
Some Topics in Riemannian

Geometry

Nitesh Kumawat

MS12034

A dissertation submitted for the partial fulfilment of

BS-MS dual degree in Science

Indian Institute of Science Education and Research Mohali

April 2017





Certificate of Examination

This is to certify that the dissertation titled “Some Topics in Rie-

mannian Geometry” submitted by Mr. Nitesh Kumawat (Reg. No.

MS12034) for the partial fulfilment of BS-MS dual degree programme

of the Institute, has been examined by the thesis committee duly ap-

pointed by the Institute. The committee finds the work done by the

candidate satisfactory and recommends that the report be accepted.

Dr. K. Gongopadhyay Dr. Mahender Singh Dr. Pranab Sardar

(Supervisor)

Dated: April 21, 2017





Declaration

The work presented in this dissertation has been carried out by me un-

der the guidance of Dr.Pranab Sardar at the Indian Institute of Science

Education and Research Mohali.

This work has not been submitted in part or in full for a degree, a

diploma, or a fellowship to any other university or institute. Whenever

contributions of others are involved, every effort is made to indicate

this clearly, with due acknowledgement of collaborative research and

discussions. This thesis is a bonafide record of original work done by

me and all sources listed within have been detailed in the bibliography.

Nitesh Kumawat

(Candidate)

Dated: April 21, 2017

In my capacity as the supervisor of the candidate’s project work, I cer-

tify that the above statements by the candidate are true to the best of

my knowledge.

Dr.Pranab Sardar

(Supervisor)





Acknowledgements

First and foremost I would like to express my deepest gratitude to my advisor Dr.

Pranab Sardar. This project would not have been possible without the guidance and

support provided by him. I would like to thank my thesis committee, Dr. Pranab

Sardar(Supervisor) , Dr. K. Gongopadhyay and Dr. Mahender singh for taking out

the time to read my thesis and giving valuable suggestions. I am extremely thankful

to Prof. N. Sathyamurthy, Director, IISER Mohali, for allowing me to use the various

facilities of this institute to carry out the research work. I would also like to thank

IISER Mohali for giving me this wonderful opportunity, first to study in a research

oriented environment and then allowing me to do the final year research. The scientific

discussions with the faculties and students over these years have opened my mind to

the existence of different possibilities in the ever changing field of Science. I would

also like to thank Department of Science and Technology (DST) for providing me

INSPIRE Scholarship for Higher Education (SHE).

I would also like to thank Sagar Kalane for helpful discussion. At last, I would like

to thank my friends Abhijeet Roy, Vikram Singh Bhati,Shrinit Singh, Prem Kumar,

Mukesh, Akshay, Rahul and Ashish for being always with me. It was due to their

constant support that I did not feel lost at any time. I would like to acknowledge the

respect that I got from junior batches and the love given by the seniors. I am taking

a lot from here and hope that I will be able to do justice to the support and guidance

provided by IISER Mohali.

Nitesh Kumawat

IISER MOHALI





Dedicated to my family

For their endless love,support and encouragement

9





Contents

1 Some prerquisites 13

1.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2 Topological manifold . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4 Differentiable manifold . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.5 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.6 Tangent space and tangent bundle . . . . . . . . . . . . . . . . . . . . 15

1.6.1 Partition of unity . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Riemannian metric on manifolds 19

2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Basic definitions : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Existence of Riemannian metric. . . . . . . . . . . . . . . . . . . . . 21

3 Connections on manifolds 23

3.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.1 Covariant Derivative . . . . . . . . . . . . . . . . . . . . . . 25

3.1.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Parallel transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.1 Definition : . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.2 Parallel transport in Rn : . . . . . . . . . . . . . . . . . . . . . 28

3.3 Riemannian connection: . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3.1 Symmetric connection : . . . . . . . . . . . . . . . . . . . . . . 28

3.3.2 Levi-Civita connection or Riemannian connection: . . . . . . 28

11



3.4 Induced Connection: . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Geodesics 35

4.1 Equation of Geodesics in local coordinates . . . . . . . . . . . . . . . 35

4.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3 Exponential map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.4 Gauss Lemma.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5 Curvature 43

5.1 Sectional curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45



Introduction

Riemannian Geometry is the study of Riemannian manifolds which are, roughly speak-

ing, smooth manifolds where we can measure the lengths of the tangent vectors. This

helps us to compute lengths of curves in these spaces and talk about shortest paths

etc. Hence, we can do geometry on these spaces.

In this expository thesis after introducing some basic notions of differentiable man-

ifolds (Chapter 1) we define Riemannian metrics and show the existence of metrics on

arbitrary differentiable manifolds (Chapter 2). Then we introduce connections (Chap-

ter 3) and parallel transport. We incorporate a complete proof of the Levi-Civita’s

theorem on the existence and uniqueness of symmetric connections compatible with

the metric. Then using the connections we define geodesics on Riemannian mani-

folds (Chapter 4). We discuss exponential maps after that and prove Gauss lemma.

The thesis ends with introducing curvature of Riemannian manifolds. We show that

the sphere S2 and the hyperbolic plane H2 have constant sectional curvature. An

important feature of the thesis is that we discuss many examples to illustrate the

concepts.

However, no originality is claimed on the part of the author. The results and

concepts dealt with in this thesis are quite standard. We have closely followed do

Carmo’s Riemannian Geometry and Barrett O’neill’s Ssemi-Riemannian Geometry

all the time.
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Chapter 1

Some prerquisites

1.1 Definition

A topological space is second countable if it has a countable basis. A neighborhood

of a point p in a topological space M is any open set containing p. An open cover of

M is a collection {Ua}a∈A of open sets in M whose union ∪a∈AUa is M.

1.2 Topological manifold

A topological space M is said to be locally Euclidean of dimension n if every point

p in M has a neighborhood U such that there is a homeomorphism φ from an open

subset V of Rn onto U . We call the pair (U, φ) a chart, U a coordinate neighborhood

or a coordinate open set, and φ a coordinate map or a coordinate system on U. We say

that a chart (U,φ ) is centered at p ∈ U if φ(p) = 0.For any p ∈ U the coordinates of

φ−1(p) = (x1, .., xn) are said to be the coordinates of p.Note that xi’s are functions

U → R. The pair (U, (x1, .., xn)) is also referred to as a coordinate system.

1.3 Definition

A topological manifold is a Hausdorff, second countable, locally Euclidean space. It

is said to be of dimension n if it is locally Euclidean of dimension n.
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1.4 Differentiable manifold

We define a smooth atlas on a locally Euclidean space M of dimension n as follows :

A collection {(Ua, φa)} of coordinate charts is called an atlas if it satisfies the following

two properties:-

1. ∪aφa(Ua) = M ;

2. for any pair α, β with φα(Uα) ∩ φβ(Uβ) 6= ∅,the map

φα ◦ φ−1β : φβ(Uα ∩ Uβ)→ φα(Uα ∩ Uβ)

is a smooth map.

An atlas is called maximal if it is not contained in any other atlas. A locally Euclidean

space M of dimension n with a smooth atlas {(Uα, φα)} is called a differentiable or

smooth manifold of dimension n.

Remark : property 1 together with 2 is called differentiable structure on M.

1.5 Example

Differentiable structure on spheres. Let

Sn := {x := (x1, x2, ..., xn+1) ∈ Rn+1 :
n+1∑
i=1

x2i = 1}

A smooth atlas is given by stereographic projections from the north pole and the south

pole. Let N = (0, 0, ..., 1) be the north pole of Sn. We define (φ : Rn → Sn−{N}) by

φ(x) = (1 + ‖x‖2)−1(x1, x2, ..., xn, ‖x‖2 − 1)

where x := (x1, x2, ...xn, 0) ∈ Rn. Similarly let S := (0, 0, ...,−1).Define (ψ : Rn →

Sn − {S}) by

ψ(x) = (1 + ‖x‖2)−1(x1, x2, ..xn, 1− ‖x‖2).

Note that (Sn − N) ∪ (Sn − S) = Sn and the transition map φ ◦ ψ−1 : ψ(U ∩ V ) →

φ(U ∩ V ) given by

φ ◦ ψ−1(x) = ‖x‖−2(x1, x2, ..xn, 0)

which is smooth.So (φ, U) and (ψ, V ) define a differentiable structure on Sn.
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Smooth maps between Manifolds: Let M and N be smooth manifolds of

dimension m and n, respectively. A continuous map F : M → N is smooth at a point

p in M if there are charts (V, ψ) about F(p) in N and (U, φ) about p in M such that

the composition ψ ◦ F ◦ φ−1, a map from the open subset φ(F−1(V ) ∩ U) of Rm to

Rn, is smooth at φ(p). The continuous map F : M → N is said to be smooth if it is

smooth at every point of M.

Diffeomorphism: Let M and N be smooth manifolds.A mapping F : M → N is

a diffeomorphism if it is differentiable,bijective,and its inverse F−1 is differentiable.If

F : M → N is diffeomorphism then dFp : TpM → TF (p)N is an isomorphism for all

p ∈M.

Remark: We C∞(M) as the set of all real-valued smooth function on M.

1.6 Tangent space and tangent bundle

Let M be a smooth manifold. For all p ∈ M let θP be the set of all real valued

functions defined on some neighbourhood of p and differentiable there clearly θp has

an R-algebra structure. A tangent vector to M at the point P is an R-linear function

D : θP → R which satisfy the Leibniz rule :

D(fg)(p) = f(p)(Dg) + g(p)(Df).

The set of all tangent vectors at p ∈M is called tangent space of M at p. We denote

it by TPM .This has a natural vector space structure. Mention dimTpM = Rn.

A smooth map F : M → N induces a linear map dFp : TpM → TF (p)N such that

d(id)p = idM and it satisfies chain rule.

Vector Field : A vector field X on a differentiable manifold M is an assignment of

tangent vectors to each point q ∈M .A vector field is calld smooth or differentiable if

Xf is smooth for f ∈ C∞(M).

Theorem: If (U, (x1, .., xn)) is a coordinate system at p ∈M then

{ ∂

∂x1
|p, ...,

∂

∂xn
|p}.

forms a basis of TpM for all p in U.And ∂
∂x1
, ..., ∂

∂xn
. are called coordinate vector fields.

So we can write any vector field X as X =
∑

iXi
∂
∂xi

on U.It is easy to check that
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X1, ..., Xn are smooth function on U if and only if X is smooth.

Tangent bundle: Let M be a smooth manifold then we define the tangent bundle

of M as follows.As a set

TM = {(p, v); p ∈M, v ∈ TPM}.

Topology on TM : Let π : TM →M be the canonical projection.Let (U, (x1, .., xn))

be a coordinate system on M. Every v ∈ TpM, p ∈M can be written as v =
∑

i ai
∂
∂xi
|p

where ai’s are real numbers.Define a map

ϕ : π−1(U)→ R2n

by

ϕ(
∑
i

ai
∂

∂xi
) = (x1(π(v)), .., xn(π(v)), a1, .., an).

We define the weakest topology on TM such that ϕ are homeomorphism onto their

image.

Now we will give differential structure on TM. Let M be a smooth manifold .Let

{(xα, Uα)} be smooth atlas on M .Coordinates on Uα are denoted by (x1
α, .., xn

α)and

, basis of tangent space at xα(Uα) is given by

{ ∂

∂x1α
, ...,

∂

∂xnα
}.

Define the map Fα : Uα× Rn → TM for each α by

Fα(xα1 , .., x
α
n, a1, .., an) = (xα(xα1 , .., x

α
n),

∑
i=1

n
ai

∂

∂xiα
)

where (a1, ..., an) ∈ Rn.

Now we are going to prove that {(Uα×Rn), Fα)} is smooth structure on M . Since

xα(Uα) cover M and ((dxα)q(Rn)) = Txα(q)M where q ∈ Uα. we have that

∪αFα(Uα × Rn) = TM.
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Where xα : Rn → Uα and (dxα)q : Tq(Rn)→ Txα(q)M.

Now we have to check that transition map should be smooth:

so let (p, v) ∈ Fα(Uα × Rn) ∩ Fβ(Uβ × Rn) then

(p, v) = (xα(qα), dxα(uα)) = (xβ(qβ), dxβ(uβ))

where qα ∈ Uα , qβ ∈ Uβ and vα, vβ ∈ Rn.

Therefore

Fβ
−1 ◦ Fα(qα, vα) = Fβ

−1(xα(qα), dxα(vα)) = ((xβ
−1 ◦ xα)(qα), d(xβ

−1 ◦ xα)(vα)).

so clearly Fβ
−1 ◦Fα is differential . Hence TM is smooth manifold with smooth struc-

ture {(Uα × Rn), Fα)}.

1.6.1 Partition of unity

Let M be a manifold and U = {Uα}i∈A be an open cover of M.A collection of smooth

functions {fα : M → R}α∈A is called partition of unity subordinate to U if it satisfies

the following property:

(a). 0 ≤ fα(x) ≤ 1 ∀α ∈ A and all x ∈M .

(b). Suppfα ⊂ Uα.

(c). The collection of supports, {Suppfα}α∈A, is locally finite.

(d).
∑

α∈A fα(x) = 1 for all x ∈M.

Theorem: Let M be a smooth manifold and U = {Uα}i∈A be an open cover of

M.Then there exist a smooth partition of unity subordinate to U.

We omit the proof.
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Chapter 2

Riemannian metric on manifolds

2.1 Definition

Let M be a smooth manifold of dimension n.A Riemannian metric on M is a family

of inner products

〈, 〉q : TqM × TqM → R, q ∈M

such that

q 7→ 〈(X(q), Y (q))〉q

defines a smooth function M → R for all smooth vector field X ,Y on M.

2.2 Examples

1. Let (U, (x1, .., xn)) be a coordinate system on all of Rn then Riemannian metric on

Rn is given by 〈 ∂
∂xi
, ∂
∂xj
〉 = δij.

Immersed manifolds : Let F : N →M be an immersion , which means :

(1). F is differentiable .

(2). dFp : TpN → TF (p)M is injective ∀p ∈M .

If M has a Riemannian metric then N also has a Riemannian metric induced from F

defined by 〈u, v〉p = 〈dFp(u), dFp(v)〉F (p) ∀u, v ∈ TpN.

2. Induced Riemannian metric on S2 from R3.

Let S2 = {x ∈ R3 :
∑

i=1
3xi

2 = 1}.
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Let φ : R2 → S2 − {N} be the inverse of the stereographic projection from the

north pole and it is given by

φ(p) = (x, y, z)

where

x =
2u

u2 + v2 + 1
, y =

2v

u2 + v2 + 1

and

z =
u2 + v2 − 1

u2 + v2 + 1

where p = (u, v) ∈ S2.

So the metric on S2 induced from R3 is given by 〈 ∂
∂u
, ∂
∂v
〉 := 〈dφ( ∂

∂u
), dφ( ∂

∂v
〉.

Now,

dφ(
∂

∂u
) =

∂x

∂u
.
∂

∂x
+
∂y

∂u
.
∂

∂y
+
∂z

∂u
.
∂

∂z

and

dφ(
∂

∂v
) =

∂x

∂v
.
∂

∂x
+
∂y

∂v
.
∂

∂y
+
∂z

∂v
.
∂

∂z
.

Now a simple computation shows that

〈 ∂
∂u
,
∂

∂v
〉 =

4

(u2 + v2 + 1)2
δuv.

2.3 Basic definitions :

1. A smooth manifold M with given Riemannian metric is called Riemannian mani-

fold.

2. Let M and M
′

be Riemannian manifolds. A diffeomorphism g : M →M
′

is called

an isometry if :

〈v, w〉q = 〈dgq(v), dgq(w)〉g(q)

for all q ∈M and v , w ∈ TqM .

Local diffeomorphism and induced Riemannian metric: Let M and M
′

be Rie-

mannian manifolds. Let π : M
′ → M be a diffeomorphism.Let 〈, 〉 be a Riemannian

metric on M then there exists a unique Riemannian metric 〈, 〉
′

on M
′

such that π is

22



local isometry.

This follows from the fact that local diffeomorphisms are immersions.

2.4 Existence of Riemannian metric.

Proposition : Any smooth manifold M has a Riemannian metric.

Proof : We know that M has a smooth partition of unity sub-ordinate to any open

cover. Let {Vi} be an open cover of M , and let {φi} be a smooth partition of unity

on M subordinate to {Vi}.Without loss of generality we may assume that Vi’s are

contained in coordinate neighborhoods U ′is ,where (Ui, ψi : Vi → Rn) is coordinate

charts.Now, we know

1. φi > 0 , φi = 0 on the M − Vi
2.

∑
i φi(p) = 1 ,∀p ∈M .

We can define a Riemannian metric on each Vi pulling back the metric from Rn since

ψi : Vi → Rn is diffeomorphism on an open set. Let 〈, 〉i denote the inner product on

each TpM thus obtained.Then we can define a metric on M by setting

〈v, w〉 =
∑
i

φi(p)〈v, w〉i

∀p ∈M and u, v ∈ TpM . �
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Chapter 3

Connections on manifolds

3.1 Definitions

Affine connections : An Affine connection ∇ on a smooth manifold M is a mapping

∇ : X(M)× X(M)→ X(M)

(X, Y )→∇XY

satisfying the following properties :

a) ∇X(Y + Z) = ∇XY + ∇XZ .

b) ∇X(fY ) = f∇XY + X(f)Y.

c) ∇fX+gYZ = f∇XZ + g∇YZ,

for all f, g ∈ C∞(M) and X, Y, Z ∈ X(M).

Lemma : If X, Y ∈ X(M) and X(p) = 0 then ∇XY (p) = 0.

Proof : Let U be a coordinate neighborhood of p and let (x1, .., xn) denote the

coordinates on U. Let f be a bump function at p where V ⊆ U . This means f = 1 on

a neighbourhood V of p and f = 0 on U c. Now ,

∇f2XY = ∇∑
f2Xi

∂
∂xi

Y

25



= ∇(
∑
fXi)(f

∂
∂xi

)Y

=
∑

(fXi)∇f ∂
∂xi

Y → (1).

Note : Xi ∈ C∞(U) , fXi ∈ C∞(M) ,f ∂
∂xi
∈ X(M) where { ∂

∂x1
, .., ∂

∂xn
} are coor-

dinate vector fields.

Also

f 2∇XY = ∇f2XY → (2)

Now from equation (1) and (2) we have

f 2∇XY =
∑

(fXi)∇f ∂
∂xi

Y

on M.

Now evaluate both sides at p :

LHS = f(p)2∇XY |p = ∇XY |p

RHS =
∑

(fXi)(p)∇f ∂
∂xi

Y |p

=
∑
f(p)Xi(p)∇f ∂

∂xi

Y |p = 0

since f(p)Xi(p) = 0 ∀i.

And similarly we can show that if Y = 0 on an open set U 6= ∅ then ∇XY = 0 on

U for all X ∈ X(M).

Corollary : If X, Y ∈ X(U) then ∇XY is a well defined element of X(U). We

also note that the properties (a),(b) and (c) of affine connection hold ∀X, Y, Z ∈ X(U)

and f ∈ C∞(U).

Local Expression of ∇XY : Let U be a coordinate neighborhood of p with

coordinate (x1, .., xn) and let Xi = ∂
∂xi

. Let X, Y ∈ X(U) then we have

X =
∑
i

xiXi, Y =
∑
j

yjXj.

Let ∇XiXj =
∑

k Γij
kXk where Γij

k are smooth functions and then we have that

∇XY =
∑
k

(
∑
ij

xiyjΓij
k +X(yk))Xk.
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By the using properties (a),(b) and (c) of affine connections.

3.1.1 Covariant Derivative

Proposition : Let M be a smooth manifold with an affine connection ∇. There

exist a unique vector field DW
dt

associated with each vector field W along a smooth

curve γ : I →M such that the following hold:

If g is any smooth function on I and V is another vector field along γ then

a) D
dt

(gW ) = dg
dt
W + gDW

dt

b) D
dt

(V +W ) = DV
dt

+ DW
dt

c) If W is given by W (s) = X(γ(s)) where X ∈ X(M) , then

DW

dt
= ∇ dγ

dt
X.

Remark : DW
dt

is called the covariant derivative of W along γ.

Proof : First we prove the uniqueness of covariant derivative assuming the exis-

tence.Let U be a coordinate neighborhood with coordinates (x1, .., xn).Suppose γ(I)∩

U 6= ∅. Let γ(t) = (x1(t), .., xn(t)). Then we can write the vector field W locally as

W =
∑

j wj(t)Xj , j = 1, 2, .., n. , where Xj = Xj(γ(t)).

By properties (a) and (b), we have

DW

dt
=

∑
j

dwj

dt
Xj +

∑
j

wj
DXj

dt
.

By (c) and the properties of affine connection we have ,

DXj

dt
= ∇ dγ

dt
Xj

= ∇
(
∑
i
dxi
dt
Xi)
Xj

27



=
∑
i

dxi
dt
∇XiXj

where i, j = 1, 2, ..., n.

Hence, we have

DW

dt
=

∑
j

dwj

dt
Xj +

∑
i,j

dxi
dt
wj∇XiXj → (1).

The equation(1) shows that the operator D
dt

is unique.

Now we shall prove the existence of DW
dt

.

To show existence define DW
dt

in U by equation (1). The properties (a), (b) and (c)

can be checked without any difficulty. Let U
′

be another coordinate neighbourhood

with U ∩ U ′ 6= ∅ then by the uniqueness of DW
dt

the definition agree in U ∩ U ′
. Hence

we can extend the definition of DW
dt

to all of M. This completes the proof.�

3.1.2 Examples

Affine connection on Rn :

Let (x1, .., xn) be the usual coordinates on all of Rn.Let X, Y ∈ X(Rn).Let Y =∑
Yj

∂
∂xj
. Then define

∇XY =
∑
j

X(Yj)
∂

∂xj
.

Note that X(Yj) is the directional derivative of Yj with respect to X.It is easy to verify

the properties of affine connections.

3.2 Parallel transport

3.2.1 Definition :

Let M be a smooth manifold of dimension n with an affine connection ∇ and let

γ : I →M be a smooth curve in M. Let W be a smooth vector field on M along this

curve then we say that W is parallel along γ if DW
dt

= 0 ,∀t ∈ I.

Proposition: Let M be a smooth manifold of dimension n with an affine con-

nection ∇. Let W0 is a tangent vector in Tγ(t0)M , t0 ∈ I. where γ : I → M is a
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smooth curve in M. Then there exist a unique parallel vector field W along γ such

that W (t0) = W0 .

we called this W(t)is the parallel transport of W0 along the curve γ.

We omit the Proof.

Equation of parallel transport in coordinate system : Let M be a smooth

manifold with an affine connection∇. Let (U, φ) be a coordinate system in M. Suppose

W is a parallel vector field along a smooth curve γ in U. Let γ(t) = (x1(t), .., xn(t))

and Xj = ∂
∂xj

. Let W =
∑

j w
jXj then from equation (1) we have ,

DW

dt
=

∑
j

dwj

dt
Xj +

∑
i,j

dxi
dt
wj∇XiXj = 0.

Now putting ∇XiXj =
∑

k Γij
kXk and replacing j with k in the first sum we have a

system of n differential equations in wk(t)

0 =
dwk

dt
+
∑
i,j

dxi
dt
wjΓij

k, k = 1, 2, .., n.

Lemma : Suppose (U, (x1, .., xn)) is a coordinate system on a manifold M with

an affine connection ∇.Suppose X is a vector field on M.We call it parallel on U if

∇XiX = 0 ∀i = 1, 2, .., n. Given a function f ∈ C∞(M) and Y ∈ X(M) we have

∇Y fX = Y (f)X on U if X is parallel in U.

Proof : Define Y in U as Y =
∑

i Yi
∂
∂xi

. Now f : M → R is a smooth function so we

have :

∇Y (fX) = ∇∑
i Yi

∂
∂xi

fX on U

=
∑

Yif∇ ∂
∂xi

X +
∑

YiX
∂

∂xi
(f) on U

=
∑
i

Yi
∂

∂xi
(f)X on U

= Y (f)X on U.

(3.1)
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3.2.2 Parallel transport in Rn :

Let (x1, .., xn) be the usual coordinates on all of Rn. Then ∂
∂xi

are parallel vector

fields.This can be easily seen by the definition of affine connection on Rn :

∇XY =
∑
j

X(Yj)
∂

∂xj
.

Since Yj are constant functions in this case. Hence

∇X
∂

∂xj
= 0

for all X ∈ X(Rn), 1 ≤ i ≤ n.

3.3 Riemannian connection:

An affine connection∇ on M is said to be compatible with the metric if for allX, Y, Z ∈

X(M)

X〈Y, Z〉 = 〈∇XY, Z〉+ 〈Y,∇XZ〉.

Remark : It is easy to see that this is equivalent to the following:

Given a curve α : I →M and X ,Y two vector field on α then

d

dt
〈X,Z〉 = 〈DX

dt
, Y 〉+ 〈X, DW

dt
〉.

3.3.1 Symmetric connection :

If ∇ is an affine connection on a smooth manifold M then it is called symmetric if

∇XY −∇YX = [X, Y ] ∀X, Y ∈ X(M).

3.3.2 Levi-Civita connection or Riemannian connection:

Levi-Civita’s theorem : On a Riemannian manifold M there exist a unique affine

connection ∇ satisfying the following conditions :
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(p). ∇XY −∇YX = [X, Y ]

(q) . X〈Y, Z〉 = 〈∇XY, Z〉+ 〈Y,∇XZ〉

∀X, Y ∈ X(M).

Proof : To prove this theorem we will use the following lemma :

Let us denote X∗(M) by the set of all dual form on M.

Lemma : Let M be a smooth manifold . For X ∈ X(M) let X∗ be the one form

on M such that :

X∗(Y ) = 〈X, Y 〉 ,∀ Y ∈M.

Then the function X 7→ X∗ is C∞(M) - linear isomorphism from X(M) to X∗(M).

Uniqueness : First we will prove the uniqueness of such connections by assuming

the existence. Suppose D is another connection satisfying (p) and (q). Then:

X〈Y, Z〉 = 〈DXY, Z〉+ 〈Y,DXZ〉 (3.2)

Y 〈Z,X〉 = 〈DYZ,X〉+ 〈Z,DYX〉 (3.3)

Z〈X, Y 〉 = 〈DZX, Y 〉+ 〈X,DZY 〉 (3.4)

Now by adding (3.2) and (3.3) and subtracting (3.4). We find the following expression:

2〈DXY, Z〉 = X〈Y, Z〉+ Y 〈Z,X〉 − Z〈X, Y 〉

−〈X, [Y, Z]〉+ 〈Y, [Z,X]〉+ 〈Z, [X, Y ]〉.

which is called the Koszul formula. Hence we have

(∇XY, Z) = (DXY, Z)

Now from the lemma above we have ∇ = D.

Existence: Now we will prove the existence of a such ∇.

Denote the right hand side of equation(*) by G(X, Y, Z).For fixed vector fields X

,Y in X(M) the map Z → G(X, Y, Z) is clearly C∞(M)-linear.Hence by the above
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lemma there exist a unique vector field ∇XY such that G(X, Y, Z) = 〈∇XY, Z〉,∀Z ∈

X(M).Now we have to verify that ∇XY satisfies all all the necessary conditions.

All these properties are easy to prove .For instance , we prove the symmetry

condition of ∇ as follows: Let X, Y ∈ X(M).Then

2 〈∇XY −∇YX,Z〉 = G(X, Y, Z) − G(Y,X,Z)

= 〈Z, [X, Y ]〉 − 〈Z, [Y,X]〉

= 2 〈[X, Y ], Z〉.

∀Z ∈ X(M). This shows ∇XY −∇YX = [X, Y ]. �

Remark : The connection ∇ given by Livi−Civita′s theorem called the Livi−

Civita connection.

3.4 Induced Connection:

Let M and N be smooth manifolds of dimensions m and n respectively. Let F : M →

N be an immersion. If N has a Riemannian metric then F induces a Riemannian

metric on M as mentioned before,

〈v, w〉p = 〈dFp(v), dFp(w)〉F (p) (3.5)

for all v, w ∈ Tp(M).

Moreover F induces a connection on M as follows :

Let ∇′
be the Riemannian connection on N and let (U, φ) be a coordinate system

at p in M such that φ(U) is submanifold of N and is contained in a coordinate

neighborhood V of N.Hence we pretend that U ⊆ V. Let X, Y ∈ X(U). We can

extend X , Y to the whole of V say to X
′

and Y
′

so that X
′ |p= X and Y

′ |p= Y

∀p ∈ U. Then we define

∇XY (p) = (∇′

X′Y
′
)T
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where (∇′

X′Y
′
)T denotes the tangential component of (∇′

X′Y
′
).

We can easily prove that∇ is a well defined Riemannian connection on M with respect

to the induced metric from N as follows:

First we prove that ∇ is compatible with the metric that is it satisfies :

X〈Y, Z〉 = 〈∇XY, Z〉+ 〈Y,∇XZ〉.

We have for all p ∈ U :

X〈Y, Z〉(p) = X
′〈Y ′

, Z ′〉(p) = 〈∇X
′Y

′
, Z

′〉(p) + 〈Y ′
,∇X

′Z
′〉(p) (3.6)

And we have X
′
(p) = X , Y

′
(p) = Y and Z

′
(p) = Z ∀p ∈ U so equation(3.6)

gives:

X〈Y, Z〉(p) = 〈∇X
′Y

′
, Z〉(p) + 〈Y,∇X

′Z
′〉(p) (3.7)

Now ∇XY (p) = (∇′

X′Y
′
)T is given and the inner product of vector field Z and Y

with normal components give zero. Hence we have :

X〈Y, Z〉(p) = 〈(∇′

X
′Y

′
)T , Z〉(p) + 〈Y, (∇′

X′Z
′
)T 〉(p)

= 〈∇XY, Z〉(p) + 〈Y,∇XZ〉(p)
(3.8)

This shows that ∇ satisfy the compatibility condition.

Now we will check the symmetry. For all p ∈M we have ,

(∇XY −∇YX)(p) = (∇′

X′Y
′ −∇′

Y ′X
′
)T (p) = [X

′
, Y

′
]T (p) = [X, Y ](p) (3.9)

The last equality of equation(3.9) can be proved in local coordinates: Let (U, (x1, .., xn))

be a system of coordinates.Then we can write X =
∑

iXi
∂
∂xi

and Y =
∑

j Yj
∂
∂xj

and

similarly we can take X
′
=

∑
iX

′
i
∂
∂xi

and Y
′
=

∑
j Y

′
j

∂
∂xj

.Now we have

[X
′
, Y

′
]T = (

∑
i,j=1

n
{X ′

i

∂Y
′
j

∂xi
− Y ′

i

∂X
′
j

∂xi
} ∂

∂xj
)T

= (
∑
i

m∑
j

n
{Xi

∂Y
′
j

∂xi
− Yi

∂X
′
j

∂xi
} ∂

∂xj
)T

= (
∑
i,j=1

m
{Xi

∂Yj
∂xi
− Yi

∂Xj

∂xi
} ∂

∂xj
)

(3.10)
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since ∇XY (p) depends only on X(p) and Y along the integral curve γ : I → M of X

through p. Then last equality of equation(3.10) gives :

[X
′
, Y

′
]T = [X, Y ]T .

Thus ∇ satisfies the compatibility and symmetry so it is a Riemannian connection.

Lemma : Let M2 ⊂ R3 be an embedded surface in R3 with induced Rieman-

nian metric.Let γ : I → M be a smooth curve on M and let V be a vector field

tangent to M along γ ; V can be thought of as a smooth function V : I → R3

, with V (t) ∈ Tγ(t)(R3).V is parallel in M if and only if dV
dt

is perpendicular to

Tγ(t)(M) ⊂ Tγ(t)(R3) where dV
dt

is the usual derivative of V.

Proof : (a) We know that V is parallel if DV
dt

= 0.Let (U, (x1, x2, x3)) be a coordinate

system on R3.Then we can write V =
∑

i viXi where Xi = ∂
∂xi

, vi’s are smooth func-

tions and Xi = Xi(γ(t)). Now from the equation of parallel transport in a coordinate

system we have :

0 =
DV

dt
=

∑
i

dvi
dt
Xi +

∑
j,i

dxj
dt
vi∇

′

Xj
Xi. (3.11)

Rewrite as follows:

0 =
DV

dt
= ∇ dγ

dt
V = (∇′

dγ
dt

V )T

= (
∑
i

dvi
dt
Xi +

∑
i,j

dxj
dt
vi∇

′

Xj
Xi)

T

= (
∑
i

dvi
dt
Xi)

T

= (
dV

dt
)T

(3.12)

This shows that if V is parallel then (dV
dt

)T = 0 this implies that

dV

dt
⊥ Tγ(t)M .

Let S2 = {x ∈ R2 : |x| = 1}. Let γ : R→ S2 be the smooth curve given by,

t 7→ (cost, sint, 0)
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and

V =
dγ

dt
= (−sint, cost, 0).

Since
dV

dt
= (−cost,−sint, 0)

is parallel to (cost, sint, 0) , dV
dt

= 0 on S2.

Christoffel symbols : Let M be a Riemannian manifold with Riemannian con-

nection ∇. Let (U, (x1, ..., xn)) be a coordinate system and let Xi = ∂
∂xi

, 1 ≤ i ≤ n.

Then ∇XiXj =
∑

k ΓkijXk where Γkij’s are smooth functions on U. Γkij’s are called the

Christoffel symbol and are given by:

Γmij =
1

2

∑
k

{ ∂
∂xi

gjk +
∂

∂xj
gki −

∂

∂xk
gij}gkm (3.13)

where gij = 〈Xi, Xj〉 and (gkm) is the inverse of (gkm).

Remark : Γkij = Γkji by the symmetry property , 1 ≤ ∀i, j, k ≤ n.

Example : We know that in Rn the gij = δij ,1 ≤ i, j ≤ n with respect to usual

coordinate (x1, .., xn). Hence Γkij = 0.

The next proposition shows that Riemannian connections are preserved under (local)

isometries:

Proposition: Let F : M → N be an isometry then pull back of the Riemannian

connection from N is the Riemannian connection of M that is ∇XY = ∇dF (X)dF (Y )

for all X, Y ∈ X(M).

Proof : Let X , Y be vector fields on M. Then dF (X), dF (Y ) ∈ X(N). Let (U, (x1, .., xn))

and (V, (y1, .., yn)) be coordinate systems at p and F (p) respectively such that xi(q) =

yi(F (q)) for all q ∈ U . We can do this since F is a diffeomorphism. It follows that we

have dF ( ∂
∂xi

) = ∂
∂yi
. Let X =

∑
iXi

∂
∂xi

and Y = dF (X) =
∑

j Yj
∂
∂xi
. Then

Yi(F (q)) = YF (q)(yi) = (dF (Xq))yi = Xq(yi ◦ F ) = Xq(xi) = Xi(q). (3.14)

It follows that the components of X and Y are also preserved by F.Since F is an

isometry, metric is also preserved which means gij’s are preserved. So from equa-

tion(3.13) Christoffel symbol are also preserved.Then from the expression of ∇XY in

a coordinate system we are done. �
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Chapter 4

Geodesics

A parametrized curve γ : I → M is called a geodesic at a point s ∈ I if D
dt

(dγ
dt

) = 0

at s. If D
dt

(dγ
dt

) is zero for all s ∈ I then γ is called a geodesic.

Remark : By the property (q) of Levi− Civita connection we have that :

d

dt
〈dγ
dt
,
dγ

dt
〉 = 2〈D

dt

dγ

dt
,
dγ

dt
〉 = 0. (4.1)

This means γ has constant speed.

4.1 Equation of Geodesics in local coordinates

:

Let (U, (x1, ..xn)) be a coordinate system at γ(s) in M. Let the local expression of

γ(t) = (x1(t), .., xn(t)) .Then γ is a geodesic if and only if

D

dt
(
dγ

dt
) =

∑
k

(
d2xk
dt2

+
∑
ij

Γij
k dxi
dt

dxj
dt

)
∂

∂xk
= 0 (4.2)

by the equation of parallel transport in coordinate system.This implies

d2xk
dt2

+
∑
ij

Γkij
dxi
dt

dxj
dt

= 0, k = 1, 2, ..., n. (4.3)

Hence a solution of the above second order differential equations give a geodesic.
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4.2 Example

Geodesics in Rn : We know that Christoffel symbols Γkij are zero for Rn. So from

equation(4.3) the equation of geodesics become d2xk
dt2

= 0, 1 ≤ k ≤ n. It follows that

the geodesics of Rn are straight lines.

Homogeneity property of geodesic: Let us define γv(t) as γv(0) = p ∈M and

γ
′
v(0) = v. If the geodesic γv(t) is defined on the interval I = [0, b] then the geodesic

γcv(t) for c > 0 is defined on the interval [0, b
c
] such that :

γcv(t) = γv(ct). (4.4)

Maximal geodesic : A geodesic γ : I → M with initial point p and initial veloc-

ity v ∈ Tp(M) is called maximal in M if I is the largest possible domain, that is if

γ1 : J → M is another geodesic with initial point p and initial velocity v then we

have J ⊂ I such that γ1 = γ |J .

A Riemannian manifold M is called geodesically complete if every maximal geodesic

is defined on R.For example Rn is geodesically complete.

In the equation (4.3) of geodesics if we put dxk
dt

= yk then we have the following

system of first order differential equation :

dxk
dt

= yk

dyk
dt

= −
∑
i,j

Γkijyiyj
. (4.5)

So these second order differential equation in any coordinate neighbourhood U

determines the first order differential equation in TU.

Lemma : There exists a unique vector field G on TM such that π : TM → M

gives a one to one correspondence between the geodesics of M and the integral curves

of G on TM.

Proof : We will use the following two results in this proof :
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Result 1 :For any tangent vector v ∈ TpM there exist a neighborhood I of 0 in

R and a neighbourhood N in TM and a C∞ mapping γ : I ×N → M such that the

curve t→ γv(t) is the unique geodesic of M with γ
′
(0) = v and γ(0) = p = π(0).

Result 2 : For any two geodesics γ : I → M and θ : J → M if we have dγ
dt

(α) =

dθ
dt

(α) for α ∈ I ∩ J. then we have γ = θ on I ∩ J.

Suppose Gv is the initial velocity of the curve t → γ
′
v(t) for v ∈ TM then by

result(1) G is a smooth vector field on TM .

Claim (1): If γ : I →M is a geodesic in M , then we have γ′ is an integral curve

of G.

Proof: For all t , suppose α(t) = γ′(t) and for arbitrary fixed s suppose γ
′
(s) = w

and β(t) = γ
′
w(t). Then by result(2) we have γ(s + t) = γw(t) this shows that we

have α(s+ t) = β(t). Then we have α
′
(s+ t) = β

′
(t) by taking derivative.

So we have

α
′
(s) = β(0) = Gw = Gα(s). (4.6)

This shows that γ
′

is an integral curve of G.

Claim (2): If γ
′

is an integral curve of G then π ◦ γ is a geodesic in M.

Proof: If α(0) = v then by the uniqueness of integral curve shows that we have

π ◦ α = π ◦ γ′
v = γv in a neighborhood of 0 since t → γ

′
v(t) is also integral curve

of G by claim(1). For arbitrary s let η be another integral curve of G with initial

velocity v. Then α and η have same velocity then we have α(s+ t) = η(t) so we have

π ◦ α(s+ t) = π ◦ η(t) = γη(0)(t).

so the maps π ◦γ′
= γ and γ → γ

′
are inverses of eac other so we have if γ

′
is integral

curve of G then π ◦ γ is geodesic in M.
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4.3 Exponential map

Let Ux ⊂ TxM to be a set of vectors v in TxM such that the geodesic with initial

velocity v is defined on the interval [0, 1]. Let expx : Ux →M be the map defined by

expx(v) = γv(1),∀v ∈ TxM. (4.7)

This is called the exponential map of M on Ux.

If we define a geodesic as t → γ(at) where a ∈ [0, 1] then this geodesic has initial

velocity av.Then by homogeneity of a geodesics we have

expx(av) = γav(1) = γv(a). (4.8)

If a Riemannian manifold M is geodesically complete then Ux = TxM .

Proposition: For each x ∈M expx is a diffeomorphism from an open neighborhood

U
′

of 0 in TxM to an open neighborhood U of x in M.

Proof : First we will prove that expx : TxM → M is smooth on a neighborhood

of 0 ∈ TxM.

We have expx(v) = γv(1) for v in TxM and γv(1) is a geodesic which satisfy equa-

tion(4.3) which gives smooth solution and exponential map is just evaluation of γ at

t = 1 which is clearly smooth.

Now we will prove the existence of U
′

:

We have π : TM → M which is the cannonical projection map which is smooth.

Let p ∈ M .Let (U, φ) be a coordinate neighborhood of p.Then by the topology on

TM we have π−1(U) is open in TM and denote this by V. So U
′

= TxM ∩ π−1(U) is

an open neighbourhood in TxM .

Now the differential of exponential map defined by (dexpx) : T0(TxM) → TxM is

an isomorphism of T0(TxM) to TxM :
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dexpx(v) =
d

dt
(expx(tv))|t=0

=
d

dt
(γtv(1))|t=0

=
d

dt
(γv(t))|t=0

= v.

(4.9)

Now we will prove that there exist a neighbourhood W of x such that for all q in W

the map dexpx|q : T0(TxM)→ TxM is an isomorphism.

This is an easy consequence of following lemma :

Lemma : Suppose M , N are smooth manifolds of dimension n and f : M → N is

smooth. Let p ∈ M be such that dfp : TpM → Tf(p)N is an isomorphism.Then there

exist a neighborhood p ∈ U ⊂ M such that df |x : TxM → Tf(x)N is an isomorphism

for all x in U.

So by this lemma the differential of exponential map is also an isomorphism in a

neighbourhood of x. Now we apply the inverse function theorem to complete the proof.

Normal neighbourhood : In Rn a set U
′
containing 0 is called starshaped about

0 if for all v ∈ U
′
, tv ∈ U

′
for all t ∈ [0, 1]. If U

′ ⊂ TxM is starshaped such that

expx : U
′ → U ⊂M is diffeomorphism then U is called a normal neighbourhood of x.

Let (e1, .., en) be an orthonormal basis of TxM . The normal coordinate system

(x1, .., xn) determined by (e1, .., en) assign to each point p ∈ U the vector v =

expx
−1(p) , since expx is diffeomorphism such a v exist can be written as

v = expx
−1(p) =

∑
i

xi(p)ei.

Example : Exponential map for Rn

The geodesics in Rn through p are given by γ(t) = p + tv γ
′
(0) = v. So expp :

Tp(R
n)→ Rn is defined for any v ∈ Tp(Rn).In fact we have

expp(v) = γv(1) = p+ v.
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Clearly this map is diffeomorphism from Tp(Rn)→ Rn.

4.4 Gauss Lemma.

Definition. A two parameter smooth mapping f : W ⊂ R2 → M is called a

parametrized surface. If (u, v) are the usual coordinates on R2 then we call u 7→

y(u, v0) the u -parameter curve for v = vo.Similarly we define v-parameter curve for

u = uo.

Let (x1, .., xn) be the coordinates on f(W ) ⊂M then we can write,

fu =
∂f

∂u
=

∑
i

∂xi
∂u

∂

∂xi

fv =
∂f

∂v
=

∑
i

∂xi
∂v

∂

∂xi
.

(4.10)

Proposition . (Symmetry) Let M be a Riemannian manifold with connection ∇.Let

D
∂v

∂f
∂u

denote the covariant derivative of ∂f
∂u

along the v-parameter curves of the two-

parameter parametrized surface f : W →M .Similarly we define D
∂u

∂f
∂v
. Then

D

∂v

∂f

∂u
=

D

∂u

∂f

∂v
.

We omit the Proof.

Lemma. (Gauss) Let M be a Riemannian manifold and p ∈M . Let z be a non zero

tangent vector in TpM and vz, wz ∈ Tz(TpM) then we have:

〈dexpp(vz), dexpp(wz)〉 = 〈vz, wz〉 (4.11)

where vz is radial.

Proof . We can take v = z since vz = tz, for some t > 0. Let us define a parametrized

surface in TpM by

y(t, s) = t(v + sw).

Now we define a parametrized surface in M as follows:

ỹ(t, s) = expp(t(v + sw)).
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Now we have yt(1, 0) = vv and ys(1, 0) = wv, hence ỹt(1, 0) = dexpp(vv) and ỹs(1, 0) =

dexpp(wv). So we claim that

〈ỹt(1, 0), ỹs(1, 0)〉 = 〈v, w〉.

The mapping t→ ỹ(t, s) defines a geodesic.Hence its acceleration is zero that means

ỹtt = 0. So we have

〈ỹt, ỹt〉 = 〈v + sw, v + sw〉.

Now using previous proposition we have following :

∂

∂t
〈ỹt, ỹs〉 = 〈ỹt, ỹst〉 = 〈ỹt, ỹts〉 =

1

2

∂

∂s
〈ỹt, ỹt〉. (4.12)

Now putting the value of 〈ỹt, ỹt〉 in above equation we have

(
∂

∂t
〈ỹt, ỹs〉)(t, 0) = 〈v, w〉 ∀t.

Now

lim
t−→0

ỹs(t, 0) = lim
t−→0

(dexpp(tvv))tw = 0.

Hence we have

〈ỹt, ỹs〉(0, 0) = 0.

Thus by some elementary calculus we have 〈ỹt, ỹs〉(t, 0) = t〈v, w〉. We put t = 1 to

complete the proof.�
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Chapter 5

Curvature

Let M be a Riemannian manifold with Riemannian connection ∇. The mapping R :

X(M)× X(M)× X(M)→ X(M) given by

R(X, Y )Z = [∇Y ,∇X ]Z +∇[X,Y ]Z

= ∇[X,Y ]Z − [∇X ,∇Y ]Z.
(5.1)

is called the curvature of M.

Proposition 1 :

(1.) If f, g ∈ C∞(M) then ,

R(fX1 + gX2, Y1) = fR(X1, Y1) + gR(X2, Y1)

R(X1, fY1 + gY2) = fR(X1, Y1) + gR(X1, Y2).
(5.2)

where X1, X2, Y1, Y2X(M).

(2.) If f ∈ C∞(M) and X, Y, Z,W ∈ X(M) then ,

R(X, Y )fZ = fR(X, Y )Z

R(X, Y )(Z +W ) = R(X, Y )Z +R(X, Y )W.
(5.3)

Proof : The proof is just simple calculation using the properties of Lie bracket

and Riemannian connection ∇. Hence we omit it.

Bianchi Identity :

R(X, Y )Z + R(Y, Z)X + R(Z,X)Y = 0. (5.4)
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Proof : For proving this we will use Jacobi identity which is

[[X, Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0. (5.5)

Now, we have

R(X, Y )Z = [∇Y ,∇X ]Z +∇[X,Y ]Z. (5.6)

R(Y, Z)X = [∇Z ,∇Y ]X +∇[Y,Z]Z. (5.7)

R(Z,X)Y = [∇X ,∇Z ]Y +∇[Z,X]Z. (5.8)

now adding (5.6) + (5.7) + (5.8) and using symmetry property (∇XY − ∇YX =

[X, Y ]) we get the desired identity.�

Proposition 2. Let 〈R(X, Y )Z, T 〉 = (X, Y, Z, T ). Then we have :

(i). (X, Y, Z, T ) + (Y, Z,X, T ) + (Z,X, Y, T ) = 0.

(ii). (X, Y, Z, T ) = −(Y,X,Z, T )

(iii). (X, Y, Z, T ) = −(X, Y, T, Z)

(iv) . (X, Y, Z, T ) = (Z, T,X, Y ).

Proof : The proof is just simple calculation using properties of ∇ and the Lie

bracket. Hence we omit the proof.

Expression of curvature in local coordinates :

Let (U, φ) be a coordinate system at p ∈M. Let us denote Xi = ∂
∂xi
. Then we have

R(Xi, Xj)Xk =
∑
l

Rl
ijkXl. (5.9)

Using ∇XiXj =
∑

k ΓkijXk and the expressions for R(Xi, Xj)Xk and from the

equation(5.1) we have,

Rs
ijk =

∑
l

ΓlikΓ
s
jl −

∑
l

ΓljkΓ
s
il +

∂

∂xj
Γsik −

∂

∂xi
Γsjk. (5.10)

We simply put

〈R(Xi, Xj)Xk, Xs〉 =
∑
l

Rl
ijkgls = Rijks. (5.11)

Remark : The value of (X, Y, Z, T ) at p depends only on the values ofX(p), Y (p), Z(p)

and T (p).
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5.1 Sectional curvature

If x, y ∈ TpM then we define

|x ∧ y| =
√
|x|2|y|2 − 〈x, y〉2.

This is the area of parallelogram in TpM spanned by x,y.

Proposition 3. Let Ω be a 2 - dimensional subspace spanned by v, w ∈ TpM.

The real number

K(v, w) =
(v, w, v, w)

|v ∧ w|2
(5.12)

is independent of choice of the linearly independent vectors v, w ∈ Ω. Hence it is

reasonable to write K(v, w) = K(Ω).

Remark : It is called the sectional curvature of Ω at p.

Proof : Let {v, w} be a basis for Ω. Let x, y ∈ Ω be two linearly independent

vectors. Then x = λ1v + λ2w and y = µ1v + µ2w for some λ1, λ2, µ1, µ2 ∈ R where

λ1µ2 − µ1λ2 6= 0. A simple calculation shows that

(x, y, x, y) = (λ1µ2 − µ1λ2)
2(v, w, v, w)

and

|x ∧ y| = (λ1µ2 − µ1λ2)
2|v ∧ w|.

Hence from (40) we have K(x, y) = K(v, w).

Lemma (K(Ω)′s determine R :) Let F : W × W × W → W and F
′

: W ×

W × W → W be tri-linear mappings satisfying the properties of Proposition 2 ,

where W is a vector space of dimension ≥ 2. with an inner product.Let us denote

(x, y, w, z) = 〈F (x, y)w, z〉 and (x, y, w, z)
′

= 〈F ′
(x, y)w, z〉. If {x, y} are two linearly

independent vectors then we define K(x, y) = K(Ω) and K
′
(x, y) = K

′
(Ω) by equa-

tion(5.12) , where Ω is two dimensional subspace of W. If K(Ω) = K
′
(Ω) for all Ω

then F = F
′
.
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Lemma 4 : Let M be a Riemannian manifold.Define a tri-linear mapping C :

TpM × TpM × TpM → TpM by

〈C(X, Y, T ), Z〉 = 〈X,T 〉〈Y, Z〉 − 〈Y, T 〉〉〈X,Z〉, (5.13)

where p ∈ M and X, Y, T, Z ∈ TpM. Then M has constant sectional curvature equal

to Ko if and only if R = KoC where R is the curvature of M.

Proof . The proof follows from an easy calculation by using Propostion 2 and the

previous lemma.�

Corollary 5.: Let M be a Riemannian manifold with connection ∇. Let TpM be

a tangent plane at p ∈ M . We have K(p,Ω) = Ko for all 2-dimensional subspace

Ω ⊂ TpM if and only if

Rijkl = Ko(δikδjl − δilδjk) (5.14)

where Rijkl = 〈R(ei, ej)ek, el〉, i, j, k, l = 1, .., n where (e1, .., en) is an orthonormal ba-

sis of TpM and δ′ijs denote the Kronecker delta.

It follows that K(p,Ω) = Ko for all Ω ⊂ TpM if and only if Rijij = Ko for all i 6= j

and Rijkl = 0 for all other cases.

Theorem : Let M and N are Riemannian manifolds of dimension m and n respec-

tively.Let f : M → N is an isometry.Then curvature is preserved by this isometry.

Proof : Proof follows from isometry preserves connection.

Examples :

1. Let Sn := {x := (x1, x2, ..., xn+1) ∈ Rn+1 :
∑n+1

i=1 x
2
i = 1} with the induced

metric from Rn+1. Then Sn has constant sectional curvature equal to 1.

We demonstrate it for S2.We use the same notation as in the example in section 2.2.

Then

g11 = g22 =
4

(1 + u2 + v2)2
,

g12 = g21 = 0
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and the Christoffel symbols are :

−Γ1
11 = Γ1

22 =
2u

1 + u2 + v2
,

Γ2
11 = −Γ2

22 =
2v

1 + u2 + v2
,

Γ1
12 = Γ1

21 =
−2v

1 + u2 + v2
,

Γ2
12 = Γ2

21 =
−2u

1 + u2 + v2
.

(5.15)

We have the following equations ,

Rijks =
∑
l

Rl
ijkgls

Rs
ijk =

∑
l

ΓlikΓ
s
jl −

∑
l

ΓljkΓ
s
il +

∂

∂xj
Γsik −

∂

∂xi
Γsjk.

(5.16)

we put k = i = 1 and s = j = 2 then using above equations we have

R1212 = R1
121g12 +R2

121g22 = R2
121g22 (5.17)

since g12 = 0. And we have from the second part of equation(5.16) ,

R2
121 = Γ1

11Γ
2
21 + Γ2

11Γ
2
22 − Γ1

21Γ
2
11 − Γ2

21Γ
2
12 +

∂

∂v
Γ2
11 −

∂

∂u
Γ2
21. (5.18)

Now putting the values of all Γkij and after a simple computation we have ,

R2121 = R1212 =
4

(1 + u2 + v2)2
× 4

(1 + u2 + v2)2

= Ko(g11.g22).

(5.19)

After putting the values of g11 and g22 we have K0 = 1.Similarly we can show that

Rijks is zero for other cases. We note that SO(3,R) acts transitively by isometry on

S2.Hence we are done by previous theorem.

2.

The upper half plane H2 = {(x, y) ∈ R2; y > 0} has constant sectional curvature

equal to −1.
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The metric on H2 is given by

g11 = g22 =
1

y2
, g12 = g21 = 0.

The Christoffel symbols are given by

Γ1
11 = Γ2

12 = Γ1
22 = 0,

Γ2
11 =

1

y
,

Γ1
12 = Γ2

22 =
−1

y
.

(5.20)

We use similar calculation as we did in the previous example.

Now here we put i = k = 2 and j = s = 1. so we have

R1212 = R2121 = R1
212 g12 +R2

212 g22 = R2
212 g22. (5.21)

Since g12 = 0. Now we have ,

R2
212 = Γ1

22Γ
1
11 + Γ2

22Γ
1
12 − Γ1

12Γ
1
21 − Γ2

12Γ
1
22 +

∂

∂x
Γ1
22 −

∂

∂y
Γ1
12. (5.22)

Now putting the values of Γkij and by simple computation we have

R2121 = − 1

y4

= Ko(g11.g22).

(5.23)

Now putting the values of g11 and g22.We have Ko = −1.Similarly we can show

that Rijks is zero for other cases.

Change of Curvature under scaling of metric :

Proposition 6. Suppose M is a Riemannian manifold with a Riemannian metric 〈, 〉

and k > 0 is a constant. On M change the Riemannian metric 〈, 〉 to 〈, 〉
′

as follows :

〈u, v〉
′

p = k〈u, v〉p (5.24)

for all p ∈ M and u, v ∈ TpM . For any linearly independent x, y ∈ TpM if K(x, y)

is sectional curvature for the metric 〈, 〉 and K
′
(x, y) is sectional curvature for the

metric 〈, 〉
′

then we have K
′
(x, y) = K(x,y)

k
.
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Proof : Let (U, (x1, .., xn)) be a coordinate system on M. In U the Christoffel

symbols with respect to 〈, 〉 are given by ,

Γmij =
1

2

∑
k

{ ∂
∂xi

gjk +
∂

∂xj
gki −

∂

∂xk
gij}gkm (5.25)

where gij = 〈 ∂
∂xi
, ∂
∂xi
〉 and (gkm) is the inverse of (gkm). Let us denote the metric

tensor etc. by the same symbols with a prime for the new metric.Then g
′
ij = kgij

this implies (g
′ij) = (g

′
ij)
−1 = 1

k
(gij)−1. It is clear that Γ

′k
ij = Γkij for all i, j, k. Hence

R
′

ijkl = kRijkl. Thus for any pair of linearly independent vectors x, y ∈ TpM we have

〈R(x, y)x, y〉 = 1
k
〈R′

(x, y)x, y〉.

Therefore,

K(x, y) =
〈R(x, y)x, y〉

〈x, x〉〈y, y〉 − 〈x, y〉2

=
〈R(x, y)x, y〉

′
/k

{〈x, x〉′〈y, y〉′ − 〈x, y〉′2}/k2

= k
〈R(x, y)x, y〉

′

〈x, x〉′〈y, y〉′ − 〈x, y〉′2
.

(5.26)

Hence, K
′
(x, y) = K(x,y)

k
. �

Example : We shall use Proposition (6) to calculate the sectional curvature of

S2(r) = {(x, y, z) ∈ R3 ; x2 + y2 + z2 = r2}.

Since the induced metric on S2(r) from R3 is equivalent to scaling the metric of

S2(1) by a factor of r2, S2(r) has constant curvature 1
r2
.
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