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Abstract

Clifford algebra of a quadratic space (V, q) is the quotient of the tensor algebra of V

by the two-sided ideal I(V, q), generated by {x⊗ x− q(x).1 | x ∈ V }.

In [Sus77], A.A. Suslin defined a sequence of matrices whose size doubles at each step.

Using Suslin construction, for v, w ∈ Rn+1 we get a matrix of size 2n × 2n. Moreover,

each Suslin matrix S has a conjugate Suslin matrix S such that SS = SS = (v.wT )I2n .

In [Chi15], V.R. Chintala showed that Suslin matrices can be used to construct Clifford

algebra of H(Rn) with the quadratic form determined by the bilinear form b(v, w) = v.wT .

Suslin identities are used to define standard involution on the Clifford algebra. As an

application of Suslin matrices, we obtain a proof of the following exceptional isomorphism

[Chi15],

Spin4(R) ∼= SL2(R)× SL2(R) , Spin6(R) ∼= SL4(R)

Suslin matrices are defined in an inductive way. We tried to generalize the idea of

Suslin matrices to a more general set up of central simple algebras. For that, a new set

was defined called Suslin set with certain properties that are satisfied by Suslin matrices.

We looked at algebras that are isomorphic to M2n(F ). Let A be an algebra isomorphic

to M2n(F ) by the map φ. Then, by taking inverse image of Suslin matrices under φ, we

indeed obtain a Suslin set. We hope that Suslin sets could be useful to understand Suslin

matrices.



Chapter 1

Quadratic Forms and Clifford

Algebras

In this chapter we define some basic notions in the algebraic theory of quadratic forms.

In first section, we recall quadratic forms and some of their basic properties. In next

section, we discuss about Clifford algebras of quadratic spaces and involutions on it.

1.1 Quadratic Forms

Let F be a field with char(F ) 6= 2 and V be a vector space over F . An F valued function

q on V is called a quadratic form on V if there exist a symmetric bilinear form b on V

such that q(x) = b(x, x) , for all x ∈ V . A vector space equipped with a quadratic form

is called a quadratic space (V, q). Each symmetric bilinear form on V defines a quadratic

form on V .

Proposition 1.1.1. Different symmetric bilinear forms defines different quadratic forms.
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Proof Let q(x) = b(x, x), then we have

q(x+ y) = b(x+ y, x+ y) = b(x, x) + b(x, y) + b(y, x) + b(y, y)

= q(x) + q(y) + 2b(x, y)

from which we get b(x, y) = 1
2(q(x+y)−q(x)−q(y)). Also, b(x, y) = 1

2(q(x+y)−q(x, y)).

These equations are called Polarization Formulae . Thus q determines b uniquely. �

The symmetric bilinear form b is called the bilinear form associated with q. For each

b, we can define a mapping, lb : V → V ∗ as lb(v1)(v2) = b(v1, v2). Rank of b is considered

as the rank of the linear transformation lb. This same rank is taken as the rank of q. A

quadratic form q is called non-singular quadratic form if the associated bilinear form is

non-singular. Quadratic form is called regular quadratic form if it is non-singular. Then

the quadratic space is called regular .

1.1.1 Orthogonality

Let (V, q) be a regular quadratic space, with associated bilinear form b. For x, y ∈ V , we

say x is orthogonal to y and write x ⊥ y if b(x, y) = 0. Since b is symmetric, x ⊥ y if and

only if y ⊥ x. Also, we have x ⊥ y if and only if q(x+ y) = q(x) + q(y). If A is a subset of

V , we define the orthogonal set A⊥ by A⊥ = {x | x ⊥ a, for all a in A}.

We can see that,

1. A⊥ is a linear subspace of V .

2. If A ⊆ B, then A⊥ ⊇ B⊥.

3. A⊥⊥ ⊇ A and A⊥⊥⊥ = A.

4. F = F⊥⊥ for F , a linear subspace of V .

5. F ∩ F⊥ = 0 and V = F ⊕ F⊥ for F , a linear subspace of V .
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1.1.2 Diagonalization

Theorem 1.1.2. Every quadratic space (V, q) over F can be represented by orthogonal

sum of one dimensional spaces.

Proof We prove this by induction of V . If dimV=1, then there is nothing to prove.

Suppose that dimV = n and the theorem is true for n − 1 dimensional spaces. Let us

consider two cases.

Case I : If q(v) = 0 for all v ∈ V , then result is trivially true.

Case II : If q(v) 6= 0 for some v ∈ V , say v1. Let q(v1) = a 6= 0. Then, Let W = {v1}⊥.

Then V = span(v1)⊕W , with dim(W ) = n− 1. Since restriction of q to W is a quadratic

form on W , the result follows from inductive hypothesis. �

So, there exists basis (v1, ...vn) such that q(vi) = ai where ai ∈ F and b(vi, vj) = 0 if

i 6= j. Then for x =
∑d

i=1 xivi,

q(x) =
n∑
i=1

aix
2
i .

We denote this as

q =< a1, a2, ..., an >

If (V1, q1) and (V2, q2) be two quadratic forms, then we can define quadratic form on

V1 ⊕ V2 by q(x1 + x2) = q1(x1) + q2(x2).

Definition 1.1.3. A 2n-dimensional quadratic form q is called hyperbolic if it can be

represented as n× < 1,−1 >.

1.1.3 Isotropy

A vector v ∈ (V, q) is called isotropic if q(x) = 0 and anisotropic otherwise. We denote

the set of all isotropic elements by Iso(V, q) and all anisotropic elements by An(V, q). If a

linear subspace U of V is contained in Iso(V, q), then it is called totally isotropic.
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1.1.4 Isometry

Let (V1, q1) and (V2, q2) be two quadratic spaces. A linear map T : V1 → V2 is called

isometry if

1. T is injective, and

2. q2(T (x)) = q1(x) for all x ∈ V1.

By the polarization formula, (2) is equivalent to

3. b2(T (x), T (y)) = b1(x, y) for all x, y ∈ V1.

Isometry is an injective map. If the space (V, q) is regular, condition 2(or 3) implies the

map is injective.

1.1.5 Orthogonal Group

Isometry of a space to itself is called a orthogonal mapping . T−1 is defined since the map is

surjective. T−1 is also an isometry. Orthogonal mappings forms a group which is denoted

as O(V, q) and called Orthogonal Group.

1.2 Clifford Algebras

Let (V, q) be a quadratic space and A be a unital algebra. A Clifford mapping j is an

injective linear mapping j : V → A such that

1. 1 /∈ j(V ), and

2. (j(x))2 = q(x).1 = q(x), for all x ∈ V .

If j(V ) generates A, then A together with the map j is called a Clifford Algebra for (V, q).

Let j be a Clifford mapping, then
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j(x)j(y) + j(y)j(x) = j(x+ y)2 − j(x)2 − j(y)2

= (q(x+ y)− q(x)− q(y)).1

= 2b(x, y).1

If x ⊥ y then xy = −yx.

Example 1.2.1. Let us consider the simplest case when q = 0. Then take A = ∧∗V

(Exterior Algebra), and j(x) = x. Since x ∧ x = 0 = q(x) for all x ∈ V , j is a Clifford

Mapping and since V generates ∧∗V , Exterior Algebra is a Clifford Algebra of q = 0.

Example 1.2.2. Suppose (V, q) of one-dimension space with q(v) = −1. Let A = C,

where C denotes the algebra of Complex Numbers. Consider the map j(λv) = λi. Then,

j(λv)2 = −λ2 = q(λv). Then j is a Clifford mapping and C is a Clifford algebra of (V, q).

We can also consider C as a subalgebra of M2(R) with 1 =

1 0

0 1

 and i =

0 −1

1 0

, so

a typical element of A looks like z = x+ iy =

x −y

y x

.

Example 1.2.3. Let (V, q) be one-dimensional with some with w ∈ V such that q(w) = 1.

Here take A = R2 with multiplication defined as (x1, y1)(x2, y2) = (x1y1, x2y2). Then,

identity element will be 1 = (1, 1). Let j(λw) = (λ,−λ). Then 1 /∈ j(V ), and

j(λw)2 = λ2(1, 1) = q(λw).1

so, A = R⊕ R is a Clifford algebra with mapping j.

Here also, we can consider A as subalgebra of M2(R) with 1 =

1 0

0 1

 and j =1 0

0 −1

 .
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A Clifford algebra A(V, q) is called a Universal Clifford Algebra if whenever there is

an isometry T from (V, q) to (W, r), it extends to an algebra homomorphism T̃ of Clifford

algebras. That is, if B(W, r) is a Clifford algebra of (W, r), then

V W

A(V, q) B(W, r)

T

⊂ ⊂

T̃

Since V generates A(V, q), T̃ is unique. If we take T as identity map on V , then we

have universal Clifford algebra is unique.

Let V be of dimension d and {v1, v2, ..., vd} be a orthogonal basis. Then we have

vivj = −vjvi. It is easy see that {vi1vi2 ...vik | 1 ≤ i1 ≤ i2 ≤ · · · ≤ ik ≤ d and 1 ≤ k ≤ d} is

the basis for Universal Clifford algebra (now onwards Clifford algebra) and empty product

as identity element. So, the dimension of Clifford algebra is
∑d

k=0

d
k

 = 2n.

We can consider the Clifford algebra A(V, q) as a quotient of ⊗∗V of the ideal I gen-

erated by all x⊗ x− q(x) with x ∈ V .

Let i be the inclusion mapping V → ⊗∗V , and let us denote the Clifford mapping from

V to a universal Clifford algebra A(V, q) by jA. By universal property, there is a unique

algebra homomorphism kA from ⊗∗V into A(V, q) such that kA ◦ i = jA, since V generates

A(V, q), kA is surjective.

Let Iq be the ideal in V generated by the elements x⊗x− q(x).1, let C(V, q) = ⊗∗V/Iq

be the quotient algebra, and let π : ⊗∗ V → C(V, q) be the quotient mapping. Let us

set jB = π ◦ i. Then Iq is in the null-space of kA, and so there exists a unique algebra

homomorphism

J : C(V, q)→ A(V, q)

such that kA = J ◦ π . Then jA = kA ◦ i = J ◦ π ◦ i = J ◦ jB. Again, J is surjective. If

x ∈ V , then J(jB(x)) = jA(x), so that 1 6= jB(V ) . Further,

(jB(x))2 = π(x⊗ x) = π(x⊗ x+ q(x).1)− π(q(x).1) = q(x).1

6



so that jB is a Clifford mapping of V into C(V, q). Since i(V ) generates ⊗∗V , jB(V ) =

π(i(V )) generates C(V, q), and so C(V, q) is a Clifford algebra for (V, q). Since A(V, q) is

universal, there exists a unique unital algebra homomorphism ρ : A(V, q) → C(V, q) such

that ρ ◦ jA = jB. It follows that J is an algebra isomorphism of C(V, q) onto A(V, q), with

inverse ρ. Thus C(V, q) is a universal Clifford algebra for (V, q).

1.2.1 Involutions on Clifford algebra

Let (V, q) be a quadratic space, with Clifford algebra Cl(V, q). Let m(x) = −x for x ∈ V ,

so we have

V V

Cl(V, q) Cl(V, q)

m

⊂ ⊂

m̃

take m̃(a) = a′. The map a → a′ is an automorphism, and a′′ = a. So this is a

involution, called principal involution .

Let us define

Cl+ = {a | a = a′} and Cl+ = {a | a = −a′}

Then we have Cl = Cl+ ⊕ Cl−, Cl+ is a subalgebra of Cl called even Clifford algebra

. We can see that

Cl+.Cl+ = Cl−.Cl− = Cl+ and Cl+.Cl− = Cl−.Cl+ = Cl−

In tensor algebra of V , consider the anti-automorphism

v1 ⊗ v2 ⊗ · · · ⊗ vn 7→ vn ⊗ vn−1 ⊗ · · · ⊗ v1.

Since the ideal I(V, q) is invariant under this reversal, this operation descends to an anti-

automorphism of Cl(V, q) called transpose, let us denote its image by xt. We define x∗ =

m(xt) = m(x)t, this is an involution on Cl(V, q) called standard involution .

7



Chapter 2

Suslin Matrices and Link to

Clifford Algebras

In this chapter we discuss about Suslin matrices and their connection with Clifford

algebra. In first section, we look at how the Suslin matrices are constructed and some of

its properties. In next section, we discuss about how the Suslin matrices can be used to

construct Clifford algebra of a particular quadratic space.

2.1 Suslin Construction

In [Sus77], A.A. Suslin defined a sequence of matrices called Suslin matrices with the

property that, size of those doubles in each step. For each Suslin matrix S, he defined

another matrix S such that SS and S + S are scalar matrices.

Let us check how to construct Sn(v, w) of size 2n × 2n from two vectors v, w ∈ Rn+1.

Let v = (a0, v1), w = (b0, w1) where v1, w1are vectors in Rn. Define
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S0(v, w) = a0, S1(v, w) =

 a0 v1

−w1 b0


and

Sn(v, w) =

 a0I2n−1 Sn−1(v1, w1)

−Sn−1(w1, v1)
T b0I2n−1



and S is defined as

Sn(v, w) = Sn(w, v)T =

 b0I2n−1 −Sn−1(v1, w1)

Sn−1(w1, v1)
T a0I2n−1


Example : v = (a0, a1) and w = (b0, b1)

S(v, w) =

 a0 a1

−b1 b0

 and S(v, w) =

b0 −a1

b1 a0


Example : v = (a0, a1, a2) and w = (b0, b1, b2)

S(v, w) =


a0 0 a1 a2

0 a0 −b2 b1

−b1 a2 b0 0

−b2 −a1 0 b0

 and S(v, w) =


b0 0 −a1 −a2

0 b0 b2 −b1

b1 −a2 a0 0

b2 a1 0 a0



Example : v = (a0, a1, a2, a3) and w = (b0, b1, b2, b3)

9



S =



a0 0 0 0 a1 0 a2 a3

0 a0 0 0 0 a1 −b3 b2

0 0 a0 0 −b2 a3 b1 0

0 0 0 a0 −b3 −a2 0 b1

b1 0 a2 a3 b0 0 0 0

0 b1 −b3 b2 0 b0 0 0

−b2 a3 a1 0 0 0 b0 0

−b3 −a2 0 a1 0 0 0 b0



S =



b0 0 0 0 −a1 0 −a2 −a3

0 b0 0 0 0 −a1 b3 −b2

0 0 b0 0 b2 −a3 −b1 0

0 0 0 b0 b3 a2 0 −b1

−b1 0 −a2 −a3 a0 0 0 0

0 −b1 b3 −b2 0 a0 0 0

b2 −a3 −a1 0 0 0 a0 0

b3 a2 0 −a1 0 0 0 a0


It is easy to see that S(v, w) is also a Suslin matrix. S(v, w) = S(v′, w′) where v′ = (b0,−v1)

and w′ = (a0,−w1).

The following are properties of Suslin matrices ([Sus77], Lemma 5.1).

Theorem 2.1.1. For Sn = Sn(v, w), we have SnSn = (v.wT )I2n = SnSn.

Proof It is easy to see that by induction, n = 0 is clear. Let us assume for it is true till

Sn−1, then

Sn(v, w) =

 a0I2n−1 Sn−1(v1, w1)

−Sn−1(v1, w1) b0I2n−1

 and Sn(v, w) =

 b0I2n−1 −Sn−1(v1, w1)

Sn−1(v1, w1) a0I2n−1


10



and

SnSn = SnSn =

a0b0 + (v1.w
T
1 )I2n−1 0

0 a0b0 + (v1.w
T
1 )I2n−1


�

Lemma 2.1.2. Let S =

A B

C D

where A,B,C,D ∈ Mk(R) , are such that AB = BA.

Then detS = detT , where T = DA− CB.

Proof First of all, we have

det

A B

C D

 .detA = det

A B

C D

 .det

I 0

0 A

 = det

A BA

C DA



then

A BA

C DA

can be transformed to

A 0

0 T

 by elementary row transformations.

Then we have

detS.detA = detA.detT

�

By using induction n and using above Lemma, we get

detSn = (v.wT )2
n−1

The set of Suslin Matrices of size 2n × 2n is a R-module under matrix-addition and

scalar multiplication given by rSn(v, w) = Sn(rv, rw).

2.1.1 Useful sequence of matrices Jn

In [Sus77], Suslin defines another sequence of matrices,

11



Jn =



1 for n = 0Jn−1 0

0 −Jn−1

 for n even

 0 Jn−1

−Jn−1 0

 for n odd

By simple calculations, we get

detJ = 1 and JT = J−1 = (−1)
n(n+1)

2 J

so, J is symmetric for n = 4k and n = 4k + 3 and J is skew-symmetric for n = 4k + 1

and n = 4k + 2.

In ([Sus77], Lemma 5.3) it is noted that the following formulae are valid

for n=4k :(Sn(v, w)Jn)T = Sn(v, w)Jn

for n=4k + 1 :Sn(v, w)JnSn(v, w)T = (v.wT )Jn

for n=4k + 2 :(Sn(v, w)Jn)T = −Sn(v, w)Jn

for n=4k + 3 :Sn(v, w)JnSn(v, w)T = (v.wT )Jn

from which we can deduce,

JnS
T
n J

T
n =


S for n even

S for n odd

this can be used to define involution on the Clifford algebra.

Remark 2.1.3. For simplicity, we drop the subscript and write J or S (or S(v, w)).

2.1.2 Fundamental Property of Suslin Matrices

Lemma 2.1.4. Let R be a commutative ring and let v, w, s, t ∈ Rr+1. Let v = (a0, a1, ..., ar),

w = (b0, b1, ..., br). Then,
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Sr(v, w) + S(w, v)T = {a0 + b0}I2r

Sr(s, t)Sr(w, v)T + Sr(v, w)Sr(t, s)
T = {< s,w > + < v, t >}I2r

Sr(w, v)TSr(s, t) + Sr(t, s)
TSr(v, w) = {< s,w > + < v, t >}I2r

Proof See [JR06], Lemma 3.1

Now, the Fundamental property of Suslin matrices.

Lemma 2.1.5. Let v = (a0, a1, ..., ar) = (a0, v1), w = (b0, b1, ..., br) = (b0, w1), s =

(c0, c1, ..., cr) = (c0, s1) and t = (d0, d1, ..., dr) = (d0, t1) for some v1, w1, s1, t1 ∈ (Rr).

Then

Sr(s, t)Sr(v, w)Sr(s, t) = Sr(v
′, w′)

Sr(t, s)Sr(w, v)Sr(t, s) = Sr(w
′, v′)

for some v′, w′ ∈ Rr+1, which depends linearly on v, w and quadratically on s, t. Con-

sequently, v′.w′T = (s.tT )2(v.wT ).

Proof See [JR10], Lemma 2.5

Definition 2.1.6. A Suslin matrix Sr(v, w) is called special if < v,w >= v.wT = 1.

Definition 2.1.7. The Special Unimodular Vector Group SUmr(R) is the subgroup of

SL2r(R) generated by the special Suslin matrices.

An involution on SUmr(R)

Let us define an involution on SUmr(R). Let α =
∏n
i=1 Si where Si are special Suslin

matrices then define, α̂ =
∏1
i=n Si.

13



When r is even, α 7→ α̂ is well defined involution, by Suslin identities

Sr(v, w) = JrSr(v, w)TJ−1r

Hence, α̂ = Jrα
TJ−1r , only depends on α. So if it has some other representation, say

α =
∏n
i=1 Si =

∏n
i=1 S

′
i, then α̂ =

∏1
i=n Si =

∏1
i=n S

′
i .

This applies only if r is even. When r is odd, this ∧ can be only defined upto a unit u,

with u2 = 1.

Lemma 2.1.8. LetSr(v, w) , r ≥ 2 be a Suslin matrix. If it has the following property that

Sr(x, y)Sr(v, w) = Sr(p, q) for any spacial Suslin matrix Sr(x, y), then Sr(v, w) = uI2r .If

< v,w >= 1, then u2 = 1.

Proof See [JR10], Lemma 3.1

Corollary 2.1.9. Let α =
∏n
i=1 Si where Si are special Suslin matrices and α̂ =

∏1
i=n Si.

If α = I2r , r-odd, then α̂ = uI2rwith u2 = 1.(If r is even, α̂ = I2r).

Proof See [JR10], Corollary 3.2

2.2 Link to Clifford Algebras

As we can see Clifford algebra as quotient of tensor algebra, we have the following universal

property.

For any associative algebra A over R with a linear map j : V → A such that j(x)2 =

q(x) for all x ∈ V , then there is a unique algebra homomorphism

f : Cl(V, q)→ A such that f ◦ i = j.

Theorem 2.2.1. Clifford algebra for V = H(Rn), hyperbolic quadratic space equipped with

the quadratic form q(v, w) = v.wT is Cl(V, q) = M2n(R).
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Proof Consider V = Rn with the quadratic form q(v, w) = v.wT .

We have to find a linear map θ : V →M2n(R) such that

1. θ(V ) generates M2n(R)

2. θ(v)2 = q(v) for all v ∈ V

Proceeding by induction, n = 0 case is trivial.

Let V = H(Rn−1) with q(v, w) = v.wT and there exists a θ as above, then take

Ṽ = H(Rn) = V⊕ < x, y >with q(λx+ µy) = λµ. Consider the map,

θ̃ : Ṽ → M2n(R)

v 7→

θ(v) 0

0 −θ(v)

 for v ∈ V

x 7→

0 I

0 0


y 7→

0 0

I 0



Arbitrary element of M2n(R) looks like

A B

C D

where A,B,C,D ∈M2n−1(R). A can

be written in terms of θ(v) , v ∈ V , then

θ̃(A) = Ã =

A 0

0 A∗


using this, A B

C D

 = Ãθ̃(x)θ̃(y) + B̃θ̃(x) + θ̃(y)C̃ + θ̃(y)D̃θ̃(x)

So, {θ̃(v), v ∈ Ṽ } generates H(Rn).
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Now, θ̃(v+λx+µy) =

θ(v) λI

µI −θ(v)

 and
(
θ̃(v + λx+ µy)

)2
=

q(v) + λµ 0

0 q(v) + λµ

 .

�

Let φ : H(Rn)→M2n(R) be the linear map given by

φ(v, w) =

 0 Sn−1(v, w)

Sn−1(v, w) 0

 where Sn−1(v, w) = Sn−1(w, v)T

then φ(v, w)2 = q(v, w)I2n , then by universal property, φ extends to a homomorphism

φ : Cl(H(Rn), q)→M2n(R).

This map is given in [Chi15] and it is actually an isomorphism.

The quadratic space (V, q) is said to be embedded in A if V ⊆ A and there is an isometry

α : V → V such that

vα(v) = α(v)v = q(v)

Our quadratic form in H(Rn) is q(v, w) = v.wT and we can take our α as

α : Sn(v, w)→ Sn(v, w)

then (v, w)→ S(v, w) is an embedding of H(Rn) into M2n−1(R).

With this embedding α : H(Rn)→ A, consider the R-linear map

ψ : H(Rn) → M2(A)

x 7→

 0 x

α(x) 0


Theorem 2.2.2. The above defined ψ is injective, hence an isomorphism.
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Proof We know that the Clifford algebra of H(Rn) with q(v, w) = v.wT is M2n(R). So,

we prove that the map M2n(R) → M2(A) is injective. Every ideal of M2n(R) is of the

form M2n(I) for some ideal I of R. Then ker(ψ) = M2n(I), but the map ψ is R-linear

and is identity on R which implies I = 0. By dimension arguments, it is clear that ψ is an

isomorphism. �

The following theorem is done in [JR10] is a consequence of properties of Clifford

algebra, ([Chi15], Theorem 3.4)

Theorem 2.2.3. Let X and Y be Suslin matrices, then XYX is also a Suslin matrix with

XYX = X̄Ȳ X̄.

Proof For z1, z2 ∈ H(Rn),

< z1, z2 >= z1z2 + z2z1 = (z1 + z2)
2 − z21 − z22

is an element in R. Multiplying by , we get

z1 < z1, z2 >= z21z2 + z1z2z1

we have z21 = q(z1) which implies z1z2z1 ∈ H(Rn). Take z1 =

 0 X

X 0

 and z2 = 0 Y

Y 0

, then z1z2z1 =

 0 XYX

X̄Ȳ X̄ 0

 . �

2.2.1 Involution in Cl

We have Cl(H(Rn), q) isomorphic to M2n(R) via map ψ given by

ψ(v, w) =

 0 Sn−1(v, w)

Sn−1(v, w) 0


The map (v, w)→ (−v,−w) induces standard involution in Cl(H(Rn), q).
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Theorem 2.2.4. Let M ∈ Cl ∼= M2n(R). Then the standard involution∗ is given by

M∗ = JnM
TJTn

Proof It is clearly an involution (J−1n = JTn ). We know that vector space generates

Clifford algebra, it is enough to check with (v, w). Therefore, it is enough to check with

the matrices of the kind

ψ(v, w) =

 0 Sn−1(v, w)

Sn−1(v, w) 0


whether it is multiplication by −1.

Let us define a new Suslin matrix,

S
′
n = Sn(v, w) =

 0 Sn−1(v, w)

−Sn−1(v, w) 0

 where v′ = (0, v) and w′ = (0, w)

then,

ψ(v, w) = λS
′
n = −S′nλ where λ =

I2n−1 0

0 −I2n−1


observe that S

′

n = −S′n.

(S
′
n)∗ =


S
′
n for n even

−S′n for n odd

when n is even,

ψ(v, w)∗ = (λS
′
n)∗ = (S

′
n)∗λ∗ = S

′
nλ = −λS′n

when n is odd,

ψ(v, w)∗ = (λS
′
n)∗ = (S

′
n)∗λ∗ = (−S′n)(−λ) = −λS′n
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so, for any n,

ψ(v, w)∗ = −λS′n = −ψ(v, w).

�

Let us find out what happens to an arbitrary element of Clifford algebra. Let M =A B

C D

 as 2× 2 block matrix and using above theorem, we have

A B

C D

∗


 D∗ −B∗

−C∗ A∗

 for n odd

 A∗ −C∗

−B∗ D∗

 for n even
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Chapter 3

Action of Spin Group on Suslin

Matrices

In this chapter we discuss about how Spin group acts Suslin matrices. In first section,

we define Spin group of a Clifford algebra. In next section, we discuss about the action of

Spin group. Here we consider two separate cases, when n is even and odd.

3.1 Spin Group

Let (V, q) be a quadratic space over k with orthogonal group O(q) and Clifford algebra

Cl(q). Since−id ∈ O(q), it induces an isomorphism in Clifford algebra level, Cl(−id) : Cl(q)→

Cl(q). Let us denote it by γ. Consider the set :

Γ = {s ∈ C(q)∗ : γ(s)V s−1 = V } where C(q)∗ is the group of invertible elements.

Γ is actually a subgroup of C(q) called Clifford group of q.

So, each s ∈ Γ(q) defines a automorphism αs of V which can be defined as x 7→
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Γ(s)xs−1. This we have a group homomorphism α : Γ(q) → Aut(V ) which takes s to αs.

In fact αs is an isometry and kernel of α mapping is k∗.

1→ k∗ → Γ(q)
α→ O(q)→ 1

We can define a canonical involution τ on Cl(q) by τ(x1x2 · · ·xk) = xkxk−1 · · ·x1 where

xi ∈ V and extend it to Cl(q) linearly. From this we get norm N on Cl(q) by N(s) = τ(s)s.

For x ∈ V , N(x) = q(x). This norm can be also extended to Cl(q). It is easy to check that

if s ∈ Γ(q), then N(s) ∈ k∗and N(γ(s)) = N(s). We define Pin(q) = ker(N : Γ(q)→ k∗).

Then we have the following exact sequences,

1→ k∗ → Γ(q)
α→ O(q)→ 1

1→ Pin(q)→ Γ(q)
N→ k∗ → 1

combining these results in

1 1 1

1 ±1 Pin(q) α(Pin(q)) 1

k∗ Γ(q) O(q) 1

(k∗)2 k∗
k∗

(k∗)2
1

1

N
sn

The homomorphism sn : O(q)→ k∗

k∗2 induced by the norm is called spinor norm .

The inverse image α−1(SO(q)) is called the special Clifford groupand is denoted as

SΓ(q). In fact SΓ(q) ⊂ Cl0(q) and the intersection is Spin(q) = SΓ(q) ∩ Pin(q) is called

the spin group of the quadratic space (V,q).

Now, we can define Spin group in our concerned Clifford algebra.
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Recall that Clifford algebra is Z2 graded algebra Cl = Cl0 ⊕ Cl1. Under the map ψ,

elements of Cl0 and Cl1 corresponds to

A 0

0 D

 and

0 B

C 0

 respectively.

Consider the following groups,

U0
2n(R) = {x ∈ Cl0 | xx∗ = 1} ( Corresponding to Pin(q))

and

Γ(R) = {x ∈ Cl | x∗V x−1 = V }

where V is H(Rn). Taking intersection, we get spin group,

Spin2n(R) = {x ∈ U0
2n | xV x−1 = V }

Let

g1 0

0 g2

 ∈ Spin2n(R). Using last identities from last chapter,

g1 0

0 g2

∗ =



g∗1 0

0 g∗2

 for n even

g∗2 0

0 g∗1

 for n odd

3.2 Action on Suslin Matrices

We can use the Suslin matrices to prove results of Spin groups. The following is from

[Chi15].

We consider two cases when the n is odd and even.

3.2.1 When n is odd

Consider the group
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Gr(R) = {g ∈ GL2r(R) | gS(v, w)g∗ is a Suslin Matrix for all Suslin Matrices S ∈M2r(R)}

We also consider the subgroup SGr(R) consisting of g ∈ Gr(R) which preserves the

norm v.wT for all (v, w) through the action. It is actually isomorphic to corresponding

Spin Group. Here n = dimV is odd and r = n− 1 is even.

For M =

A B

C D

 ∈ M2n(R), we have M∗

 D∗ −B∗

−C∗ A∗

. Therefore for (g1, g2) =g1 0

0 g2

 ∈ U0
2n(R), we have

(g1, g2)
∗ = (g∗2, g

∗
1)

since elements of U0
2n(R) has unit norm, that is (g1, g2)(g1, g2)

∗ = 1. Then,

g2 = (g∗1)−1

Spin Group, Spin2n(R) is precisely the subgroup of U0
2n(R) which stabilizes H(Rn)

through conjugate action.

If
(
g, (g∗)−1

)
∈ Spin2n(R), then for any Suslin Matrix S ∈ M2n−1(R) there exist a

Suslin matrix T ∈M2n−1(R) such that,

g 0

0 (g∗1)−1

0 S

S 0

g−1 0

0 g∗

 =

0 T

T 0


 0 gSg∗

(g∗1)−1Sg−1 0

 =

0 T

T 0


Hence, for any Suslin Matrix S ∈ M2n−1(R) and

(
g, (g∗)−1

)
∈ Spin2n(R) , then gSg∗

is a Suslin matrix.

Let us define,
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g • S = gSg∗

Consider,

Gn−1(R) = {g ∈ GL2n−1(R) | g•S is a Suslin Matrix for all Suslin Matrices S ∈M2n−1(R)}

Then one can define a homomorphism,

χ : Spin2n(R) → Gn−1(R)(
g, (g∗)−1

)
7→ g

But, the map is not surjective.

Now, we define a length function on the space of Suslin matrices as,

l(S) = SS = v.wT

then norm preserving subgroup of Gn−1(R) will be

SGn−1(R) = {g ∈ Gn−1(R) | l(g • S) = l(S) for all Suslin Matrices S ∈M2n−1(R)}

Suppose g ∈ SGn−1(R), then l(gg∗) = 1. Then one can expect
(
g, (g∗)−1

)
to be an

element of Spin group.

Theorem 3.2.1. The homomorphism χ : Spin2n(R)→ SGn−1(R) is an isomorphism.

Proof We first show that if g ∈ SGn−1(R), then (g∗)−1 ∈ Gn−1(R).

Let T = g • S, then T = T−1 = (g∗1)−1 • S. Now, we can write a general Suslin matrix

as a linear combination of unit-length Suslin matrices using the linearity of • it follows that

T = (g∗1)−1 • S for a general Suslin matrix S. Consider the map SGn−1(R) → Spin2n(R)

by g 7→
(
g, (g∗)−1

)
, and it is actually inverse of χ.
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3.2.2 When n is even

Let (g1, g2) ∈ Spin2n(R) , then for any Suslin matrix S, there exist a Suslin matrix T ,

g1 0

0 g2

0 S

S 0

g−11 0

0 g−12

 =

0 T

T 0


 0 g1Sg

−1

2

g2Sg
−1
1 0

 =

0 T

T 0


Here also we consider the homomorphism

χ : Spin2n(R) → Gn−1(R)

(g1, g2) 7→ g1

This projection has non trivial kernel. Let (1, g) ∈ ker(χ). If we take S = 1, then g is

a Suslin matrix. So, for any S, Suslin matrix g and Sg−1 are Suslin matrices. By Lemma

2.1.8, when n > 2 , we have g = uI where u ∈ R and u2 = 1.

If we take µ = {u ∈ R | u2 = 1}, we get a exact sequence when n > 2 and n even

1→ µ→ Spin2n(R)→ GL2n−1(R)

When n is even, (g1, g2)
∗ = (g∗1, g

∗
2).

3.2.3 Spin4(R)

2× 2 Suslin matrix for v = (a1, a2) and w = (b1, b2) is S(v, w) =

 a1 a2

−b2 b1

 . So, for any

pair (g1, g2), g1Sg
−1
2 is a Suslin matrix for S ∈ M2(R). Also, by definition norm for 2 × 2

matrices is determinant.

(g1, g2)(g
∗
1, g
∗
2) = (detg1, detg2)
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then we have,

Spin4(R) = SL2(R)× SL2(R)

3.2.4 Spin6(R)

Theorem 3.2.2. Spin6(R) = SL4(R)

Proof We show that SG2(R) = SL4(R). First we show that, for any 4× 4 matrix M , the

product is MSM∗ is a Suslin matrix is S is a Suslin matrix.

Take S =

 a S1

−S1 b

and M =

A B

C D

 . For 4× 4 matrices,

M∗ =

 A∗ −C∗

−B∗ D∗



To show MSM∗ is a Suslin matrix, it is enough to show with M

a 0

0 b

M∗ and

M

 0 S1

−S1 0

M∗ are Suslin matrices. We have

M

a 0

0 b

M∗ =

aAA∗ − bBB∗ −aAC∗ + bBD∗

aCA∗ − bDB∗ −aCC∗ + bDD∗


and

M

 0 S1

−S1 0

M∗ =

−BS1A
∗ −AS1B∗ BS1C

∗ +AS1D
∗

−DS1A
∗ − CS1B∗ DS1C

∗ + CS1D
∗



We know, any 2 × 2 matrix X =

x y

z w

 is a Suslin matrix and X∗ = X = w −y

−z x

. Also, X +X∗ and XX∗ are scalar matrices.
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Now, if g ∈ SG2(R), then det(g) = 1. By definition, l(S)2 = det(S) for any Suslin

matrix S ∈M4(R). From this, we get det(g) = l(gg∗) = 1.

For 4× 4 matrices, it is easy to show that l(MM∗) = det(M). We have,

MM∗ =

AA∗ −BB∗ −AC∗ +BD∗

CA∗ −DB∗ −CC∗ +DD∗


and

l(MM∗) = AA∗DD∗ +BB∗CC∗ +AC∗BD∗ +DB∗CA∗

�
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Chapter 4

Suslin Set

In this chapter we try to generalize Suslin matrices. First, we define a new set with

some properties that are satisfied by Suslin matrices. In next section, we identify Suslin

sets in split matrix algebras M2n(F ).

Let us consider a finite dimensional F−algebra, where F is a field. For any subset S

of F−algebra A. we shall define

CA(S) = {a ∈ A | as = sa for all s ∈ S}

which is called the centralizer of S in A. It is always a subalgebra of A. As a special

case of this, we shall define Z(A) = CA(A), called the center of the algebra A.

Definition 4.0.1. 1. A is called F−central (or central over F) if Z(A) = F (= F.1).

2. A is called simple if A has no two-sided ideal other than (0) and A.

3. A is called central simple algebra (CSA) over F if A satisfies both (1) and (2).

Basic examples are:
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Example 4.0.2. For any n−dimensional F−vector space V , the endomorphism algebra

A = End(V ) ∼= Mn(F ) is always a CSA over F .

Example 4.0.3. Let a, b ∈ F ∗. We define the quaternion algebra Q = (a, b)F to be the

F−algebra on two generators i, j with the defining relations,

i2 = a, j2 = b, ij = −ji.

Then, Q = (a, b)F is a F−algebra with dimQ = 4.

Quaternion algebra A =
(
a,b
F

)
is also a CSA over F .

Clifford algebras are CSA over some fields [Lam05]. Suslin matrices are defined in an

inductive way. We try to generalize the idea of Suslin matrices to a more general set up of

central simple algebras.

Definition 4.0.4. Let (A, τ) denote a central simple algebra A with involution τ . A

subspace S of A is called a Suslin set of (A, τ) if,

1. S is τ stable. That is for x ∈ S, τ(x) ∈ S.

2. S generates A as algebra.

3. For all X,Y ∈ S, XYX ∈ S. (A special property seen in Suslin matrices Theo-

rem 2.2.3)

Example 4.0.5. Let S(n) be set of Suslin matrices of size 2n × 2n and S ∈ S(n). Suslin

matrices form a vector subspace of M2n(R). We know the matrices of the kind

0 S

S 0


generates M2n+1(R) which implies Suslin matrices generates M2n(R). Consider the map

τ : S 7→ S, it is an involution. Since M2n(R) is generated by Suslin matrices, we can

consider the map τ in M2n(R) as X = S1S2 · · ·Sn = SnSn−1 · · ·S1where S1, S2, ..., Sn ∈

S(n). So, τ becomes an involution in M2n(R). By Theorem 2.2.3, if X,Y ∈ S(n), XYX ∈

S(n). So, S(n) is a Suslin set for M2n(R) with involution τ.
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Example 4.0.6. Let Q = (a, b)F is a quaternion algebra with standard involution (i 7→

−i , j 7→ −j , k 7→ −k).

Then the following sets are the only Suslin sets,

• Fi+ Fj

• Fi+ Fk

• Fj + Fk

• F + Fi+ Fj

• F + Fi+ Fk

• F + Fj + Fk

• Fi+ Fj + Fk

Remark 4.0.7. The above sets will be Suslin sets for orthogonal involution also.

4.1 Algebras isomorphic to M2n(F )

Let A be an algebra isomorphic to M2n(F ) through a map φ and − denote the involution

S 7→ S. Then there exists an involution τ on A which makes the following diagram

commutative,

A M2n(F )

A M2n(F )

φ

τ −
φ

By taking inverse image of Suslin matrices under φ, we get a Suslin set of A and an

involution τ on A.

Proposition 4.1.1. Consider Q = (1, 1)F . Then Q⊗Q⊗ · · · ⊗Q︸ ︷︷ ︸
n times

∼= M2n(F ) and the

involution τ as above corresponds to σ ⊗ id⊗ id⊗ · · · ⊗ id︸ ︷︷ ︸
n−1 times

, where σ is standard involution

and id is identity map.
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Proof We have an isomorphism Q→M2(F ) by mapping

i 7→

1 0

0 −1

 and j 7→

0 1

1 0

.

By tensor product of matrices,

a11 a12

a21 a22

⊗
b11 b12

b21 b22

 =


a11b11 a11b12 a12b11 a12b12

a11b21 a11b22 a12b21 a12b22

a21b11 a21b12 a22b11 a22b12

a21b21 a21b22 a22b21 a22b22


we get the isomorphism Q⊗Q⊗ · · · ⊗Q︸ ︷︷ ︸

n times

∼= M2n(F ).

• M2(F )

Recall that 2× 2 Suslin matrix for v = (a0, a1) and w = (b0, b1) is

S(v, w) =

 a0 a1

−b1 b0

 and S(v, w) =

b0 −a1

b1 a0


Then

S =
a0
2

(1 + i) +
a1
2

(j + k) +
b1
2

(k − j) +
b0
2

(1− i)

and

S =
a0
2

(1− i)− a1
2

(j + k)− b1
2

(k − j) +
b0
2

(1 + i)

then τ is (i 7→ −i , j 7→ −j , k 7→ −k), which is the standard involution in Q. But,

any 2× 2 matrices are Suslin matrices then the Suslin set is whole of Q.

• M4(F )

Recall a 4× 4 Suslin matrix for v = (a0, a1, a2) and w = (b0, b1, b2) is
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S =

 a S′

−S′ b

 and S =

 b −S′

S
′

a


where S′ is a 2× 2 Suslin matrix.

Then

S =
a

2
(1⊗ 1 + i⊗ 1) +

b

2
(1⊗ 1− i⊗ 1) +

1

2
(j ⊗ S′ + k ⊗ S′)1

2
(k ⊗ S′ − j ⊗ S′)

S =
a

2
(1⊗ 1− i⊗ 1) +

b

2
(1⊗ 1 + i⊗ 1)− 1

2
(j ⊗ S′ + k ⊗ S′)− 1

2
(k ⊗ S′ − j ⊗ S′)

The involution τ is σ ⊗ id , where σ is standard involution and id is identity map.

• M2n(F )

2n × 2n Suslin matrices look like,

S =

 a S′

−S′ b

 and S =

 b −S′

S
′

a


where S′ is a 2n−1 × 2n−1 Suslin matrix and elements in Q⊗Q⊗ · · · ⊗Q︸ ︷︷ ︸

n times

will be

S =
a

2
(1⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸

n times

+ i⊗ 1⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
n−1 times

) +
b

2
(1⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸

n times

− i⊗ 1⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
n−1 times

)

+
1

2
(j ⊗ S′ + k ⊗ S′) +

1

2
(k ⊗ S′ − j ⊗ S′)

S =
a

2
(1⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸

n times

− i⊗ 1⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
n−1 times

) +
b

2
(1⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸

n times

+ i⊗ 1⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
n−1 times

)

−1

2
(j ⊗ S′ + k ⊗ S′)− 1

2
(k ⊗ S′ − j ⊗ S′)

then here the involution τ is σ⊗ id⊗ id⊗ · · · ⊗ id︸ ︷︷ ︸
n−1 times

, where σ is standard involution and

id is identity map. �
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Remark 4.1.2. We can consider another isomorphism in 4 × 4 matrices. Here also, τ is

σ ⊗ id.

For Q = (1, 1)F , take the isomorphism,

φ : Q⊗Q → M4(F ) = End(Q)

x⊗ y 7→ σx⊗y

where σx⊗y(v) = x.v.y.

4× 4 Suslin matrix for v = (a0, a1, a2) and w = (b0, b1, b2) is

S(v, w) =


a0 0 a1 a2

0 a0 −b2 b1

−b1 a2 b0 0

−b2 −a1 0 b0


this corresponds to the following element of Q⊗Q,

a0
2

(1⊗1+i⊗i)+b0
2

(1⊗1−i⊗i)−b1
2

(i⊗k+j⊗1)+
a1
2

(j⊗1−i⊗k)−b2
2

(i⊗j+k⊗1)+
a2
2

(i⊗j−k⊗1)

and

S(v, w) =


b0 0 −a1 −a2

0 b0 b2 −b1

b1 −a2 a0 0

b2 a1 0 a0


this corresponds to the following element of Q⊗Q,

a0
2

(1⊗1−i⊗i)+b0
2

(1⊗1+i⊗i)+b1
2

(i⊗k+j⊗1)−a1
2

(j⊗1−i⊗k)+
b2
2

(i⊗j+k⊗1)−a2
2

(i⊗j−k⊗1)
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The the involution in Q⊗Q is

1⊗ 1 7→ 1⊗ 1

i⊗ i 7→ −i⊗ i

i⊗ j 7→ −i⊗ j

i⊗ k 7→ −i⊗ k

j ⊗ 1 7→ −j ⊗ 1

this is σ ⊗ id, where σ is standard involution and id is identity map.

We get the Suslin set in Q⊗Q as,

SpanF {1⊗ 1, i⊗ i, i⊗ j, i⊗ k, j ⊗ 1, k ⊗ 1}.
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