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Abstract

As a new kind of state of the materials, topological insulators have been intensively

studied by researchers very recently. The name is a little confusing. It does not have

anything to do with the shape or with some abstract topology, and the interesting fea-

ture is not the insulating. The main feature of topological insulators is that they carry

current along the surface but do not conduct current through the bulk of the material.

We know the electrons spin in a quantum mechanical manner and encounter random

collisions with other atoms and electrons, and produce magnetic field but spinning

electrons on the surface of a topological insulator are protected from disruption by any

quantum effects that’s why we call them topologically protected. This exciting feature

can make materials beneficial for spin related electronics, which would use the orien-

tation of the electron spin to encode information. Topological Insulators bring a great

opportunity to expand our understanding of solid state physics. Their applicability

could also span the area of quantum computation. In my thesis work, I would try to

deliver the basic understanding of these materials and their behavior with the help of

some models. I would try to search for the non-trivial topology in double-exchange

models via interaction of conduction electrons with localized moments. I would also

like to extend this work ahead as there is so much to discover in this area and also it

is the most interesting field for researchers in the condensed matter physics.

vii
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Chapter 1

Introduction

1.1 Overview

We see different types of materials around us. The difference is characterised in terms

of qualitatively different physical properties. For example, based on the electrical

transport properties we can classify materials as metals, insulators, semi-conductors

and superconductors. The band theory of electrons[Kit66] was one of the greatest

discovery of quantum mechanics in the 1920s which could successfully describe all

aforementioned behaviors except superconductivity. In a band insulator, completely

filled bands are separated by an energy gap from completely empty bands, the gap

represents the energy cost to mobilize electrons. In contrast, materials with partially

filled bands are conductors.

The discovery of the Quantum Hall Effect (1980)[KDP80] has proved that

we can not just divide materials into band insulators and metals, not even within

the simple band theory. In the quantum Hall effect, a strong magnetic field confines

the motion of electrons in the bulk, but the same field forces them into delocalized

exotic metallic states on the surface. These surface states are topologically protected

which means that electrons travelling on such surfaces are insensitive to scattering by

impurities and imperfections. It turns out that the QH state is just one example of a

class of electronic states which are known as topological insulators.
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1.2 Topological Insulators

Topological insulators are materials that are insulating in the bulk but have conduct-

ing edge or surface states which means they can conduct electricity on the surface.

This conducting surface is a direct consequence of the nontrivial topology. When

we experimentally study an insulating sample, inside our sample the system is an

insulator, and outside the sample, the air or vacuum (depending on the experimen-

tal environment) is also an insulator. So we are in fact dealing with two insulators:

the sample and the environment. If the quantum wavefunction of the sample shares

the same topology as the environment, we call it a conventional insulator. Most of

insulators that we know belong to this family, e.g. glass, rubber, plastic, the air and

vacuum. In addition to these conventional insulators, there also exist some other insu-

lators whose quantum wavefunctions are topologically different from the environment

(say vacuum). If this is the case, we call the material a topological insulator.

A topological insulator typically has a conducting surface (although not

always). One way to understand the existence of such a conducting surface is to

consider a path with one end inside the sample and the other end outside. Because

the topology of the quantum wavefunction inside is different from outside, somewhere

along this path (usually at the surface of the sample), the quantum wavefunction

shall change its topology. However, topology is not something that can be changed

adiabatically. For example, we cannot deform a cylinder into a Mobius stripe. The

only way to achieve this objective is to destroy the cylinder first (cut it) and then glue

it back into a Mobius stripe[ians]. For insulators, if we want to change the topology

of the quantum wavefunction, the same needs to be done. We have to destroy the

insulator first, just as we cut the cylinder. What do we mean by destroying an insula-

tor? Well, we know that if something is not an insulator, it is probably a conductor.

In other words, when we destroy a insulator, we shall expect a conductor. Coming

back to a topological insulator, when we move from inside the sample to outside, the

topology changes at the interface. We also know that when topology is changed, the

insulator needs to be destroyed, which results in a conductor. If we combine all the

information together, it tells us that at the surface of the sample, where topology

changes, a conductive layer shall arise.

Topological insulators are made possible because of two main features of quantum

mechanics:
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• Time-reversal symmetry means the physics is independent of the direction of

the flow of time. For example, we record a video of any physical process and

run it backward and if all the events shown in the backward running movie are

allowed by the lows of physics or we are not able to determine just by watching

the video if the video is being played in the forward direction or the backward

direction, then this process is following the “time-reversal symmetry”.

• Spin-orbit interaction means an interaction of a particle’s spin with its motion.

For example, we take an electron. As the electron orbits around the nucleus, it

creates a magnetic field ~B. This electron also has an intrinsic property called

the electron spin and it also creates a spin magnetic dipole moment µs. Now

this means that the spin magnetic dipole moment µs will feel a torque due to the

magnetic field ~B created by the orbit of the electron. This interaction between

the orbital angular momentum and the electron spin angular momentum is

known as the “spin-orbit interaction”.

If we talk about a non-interacting topological insulator, then the electronic band

structure of the bulk looks just like an ordinary band insulator in which the Fermi

level falls between the conduction and valence bands, but on the surface of a topolog-

ical insulator there are special states that continuously connect bulk conduction and

valance bands, as shown in figure 1.1 .

Figure 1.1: Band structure for a topological insulator.[Sch14]
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1.3 Topology

Topology is a major area of mathematics that studies the properties of the objects

that are preserved under smooth deformations. For example a coffee cup transform-

ing into a doughnut are topologically equivalent as illustrated in figure 1.2. The idea

Figure 1.2: A continuous deformation of a coffee cup into a doughnut.

of topology comes from geometry. If two objects can not be transformed into each

other via adiabatic deformations (such as stretching, crumpling and bending, but not

tearing or gluing), then we say that they have different topology.

The topological invariant is a quantity that does not change under smooth deforma-

tion. The Gauss-Bonnet theorem[Gri13] states that the integral of the curvature over

the whole surface is a topological invariant. We can give the similar argument for

solid state systems like the integer quantum hall effect and topological insulators. In

these systems the Brillouin zone plays the role of the surface and the Berry phase

plays the role of the curvature.

1.4 Fundamental Concepts

The theory of topological band insulators can be perfectly described using the concept

of adiabatic phases. I would like to define some of the basic concepts: the Berry phase,

the Berry curvature and the Chern number using the language of discrete quantum

states. This gives an efficient method for calculating Chern number, which is a very

important topological invariant in the context of 2D electron systems.

1. Berry phase

For defining Berry phase we first need to calculate the relative phase of two non-

orthogonal quantum states ψ1 and ψ2, which can be written as

γ12 = −arg〈ψ1|ψ2〉 (1.1)

4



where arg(z) ∈ (−π, π] and denotes the phase of the complex number z. The relative

phase γ12 also satisfies

e−iγ12 =
〈ψ1|ψ2〉
|〈ψ1|ψ2〉|

(1.2)

Figure 1.3: The Berry phase γL
for the loop of three quantum
states.[AOP16]

Now we are in position to define Berry phase. We take N quantum states |ψj〉, with j

= 1,2,3,...,N, and order them in a loop. For ordered list L=(1,2,...,N), we can define

the Berry phase as

γL = −arge−i(γ12+γ23+...+γN1) = −arg(〈ψ1|ψ2〉〈ψ2|ψ3〉......〈ψN |ψ1〉) (1.3)

2. Berry flux

In the similar manner, we write the Berry phase γL for a finite 2D rectangular lattice

with sites labelled by n,m ∈ Z,1 ≤ n ≤ N and 1 ≤ m ≤M , as

(1.4)

γL = −arg exp

−i
 N−1∑

n=1

γ(n,1),(n+1,1) +

M−1∑
m=1

γ(N,m),(N,m+1)

+

N−1∑
n=1

γ(n+1,M),(n,M) +

M−1∑
m=1

γ(1,m+1),(1,m)


For simplifying the above calculation, we define Berry flux Fnm for each of the pla-

quette on the grid as

(1.5)Fnm = −arg exp
[
−i
(
γ(n,m),(n+1,m) + γ(n+1,m),(n+1,m+1) + γ(n+1,m+1),(n,m+1)

+ γ(n,m+1),(n,m)

)]
5



where n,m indicate the lower left corner of the plaquette. Now we can directly get

the Berry phase by first multiplying all the plaquette phase factors and then taking

negative argument of the term.

N−1∏
n=1

M−1∏
m=1

e−iFnm = exp

−i N−1∑
n=1

M−1∑
m=1

Fnm

 (1.6)

Figure 1.4: The Berry phase γL de-
fined on a lattice as the sum of the
Berry fluxes F1,1 and F2,1.[AOP16]

We see that each internal edge is being shared between two plaquettes and the contri-

bution from both the plaquettes will be complex conjugate of each other and when we

will multiply the phase factors, it will give us unity. The Berry phase can be written as

γL = −arg exp

−i N−1∑
n=1

M−1∑
m=1

Fnm

 (1.7)

3. Berry curvature

We can express the gauge invariant Berry phase as a surface integral of a gauge

invariant quantity. This quantity is the Berry curvature. In a discrete case, the Berry

curvature can be evaluated from the Berry phase around one small plaquette divided

by the area of that plaquette.

4. Chern number

The Chern number is an intrinsic property of the band structure and has various

effects on the transport properties of the system. Let us take the periodic boundary

conditions and map the square lattice grid on the surface of a torus. where n+1 is

written as (n mod N)+1 and m+1 is written as (m mod M)+1. Periodic boundary

6



condition states that if we write the product of the Berry flux phase factors of all the

plaquettes then it will give us 1.

N∏
n=1

M∏
m=1

e−iFnm = 1 (1.8)

We can define the Chern number Q associated to our structure as

Q =
1

2π

∑
nm

Fnm (1.9)

1.5 Thesis Plan

I would like to introduce the work done by me. I first derive the understanding of

the topological insulators from some elementary models in which it is rather simple

to see the topological effects arising just from constraining the systems to some finite

size. These topological effects are able to govern some of the great theories of physics.

I start my discussion with the bulk and then plot dispersion relations for the finite

size lattices and see that as soon as we constrain our system, we start seeing the edge

states connecting the two bands which were earlier separated by some finite band gap.

These interesting phenomenons can also be seen in some other systems where the to-

tal spin of electrons in other orbitals are together producing the localized magnetic

moment at every lattice site. I explore the understanding of these non-trivial effects

in cubic lattices with some unusual magnetic structures. For that, I first derive the

double-exchange model starting from ferromagnetic Kondo lattice model. This model

has its limitations. It forces the electron spin to align in the direction of the localized

spin that means we are only interested in low energy region. I use the double-exchange

model for calculating energy dispersion relations for lattices with qualitatively differ-

ent localized moments configurations. We know that topologically non-trivial band

structures are characterized by non-zero Chern numbers and edge states and my task

is to check the possibility of creating such band structures via interaction of conduc-

tion electrons with localized moments.

I will arrange the content of this thesis as follows. In chapter 2, I will

introduce and discuss two elementary models describing non-trivial band topology.

These are the SSH model and the Kane-Mele model. Then in chapter 3, I will dis-

cuss the double-exchange model, calculate the dispersion relations for different spin

configurations and I will try to check the non triviality of some of the band structures.
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Chapter 2

Elementary Models for Topological

Insulators

2.1 The Su-Schrieffer-Heeger (SSH) model

The SSH model is the simplest one dimensional model which helps us in understanding

the basic concepts of topological insulators. It describes spinless fermions hopping on

a one-dimensional lattice with staggered hopping amplitudes.

Figure 2.1: Geometry of the SSH model.[AOP16]

Here in the above figure a 1D chain of polyacetylene with two atoms in the unit cell is

shown. Every lattice site in the chain is hosting a single state. Filled (empty) circles

are sites on sublattice A (B). The hopping amplitudes are different for different bonds.

v (thick lines) denotes the intracell hopping amplitude and w (thin lines) denotes the

intercell hopping amplitude. The left and right edge regions are indicated as blue and

red backgrounds respectively. The m = 6th cell is circled by a dotted line.

2.1.1 The SSH Hamiltonian

We take a chain consist of N units cells. The practical choice of unit cells includes

two sites per unit cell, one on sublattice A, and one on sublattice B. We assume the

total number of sites (M) to be even, M = 2N. We denote the site index as m, where

9



m = 1,2,.....,N and sublattice index as j, where j = A, B. Now the SSH Hamiltonian

can be written as:

Ĥ = v

N∑
m=1

(|m,B〉 〈m,A|+ h.c.) + w

N−1∑
m=1

(|m+ 1, A〉 〈m,B|+ h.c.) (2.1)

Here |m,A〉 and |m,B〉 are the states of the chain where the electron is in unit cell m,

in the site on sublattice A and B respectively. There are some underlying assumptions

in writing the above Hamiltonian :

• We are neglecting the interactions between the electrons.

• The spin degree of freedom is completely absent from the SSH model.

• For simplicity, the hopping amplitudes v and w are taken to be real non-negative

i.e. v,w ≥ 0.

2.1.2 Bulk Hamiltonian

Any real solid-state system has two parts, a bulk and a boundary. Bulk is the most

important part of a solid. It determines almost all the physical properties associated

with the given solid. In the thermodynamic limit of N →∞, the physics in the bulk

does not depend upon the boundaries of the system. By taking the periodic boundary

conditions the bulk Hamiltonian is defined as :

Ĥbulk =

N∑
m=1

(
v c†m,Acm,B + w c†(m mod N)+1,Acm,B

)
+ h.c. (2.2)

Now in order to extract the dispersion relation E(k) for the bulk, we first Fourier

transform the above Hamiltonian using following transformations:

cm,j =
1√
N

∑
k

ei
~k· ~Rmck,j (2.3)

c†m,j =
1√
N

∑
k

e−i
~k· ~Rmc†k,j (2.4)

10



we calculate the bulk momentum space Hamiltonian:

(2.5)

Ĥbulk(k) =

N∑
m=1

[
v

(
1√
N

∑
k

e−i
~k· ~Rmc†k,A

)(
1√
N

∑
k′

ei
~k′· ~Rmck′,B

)

+ w

(
1√
N

∑
k

e−i
~k·( ~Rm+î)c†k,A

)(
1√
N

∑
k′

ei
~k′· ~Rmck′,B

)]
+ h.c.

(2.6)

Ĥbulk(k) = v
∑
k

∑
k′

(
1

N

N∑
m=1

ei(
~k′−~k)· ~Rm

)
c†k,Ack′,B + h.c

+ w
∑
k

∑
k′

(
1

N

N∑
m=1

ei(
~k′−~k)· ~Rm

)
e−ikxc†k,Ack′,B + h.c

where 1
N

∑N
m=1 e

i(~k′−~k)· ~Rm = δk,k′ is a Kronecker delta function. We can denote kx as

just k because we are only constraining our lattice in 1D. The bulk momentum space

Hamiltonian can be written as :

Ĥbulk(k) =
∑
k

(
v + we−ik

)
c†k,Ack,B +

(
v + we+ik

)
c†k,Bck,A (2.7)

We write the above Hamiltonian in matrix form as :

Ĥbulk(k) =

∑
k

[
c†k,A c†k,B

] [ 0 v + we−ik

v + we+ik 0

][
ck,A

ck,B

]
(2.8)

where the bulk momentum space Hamiltonian matrix

H(k) =

[
0 v + we−ik

v + we+ik 0

]
(2.9)

Now by diagonalising the above Hamiltonian matrix, we get the simplest form of the

energy dispersion relation E(k) as :

E(k) = ±
√
v2 + w2 + 2vw cos(k) (2.10)
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The bulk momentum space Hamiltonian matrix H(k) of any two band system which

means a system with two non-equivalent sites, is also defined as

H(k) = d0(k)σ̂0 + dx(k)σ̂x + dy(k)σ̂y + dz(k)σ̂z = d0(k)σ̂0 + d(k)σ̂ (2.11)

Using Eqs. 2.9 and 2.11, we find out the components of d-vector for SSH model,

where d0(k) = 0 and dx, dy, dz ∈ R .

dx(k) = v + w cos(k) dy(k) = w sin(k) dz(k) = 0 (2.12)

Figure 2.2: Dispersion relations of the SSH model for five choices of the parameters
and corresponding plots of the path of the tip of the vector d(k).[AOP16]

There are some properties of the d-vector.

• If we take some general two-band insulators then the path traced out by the

d-vector should not necessarily be a circle, but it has to be a closed loop because

of the periodicity of the Hamiltonian.

• For describing an insulator, this path needs to avoid the origin.

• The topology of this loop can be determined by bulk winding number ′ν ′ which

is also a very good topological invariant and counts the number of times the

loop winds around the origin.

12



Winding number of the SSH model

By the definition of the bulk winding number we can clearly see that for the SSH

model, when we change the value of parameter w by fixing the value of parameter v

as 1, winding number ν also changes from 0 to 1 and it is undefined when v = w.

It means whenever winding number changes from 0 to 1, the band gap closes and

reopens and we say that it is going from trivial phase to the topological phase. Why

do we say so? It can be clearly understood from the next section.

2.1.3 Edge States

Any material can be seen as two parts; one the bulk part and other the boundary.

The bulk part plays a very important role in characterizing most of the properties of

the material. The boundary part of any material determines the topological behavior

of the material. We will try to see the edge state behavior for SSH model first

with the fully dimerized limit and then we will take a definite real space lattice for

understanding the edge states business.

Fully dimerized limits

Figure 2.3: Fully dimerized limits of the SSH model.[AOP16]

• In the trivial case (v=1, w=0) where the bulk Hamiltonian is Ĥ(k) = σ̂x, we

have

Ĥ (|m,A〉 ± 〈m,B|) = ± (|m,A〉 ± 〈m,B|) (2.13)

It gives all energy eigenstates of the SSH chain with energy eigenvalues ±1.
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• In the topological case (v=0, w=1) where the bulk Hamiltonian is Ĥ(k) =

σ̂xcos(k) + σ̂ysin(k), we have

Ĥ (|m,B〉 ± 〈m+ 1, A|) = ± (|m,B〉 ± 〈m+ 1, A|) (2.14)

It has more energy eigenstates than those listed in Eq.2.14. Each end of the

chain hosts a single eigenstate at zero energy. These are called edge states.

Ĥ |1, A〉 = Ĥ |N,B〉 = 0 (2.15)

Extending the fully dimerized limit

By extending we mean that now we are no more in fully dimerized limit. We turn

on the intracell hopping amplitude ν, increase it from 0 to 3 by fixing w = 1 and

try to plot the energy spectra for a finite-sized lattice of N = 10 unit cells. First we

write Hamiltonian for the given lattice using Eq.2.1. We simplify the Hamiltonian

and write it in the matrix form in terms of parameters v and w. We fix the value of

w as 1 and calculate the eigenvalues of the Hamiltonian for each value of parameter v

by changing it from 0 to 3. There will be 20 eigenvalues for each value of parameter

v. Now we plot those 20 eigenvalues for each value of parameter v and get the energy

spectrum as

Figure 2.4: Energy spectrum of a finite-sized SSH model consisting of N = 10 unit
cells.
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2.2 Kane-Mele model

A valid description of the edge states can be clearly noticed from the Kane-Mele

model, which describes electrons on the 2D honeycomb lattice.

2.2.1 Hamiltonian

The Kane-Mele Hamiltonian consists of two terms. The first term is the usual nearest

neighbor hopping term and the second term is the spin-orbit coupling which connects

every site(i) with the next nearest neighbor site(j) with the spin dependent amplitude

νij, where νij = −νji = ±1. Which value does νij take, depends upon the orientation

of the two nearest neighbor bonds. If electron goes to the nearest neighbor site and

take right(left) turn to go to the next site then νij will be -1(1). By introducing second

neighbor tight binding model, the Kane-Mele Hamiltonian[KM05] can be written as

H =
∑
〈ij〉α

tc†iαcjα +
∑
〈〈ij〉〉αβ

it2νijs
z
αβc
†
iαcjβ (2.16)

where α and β denote two spins; spin up and spin down at two sites i and j. There

are four combinations of spins possible at two sites (↑↑, ↑↓, ↓↑, ↓↓). szαβ is a Pauli z

spin matrix;

Sz =
h̄

2

[
1 0

0 −1

]
(2.17)

2.2.2 Bulk Dispersion Relation Derivation

We plot the bulk dispersion relation using the above Hamiltonian. We have two sub-

lattices A and B in one unit cell. We define two primitive vectors ~a1 and ~a2 for our

lattice as

~a1 = a

(√
3

2
î+

3

2
ĵ

)
, ~a2 = a

(
−
√

3

2
î+

3

2
ĵ

)
(2.18)

where a denotes the distance between two lattice points.
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Figure 2.5: Geometry of the 2D honeycomb lattice with primitive lattice vectors ~a1
and ~a2. Shaded area is representing the unit cell with sublattices A and B.[EJT12]

We first break the Hamiltonian in two parts.

H = H(1) +H(2) (2.19)

We write first and second term of the Hamiltonian in the real space basis as

(2.20)
H(1) = t

∑
〈ij〉

[(
c†iA↑ciB↑ + c†iA↑c(i+ ~a1)B↑ + c†iA↑c(i+ ~a2)B↑ + h.c.

)
+
(
c†iA↓ciB↓ + c†iA↓c(i+ ~a1)B↓ + c†iA↓c(i+ ~a2)B↓ + h.c.

)]

(2.21)

H(2) =
∑
〈〈ij〉〉

[(
it2(c

†
iA↑c(i+ ~a1)A↑ − c

†
iA↑c(i+ ~a2)A↑ − c

†
iA↑c(i+ ~a1− ~a2)A↑) + h.c.

)
+
(
it2(−c†iA↓c(i+ ~a1)A↓ + c†iA↓c(i+ ~a2)A↓ + c†iA↓c(i+ ~a1− ~a2)A↓) + h.c.

)
+
(
it2(−c†iB↑c(i+ ~a1)B↑ + c†iB↑c(i+ ~a2)B↑ + c†iB↑c(i+ ~a1− ~a2)B↑) + h.c.

)
+
(
it2(c

†
iB↓c(i+ ~a1)B↓ − c

†
iB↓c(i+ ~a2)B↓ − c

†
iB↓c(i+ ~a1− ~a2)B↓) + h.c.

)]
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Now after doing Fourier transformation of the above Hamiltonian, we get

(2.22)H =
∑
k

[
L
(
c†A↑cA↑ − c

†
A↓cA↓ − c

†
B↑cB↑ + c†B↓cB↓

)
+ Mc†A↑cB↑ + Nc†B↑cA↑

]

where;

L = −2t2sin

(√
3kxa

2

)(
cos

(
3kya

2

)
− cos

(√
3kxa

2

))
(2.23)

M = t

(
1 + 2ei

3kya

2 cos

(√
3kxa

2

))
(2.24)

N = t

(
1 + 2e−i

3kya

2 cos

(√
3kxa

2

))
(2.25)

We can write the above Hamiltonian in the matrix form as

(2.26)H =
[
c†A↑ c†B↑ c†A↓ c†B↓

]

L M 0 0

N −L 0 0

0 0 −L M

0 0 N L



cA↑

cB↑

cA↓

cB↓


In order to get the dispersion relation, we need to diagonalize the Hamiltonian matrix

H(k). We can see that the Hamiltonian is in the block diagonal form and we can

clearly notice that both the blocks will give the same eigenvalues. So we just diago-

nalize only one block to get the eigenvalues λ.

∣∣∣∣∣L− λ M

N −L− λ

∣∣∣∣∣ = 0 (2.27)

Using Eqs.2.23, 2.24 and 2.25, we can calculate the eigenvalues;

λ2 = L2 +NM (2.28)
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After solving the above equation, we get

(2.29)

E2(k) = λ2

=
(

3 + 2 cos(2X) + 4 cos(X) cos(Y
√

3)
)

+

4t2
2sin2(x)

(
cos2(Y

√
3) + cos2(X)− 2 cos(X) cos(Y

√
3)
)

where;

X =
kxa
√

3

2
, Y =

kya
√

3

2
(2.30)

We now fix the parameters as t = 1 and t2 = 0.03 and plot the dispersion relation

E(k) using Eq.2.29.

Figure 2.6: Dispersion relation for the bulk Hamiltonian.

We see that there is a gap between the two bands. We also plot the dispersion relation

for t2=0 and we claim that it should show the same dispersion as we see for graphene

when we just take the nearest neighbor hopping term.
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Figure 2.7: Bulk dispersion relation for different value of parameters t2.

We know that the Hamiltonian of any two-band system can be written in terms of

d-vector and Pauli matrices. We try to calculate the same d-vector for Kane-Mele

model as we did for SSH model and we get,

dx = t

(
1 + 2 cos

(
3kya

2

)
cos

(
kxa
√

3

2

))
(2.31)

dy = −2t sin

(
3kya

2

)
cos

(
kxa
√

3

2

)
(2.32)

dz = −4t2 sin

(
kxa
√

3

2

)[
cos

(
3kya

2

)
− cos

(
kxa
√

3

2

)]
(2.33)

2.2.3 Edge States

For our discussion we take a strip of graphene with three hexagonal rings in y direc-

tion(12 atoms) and periodic boundary in x direction. We take unit cell as shown in

figure 2.8. We first write the Hamiltonian in real space and then Fourier transform it

in terms of kx because we have periodic boundary condition only in x-direction so for

this case kx will be a good quantum number. In the Kane-Mele Hamiltonian, we are

also taking into account the spin degree of freedom. We write the Hamiltonian for
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both the spins of electrons and then in order to get the energy dispersion relation we

solve for the eigenvalues of 24×24 matrix because there are 12 sites in one unit cell

and each can have either up or down electron. Then we plot one-dimensional energy

bands for a strip of graphene modeled by Kane-Mele Hamiltonian, taking t=1 and

t2 = 0.1.

Figure 2.8: A strip of graphene consisting of 12 atoms in one unit cell in y-direction
and one dimensional energy bands for the same, showing spin filtered edge states.

We see that in a strip of graphene the edges are along the zigzag direction in the

graphene plane. When we solve for the bulk Hamiltonian, we get the dispersion rela-

tion with a gap between the two bands but as we constrain our system, we see two

states connecting the two bands. These are called the “edge states”. These edge

states are spin filtered which means that electrons with opposite spin propagate in

opposite directions and the conduction only occurs on the edges.
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Chapter 3

Double-Exchange Model

3.1 Introduction

Double exchange was first introduced in 1951 by Zener. He wanted to describe ferro-

magnetism in the manganese oxide perovskites. He considered Mn oxide compounds

which contain both Mn+3 and Mn+4. He proposed that these materials have some

kind of close connection between ferromagnetism and conduction. He gives a brief

explanation by saying that eg electrons on Mn+3 ions could hop to vacant eg orbitals

available on neighboring Mn+4 ions. Mn+3 contains four 3d electrons in its outer

shell and in the perovskites, when the 3d band splits, three of the electrons occupy

the lower three-fold degenerate localized t2g orbitals, one electron goes in an upper

two-fold degenerate delocalized eg orbital. We know that whenever electron hops from

one site to another, it preserves its spin and the Hund’s rule coupling also plays a very

important role since it favors an alignment of the eg spin with that of the localized t2g

electrons. When eg electron hops from Mn+3 to Mn+4, it forces all the t2g electrons

on Mn+4 to align in the same direction as itself. This hopping is not a direct hopping

between the atoms, O−2 works as an intermediate ion. This ferromagnetic alignment

induced by the hopping is called “double-exchange interaction”.

3.2 Hamiltonian

There are two degrees of freedom; one is conduction electrons and another is local-

ized spins. It says that electrons are coupled to the localized spins defined at the

same lattice sites. The spin of the electrons is constrained to be parallel to that of

the localized spins. As a consequence, this restriction modulate the electron hopping
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amplitude between lattice sites and it only depends on the relative orientation of the

core spins. The double-exchange Hamiltonian[ACF+01] can be written as

HDE = −
∑
ij

(
tijc
†
icj + h.c.

)
+ JAF

∑
ij

Si · Sj (3.1)

where JAF is the strength of the antiferromagnetic coupling between the localized

spins, which is considered to be vanishingly small and tij can be written as:

tij = t
〈
θiφi|θjφj

〉
(3.2)

where;

〈
θiφi|θjφj

〉
= cos(

θi
2

) cos(
θj
2

) + sin(
θi
2

) sin(
θj
2

)e−i(φi−φj) (3.3)

3.3 Derivation

The double-exchange Hamiltonian can be derived from the model which describes a

lattice of atoms with strong intra-atomic Hunds coupling (J < 0 and |J | � t) between

electrons in different orbitals. The simplest Hamiltonian[Gul04] which includes this

effect is that of the ferromagnetic Kondo lattice,

HFK = −t
∑
i,j,σ

(c†i,σcj,σ + h.c.) + J
∑
i

Sic · Si (3.4)

Here Si denotes the localized spin and Sic is the electronic spin operator defined as

(Sic)α=
∑
σσ′
c†i,σ(σα)σσ′ci,σ′ where σα(α=x,y,z) are the Pauli matrices.

Now we apply canonical transformation on the above Hamiltonian. It preserves the

form of the Hamilton’s equation but it might not preserve the Hamiltonian itself.

We write down the Hamiltonian in new basis where the spin quantization axis is

different for different sites and it always points along the direction of the localized

spin. We introduce polar and azimuthal angles θ and φ respectively and define our
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transformation[KvdBK10] as

[
ci↑

ci↓

]
=

 cos( θi
2

)e
iφi
2 − sin( θi

2
)e

iφi
2

sin( θi
2

)e−
iφi
2 cos( θi

2
)e−

iφi
2

[dip
dia

]

≡ M(θi, φi)

[
dip

dia

] (3.5)

Here dip(dia) annihilates an electron at site i with spin parallel(anti-parallel) to the

core spin. In terms of d operators the first term of the above Hamiltonian reads:

H = −
∑
〈ij〉σ

∑
s,s′

t(fss′d
†
isdjs′ + h.c.) (3.6)

The coefficients fss′ are explicitly given by,

T =

[
fpp fpa

fap faa

]
= M †(θi, φi) ·M(θj, φj) (3.7)

T =

 cos( θi
2

)e−
iφi
2 sin( θi

2
)e

iφi
2

− sin( θi
2

)e−
iφi
2 cos( θi

2
)e

iφi
2


 cos(

θj
2

)e
iφj
2 − sin(

θj
2

)e
iφj
2

sin(
θj
2

)e−
iφj
2 cos(

θj
2

)e−
iφj
2

 (3.8)

Now we can compare the Eqs.3.7 and 3.8 and find out the expressions for the coeffi-

cients fss′ .

(3.9)fpp = cos(
θi
2

) cos(
θj
2

)e−
i(φi−φj)

2 + sin(
θi
2

) sin(
θj
2

)e
i(φi−φj)

2

(3.10)fpa = sin(
θi
2

) cos(
θj
2

)e
i(φi−φj)

2 − cos(
θi
2

) sin(
θj
2

)e−
i(φi−φj)

2

(3.11)fap = cos(
θi
2

) sin(
θj
2

)e
i(φi−φj)

2 − sin(
θi
2

) cos(
θj
2

)e−
i(φi−φj)

2

(3.12)faa = sin(
θi
2

) sin(
θj
2

)e−
i(φi−φj)

2 + cos(
θi
2

) cos(
θj
2

)e
i(φi−φj)

2
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For strong intra-atomic Hund’s rule coupling |J |�t, we can retain the low energy

behavior by constraining electron spin to be parallel to the localized spin. It means

we just consider fpp term for writing the Hamiltonian. The final Hamiltonian will be:

H = −
∑
〈ij〉

t(fppd
†
ipdjp + h.c.) (3.13)

We see that the above Hamiltonian which we derived by taking the first term of the

ferromagnetic Kondo lattice model is exactly same as the first term of the double-

exchange Hamiltonian(Eq. 3.1) only when we take strong Hund’s coupling.

3.4 Application of Double-Exchange Model

The double-exchange model describes noninteracting itinerant electrons moving on

a lattice of static background spins whose moments are typically large compared to

that of the electron spins, and hence may be treated classically. We use the double-

exchange model for calculating dispersion relations for cubic lattices with qualitatively

different spin configurations. In particular we focus on noncoplaner configurations.

Figure 3.1: Unusual Magnetic Structures.[ACF+01]
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3.4.1 Flux Phase

It consists of 8 localized spins on eight lattice sites of the unit cube. Four of them

are pointing towards the center of the cube and another four are pointing out of the

center as shown in figure 3.1. Spin direction for flux phase is denoted as

(
(−1)y+z√

3
,
(−1)x+z√

3
,
(−1)x+y√

3

)
(3.14)

Derivation of dispersion relation

We first calculate the value of hopping amplitude tij as defined in the double-exchange

model, for all the eight lattice sites of the unit cube. We get only two different values

of tij such that if four of them are giving (tij)A then the other four are giving (tij)B.

We conclude that there are only two nonequivalent sites A and B. Each of them has

a localized spin pointing in different directions and their interactions with the neigh-

bouring atoms will also be different. We take a unit cell with two sites in which ’A’

is at one site and ’B’ is at another site, We see that these unit cells are arranged in a

triangular lattice if we arrange them in two dimensional space and the same 2d sheet

of unit cells repeat in z direction. Now we define three primitive vectors for arranging

the unit cells in 3D space. Those primitive vectors are given as

~a1 = a
(
î+ ĵ

)
, ~a2 = a

(
−î+ ĵ

)
, ~a3 = ak̂ (3.15)

Here ’a’ is the distance between two lattice points. For simplicity, we will take a=1.

Following table shows components of the hopping amplitude tij in every direction for

two nonequivalent sites A and B.

Spin Interactions
Components Spin A Spin B

(tij)x (1− i)/
√

6 (1 + i)/
√

6

(tij)y (1 + i)/
√

6 (1− i)/
√

6

(tij)z 1/
√

3 −(1/
√

3)

Table 3.1: Spin interactions between the neighbours in every direction.
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The double-exchange Hamiltonian for the nearest neighbour interactions can be writ-

ten as:

H = −
∑
ij

tijc
†
icj + t∗ijc

†
jci (3.16)

We write the full Hamiltonian in real space as

(3.17)

H =
∑
i

(1− i)√
6

c†iAciB +
(1 + i)√

6
c†iBciA +

(1 + i)√
6

c†iAc(i+ ~a2)B

+
(1− i)√

6
c†(i+ ~a2)B

ciA +
(1− i)√

6
c†iAc(i+ ~a2− ~a1)B

+
(1 + i)√

6
c†(i+ ~a2− ~a1)BciA +

(1 + i)√
6

c†iAc(i− ~a1)B +
(1− i)√

6
c†(i− ~a1)BciA

+
1√
3

(
c†iAc(i+ ~a3)A + c†(i+ ~a3)A

ciA

)
− 1√

3

(
c†iBc(i+ ~a3)B + c†(i+ ~a3)B

ciB

)
Now in order to extract the dispersion relation ε(k), we Fourier transform the Hamil-

tonian H using the following transformations;

c†iA =
1√
N

∑
k

e−i
~k·~ric†kA (3.18)

ciA =
1√
N

∑
k

ei
~k·~rickA (3.19)

After doing Fourier transformation of the above Hamiltonian, we get

(3.20)

H =
∑
k

e−ikx
[
2

(
1− i√

6

)
cos kx + 2

(
1 + i√

6

)
cos ky

]
c†kAckB

+ eikx
[
2

(
1− i√

6

)
cos ky + 2

(
1 + i√

6

)
cos kx

]
c†kBckA

+

[
2√
3

cos kz

]
c†kAckA −

[
2√
3

cos kz

]
c†kBckB
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Using the above Hamiltonian we can write the Hamiltonian matrix as

H(k) =

 2√
3

cos kz e−ikx
(

2
(

1−i√
6

)
cos kx + 2

(
1+i√

6

)
cos ky

)
eikx

(
2
(

1−i√
6

)
cos ky + 2

(
1+i√

6

)
cos kx

)
− 2√

3
cos kz


(3.21)

Now the main task is to diagonalize the matrix and get the dispersion relation. After

digonalizing the above matrix, we get

λ2 − 4

3
cos2(kz) =

4

3
cos2(kx) +

4

3
cos2(ky) (3.22)

λ = ε(k) = ±
√√√√1

3

∑
µ=x,y,z

cos2 kµ (3.23)

Now we plot the dispersion relation for flux phase by fixing one parameter kz to be

constant. We plot dispersions for different values of kz.

Figure 3.2: Dispersion relation for flux state.

We can follow the same approach for finding the dispersion relations for different spin

configurations. Table 3.2 shows all the spin configurations and the dispersion relations

of the different phases.

27



Table 3.2: Type of the phases, spin directions and electronic dispersion relations of
the different phases are shown in the table[ACF+01].The notation [·] stands for the
integer part.

Type Spin Direction ε(k)/t

Ferromagnetic (0, 0, 1) −2
3∑

µ=1

cos(kµ)

A-AFM (0, 0, (−1)z) −2
2∑

µ=1

cos(kµ)

C-AFM (0, 0, (−1)x+y) −2 cos(k3)

G-AFM (0, 0, (−1)x+y+z) 0

Twisted (a(−1)x+y, b(−1)z, 0) ±2[a2 cos2(k3) + b2(cos(k1)± cos(k2))
2]

1
2

Flux ((−1)y+z ,(−1)x+z ,(−1)x+y)√
3

±2

[
1
3

3∑
µ=1

cos2(kµ)

] 1
2

Skyrmion ((−1)x,(−1)y ,(−1)z)√
3

±2
√

2
3

[
3∑

µ=1

cos2(kµ)±
√

3
∑
µ6=ν

cos2(kµ) cos2(kν)

] 1
2

Helix (cos(qz), sin(qz), 0) −2
2∑

µ=1

cos(kµ)− 2 cos(k3 + q
2
) cos( q

2
)

Island(π
2
, π, π) (0, 0, (−1)[

x
2
]+y+z) -1,1

Island(π
3
, π, π) (0, 0, (−1)[

x
3
]+y+z) −

√
2, 0,
√

2

Island(π
2
, π
2
, π) (0, 0, (−1)[

x
2
]+[ y

2
]+z) -2,0,0,2

We will now be plotting the density of states for some of the above given dispersion

relations. We can see the spread in energy i.e. the range of the energy available to be

occupied by the electrons for each of the dispersion relation and we can compare this

for all the phases.
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Figure 3.3: Density of states for several spin configurations by taking 100× 100× 100
lattice.

3.5 Non-triviality of The Spin Configurations

For our discussion, by non-triviality we actually mean that for any magnetic textured

system, if it is not possible to continuously transform it into conventional (topologi-

cally trivial) forms of spin order such as ferromagnetism or antiferromagnetism then

it is called “non-trivial”. Here in this section we would like to find out the non-trivial

phases from the above mentioned spin configurations. For that, we will calculate

topological charge for all the spin configurations and we know[Vit01](page 39) that if

topological charge comes out to be 0 then it is trivial and if it is not zero then it is
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non-trivial.

In order to locate the topological charges in the lattice model we follow

the prescription of Berg and Lusher[BL81]. For each unit cube of the lattice we divide

each of its six faces into two triangles. The particular division in triangles could give

an uncertainty in the value of the topological charge. The three unit-normalized spins

at the corners of a triangle l define a signed area Al [CB01] on the unit sphere:

Al = 2 tan−1
~mi · ( ~mj × ~mk)

1 + ~mi · ~mj + ~mi · ~mk + ~mj · ~mk

(3.24)

where i, j, k form the triangle l and are ordered such that the surface vector points

outward the unit cube. In terms of these areas the topological charge enclosed by the

unit cube is given by

Q =
1

4π

12∑
l=1

Al (3.25)

Now we calculate the topological charge(Q) for each of the above mentioned spin

configurations and check if they are showing non-trivial behavior or not. We see that

all the phases gives 0 value of the topological charge instead of one that is skyrmion

phase. The value of topological charge for skyrmion phase is +1 as all the spins are

pointing out from the center of the unit cube. If all the spins point towards the center

then also it will show non-trivial behavior but the value of the topological charge in

that case would be -1.

3.6 Conclusion

• We have seen the topological behaviors in both one dimension and two dimen-

sions using the SSH model and the Kane-Mele model respectively, and we are

able to produce the edge states plots for 1D and 2D lattices only if we use open

boundary conditions. In case of periodic boundary conditions we get a band

gap as we get for the bulk. We are also able to distinguish between the trivial

and topological phases by just analysing the d-vector plot in one dimension but

only when the z component of the d-vector is 0.
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• We have used double-exchange model to describe different spin configurations

like ferromagnetic, flux, helix, twisted, skyrmion etc. We have tried to check

the non triviality for all the spin configurations and we have confirmed from

the calculation of topological charges that the skyrmion phase is the only phase

which shows the non-trivial topological behavior. The topological charge for

the skyrmion phase was coming out to be +1 and it was 0 for all other spin

configurations.

3.7 Future Outlook

• I would like to explore the SSH model by taking the next nearest neighbour

hopping because this will give me the z-component of the d-vector, which was

absent in the actual SSH model 2.12 and then I will try to see, how d-vector

can be used to verify the topological behavior of the system like it does in SSH

model.

• I would also like to see the direct relation of d-vector with the topological be-

havior of graphene from Kane-Mele model.

• I will also try to find out the similar d-vector technique for the four level systems

so that we would be able to comment on the triviality or non-triviality of some

band structures which has four bands in their dispersion relation like skyrmion

and twisted phases as d-vector can only be written for two-band systems using

Pauli matrices.
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