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Abstract

Bose-Einstein condensate is a very robust state of a bosonic system below a certain

critical temperature. Bosons have a much higher tendency to get accommodated

in a single non-degenerate state than the distinguishable particles. Therefore, it is

very difficult to create stable fragmented condensates. But, there have been suc-

cessful attempts to fragment or cut a single condensate experimentally by employ-

ing optical tweezers and knives. Fragmentation of a condensate naturally occurs

when there are inherent degeneracies in a system. In this work, fragmentation of

condensates is studied theoretically in the case of a symmetric double well trap.

Fragmentation is shown to occur when a single well is made to oscillate very fast

and with sufficiently large amplitude in the so-called Kramers-Henneberger frame-

work. The dual-space information entropy for the condensate density is calculated

for different oscillation parameters to understand the evolution of the state from

a single condensate to a fragmented condensate. Besides, merging of fragmented

condensates is also studied in the Kramers-Henneberger framework.





Chapter 1

Introduction

1.1 Brief History

In 1924, the Indian Physicist Satyendra Nath Bose derived the Planck’s radiation

law without any reference to classical physics. But this paper was rejected by

the then scientific community. Therefore, he sent it to the then famous Albert

Einstein. He immediately sensed the importance of the work and arranged for

its publication [1]. He also extended Bose’s ideas to matter. In 1925, Einstein

predicted that cooling matter made up of particles with integer spin, now known

as bosons, to very low temperatures would cause them to condense into a single

quantum state resulting in a new form of matter —the Bose-Einstein condensate.

In 1995, the first ever Bose-Einstein condensate was prepared in the lab [2][3][4]

leading to a resurgence of interest in this field. Cornell, Wieman and Ketterle

shared the 2001 Nobel Prize for their achievement of preparing the first BECs and

studying their properties. From then on, Bose-Einstein condensation has emerged

as an area of research of fundamental importance. BEC’s have become critical

systems for the study of many kinds of purely quantum mechanical properties.

1
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1.2 Bose-Einstein condensation

Bose-Einstein condensation is a very peculiar phenomenon that occurs at a low

temperature in bosonic systems. But the interesting thing about BEC transition

is that it does not take place due to interactions but is purely a consequence of

Bose-Einstein statistics. To quote Einstein verbatim, ’it is condensation without

interaction’ [5]. But interactions determine the properties of the condensate.

The phenomenon of Bose-Einstein condensation has at its roots the fact that

bosons are indistinguishable and the bosonic many-body wavefunction is symmet-

ric in nature [5].

Ψ(ε1, ε2) =
1√
2

[φ(ε1, ε2) + φ(ε2, ε1)] (1.1)

where Ψ(ε1, ε2) and φ(ε1, ε2) are the many-body wavefunctions and ε1, ε2 are the

degrees of freedom of the system.

⇒ |Ψ(ε1, ε2)|2=
1

2

[
|φ(ε1, ε2)|2+|φ(ε2, ε1)|2+2Re(φ∗(ε1, ε2)φ(ε2, ε1))

]
(1.2)

⇒ |Ψ(ε, ε)|2= 2|φ(ε, ε)|2 (1.3)

For an N-body system,

|Ψ(ε, ε, ...ε)|2= N ! |Ψ(ε, ε, ...ε)|2 (1.4)

This equation says that the probability for finding N bosons in the same state is

very large as compared to that for distinguishable particles. Therefore, the bosons

have a great tendency to condense into a single state when the single particle

wavefunctions overlap [5], i.e, the de-Broglie wavelengths of the particles is lesser

than or of the order of the inter-particle distance.

Bose-Einstein statistics is described by the distribution function

Ni = n̄i =
1

exp [β(εi − µ)]− 1
(1.5)

where Ni is the ensemble average of the occupation number in the ith state, ni is

the actual occupation number in the ith state for a particular microstate in the
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ensemble and µ is the chemical potential of the system.

This shows that when µ→ ε0, N0 becomes very large, i.e., it becomes macroscop-

ically occupied. So, the statistics itself leads to Bose Einstein condensation even

in the absence of any interaction. The total number of particles can be written as

N = N0 +NT , NT =
∑
i 6=0

n̄i(T, µ) (1.6)

N0 is the number of particles in the condensed state and NT is the number of

particles out of the condensate at temperature T and chemical potential µ and is

proportional to the density of states and increases with the size of the system.

NT is smooth with µ and reaches a maximum value of Nc at µ = ε0. The temper-

ature at which Nc = N is called the critical temperature. Below this temperature,

N0 must rise abruptly leading to Bose-Einstein condensation.

1.3 Motivation and Plan of the Thesis

The theoretical starting point of studying BEC is the Gross-Pitaevskii equation

which assumes a mean-field approximation. It is justified in cases where the con-

densates are dilute given by the condition na3 � 1 which means that the range

of interaction is far lesser than the average inter-particle distance [6][9]. For non-

dilute condensates, beyond mean-field approach is required. But the GPE is quite

accurate for dilute condensates close to absolute zero.

The condensates are described by an order parameter Ψ = ρeiφ where ρ represents

the condensate density and φ describes the phase of the condensate. φ acts like

a potential for velocity field [9]. This phase is not an observable by itself. The

number-phase uncertainty relation ∆N∆φ ≈ 1 does not allow the complete de-

termination of both the parameters of the condensate but interference patterns

emerge when two condensates are brought together as the two condensates get en-

tangled in the detection process [8]. This makes the coherence in the condensate

an important property to study.

An important theorem, irrespective of the equation by which the BECs are de-

scribed, states that ’Given no internal symmetry present in the system, the ground
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state of a condensate can be taken to be real, nodeless and non-degenerate.’ [5]

This theorem has great consequences. It means that the ground state is very ro-

bust and it is very difficult to fragment a condensate since the fragmented state

has to compete with the single condensate for the ground state whenever there is

degeneracy in the system [11]. This thesis tries to look at the question of frag-

mentation of condensates through a different framework.

The coherence in fragmented condensates cannot be understood by just computing

the single-particle reduced density matrix [11]. Second-order correlation functions

are necessary to characterise the coherence in the condensate [15]. It may be desir-

able to know the coherence properties of the condensates for quantum interference

experiments, but it can be difficult to compute second-order correlation functions

directly. Therefore, we try to study the coherence of the condensates in different

states [11] by computing the information entropy [14] of the system. This is be-

cause information entropy is known to be a good measure of uncertainty when the

probability distribution has sharp peaks with gaps in between, and this kind of

distribution seems a good candidate for a fragmented state. Therefore, we seek

to compute the dual-space information entropy of the condensate system when it

evolves from one kind of state to another.

Kramers-Henneberger framework is a useful way to study the above evolution of

condensate state. This framework has been used earlier to study fragmentation of

condensates [10]. In this work also, this approach is used to study fragmentation

of condensates as a function of an oscillation parameter of the single well trap

which leads to a change in the trap potential [10]. The objective of this thesis is

to try and understand how the dual-space information entropy of the condensate

behave as the ground state of the system changes and to look for states which can

have its dual-space entropy sum minimised within the mean-field approximation

or equivalently, in the GP framework.

The work also tries to understand the dynamics of condensate merging when two

independent condensates are brought together [27], thereby also explaining the

mechanism of fragmentation when the opposite is done.



Chapter 2

Theoretical Framework

2.1 Bose-Einstein condensates and Density Ma-

trix

An alternative and more general definition of BEC, other than all the bosons

occupying a single state, is given in terms of the single particle reduced density

matrix which is given, in the language of second quantisation, by [6]

η(1)(~r, ~r′) = 〈ψ̂†(~r)ψ̂(~r′)〉 (2.1)

where Ψ̂†(~r) is the creation operator at position ~r and the Ψ̂(~r′) is the annihilation

operator at position ~r′. The average is in quantum-statistical sense. This gives the

probability amplitude that a particle at ~r is not distinguishable from a particle at

~r′. This indistinguishability is not to be confused with the indistinguishability of

the bosons. The expression of density matrix for pure and mixed states in terms

of N-particle wavefunctions is derived from the above definition in Appendix A.

The density matrix elements can be written as [6]

η(1)(~r, ~r′) = η0φ0
∗(~r)φ0(~r

′) +
∑
i

ηiφi
∗(~r)φi(~r

′) (2.2)

where φi(~r) are the eigenfunctions of the single particle reduced density matrix.

5
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In the N → ∞ limit, the sum goes to zero at large distances s = |~r − ~r′|. This

shows that the density matrix can have non-zero off-diagonal matrix elements only

when a macroscopic occupation of a single particle state is achieved. This is called

the Off-Diagonal long range order (ODLRO). This means that ODLRO implies

BEC and vice-versa. Therefore, Bose-Einstein condensation is said to occur when

the single particle reduced density matrix has a large eigenvalue and the eigen-

function of the reduced density matrix is then defined to be the order parameter

or the wavefunction describing the condensate [6].

This is an important and subtle point because this feature of ODLRO is not present

in Fermi systems where two-body interactions are essential to show ODLRO [5].

Macroscopic occupation of a single-particle state implies that the condensate wave-

function Ψ0(~r) completely describes the system [6].

Ψ0(~r) = |Ψ0(~r)|eiφ(~r) (2.3)

The modulus determines the contribution of the condensate to the diagonal den-

sity. The overall global phase φ(~r) of the condensate wavefunction can be arbitrary

as is reflected by its normalisation condition
∫
dx1...dxN |Ψ|2= N . Therefore, the

phase does not have any physical meaning, but its fluctuations determine the

velocity of the condensate [9].

v =
h̄

m
∇φ(~r) (2.4)

Physically, ODLRO means that a global phase coherence is set up in the conden-

sate system [6]. In fact, an ideal BEC has a globally constant phase throughout

the system.

2.2 Gross-Pitaevskii equation

The dynamics of the condensate at zero temperature is generally described by the

Gross-Pitaevskii equation which is effectively a mean-field approximation for the
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inter-particle interactions [9].

ih̄
∂ψ

∂t
=

(
− h̄2

2m
∇2 + Vext(~r) + g|ψ|2

)
ψ (2.5)

where ψ is a single particle state describing the condensate state where all the

particles are accumulated and g =
4πh̄2Na

m
and a is the s-wave scattering length.

It can be derived using the Heisenberg equation for the field operators with the

second quantised Hamiltonian and assuming a contact interaction [5]

ih̄
∂Ψ̂(~r, t)

∂t
=
[
Ψ̂(~r, t), Ĥ

]
(2.6)

Ĥ =

∫ [
h̄2

2m
∇Ψ̂†∇Ψ̂ + Ψ̂†Vext(~r)Ψ̂ +

1

2

∫
Ψ̂†Ψ̂†′V (~r − ~r′)Ψ̂Ψ̂′d~r′

]
d~r (2.7)

V (~r − ~r′) = δ3(~r − ~r′) (2.8)

The Gross-Pitaevskii equation works well in case of dilute systems in which the

range of interaction is far lesser than the average inter-particle distance. This

diluteness criterion is mathematically written as n|a|3<< 1. This assures that

more than two-body scattering can safely be neglected and the actual form of

the interaction potential is not important. Therefore,the s-wave scattering length

characterizes all the effects of interaction on the physical properties of the gas.

But BEC can be understood even without using the second quantised formalism

which seems appropriate to study many-body systems [9]. Bosons, when put in a

configuration, get distributed in the energy levels of such a configuration, with an

increasing occupation of the states with minimum energy as we lower the tempera-

ture. For sufficiently low temperature, an accumulation of particles in the ground

state is observed before reaching absolute zero (when that is anyway bound to

happen). In this way, they behave as macroscopic fluid with new properties such

as superfluidity, etc. To study these properties, it is therefore necessary to con-

centrate only on the ground state.
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Therefore, we need to find eigenvectors for the minimum eigenvalue of the Hamil-

tonian of our system, which includes all pairwise interactions. The interaction

terms as such are difficult to handle rigorously. But when correlations are absent

in the gas (i.e., if the gas is dilute), interactions can be approximated by the mean-

field approximation.

Now, we derive the time-independent Gross-Pitaevskii equation from a variational

approach by using the method of lagrange multiplier [9].

Ĥ =
N∑
i=1

(
p̂2

2m
+ Vext(~ri)

)
+

1

2

N∑
i=1

N∑
j=1
j 6=i

V (|~ri − ~rj|) (2.9)

Ground state energy can be found by minimizing the energy with a Lagrange

multiplier or equivalently by minimizing the Free energy which can be defined as

F = E − µN ⇒ F = 〈Ψ|Ĥ|Ψ〉 − µN〈Ψ|Ψ〉 (2.10)

µ - Lagrange multipier or the chemical potential of the condensate system.

Ψ - N-particle wavefunction of the system.

|Ψ〉 = |ψ〉1 ⊗ |ψ〉2 ⊗ |ψ〉3...⊗ |ψ〉N (2.11)

The interaction of a particle in a BEC with all the other (N − 1) particles are

effectively the same in the mean field approximation since the quantum correlations

are small. This is valid only when the gas is dilute otherwise the nearer particles

interact more strongly than do the particles far away. So, the N-particle wave

function can be approximated as

|Ψ〉 = |ψ〉 ⊗ |ψ〉 ⊗ |ψ〉...⊗ |ψ〉 (2.12)
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Therefore, calculating the terms one by one using this approximation

〈Ψ|
N∑
i=1

p̂2

2m
|Ψ〉 =

N∑
i=1

h̄2

2m

∫
∇ψ∗(~ri)∇ψ(~ri)d

3ri (2.13)

= −N h̄2

2m

∫
ψ∗(~r)∇2ψ(~r)d3r (2.14)

〈Ψ|1
2

N∑
i=1

N∑
j=1
j 6=i

V (|~ri− ~rj |)|Ψ〉 =
1

2

N∑
i=1

N∑
j=1
j 6=i

∫
d3ri

∫
d3rjψ

∗(~rj)ψ
∗(~ri)V (|~ri− ~rj |)ψ(~ri)ψ(~rj)

(2.15)

=
N(N − 1)

2

∫
d3rψ∗(~r)

[∫
d3r′ψ∗(~r′)ψ(~r′)V (|~r − ~r′|)

]
ψ(~r) (2.16)

〈Ψ|
N∑
i=1

Vext(~ri)|Ψ〉 = N

∫
ψ∗(~r)Vext(~r)ψ(~r)d3r (2.17)

µ〈Ψ|Ψ〉 = µ

(∫
d3rψ∗(~r)ψ(~r)

)N
(2.18)

Now, we need to minimize F [Ψ] = E[Ψ]− µN
∫
d3rψ∗(~r)ψ(~r),

δF [Ψ]

δψ∗
= N

∫
[− h̄2

2m
∇2 + Vext(~r)

+ (N − 1)

(∫
|ψ(~r′)|2V (|~r − ~r′|)d3r′

)
− µ]ψ(~r)δψ∗(~r)d3r (2.19)

For minimizing F [Ψ],
δF [Ψ]

δψ∗
= 0

− h̄2

2m
∇2ψ(~r) + Vext(~r)ψ(~r) +N

4πh̄2

m
a|ψ(~r)|2ψ(~r) = µψ(~r) (2.20)

where V (|~r − ~r′|) is assumed to be a contact interaction.

V (|~r − ~r′|) =
4πh̄2

m
aδ(~r − ~r′) (2.21)

a - scattering length which measures the intensity of the interactions between the

bosons
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a < 0 means attractive potential

a > 0 means repulsive potential

Here we have used the normalization 〈Ψ|Ψ〉 = 1 which means that probability

density of finding a boson is |Ψ|2.

We can also use the normalization 〈Ψ|Ψ〉 = N which means that number density

of bosons is |Ψ|2.

An alternative derivation in the language of second quantization is given in Ap-

pendix A. The Gross-Pitaevskii equation is a mean-field approximation to study

condensates. Some approaches do not consider mean-field approximation, and

they are necessary to study strongly correlated systems. But they are increas-

ingly difficult to handle mathematically. For atomic gas BEC, the requirements

to justify the mean-field approach is almost always met quite generally [6].

2.3 Fragmentation of Condensates

Due to Bose-statistics, non-interacting bosons always seek the lowest state even

though many nearly degenerate states are nearby. Often, interactions do not

destroy the condensates but just reduce the particle number in the ground state.

The phenomenon of fragmentation of condensates is rare. It is because a single

condensate is a state of minimum energy and ground state of a condensate system is

non-degenerate given no internal symmetry is present in the system. But the above

fact means that whenever there is inherent degeneracy in the system, there will be

degenerate states competing for the ground state. This is where fragmentation can

happen. In general, larger the degeneracy of the system, greater the probability

of having fragmented condensates. But the presence of near degeneracy does not

guarantee fragmentation [11].

The definition of condensation and fragmentation (due to Penrose and Onsager)

is given in terms of the eigenvalues of the single particle reduced density matrix.

When more than one eigenvalue is of the order N, then the state is fragmented. A

simple system to study fragmentation of condensates is a symmetric double well

potential. A simple two-mode Bose-Hubbard model can be used to model this
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system [11]. The Hamiltonian is given by

Ĥ = −t
(
â†1â2 + â†2â1

)
+
U

2

[
â†1â

†
1â1â1 + â†2â

†
2â2â2

]
(2.22)

where â†i creates a particle in well i and âi annihilates a particle in well i. U is the

interaction parameter. The first term is the tunnelling term and the second is the

usual contact interaction. This simple model has wide applicability.

We can solve this model by the Wigner-Schwinger pseudospin representation as

given below [11].

Ĵx =
1

2

(
â†1â2 + â†2â1

)
(2.23)

Ĵy =
1

2i

(
â†1â2 − â

†
2â1

)
(2.24)

Ĵz =
1

2

(
â†1â1 − â

†
2â2

)
(2.25)

where Jx, Jy, Jz are angular momentum operators.

Computing Ĥ in this representation gives (Appendix B) [11]

Ĥ = −2tĴx + U
(
Ĵ2
z + Ĵ2 −N

)
(2.26)

Ĵ2 = Ĵ2
x + Ĵ2

y + Ĵ2
z (2.27)

The mean field solution looks like [11]

|θ, φ〉 =
1√
N !

(
uâ†1 + vâ†2

)N
|0〉 (2.28)

u = e−iφ/2 cos(θ/2), v = eiφ/2 cos(θ/2) (2.29)

The density matrix for this state (Appendix B) is given by [11]

ρµν =

 N cos2(θ/2) N sin(θ/2) cos(θ/2)eiφ

N sin(θ/2) cos(θ/2)e−iφ N sin2(θ/2)

 (2.30)
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θ and φ characterize the density and phase difference between the bosons in the two

wells respectively. In pseudospin language, θ and φ are the polar angles subtended

by a unit vector in a spherical coordinate, describing the system in the mean field

such that 〈Ĵ〉 = (N/2)n̂.

The energy is given by [11]

E(θ, φ) = 〈θ, φ|Ĥ|θ, φ〉 = −tN cosφ sin θ + U

(
N2

4

(
cos2 θ + 1

)
− N

2

)
(2.31)

For repulsive interactions, U > 0, E(θ, φ) is minimum at φ = 0, θ = π/2. The

mean field approach, therefore, selects the non-interacting ground state as optimal

[11].

|C〉 =
1√

2NN !

(
â†1 + â†2

)N
|0〉 (2.32)

The density matrix corresponding to this non-interacting state is [11]

ρµν =
N

2

 1 1

1 1

 (2.33)

This matrix has a single macroscopic eigenvalue λ = N . Therefore, the non-

interacting state is a single condensate.

The above ground state is a linear combination of number states [11]

|n1, n2〉 =
1√

n1!n2!
â†n1

1 â†n2

2 |0〉 (2.34)

So, writing it in the number basis (Appendix B) [11]

|C〉 =

l=N/2∑
l=−N/2

Ψ0
l |l〉 (2.35)

|l〉 = |N
2

+ l,
N

2
− l〉 (2.36)

Ψ0
l =

 N !

2N
(
N

2
+ l

)
!

(
N

2
− l
)

!


1/2

≈ e−l
2/N

(πN/2)1/4
(2.37)
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This state has a number fluctuation [11]

∆N ≈

(∫
dl
l2e−2l

2/N√
πN/2

)1/2

=

√
N

2
(2.38)

Therefore, the above mean-field solution corresponds to the solution for the non-

interacting case (U = 0) in the Hamiltonian.

In the interacting case, the Schrödinger equation can be written in the number

basis [11] (Appendix B)

ĤΨ = EΨ (2.39)

EΨl = −tl+1Ψl+1 − tlΨl−1 + Ul2Ψl (2.40)

tl = t
√

(N/2 + l)(N/2− l + 1) (2.41)

For repulsive interaction U > 0, the energy is minimized when l = 0. The tun-

nelling term tl shows that hopping favours wavefunctions Ψl with large amplitudes

near l = 0. [11]

The above analysis shows that repulsive interactions suppress number fluctuations

which means that a state with unequal number of bosons in the two wells (like the

non-interacting state with a number fluctuation —a Gaussian Ψ0
l with a width) is

further squeezed (to a sharply peaked Gaussian around l = 0).

In the limit of zero fluctuations 〈(δn1)
2〉 = 〈(δn1)

2〉 = 0, the system becomes the

Fock state [11].

|F 〉 =
(â†1)

N/2(â†1)
N/2

(N/2)!
|0〉 (2.42)

This state is clearly fragmented as can be seen from the density matrix for this

state. This indicates separate condensation in each well.

ρµν =
N

2

 1 0

0 1

 (2.43)

The evolution of the coherent state can be seen from [11]

|Ψl(σ)〉 =
e−l

2/σ2

(πσ2/2)1/4
(2.44)
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as σ2 varies from N to << 1. This transition is due to increase in phase fluctua-

tions, ultimately leading to zero number fluctuations in the limit.

|C〉 ⇒ δ(φ) (2.45)

|F 〉 ⇒ uniform φ (2.46)

In the limit of tunnelling going to zero (t = 0), the above model shows that the

ground state is again a coherent state (single condensate). It means that when the

barrier height or the separation between the two wells is large, the system favours

the formation of coherent states.

There can be another kind of fragmented states like Schrödinger cat states in case

of attractive interaction. But the density matrix of such a state is identical to that

of the Fock state. Therefore, fragmentation cannot be characterised by the single

particle reduced density matrix alone, but higher order correlation functions like

number fluctuations are also needed.

The phenomenon of fragmentation can be looked upon in a very different frame-

work called the Kramers-Henneberger framework. This is the topic of the next

section.

2.4 Kramers-Henneberger Transformation

The interaction of a charged particle with the electromagnetic field in the minimal

coupling assumption is given by the Lagrangian [16]

L(q, q̇ = v) =
1

2
mv2 +

e

c
~A(t).~∇− eφ (2.47)

where ~A and φ are the vector and scalar potentials respectively.

The canonical momentum is given by

p =
∂L

∂q̇
=
∂L

∂v
= m~v +

e

c
~A (2.48)
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Therefore, the classical Hamiltonian for a charged particle in an electromagnetic

field is

H(q, p) =

(
~p− e

c
~A
)2

2m
+ eφ (2.49)

In going over to Quantum mechanics, we replace the ~p with −ih̄∇ in the position

representation. The Schrödinger equation is

ih̄
∂ψ(~r, t)

∂t
= Ĥ(~r, t)ψ(~r, t) (2.50)

When we substitute the Quantum Hamiltonian got above after making the substi-

tution, the Schrödinger equation for an electron in presence of an electromagnetic

field becomes

1

2m

[
ih̄~∇+

e

c
~A(t)

]2
ψ(~r, t) + V (~r)ψ(~r, t) = ih̄

∂ψ

∂t
(~r, t) (2.51)

⇒
[
− h̄2

2m
∇2 + ih̄

e

mc
~A(t).∇+

e2

2mc2
~A2(t) + V (~r)

]
ψ(~r, t) = ih̄

∂ψ(~r, t)

∂t
(2.52)

because ~A is a function of t only (assuming dipole approximation [17]) and so

commutes with ∇.

But, let us say, we want the time dependent terms only in the potential term of

the Schrödinger equation. So, we do a unitary transformation on the system [13].

Physically, it amounts to changing to an accelerated frame of reference moving

with the electron and therefore experiencing a time-dependent potential.

Ψ = Ω̂ψ (2.53)

where

Ω = exp

[
i

h̄

∫ t

−∞

{
ih̄e

mc
~A(τ).∇+

e2

2mc
~A2(τ)

}
dτ

]
(2.54)

Now, due to dipole approximation (the so called long-wavelength approximation)

Ω = Ω1Ω2 (2.55)
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Ω1 = exp

[
−
∫ t

−∞

e

mc
~A(τ)dτ.∇

]
(2.56)

Ω2 = exp

[
i

h̄

∫ t

−∞

e2

2mc2
~A2(τ)dτ

]
(2.57)

Now, let us find out the Ĥnew acting on the transformed wavefunction due to the

unitary transformation.

ih̄
∂Ψ

∂t
= ih̄

∂ (Ωψ)

∂t
= ih̄

∂Ω

∂t
ψ + Ω

(
ih̄
∂ψ

∂t

)
=

[
ih̄
∂Ω

∂t
Ω† + ΩHΩ†

]
Ψ (2.58)

⇒ Ĥnew = ih̄
∂Ω

∂t
Ω† + ΩHΩ† (2.59)

The ih̄
∂Ω

∂t
Ω† term cancels the time dependent terms that come from the ΩHΩ†.

But the term that needs some effort is ΩV (~r)Ω†. Let us evaluate it

ΩV (r̂)Ω† = Ω1V (r̂)Ω†1 = eβ̂V (r̂)e−β̂ (2.60)

where β̂ = −
∫ t
−∞

e

mc
dτ ~A(τ).∇

The above equation can be written in terms of a series by using the Baker-

Campbell-Hausdorff formula which is given by [18]

eβ̂γ̂e−β̂ = γ̂ +
[
β̂, γ̂

]
+

1

2!

[
β̂,
[
β̂, γ

]]
+ ... (2.61)

Evaluating the commutators one by one

[
β̂, γ̂

]
= −

∫ t

−∞

e

mc
dτ ~A(τ). [∇, V (r̂)] = (~α.∇)V (~r) (2.62)

1

2!

[
β̂,
[
β̂, γ

]]
=

1

2!
(~α.∇)2 V (~r) (2.63)

where

~α = −
∫ t

−∞

e

mc
~A(τ)dτ (2.64)

⇒ ~̈α =
e

mc
~E(t) =

e

mc
~E0 sinωt (2.65)

⇒ ~α(t) =
e ~E0

mω2c
sinωt = ~α0 sinωt (2.66)
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So, the Baker-Campbell-Hausdorff series actually gives a Taylor’s series of V (~r)

about ~r and acts as a translation operator and translates the potential by ~α.

Therefore, the Kramers-Hanneberger transformation leads to the final Schrödinger

equation of the form [13]

[
−h̄2

2m
∇2 + V (~r + ~α)

]
Ψ(~r, t) = ih̄

∂Ψ(~r, t)

∂t
(2.67)

⇒
[
−h̄2

2m
∇2 + V KH(~r, t)

]
Ψ(~r, t) = ih̄

∂Ψ(~r, t)

∂t
(2.68)

where V KH(~r, t) = V (~r + ~α) is called the Kramers-Henneberger potential.

The above equation has the time dependence only in the potential term as op-

posed to the original equation we started with. Therefore, one can now attempt

to find a time independent approximation to the above equation to solve for the

zeroth-order KH state. This state can then serve as a ground state for further per-

turbative approximations which is justified as opposed to the situation of applying

perturbation theory at the outset in a case where the perturbation (intensity) is

very high as compared to the ground state Hamiltonian.

The full Kramers-Henneberger potential can be written as [20]

V KH(x, t) = V0(x) + Vpert(x, t) (2.69)

=
ω

2π

2π/ω∫
0

V KH(x, t)dt+
∞∑

m=−∞
m6=0

Vm(x)eimωt (2.70)

=
ω

2π

2π/ω∫
0

V KH(x, t)dt+
ω

2π

∞∑
m=−∞
m6=0

 2π/ω∫
0

V KH(x, t′)e−imωt
′
dt′

 eimωt

(2.71)

This effective potential (averaged out potential) in the quantum picture analogous

to the classical Kapitza problem was defined by Gillary and Moiseyev. There can

be found more time-independent terms like this as shown below.
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The Schrödinger equation in the Kramer-Henneberger frame is given by

ih̄
∂

∂t
ψ(~r, t) =

 p̂2

2m
+ V KH

0 (~r) +
n=∞∑
n=−∞
n6=0

Vn(~r)einωt

ψKH0 (~r, t) (2.72)

To remove the time dependent harmonics from the Hamiltonian we apply the

unitary transformation

Û(1)(~r, t) = exp

 n=∞∑
n=−∞
n6=0

1

h̄nω
Vn(~r)einωt

 = eS(~r,t) (2.73)

Now the new Hamiltonian is given by

Ĥnew = ih̄
∂Û(1)

∂t
Û †(1) + Û(1)ĤÛ

†
(1) (2.74)

⇒ Ĥnew = − h̄
2

m

[
∇2

2m
+

1

2
∇2Ŝ +∇Ŝ.∇− 1

2
∇Ŝ.∇Ŝ

]
+ V̂ KH

0 (2.75)

The extra time-independent term comes only from the fourth term in the paren-

thesis. The time-independent Hamiltonian is given by

Ĥ(~r) = − h̄2

2m

∇2 − 1

(h̄ω)2

n=∞∑
n=−∞
n 6=0

∇Vn.∇V−n
n2

+ V̂ KH
0 (2.76)

∇Vn =
ω

2π

2π/ω∫
0

(
∇V KH(x, t′)

)
e−inωt

′
dt′ (2.77)

The Kramers-Henneberger transformation was motivated by the situation of a

charged particle in an electromagnetic field. But the argument presented can be

used in a very general way. A charged particle in an electromagnetic field (plane

wave) is in no way different, in principle, from a particle in an oscillating trap.

Therefore, the same transformation can be applied in the other case.

If the frequency of the oscillation is sufficiently large, the time-dependent terms

do not make a significant contribution because of their increasingly oscillating

behaviour. The zeroth order time-independent potential can then describe the
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system very well under high-frequency conditions. So, a time-dependent problem

becomes a time-independent problem.

To go back to the lab frame, we need to back transform the wavefunction obtained

by solving the time-independent problem in the KH frame. But the probability

density remains unaffected. Therefore, the original time-dependent problem can be

more easily solved by a time-independent approach by the Kramers-Henneberger

transformation when the frequency is sufficiently high.

2.5 Calculation of time-independent

Kramers-Henneberger potential

We choose a harmonic potential with an upper bound of the form [10]

V (x, y, z) =


1

2

(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)

V < Vc

Vc V ≥ Vc

 (2.78)

The trap is assumed to be highly anisotropic such that that ωx and ωy are much

larger than ωz. Therefore, the system is quasi-one dimensional, i.e., we assume that

the transverse excitations are absent when trap oscillations are in the z-direction.

For this trap potential, the time-independent Kramers-Henneberger potential can

be found, as discussed above, by integrating (numerically) the full KH-potential

V KH
0 (x) =

ω

2π

2π/ω∫
0

V KH(x, t)dt (2.79)

We perform this integration using the Gauss-Legendre Quadrature in a Discrete

Variable Representaion (DVR) grid. The time-independent KH potential for dif-

ferent values of the oscillation parameter α0 is shown below.
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Figure 2.1: Effective time-independent potential

Therefore, the fast oscillation of the trap is forming a double well out of a single

well given the amplitude is sufficiently high. It means that this mechanism can

lead to the formation of stable dichotomic states which further means that we

can get fragmented condensates out of a single condensate when the condensate

formed in the single well trap is driven by fast oscillations of the trap. But the

oscillations has to be switched on adiabatically so that the ground state of the

condensate system evolves to the ground state of the transformed Hamiltonian.

We show this by numerically solving the Gross-Pitaevskii equation for the time-

independent KH-potential shown above in the DVR grid.

 50

 55

 60

 65

 70

 75

 80

-40 -20  0  20  40

V
 (
- h
ω

z
)

z (√-h/mωz)

ρ
α0=20

Figure 2.2: Dichotomy of the condensate density
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This kind of probability densities which has sharp peaks with wide gaps in between

is vulnerable to giving nonsensical results when the variance of the position opera-

tor is used as an indicator of the uncertainty in the measurement of the position of

the particle. This is because variance depends upon the gap in between the peaks

and increases with it indicative of the fact that the uncertainty in the measurement

of the variable is increasing. But as the gap increases, the peaks themselves get

sharpened individually meaning that the uncertainty in the measurement of the

position gets smaller. It means that using variances to compute the uncertainties

is not a good measure in these situations.

Entropic uncertainties are free from this defect, and hence they are a better, if not

the best, measure of uncertainties especially for these kinds of distributions [19].

The entropic uncertainty relations are the topic of the next section where the idea

is elaborated.

2.6 Entropic Uncertainty Relations

There are many measures of Uncertainty in Quantum Mechanics. Variance is a

standard measure of uncertainty as in Heisenberg’s Uncertainty Principle. Like-

wise, Information Entropy is also a measure of Uncertainty. There are several ways

to define Information Entropy. One of the famous and simple ways was given by

Shannon. For discrete probabilities, Shannon Information entropy is defined as

[19]

S = −
∑
i

pi ln pi (2.80)

given the following conditions

1. 0 ≤ pi ≤ 1

2.
∑

i pi = 1

The definition can be understood as follows [19]
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1. The negative sign in the definition implies that uncertainty in measurement

is related to the missing information about the variable.

2. When the probability of a certain event occurring is 1, i.e., the event is certain

to happen, then S = 0. This shows that the uncertainty in the measurement of

the variable is zero as expected.

3. When the probability distribution is uniform, S is maximum. This shows that

the uncertainty in the measurement of the variable is maximum is such a case.

4. Sharper the distribution, lesser is the uncertainty.

For continuous position and momentum probability distributions, Shannon Infor-

mation Entropies are defined as

S[ρ] = Sρ = −
∫
dρρ(~r) ln ρ(~r) (2.81)

S[γ] = Sγ = −
∫
dγγ(~k) ln γ(~k) (2.82)

where ρ(~r) and γ(~k) are position and momentum space probability distributions.

The fourth feature of the entropic measure of uncertainty remains valid even when

the distribution is such that there exist wide gaps between sharp peaks. This is

not the case with variance being used as a measure of uncertainty. Therefore, our

use of entropic uncertainty to study the probability distributions in case of double

well bosonic systems is well justified.

A generalized uncertainty relation in terms of the dual space information entropies

of probability distributions was given by Bia lynickii-Birula and Mycielski [14]

Sρ + Sγ > n (1 + lnπ) (2.83)

This relation is a part of a general relation which also gives Heisenberg’s uncer-

tainty relation as a by-product.

2

n
〈(~k − 〈~k〉)2〉 ≥ (eπ)−1 exp

(
2

n
Sγ

)
≥ (eπ) exp

(
− 2

n
Sρ

)
≥ n

2
(〈(~r − 〈~r〉)2〉)−1

(2.84)



Chapter 2 Theoretical Framework 23

The first and the last term in this relation gives the Heisenberg’s uncertainty re-

lation. The mid-two terms gives the entropic uncertainty relation. The derivation

of the above uncertainty relation is given in Appendix C.

Let us see some important features of Fourier transforms of some special kinds of

wavefunctions relevant to our study before presenting the results of ρ(z), γ(kz),

Sρ and Sγ.

2.7 Fourier Transforms

1. Gaussian wavefunction

ψ(x) = A exp

(
−1

2

(
x− α
β

)2
)

(2.85)

ψ̃(k) =
A√
2π

∫ ∞
−∞

dxeikx exp

(
−1

2

(
x− α
β

)2
)

(2.86)

The normalized probability densities corresponding to these wavefunctions are

ρ(x) =
1

β
√
π

exp

(
−
(
x− α
β

)2
)

(2.87)

γ(k) =
β√
π
e−β

2k2 (2.88)

2. Double Gaussian wavefunction

ψ(x) = A

[
exp

(
−1

2

(
x− α
β

)2
)

+ exp

(
−1

2

(
x+ α

β

)2
)]

(2.89)

ψ̃(k) = A

∫ ∞
−∞

dxeikx

[
exp

(
−1

2

(
x− α
β

)2
)

+ exp

(
−1

2

(
x+ α

β

)2
)]

(2.90)

The normalized probability densities corresponding to these wavefunctions are

(shown in Appendix C)
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ρ(x) =
1

2β
√
π (1 + e−α2/β2)

{exp

(
−
(
x− α
β

)2
)

+ exp

(
−
(
x+ α

β

)2
)

+ 2 exp

(
−x

2 + α2

β2

)
} (2.91)

γ(k) =
2β√

π (1 + e−α2/β2)
e−β

2k2 cos2(kα) (2.92)

Now, let us see some general remarks on Fourier transforms. This follows from

the above and similar calculations.

1. The probability density corresponding to the Fourier transform of a Gaussian

wavefunction is again a Gaussian with an inverse width.

2. The probability density of a Double Gaussian wavefunction is in general a

double Gaussian with an extra modulated Gaussian profile in the centre. This

will be prominent when we plot the solutions of the Gross-Pitaevskii equation for

different oscillation parameters corresponding to different α’s.

3. The probability density corresponding to the Fourier transform of a Double

Gaussian wavefunction is an Oscillatory Gaussian. This will also be clear when

we plot the results of the calculations with the Gross-Pitaevskii equation.

4. Increasing the distance between the peaks in the position space density leads

to increase in oscillations in the momentum space densities.

5. If the position space probability distribution function ρ(x) is oscillatory, the

momentum space probability distribution function γ(k) is two separated oscilla-

tory Gaussians.

6. More oscillations in ρ(x) does not increase the separation between the Oscilla-

tory Gaussians in γ(k) but increase the oscillations in the Gaussians individually

and also squeeze them more.
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Results and Discussion

3.1 Solving the Gross-Pitaevskii equation

Time-independent Gross-Pitaevskii equation is solved for the cut harmonic poten-

tial trap [10]. (
− h̄2

2m
∇2 + Vext(~r) + g|ψ|2

)
ψ = µψ (3.1)

where g =
4πh̄2Na

m
and a is the s-wave scattering length.

Vext(x, y, z) =
1

2

(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)

V < Vc

= Vc V ≥ Vc

To solve this equation, we first do a rescaling of the original equation to dimen-

sionless units [22] as shown below.

~r = az~r1 (3.2)

E = hωzE1 (3.3)

ψ(~r) =

√
N

a3z
ψ1(~r1) (3.4)

µ = h̄ωzµ1 (3.5)

25
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where az =

(
h̄

mωz

)1/2

and h̄ωz are the characteristic length scale and energy scale

of the problem.

The equation in rescaled dimensionless units in one dimension looks as follows

(
−1

2
∇2

1 + Vext(~r1) +
4πaN

az
|ψ1|2

)
ψ1 = µ1ψ1 (3.6)

The assumption used in solving this equation as already discussed previously is

that the potential is very anisotropic so that the transverse excitations are absent

and hence the system is effectively one-dimensional. The one-dimensional equation

in rescaled units looks as follows

(
−1

2

∂2

∂z21
+ Vext(z1) +

4πaN

az
|ψ1|2

)
ψ1 = µ1ψ1 (3.7)

This equation is solved by the grid-based approach. We make a Discrete Variable

Representation (DVR) grid [17] using the ’particle in a box eigenfunctions’ [21].

In this method, the potential energy and the non-linear term is a local operator

due to which they are diagonal matrices with the diagonal entries corresponding

to their values at the grid points. But the Kinetic energy matrix has to be found.

The kinetic energy matrix evaluation has already been done by Colbert and Miller

(1991) [21] and the kinetic energy matrix for a grid z → (−∞,∞) is shown to be

(Appendix A)

Tii′ =
h̄2

2m∆z2
(−1)i−i

′


π2/3, i = i′

2

(i− i′)2
, i 6= i′

 (3.8)

where grid spacing ∆z =
b− a
N

with a→ −∞, b→∞ and N →∞ being finite.

The trap Vext that we use is the zeroth order Kramers-Henneberger potential for

the cut harmonic trap as already discussed in the previous chapter. We diagonalize

the resulting Hamiltonian in the DVR grid iteratively. The converged eigenvalues

and the corresponding eigenfunctions are the solutions to the time-independent

Gross-Pitaevskii equation for different oscillation parameters α0.
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Finally, we do Fourier transformation of the obtained eigenfunctions thereby get-

ting both the probability densities ρ(~r) and γ(~k) from which the Sρ and Sγ can be

calculated by numerical integration for which we use Simpson’s integration rule.

3.2 Merging Dynamics

The fragmentation of condensates in the presence of fast and wide oscillations can

also be understood if we consider the exactly opposite phenomenon of merging of

two separated condensates. In this case, two separately prepared condensates are

brought together by merging the traps [27], which can again be understood via

the Kramers-Henneberger frame which says that the time-averaged effect of fast

oscillations of a double well leads to a single well. The fragmented (separated)

condensate is the eigenstate of the double well potential which evolves to a sin-

gle condensate which is the eigenstate of the single well trap. This can be well

understood in the light of the adiabatic theorem in quantum mechanics in the

limit of adiabatic switching of the trap oscillation. But even if the merging is non-

adiabatic as the real case may be, the high differences in the energy eigenstates of

the Hamiltonian is shown to limit the occupation of only a few low-lying levels,

and this ultimately leads to the formation of a state with the dominant number of

particles in the condensate mode [27]. This fixing of the phase difference between

the initially separated condensates with ambiguous phase relationship enhances

the fraction of particles in the condensate mode making it a potentially useful way

to build a continuous atom laser [27].

The Gross-Pitaevskii equation assumes that all the particles of the condensate

occupy the same (ground) state whereas the multi-configurational Hartree equa-

tions go beyond the mean-field approach and do not assume the occupancy of

only a single state. It allows for the occupancy of more than one state in the

condensed mode. The MCTDHB package can solve the time-dependent Gross-

Pitaevskii equation as well as multi-configurational Hartree equations for bosons.

The merging dynamics is shown later in the next section.
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3.3 Results and Discussion

3.3.1 Dual space probability densities and entropy

We first show the plots for ρ(z) and γ(kz) for different α0 and explain their be-

haviour as α0 increases. Later, we also show Sρ + Sγ as a function of α0.

As α0 increases beyond the point where the upper cut of the harmonic trap is

located, γ(kz) starts becoming sharper than ρ(z).
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Figure 3.1: ρ(z) & γ(p) (3.1a) α0 = 00.000 (3.1b) α0 = 11.850

On increasing α0, ρz becomes much more dispersed thus leading to a sharp increase

in Sρ. This also makes γ(kz) more squeezed leading to sharp increase in Sγ.

Further increasing α0 makes the modulated Gaussian at the center prominent and

therefore γ(kz) starts picking oscillations as was discussed in the section on Fourier

transforms of Double Gaussian (point 2).
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Figure 3.2: ρ(z) & γ(p) (3.2a) α0 = 12.025 (3.2b) α0 = 12.080

Increasing α0 further would start reducing the central bump in Sρ as can be seen

below.
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Figure 3.3: ρ(z) & γ(p) (3.3a) α0 = 12.100 (3.3b) α0 = 12.200

As we increase the α0 further, ρz begins to move towards a fragmented state and

more oscillations set in γ(kz). ρz starts becoming dichotomic and therefore Sρ

starts to decrease and due to increasing oscillations Sγ increases more.
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Figure 3.4: ρ(z) & γ(p) (3.4a) α0 = 12.300 (3.4b) α0 = 12.700

The separation between the two lobes increases with the lobes individually getting

more squeezed, due to which Sρ decreases further. γ(kz) gets more oscillatory due

to this as discussed in the section on Fourier transforms thus increasing Sγ.
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Figure 3.5: ρ(z) & γ(p) (3.5a) α0 = 13.000 (3.5b) α0 = 15.000
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Increasing the α0 further shows the same trend and both Sρ and Sγ begins to

saturate as ρ(z) becomes more and more squeezed in the individual lobes and

γ(kz) becomes more and more oscillatory. The interesting feature that comes out

further at this point is that ρ(z) is not anymore a state with an equal number of

particles in the two wells. This feature is expected and already discussed in the

section on fragmented condensates. Therefore, the state will again evolve towards

a single condensate. Both the kind of states as shown below are equally probable

because they are nearly degenerate in this range of α0.
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Figure 3.6: ρ(z) & γ(p) (3.6a) α0 = 20.000 (3.6b) α0 = 25.000

The result of entropy calculation Sρ and Sγ is shown below. The behaviour of Sρ

and Sγ is already discussed above.

 3

 4

 5

 6

 7

 8

 9

 0  10  20  30  40  50  60

α
0

Sr
Sp

Sr + Sp

Figure 3.7: Sr and Sp
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3.3.2 Merging the condensates

The initial state is a fragmented condensate which is prepared by solving the Gross-

Pitaevskii equation or the multi-configurational Hartree equations for bosons through

the MCTDHB package with a double well potential of the form

V (x) = Ax4 −Bx2, A = 1, B = 5 (3.9)

This state is then propagated by a Hamiltonian with potential of the form

V (x) = A

[
x− α0 sin2

(
π

2

t

ton

)
sinωt

]4
−B

[
x− α0 sin2

(
π

2

t

ton

)
sinωt

]2
(3.10)

where A = 1, B = 5, ω = 25 units, α0 = 4.3245 units, ton = 100.

The software shows the dynamics as a ’gif’ file. We are pasting the screenshots at

different times of the ’gif’ file created through MCTDHB package.

The screenshots at different times of the ’gif’ files for Gross-Pitaevskii equation

and multi-confiurational (M = 2) Hartree equations are shown.

3.4 Conclusion

1. The dual space entropy sum is close to its minimum value at the beginning

itself because of the state there being very close to the Gaussian nature. In our

calculations, we don’t find an α0 further which globally minimises Sρ+Sγ. There-

fore, our conclusion remains that wide and fast oscillation of the potential trap do

lead to fragmentation, but the fragmentation of the state does not bear a simple,

direct relationship with the minimum of the dual space information entropy.
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Figure 3.8: Dynamics for M=1 or Gross-Pitaevskii
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Figure 3.9: Dynamics for M=2
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2. The merging dynamics clearly shows that as the oscillation of the trap is

switched on adiabatically, the double well becomes a single well and the conden-

sates (ground state of the system) merge adiabatically. Hence, the adiabatic evo-

lution of the ground state takes the fragmented state to a single condensate. This

feature is just the opposite of what happens when a single well with an uppercut

oscillates and a fragmented state emerges from a single condensate.
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(1999)

[26] Shachar Klaiman, Alexej I. Streltsov, Ofir E. Alon, Phys. Rev. A 93, 023605

(2016)

[27] W. Yi and L.-M. Duan, Phys. Rev. A 71, 043607 (2005)

[28] Alexej. I. Streltsov and Ofir. E. Alon MCTDHB Package

arXiv:1001.4668v2


Appendix A

Second Quantisation and DVR

A.1 Density matrix

|ψn〉 =

∫
d~r1...d~rn|~r1...~rn〉〈~r1...~rn|ψ〉 (A.1)

⇒ â〈~r′|ψn〉 =

∫
d~r1...d~rnâ〈~r′|~r1...~rn〉ψn(~r1...~rn) (A.2)

⇒ â〈~r′|ψn〉 =

∫
d~r1...d~rn

N∑
k=1

ζk−1〈~r′|~rk〉|~r1...~rk−1, ~rk+1...~rn〉ψn(~r1...~rk...~rn)(A.3)

⇒ â†|~r〉â〈~r′|ψn〉 =
N∑
k=1

∫
d~r1...d~rnδ

3(~r′ − ~rk)|~r1...~r...~rn〉ψn(~r1...~rk...~rn) (A.4)

⇒ 〈ψn|â†(~r)â(~r′)|ψn〉 =
N∑
k=1

∫
d~r1...d~rk−1, d~rk+1...d~rnψ

?
n(~r1...~r...~rn)ψn(~r1...~r

′...~rn)

(A.5)

For pure state

n(1)(~r, ~r′) = N

∫
d~r2...d~rnψ

?
n(~r, ~r2...~rn)ψn(~r′, ~r2...~rn) (A.6)

For mixed state

ρ(1)(~r, ~r′) =
1

Q

N∑
n=1

e−βEnn(1)(~r, ~r′) (A.7)

where Q is the canonical partition function.

37
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A.2 Derivation of Gross-Pitaevskii equation

The field operator follows the Heisenberg equation as shown below.

ψ̂(~r, t) = Û †(t)ψ̂(~r, 0)Û(t) (A.8)

∂ψ̂(~r, t)

∂t
=

∂Û †(t)

∂t
ψ̂(~r, 0)Û(t) + Û †ψ̂(~r, 0)

∂Û(t)

∂t
(A.9)

= − 1

ih̄
Û †(t)Ĥψ̂(~r, 0)Û(t) +

1

ih̄
Û †(t)ψ̂(~r, 0)ĤÛ(t) (A.10)

=
1

ih̄
Û †(t)

[
ψ̂(~r, 0), Ĥ

]
Û(t) (A.11)

ih̄
∂ψ̂(~r, t)

∂t
=

[
ψ̂(~r, t), Ĥ

]
(A.12)

The Hamiltonian in the second quantised formalism is given as

Ĥ =

∫ (
− h̄2

2m
Ψ̂†∇2Ψ̂ + Ψ̂†Vext(~r)Ψ̂ +

1

2

∫
Ψ̂†Ψ̂†′V (~r − ~r′)Ψ̂Ψ̂′d3~r′

)
d3~r (A.13)

Evaluating the commutator one by one as shown below.

The kinetic energy term gives

[
ψ̂(~r, t),

∫
d3~r′Ψ̂†(~r′, t)∇′2Ψ̂(~r′, t)

]
=

∫
d3~r′(

[
ψ̂(~r, t), Ψ̂†(~r′, t)

]
∇′2Ψ̂(~r′, t)

+ Ψ̂†(~r′, t)∇′2
[
ψ̂(~r, t), Ψ̂(~r′, t)

]
) (A.14)

⇒
[
ψ̂(~r, t),

∫
d3~r′Ψ̂†(~r′, t)∇′2Ψ̂(~r′, t)

]
= ∇2Ψ̂(~r, t) (A.15)

The potential energy due to trap gives

[
ψ̂(~r, t),

∫
d3~r′Ψ̂†(~r′, t)Vext(~r

′)Ψ̂(~r′, t)

]
=

∫
d3~r′(

[
ψ̂(~r, t), Ψ̂†(~r′, t)

]
Vext(~r

′)Ψ̂(~r′, t)

+ Ψ̂†(~r′, t)Vext(~r
′)
[
ψ̂(~r, t), Ψ̂(~r′, t)

]
) (A.16)

⇒
[
ψ̂(~r, t),

∫
d3~r′Ψ̂†(~r′, t)Vext(~r

′)Ψ̂(~r′, t)

]
= Vext(~r)Ψ̂(~r, t) (A.17)

The potential energy due to interaction gives

[
ψ̂(~r, t),

1

2

∫
d3~r1d

3~r2Ψ̂
†(~r1)Ψ̂

†(~r2)V
(2)(~r1 − ~r2)Ψ̂(~r1)Ψ̂(~r2)

]
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=
1

2

∫
d3~r1d

3~r2

[
ψ̂(~r, t), Ψ̂†(~r1)

]
Ψ̂†(~r2)V

(2)(~r1 − ~r2)Ψ̂(~r1)Ψ̂(~r2) + ... (A.18)

=
1

2

∫
d3~r1d

3~r2δ
3(~r − ~r1)Ψ̂†(~r2)V (2)(~r1 − ~r2)Ψ̂(~r1)Ψ̂(~r2) + ... (A.19)

=

[∫
d3~r′Ψ̂†(~r′)V (2)(~r − ~r′)Ψ̂(~r′)

]
Ψ̂(~r) (A.20)

Therefore, the Heisenberg equation for the field operators becomes

ih̄
∂ψ̂(~r, t)

∂t
=

[
− h̄2

2m
∇2 + Vext(~r) +

(∫
d3~r′Ψ̂†(~r′)V (2)(~r − ~r′)Ψ̂(~r′)

)]
Ψ̂(~r) (A.21)

The exact form of the interaction potential does not matter in low energy scattering

as in the case of Bose-Einstein condensate because all the interaction effects are

described by the scattering length. Therefore, V (2)(~r − ~r′) can be replaced by a

soft potential Veff to which Born approximation can be applied. Then it is safe to

replace ψ̂(~r, t) by ψ0(~r, t) and assume V (2)(~r − ~r′) = gδ3(~r − ~r′) where g depends

on the scattering length. The equation then becomes

ih̄
∂ψ0(~r, t)

∂t
=

[
− h̄2

2m
∇2 + Vext(~r) + g|ψ0(~r, t)|2

]
ψ0(~r, t) (A.22)

ψ0(~r, t) is the condensate wavefunction and the above equation is the time-dependent

Gross-Pitaevskii equation.

A.3 Sinc DVR Method

The Discrete Variable Represntation (DVR) introduced by Light and coworkers,

is a powerful technique which can used for solving both time-independent and

time-dependent quantum mechanical problems. A convenient analytical expres-

sion developed by Corbert and Miller 1 to solve for the matrix elements of a

derivative operator in quantum mechanics is discussed here.

1Daniel T. Colbert and William H. Miller, J. Chem. Phys., 96, 1982 (1992)
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The kinetic energy operator for a one-dimensional quantum system with coordi-

nate x restricted to the interval (a, b) can be written as

T = − h̄2

2m

d2

dx2
(A.23)

It is assumed here that the wavefunction vanish at the endpoints a and b. The

wavefunction can be expanded in an orthonormal basis set defined on a grid. The

grid xi in DVR is equally spaced.

xi = a+ (b− a)i/N, i = 1, ....., N − 1 (A.24)

and the associated functions for a uniform grid are fourier functions (i.e., particle

in a box eigenfunctions).

φn(x) =

(
2

b− a

)1/2

sin

[
nπ(x− a)

b− a

]
, n = 1, ......., N − 1 (A.25)

As φn(xo ≡ a) = φn(xN ≡ b) = 0, there are thus N−1 functions and N−1 points.

Within the Fourier-basis DVR formalism, the grid point representation of kinetic

energy is then given by

Tii′ =
−h̄2

2m

(
π

b− a

)2
2

N

N−1∑
n=1

n2sin

(
nπi

N

)
sin

(
nπi′

N

)
(A.26)

The sum over n can be evaluated analytically which gives

Tii′ =
h̄2

2m

(−1)i−i
′

(b− a)2
π2

2

1

sin2[π(i− i′)/2N ]
− 1

sin2[π(i− i′)/2N ]
(A.27)

for i 6= i′ and

Tii′ =
h̄2

2m

1

(b− a)2
π2

2
[(2N2 + 1/3− 1

sin2(πi/N)
] (A.28)

for i = i′
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For the case where a = −∞ to b =∞. The grid spacing ∆x = (b− a)/N requires

that N →∞ also. Thus equation becomes

Tii′ =
h̄2

2m4 x2
(−1)i−i

′

π
2/3 if i = i′

2
(i−i′)2 if i 6= i′

and the grid is now specified as xi = i∆x, i = 0,±1,±2, ... .
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Double well model

B.1 Hamiltonian in Schwinger representation

Ĥ1 = −t
(
â†1â2 + â†2â1

)
+
U

2

[
â†1â

†
1â1â1 + â†2â

†
2â2â2

]
(B.1)

where â†i creates a particle in well i and âi annihilates a particle in well i. The

first term is the tunnelling term and the second is the usual contact interaction.

Evaluating the Hamiltonian in Schwinger representation

Ĵx =
1

2

(
â†1â2 + â†2â1

)
(B.2)

Ĵy =
1

2i

(
â†1â2 − â

†
2â1

)
(B.3)

Ĵz =
1

2

(
â†1â1 − â

†
2â2

)
(B.4)

where â†i âi = ni and n1 + n2 = N .

In this representation, the Hamiltonian becomes

Ĥ = −2tĴx +
U

4

[
(n1 − n2)

2 +N2 − 2N
]

(B.5)

1Erich J. Mueller, Tin-Liu Ho, Masahito Ueda, Gordon Baym, Phys. Rev. A 74, 033612
(2006)
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Ĵ2
x =

1

4

[
â†1â2â

†
1â2 + â†1â2â

†
2â1 + â†2â1â

†
1â2 + â†2â1â

†
2â1

]
(B.6)

Ĵ2
y = −1

4

[
â†1â2â

†
1â2 − â

†
1â2â

†
2â1 − â

†
2â1â

†
1â2 + â†2â1â

†
2â1

]
(B.7)

Ĵ2
z =

1

4

[
â†1â1â

†
1â1 + â†2â2â

†
2â2 − 2â†1â1â

†
2â2

]
(B.8)

Ĵ2 =
N

2

(
N

2
+ 1

)
(B.9)

Ĵ2 + Ĵ2
z −N =

1

4

[
(n1 − n2)

2 +N2 − 2N
]

(B.10)

Therefore, the Hamiltonian becomes

Ĥ = −2tĴx + U
(
Ĵ2 + Ĵ2

z −N
)

(B.11)

B.2 Schrodinger equation in the interacting dou-

ble well model

Ĥ = −t
(
â†1â2 + â†2â1

)
+
U

4

[
(n1 − n2)

2 +N2 − 2N
]

(B.12)

In number basis, a state can be written as

|ψ〉 =

N/2∑
l=−N/2

ψl|l〉 =

N/2∑
l=−N/2

ψl|
N

2
+ l,

N

2
− l〉 (B.13)

Ĥt|ψ〉 = −t
(
â†1â2 + â†2â1

) N/2∑
l=−N/2

ψl|
N

2
+ l,

N

2
− l〉 (B.14)

= −t
N/2∑

l=−N/2

√(
N

2
+ l + 1

)(
N

2
− l
)
ψl|

N

2
+ l + 1,

N

2
− l − 1〉

− t
N/2∑

l=−N/2

√(
N

2
− l + 1

)(
N

2
+ l

)
ψl|

N

2
+ l − 1,

N

2
− l + 1〉

(B.15)
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U

2
[n1(n1 − 1) + n2(n2 − 1)]

N/2∑
l=−N/2

ψl|
N

2
+ l,

N

2
− l〉 =

U

2

N/2∑
l=−N/2

[(
N

2
+ l − 1

)(
N

2
+ l

)
+

(
N

2
− l − 1

)(
N

2
− l
)
ψl|

N

2
+ l,

N

2
− l〉

]
(B.16)

⇒ 〈l|Ĥ|ψ〉 = −tlψl−1 − tl+1ψl+1 + Ul2 + U

(
N2

4
− N

2

)
(B.17)

The last term in the equation does not matter because it is a constant.

⇒ Eψl = −tlψl−1 − tl+1ψl+1 + Ul2ψl (B.18)

B.3 Density matrix for the mean-field solution

|θ, φ〉 =
1√
N

(
uâ†1 + vâ†2

)N
|0〉 (B.19)

〈θ, φ|â†1â2|θ, φ〉 =
1

N !
〈0|(u?â1 + v?â2)

N |â†1â2|(uâ
†
1 + vâ†2)

N |0〉 (B.20)

=
1

N !
〈0|

[∑
j

(
N
j

)(
eiφ/2 cos

θ

2
â1

)N−j (
e−iφ/2 sin

θ

2
â2

)j]
(â†1â2)[∑

k

(
N
k

)(
e−iφ/2 cos

θ

2
â†1

)N−k (
eiφ/2 sin

θ

2
â†2

)k]
|0〉 (B.21)

=
1

N !

∑
j

∑
k

(
N

j

)(
N

k

)
eiφ(k−j)

(
cos

θ

2

)(2N−j−k)(
sin

θ

2

)(j+k)

〈0|â(N−j)1

(
â†1

)(N−k+1)

â
(j+1)
2

(
â†2

)(N−j)
|0〉 (B.22)

The terms with non-zero value must have k = j + 1.

= N cos
θ

2
sin

θ

2
eiφ
∑
j

(
N − 1

j

)(
cos2

θ

2

)(N−1−j)(
sin2 θ

2

)j
(B.23)

= N cos
θ

2
sin

θ

2
eiφ
(

sin2 θ

2
+ cos2

θ

2

)(N−1)

(B.24)

= N cos
θ

2
sin

θ

2
eiφ (B.25)
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∴ 〈â†1â2〉 = N cos
θ

2
sin

θ

2
eiφ (B.26)

〈â†2â1〉 = N cos
θ

2
sin

θ

2
e−iφ (B.27)

〈â†1â1〉 = N cos2
θ

2
(B.28)

〈â†2â2〉 = N sin2 θ

2
(B.29)

Therefore, the density matrix for this state is given by

ρµν =

 N cos2(θ/2) N sin(θ/2) cos(θ/2)eiφ

N sin(θ/2) cos(θ/2)e−iφ N sin2(θ/2)

 (B.30)

B.4 Coherent state in number basis

|C〉 =

N/2∑
l=−N/2

ψl|
N

2
+ l,

N

2
− l〉 =

N/2∑
l=−N/2

ψl|l〉 =
1√

2NN !

(
â†1 + â†2

)N
|0〉(B.31)

⇒ ψl =
1

2NN !

N !(
N

2
+ l

)
!

(
N

2
− l
)

!

√(
N

2
+ l

)
!

(
N

2
− l
)

! (B.32)

⇒ ψl =

 N !

2N
(
N

2
+ l

)
!

(
N

2
− l
)

!


1/2

(B.33)

⇒ lnψl =
1

2
[N ln

N

2
−
(
N

2
+ l

){
ln
N

2
+ ln

(
1 +

2l

N

)}

−
(
N

2
− l
){

ln
N

2
+ ln

(
1− 2l

N

)}

+
1

2

{
ln(2πN)− ln

(
2π

(
N

2
+ l

))
− ln

(
2π

(
N

2
− l
))}

] (B.34)

⇒ ψl =
e−l

2/N

(πN/2)1/4
(B.35)

⇒ ψl =

∫
l2e−2l

2/N

(πN/2)1/2
=
N

4
(B.36)
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Derivation of Entropic

Uncertainty Relations and

Fourier Transforms

C.1 Derivation of EUR

The BBM inequality comes from an inequality theorem in Fourier Analysis on

Rn called the Babenko-Beckner inequality. This inequality relates the norm of an

integrable function in Lp to the norm of its Fourier transform. The theorem states

that

The (p, q) norm of the Fourier transformation follows the inequality

‖ψ̃‖q≤ k(p, q)‖ψ‖p (C.1)

where ‖ψ‖p=
(∫

dnr|ψ|p
)1/p

,
1

p
+

1

q
= 1, q ≥ 2 and

k(p, q) =

(
2π

q

)n/2q (
2π

p

)−n/2p
(C.2)
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Let us define a function

W (q) ≡ k(p, q)‖ψ‖p−‖ψ̃‖q (C.3)

⇒ W (q) ≥ 0 (C.4)

Let us now look at a theorem which will be useful to us for deriving the EUR.

A(x) =
1√
2π

∫ ∞
−∞

Ã(k′)eik
′xdk′ (C.5)

B(x) =
1√
2π

∫ ∞
−∞

B̃(k′)eik
′xdk′ (C.6)

⇒ B(x) =
1√
2π

∫ ∞
−∞

B̃(k′)eik
′xdk′ (C.7)

∫ ∞
−∞

A(x)B(x)dx =
1

2π

∫ ∞
−∞

[∫ ∞
−∞

∫ ∞
−∞

Ã(k)B̃(k′)ei(k−k
′)xdkdk′

]
dx (C.8)

⇒
∫ ∞
−∞

A(x)B(x)dx =
1

2π

∫ ∞
−∞

Ã(k)B̃(k)dk (C.9)

This is the Parseval-Plancheral theorem. This implies

∫ ∞
−∞
|A(x)|2dx =

1

2π

∫ ∞
−∞
|Ã(k)|2dk (C.10)

⇒ W (2) = 0 (C.11)

⇒
(
dW

dq

)
q=2

≥ 0 (C.12)

dW

dq
=
dk

dq
‖ψ‖p+k(p, q)

d

dq
‖ψ‖p−

d

dq
‖ψ̃‖q (C.13)

Let us now compute
dW

dq
term by term.

(
dk

dq

)
q=2

=
d

dq

[(
2π

q

)n/2q
.

(
2π

p

)−n/2p]
q=2

= −n
4

(1 + lnπ) (C.14)

(
d‖ψ̃‖q
dq

)
q=2

=

[
d

dq

(∫
dn~k‖ψ̃‖q

)1/q
]
q=2

=
1

2N

∫
dn~k‖ψ̃‖2ln‖ψ̃‖−1

4
N lnN (C.15)
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(
d

dq
‖ψ‖p

)
q=2

= − 1

2N

∫
dn~r‖ψ‖2ln‖ψ‖+1

4
N lnN (C.16)

where N =
∫
dn~r‖ψ‖2=

∫
dn~k‖ψ̃‖2.

∴

(
dW (q)

dq

)
q=2

=

− 1

2N

∫
dn~r‖ψ‖2ln‖ψ‖− 1

2N

∫
dn~k‖ψ̃‖2ln‖ψ̃‖+N

2
lnN − nN

4
(1 + lnπ) ≥ 0

⇒ −〈ln ρ〉 − 〈ln γ〉 ≥ n(1 + ln π) (C.17)

Now, we need to maximize −〈ln ρ〉 subject to the two following constraints

ρ(~r) =
∫
dn~r‖ψ‖2= 1 and 〈(~r − 〈~r〉)2〉 = r20.

d

dρ

[
−
∫
dn~rρ ln ρ− λ

(∫
dn~rρ− 1

)
− µ

(∫
r2ρdn~r − (rρdn~r)2 − r20

)]
= 0 (C.18)

⇒
∫
dn~r

[
− ln ρ− 1− λ− µr2 + µ〈~r〉.~r

]
= 0 (C.19)

⇒ ρ(~r) = e−(1+λ)e−µ(r
2−2〈~r〉.~r) (C.20)

∫
ρ(~r)dn~r = e−(1+λ)

[∫
e−µ(x

2−2x.x+x2)dx

]n
eµ(x

2+y2+...) (C.21)

⇒ 1 = e−(1+λ)
(∫

e−µx
′2dx′

)n
eµr

2

(C.22)

⇒ e(1+λ) =

(
π

µ

)n/2
eµ〈~r〉

2

(C.23)

⇒ ρ(~r) =
(µ
π

)n/2
e−µ(~r−〈~r〉)

2

(C.24)

For ρmax(~r),
dρ(~r)

dµ
= 0.

⇒ n

2µ
= (~r − 〈~r〉)2 (C.25)

⇒ n

2µ

∫
ρ(~r)dn~r = 〈(~r − 〈~r〉)2〉 = r20 (C.26)
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⇒ µ =
n

2r20
(C.27)

⇒ ρmax(~r) =

(
n

2πr20

)n/2
e−n(~r−〈~r〉)

2/2r20 (C.28)

⇒ − ln(ρmax(~r)) =
n

2r20
(~r − 〈~r〉)2 +

n

2
ln

(
2πr20
n

)
(C.29)

⇒ − ln ρ(~r) ≤ n

2r20
(~r − 〈~r〉)2 +

n

2
ln

(
2πr20
n

)
(C.30)

⇒ − ln ρ(~r) ≤ n

2
ln

(
2πer20
n

)
(C.31)

⇒ eπ

[
exp

(
2

n
〈ln ρ〉

)]
≥ n

2
〈(~r − 〈~r〉)2〉−1 (C.32)

⇒ 2

n
〈(~k − 〈~k〉)2〉 ≥ (eπ)−1 exp

(
2

n
〈ln γ〉

)
(C.33)

From the BBM inequality, we have

−〈ln ρ〉 − 〈ln γ〉 ≥ n(1 + ln π) =
n

2
ln(πe)2 (C.34)

⇒ eπ

[
exp

(
2

n
〈ln ρ〉

)]
≤ (eπ)−1 exp

(
2

n
〈ln γ〉

)
(C.35)

∴
n

2
〈(~r − 〈~r〉)2〉−1 ≤ eπ

[
exp

(
2

n
〈ln ρ〉

)]
≤ (eπ)−1 exp

(
2

n
〈ln γ〉

)
≤ 2

n
〈(~k − 〈~k〉)2〉

(C.36)

A single Gaussian saturates this string of inequality.

C.2 Fourier Transform of Double Gaussian

ψ(x) = A

[
exp

{
−1

2

(
x− α
β

)2
}

+ exp

{
−1

2

(
x+ α

β

)2
}]

(C.37)

⇒
∫
|ψ(x)|2dx = 2|A|2β

√
π
(

1 + e−α
2/β2

)
= 1 (C.38)

⇒ |A|2 =
1

2β
√
π
(
1 + e−α2/β2

) (C.39)

ψ̃(k) =

∫
eikx

[
exp

{
−1

2

(
x− α
β

)2
}

+ exp

{
−1

2

(
x+ α

β

)2
}]

dx (C.40)
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⇒ |ψ̃(k)|2= e−ikαe−β
2k2/2 + eikαe−β

2k2/2 = 2e−β
2k2/2(1 + cos(2kα)) (C.41)

⇒
∫
|ψ̃(k)|2dx =

2|B|2
√
π

β

(
1 + e−α

2/β2
)

(C.42)

⇒ |B|2 =
β

2
√
π
(
1 + e−α2/β2

) (C.43)

Therefore, the position-space and momentum-space probability densities for a dou-

ble Gaussian are given by

ρ(x) =
1

2β
√
π
(
1 + e−α2/β2

) [exp

{
−1

2

(
x− α
β

)2
}

+ exp

{
−1

2

(
x+ α

β

)2
}]

(C.44)

γ(k) =
β

√
π
(
1 + e−α2/β2

)e−β2k2/2(1 + cos(2kα)) (C.45)

C.3 Entropy of Gaussian distributions

ρ(x) =
1

β
√
π

exp

{
−1

2

(
x− α
β

)2
}

(C.46)

⇒ Sρ = −
∫
dxρ ln ρ =

1

2
(1 + ln πβ2) (C.47)

γ(k) =
β√
π
e−β

2k2/2 (C.48)

⇒ Sγ = −
∫
dkγ ln γ =

1

2
(1 + ln

π

β2
) (C.49)

⇒ Sρ + Sγ = 1 + lnπ (C.50)

Thus, a single Gaussian saturates the BBM inequality as it saturates the Heisen-

berg inequality.
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