 

 

Figure 1.2 (a) Structure of single neuron, (b) Structure of synapse 
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 Dendrites: Dendrites are tree-like structures found in neurons. The dendritic 

branches receive inputs from other neurons via synapses. 

 Cell body (Soma): Cell body is a globular structure found in neurons where all 

inputs from dendritic branches are integrated and processed. 

 Axon: This is the output end of the neuron which transmits spikes to other neurons 

via synapses. 

 

Once the membrane potential reaches a certain value, also known as the firing threshold of 

the neuron, an action potential is emitted. Neurons communicate with one another via 

synapses (Figure 1.2 (b)) which can be either excitatory (depolarizing the postsynaptic 

membrane) or inhibitory (hyperpolarizing the postsynaptic membrane) depending on the 

type of neurotransmitters released by the presynaptic neuron. 

 

 

1.3 Modeling Neurons as RC circuits  

 

Biological cell membranes are phospholipid bilayers with channels and pumps embedded 

within them. Neuronal membranes are no exceptions. Lipid bilayers are organized in such 

a manner that the hydrophobic parts of lipids form the interior and hydrophilic heads form 

the exterior of the membrane (Figure 1.3). The membrane separates intracellular space from 

extracellular space and helps to maintain the ionic gradients with the help of ion pumps. 

This configuration is same as that of a capacitor where the two charged sides (intracellular 

and extracellular space) are separated by a dielectric medium (the hydrophobic interior of 

lipid bilayer).  

 

Figure 1.3 Structure of a patch of cell membrane 
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Figure 1.4 Equivalent RC circuit of cell membrane 

 

Various factors (membrane potential, mechanical force, ligand binding etc.) affect the 

opening and closing of the channels embedded within the membrane and offer variable 

resistance to ionic currents flowing through them depending on their opening and closing 

kinetics. Thus, a patch of the membrane can be thought of as parallel RC circuits connected 

in series (Figure 1.3 (b)).  

 

 

1.4 Leaky Integrate-and-Fire Model 

 

When current is applied to a patch of membrane, it charges like an equivalent RC circuit. 

Hence neuronal membrane can be thought of as an RC circuit with added spike generation 

and reset mechanism [3]. Subthreshold voltage evolution is given by: 

 

Cm

dV

dt
= −

V − Em

Rm
+ I 

 

where, Cm is the membrane capacitance, Rm is the membrane resistance and I is the total 

current flowing across the cell membrane. Above equation can be rewritten in terms of 

membrane time constant τm, which is the product of  Cm and Rm ,as: 
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τm

dV

dt
= −V + Em + RmI 

(1.1) 

Once spike generation and reset mechanisms are added to passive membrane dynamics, we 

get the “Integrate and Fire” model of neuron which is shown below (Figure 1.4)  

 

 

 

Figure 1.5 Integrate-and-fire model of single neuron and its equivalent circuit diagram [7] 

 

When the membrane potential V reaches the firing threshold, the neuron fires a spike and 

the membrane potential V is reset to Em followed by an absolute refractory period (τr) 

during which neuron is inactive.  
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1.5 Response of Integrate-and-Fire Neuron to Square Pulse 

 

1.5.1 Membrane response at various membrane time constants 

 

 

 

Figure 1.6 Response of membrane patch to input square pulse at two different membrane 

time constants(τm): 20ms and 50ms  
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1.5.2 Membrane response at various current amplitudes 

 

 

 

Figure 1.7 Response of single integrate-and-fire neuron to input current pulses of four 

different amplitudes: 10mA, 20mA, 30mA and 40mA. Here, T=200ms, τm=20ms, 

τr=0.5ms, Em= -70mV,Vreset= -80mV and θ = -54 mV, Rm= 1Ω 
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1.6 Frequency – Current Curve of Integrate-and Fire Neuron 

 

The general solution of integrate-and-fire model can be given as: 

V(t) = V0e
−

t−t0
τm + e

−
t

τm ∫ e
t

τm [
Em + RmI(t)

τm
] dt

t

t0

 

If the external driving current is constant then the exact solution of integrate and fire model 

is: 

V(t) = Em + RmI + [V0 − Em − RmI]e
−

t−t0
τm  

(1.2) 

Spikes do not appear yet in the model. Spikes can be added by an additional threshold 

mechanism. Let  t0 = 0 , V0 = Em and θ be the threshold of the neuron, time to first spike 

can be calculated as: 

θ = Em + RmI [1 − e
−

Ts
τm] 

Ts = −τm ln [1 −
θ − Em

RmI
] 

The interval between consecutive spikes during constant current injection is the sum of 

time to first spike and the absolute refractory period, Ts + τr. The firing frequency f(I) is 

the reciprocal of this interval: 

f(I) =
1

Ts + τr
=

1

τr − τm ln [1 −
θ − Em

RmI ]
 

(1.3) 

This is called f-I curve of integrate-and-fire neuron [7] (Figure 1.8) 
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Figure 1.8 Frequency – Current (f-I) curve for integrate-and –fire neuron at four different 

refractory periods (τr): 0ms,0.2ms,0.5ms and 0.8ms 
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Chapter 2 

Network of Neurons 

 

2.1 Networks and their representation 

 

In general, a network, also called “Graph” is a collection of vertices joined by edges. We 

are interested in directed and weighted graph where the vertices are neurons and edges are 

the synapses with assigned synaptic weight [8]. 

 

Figure 2.1 Directed network with 8 nodes and 17 edges and corresponding adjacency matrix 

 

 

2.2 The Adjacency Matrix 

 

Let n be the number of nodes in a network and (i, j) be the edge between two nodes i and j 

, then the network can be fully specified by n and a list of all edges (i, j). Such a 
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specification is called an edge list. Mathematics of networks in terms of edge list is 

cumbersome. A better way of representing networks is adjacency matrix. The adjacency 

matrix A of a graph is a n × n matrix with elements Aij such that 

 

 

 

where, Jij is the weight of connection from jth node to ith node.  

 

Two important points about adjacency matrix are:  

1. For a network with no self-edges, the diagonal elements are zero. 

2. For the undirected network, the adjacency matrix is symmetric. 

 

 

2.3 Population Activity 

 

In a population of N neurons, the population activity (Figure 2.2) is calculated by counting 

the number of spikes nact(t; t + ∆t) in a small interval ∆t and dividing by N [10]. 

  

A(t) = lim
∆t→0

1

∆t

nact(t; t + ∆t)

N
=

1

N
∑ ∑ δ (t − tj

(f)
)

f

N

j=1

 

(2.1) 

Where δ denotes the Dirac-delta function. The double sum runs over all firing times tj
(f)

 of 

all neurons in the population. In other words, the activity A is defined by a population 

average. 

 

 

 

Figure 2.2 Activity of Neuronal population in response to input signal [10] 

Aij = 

 
{ Jij , if connection exist from jth node to ith node 

0 , otherwise 
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2.4 Homogeneous Population of Integrate-and-Fire Neurons 

 

The dynamics of single integrate-and-fire neuron in the network can be given as: 

 

τm

dVi

dt
= −Vi + μ0 + RIi(t) + μext(t)   ∀  Vi < θ 

Integration restarts at Vreset after the the refractory period τr   ∀  Vi > θ 

(2.2) 

A homogeneous neural network consists of neurons having similar biophysical properties 

such as input resistance R, membrane time constant τm, synaptic time constant τs,absolute 

refractory period τr , firing threshold θ and reset potential Vreset. The total input current to 

a neuron in the network is the weighted sum of synaptic currents from all other neurons and 

external current: 

 

Ii(t) = ∑ ∑ Jijα (t − tj
(f)

) + Iext(t)

f

N

j=1

 

(2.3) 

 

Here we have assumed that each input spike generates a postsynaptic current with some 

generic time course α (t − tj
(f)

) which is given as: 

 

α (t − tj
(f)

) =
t

τs
e

(1−
t

τs
)
 

(2.4) 

The sum on the right-hand side of the equation 2.3 runs over all firing times of all neurons. 

The total input current to all the neurons is identical because of homogeneity of the network. 

By inserting Jij = J and using the definition of population activity, the total input current to 

a neuron can be given as: 

 

I(t) = JN ∫ α(s)A(t − s)ds
∞

0

+ Iext(t) 

(2.5) 
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This total current is independent of the neuronal index i as expected due to the homogeneity 

of the network. Thus, the input current at time t depends on the past population activity and 

is the same for all neurons. 
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Chapter 3  

Simulations and Results 

 

3.1 Network Description and Parameters 

 

The network being studied here is a homogeneous network similar to that studied by Brunel 

[5]. It consists of N leaky integrate-and-fire neurons out of which NE are excitatory neurons 

and NI are inhibitory neurons. The fraction of excitatory neurons in the network is denoted 

by f. Each neuron has an average in-degree C(= pN, where p is the sparsity of connections 

in the network) .  Each neuron receives CE(= pNE) excitatory inputs and CI(= pNI) 

inhibitory inputs. The amplitude of excitatory postsynaptic potential (EPSP) denoted as J 

and that of inhibitory postsynaptic potential (IPSP) denoted as -gJ, where g is the relative 

strength of inhibition, is kept same for all the neurons for simplicity. Neurons are connected 

to each other by alpha synapses. The parameter space of the network consists of the 

following: 

  EPSP amplitude (J) 

 Relative strength of inhibition (g) 

 In-degree of neuron I 

 Network size (N) 

 Membrane time constant (τm) 

 Absolute refractory period (τr) 

 Synaptic time constant (τs) 

 Offset current (μ0) 
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Self-sustained activity in a network of excitatory and inhibitory neurons is one of the 

intriguing features in neuronal networks. The network displays permanent self-sustained 

activity only when a current above firing threshold is provided continuously to all neurons 

and in the absence of such current, the activity decays with time. We studied the self-

sustained activity in the network with constant offset current (above firing threshold) being 

provided to all neurons. The excitatory synapses increase the activity of the network while 

the inhibitory synapses decrease it. The ratio of number of excitatory to inhibitory neurons 

is taken as 4:1 which is biologically consistent. Self-sustained asynchronous activity is 

obtained in the network when inhibition dominates excitation. Thus the strength of IPSP 

must more than four times than that of EPSP to get such activity. We examined the network 

properties in the inhibition dominated regime. The network displays a balanced self-

sustained asynchronous state and undergoes a transition to another state as the strength of 

EPSP was increased. This is a heterogeneous asynchronous state where the firing rates of 

individual neurons show large variation in contrast to the state at low strength of EPSP.  

 

 

3.2 Response of Network as a Function of Network Parameters 

 

The program for network simulation was written in Julia programming language [9]. 

Following are the results of simulations where the mean population activity is plotted 

against the strength of excitation (amplitude of EPSP) at various values of other network 

parameters indicated within the figures. 
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3.2.1 Average p𝐨𝐩𝐮𝐥𝐚𝐭𝐢𝐨𝐧 𝐚𝐜𝐭𝐢𝐯𝐢𝐭𝐲 Vs excitation strength ( 𝐉 ) at various 

g values 

 

Figure 3.1 Average population activity as a function of strength of EPSP (J) at different 

relative inhibition strengths(g): 5, 6, 7 and 8. Here, f=0.8, T=1 second, μ0 = 24 mV, 

Vreset=10mV, θ = 20 mV,N=10000, C=1000, τs=0.55ms,, τm=20ms, τr=0.5ms 

 

The total synaptic input in the network can be represented in vector form as 

 

𝐈 = (JAE−gJAI)𝐯 

(3.1) 

Where, I is 1 × N synaptic input vector (representing total synaptic input to every neuron 

in the network), v is 1 × N state vector (representing states of all the neurons in the 

network), 𝐴𝐸  and 𝐴𝐼 are adjacency matrices of excitatory and inhibitory connections 

respectively. From equation 3.1, it is clear that increasing the relative strength of inhibition 

to excitation (g) will decrease total synaptic input to neurons for given J value and hence 

the overall activity of the network should decrease as g is increased keeping J fixed. It 

should be noted from the equation above that the difference between activities at two g 

values will increase with J. 
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3.2.2 Average p𝐨𝐩𝐮𝐥𝐚𝐭𝐢𝐨𝐧 𝐚𝐜𝐭𝐢𝐯𝐢𝐭𝐲 Vs excitation strength ( 𝐉 ) at various 

C values 

 

Figure 3.2 Average population activity as a function of the strength of EPSP (J) at different 

average in-degree per neuron(C): 100, 250, 500, 750, 1000 and 10000.Here,f=0.8,T=1 

second,μ0=24mV,Vreset=10mV, θ =20mV,N=10000, g=5, τs=0.55ms,τm=20ms, τr=0.5ms 

 

General conclusions about the effects of changing the in-degree of neurons cannot be made 

as the phase curves does not follow a trend consistent with all values of C. Simulations 

show that all the graphs intersect each other at the same point around J=0.4mV. This point 

is reported as critical excitation strength beyond which transition from classical 

asynchronous state to heterogeneous asynchronous state takes place. The network activity 

starts with a limiting value of around 0.037 at zero coupling due to constant offset current 

being provided to all neurons. As the excitation strength (J) increases the firing frequency 

goes down initially. This decrease at weak excitation strengths is predicted by mean field 

theory. Beyond a certain strength of excitation, the network activity diverges from the mean 

field prediction and again starts to increase [4]. 
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3.2.3 Average p𝐨𝐩𝐮𝐥𝐚𝐭𝐢𝐨𝐧 𝐚𝐜𝐭𝐢𝐯𝐢𝐭𝐲 Vs excitation strength ( 𝐉 ) at various 

N values 

 

Figure 3.3 Average population activity as a function of the strength of EPSP (J) at different 

network sizes (N): 50, 100, 150, 1000, 5000 and 10000. Here, f=0.8, T=1 second, μ0 = 24 

mV, Vreset=10mV, θ = 20 mV,g=5, C=1000, τs=0.55ms,, τm=20ms, τr=0.5ms 

 

The effects of network size are not very clear. General conclusions cannot be made about 

the effect of network size on the phase curves. The trends followed by these curves are not 

consistent with all the values of network sizes. Although we cannot conclude much, we 

definitely observe finite size effects in the results for small network sizes. For small 

networks, the activity looks almost flat across J but as the size increases we start seeing the 

variations across J. Again we observe the intersecting of all the phase curves at the same 

critical point about J=0.4mV [4]. 
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3.2.4 Average p𝐨𝐩𝐮𝐥𝐚𝐭𝐢𝐨𝐧 𝐚𝐜𝐭𝐢𝐯𝐢𝐭𝐲 Vs excitation strength ( 𝐉 ) at various 

𝛕𝐦 values 

 

 

Figure 3.4 Average population activity as a function of strength of EPSP (J) at different 

membrane time constants (τm): 5ms, 10ms, 15ms, 20ms, 25ms and 30ms. Here, f=0.8, T=1 

second, μ0 =24mV,Vreset=10mV, θ = 20 mV,N=10000, C=1000, g=5,τs=0.55ms, τr=0.5ms 

 

Membrane time constant in an RC circuit defines the speed of charging and discharging of 

the capacitor. Similarly, for a neuron, higher time constant will result in the longer time 

interval between successive spikes or decreased firing frequency (Equation 1.3). Hence, 

increasing membrane time constant while keeping all the other parameters fixed will result 

in decreased population activity for all J values. So, the graphs should shift vertically 

downwards as τm is increased and the same is observed in the simulations. 
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3.2.5 Average p𝐨𝐩𝐮𝐥𝐚𝐭𝐢𝐨𝐧 𝐚𝐜𝐭𝐢𝐯𝐢𝐭𝐲 Vs excitation strength ( 𝐉 ) at various 

𝛕𝐫 values 

 

 

Figure 3.5 Average population activity as a function of strength of EPSP (J) at different 

refractory periods (τr): 0.4ms, 0.5ms, 0.6ms and 0.7ms. Here, f=0.8, T=1 second, μ0 = 24 

mV, Vreset=10mV, θ = 20 mV,N=10000, C=1000, g=5, τs=0.55ms, τm=20ms 

 

The refractory period is the time during which a neuron is inactive and hence increasing 

this time will lead to decreased firing frequency of the neuron (Equation 1.3). Therefore, 

network activity should also decrease which is observed in simulations as well. It should 

be noted that the difference in the activity of the network for two different refractory periods 

τr will increase with J because increasing J will increase synaptic input I (Figure 1.7). 

Therefore for low values of J, the curves for different values of τr overlap.  
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3.2.6 Average p𝐨𝐩𝐮𝐥𝐚𝐭𝐢𝐨𝐧 𝐚𝐜𝐭𝐢𝐯𝐢𝐭𝐲 Vs excitation strength ( 𝐉 ) at various 

𝛕𝐬 values 

 

Figure 3.6 Average population activity as a function of strength of EPSP (J) at different 

synaptic time constants (τs): 0.5ms, 0.55ms and 0.6ms. Here, f=0.8, T=1 second, μ0= 24 

mV, Vreset=10mV, θ = 20 mV,N=10000, C=1000, g=5, τm=20ms, τr=0.5ms 

 

Synaptic time constant govern the time course of synaptic conductance which is chosen to 

be an alpha function (Equation 2.4). Alpha function reaches its maximum value at the time 

τs.  

 

Figure 3.7 Plot of alpha function against time. Here, 𝜏𝑠=0.5ms 
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Larger the synaptic time constant, longer will it take for alpha function to reach its 

maximum and the value of the integral on the right-hand side of the Equation 2.5 will 

increase leading to increase in the total synaptic input. Thus, the effective strength of 

excitation increases as synaptic time constant is increased leading to increased activity of 

the network for a given J value. Therefore, the values of mean population activity will shift 

leftwards with magnitude proportional to J, i.e., at lower J shift will be less and at higher J 

shift will be more which is also observed in the simulations.   

 

 

3.3 Splitting of Neural Population 

 

Spike train of each neuron in the network was analyzed to get its interspike interval (ISI) 

distribution and corresponding coefficient of variation (CV) [6]. Histogram of CVs of all 

the neurons was plotted as for different strengths of EPSP.  
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Figure 3.8 Histogram of coefficient of variation of ISI distribution at various strengths of 

EPSP (J) for 10000 neurons. Here, f=0.8, T=1 second, μ0 = 24 mV, Vreset=10mV, θ = 20 

mV,N=10000, C=1000, g=5, τm=20ms, τs=0.55ms, τr=0.5ms 

 

These simulations gave interesting results. We saw that as the strength of excitation is 

increased, the coefficient of variation distribution peak moves to the right (beyond 1) and 

splits into two (one of them below 1 and other beyond 1) which means that at higher 

coupling strength the neural population splits into two. This seems to be a good order 

parameter for the kind of transition taking place in the network. This observation was used 

as a basis for giving hypothesis related to computational properties of the network. 
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3.4 Network Response to Input Pulses 

 

All the neurons in the network were given short input pulses of various shapes and the 

population activity was recorded. In all the cases the results showed that at lower couplings 

the input is reflected in the network output which means the input is getting transmitted 

through the network in this coupling range and at higher couplings we observe that the 

network doesn’t represent the input signatures in the population activity which mean the 

network is not efficiently transmitting the input but the input is involved in the complex 

dynamics going on within the network and is transformed which is useful for doing 

computations involving inputs. 

 

3.4.1 Gaussian Pulse 

 

 

Figure 3.9 Population activity of the network for Gaussian input pulse in two different 

network states at (a) J = 0.2mV (b) J = 0.8mV. Here, f=0.8, T=1 second, μ0 = 24 mV, 

Vreset=10mV, θ = 20 mV,N=10000, C=1000, g=5, τm=20ms, τs=0.55ms, τr=0.5ms 
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3.4.2 Square Pulse 

 

 

Figure 3.10 Population activity of the network for square input pulse in two different 

network states at (a) J = 0.2mV (b) J = 0.8mV. Here, f=0.8, T=1 second, μ0 = 24 mV, 

Vreset=10mV, θ = 20 mV,N=10000, C=1000, g=5, τm=20ms, τs=0.55ms, τr=0.5ms 

 

3.4.3 Ramp Pulse 

 

 

Figure 3.11 Population activity of the network for ramp input pulse in two different network 

states at (a) J = 0.2mV (b) J = 0.8mV. Here, f=0.8, T=1 second, μ0 = 24 mV, 

Vreset=10mV, θ = 20 mV,N=10000, C=1000, g=5, τm=20ms, τs=0.55ms, τr=0.5ms 
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3.4.4 Sinusoidal Pulse 

 

 

Figure 3.12 Population activity of the network for sinusoidal input pulse in two different 

network states at (a) J = 0.2mV (b) J = 0.8mV. Here, f=0.8, T=1 second, μ0 = 24 mV, 

Vreset=10mV, θ = 20 mV,N=10000, C=1000, g=5, τm=20ms, τs=0.55ms, τr=0.5ms 

 

 

3.5 Conclusions 

 

From the splitting of the coefficient of variation distribution, we concluded that the neural 

population splits into two beyond a certain strength of EPSP. We also observed that the 

input is not reflected in the output of the network beyond the same strength of EPSP. Based 

on these two observations, we hypothesized that till the CV distribution splits , the neural 

population is transmitting the input as the population and as the splitting occurs  , the  

population splits into two where one population with CV ≤ 1 transmits the signal and the 

other population CV > 1 transforms the input. As a preliminary approach, we considered 

the total network output to be the linear combination of the outputs from both the 

populations. 

 

For testing above hypothesis, we took separate outputs from the groups having 

CV < 1 and CV > 1. Simulation results were strange. At low coupling CV < 1 group 

transmits the signal more as compared to CV > 1 (just because there are very few number 
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of neurons with CV > 1 in that coupling range) but after the splitting of CV distribution, 

both the groups show no signature of the input. It is possible that the outputs of the two 

populations are non-linearly interacting to give the total output. So the hypothesis about 

one group transmitting the signal and other doing computation doesn't seem right. Although 

our hypothesis was proven wrong, the observations are noteworthy and we are in the 

process of designing alternate hypothesis and possible experiments to test them.  

 

To summarize, in this project we studied the properties of a balanced network of 

excitatory and inhibitory neurons as a function of the network parameters and attempted to 

explain the observations. The network displays two kinds of asynchronous states which 

have different computational properties. The coefficient of variation distribution seems to 

be a better order parameter for observing the phase transition than the average population 

activity. The results obtained in this study are not only limited to neural networks. They 

can be applied to networks of RC circuits or any other network where the nodes follow the 

similar form of equations.  

 

________________________________________________________________________ 
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