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Abstract

In this thesis, I will discuss the first three chapters of the “Galois Groups and Funda-

mental Groups” by Tamas Szamuely([Sza]).

Chapter 1 deals with basics of field theory, Galois theory and contains an introduc-

tion to Etale algebras. We will prove the categorical anti-equivalence of continuous left

Gal(k)-sets with finite etale algebras over k. Chapter 2 deals with certain results from

algebraic topology using which we obtain a categorical equivalence between category

of left-π1(X, x) sets and category of covers of X. In Chapter 3 study Riemann sur-

faces and holomorphic map. The covers over Riemann surfaces create a link between

field theory and theory of covers. We show that the category of finite covers of X

outside a finite discrete set of points is equivalent to the category of Riemann surfaces

equipped with holomorphic maps onto X. Further, in this chapter, we establish that

every finite group occurs as Galois group of some finite Galois extension of C(t).
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Chapter 1

Field Theory and Galois Theory

There is a strong analogy between the Galois Group and the Fundamental Group. In

Galois theory, we talk about the automorphisms of separable closures of the base field

and for differential equations the analogous role is played by universal cover of the

base domain. So to understand this analogy we start out with some basics of Galois

Theory of fields, Infinite Galois theory and then introduce the notion of etale algebra

to establish the Grothendieck Formulation of Galois Theory.

1.1 Algebraic Field Extensions

Definition 1.1.1. Let k be a field. An extension L|k is called algebraic if every

element of k is a root of some polynomial in k[x]. This polynomial is said to be

minimal if it is monic and irreducible. A field k̄ is called algebraically closed if it

has no algebraic extensions other than itself. An algebraic closure of a field k is an

algebraic extension which is algebraically closed.

Remark 1.1. A finite extension L of k is algebraic over k. If L = k[α], α ∈ L and f

is the minimal polynomial of α, then [L : k] = deg(f).

Theorem 1.1.1. Let k be a field. Then there exists an algebraically closed field which

contains k as a sub field.

Proof. We first construct a field L1|k such that every polynomial in k[x] of degree≥ 1

has a root. Now, for every polynomial f ∈ k[x], associate a set Xf and let S be
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the set of all such Xf (The set S and the set of polynomials in k[x] are in bijection).

Now form the polynomial ring k[S]. Claim that the ideal generated by < f(Xf ) >

is proper. If not, then 1 ∈< f(Xf ) > and there exists function gi ∈ k[S] such that

Σn
i=1gifi(Xfi) = 1, denote each Xfi by Xi and gi is a polynomial in finite number of

variables X1, ...XN such that N ≥ n. So we have Σn
i=1gi(X1, ..., XN)fi(Xi) = 1. Let F

be the splitting field of polynomials f1, ...fn and say αi is a root of fi and let αi = 0

for i > n. So evaluating above equation at these points, we get

Σgi(α1, ..αn, 0, ..., 0)fi(αi) = 1

=⇒ 0 = 1. Hence a contradiction. So the ideal < f(Xf ) > is proper and is

contained in a maximal ideal say M. So we have the field L1 = k[S]/M containing k

by the embedding σ : k → k[S]/M given by a 7→ a + m. Every polynomial f ∈ k[x]

has a root in L1 which is xf because f(xf ) ∈< f(Xf ) >⊆M . Similarly we construct

a field L2 over L1, such that every polynomial f ∈ L1[x] has a root in L2 and so on.

Then we get a tower of field extensions k ⊆ L1 ⊆ ......Ln ⊆ Ln+1... Let L =
⋃
Li,

k ⊂ L.. Coefficients of a polynomial h(x) ∈ L[x] are coming from some Ln for some

large n. So h(x) has a root in Ln+1 and hence a root in L. So L is algebraically

closed.

Corollary 1.1.1. Let k be a field. There exists an extension k̄ which is algebraic over

k and algebraically closed.

Proof. Let E be an algebraically closed field containing k as a sub field. Let k be the

union of sub fields of E which are algebraic over k. So k is algebraic over k. Now we

claim that if α ∈ E and α is algebraic over k, then α is algebraic over k. To see this,

consider a finite tower of field extensions k ⊂ F ⊂ E such that E|F is algebraic and

F |k is also algebraic. Let α ∈ E be a root of some polynomial f(x) ∈ F [x], there

exist a′is ∈ F such that Σn
i=0aiα

i = 0. Let F0 = k(a0, ..., an) and α is algebraic over

F0. =⇒ k ⊂ k(a0, ...an) ⊂ F0(α) such that [F0(α) : F0] < ∞ and [F0 : k] < ∞. So

[F0(α) : k] <∞ i.e α is algebraic over k and our claim follows.

Let f ∈ k[x] ⊂ E[x], then there exist α ∈ E which is a root of f which implies

that α is algebraic over k which further implies α is algebraic over k and hence k(α)

is algebraic over k. Then k(α) ⊆ k, so α ∈ k. Hence k is algebraically closed and is

algebraic closure of k.

Proposition 1.1.1. Let σ : k → L be an embedding of k into an algebraically closed

field L. The number of extensions of σ from k to k(α) is ≤ the number of roots of
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minimal polynomial of α but is equal to number of distinct roots of minimal polynomial

of α.

Proof. Let k be the base field. σ : k → L be an embedding of of k into an algebraically

closed field L. We want to extend σ to an embedding of an algebraic extension E of

k into L. Lets consider the case when E = k(α), and k(α) is an algebraic extension.

Let p(x) be the monic irreducible polynomial of α. Let β be the root of σp in

L. We know that k(α) = k[α], so every element of k(α) can be written in the form

of f(α) for some f ∈ k[x]. Define an extension of σ by f(α) 7→ σf(β). The map

is well defined because for some g(x) ∈ k[x] such that g(α) = f(α) which implies

(g − f)(α) = 0 which means that p(x) divides g(x)− f(x) that further implies σp(x)

divides σg(x) − σf(x). So σg(β) = σf(β). Hence the extension of σ defined above

is an extension to k(α). The number of such extensions depend on the degree of

p(x).

Theorem 1.1.2. Let k be a field and E be an algebraic extension of k, and σ : k → L

be an embedding of E in L. If E is algebraically closed and L is algebraic over σk, then

any such extension σ is an isomorphism of E onto L.

Proof. Let S be the set of all pairs (F, τ) where F ⊂ E containing k and τ is an

extension of σ to an embedding of F into L. Define ordering on S as follows: If (F, τ)

and (F
′
, τ
′
) ∈ S, then (F, τ) ≤ (F

′
, τ
′
) if F ⊂ F

′
and τ

′|F = τ .

The set S is non-empty as (k, σ) ∈ S. Assume that {(Fi, τi)} is a totally ordered

subset of S, let F be the union of Fi’s and define τ |Fi to be equal to τi for each Fi.

Then the element (F, τ) is an upper bound of the totally ordered subset. It has a

maximal element in S by Zorn’s lemma. Say (M,λ) where λ is an extension of σ.

Now we show that M = E. Otherwise, there exists α ∈ E −M such that λ has

an extension to M(α) which contradicts the maximality of (M,λ). This shows that

there exists an extension of σ to E which is nothing but λ.

If E is algebraically closed then so is σE because all the polynomials in σE[x] will

have a root in σE which will come from the image under σ of the root of polynomial

in E. And if L is algebraic over σk, then L is algebraic over σE. This shows that σ

is an isomorphism of E onto L that is, σE = L.
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1.2 Separable Extensions

Let E be an algebraic extension of a field F and σ : F → L be an embedding of F

into an algebraically closed field L. We can extend σ to an embedding of E into L.

We assume that L is algebraic over σF and since it is algebraically closed it must be

an algebraic closure of σF . Let Sσ denote the set of extensions of the embedding σ

to an embedding of E into L.

Assume L
′

be another algebraically closed field and let there be an embedding of

F, τ : F → L
′

into L′. Just as done before, L′ is the algebraic closure of τF . We

know there exists an isomorphism between two algebraically closed fields of k. Let

λ : L→ L′ be an isomorphism. Let Sτ be the set of extensions of τ to an embedding

of E into L
′
. λ : L→ L

′
is an extension of τ ◦ σ−1 applied to σF .

Let σ
′ ∈ Sσ, extending σ to an embedding of E into L. Then λ ◦ σ′ is an extension

of τ to an embedding of E into L
′

because the restriction of λ ◦ σ′ to F is equal to

τ ◦ σ−1 ◦ σ = τ . Hence, λ ◦ σ′ is an extension of τ . λ induces a map between Sσ and

Sτ given by σ
′ 7→ λ◦σ′ and an inverse map is given by λ−1. Hence there is a bijection

between the sets Sσ and Sτ having the same cardinality. This cardinality is called as

separable degree and we denote it be [E : F ]s.

Theorem 1.2.1. For a tower k ⊂ F ⊂ F , [E : k]s = [E : F ]s[F : k]s. [E : k]s is

finite and [E : k]s ≤ [E : k] only when E is finite extension of k.

Proof. Let L be an algebraically closed field and σ : k → L be an embedding of k into

L. Let {σi}i∈I be the family of distinct extensions of σ to an embedding of F into

L. We have seen that each σi has only [E : F ]s many extensions to an embedding of

E into L. By a simple counting argument, we can say that the number of elements

of the set of embeddings τij are [E : F ]s[F : k]s . So any embedding of E into L

must be one of the τij. Hence we have the result [E : k]s = [E : F ]s[F : k]s. For

the second part of the theorem, assume that E|k is a finite extension generated by

{α1, ...αr}. Then we have the tower: k ⊂ k(α1) ⊂ k(α1, α2) ⊂ ....k(α1, α2, ..., αr). Let

F0 = k and Ft+1 = Ft(αt+1). [Ft(αt+1) : Ft]s represents the number of extensions of

σ : Ft → L(L is some algebraically closed field) to an embedding of Ft(αt+1) into L.

By Proposition 1.1.1, [Ft(αt+1) : Ft]s ≤ [Ft(αt+1) : Ft] and by multiplicativity of tower

of field extensions, [E : k]s ≤ [E : k].

The following result follows immediately
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Corollary 1.2.1. Given a tower k ⊂M ⊂ L of finite field extensions , the extension

L|k is separable if and only if L|M and M |k are separable.

Corollary 1.2.2. A finite extension L|k is separable if and only if L = k(α1, α2....., αm)

for some separable elements αi ∈ L.

Proof. Let L is separable over k and α ∈ L. Consider k ⊂ k(α) ⊂ L. By previous

result, we have [k(α) : k]s = [k(α) : k]. By definition this means that α is separable

over k. We have finite number of αi’s such that we have a tower, k ⊂ k(α1) ⊂
k(α1, α2), .....,⊂ k(α1, ...αm). So each αi is separable over k.

Conversely, consider the tower k ⊂ k(α1) ⊂ k(α1, α2), .....,⊂ k(α1, ...αm). Each

αi is separable over k(α1, ..., αi−1) because the minimal polynomial of each αi has

distinct roots over k. Which means that [k(α1, .., αi) : k(α1, ..., αi−1)]s = [k(α1, .., αi) :

k(α1, ..., αi−1)] for all 1 ≤ i ≤ m + 1. By multiplicativity of towers, [L : k]s = [L : k]

and hence L|k is a finite separable extension.

Definition 1.2.1. E is a separable extension of the base field k if and only if [E :

k]s = [E : k]. An algebraic element a over k is called separable over k if k(a) is a

separable extension of k. Equivalently we can say that if the minimal polynomial of α

has no multiple roots then α is separable. A polynomial f ∈ k[x] is separable if it has

no multiple roots. If k ⊂ F ⊂ E and α ∈ E is separable over k, then α is separable

over F.

Definition 1.2.2. Let E,F be field extensions of k contained in some algebraic closure

k of k. The smallest sub-field of the algebraic closure k, which contains E as well as

F is denoted by EF and is called compositum of E and F in k.

Corollary 1.2.3. If L,M are finite separable extensions of k, then their compositum

is separable as well.

Proof. Since LM is the smallest sub field of k containing both L and M , we have

finitely many α’s in L such that LM = M(α1, ...., αm). Each αi is separable over

k(because L is separable over k), so each αi is separable over M . So LM |M is a

separable extension. Also M |k is separable, so LM |k is a separable extension.

Definition 1.2.3. Compositum of all finite separable extensions of k in k is called

separable closure and is denoted by ks.
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Theorem 1.2.2. Primitive Element Theorem A finite separable extension can

be generated by single element.

Proof. [Lanon], Chapter 5, Theorem 4.6

1.3 Prerequisites on Galois Extensions

Let L be a finite field extension of k, the group of field automorphisms of L that fixes

the elements of k is denoted by Aut(L|k).

Definition 1.3.1. Let L be an algebraic field extension of k. L is called a Galois

extension of k if under the action of Aut(L|k), the elements of L that remain fixed

are exactly the elements of k. In this case, we denote Aut(L|k) by Gal(L|k) which is

called the Galois group of L|k.

Lemma 1.3.1. ks|k is a Galois extension where ks denotes the separable closure of

k.

Proof. We need to verify that every element α ∈ ks such that α /∈ k is not fixed by all

automorphisms σ ∈ Aut(ks|k)(or alternatively we can say that it is moved by some

automorphism). Let f be the minimal polynomial of α and α
′

in ks be another root

of f. There is an isomorphism of field extensions k(α) and k(α
′
), k(α)

∼−→ k(α
′
) given

by the map α → α
′
. By a previous result, we know that this isomorphism can be

extended to an automorphism of algebraic closure k of k. Now we only have to check

the fact that each element of Aut(k|k) maps the separable extension ks onto itself.

This is indeed true because this automorphism sends an element γ of k to another

root γ
′

of its minimal polynomial, and if γ is separable then its minimal polynomial

is separable by definition which implies that γ
′

is separable. We call Gal(ks|k) the

absolute Galois group of k.

Proposition 1.3.1. Let k be a field, ks a separable closure and L ⊂ ks a sub-field

containing k. The following are equivalent:

1. The extension L|k is Galois.

2. The minimal polynomial over k of each α ∈ L splits into linear factors in L.

3. Each automorphism σ ∈ Gal(ks|k) satisfies σ(L) ⊂ L.
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Proof. 1⇒ 2

Let p(x) ∈ k[x] be an irreducible polynomial of α ∈ L and let the distinct elements

of the set σ(α) : σ ∈ Gal(L|k) be α1, ..., αn. Define g(x) ∈ L[x] as g(x) =
n∏
i=1

(x− αi).

Now each σ ∈ G permutes αi, so each σ fixes the coefficients of g(x). Hence,

g(x) ∈ k[x] with no repeated roots.

p(x) and g(x) have a common root in L i.e α. So g(x) must divide p(x), but p(x)

is irreducible. Hence p(x)=g(x). So p(x) is separable as it has no repeated roots and

hence it splits into linear factors in L.

2⇒ 3

Each σ ∈ Gal(ks|k) must map α ∈ L to a root of its minimal polynomial.⇒
σ(L) ⊂ L because minimal polynomial of each α over k splits into linear factors in L.

3⇒ 1

Pick α ∈ L− k. Since ks is Galois over k, Let σ ∈ Gal(ks|k) such that σ(α) 6= α.

By (3), σ(L) ⊂ L which means that σ|L ∈ Aut(L|k) such that σ|L(α) 6= α.

Theorem 1.3.1. Main theorem for finite extensions:

Let L|k be a finite Galois extension with Galois group G. The maps M 7→ H :=

Aut(L|M) and H 7→ M := LH yielding an inclusion reversing bijection between sub

fields L ⊃ M ⊃ k and subgroups H ⊂ G. The extension L|M is always Galois.

The extension M |k is Galois iff H is normal subgroup of G, in this case we have

Gal(M |k) ∼= G/H.

Lemma 1.3.2. A finite extension L|k is Galois if and only if it is the splitting field

of an irreducible separable polynomial f ∈ k[x].

Proof. If L is the Splitting field of an irreducible separable polynomial then L =

k(α1, ..., αn) such that f =
∏

(x − αi) and without multiple roots. So, for σ ∈
Gal(Ks|k), σ(L) ⊂ L. Hence by previous preposition, L|k is Galois extension. Con-

versely, if L|k is Galois, then part (2) of the previous proposition implies that L is the

splitting field of a primitive element generating L over k.

Corollary 1.3.1. A finite extension L|k is Galois with group G = Aut(L|k) if and

only if G has order [L:k].
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Proof. If L|k is Galois, then L is the splitting field of an irreducible separable poly-

nomial f ∈ k[x]. Then order of G is |Aut(k(α)|k)| where α is a primitive element and

L = k(α). Since f is separable, |G| = [L : k]. Conversely, suppose G = Aut(L|k),

the extension L|LG is Galois by definition so G has order [L : LG] = [L : k]. Hence

LG = k.

1.4 Infinite Galois Extensions

The main problem that arises for infinite field extensions is that it is no longer true

that all subgroups of Galois group arise as the subgroup fixing some sub extension

M |k. Let K|k be a infinite Galois extension, we first observe that K is a union of

finite Galois extensions.

Lemma 1.4.1. Each finite sub extension of K|k can be embedded in a Galois sub

extension.

(This is because each finite separable sub extension is of the form k(α) with an

appropriate element α. We can embed k(α) in the splitting field of minimal polynomial

of α, which is finite Galois extension over k.)

Construction 1.1. An inverse system of groups (Gα, φαβ) consists of: · a partially

ordered set (Λ,≤) which is directed in the sense that for all (α, β) ∈ Λ with α ≤ γ, β ≤
γ; · for each α ∈ Λ, a group Gα;

· for each α ≤ β a homomorphism φαβ : Gβ → Gα such that we have equalities

φαγ = φαβ ◦ φβγ for α ≤ β ≤ γ.

The inverse limit of the system is defined as the subgroup the direct product
∏

α∈λGα

consisting of sequences (gα) such that φαβ(gβ) = gα for all α ≤ β. It is denoted by

lim←−Gα.

Definition 1.4.1. A profinite group is defined to be the inverse limit of a system of

finite groups.

Example 1.1. A sequence of integers satisfying xn ≡ xn−1modp
n determines an object

called p-adic integer. Consider the sequence Z/pZ
λ1←− Z/p2Z

λ2←− ..Z/pnZ
λn←− ... such

that λn(s̄n+1) = s̄n The ring of p-adic integers is the projective limit lim←−Z/p
nZ of

(An, λn) where An = Z/pnZ.
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Proposition 1.4.1. Let K|k be an arbitrary Galois extension of fields. The Ga-

lois group of finite sub extensions of K|k together with the homeomorphism φML :

Gal(M |k) → Gal(L|k) form an inverse system whose inverse limit is isomorphic to

Gal(K|k). In particular, Gal(K|k) is a profinite group.

Proof. Let I = {L | k⊆ L ⊆ K,L|k is a finite Galois extension}. Define partial order-

ing on I as: for L1, L2 ∈ I, L1 ≤ L2 iff L1 ⊆ L2. Moreover, {Gal(L|k), φLiLj}L,Li,Lj∈I
form an inverse system with homomorphism φL1L2 : Gal(L2|k)→ Gal(L1|k) given by

φL1L2(σ) = σ|L1 . The map is well defined: Take σ ∈ Gal(L2|k). Then since L2|L1 is

a Galois extension, then σ(L1) ⊂ L1. Consider the homomorphism χ : Gal(K|k) →
lim←−Gal(L|k) given by σ 7→ {σ|L}L∈I .

Injectivity: Let σ ∈ ker(χ) and χ(σ) = {1L}L∈I =⇒ σ|L = 1L,∀L ∈ I. Since

K =
⋃
L∈I L, we have σ = 1k.

Surjectivity- Take {σL}L∈I ∈ lim←−Gal(L|k). Let α ∈ K. Then ∃L ∈ I such that

α ∈ L. Define σ(α) = σL(α). This definition is well defined due to the fact that

σL forms a compatible system of automorphisms, i.e for L1, L2 ∈ I, L1 ⊆ L2, then

σL1(α) = σL2(α). So we have χ(σ) = {σL}L∈I . Hence surjectivity follows and χ is an

isomorphism. So, Gal(K|k) is a profinite group.

Now we define Krull topology on profinite group. Let G = lim←−Gα be a profinite

group. Each Gα is endowed with the discrete topology,
∏

α∈ΛGα is endowed with the

product topology and finally G ⊆
∏

α∈ΛGα is given the subspace topology. It follows

from this construction that the natural projection maps G → Gα are continuous.

Under this topology, the profinite group becomes a topological group which is defined

as follows

A group is called topological if the operations p : G×G→ G given by p(g, h) = gh

and i : G → G given by i(g) = g−1 are continuous in the defined topology. Consider

Πα :
∏

α∈Λ Gα → Gα. Πα is continuous. G ⊆
∏

α∈ΛGα where the subspace topology

is generated by the open sets
⋃
α∈Λ{π−1

α ({gα})|gα ∈ Gα}. It is enough to check that

inverse images of one of these open sets under the above defined maps p and i are

open.
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p−1(Π−1
α ({gα})) = p−1(Π−1

α ({gα}.h.h−1))

= p−1(Π−1
α ({gα.h}) ◦ Π−1

α ({h−1}))

=
⋃
h∈Gα

(Π−1
α ({gα.h})× Π−1

α ({h−1}))

which is open. Continuity of p follows because the inverse image of a sub-basic open set

is open under p. i : G→ G is given by i(g) = g−1. i−1(Π−1
α ({gα})) = (Π−1

α ({gα}))−1 =

Π−1
α ({g−1

α }) which is open. Hence i is open.

Lemma 1.4.2. G = lim←−Gα is a closed topological subgroup of
∏

α∈ΛGα.

Proof. Let g = (gα) ∈
∏

α∈ΛGα. If g /∈ lim←−Gα, we have to show that it has an

open neighbourhood which does not meet lim←−Gα. By assumption, for some β, γ ∈ Λ,

φβγ(gγ) 6= gβ. Since Gα is Hausdorff, so is
∏
Gα. Choose open and disjoint neigh-

bourhoods U and V of φβγ and gβ in Gβ respectively. Let U
′

be the neighbourhood

of gγ in Gγ such that φβγ(U
′
) ⊆ U . Consider an open set W =

∏
α∈Λ Vα of

∏
α∈ΛGα,

where Vγ = U
′
, Vβ = V and Vα = Gα, α 6= γ, β. Then W is the open neighbourhood

of (gα) disjoint from G.

Corollary 1.4.1. A profinite group is compact and totally disconnected(Only con-

nected subsets are one-point subsets). Moreover, the open subgroups are precisely the

closed subgroups of finite index.

Proof. Each Gα is a finite group with discrete topology =⇒ Each Gα is compact. By

Tikhonov’s theorem,
∏

α∈ΛGα is compact. Since closed subspaces of compact spaces

are compact, G = lim←−Gα is compact. Gα is Hausdorff and totally disconnected, so∏
α∈ΛGα is totally disconnected. G is compact and totally disconnected. Since G is a

topological group, for any open subgroup U of G, U 7→ gU is a homeomorphism. So

G−U =
⊔
g∈G gU is open, hence G U is closed. Since G is compact, these cosets must

be finite in number. Conversely, a closed subgroup of finite index is open because if

U is a closed subset of G, then U = G−
⊔
g∈G gU , so U is open.

Theorem 1.4.1. Let L be a sub extension of the infinite Galois extension K|k. Then

Gal(K|L) is a closed subgroup of Gal(K|k). Moreover, the following maps L 7→ H :=

Gal(K|L) and H 7→ L := KH , yield an inclusion reversing bijection between finite sub

extension fields K ⊃ L ⊃ k and closed subgroups H ⊂ G. We call a sub extension L
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Galois over k if and only if Gal(K|L) is normal subgroup of Gal(K|k); and we obtain

a natural isomorphism Gal(L|k) ∼= Gal(K|k)/Gal(K|L).

1.5 Finite Etale Algebras

We have a base field k. Let k̄ be its algebraic closure and ks ⊂ k̄ be its separable

closure. Denote Gal(ks|k) by Gal(k). Consider a finite separable extension L of k

such that L is not necessarily a sub extension field of ks. We have already seen

that there are finitely many homomorphisms from L to k̄(equal to [L:k]). Since L is

separable, the images of these homomorphism will be contained in ks. So, we may

consider the finite set Homk(L, ks), which is endowed by a natural action of Gal(k)

given by (g, φ) 7→ g ◦ φ for g ∈ Gal(k), φ ∈ Homk(L, ks). The action of a topological

group on a topological space is said to continuous if the map m : G×X → X given

by (g, x) 7→ gx is continuous. Homk(L, ks) is endowed with discrete topology. The

continuity of the above defined action is equivalent to the openness of the stabilizer

Gx of each point x ∈ X. Stabilizer of x ∈ X=Gx = {g ∈ G|gx = x}. For x ∈ X,

m−1(x) = Ux = {(g, y) ∈ G×X : gy = x} =
⊔
{(g, y) ∈ G× {y}|gy = x} for a fixed

y ∈ X.Each of the above disjoint subsets are either empty or homeomorphic to Gx

via the map g 7→ (gh, y) for some h ∈ G such that hy = x. Thus if Gx is open, then

Ux is open and hence m is continuous.Conversely, Gx is the preimage of x by the map

G
ix−→ G × X m−→ X, where ix(g) = (g, x). i−1

x ◦m−1(x) = i−1
x (Ux) = i−1

x (
⊔
{(g, y) ∈

G× {y}|gy = x}) ∼= Gx. So continuity of m implies openness of Gx.

Lemma 1.5.1. The above left action of Gal(k) on Homk(L, ks) is continuous and

transitive, hence Homk(L, ks) as a Gal(k)-set is isomorphic to the left coset space

of some open subgroup in Gal(k). For L Galois over k this coset space is in fact a

quotient by an open normal subgroup.

Proof. The stabilizer U of an element φ ∈ Homk(L, ks) consists of g ∈ Gal(k) such

that gφ = φ, it means g fixes φ(L). Hence U is open in Gal(k)(using main theorem of

infinite Galois theory), so the action of Gal(k) is continuous. Since L is finite separable

extension over k, it is generated by a primitive element α with minimal polynomial f.

Each φ ∈ Homk(L, ks) maps α to a root of f in ks. Gal(k) permutes these roots, so

its action on Homk(L, ks) is transitive. The map g ◦φ 7→ gU induces an isomorphism

of Homk(L, ks) with left coset space Gal(k)/U .
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If M is another finite separable extension of k, each k-homomorphism φ : L→M

induces a map Homk(M,ks) → Homk(L, ks) by composition with φ i.e. f 7→ f ◦ φ,

f ∈ Homk(M,ks). This map is Gal(k)-equivariant. So, Homk(,ks) is a contravariant

functor from category of finite separable extensions to category of finite sets with

continuous transitive left Gal(k)-action.

Theorem 1.5.1. Let k be a field in a separable closure ks. The contravariant func-

tor defined above that maps a finite separable field extension L|k to the finite set

Homk(L, ks) equipped with left action of Gal(k) gives an anti-equivalence between the

category of finite separable extensions of k and the category of finite sets equipped with

continuous and transitive left action of absolute Galois group Gal(k). If we take Ga-

lois extensions instead of separable extensions, then we get the sets equipped with left

Gal(k) action isomorphic to some finite quotient of Gal(k).

Proof. Recall two categories C1, C2 are called anti-equivalent iff there exists a con-

travariant functor F : C2 → C1 which is fully faithful and essentially surjective.

Essentially surjective: We want to show that any continuous transitive Gal(k)-set

S is isomorphic to some Homk(L, ks). Pick s ∈ S, we have seen that continuity of the

Gal(k) action means that the stabilizer Us of s is open, hence it is closed and fixes some

finite separable extension say L of k. Let i : L → ks be the inclusion map. Stab. of

s = Us = {g ∈ Gal(k)|gs = s} and Stab. of i = {g ∈ Gal(k)|g ◦ i = g}. f Us ⊂ Gal(k)

that fixes a fielf extension L of k, then g ∈ Us fixes x ∈ L i.e g ◦ i(x) = i(x). So

Stabilizer(s) ⊂ Stabilizer(i). If g ∈ Stabilizer(i), then g ◦ i(x) = i(x) = x, which

means g ∈ Us, so Stabilizer(s) ⊃ Stabilizer(i). Hence Stabilizer(s) = Stabilizer(i).

Now define a map g ◦ i → gs from Gal(k)−sets Homk(L, ks) → S. The map is

well-defined because stabilizer of i is same as stabilizer of G and it is clearly an

isomorphism. Fully faithfulness: We need to show that given any two finite separable

extensions L,M of k, the set of k-homomorphisms, L→M corresponds bijectively to

the set of Gal(k)-maps Homk(M,ks) 7→ Homk(L, ks). Since both Homk(M,ks) and

Homk(L, ks) are transitive Gal(k)-sets, so a map f between them is given by the image

of a fixed φ ∈ Homk(M,ks). We know that f is Gal(k)-equivariant, so if U is stabilizer

of φ i.e for every g ∈ U , gφ = φ, then g(f(φ)) = f(gφ) = f(φ). So, U ⊂ V , where V

is the stabilizer of f(φ). By taking the fixed sub fields of U and v, which are φ(M)

and f(φ)(L) respectively, we get an inclusion φ(M) ⊃ f(φ)(L). Let ψ : φ(M) → M

be the inverse , we can see that ψ ◦ f(φ) is a unique element in Homk(L,M).
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Now we want extend this anti-equivalence to Gal(k)-sets which do not necessarily

have transitive action. To do this we replace the category of finite separable extensions

by finite dimensional etale k-algebra.

Definition 1.5.1. A finite dimensional k-algebra A is called etale(over k) if it is

isomorphic to a finite direct product of separable field extensions of k.

Theorem 1.5.2. Main Theorem of Galois Theory- Grothendieck’s version

The functor that maps a finite etale k-algebra A to finite set Homk(A, ks) gives an

anti-equivalence between the category of finite etale k-algebras and the category of finite

sets equipped with continuous left action of Gal(k). Here separable field extensions give

rise to sets with transitive Gal(k)-action and Galois extensions to sets isomorphic to

finite quotients of Gal(k).
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Chapter 2

Fundamental Groups in Topology

In this chapter we will study the topological analogue of Galois theory where the

role of field extensions is played by covers and the role of absolute Galois group is

played by the fundamental group. We will also study a version of Galois theorem that

involves locally constant sheaves.

2.1 Covers

Fix a base space X. A space over X is a topological space Y such that we have a

continuous map p : Y → X.

We define a morphism between two spaces over X as a continuous map f : Y1 → Y2

such that the following diagram commutes, here p1 and p2 are two different continuous

maps of spaces over X

Y1 Y2

X

p1

f

p2

Definition 2.1.1. Space Y over X is said to be a cover of X if we have a continuous

projection map p : Y → X with the following property that for every point x ∈ X

there is an open neighbourhood V such that p−1(V ) decomposes as the disjoint union

of open subsets Ui in Y and p|p−1(V ) is a homeomorphism of Ui onto V. The map p is

surjective.
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Take a non empty discrete topological space I and consider the product X×I. The

natural projection p : X × I → X turns X × I into a cover of X. This is true because,

for x ∈ X, V be an open neighbourhood of x such that p−1(V ) = V × I = ti∈I(V × i)
and V |p−1(V ) : V × i→ V is a homeomorphism.

Proposition 2.1.1. A space Y over X is a cover if and only if each point of X has an

open neighbourhood V such that the restriction of the projection p : Y → X to p−1(V )

is isomorphic(as a space over V) to a trivial cover.

Proof. If part is trivial. Let x ∈ X and V be an open neighbourhood of x such that

p−1(V ) ∼= V × I = ti(V × i) and p|(V×i) : (V × i) → V given by (a, i) 7→ a is a

homeomorphism. So Y over X is a cover of X.

Only if: If Y over X is a cover, every x ∈ X has an open neighbourhood V such

that p−1 = ti∈IUi, where Ui are disjoint open subsets of Y.

Define a map from ti∈IUi → V × I by ui 7→ (p(ui), i), for ui ∈ Ui. Injectivity is

clear and surjectivity follows from the surjectivity of p and by the continuity of p and

p−1, the map is homeomorphism. So, V × I turns into a cover of V.

Here the set I is called the fibres of p over the points of V.

Corollary 2.1.1. For a connected space X, all the fibres of the covering map p are

homeomorphic to the discrete space I.

By previous proof we can see that the points of X over which the fibres of p equal

some I form an open subset of X. If for some point x
′ ∈ X, the fibres of p equal equals

J 6= I, they will form an open subset of X disjoint from V. So, by varying I, we can

decompose X as disjoint union of open subsets. But if X is connected, this is not

possible. Hence the fibres of p over the points of X must be homeomorphic to same

discrete space I.

Definition 2.1.2. Assume a continuous left action of a group G on a space Y, this

action is said to be even if every point y of Y has an open neighbourhood V such that

for all g ∈ G, the sets gV are pairwise disjoint.

Define an equivalence relation on Y as y ∼ g.y, g ∈ G. Write G/Y for Y/∼. Define

a topology in the following way so that the projection pG : Y → G/Y is continuous,
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τG/Y ={U ⊆ G/Y |p−1
G (U) is open in Y }. Now we have a quotient space G/Y

whose underlying set is the set of orbits of G.

Lemma 2.1.1. If G is group acting evenly on a connected space Y, the projection

pG : Y → G/Y turns Y into a cover of G/Y.

Proof. For ∀g ∈ G, pG : Y → G/Y given by y 7→ ȳ is clearly surjective.

Let ȳ ∈ G/Y such that y is its representative element in Y. Let Uy be an open

neighbourhood of of y ∈ Y such that {gUy} are pairwise disjoint. Set Uȳ = pG(Uy).

So, p−1
G (Uȳ) =

⋃
g∈G(gUy) =

⊔
g∈G(gUy).

We know that an action of a group on a space Y gives homeomorphism for every

g ∈ G, τg : Y → Y given by y 7→ g.y. So each gUy are open and so is their disjoint

union. Hence p−1
G (Uȳ) is open and by continuity of pG, Uȳ is open. So, pG is an open

map. Now we just need to show that pG restricted to p−1
G is a bijection from gUy to Uȳ

. Consider the map φ : Uy → Uȳ = p(Uy). φ is clearly surjective. Now if φ(x) = φ(y),

it means Gx = Gy or equivalently gx = y. So if we take an open neighbourhood U of

X such that gU are pairwise disjoint for g ∈ G, gU = V such that y ∈ V is an open

neighbourhood of y. If g 6= id, U ∩ gU = φ, so U and V are disjoint neighbourhoods

of x and y respectively. So, for every point in Y we can find such neighbourhoods,

which are disjoint from each other. This would contradict the connectedness of Y.

Hence g=id or x=y. Hence φ is a homeomorphism. Composing φ with τg, we get the

required homeomorphism from gUy to Uȳ.

2.2 Galois Covers

Assume the base space X is locally connected i.e. each point in X admits a neigh-

bourhood basis consisting of open connected subsets. Given a cover p : Y → X, its

automorphisms are precisely the topological automorphisms of the space Y over X

compatible with p, i.e if φ ∈ Aut(Y |X), then p ◦ φ = p. Aut(Y |X) forms a group

under composition.

Also note that for each point x ∈ X, Aut(Y |X) maps the fibres p−1(x) onto itself.

So, p−1(x) is equipped with natural action of Aut(Y |X).

Lemma 2.2.1. For a connected cover p : Y → X, if an automorphism φ has a fixed

point i.e φ(y) = y, then φ must be identity.
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We prove a more general proposition to establish above lemma.

Proposition 2.2.1. Let p : Y → X be a cover, Z a connected topological space.

f, g : Z → Y two continuous maps satisfying p ◦ f = p ◦ g. If there is a point z ∈ Z
with f(z) = g(z), then f = g.

Proof. Let M = {z ∈ Z|f(z) = g(z)}. For z ∈ Z, let f(z) = g(z) = y. Let V be

an open neighbourhood around p(y) such that p−1(V ) =
⊔
i Ui, where Ui are open

subsets of Y such that restriction of p to p−1(V ) is homeomorphism of Ui and V.

Let y ∈ Ui for a fixed i. By the continuity of f and g, f and g must map an open

neighbourhood W of z into Ui.

Now we know p maps Ui homeomorphically to V. So by p◦ f = p◦ g, f and g must

agree on W. So, M is open.

Now consider z
′ ∈ Z such that f(z

′
) 6= g(z

′
). So, f(z

′
) maps some open neigh-

bourhood of z
′

into Ui and g(z
′
) maps some open neighbourhood of z

′
into Uj, i 6= j.

Consider the intersection of these two neighbourhoods, f,g maps this new neighbour-

hood into Ui and j respectively. Again by previous argument, Z −M is open or M is

closed. So, by connectedness of Z, a non-empty clopen subset must be the whole of

the space. So f = g on Z.

Substituting Z=Y, f=id and g = φ, the previous lemma follows.

Proposition 2.2.2. If p : Y → X is a connected cover, the action of Aut(Y |X) is

even.

Proof. Let y ∈ Y and set x = p(y). Let V be an open connected neighbourhood of x

such that p−1(V ) =
⊔
i Ui where Ui are open subsets of Y and p restricted to p−1(V )

is a homeomorphisms of Ui and V. Assume y ∈ Ui for a fixed i. We claim that Ui is

an open neighborhood of y and φ ∈ Aut(Y |X) such that {φUi} are pairwise disjoint.

Let φ 6= id ∈ Aut(Y |X), then we know it maps fibres of p onto itself.

We can see that, φ(Ui) = Uj, i 6= j by following argument:

p ◦ φ(Ui) = p(Ui) = V

φ(Ui) = p−1(V ) =
⊔
j Uj, since Ui is connected and φ is a homeomorphism, hence,

φ(Ui) is connected. So, φ(Ui) = Uj.If i = j, then we have a fixed point y, so by

previous lemma, φ must be identity which is not the case. Hence i 6= j. So {φUi} are

pairwise disjoint for φ ∈ Aut(Y |X).
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Proposition 2.2.3. If G is a group acting evenly on a connected space Y, the auto-

morphism group of the cover pG : Y → G/Y is precisely G.

Proof. We can trivially see that G is a subgroup of Aut(Y |(G/Y ). Take y ∈ G/Y and

let V be its open neighbourhood such that p−1
G (V ) =

⊔
h∈G hU , hU are open subsets

in Y. So the action of G will take the fibres of p over V to itself. So G ⊂ Aut(Y |G/Y ).

We have seen that fibres of pG over a point of G/Y are precisely the orbits of G. So

if we take φ ∈ Aut(Y |(G/Y )) and y ∈ Y , then ∃g ∈ G such that φ(y) = gy. Also

g−1 ∈ Aut(Y |(G/Y )), so φ ◦ g−1 ∈ Aut(Y |(G/Y ))

φ ◦ g−1(y) = φ(g−1.y) = g.g−1.y = y

So φ ◦ g−1 = id or φ = g.

Hence φ ∈ G =⇒ Aut(Y |(G/Y )) ⊂ G.

Aut(Y |(G/Y )) = G.

If we have a connected cover p : Y → X, we can form the quotient of Y by

the action of Aut(Y |X) . It can be seen that the projection p is the composition of

continuous maps Y → Aut(Y |X)/Y
p̄−→ X.

Definition 2.2.1. A cover p : Y → X is called Galois if it is connected and the

induced map p̄ defined above is a homeomorphism. It is equivalent to saying that a

connected cover p : Y → X is Galois if and only if the action of Aut(Y |X) on the

fibres of p is transitive for every point in X.

Theorem 2.2.1. Main Theorem on Galois Covers Let p : Y → X be a Galois

cover. For each subgroup H of G = Aut(Y |X) the projection p induces a natural map

pH̄ : H/Y → X which turns H/Y into a cover of X.

Conversely, if Z → X is a connected cover fitting into a commutative diagram

Y Z

X

p
f
q

Then f : Y → Z is a galois cover and actually Z ∼= H/Y for the subgroup H =

Aut(Y |Z) of G. The maps H 7→ H/Y,Z 7→ Aut(Y |Z) induce a bijection between the

subgroups of G and the intermediate covers Z as above. The cover q : Z → X is

Galois if and only if H is a normal subgroup of G, in which case Aut(Z|X) ∼= G/H.
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2.3 The Monodromy Action

Definition 2.3.1. Suppose we have a topological space X. A path in X is a continuous

map f : [0, 1] → X, where [0,1] is the closed unit interval. This path is called a loop

or a closed path if its endpoints coincide that is f(0) = f(1).

Two paths f, g : [0, 1] → X are called homotopic if f(0) = g(0), f(1) = g(1) and

there is continuous map(also called a homotopy) h : [0, 1] × [0, 1] → X such that

h(0, y) = f(y) and h(1, y) = g(y) ∀y ∈ [0, 1].

Homotopy of paths is an equivalence relation

Reflexivity: f ∼ f and the homotopy h : [0, 1] × [0, 1] → X is given by h(x, y) =

f(y)

Symmetric:f ∼ g =⇒ g ∼ f

Let h : [0, 1]× [0, 1]→ X is a homotopy between f and g such that h(0, y) = f(y),

h(1, y) = g(y), f(0) = g(0) and f(1) = g(1). Then define h
′

: [0, 1] × [0, 1] → X by

h
′
(x, y) = h(1− x, y).

h
′
(0, y) = g(y) and h

′
(1, y) = f(y). So h

′
is a continuous map such that g is homotopic

to f.

Transitivity:f ∼ g, g ∼ h =⇒ f ∼ h.

Let h1 : [0, 1]×[0, 1]→ X be a homotopy between f and g such that h1(0, y) = f(y)

and h1(1, y) = g(y) and let h2 : [0, 1] × [0, 1] → X be a homotopy between g and h

such that h2(0, y) = g(y) and h2(1, y) = h(y). Define h3 : [0, 1] × [0, 1] → X by

h3(x, y) = h1(2x, y) if 0 ≤ x ≤ 1
2

and h3(x, y) = h2(2x− 1, y) if 1
2
≤ x ≤ 1. h3(0, y) =

h1(0, y) = f(y), h3(1, y) = h2(1, y) = h(y), h3(1
2
, y) = h1(1, y) = h2(0, y) = g(y), so h3

is continuous and hence f and h are homotopic.

Given two paths f, g : [0, 1]× [0, 1]→ X with f(0) = g(1), we define their product

or composition as following:

f ◦ g : [0, 1]→ X by (f ◦ g)(x) = g(2x) for 0 ≤ x ≤ 1
2

and (f ◦ g)(x) = f(2x− 1)

for 1
2
≤ x ≤ 1.

Lemma 2.3.1. The above defined operation passes to quotient modulo homotopy

equivalence. It means that if f1, f2 are two homotopic paths such that f1(1) = f2(1) =

g(0), then f1 · g and f2 ◦ g are also homotopic.
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Proof. f1 ∼ f2 which means that f1(1) = f2(1) and f1(0) = f2(0) and also ∃h :

[0, 1]× [0, 1]→ X such that h(0, y) = f1(y) and h(1, y) = f2(y), y ∈ [0, 1].

Define H : [0, 1] × [0, 1] → X by H(x, y) = h(x, g(y)), H(0, y) = h(0, g(y)) =

f1 ◦ g(y), H(1, y) = h(1, g(y)) = f2 ◦ g(y).

Therefore H is a homotopy between f1 ◦ g(y) and f2 ◦ g(y).

Composition of paths induces a multiplication on the set of homotopy classes of

closed paths with endpoint equal to fixed x ∈ X. We denote this set by π1(X, x).

π1(X, x) equipped with the multiplication described above forms a group. If f is

homotopic to f
′

and g is homotopic to g
′
, we can a find a homotopy between f ◦ g

and f
′ ◦ g′ by composition of two homotopies. Constant path [0, 1]→ {x} constitutes

the identity element of the group. Inverse of a path f : [0, 1] → X is given by

f−1(x) = f(1− x).

Lemma 2.3.2. For a path-connected topological space X, there is a isomorphism be-

tween π1(X, x) and π1(X, y) .

Proof. f is a path from x to y and f−1 is a path from y to x. Define a map, βf :

π1(X, x)→ π1(X, y) by y 7→ f ◦ g ◦ f−1.

βf (g) = f ◦ g ◦ f−1. βf is a homeomorphism.

βf [h ◦ g] = [f ◦ h ◦ g ◦ f−1] = [f ◦ h ◦ f−1 ◦ f ◦ g ◦ h−1] = [f ◦ h ◦ f−1][f ◦ g ◦ h−1] =

βf (h)βf (g).

βf is an isomorphism. βf ◦ βf−1 [g] = βf [f
−1 ◦ g ◦ f ] = f ◦ f−1 ◦ g ◦ f ◦ f−1 = [g]

and similarly βf−1 ◦ βf [g] = [g].

Lemma 2.3.3. Path Lifting lemma

Let p : Y → X be a cover, y a point of Y and x = p(y). Given a path f : [0, 1] → X

with f(0) = x, there is a unique path f̃ : [0, 1]→ Y with f̃(0) = y and p ◦ f̃ = f .

Proof. Let θ be an open cover of X. f−1(θ) = {f−1(G)|G ∈ θ} where G are open sets

in θ whose union X. So f−1(θ) cover [0,1]. By Lebesgue covering lemma, we have a

number η such that for a natural number n, η > 1
n
. Consider the partition of [0,1] as

{0, 1
n
, 2
n
, ...n−1

n
} such that for j=1,2...,n.
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f([ j−1
n
, j
n
]) ⊂ G, for some G ⊂ X. Let fo denote the restriction of f |[0, 1

n
], then

f([o, 1
n
]) ⊂ Go =⇒ f(0) = x ∈ Go. Since Go is an open set in X, we have a sheet

G̃o ∈ Y such that p(y)=x.

p|G̃o = po. Since po is a homeomorphism between G̃o and Go. Let q−1
o be its

inverse. On sub interval [0, 1
n
], we define f̃o = qo ◦ fo.

We have the initial piece of f̃ . Now let fj be the restriction of f to [ j
n
, j+1

n
]. Assume

inductively for jth step that f̃j : [ j
n
, j+1

n
] → Y is defined such that p ◦ f̃j = fj and

f̃j(
j
n
) = f̃j−1( j

n
) and f̃o(0) = y.

Call fj(
j+1
n

) = xj+1, f̃j(
j+1
n

) = x̃j+1 and p(x̃j+1) = xj+1 .

Now letGj+1 ∈ θ be an evenly covered neighbourhood of xj+1 such that f([ j+i
n
, j+2

n
]) ⊂

Gj+i. Let G̃j+1 be a sheet in Y containing j+1 with p(x̃j+1) = xj+1. Call p|G̃j+1
= pj+1.

pj+1 is a homeomorphism of G̃j+1 onto Gj+1 . Let qj+1 be its inverse such that

qj+1(xj+1 = x̃j+1).

Set f̃j+1 = qj+1 ◦ fj+1 =⇒ p ◦ f̃j+1 = fj+1 such that f̃j+1( j+1
n

) = qj+1(xj+1) =

x̃j+1 = f̃j(
j+1
n

).

Now glue the pieces of f̃j to yield f̃ : [0, 1] → Y such that p ◦ f̃ = f and f̃(0) = y.

Uniqueness follows from a previous proposition with X, Y and Z=[0,1].

Lemma 2.3.4. Homotopy lifting lemma

Assume moreover given a second path g : [0, 1] → X homotopic to f. Then the

unique g̃ : [0, 1] → Y with g̃(0) = y and p ◦ g̃ = g has the same end point as f̃ i.e.

f̃(1) = g̃(1).

Proof. We have to show that given a homotopy F : [0, 1]× [0, 1]→ X with F (0, t) =

f(t) and F (1, t) = g(t), there is a lifting F̃ : [0, 1] × [0, 1] → Y of F such that

p◦ F̃ = F , F̃ (0, t) = f̃(t) and F̃ (1, t) = g̃(t). The construction is same as the previous

one. Consider the covering θ of X by evenly covered open neighbourhoods. Let ε be

a Lebesgue number for the covering {F−1(U)|U ∈ θ}. We can choose n large enough

such that any square in [0, 1]× [0, 1] is contained in f−1(U).

Now since [0, 1] × [0, 1] is compact. We can have a partition with grid points

{( j
n
, k
n
)|0 ≤ j ≤ n, 0 ≤ k ≤ n}. Sjk is a square with vertices {( j

n
, k
n
), ( j+1

n
, k
n
), ( j+1

n
, k+1

n
), ( j

n
, k+1

n
)}.

And the proof goes same as that of previous lemma.
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Now we construct the left action of π1(X, x) on the fibre p−1(x). We need π1(X, x)×
p−1(x)→ p−1(x) given by ([α], y) 7→ [α].y

If α̃ is the unique lift of α, so the endpoint of α̃ must be lying over x i.e. α̃ ∈ p−1(x).

So define [α].y = α̃(1). This action is well defined: Replace α by α
′

such that α is

homotopic to α
′
. So, α̃ and α̃

′
will be homotopic by homotopy lifting property and

so they will have the same endpoint.

Claim: The above defined action is left action. Consider µ[α] : p−1(x) → p−1(x)

given by y 7→ α̃(1). To verify that its a left action, we need to show that each µ[α] is

a bijective map.

Surjectivity: Let y1 ∈ p−1(x). Take α−1, based at x. Take its unique lift ˜α−1 such

that ˜α−1(0) = y1. Let y2 be the end point of the ˜α−1. Then µ[α](y2) = y1

Injectivity: If µ[α](y1) = µ[α](y2), α̃1◦(α̃2)−1 is a lifting of α◦α−1 which is homotopic

ey1 to and has to be equal to unique lift ey1 . So, y1 = y2. The above defined left action

is called the monodromy action on the fibre p−1(x).

We first define a functor Fibx from the category of covers to the category of sets

equipped with left π1(X, x) − action by sending the cover p : Y → X to the fibres

p−1(x) . Fibx is a functor:

Suppose f : Y → Z is a morphism of covers such that p1 : Y → X and p2 : Z → X

and p1 = p2 ◦ f are the two covering maps. Fix y ∈ Y such that p(y) = x. Take a

path α in X whose unique lift in Y is α̃1 and in Z is α̃2. So p1 ◦ α̃1 = p2 ◦ α̃2 = α.

This implies p2 ◦ f ◦ α̃1 = p2 ◦ α̃2 =⇒ f ◦ α̃1 = α̃2 such that z = f(y).

Theorem 2.3.1. Let X be a connected as well as locally simply connected topological

space with a base point x ∈ X . The functor Fibx defined above gives an equivalence

of category of covers of X and the category of sets equipped with left action of group

π1(X, x). Connected covers come from sets with transitive left action of π1(X, x) and

Galois covers come from coset spaces of normal subgroups.

The above theorem is proved with the help of following two theorems:

Theorem 2.3.2. For a connected and locally simply connected topological space X

and a base point x ∈ X, the functor Fibx is representable by a cover X̃x → X.

The cover X̃x depends on the choice of x. By definition, the cover maps from

π : X̃x → X to p : Y → X correspond bijectively to the points in fibres p−1(x). In
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particular, Fibx(X̃x) ∼= Homx(X̃x, X̃x) and the identity map of X̃x corresponds to the

an element x̃ in the fibre π−1(x), this is called the universal element. That is, we have

π−1(x) ∼= HomX(X̃x, X̃x).

If p : Y → X is an arbitrary cover of X, an element y ∈ pi−1(x) corresponds to

the cover map πy : X̃x → Y by the isomorphism Fibx(Y ) ∼= Homx(X̃x, Y ).

Theorem 2.3.3. The cover X̃x is a connected Galois cover of X, with automorphism

group isomorphic to π1(X, x). Moreover, for each cover Y → X the left action of

Aut(X̃x|X)op on Fibx(Y ) given by previous construction is exactly the monodromy

action of π1(X, x).

Proof. Proof of Theorem 2.3.1

We need to check Fibx satisfies the condition of fully-faithfulness and essential

surjectivity.

Fully-faithfulness: Given two connected covers p : Y → X and q : Z → X, we

have to prove that each map φ : Fibx(Y ) → Fibx(Z) of π1(X, x)-sets come from

a unique map Y → Z of covers. Consider a morphism of covers πy : X̃x → Y

compatible over X. By the main theorem on Galois covers, πy realizes Y as a quotient

of X̃x by the stabilizer Uy = Aut(X̃x|Y ) of y which means that for the galois cover

πy : X̃x → Y and a subgroup Uy = Aut(X̃x|Y ), πy induces a map : Uy/X̃x → Y and

let ψy : Y → Uy/X̃x be the inverse map. Since Uy ⊂ stab(φ(y)) because for g ∈ Uy, we

have g(φ(y)) = φ(y) = φ(g(y)). So πφ(y)=z : X̃x → Z corresponding to φ(y) induces a

map Uy/X̃x → Z. Composing above map with ψy, we get a unique map from Y → Z.

For essential surjectivity, we have to show that each left π1(X, x) set S is isomorphic

to the fibre of some cover of X. Lets say S is transitive, pick a point y in some cover Y

of X. Take the the quotient of X̃x by the stabilizer of point s ∈ S. If S is not transitive,

then decompose it into π1(X, x) orbits and take disjoint union covers obtained from

each orbit. We get the bijection from tSi → tHi/X̃x.

24



2.4 Locally constant sheaves and their classifica-

tion

Definition 2.4.1. Let X be a topological space. A presheaf of sets F on X is a rule

that associates each non-empty open subset U ⊂ X a set F(U) and each inclusion

V ⊂ U a map ρUV : F(U) → F(V ). Here ρUU are the identity maps. If we have a

tower of inclusions W ⊂ V ⊂ U , the the identity ρUW = ρVW ◦ ρUV holds. Elements

of F(U) are called sections of F over U .

We can similarly define presheaf of groups, abelian groups or rings where F(U)

are groups, abelian groups or rings respectively and ρUV are the homomorphisms.

With this definition, we see that presheaf of sets on a space X forms a category

where the morphism of presheafs Φ : F → G is collection of the maps ΦU : F(U) →
G(U) such that for every inclusion V ⊂ U , we have the following commutative dia-

gram.

F(V ) G(V )

F(U) G(U)

ΦV

ρFUV ρGUV

ΦU

We can think of continuous real valued functions defined locally on the open sets

of X. For each inclusion V ⊂ U we have an inclusion map ρUV : F(U) → F(V ) such

that for f ∈ F(U), ρUV (f) = f |V . Given two open sets U1 and U2 and continuous

functions fi : Ui → R, i = 1, 2 such that ∀x ∈ U1 ∩ U2 we have f1(x) = f2(x), we can

define a continuous function f : U1 ∪ U2 → R by setting f(x) = fi(x) if x ∈ Ui. This

is the patching property of continuous functions.

Definition 2.4.2. A presheaf F is a sheaf if it satisfies the following two axioms:

1. Given a non-empty open set U and a covering {Ui : i ∈ I} of U by non-empty

open sets, if two sections s, t ∈ F(U) satisfy s|Ui = t|Ui∀i ∈ I, then s = t.

2.For any open covering {Ui : i ∈ I} of U as above, given a system of sections

si ∈ F(U)i : i ∈ I with the property si|Ui∩Uj = sj|Ui∩Uj , ∃s ∈ F(U) such that s|Ui =

si∀i ∈ I.
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Definition 2.4.3. Let S be a topological space and X be another topological space.

Define a sheaf FS on X where the elements of FS(U) are the continuous functions

U → S for a non-empty open subset U ⊂ X.

If the space S is discrete, then the sheaf FS is called the constant sheaf on X

with value S.

Definition 2.4.4. A sheaf F on topological space X is called locally constant if every

point in X has an open neighbourhood U such that F|U is isomorphic to a constant

sheaf.

Definition 2.4.5. Let p : Y → X be a space over X, U ⊂ X be an open set in X. A

section of p over U is a continuous map s : U → Y such that p ◦ s = idU . So we can

define a presheaf FY such that for an open set U ⊂ X, the elements of FY (U) are the

sections of p over U .

Proposition 2.4.1. The presheaf FY just defined is a sheaf. If p : Y → X is a cover,

the FY is locally constant. It is constant if and only if the cover is trivial.

Proof. The sections of the presheaf are nothing but continuous functions U → Y

which satisfy the sheaf axioms or the patching property. So FY is a sheaf.

If Y is cover over X, take a point x ∈ X and an open connected neighbourhood V

of x. By an earlier result in covers, we know that the cover over V is trivial i.e. it

is isomorphic to V × p−1(x). Let s be a section of p over V. s(V ) is a connected

open subset of Y such that p(s(V )) = V . So s(V ) must be one of the components of

p−1(V ). Hence the sections of p over V are in bijection with the points in the fibre

p−1(x) and FY |V is isomorphic to constant sheaf defined by the fibres over x.

A morphism φ : Y → Z of covers over X induces a natural morphism FY → FZ
of locally constant sheaves by the map s 7→ φ ◦ s where s : U → Y is a section of

p : Y → X over U . So we have a functor Y → FY .

Definition 2.4.6. Let F be a presheaf of sets on space X. Take a point x ∈ X. The

Stalk Fx of F at x is defined as disjoint union of open neighbourhoods U of x modulo

∼, where the equivalence relation ∼ is as: s ∈ F(U) and t ∈ F(V ) are equivalent if ∃
open neighbourhood W ⊂ U ∩ V of x such that s|W = t|W .

The sets F(U) form a direct system indexed by an indexing set whose direct limit

is Fx.
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Construction 2.1. Construction of space XF

Now we construct a space pF : XF → X over X. XF is a disjoint union of the stalks

Fx. Define p−1
F (x) = Fx ∀x ∈ X. pF is the projection map defined by Fx → {x}.

Now we give a topology to the space XF . Given an open set U ⊂ X and a section

s ∈ F(U), define a map is : U → XF by x 7→ sx where sx is the image of s in the stalk

Fx. The sets is(U) are the open sets in XF for all U and s. This definition turns the

maps is and pF into continuous maps. Moreover we have p−1
F (U) =

⋃
s∈F(U) is(U).

If F is locally constant, then XF is a cover of X. For a connected open set U ⊂ X,

F|U ∼= F , where F is a constant sheaf and has discreet topology. Then the fibres of

pF over x ∈ U is equal to F, so p−1
F (U) ∼= U × F .

Theorem 2.4.1. The above defined functor induces an equivalence between the cate-

gories of covers of X and that of locally constant sheaves on X.

A morphism φ : F → G of presheaves induces the maps Fx → Gx for each x ∈ X
which induces a map Φ : XF → XG(as sets) compatible with projections onto X.

This map Φ is a morphism of spaces over X. We just need to see that the map Φ

is continuous. Consider the following commutative diagram

XF XG

X

pF

Φ

pG

Let U ⊂ X be an open set and t ∈ G(U) where it : U → XG is a continuous map

such that pG ◦ it = idU . By the commutativity of the diagram, we have pG ◦Φ = pF or

pG = pF ◦Φ−1. So we have pG(it(U)) = U = pF(Φ−1(it(U))). It means that Φ−1(it(U))

is open and hence the map Φ is continuous.

So the rule F → XF is a functor from the category of sheaves on X to the category

of spaces over X. If the sheaf F is locally constant, then the spaces over X become

the covers of X and the fibres of XF over x is the stalk Fx.

Proof. Proof of Theorem 2.4.1

We need to show FXF ∼= F functorially given a locally constant sheaf F on X and

conversely, given a cover Y → X, XFY
∼= Y . We have a natural morphism of sheaves
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F → FXF given by s 7→ is where s ∈ F(U) and is : U → XF is a local section.

Similarly we have a morphism of covers Y → XFY where y maps to corresponding

point in the fibre FY,x over x where y ∈ Y is a point in the fibres over the point

x. To show that these morphisms are isomorphisms, we consider an open covering

{Ui : i ∈ I} of X. F|Ui is constant sheaf ∀i ∈ I. By replacing each Ui by X, F
becomes constant on X and so we can assume F to be a constant sheaf with values

in a discrete set F. We have XF
∼= X × F , so FXF ∼= F holds true. Conversely, the

local sections of the trivial cover X × F → X is the constant sheaf defined by F.

Combining it with Theorem 2.3.1 we obtain the following result:

Theorem 2.4.2. Let X be a connected and locally simply connected topological space,

and let x be a point in X. The category of locally constant sheaves of sets on X is

equivalent to the category of sets endowed with a left action of π1(X, x).

Fx is equipped with left action by π1(X, x). π1(X, x) × Fx → Fx defined by

α.y = f̃(1), where f is a representative of the class α such that f(0) = x = f(1), f̃ is

a unique lift of f .

Theorem 2.4.3. Let X and x be as above and R be a commutative ring. The category

of locally constant sheaves of R-modules on X is equivalent to category of left modules

over the group ring R[π1(X, x)].

Proof. The stalk Fx is an R module and is equipped with left action by π1(X, x).

We need to show that Fx is R[π1(X, x)] module that is the action of π1(X, x) is

compatible with the R-module structure. Define the direct product of sheaves F ×F
by (F×F)(U) = F(U)×F(U) where U ⊂ X is an open set. Its stalk over a point x is

Fx×Fx. Addition on F over an open set U is simple defined by (s1, s2) 7→ s1 +s2 and

similarly we can induce this map to the level of stalk Fx. And since Fx is equipped

with left action of π1(X, x), we have σ(s1 + s2) = σs1 + σs2 for σ ∈ π1(X, x) and

s1, s2 ∈ Fx and σ(αs1) = ασ(s1) for α ∈ R.

2.5 Local systems

Definition 2.5.1. A complex local system on X is a locally constant sheaf of finite

dimensional complex vector space. If the space X is connected, then the stalks have

the same dimension which is called the dimension of the complex system.
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The following corollary follows from the previous theorem and definition:

Corollary 2.5.1. Let X be a connected and simply connected topological space. Cat-

egory of complex local systems on X is equivalent to the category of finite dimensional

left representations of π1(X, x).

This means that for given a complex system on X, we have a homomorphism

π1(X, x)→ GL(n.C). This called the monodromy representation of local system.

Example 2.1. Let D ⊂ C be a connected open subset. Consider nth order linear

differential equation yn+a1y
n−1 +a2y

n−2......+an−1y
′
+any = 0 where ai are the holo-

morphic functions on D. For every open set U ⊂ D, consider the local holomorphic

solutions of the equation on U . A C-linear combination of the local solutions over U

is also a solution of the differential equation. So the solutions over U form a complex

vector space, denote it by S(U). By a theorem of Cauchy([For81], Theorem 11.2) we

know that each point of D has an open neighbourhood U such that S(U) has a finite

basis x1, x2....xn. So the local solution form a subsheaf of On. S is a complex local

system of dimension n.

The local system S of the above example is uniquely determined n-dimensional left

representation of π1(X, x). Take a point x ∈ D, a closed path f : [0, 1] → D such

that f(0) = x = f(1) representing γ ∈ π1(X, x). Take s ∈ Sx which is germ of the

holomorphic function satisfying the differential equation. Since S is a complex local

system or a locally constant sheaf, we have a cover pS : DS → D. We have s ∈ Sx =

p−1
S (x). Action of γ on s is given by [γ].s = f̃(1), such that f̃(0) = s and f̃ is the

unique lift of f to the space DS.More explicitly, we can look into the proof of homotopy

lifting lemma, we have open sets U1, ....Uk of D such that f−1(U1), ....f−1(Uk) form

an open covering of [0, 1]. S being a locally constant sheaf is constant over each Ui.

There are section si ∈ Si such that si|Ui∩Ui+1
= si+1|Ui∩Ui+1 for all 1 ≤ i ≤ k− 1, such

that s1 maps to s, sk maps to γs in Sx. γs is the analytic continuation of the germ s

along the path f .
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Chapter 3

Riemann surfaces

The main aim of this chapter is to draw a link between the Galois theory and the

theory of covers which can be done by studying covers of Riemann surfaces. We will

use some results from the theory of Riemann surfaces to study the absolute Galois

group of C(t).

3.1 Basics

X-topological space which is Hausdorff. We define a Complex atlas on X as an

open cover U = {Ui : i ∈ I} with the associated maps fi : Ui → Cn that map U

homeomorphically onto some open subset of Cn, and for each pair (i, j) ∈ I × I, with

a additional condition that the maps fi ◦f−1
j : fj(Ui∩Uj)→ Cn become holomorphic.

We call these fi’s as complex charts.

Equivalence of complex atlases: Two complex atlases U and U ′ are said to be

equivalent if their union is also a complex atlas and the map f
′
i ◦f−1

j : fj(U
′
i∩Uj)→ Cn

are holomorphic.

The space defined above is called n-dimensional complex manifold. For n=1, the

space is called Riemann surface.

Example 3.1. In 2-sphere S2, fix two antipodal points 0,∞ ∈ S2. Now define the

following two complex charts: z : S2 −∞ → C mapping it homeomorphically onto C

by stereographic projection defined below:
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z(p, q, r) = p
1−r + i q

1−r where (p, q, r) is a point in S2. And the other complex

chart which is a homeomorphism from S2 − 0 → C defined by the maps ∞ 7→ 0 and

z 7→ 1
z
. The two maps defined above are holomorphic and the Riemann surface is

called complex projective line P1(C).

Definition 3.1.1. Holomorphic map between two Riemann surfaces Y and X is a

continuous map φ : Y → X such that every pair of open sets U ⊂ X and V ⊂ Y

fulfilling the condition φ(V ) ⊂ U and also for the complex charts f : U → C and

g : V → C, f ◦ φ ◦ g−1 : g(V )→ C are holomorphic functions.

3.2 Important facts about Riemann surfaces and

Holomorphic maps

Proposition 3.2.1. Let φ : Y → X be a holomorphic map between two Riemann

surfaces and x, y be points in X and Y resp. such that φ(y) = x. Then open

neighbourhoods Uy of y and Vx of x such that φ(Uy) ⊂ Vx and the complex charts

gy : Uy → C and fx : Vx → C that satisfy fx(x) = gy(y) = 0 and the following

diagram commutes for a positive integer ey.

Uy Vx

C C

φ

gy fx

z 7→zey

Definition 3.2.1. The integer ey defined above is called the ramification index or

branching order of φ at the point y. The points in the surface Y with ey > 1 are called

branch points of φ and their set is called Sφ.

Corollary 3.2.1. A holomorphic map between two Riemann surfaces is open.

Proof. Since the complex charts fx and gx are open and continuous and the map

z 7→ ze is open, the map φ is open.

Corollary 3.2.2. The fibres of φ and set Sφ are discrete closed subsets of Y .

Definition 3.2.2. A map between two locally compact topological spaces is called

Proper if it is continuous and the pre-image of every compact subset is compact.

Additionally, for Hausdorff spaces, a proper map is closed as well.
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Proposition 3.2.2. Let φ : Y → X be a proper holomorphic map between two Rie-

mann surfaces and X be connected. This map φ is surjective having finite fibres. Also,

when restricted to Y − φ−1(φ(Sφ)), φ turns into a cover of X − φ(Sφ).

Proof. The fibres of φ form a discrete closed subset of Y and discrete closed subsets

of compact space are finite.

Surjectivity of φ: φ is an open map, so by the openness of Y , φ(Y ) becomes open

in X. Also, φ is proper hence it is closed, so φ(Y ) is also closed in X. But since

X is connected, φ(Y ) = X, hence φ is surjective. Since the fibres of φ are finite,

consider finitely many pre-images of a point x ∈ X − φ(Sφ). By a previous result,

each of these has an open neighbourhood Vy mapping homoemorphically onto an open

neighbourhood of x. Take the intersection over these finite open neighbourhoods of

x which is open and we have an open neighbourhood around each point x satisfying

the definition of covers. So Y − φ−1(φ(Sφ)) turns into a cover of X − φ(Sφ).

Definition 3.2.3. A proper surjective map of locally compact Riemann surfaces is

called finite branched cover if outside a discrete closed subset, it restricts to a

cover.

Notation Let X be a connected Riemann surface and S ⊂ X be a discrete closed

subset of X. The category of Riemann surfaces equipped with proper holomorphic

maps Y → X such that all its branched points lie above S is denoted by HolX,S.

Theorem 3.2.1. There is an equivalence between the category of Riemann surfaces

and the topological covers of X−S obtained by sending a Riemann surface φ : Y → X

to the topological cover Y − φ−1(S)→ X − S via restricting the map φ.

The following helping lemma proves theorem for S = ∅:

Lemma 3.2.1. Let p : Y → X be a connected topological cover of a Riemann surface

X. A unique complex structure can be given to space Y such that p is a holomorphic

map.

Proof. Since Y is a cover of X, every y ∈ Y has an open neighbourhood V such that it

is mapped homeomorphically onto an open neighbourhood U of the point p(y). Take

an open subset U
′

of U containing the point p(y) and a complex chart f : U
′ → C,

then f ◦ p defines a complex chart in the neighbourhood of point y ∈ Y since p and
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f are local homeomorphisms. And open neighbourhood around y ∈ Y belongs to

complex atlas on Y . The complex structure is unique because p|V : V → U is a

homeomorphism.

Proposition 3.2.3. Let X be a connected Riemann surface and S ⊂ X be a discrete

closed set, X
′
= X−S and φ

′
: Y

′ → X
′

be a finite connected cover of X
′
. Then there

exists a Riemann surface Y ⊃ Y
′

as an open set and there is a proper holomorphic

map φ : Y → X such that φ|Y ′ = φ
′

and Y
′
= Y − φ−1(S).

Definition 3.2.4. Y is a finite Galois Branched cover of X in above proposition, if

Y
′

is Galois over X
′
.

Facts about Galois branched covers: If φ : Y → X is a proper holomorphic map

between connected Riemann surfaces and Y is Galois branched cover of X, then:

1. Aut(Y |X) acts transitively on the fibres of φ.

2. All the points in φ−1(φ(y)) are branch points if y ∈ Y is a branch point with

the same branching order.

3.3 Relation with field Theory

Definition 3.3.1. A function f on Riemann surface X is called meromorphic if for

some closed discrete space S ⊂ X, f is holomorphic on X − S and for all complex

charts φ : U → C, the function f ◦ φ−1 : φ(U)→ C is holomorphic.

The ring of meromorphic functions on X is denoted by M(X).

Lemma 3.3.1. M(X) is a field if X is connected.

Proof. Take f ∈ M(X) and if the zeroes of f form a discrete closed space, then
1
f
∈ M(X). Assume that the solution set S isn’t discrete or we can say that it is an

infinite subset of X, S must have a limit point. Indeed, assume that there is no limit

point of the infinite subset S, so every point x ∈ X has an open neighbourhood Ux

such that S ∩ Ux contains at most one point which is x, only when x ∈ S. Hence

S cannot be covered by finite collection of open neighbourhoods. Similarly we can

argue X cannot be covered by finite collection of open subsets, which means X is not

compact, which is a contradiction. Hence S has a limit point say x.
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By composing f with complex chart U → C such that x ∈ U , we get a holomorphic

function on complex domain whose set of zeros has a limit point. By a theorem on

complex analysis ([1],Theorem 10.18), f is zero on the complex domain and hence f

is zero in some neighbourhood of x. Now form a set of those points in X, such that

the function f vanishes on the neighbourhood of those points. This set is open and

also it is closed because it contains all of its limit points. Now since X is connected,

then f = 0 on X, which is a contradiction. So set of zeros of f is discrete and hence
1
f
∈M(X).

Theorem 3.3.1. Riemann’s Existence Theorem Let x1, x2, ...xn be finite number

of points in compact Riemann surface X and assume a1, a2....an be a sequence of

complex numbers. Then there exists a meromorphic function f contained in M(X)

with the property that f is holomorphic at all the xi with f(xi) = ai, 1 ≤ i ≤ n.

A holomorphic map φ : Y → X between two Riemann surfaces induces a ring

homomorphism φ∗ :M(X)→M(Y ) by the map φ∗(f) = f ◦ φ. Under the assump-

tions that X is connected, X and Y are compact, φ is proper surjective map with

finite fibres,M(Y ) becomes a finite etale algebra overM(X). Y is the disjoint union

of connected and compact Riemann surfaces Yi if not, then there are infinitely many

connected components covering Y which contradicts compactness of Y . So we have

M(Y ) = ΠM(Yi).

Proposition 3.3.1. Let φ : Y → X be a non-constant holomorphic map of compact

and connected Riemann surfaces, which has a degree d as a branched cover. The

induced field extension M(Y )|φ∗M(X) is finite of degree d.

The above proposition follows from the following lemma

Lemma 3.3.2. Let φ : Y → X be a proper holomorphic map of connected Riemann

surfaces which has a degree d as a branched cover. Every meromorphic function

f ∈M(Y ) satisfies a polynomial equation of degree d over M(X).

Proof. Take S to be the set of branch points of φ : Y → X. Take a point x ∈
X − φ(S). Since Y − φ−1(φ(Sφ)) is a topological cover of X − S(φ), there exists an

open neighbourhood U ⊂ X containing x such that φ−1(U) ∼=
⊔
Vi, where Vi’s are

open neighbourhoods in Y . The restriction of φ to Vi is an homeomorphism of Vi onto

U . Denote the holomorphic section of φ mapping U onto Vi homeomorphically by si.

Let fi = f ◦ si, fi meromorphic on U . Substitute A = Π(t−fi) = td +ad−1t
d−1 + ...a0,
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where ai’s are symmetric polynomials of fi and hence are meromorphic. Now take

another point x
′ ∈ X−φ(S) and let U

′
be the neighbourhood around x

′
. Construct a

polynomial A
′

as done for the previous point on open set U ∩U ′ . The roots of A
′

and

A are same meromorphic functions so the coefficients of A
′

coincide with those of A.

So ai’s extend to meromorphic functions in X−φ(S). Now we show that they extend

to meromorphic function in X. Take x ∈ φ(S), pick a coordinate chart fx : Ux → C
where Ux ⊂ U is a neighbourhood around x with fx(x) = 0. The function fx◦φ defines

a holomorphic function in some open neighbourhood of each of the points y ∈ φ−1(x)

such that (fx ◦ φ)(x) = fx(x) = 0. f is meromorphic for all y ∈ Y , we find a positive

k such that (fx ◦ φ)kf is holomorphic for y ∈ φ−1(x).

Compose the above functions with si to get function in Ux−{x}. The function fkxfi

are bounded on Ux − {x}. By Riemann removable singularity Theorem([1], Theorem

10.20), ai’s extend to holomorphic functions on Ux. A ∈ M(X)[t]. Now we see that

over U , (φ∗A ◦ si)(f ◦ si) = A(fi) = 0.

Proof. Proof of Proposition 3.3.1

Take x ∈ X − φ(S). Let y1, ...yk ∈ φ−1(x). We can find an f ∈ M(Y ) such that

f is holomorphic at each of yi and f(yi) are distinct. Also by previous lemma such f

satisfies a polynomial (φ∗an)fn + .... + φ∗a0 = 0 where ai ∈ M(X). Assuming that

all ai are holomorphic at x, the polynomial an(x)f(yi)
n + ....a0(x) has d roots which

are the distinct f(yi).

If one of the ai is not holomorphic at x, the consider an small neighbourhood

around x. f is holomorphic on that neighbourhood and and the neighbourhood doesn’t

contain images of branch points. So take one of the points in that neighbourhood

where all ai are holomorphic. We have M(Y ) ∼=M(X)(f).

Now, the functor Y →M(Y ) is from the category of compact Riemann surfaces

mapping onto a compact Riemann surface X via a holomorphic map to the category

of finite etale algebra’s over M(X).

Theorem 3.3.2. The above defined functor induces an anti-equivalence between the

category of finite Galois extension of the fieldM(X) and finite Galois branched covers

of X having the same degree.

Above theorem follows from the following result:
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Proposition 3.3.2. Let A be a finite etale algebra over M(X) where X is compact

and connected Riemann surface. Then there exists a compact Riemann surface Y (that

maps holomorphically onto X) such that there is an isomorphism between M(Y ) and

A as an M(X)-algebra.

Proof. Consider a finite field extension L|M(X). Let α be the primitive element

in L, generating L over M(X) and F be the minimal separable polynomial of α

with degree d. Since F is separable, the ideal < F,F
′
> generates the whole ring

M[t]([DFon], Proposition 33, Chapter13). So there exists functions P,Q ∈ M(X)

such that PF+PF
′
= 1. The coefficients of F are inM(x), evaluate these coefficients

at some point x ∈ X and call the resulting polynomial Fx. Fx and F
′
x can have a

common zero only at the points in X where either A or B. Let S be a discrete closed

set of the points in X that are the poles of the function F ,A and B and X
′
= X−S.

If Fx(a) = 0 then F
′
x(a) 6= 0. So, for x ∈ X ′ , the polynomial Fx ∈ C[t] has d distinct

roots.

For an open set U ⊂ X
′
, let F(U) be the set of holomorphic functions f on U

such that F (f) = 0. We claim that F is a locally constant sheaf with stalks of

cardinality d. By implicit function theorem([PG78], pg.19), for a point x ∈ X ′ and a

root ai of polynomial Fx ∈ C[t], F
′
x(ai) 6= 0 implies that there exists functions fiin a

neighbourhood of x such that fi(x) = ai and F (fi) = 0. So we have d such functions

fi, each corresponding to d roots of Fx. The polynomial F of degree d is a product

of polynomials (t − fi), so the sheaf F cannot have more than d sections. So over a

connected open subset V ⊂ X i, F is isomorphic to finite set of functions f1, ...fd.

We know that category of locally constant sheaves over X is equivalent to the

category of covers over X. So there exists a cover pF : X
′
F → X

′
of X

′
. By a

previous proposition 3.2.9 , for each connected component of the cover X
′
F we get a

compact Riemann surface Yj. Now we have to show that X
′
F is connected which means

that we get only one Riemann surface. To see that, define a function f on X
′
F by

f(fi) = fi(pF(fi)). We have seen in a proof of previous proposition that f extends to a

meromorphic function on each Yj and moreover f ∈M(Yj) has a minimal polynomial

H overM(X) of degree dj, where degree dj is the cardinality of the fibres of cover of

one of the connected components. Now as assumed in the beginning F (f) = 0, so G

must divide F , but since F is irreducible, F = G and hence dj = d. So there is only

one connected compact Riemann surface, denote it by Y . By the map f 7→ α and the

equality of degrees of the two field extension of M(X), we have L =M(Y ).
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The above theorem along with a previous theorem gives the following corollary:

Corollary 3.3.1. For a compact and connected Riemann surface X, the category

of compact Riemann surfaces mapping holomorphically onto X is equivalent to the

category of finite sets quipped with continuous left action of Gal(M(X)|M(X)).

Now we consider the case when X = CP 1 in Theorem 3.3.2:

Proposition 3.3.3. There exists a holomorphic map Y 7→ CP 1 which is not constant,

where Y is compact and connected Riemann surface. As a result, M(Y ) becomes a

finite field extension of C(t).

Proof. M(Y ) contains a non-constant meromorphic function f by Theorem 3.3.1. De-

fine a function ρf : Y → CP 1 by

ρf (y) =

f(y) y is not a pole of f

∞ y is a pole of f

We need to show that ρf is holomorphic. Consider complex charts in a neighbour-

hood of point y ∈ Y given by g : U → C such that f is holomorphic on U − {y}
and two complex charts given on CP 1 are z and 1

z
as defined in the beginning of the

chapter.

Now if f does not have a pole at y, then the function z ◦ ρf ◦ g−1 is holomorphic

on g(U). If f has a pole at y, then the function 1
z
◦ ρf ◦ g−1 maps g(U −{y}) onto an

open subset around 0 of C and by Riemann’s removable singularity theorem([[Rudon],

Theorem 10.20), the function extends to holomorphic function on g(U). So ρf is

holomorphic.

From the result [Gar], Claim[3.0.1], it follows that M(CP 1) ∼= C(t). And from

Proposition 3.3.1, it follows that M(Y ) is a finite extension of C(t).

3.4 The absolute Galois group of C(t)

Theorem 3.4.1. Consider a connected and compact Riemann surface X and denote

the complement of finite set of points by X
′
. Fix an algebraic closureM(X) ofM(X)

and take the compositum of all finite sub extension fields in this closure that are
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coming from holomorphic maps Y → X of compact and connected Riemann surfaces

restricting to a cover over X
′
. Call this composite as KX′ . KX′ |M(X) is Galois

field extension and there is an isomorphism Gal(KX′ |M(X)) ∼= ̂π1(X ′ , x), for some

x ∈ X ′.

The above theorem uses the following result.

Lemma 3.4.1. A compact and connected Riemann surface which restricts to a cover

over X
′

as above gives rise to a finite sub extension of KX′ |M(X).

Proof. Proof of Theorem 3.4.1

Every finite field extension L|M(X) comes from a Riemann surface that restricts

to a cover over X
′

and is Galois overM(X). Similarly it holds for all the Galois con-

jugates of L and since the composite of Galois extensions is Galois, then KX′ |M(X)

is Galois.

By a result([Sza], corollary 2.3.9) coset spaces of normal subgroups of ̂π1(X ′ , x)

correspond to finite Galois covers of X
′
. By Proposition 3.2.3, the finite Galois covers

over X
′

correspond to finite Galois branched covers over X and by Theorem 3.3.2

these finite Galois branched covers correspond to finite Galois extensions of M(X)

which are the sub extension of KX′ |M(X). This gives a bijection between finite

quotients of ̂π1(X ′ , x) and Gal(KX′ |M(X)).

Remark 3.1. The Galois group Gal(M(X)|M(X)) is isomorphic to the inverse limit

of system of groups Gal(KX′ |M(X)) such that for X
′ ⊂ X”, we have the inclusion

KX′ ⊃ KX”. This is because finite sub extension fields of closure of M(X) are pre-

cisely KX′ .

Consider the the complex projective line, X = CP 1 and a finite set of points

x1, ..., xn in CP 1. The fundamental group of complement of these finite set of points

in CP 1 can be presented as follows

π1(CP 1−{x1, ...xn}, x) =< γ1, γ2....γn|γ1γ2....γn = 1 > where each γi is a generator

which is a closed path through the point x and is around the points xi. The maps

γi 7→ fi ∈ Fn−1 and γn 7→ (f1f2..fn−1)−1 gives an isomorphism between the above

group and the free group Fn−1 having n-1 generators, here fi are free generators of

the group Fn−1. So we conclude that every finite group has a finite presentation and it

arises as finite quotient of π1(CP 1−{x1, ...xn}, x) and we know thatM(CP 1) ∼= C(t),

we have the following result coming from above theorem:
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Corollary 3.4.1. Every finite group arises in correspondence to Galois group of some

finite extension L|C(t)

Definition 3.4.1. Take a set A and let F (A) be the free group having basis A. Form

the quotients of the free group F (A)/U by the normal subgroups U of the free group

having finite index which contains all points of X except some finite points. The

inverse limit of this system is called the free profinite group and is denoted by F̂ (A)

We define the inclusion i : X → F̂ (A) with a universal property that suppose

we have a profinite group G and and a mapping τ : A → G, such that all normal

subgroups having a finite index in G and they contain all the points of λ(A) except

some finite points, then there exists a unique mapping τF : F̂ (A) → G between

profinite groups such that the following diagram commutes

A F̂ (A)

G

τ

i

τf

Theorem 3.4.2. There is an isomorphism of profinite groups Gal(C(t)|C(t)) ∼= F̂ (C).

The proof of the theorem uses the following group-theoretic result:

Proposition 3.4.1. Let X be a set and consider a system of finite subsets denoted by

S where S ⊂ X and it is given a partial ordering by inclusion. Consider an inverse

system of profinite groups (GS, τSR) where S is the indexing set which satisfies:

1. The homomorphisms τSR are surjective for subsets S of R.

2.Each profinite group GS consists of system zx : x ∈ S of elements such that the

map F̂ (S) → GS coming from x → zx gives an isomorphism between F̂ (S) and GS ,

and also for all subsets S ⊂ R we have λSR(zx) = 1 for x ∈ R− S.

There is an isomorphism between lim←−GS and F̂ (X).

Proof. Let S be a set of points in C which is finite. Denote CP 1 − (S ∪∞) by XS.

Gal(KXS |C(t)) is a quotient of the absolute Galois group Gal(C(t)|C(t)) and it is

isomorphic to free profinite group generated by |S| generators γa for each a ∈ S. Now
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if we have subset R of C such that S is subset of R, then we get an inclusion of Galois

extensions KXS ⊂ KXR where XR = P 1 − (R ∪∞). We have seen in infinite Galois

theory that there is a surjection τSR : Gal(KXR |C(t))→ Gal(KXS |C(t)). By Theorem

given in the starting of this section, this map is induced by the map of fundamental

groups π1(XR, x)→ π1(XS, x) for some point x. For each a ∈ R−S, τSR(γa) = 1. So

we get an inverse system where indexing set consists of finite subsets of C. We have

seen that every finite sub extension of C(t) lies in KXS for some suitable subset S,

so the inverse limit is of above system is Gal(C(t)|C(t)). The theorem follows from

above proposition.
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