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Abstract

In this thesis, we explore the emergence of persistent infection in a closed region of

space. Here the disease progression of the individuals is given by the SIRS model,

namely Susceptible-Infected-Refractory-Susceptible disease cycle. An individual be-

comes infected on contact with another infected individual within a given neighbour-

hood. We focus on the role of synchronization in the persistence of contagion. Our

key result is that higher degree of synchronization inhibits persistence of infection.

We demonstrate this result through different order parameters, reflecting both global

and local synchronization of the phases of the disease in the individuals. We consider

both asymptotic as well as finite time measures of the synchronization parameters.

Our analysis of the synchronization in the disease cycle of individuals in a popula-

tion shows that early asynchrony in the population, both globally and at the local

level appear to be a consistent precursor to future persistence of infection. This is an

important indication, since it can provide valuable early warning signals for a higher

degree of persistence of infection in a population, thus enabling us to take suitable

early action.1

1The results in this thesis are now being prepared for publication. The manuscript for the same
is in preparation.
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Introduction

Studies of epidemiological models and the spatio-temporal dynamics of disease prop-

agation has attracted considerable research attention over the years. These stud-

ies have also contributed in the development of various mathematical models that

accurately describe the dynamics of infectious disease propagation[EK88, Mur93,

RSBY03]. These investigations focus on the spatial dynamics of the population,

particularly studying the degree and extent of the spread of infection on different

population topologies, for example, on a uniform lattice, or on small-world networks,

as well as the temporal dynamics of these disease models, where the model parame-

ters quantify the transfer rate of infection between the individuals in the population.

Some of these studies look at simple epidemiology models where the infection is fatal,

and the susceptibility and the transmissibility of infection through local neighbours is

probabilistic on a small-world network[MN00]. Other models consider the case where

individuals attain a permanent immunity after a temporary infection period. There is

no prevalence of infection in such cases as the susceptible population slowly decreases

with time[ML01]. Others have probed further and studied models with a temporary

immune period, following which an individual is susceptible again[LHS08]. Studies

of such models on small-world networks have shown an increase in persistence of in-

fection when the number of random connections are sufficiently large[KA01]. Other

studies on time-varying networks show frequent epidemic outbreaks as compared to

static networks[KS13].

A large class of studies also employ sets of differential equations[Het76] or differ-

ence equations[GCNS02] to model disease propagation. Such models are relevant for

homogeneous well-mixed populations, where infection arises from random encounters

of individuals and spatial structure in populations is disregarded.

In this thesis we will consider a cellular automata model of disease propagation

on a 2-d lattice with probabilistic infection rules and deterministic disease cycles.

1



We will consider heterogeneous systems and try to correlate features of the initial

time evolution of the system with asymptotic persistence of infection. We start by

describing the model for disease progression below and go on to describe the condition

of infection.

The SIRS Disease Cycle

In this study, we explore the SIRS disease cycle which has four compartments: suscep-

tible(S), Infected(I) or Refractory(R). An individual can be in either of these state

during the disease cycle. Upon infection, the individual goes through the infected

stage of the disease. This is followed by the temporarily immune stage, known as

the refractory stage of the disease cycle. After the refractory phase the individual is

susceptible to infection again, and returns to the susceptible state . This is shown

schematically in Fig. 1.

Figure 1: The SIRS disease cycle. A susceptible individual gets infected after coming
in contact with an infected neighbour, then susbesquently moving to the refractory
stage where it is temporarily immune to the infection.
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Mathematical model describing the disease cycle: We consider a cellular

automata model of disease progression, where time t evolves in discrete steps, with

each individual, indexed by (i, j) on a 2 dimensional lattice, characterized by a counter

τi,j(t) = 0, 1, . . . , τI + τR

describing its phase in the cycle of the disease [AMS17]. Here τI + τR = τ0, where

τ0 signifies the total length of the disease cycle. At any instant of time t, if phase

τi,j(t) = 0, then the individual at site (i, j) is susceptible; if 1 ≤ τi,j(t) ≤ τI , then it

is infected; if phase τi,j(t) > τI , it is in the refractory stage. For, phase τi,j(t) 6= 0

the dynamics is given by the counter updating by 1 every time step, and at the end

of the refractory period the individual becomes susceptible again, i.e. if τi,j(t) = τ0

then, τi,j(t+ 1) = 0. Namely:

τi,j(t+ 1) = τi,j(t) + 1 if 1 ≤ τi,j(t) < τ0 (1)

= 0 if τi,j(t) = τ0 (2)

Hence the disease progression is a cycle. We consider the typical condition where

the refractory period is longer than the infective stage, i.e. τR > τI . In our simulations,

we chose to keep τI = 4 and τR = 9 with no loss of generality.

The initial fraction of susceptible, infected and refractory individuals in the pop-

ulations are denoted by S0, I0 and R0 respectively. Similarly, the fractions at time t

are denoted by St, It and Rt.

Transmission of infection

Here we consider the condition that a susceptible individual (S) will become infected

(I) if one or more of its nearest neighbours are infected. That is, if τi,j(t) = 0, (namely,

the individual is susceptible), then τi,j(t+1) = 1, if any 1 ≤ τx,y(t) ≤ τI where x, y lies

in its neighbourhood consisting of K nearest individuals. In this study we consider

neighborhoods of two different sites, namely K = 4 and 8. The neighbourhood K =

4 includes the neighbours at sites (i− 1, j), (i+ 1, j), (i, j − 1) and (i− 1, j + 1). The

neighbourhood K = 8 includes the neighbours in K = 4, and additionally includes

the neighbours at sites (i − 1, j − 1), (i − 1, j + 1), (i + 1, j − 1), (i + 1, j + 1). The

3



transmission of infection for both the cases for illustrative examples, are shown in

Fig. 2.

Figure 2: Transmission of infection for both K = 4 and K = 8 cases. It is clear that
for K = 4, infection is transmitted to the individual at positions (i− 1, j), (i+ 1, j),
(i, j−1) and (i−1, j+1), whereas for K = 8, infection is transmitted to the individuals
at (i− 1, j − 1), (i− 1, j + 1), (i+ 1, j − 1), (i+ 1, j + 1) as well.

Tools used to study the model

We used Python along with the some standard external packages for simulations and

analysis. Specifically, we used PyQt5 for simulations, and scipy and matplotlib for

subsequent analysis of the simulation data.

Dynamics of disease progression in a closed population

We now study the dynamics of this SIRS disease model on a 2 dimensional square

lattice. We consider a closed population where there are no individuals beyond the

boundaries to either infect, or be infected by[CH84]. This is implemented by putting

a fixed refractory layer along the boundaries.

We start with an initial population with the initial fraction of infected individuals

I0 = 0.1 while keeping the fractions of susceptible S0 and refractory individuals R0

equal, and satisfying the conditions S0 + I0 + R0 = 1. A random initial condition

with these parameters is shown in Fig. 3a.
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(a) Initial population at T = 0 (b) T = 5

(c) T = 10 (d) T = 15

(e) T = 28 (f) T = 100

Figure 3: Snapshots at various times of a population evolving from a randomly mixed
initial state with the initial fraction of infected individual I0 = 0.1 and fraction of
susceptible and refractory individual S0 = R0 = 0.45. The population is surrounded
by a permanent refractory wall. Here, K = 4.
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Fig. 3 shows wave like patterns emerging after some transient transitions in the

population. The wave-fronts are composed of infected individuals, leaving a trail of

refractory individuals behind. These waves are periodic and seem to originate from

some fixed centers in the population.

Fig. 4 shows time evolution of the fraction of susceptible, infected and refractory

(S, I, and R, respectively) in the population shown in Fig 3. Fig. 4 shows the trend of

S, I and R with time, where the initial fractions I0 = 0.1 and S0 = R0 = 0.45. After

a short transient period, the fractions St, It and Rt repeat periodically over time.

Figure 4: Time evolution of St, It and Rt in the population where I0 = 0.1 and S0 =
R0 = 0.45.

Results

Persistence Order Parameter

To quantify the degree of persistence in the population, we calculate the average

value of the fraction of infected individuals I at asymptotic times and denote this

time averaged quantity as the Persistence Order Parameter 〈I〉. That is

6



〈I〉 = | 1
T

ΣT It| (3)

where T is the length of the time after transience over which the quantity is

averaged. 〈I〉 is nonzero when there is a non-zero fraction of infected individuals in

the population at asypmtotic times and 0 otherwise.

In Fig. 5, we explore the distribution of 〈I〉 for different initial infected fraction I0,

while keeping S0 = R0. We look at this distribution for 500 different random initial

conditions for each I0 fraction, when K = 4 (in blue), as well as when K = 8 (in red).

Fig. 5 counter-intuitively shows that an increase in the initial fraction of infecteds I0

leads to the extinction of infection in a large fraction of populations. This transition

to extinction of infection with increasing I0 is quicker for K = 8 .

7



0.0 0.2 0.4 0.6 0.8 1.0〈
I
〉0.0

0.2

0.4

0.6

0.8

1.0

P(
〈 I〉 )

I0  = 0.05

0.0 0.2 0.4 0.6 0.8 1.0〈
I
〉0.0

0.2

0.4

0.6

0.8

1.0

P(
〈 I〉 )

I0  = 0.1

0.0 0.2 0.4 0.6 0.8 1.0〈
I
〉0.0

0.2

0.4

0.6

0.8

1.0

P(
〈 I〉 )

I0  = 0.15

0.0 0.2 0.4 0.6 0.8 1.0〈
I
〉0.0

0.2

0.4

0.6

0.8

1.0
P(
〈 I〉 )

I0  = 0.2

0.0 0.2 0.4 0.6 0.8 1.0〈
I
〉0.0

0.2

0.4

0.6

0.8

1.0

P(
〈 I〉 )

I0  = 0.35

0.0 0.2 0.4 0.6 0.8 1.0〈
I
〉0.0

0.2

0.4

0.6

0.8

1.0

P(
〈 I〉 )

I0  = 0.4

Figure 5: Distribution of the Persistence Order Parameter 〈I〉 for different initial
fractions of infected individuals I0 in the population. We explore this distribution for
both K = 4 (blue) and K = 8 (red) cases. There is an increasing shift to extinction
of infection in the population as I0 increases, the shift being faster for K = 8 case.
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Global Synchronization Order Parameter

Figure 6: Illustration of the geometric phase of a disease stage in the SIRS disease
cycle.

We first explore the degree of global synchronization in the system, by calculating

synchronization in the population defined as,

σ(t) = | 1
N

ΣN expiφm,n(t) | (4)

where φm,n = 2π(τm,n − 1)/τ0 is a geometrical phase corresponding to the disease

stage τm,n of the individual at site (m,n), as shown in Fig. 6. Here the indices m and

n run over the N infected and refractory individuals in the population. We chose to

include only infected and refractory individuals in this calculation as they contribute

to the deterministic dynamics of the model[GS05].

σ(t) will be closer to 1 if all the individual states in the population are closer to

each other in the disease cycle. To gain a clear understanding of the synchronization in

different populations, we take a look at its time evolution for populations with different

initial fraction of infecteds I0. As evident from Fig. 7, the value of σ(t) asymptotically

stabilizes to small oscillations about a charachteristic value. For I0 = 0.3, its value

reaches 1, which signifies complete synchrony in the asymptotic population.
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Figure 7: Time evolution of the synchronization in the population σ(t) for different
initial fraction of infected individuals. The value of σ(t) stabilizes after some transient
time. Lower values of σ(t) signify larger degree of asynchrony in the population.

We further define the global synchronization order parameter in the population

by looking at the asymptotic time averaged value of synchronization σ(t) in the pop-

ulation. That is,

〈σ〉 = | 1
T

ΣTσ(t)| (5)

We look at the distribution of 〈σ〉 for different fractions of initially infected in-

dividuals, similar to the study done for the persistence order parameter 〈I〉. Fig. 8

shows the distribution of 〈σ〉 for 500 random initial conditions for different values of

I0. There is an increase in the fraction of synchronized populations at asymptotic

times as we increase I0. This shift from asynchrony to complete synchrony is faster

for the case when K = 8.
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Figure 8: Distribution of the synchronization order parameter 〈σ〉 for population with
random initial conditions for different I0. We look at the distribution for both the
cases K = 4 and K = 8.
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Correlation between global synchronization and persistence

Fig. 5 shows us a difference in the distribution of the asymptotic values of the per-

sistence order parameter 〈I〉 for different values of the initial fraction of infecteds I0.

In Fig. 9 below, we look at the ensemble averaged value of 〈I〉, and we denote this

quantity as 〈〈I〉〉. We calculate this quantity for different values of I0 ranging from 0

to 1, averaged over 500 random initial conditions for each I0. The dependence of 〈〈I〉〉
on I0 for K= 4 and K = 8 is shown in Fig. 9. Interestingly, it indicates that the typical

persistence of disease to be expected for the case of larger infective neighbourhoods, is

smaller.

0.0 0.2 0.4 0.6 0.8 1.0
I0

0.00

0.05

0.10

0.15

0.20

0.25

0.30

〈〈 I〉〉

k=4
k=8

Figure 9: Dependence of the ensemble averaged persistence order parameter 〈〈I〉〉 on
the initial fraction of infected individual I0, for K = 4 and K = 8. The window of
persistence, i.e, the range of values of I0 with a non-zero value of 〈〈I〉〉 is smaller for
K = 8 case.

Now, we look at the dependence of the synchronization order parameter on differ-

ent values of I0. We average the synchronization order parameter over 500 random

initial conditions for each I0 and denote this quantity as 〈〈σ〉〉. Fig 10 shows the value

of 〈〈σ〉〉 for different values of I0.
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Figure 10: Dependence of the ensemble averaged synchronization order parameter
〈〈σ〉〉 on the initial fraction of infected individuals I0,for K = 4 and K = 8.

We now correlate the values of the persistence order parameter 〈〈I〉〉 and the

synchronization order parameter 〈〈σ〉〉 obtained for different I0, as shown in Fig. 9 and

Fig. 10 above. Fig. 11 shows the correlation between 〈〈I〉〉 and 〈〈σ〉〉 for populations

with K = 4 and K = 8. It is evident from Fig. 11 that populations with a large value

of synchronization order parameter have a weaker degree of final persistence in the

population.
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Figure 11: Correlation between 〈〈I〉〉 and 〈〈σ〉〉 for K = 4 and K = 8. In both
the cases, there is a monotonic decrease in the persistence order parameter as the
synchronization order parameter increases.

Local Synchronization Order Parameter

Now we explore local synchronization, namely synchronization in the local neighbour-

hood of an individual. This is important, as infection spread is a local contact process

and so the composition of its local neighbourhood is most crucial for an individual.

In order to capture local synchrony, we introduce a measure of local synchronization,

define as:

σ
(i,j)
L (t) = | 1

Nnbr

ΣNN expiφm,n(t) | (6)

where φm,n = 2π(τm,n − 1)/τ0 is a geometrical phase corresponding to the disease

stage τm,n of the individual at site (m,n). Here the indices m and n run over all

infected and refractory individuals in the K neighbourhood of the individual, namely

all neighbours of the individual at site (i, j). When the range of influence of an infected

individual includes only the four nearest neighbours(Fig. 12), we have K = 4 and the

sum runs over the 4 neighbouring sites.
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Figure 12: K = 4 and K = 8 neighbourshoods of the individuals.

In Fig. 13 and Fig. 14, we look at the distribution of σ
(i,j)
L at different time windows,

in 10 random initial conditions for a fixed I0. Specifically, we are looking at the

distribution of σ
(i,j)
L (t) calculated for all the sites in the population during the first

15 time steps of evolution. As evident from Fig. 13, the distribution of transient

local synchronization is similar for different I0 values. The neighbourhoods of a small

fraction of the sites seem to be in perfect synchrony during transience for all the initial

conditions. On the other hand, the distribution of σ
(i,j)
L (t) for each individual during

the asymptotic times is shown in Fig. 14. Here, a sharp difference in the distribution

of σ
(i,j)
L (t) for differnt I0 is evident, with a very small number of neighbourhoods

synchronized for I0 = 0.05 and I0 = 0.1, and a large fraction of the sites with σ
(i,j)
L (t)

= 1 for I0 = 0.2. For I0, all the neighbourhoods in the population are perfectly

synchronized.
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Figure 13: Distribution of the local synchronization in the population during the first
15 time steps, for different values of I0. The distributions shown are for 10 random
initial conditions for each I0.
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Figure 14: Distribution of the local synchronization in the population at asymptotic
times, for different values of I0. The distributions shown are for 10 random initial
conditions for each I0.

We now calculate σ
(i,j)
L (t) averaged over the full lattice 1 ≤ (i, j) ≤ N. This quantity

reflects the average local synchronization in the population and is denoted by σL(t).

That is,

σL(t) = | 1
N

ΣNσ
(i,j)
L (t)| (7)
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We also calculate the Root-Mean-square Deviation of the local synchronization

(RMSD(σL(t))) in the population as follows,

RMSD(σL(t)) =

√
1

N
ΣN(σL(t)− σ(i,j)

L (t))2 (8)

where the index (i,j) run over all the N individuals in the population.

Further, we will consider σL(t) and RMSD(σL(t)) averaged over different time

windows. In Fig. 15, we plot the time and ensemble averaged values of σL(t) and

RMSD(σL(t)) during the asymptotic times for different values of the initial fraction

of infecteds I0. These quantities are averaged over 30 time steps, and for 500 random

initial conditions for each value of I0. We denote these quantities as 〈〈σL(t)〉〉 and

〈〈RMSD(σL(t))〉. The figure also shows the dependence of ensemble averaged per-

sistent order parameter 〈〈I〉〉 on I0 as it was seen in Fig. 9. Fig. 15 shows that the

populations have a lower value of 〈〈σL(t)〉〉 and a higher value of 〈〈RMSD(σL(t))〉〉
in the window of persistence.
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Figure 15: Dependence of the synchronization order parameter 〈〈σL(t)〉〉 and the root-
mean-square deviation in the local synchronization 〈〈RMSD(σL(t))〉〉 on the initial
fraction of infected individuals I0 at asymptotic times. The quantities are averaged
over 30 time steps after transience and for 500 different random initial conditions for
each I0, and K = 4.

Correlation between local synchronization and persistence

In Fig. 16 below, we correlate the asymptotic values of 〈〈I〉〉 and 〈〈σL(t)〉〉 obtained

for different initial fraction of infecteds I0. The figure shows that the degree of per-

sistence in the population decreases as the value of average local synchronization of

the population increases, for both K = 4 and K = 8 .
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Figure 16: Correlation between the ensemble averaged persistent order parameter
〈〈I〉〉 and local synchronization order parameter 〈〈σL(t)〉〉 for population with different
initial fraction of infected individuals I0. The data is shown for both K= 4 and K =
8.

We also explore the correlation between persistence order parameter 〈〈I〉〉 and

asymptotic values of root-mean-square deviation in the local synchronization in the

population 〈〈RMSD(σL(t))〉〉, obtained for different initial fraction of infecteds I0 in

Fig. 17. We find that the degree of persistence in the population increases as the value

of 〈〈RMSD(σL(t))〉〉 increases, when K = 4 and K = 8.
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Figure 17: Correlation between the persistent order parameter 〈〈I〉〉 and
the root-mean-square deviation of the local synchronization in the population
〈〈RMSD(σL(t))〉〉 at asymptotic times with different initial fraction of infected in-
dividuals I0. The figure shows data for both K= 4 and K = 8.

Transient Synchronization

In order to explore the role of transient global synchronization, we introduce a finite-

time synchronization parameter, defined as:

〈σT 〉 =
1

T
ΣT−1
t=0 σ(t) (9)

where σ(t) is given by Eqn. 4. Further we consider an ensemble-averaged value of σT ,

denoted by 〈〈σT 〉〉. This is obtained by averaging over a large sample of initial states

with a specific I0, S0 and R0. In this work we focus on 〈σ15〉, which is the average

value of the synchronization order parameter over the first 15 time steps, a period

roughly equal to the first cycle of the disease.
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Transient Global Synchronization

Fig. 18 shows the ensemble averaged values of 〈σ15〉 for different initial fraction of

infecteds I0 in the population. The quantity is averaged over 500 different random

initial conditions for each I0, for K = 4 and K = 8.
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〈〈 σ 15
〉〉
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Figure 18: Ensemble averaged transient global synchronization 〈〈σ15〉〉 for different
values of I0, for K = 4 and K = 8.

We now correlate the ensemble averaged persistent order parameter 〈〈I〉〉 with

〈〈σ15〉〉 in Fig. 19. It shows a clear transition from persistence to extinction of the

infection as the transient synchrony in the population increses.
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Figure 19: Correlation of the ensemble averaged persistent order parameter 〈〈I〉〉 with
the ensemble and time averaged transient average local synchronization 〈〈σ15〉〉 in the
population for K = 4 and K = 8.

Transient Local Synchronization

We also inquire into the role of transient local synchronization in the population by

introducing the transient local synchronization order parameter, given by:

〈σL,T 〉 =
1

T
ΣT−1
t=0 σL(t) (10)

We also investigate another parameter that quantifies the average root-mean-

square deviation in the local synchronization RMSD(σL(t)) during transience, given

as:

〈RMSD(σL,T )〉 =
1

T
ΣT−1
t=0 RMSD(σL(t)) (11)

where σL(t) and RMSD(σL(t)) are given by Eqn. 7 and Eqn. 8. Similar to our

analysis of the transient global synchronization, we focus on 〈σL,15〉 and 〈RMSD(σL,15)〉.
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In Fig. 20 below, we look at the correlation between 〈〈I〉〉 and the ensemble averaged

value of the transient average local synchronization 〈σL,15〉. These values are averaged

for 500 random initial conditions for each I0 for K = 4 and K = 8. The figure shows a

sharp transition in 〈〈I〉〉, its value being finite only below a certain value of 〈σL,15〉 for

both K = 4 and K = 8. So it is evident that some degree of transient local asynchrony

is crucial to the survival of the infection in the long run.
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Figure 20: Correlation between the ensemble averaged persistent order parameter
〈〈I〉〉 and the transient local synchronization order parameter 〈〈σL,15〉〉 for K = 4 and
K = 8.

We also explore the correlation between 〈〈I〉〉 and the ensemble averaged value

of the root-mean-square deviation in local synchronization during transience. Fig. 21

shows this correlation between 〈〈I〉〉 and 〈〈RMSD(σL,15)〉〉 obtained for differnt initial

fraction of infecteds I0, where the values are averaged over 500 random initial condi-

tions for each I0. Again, the figure shows a sharp transition in 〈〈I〉〉 with an increase

in 〈〈RMSD(σL,15)〉〉 depicting that a significant variance in the synchronization of

different neighbourhoods in the population during transience can lead to a higher degree

of persistence in the population.
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Figure 21: Correlation between the ensemble averaged values of persistent order pa-
rameter 〈〈I〉〉 and the root-mean-square deviation of the local synchronization in the
population 〈〈RMSD(σL,15)〉〉 during transience with different initial fraction of in-
fected individuals I0. The figure shows data for both K= 4 and K = 8.

Discussion

Our analysis of the synchronization in the disease cycle of individuals in a population

shows that early asynchrony in the population, both globally and at the local level

appear to be a consistent precursor to future persistence of infection. This is an

important indication, since it can provide valuable early warning signals for a higher

degree of persistence of infectionin a population, thus enabling us to take suitable

early action.
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