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Abstract

Riemann - Roch Theorem plays a significant role in the theory of Riemann Surfaces,

which gives us certain estimate about number of linearly independent meromorphic

functions subject to certain restrictions on their poles. In this dissertation we will

understand the prerequisites of Riemann - Roch Theorem and will use the tools of

sheaf, cohomology theory to describe it. We will generalize it and try to give a

generalised proof of the theorem.
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Chapter 1

Introduction

Definition 1.1. A manifold is defined to be a topological space such that every point

has a neighbourhood that is homeomorphic to the Euclidean space.

Definition 1.2. An n- dimensional topological manifold is defined to be a Hausdorff

space that locally resembles a Euclidean space of dimension n and is second count-

able. All the manifolds discussed herewith are topological manifolds.

Definition 1.3. Let A be an open subset of P , where P is a two-dimensional manifold

and B be an open subset of C. We define a complex chart on P by a homeomorphism

γ : A→ B.

We define holomorphically compatible if

γ2 ◦ γ1
−1 : γ1(A1 ∩ A2)→ γ2(A1 ∩ A2)

where γj : Aj → Bj, j = 1, 2, is biholomorphic.

Definition 1.4. A holomorphically compatible system of charts, S = {γj : Aj →

Bj, j ∈ J} which cover P , i.e.,
⋃
j∈J

Aj = P is called a complex atlas on P .
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Definition 1.5. If every chart of S is holomorphically compatible with every chart of

S′, where S and S′ are two complex atlases on P , then we say that the two atlases

are analytically equivalent.

Definition 1.6. The analytically equivalent atlases forms an equivalence class. This

equivalence class is defined as the complex structure on a two-dimensional manifold

P .
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1.1 Riemann Surfaces

Definition 1.7. Let P be a connected two-dimensional manifold. Then the pair (P,Γ)

is called a Riemann surface, where Γ is a complex structure on P .

Examples of Riemann Surfaces

(a) The Complex Plane C. We take the mapping, identity : C → C. This map is a

chart and this chart forms an atlas. This atlas further constitutes the complex structure

on C

(b) Tori. Take λ1, λ2 ∈ C. Let it be linearly independent over R. Now define a lattice

traversed by λ1 and λ2 as

Λ := Zλ1 + Zλ2 = {gλ1 + hλ2 : g, h ∈ Z}.

If z, z′ ∈ C are such that z − z′ ∈ Λ, then z, z′ are said to be equivalent mod Λ.

Let C/Λ represent the equivalence class. Let µ : C → C/Λ link each z ∈ C its

equivalence class mod Λ.

Now, we define a topology on C/Λ. We define A ⊂ C/Λ to be open if µ−1(A) ⊂ C

is open. Given this topology C/Λ represents a Hausdorff topological space and also

have µ : C → C/Λ to be continuous. Again C is connected. Thus, C/Λ is also

connected. Also, the compact parallelogram

P := {αλ1 + βλ2 : α, β ∈ [0, 1]}

covers C/Λ under µ. So, C/Λ is compact. Again we have B̂ := µ−1(µ(B)) is open

as

B̂ =
⋃
λ∈Λ

(λ+B)
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and every set λ + B is open and so is B̂. As a result B ⊂ C is open, implying that µ

is open.

Now we define the complex structure on C/Λ. Let B ⊂ C be open. Let B has no

two points that are equivalent under Λ. Then A := µ(B) is open and µ|B → A is a

homeomorphism. The mapping γ : A → B represents its inverse and also forms a

complex chart on C/Λ. Denote by S the charts acquired in this way. Now to prove

the holomorphical compatibility of γj : Aj → Bj, j = 1, 2, in S take the map

χ := γ2 ◦ γ1
−1 : γ1(A1 ∪ A2)→ γ2(A1 ∪ A2).

We have µ(χ(z)) = γ1
−1(z) = µ(z) for z ∈ γ1(A1∪A2), implying that χ(z)−z ∈ Λ.

Thus, on every connected component of γ1(A1 ∪A2), χ(z)− z is constant as we have

Λ to be discrete and χ continuous. This gives us χ to be holomorphic. In the same

way, χ−1 is also holomorphic. Thus, the atlas S defines a complex structure on C/Λ.

Definition 1.8. Let Q be an open subset of P (P is a Riemann surface). Let g : Q →

C. Let for every chart χ : A→ B,

g ◦ χ−1 : χ(A ∩Q)→ C

be holomorphic on the set χ(A ∩Q) ⊂ C, open. Then g is said to be holomorphic.
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1.2 Some Definitions and Properties of Riemann sur-

faces

Definition 1.9. Let g : P → Q be a continuous mapping, where P andQ are Riemann

surfaces. If

χ2 ◦ g ◦ χ1
−1 : B1 → B2

is holomorphic in the usual sense, for every pair of charts χ1 : A1 → B1 on P and

χ2 : A2 → B2 on Q with g(A1) ⊂ A2, then we say that g is holomorphic.

Theorem 1.10. (Identity Theorem) Let g1, g2 : P → Q be two holomorphic map-

pings, where P and Q are Riemann surfaces. Then g1 and g2 are identically equal if

they coincide on a set X ⊂ P having a limit point x ∈ P .

Definition 1.11. Let Q be an open subset of a Riemann surface P . Let Q′ be an

open subset of Q and g : Q′ → C be a holomorphic function. Then g is called a

meromorphic function on Q if the following hold:

(i) Q\Q′ contains only isolated points.

(ii) For every point s ∈ Q\Q′ one has

lim
y→s
|g(y)| =∞.

M(Q) denotes the set of all meromorphic function.

Theorem 1.12. Every holomorphic function on a compact Riemann surface is con-

stant.
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Theorem 1.13. (Liouville’s Theorem) Let g : C → C be a bounded holomorphic

function. Then g is constant.
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1.3 Homotopy of Curves

Definition 1.14. Let x, y ∈ P , where P is a topological space. Let g, h : J → P be

two curves from x to y. Let T : J × J → P be a continuous mapping such that:

(i) T (l, 0) = g(l) for every l ∈ J ,

(ii) T (l, 1) = h(l) for every l ∈ J ,

(iii) T (0, k) = x and T (1, k) = y for every k ∈ J .

then g ∼ h are called homotopic.

Theorem 1.15. Let there be a topological space P . And let us suppose that x, y be

in P . Define curves from x to y. These curves forms an equivalence relation. Then

x ∼ y is defined by this equivalence relation.

Definition 1.16. Let x be in P . Here P is a topological space. Define a0 : J → P by

a0(l) = x for every l ∈ J . Then a0 is called the constant curve at x.

Definition 1.17. Let P be a topological space. Define a : J → P a curve in P such

that a(0) = a(1). Then a is said to be closed.

Definition 1.18. Let a be a closed curve such that the initial and end point of the

curve a be x. Define a0 to be the constant curve at x. Let a ∼ a0. Then a is called

null-homotopic.

Definition 1.19. Let P be a topological space. Let f, g, h ∈ P . Define curves from

f to g and from g to h by x : J → P and y : J → P respectively. Define the map

x · y : J → P , from f to h as follows:

(x · y)(l) := {x(2l) for 0 ≤ l ≤ 1

2
, y(2l − 1) for

1

2
≤ l ≤ 1.
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Then x · y is called the product curve.

Definition 1.20. Let x be a point in P . Here P is a topological space. Let the

homotopy classes of curves in P be denoted by µ1(P, x). Let the curves in µ1(P, x)

be also closed such that x is the initial and end point. We define product of the curves

to be an operation on µ1(P, x). With this operation it forms a group. It is given the

name the fundamental group of P having base point x.

Definition 1.21. Let P be a topological space. We also suppose P to be arcwise

connected and µ1(P ) = 0. Then P is said to be simply connected.
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1.4 Coverings

Definition 1.22. Let P and Q be two topological spaces. Define a continuous map

g : Q→ P . Then by a fiber of g over p, we mean the set g−1(p), where p is in P .

Definition 1.23. Let P , Q and R be topological spaces and we define continuous

maps g : Q→ P and h : R→ P . Let k : Q→ R with g = h ◦ k, then k is said to be

fiber-preserving.

Definition 1.24. Let P and Q be Riemann surfaces. Define a holomorphic map

g : P → Q. The map g is not constant. Let q be a point in Q. Suppose B is a

neighbourhood of q. We have B with g|B (g restrict to B) not injective. Then q is

called a ramification point of g.

Definition 1.25. Lifting of Mappings: Consider two continuous maps g : Q → P

and h : R→ P . Here P , Q and R are topological spaces. Define another continuous

map k : R → Q. Let the map k be defined in such a way that h = g ◦ k. Then k is

called a lifting of h with respect to g.

Definition 1.26. Let P and Q be topological spaces. Define a mapping g : Q → P .

Let us suppose g be such that every point p ∈ P has an open neighbourhood A with

g−1(A) =
⋃
i∈I

Bi,

where Bi ⊂ Q are open and disjoint and g|Bi → A are homeomorphisms. Then g is

said to be a covering map.

Theorem 1.27. (Uniqueness of Lifting.) Define a local homeomorphism g : Q → P

between two Hausdorff spaces P and Q. Let R be a connected topological space.
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Define h : R → P . Let h be continuous. Now again define f1, f2 : R → Q which are

two liftings of h. The map f1 and f2 are such that f1(r0) = f2(r0) for r0 ∈ R, where

r0 is a point in R. Then we have f1 = f2

Definition 1.28. Let P and Q be topological spaces. Define a continuous map

g : Q → P . Let every curve a : [0, 1] → P defined by g(q0) = a(0), has a lifting

â : [0, 1]→ Q of a defined by â(0) = q0. Then, g has the curve lifting property.

Theorem 1.29. Let P and Q be topological spaces. Let g : Q → P be a covering

map. Then g has the curve lifting property.

Proof Suppose a : [0, 1]→ P is a curve and q0 ∈ Q with g(q0) = a(0). Because of

the compactness of [0, 1], ∃ a partition

0 = l0 < l1 < · · · < lm = 1

and open sets Ai ⊂ P , i = 1, · · · ,m, with the following properties:

(i) a([li−1, li]) ⊂ Ai,

(ii) g−1(Ai) =
⋃
k∈Ki

Bik,

where the Bik ⊂ Q are open sets such that g | Bik → Ai are homeomorphisms. Now

we shall prove by induction on i = 0, 1, · · · ,m the existence of a lifting â | [0, li]→ P

with â(0) = q0. For i = 0 this is trivial. So suppose i ≥ 1 and â | [0, li−1] → P is

already constructed and let â(li−1) =: qi−1. Since g(qi−1) = a(li−1) ∈ Ai, ∃ k ∈ Ki

such that qi−1 ∈ Bik. Let χ : Ai → Bik be the inverse of the homeomorphism

g | Bik → Ai. Then if we set

â | [li−1, li] := χ ◦ (a | [li−1, li]),
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we obtain a continuous extension of the lifting â to the interval [0, li]. Proved.

Definition 1.30. Let g : Q → P be a covering map, where P and Q are connected

topological spaces. Let R be another connected topological space and h : R→ P be

another covering map. Suppose q0 ∈ Q and r0 ∈ R with g(q0) = h(r0) be points such

that there exists a continuous fiber-preserving mapping x : Q → R with x(q0) = r0.

Then g is said to be the universal covering if the above is true for every covering map

h and every choice of points q0 and r0 with g(q0) = h(r0).

Theorem 1.31. Let P be a connected manifold. Then there exists a connected, simply

connected manifold P̃ and a covering map g : P̃ → P.

Definition 1.32. Let g : Q→ P be a covering map between two topological spaces P

and Q. A fiber-preserving homeomorphism x : Q → Q is called a covering transfor-

mation or deck transformation of this covering. The set of all covering transformation

g : Q → P forms a group, with the group operation the composition of mappings.

This group is denoted by Deck(Q/P ).

Example

exp : C → C∗ is the universal covering of C∗, since C is simply connected. For

m ∈ Z let ξm : C→ C be translation by 2πim. Then exp(ξm(z)) = exp(z+2πim) =

exp(z) for every z ∈ C and thus ξn is a covering transformation. If ζ is any covering

transformation, then exp(ζ(0)) = exp(0) = 1 and thus there exists m ∈ Z such that

11



ζ(0) = 2πim. Since ξm(0) = 2πim as well, ζ = ξm. Thus

Deck(C exp−−→ C∗) = {ξm : m ∈ Z}

12



1.5 Sheaves

Definition 1.33. Let P be a topological space and C be the system of open sets in P .

A presheaf of abelian groups on P is a pair (Y, η) consisting of

(i) a family Y = (Y(A))A∈C of abelian groups,

(ii) a family η = (ηAB)A,B∈C,B⊂A of group homomorphisms

ηAB : Y(A)→ Y(B), where B is open in A

with the following properties:

ηAB = idY(A) for every A ∈ C,

ηBD ◦ ηAB = ηAD for D ⊂ B ⊂ A.

Definition 1.34. Let P be a topological space and Y be the presheaf on P . If for every

open set A ⊂ P and every family of open subsets Ak ⊂ A, k ∈ K, with A =
⋃
k∈K

Ak

the following Sheaf Axioms are satisfied:

(I) If x, y ∈ Y(A) are elements such that x | Ak = y | Ak for every k ∈ K, then

x = y.

(II) Given elements xk ∈ Y(Ak), k ∈ K, such that

xk | Ak ∩ Al = xl | Ak ∩ Al for all k, l ∈ K,

then there exists an x ∈ Y(A) such that x | Ak = xk for every k ∈ K. Then, the

presheaf Y is called a sheaf.

Definition 1.35. The Stalk of a Presheaf: Suppose Y is a presheaf of sets on a

topological space P and p ∈ P is a point. On the disjoint union⊔
p∈A

Y(A),

13



where the union is taken over all the open neighbourhoods A of p, introduce an

equivalence relation ∼
p

as follows: Two elements x ∈ Y(A) and y ∈ Y(B) are

related x ∼
p
y precisely if there exists an open set D with p ∈ D ⊂ A ∩ B such that

x | D = y | D. The set Yp of all equivalence classes, the so- called inductive limit of

Y(A), is given by

Yp := lim−→
p∈A

Y(A) :=

( ⊔
p∈A

Y(A)

)/
∼
p

and is called the stalk of Y at the point p.

For any neighbourhood A of p, let

ηp : Y(A)→ Yp

be the mapping which assigns to each element x ∈ Y(A) its equivalence class modulo

∼
p

. One calls ηp(x) the germ of x at p.

14



1.6 Differential Forms

Some Notations

Let P be a Riemann surface and Q ⊂ P be open. We define a mapping g : Q → C

such that for every A ⊂ Q and Q ⊂ C the chart h : A→ B has a function g̃ ∈ H(B),

with g | A = g̃ ◦ h. Here H(B) represents the C- algebra of all those functions

j : B → C which are infinitely differentiable. Now, let H(B) consists all such

functions g. ThisH forms a sheaf of differential functions onX along with the natural

restriction mappings on it.

Now, we denote byHp the stalk at a point p in P . The germs of differential functions

at the point p is contained in this stalk. The function germs which vanish at the point

p are denoted by np. This is a vector subspace of Hp. And by n2
p ⊂ np we denote the

vector subspace of the function germs which vanish to second order.

Definition 1.36. The cotangent space of P at a point p is defined to be

L(1)
p :=

np
n2
p

Definition 1.37. Let Q subset of P be open, where P is a Riemann Surface. Define

$ : Q→
⋃
p∈Q

L(1)
p .

Here $(p) ∈ L(1)
p for every p ∈ Q. Then this mapping is called a 1− form on Q or

a differential form of degree one.

15



Example

Let p ∈ Q, then for g ∈ H we define 1 − forms by the mappings (dg)(p) := dpg,

(d′g)(p) := d′pg and (d′′g)(p) := d′′pg.

Definition 1.38. The Exterior Product: We define the exterior product ∧2B on a

vector space B over C to consist of finite sum of elements of the form b1 ∧ b2, where

b1, b2 ∈ B. Again for b1, b2, b3 ∈ B and α ∈ C, we have the following:

(b1 + b2) ∧ b3 = b1 ∧ b3 + b2 ∧ b3

(αb1) ∧ b2 = α(b1 ∧ b2)

b1 ∧ b2 = −b2 ∧ b1.

Also, ek ∧ el, k < l forms a basis for ∧2B, where (ek, · · · , em) is a basis of B.

This exterior product can be applied to L(1)
p and we define:

L(2)
p := ∧2L(1)

p .

Definition 1.39. Now, just as a 1− form we can also define a 2− form, which is a

mapping

$ : Q→
⋃
p∈Q

L(2)
p

with $(p) ∈ L(2)
p , for p ∈ Q.

Example

LetH(1)(Q) be the vector space of differential 1−forms onQ and$1, $2 ∈ H(1)(Q).

We define a 2− form,H(2)(Q) by

($1 ∧$2)(p) := $1(p) ∧$2(p)

16



with $1 ∧$2 ∈ H(2)(Q) and p ∈ Q.

Definition 1.40. Let P be a Riemann surface andQ ⊂ P be open. Then$ ∈ H(1)(Q)

is said to be closed if d$ = 0. It is called exact if $ = dg for a g ∈ H(Q).

Theorem 1.41. Let P be a Riemann surface and Q subset of P be open. Let Θ(Q)

denote the vector space of holomorphic 1-forms on Q and H1,0(Q) represents the

subspace ofH(1)(Q) of differential forms of type (1, 0). Then we have the following:

(i) $ is closed for every $ ∈ Θ(Q).

(ii) $ is holomorphic for every closed $ ∈ H1,0(Q).
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Chapter 2

Compact Riemann Surfaces

2.1 Cohomology Groups

Definition 2.1. Let Y be a sheaf of abelian groups on a topological space P . Let A =

(Ak)k∈K be a open covering on P such that
⋃
k∈K Ak = P . Then the yth cochain group

of Y is defined as

Zy(A,Y) :=
∏

(k0,··· ,ky)∈Ky+1

Y(Ak0 ∩ · · · ∩ Aky)

with respect to A and for y = 0, 1, 2, · · ·

The elements of Zy(A,Y) are called y − cochains.

Definition 2.2. Define

ϑ : Z0(A,Y)→ Z1(A,Y)

ϑ : Z1(A,Y)→ Z2(A,Y)

18



the coboundary operators as follows:

(a) Let ϑ((hk)k∈K) = (lki)k,i∈K with (hk)k∈K ∈ Z0(A,Y) and

lki := hi − hk ∈ Y(Ak ∩ Ai).

(b) Let ϑ((hki)) = (lkin) with (hki)k,i∈K ∈ Z1(A,Y) and

lkin := hin − hkn + hki ∈ Y(Ak ∩ Ai ∩ An).

The coboundary operators are group homomorphisms.

Definition 2.3. We define 1− cocycles as the elements of R1(A,Y), where

R1(A,Y) := ker(Z1(A,Y)
ϑ−→ Z2(A,Y)).

Definition 2.4. A 1− coboundaries is defined to be the elements of G1(A,Y), where

G1(A,Y) is defined as

G1(A,Y) := Im(Z0(A,Y)
ϑ−→ Z1(A,Y)).

Definition 2.5. We define the 1st cohomology group with respect to the covering A,

to be the group

H1(A,Y) := R1(A,Y)/G1(A,Y)

with coefficients in Y.

Definition 2.6. Let B = (Bn)n∈N and A = (Ak)k∈K be two open covering of P .

Then B is said to be finer than A if every Bn is contained in at least one Ak. As a

result, a mapping ς : N → K can be defined with Bn ⊂ Aςn for n ∈ N .

With ς another map can be defined as follows:

sAB : R1(A,Y)→ R1(B,Y)
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such that sAB((hki)) = (lnm) with (hki) ∈ R1(A,Y) and for n,m ∈ N

lnm := hςn, ςm | Bn ∩Bm.

It induces a homomorphism of the cohomology groups sAB : H1(A,Y)→ H1(B,Y).

Definition 2.7. H1(P,Y): Define three open coverings on P , N,B,A such that

N < B < A then

sBN ◦ sAB = sAN.

Here, let A run over all open coverings of P , then on the disjoint union of H1(A,Y),

two cohomology classes % ∈ H1(A,Y) and υ ∈ H1(A′,Y) are equivalent, % ∼ υ if

∃ an open covering B < A and B < A′ with sAB(%) = sA
′

B (υ). The inductive limit,

H1(P,Y) of H1(A,Y) is the set of equivalence classes, i.e.

H1(P,Y) = lim
A
H1(A,Y) =

(⊔
A

H1(A,Y)

)/
∼

Theorem 2.8. Let H be the sheaf of differential functions on a Riemann surface P .

Then we have H1(P,H) = 0.

Proof Consider A = (Ak)k∈K an arbitrary open covering of P . Then we have

(νk)k∈K , with νk ∈ H(P )
(
H(P ) represents differential functions with compact

support
)
, such that:

(i) Supp(νk) ⊂ Ak.

(ii) Every point of P has a neighbourhood meeting only finitely many of the sets

Supp(νk).

20



(iii)
∑

k∈K νk = 1.

We will show that H1(A,H) = 0, i.e., every cocycle (hki) ∈ R1(A,H) splits.

We have the function νihki defined on Ak ∩ Ai. By taking νihki = 0 outside its

support this function can be differentiably extended to the whole of Ak. Thus it may

be considered as an element of H(Ak). Now let lk :=
∑
i∈K

νihki. This sum has only

finitely many terms which are not zero in a neighbourhood of any point in Ak by (ii).

Thus, it defines an element lk ∈ H(Ak). Now on Ak ∩ Ai and for k, i ∈ K, we have

lk − li =
∑
n∈K

νnhkn −
∑
n∈K

νnhin =
∑
n

νn(hkn − hin)

=
∑
n

νn(hkn + hni) =
∑
n

νnhki = hki.

Thus, (hki) is a coboundary. Proved.

Lemma 2.9. The mapping

sAB : H1(A,Y)→ H1(B,Y)

is injective.

Theorem 2.10. Let P be a topological space. Let A = (Ak)k∈K be an open covering

of P and let Y be the sheaf of abelian groups on P . Let H1(Ak,Y) = 0, k ∈ K, then

we define the A as a Leray covering for the sheaf Y if

H1(P,Y) ∼= H1(A,Y).
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Proof It is enough to prove that for every open covering B = (Bγ)γ∈U , with B < A,

the mapping sAB : H1(A,Y)→ H1(B,Y) is an isomorphism. From Lemma 2.9 this

map is injective.

Now, we define a refining map ε : U → K such that Bγ ⊂ Aεγ , γ ∈ U . We need

to show that given any cocycle (hγδ) ∈ R1(B,Y), there exists a cocycle (Tki) ∈

R1(A,Y) such that the cocycle (Tεγ,εδ) − (hγδ) is cohomologous to zero relative to

the covering B. Denote by Ak ∩B the open covering (Ak ∩Bγ)γ∈U of Ak. We have

H1(Ak ∩B,Y) = 0 (by assumption).

Thus, ∃ lkγ ∈ Y(Ak ∩Bγ) such that

hγδ = lkγ − lkδ on Ak ∩Bγ ∩Bδ.

Also,

liγ − lkγ = liδ − lkδ on Ak ∩ Ai ∩Bγ ∩Bδ.

As a result, there exists

Tki ∈ Y(Ak ∩ Ai)

such that

Tki = liγ − lkγ on Ak ∩ Ai ∩Bγ (by sheaf axiom II).

Here (Tki) lies in R1(A,Y) as it satisfies the cocycle relation. Now, let oγ := lεγ, γ |

Bγ ∈ Y(Bγ). Then

Tεγ, εδ − hγδ = (lεδ, γ − lεγ, γ)− (lεδ, γ − lεδ, δ)

= lεδ, δ − lεγ, γ = oδ − oγ on Bγ ∩Bδ.

Thus, (Tεγ, εδ)− (hγδ) splits. Proved.
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Definition 2.11. Let P be a topological space and A = (Ak)k∈K be an open covering

of P . Define Y to be a sheaf of abelian groups on P . Define

R0(A,Y) := ker(Z0(A,Y)
ϑ−→ Z1(A,Y)),

G0(A,Y) := 0,

H0(A,Y) := R0(A,Y)/G0(A,Y) = R0(A,Y).

If hk | Ak ∩Ai = hi | Ak ∩Ai, k, i ∈ K then a 0− cochain (hk) ∈ Z0(A,Y) belongs

to R0(A,Y) (ϑ definition). Again, the elements hk together give a h ∈ Y(P ) (by

sheaf axiom II). Also,

H0(A,Y) = R0(A,Y) ∼= Y(P )

is a natural isomorphism. As a result, we can define

H0(P,Y) := Y(P )

as H0(A,Y) is entirely independent of the covering A.
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2.2 Some Properties of Cohomology Groups

Lemma 2.12. Let l ∈ H(C) has compact support. Then, we have a h ∈ H(C) such

that
dh

dz̄
= l.

Theorem 2.13. Let P := {z ∈ C : |z| < R}, 0 < R ≤ ∞, and l ∈ H(P ). Then, we

have h ∈ H(P ) such that
dh

dz̄
= l.

Corollary 2.14. Suppose P is as defined in the previous theorem. Then for l ∈ H(P ),

∃ h ∈ H(P ) such that4h = l with4 the Laplace operator,

4 =
∂2

∂x2
+

∂2

∂y2
= 4

∂2

∂z ∂z̄
.

Theorem 2.15. Let P := {z ∈ C : |z| < R}, 0 < R ≤ ∞. Then H1(P,S) = 0.

Theorem 2.16. We have H1(P1,S) = 0, where P1 is the Riemann sphere and S is

the sheaf of holomorphic functions.
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Proof LetA1 := P1\∞ andA2 := P1\0. Now, asA1 = C andA2 is biholomorphic

to C, thus

H1(Ak,S) = 0 (by Theorem 2.15).

As a result we get a Leray covering of P1, A = (A1, A2). Also,

H1(P1,S) = H1(A,S) (by Theorem 2.10).

Therefore, it is enough to prove that every cocycle (hki) ∈ R1(A,S) splits, i.e., for

hk ∈ S(Ak) and A1 ∩ A2 = C∗ we need

h12 = h1 − h2.

Let us suppose

h12(z) =
∞∑

m=−∞

αmz
m

be the Laurent expansion of h12 on C∗. Let

h1(z) :=
∞∑
m=0

αmz
m and h2(z) := −

−1∑
m=−∞

αmz
m,

which gives us h1− h2 = h12 for hk ∈ S(Ak). Proved.
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2.3 Towards the Riemann-Roch Theorem

Theorem 2.17. Let Q1 b Q2 ⊂ P be open, where P is a Riemann surface and

Q1 b Q2 means that Q1 compactly contained in Q2. Then, the image of

H1(Q2,S)→ H1(Q1,S)

is finite dimensional.

Corollary 2.18. We have the dimH1(P,S) <∞, if P is a compact Riemann surface.

Definition 2.19. We define

l := dim H1(P,S)

as the genus of P , where P is a compact Riemann surface.

Theorem 2.20. Let Q b P be a relatively compact open subset of the Riemann

surface P . Let p ∈ Q be a point. Then, there exists a h ∈M(Q) which is holomorphic

on Q \ {p} and having a pole at p, for every such p.

Theorem 2.21. Let Q b Q′ ⊂ P , where P is a non-compact Riemann surface. Then

Im(H1(Q′,S)→ H1(Q,S)) = 0
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Definition 2.22. Let P be a topological space and we define Y and G as the sheaves

of abelian groups on P . Then we define a sheaf homomorphism γ : Y → G to be a

family of group homomorphisms

γA : Y(A)→ G(A) (A open in P ),

which are compatible with the restriction homomorphisms.

Definition 2.23. The Kernel of a Sheaf Homomorphism: Let P be a topological

space. Now define Y and G to be sheaves on P . Let γ : Y → G be a sheaf

homomorphism. Now for A ⊂ P , open define

K(A) := Ker(Y(A)
γ−→ G(A)).

The family of groups K(A), together with the restriction homomorphisms induced from

the sheaf Y, is again a sheaf. It is called the kernel of γ and is denoted by K = Ker γ.

Examples

On any Riemann surface one has

(a) S = Ker(H d′′−→ H(0,1)),

(b) Θ = Ker(H(1,0) d−→ H(2)),

(c) Z = Ker(S ex−→ S∗).

Theorem 2.24. Dolbeault’s Theorem: Let P be a Riemann surface. Then there are

isomorphisms

(a) H1(P,S) ∼= H0,1(P )/d′′H(P )

(b) H1(P,Θ) ∼= H(2)(P )/dH1,0(P ).
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2.4 The Riemann-Roch Theorem

Definition 2.25. Define a mapping

W : P → Z

such that W (p) 6= 0 for finitely many p ∈ N , where N is any compact subset of the

Riemann surface P . Then W is called the divisor on P .

The set of all divisors on P denoted by Div(P ) is an abelian group with addition as

the group operation.

Definition 2.26. Degree of a Divisor: Let P be a compact Riemann surface. Then

we have only finitely many p ∈ P with W (p) 6= 0 for every W ∈ Div(P ). Hence we

define a mapping

deg : Div(P )→ Z

by

deg W :=
∑
p∈P

W (p).

This map is called the degree.

Definition 2.27. The Sheaves SW : Let A ⊂ P be open. Let P be a Riemann surface

and W be a divisor on P . Then the set of all those meromorphic functions on A which

are multiples of the divisor −W are defined by SW , i.e.,

SW (A) := {h ∈M(A) : ordp(h) ≥ −W (p) for every p ∈ A}.

SW is a sheaf.

Theorem 2.28. Let W ∈ Div(P ) be a divisor with deg W < 0, where P is a

compact Riemann surface. Then H0(P,SW ) = 0.
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Proof We proof it by contradiction. Let there exists an h ∈ H0(P,SW ) with h 6= 0.

Then (h) ≥ −W and thus

deg(h) ≥ −deg W > 0

but deg(h) = 0, a contradiction. Proved.

Corollary 2.29. Let W ≤ W ′ be divisors on a compact Riemann surface P . Then the

mapping SW → SW ′ induces an epimorphism

H1(P,SW )→ H1(P,SW ′)→ 0.

Theorem 2.30. The Riemann-Roch Theorem: Let P be a compact Riemann surface

of genus l. Suppose W is a divisor on P . Then

dim H0(P,SW )− dim H1(P,SW ) = 1− l + deg W,

where H0(P,SW ) and H1(P,SW ) are finite dimensional vector spaces.

Proof (i) For W = 0 we have H0(P,S) = S(P ), which consists of only constant

functions thus giving dim H0(P,S) = 1 and dim H1(P,S) = l(by definition). Thus,

the Riemann-Roch holds for W = 0.

(ii) Let W ′ = W + V , V ∈ P . V be the divisor which takes the value 1 at V and 0

otherwise. Let the theorem be true for one of the divisor W , W ′. We have the exact

cohomology sequence

0→ H0(P,SW )→ H0(P,SW+V )→ C
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→ H1(P,SW )→ H1(P,SW+V )→ 0

which can be split into two short exact sequences. Define

U := Im(H0(P,SW ′)→ C)

and

Y := C/U.

The vector spaces are finite dimensional and we have

dim H0(P,SW ′) = dim H0(P,SW ) + dim U

dim H1(P,SW ) = dim H1(P,SW ′) + dim Y

Adding

dimH0(P,SW ′)−dimH1(P,SW ′)−deg W ′ = dimH0(P,SW )−dimH1(P,SW )−deg W

Implying that, if the Riemann-Roch theorem holds for one of the two divisors, then it

also holds for the other. And the Riemann-Roch theorem holds for the divisor W = 0.

Thus, it also holds for all W ′ ≥ 0.

(iii) We can write any arbitrary divisor W as

W = V1 + · · ·+ Vn − Vn+1 − · · · − Vo

where, Vi ∈ P and starting with the zero divisor and using induction, we can prove

that the Riemann-Roch Theorem holds for any divisor W . Proved.

Theorem 2.31. Let P be a compact Riemann surface. Let l be the genus of P . Then

on P , ∃ a meromorphic function g having pole of order ≤ l + 1 at u which is non-

constant and is otherwise holomorphic. Here u ∈ P is a point.
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Proof Define a map

W : P → Z,

by

W (u) = l + 1

and for p 6= u,

W (p) = 0.

This is the divisor on P . Then,

dimH0(P,SW ) ≥ 1− l + deg W = 2 (from the Riemann−Roch Theorem).

Thus, a function fulfilling the condition of the theorem, g exists in H0(P,SW ). Also,

g 6= constant. Proved.
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