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Abstract 

 

Recent studies have shown that enzymes can catalyze alternate reaction or substrate/s 

apart from their physiologically relevant activity. This ability of enzyme is referred to as 

enzyme promiscuity. Usually, promiscuous activities have low catalytic efficiency and 

specificity. However, these can become important under any genotype/environment 

perturbations. Jensen has hypothesised that in ancestral enzymes showed broad specificity 

(generalist) and these become specialized during evolution. Based on this, we studied 

whether ancestral enzymes exhibit low catalytic efficiency or have weak substrate 

affinity. For this, we used core glycolytic enzyme Trios-phosphate isomerase (TIM). We 

generated phylogenetic tree of TIM enzymes and overlay with known experimental 

kinetic parameters. We observed that catalytic efficiencies are similar in enzymes from 

both ancestral and recently evolved enzymes. However, binding affinity of ancestral 

enzymes is weaker in comparison to modern enzymes.  

 

In the second project, we have used statistical methods to identify recurring patterns in 

protein sequences and compounds that can assist in understanding ligand-protein 

interactions. We have used canonical correspondence analysis (CCA) method with 

proteins represented as 6-mers string kernels and ligands expressed as atomic signatures. 

Based on preliminary analysis of 92 ligands, it can be suggested that CCA could be 

helpful in identifying important features of protein-ligand interactions. Further, this could 

be used in prediction of ligand binding sites.  
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PART I 

 

 

To study the evolutionary origin of specificity in Triose-

phosphate isomerase (TIM) 
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1 Introduction 
  

Enzymes are efficient catalysts that accelerate biochemical reactions up to rates at 

which biological processes are sustainable in an organism. Most of early studies on 

characterization of enzymes considered their function in isolation or in a limited set of 

interconnected metabolic reactions. However, the cataloguing of enzymes and everything 

known about them led to the representation of metabolism into metabolic pathways (Reitz 

et al., 2004). These metabolic pathways have been used extensively in understanding 

metabolic capability of an organism and have also provided possible alternate pathways 

when certain reactions are blocked due to mutation or deletion of enzyme/s (McCloskey et 

al., 2013; Stobbe et al., 2014; Simeonidis et al., 2015). The metabolic pathways are 

documented in databases such as KEGG, which are manually curated and periodically 

updated to keep up with discovery new metabolic reactions or enzyme functions 

(Kanehisa et al., 2012). 

 

Traditionally, enzymes are described as efficient (acceleration of reaction) and specific 

(to its substrate) biocatalyst under notion of ‘one enzyme-one substrate-one reaction’. 

However, recent studies have shown that enzymes can also catalyze alternate reaction or 

substrate/s apart from their physiologically relevant activity. This ability of enzyme to 

catalyze more than one biochemical reaction is referred to as enzyme promiscuity. This 

discovery has radically changed our understanding of enzymes and has very board 

implications from the evolution of enzymes (Copley, 2003; Khersonsky & Tawfik, 2010; 

O’Brien & Herschlag, 1999) to biotechnological applications (Nobeli et al., 2009). 

 

1.1 Enzyme promiscuity and specificity 

 

As discussed above, promiscuity refers to the ability of enzyme to catalyze alternate 

chemical transformations, usually, exhibited through same active sites. These 

adventitious secondary or promiscuous reactions are generally orders of magnitude less 

efficient than their evolved activities. For example, Malonate semialdehyde 

decarboxylase catalyzes decarboxylation (malonate semialdehyde) 3.5 fold more efficient 

than hydration reaction (2-oxo-3-pentynoate) (Khersonsky & Tawfik, 2010). These low 

levels of promiscuous activity, usually undetectable, can become important if 
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substrate/enzyme concentration changes due to genotype/environmental perturbations. It 

has been suggested such low levels of reactions are part of underground metabolism in 

cell and confers robustness to metabolic networks (D’ Ari et al., 2008).  

 

Initial studies on promiscuous enzymes were mostly from serendipitous discovery of 

alternate function. With the availability of genome sequences, studies involving gene 

deletions in an organism, genome-scale metabolic reconstruction, high-throughput 

screening of enzyme activities and experimental elucidation of enzyme structures has 

increased identification of new promiscuous enzymes (Nobeli et al., 2009; Khersonsky 

and Tawfik, 2010). A recent study has shown that enzyme promiscuity is wide spread, for 

example Escherichia coli have 37% of its enzymes identified as promiscuous, which 

catalyze 65% of reactions (Nam et al., 2012).  

 

It has been suggested that promiscuous activities can serve as a reservoir of novel 

catalytic activities and could be an important driving force in evolutionary divergence of 

enzymes families (Nobeli et al., 2009; Khersonsky and Tawfik, 2010; Janssen et al., 

2005). One recent study has suggested possible role of promiscuity in the evolution of 

herbicide degradation pathway. Atrazine as an herbicide was effective in first years of its 

use. In subsequent years, it was discovered that atrazine is undergoing bacterial 

degradation, which led to discovery of atrazine degradation pathway in Pseudomonas sp. 

The first enzyme in degradation pathway is atrazine chlorohydrolase. Interestingly, this 

enzyme is 98% identical to melamine deaminase enzyme involved in melamine 

degrdation pathway (Wackett, 2009).  

 

1.1.1 Mechanistic aspect of promiscuity 

 

Many recent experimental studies suggested following insights into understanding 

of mechanistic and structural aspects of promiscuity: a. Conformational diversity of 

active sites can accommodate alternate substrates; b. existence of several subsites within 

active sites; c. differences in protonation states of catalytic residues between native and 

promiscuous function; d. metal substitutions following cofactor ambiguity and, e. 

formation of accidental hydrogen bonds, which can buffer opposing charges between the 

substrate and active site residues, or take on a/an acidic/basic/ nucleophilic role and 

catalyze promiscuous activities (Figure 1).  
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Figure 1. Summary of putative mechanism of enzyme promiscuity 

 

Of these, conformational flexibility can possibly be an important factor, as 

enzymes can exist in a continuum of conformational states. The primary state is the one, 

which engages with the native ligand (PN) and other different states are generated through 

several structural variations, for example, in side chain rotamers, active-site loop 

rearrangements and fold transitions (Figure 2). Suppose one of the conformations (P4) 

could accommodate a promiscuous ligand, and through selection the equilibrium could 

alter to increase the amount of this previously-minor conformation, which would lead up 

to the development of promiscuous activity, without substantially affecting the native 

function (Khersonsky and Tawfik, 2010; Tokuriki and Tawfik, 2009). 

 

 

In some cases, one active site can mediate both the native and promiscuous binding, with 

one key feature shared by all the activities. For example, (Figure 1) a mammalian 

lactonase, serum paraoxonase, has additional promiscuous esterase and 

phosphotriesterase activities. While all these three activities (the native, lactone 

hydrolysis and, the promiscuous esterases and phosphotriesterase) share one key feature, 

the coordination of the phosphoryl/carbonyl oxygen to the calcium present in the active 
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site, the hydrolysis of lactones and esterase (His115-His134) and, phosphotriesterase are 

mediated by different sets of residues (Khersonsky and Tawfik, 2010; Tawfik and 

Khersonsky, 2006).  

 

 

 

Figure 2: Role of conformational flexibility in promiscuity (Adopted from Tokuriki and 

Tawfik, 2009) 

1.1.2 Quantifying degree of promiscuity 

 

The experimental studies on promiscuous nature of enzymes, mostly, involve identifying 

alternate substrate/s or reactions. However, understanding the level or degree of 

promiscuous nature can assist in better characterization and classification of enzymes. 

Moreover, it can provide insights into evolutionary divergence of enzymes. Such studies 

can also help in understanding the evolution of specificity in enzymes. It has suggested 

that one can use diversity of substrates or chemical bonds broken or made during 

different reactions as a basis to quantify degree of promiscuity (Khersonsky and Tawfik, 

2010). 

 

An alternate approach could utilize experimentally determined rate constant associated 

with enzymatic reactions to characterize degree of promiscuity. Since, promiscuous 

reactions of an enzyme have been shown to have different kinetic rates than the native 

reactions, with the catalytic efficiencies of the former being lower.  
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1.1.2.1 Michaelis menten equation 

 

Michaelis Menten model (Figure 3) assumes that an enzyme (E) directly interacts 

with the substrate (S), resulting in an intermediate complex (ES). This leads to 

thermodynamic equilibrium, where the Michaelis constant (Km) is a measure of the 

substrate concentration required for an effective catalysis (in the reactions following 

Michaelis Menten kinetics (Eq. 2)), which can often be translated into a measure of 

affinity of the enzyme for a particular substrate (Johnson and Goody, 2011). The Kcat is 

the measure of the catalytic production rate of the product, considering the enzyme 

becomes saturated (Eq. 3). 

 

 

Figure 3: Michaelis menten model of enzyme kinetics 

 

 

 

Km = k2 + k-1 / k1     Eq. 1 

V=Vmax[S]/(Km + [S])     Eq. 2 

Vmax = Kcat[E]t 

    V=Kcat[E]t [S]/(Km + [S])    Eq. 3 

 

The quantity Kcat/Km, specificity constant, is usually employed as a metric to objectively 

understand catalytic efficiency. Especially, it states the rate of catalysis as a function of 

substrate affinity. Hence, a high Kcat/Km should be a characteristic of a perfect enzyme. 

These measures can substantiate the differences between native and promiscuous 

functions. Intuitively, it could be considered that Km will be higher for promiscuous 

substrates and will exhibit lower Kcat values. These will suggest importance of spatial 

orientation of substrate with respect to active site. Moreover, interactions forces which 

drive native substrate binding differ from that of promiscuous substrate binding; the 

former is mediated through enthalpy, for example hydrogen bonds, while the latter is 

determined by hydrophobic interactions and entropy (Khersonsky and Tawfik, 2010).  
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1.1.3 Jensen’s hypothesis 

 

The possible role of promiscuity in enzyme evolution was hypothesized in 

seminal work by Jensen, which stated that ancestral enzymes probably possessed broad 

specificities, albeit with low catalytic efficiency and in the process of evolution through 

duplication, mutation and horizontal gene transfer led to diversification of gene families 

and apparently refined ancestral enzymes to become specific and catalytically efficient 

(Jensen, 1976). Thus, most modern enzymes are assumed to be “specialist” having 

evolved to specialize in one reaction on a unique primary substrate in an organism to 

increase their metabolic efficiency. On the contrary ancestral enzymes are referred as 

“generalist” having promiscuous characteristics. The central hypothesis of Jensen is 

summarized in Figure 4. Some modern enzymes exhibit promiscuity because these could 

confer fitness benefit to the organism under new selective pressures with promiscuous 

enzymes serving as starting point in the emergence of new enzyme functions and/or 

divergence of enzyme families. Moreover, it has been suggested that this 'floppiness' in 

enzymatic function has played an important role in the evolution of superfamilies of 

enzymes, transcriptional regulators and receptors (Copley, 2015). 

 

 

Figure 4: Summary of Jensen’s hypothesis of enzyme evolution 

 

Based on Jensen’s hypothesis, one can expect that enzymes from phylogenetically 

ancestral organisms will harbor enzymes, which tend to be promiscuous compare to 

recently evolved enzymes. To explore this possibility as a result of Jensen’s hypothesis, 

we studied one of the core glycolytic enzymes, Triose phosphate isomerase (TIM) using 

catalytic efficiency (Kcat/Km) as a measure of degree of promiscuity.  
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1.2 Triose phosphate isomerase (TIM) 

 

TIM is one the most extensively studied enzymes, as it plays a central role in 

glycolysis (Wierenga, et al., 2010). It catalyzes the reversible inter-conversion of d-

glyceraldehyde 3-phosphate (d-GAP) and dihydroxyacetone phosphate (DHAP) (see 

Figure 5). The reaction is characterized by an ene-diol intermediate, and two sequential 

proton exchanges. Two residues Glutamate (Glu) and Histidine (His) play an important 

role in catalysis, with Glu acting as an electrophile and His as a nucleophile during the 

isomerase reaction. It has been argued that TIM is catalytically perfect enzyme, where the 

rate of catalysis is of the same order as rates of diffusion (Sharma and Guptasarma, 

2015). It has been suggested that TIM reaction center is so perfectly designed that a 

conservative ‘Glu-to-Asp’ mutation, which conserves the catalytically important carboxyl 

group and doesn’t make any significant changes in the structure of the enzyme, except 

shifting the carboxyl group by about 0.1 nm away from the substrate. This leads to a 

1000-fold reduction in the enzymatic activity (Davenport et al., 1993). The four catalytic 

sites viz. Asn11, Lys13, His95, and Glu167 along with loop 6 and 7 (numbers are based 

on E. coli sequence) are highly conserved across various organisms (Wierenga, et al., 

2010). 

 

Figure 5: Reaction catalyzed by TIM (Adopted from Davenport et al., 1993) 

Figure 6: Tertiary structure of human TIM (pdb id: 4zvj) 
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TIM structure is characterized by classic alpha-beta barrel, which is an archetypal 

example of the ‘TIM barrel fold’, the most common fold amongst protein catalysts (Voet 

et al., 2006). TIM consists of alternating beta and alpha helices such that beta strands 

form core of the barrel (Figure 6). TIM was selected for this study, in the light of its 

prevalence among all the three domains of life, owing to its central role in glycolysis. 

2 Methodology 

2.1 Database searching for TIM orthologs 

 

Since TIM is plays central role in glycolysis and is prevalent among all three 

domains of life, we have used this enzyme in our present study. All completely sequenced 

genomes were retrieved using FTP protocol from NCBI genome (ftp.ncbi.nih.gov) 

database (both RefSeq and GenBank) (Pruitt et al., 2011; Benson et al., 2013). We 

collated a list of 5077 both prokaryotic and eukaryotic genome sequences. We retrieved 

well-characterized TIM sequences from Uniprot database. 

 

In order to identify TIM orthologs, we used well-known TIM sequences (Uniprot) as a 

query and searched them against all genome sequences as databases using BLAST+ 

(Camacho et al., 2008). The hits from the BLAST output were filtered on the basis of 

sequence identity and query coverage. For each genome, we select only one TIM 

ortholog, which has highest sequence identity and having ≥ 80% as query coverage. If we 

do not find any homolog, then we do not consider that genome sequence for further 

analysis. Here, the idea of finding homologs with such strict criteria is to reduce false 

positive orthologs, because TIM is most commonly occurring fold. This search resulted in 

5074 hits.  

 

Despite strict criterion, there is a possibility that we may get incorrect orthologs. To 

further refine list of orthologs, we used Hidden Markov Model (HMM) for TIM family 

(PF00121) from Pfam and scanned all BLAST parsed hit sequences using hmmscan 

program encoded in Hmmer package (Bateman et al., 2016; Li W et al., 2015; Eddy, 

2011). From ‘hmmscan’ result, we selected sequences having significant match (e-value 

<0.01) to Pfam HMM profile. In addition to pruning orthologs, the hmmscan program 

also assigned domain boundaries for putative set of TIM orthologs. Of 5074 hits, 
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hmmscan resulted in 5053 orthologs. Thus, obtained sequences were clustered at 90% 

sequence identity using CD-hit (Li W, 2001; Li W, 2002) that resulted in a total of 2272 

representative sequences. These orthologous sequences were used for reconstruction of 

phylogeny. The sequences were mapped on Uniprot identifier to extract taxonomic 

lineages. 

 

The experimentally determined kinetic parameters (Km, Kcat and Km/Kcat) of TIM enzymes 

(Table 1) from some organisms were obtained from BRENDA (Schomburg, 2002) and 

SABIO-RK (Wittig et al., 2011). 

 

 

 

 

Table 1: Summary of kinetic parameters 

                 Values 

Organsims 
Km (mM) Kcat(105 min-1) 

Kcat/Km 

(105min-1mM-1)) 

Gallus gallus 0.47 2.6 5.5 

Homo sapiens 0.39 - - 

Rattus norvegicus 0.87 1.5 1.8 

Oryctolagus cuniculus 0.32 5.1 15.9 

Saccharomyces cerevisiae 0.62 1.4 2.2 

Trypanosoma brucei brucei 0.25 1.2 4.8 

Entamoeba histolytica 0.83 0.0034 0.042 

Plasmodium falciparum 0.35 2.7 7.7 

Escherichia coli 1.03 5.4 5.2 

Helicobacter pylori 3.46 0.88 0.25 

Thermococcus onnurineus 1.7 14.3 8.6 

Pyrococcus furiosus 1.2 15.2 12.8 
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2.2 Phylogeny reconstruction 

 

We constructed phylogenies using Neighbor-Joining (NJ) and Maximum-likelihood 

(ML) methods. Since we have 2272 number of distinct organisms to be included in 

phylogenetic tree, its visualization and interpretation is a very difficult task. Hence, we 

first generate ML tree to identify taxonomic groups and selected one representative from 

such groups to make a set of 181 sequences, which are further reduced to 61 

representative taxa. These 61 sequences are used for NJ based tree reconstruction. We 

explicitly included protein sequences with kinetic parameters in the representative set of 

61 sequences. 

 

Protein sequences are aligned using MUSCLE program (Edgar, 2004) and phylogenies 

are constructed using Molecular Evolutionary Genetics Analysis (MEGA) software 

(Tamura, Dudley, Nei, and Kumar 2007). MEGA can be utilized for deducing 

evolutionary relationships between different species based on a comparative analysis of 

an input of homologous protein sequences.   

 

ML method is based on the general statistical principle of maximum-likelihood 

(Felsenstein, 1981). It initializes tree by constructing a sub-optimal tree. This tree with 

each iteration changes branch lengths, and calculates the likelihood of that tree topology, 

the process continues until likelihood of tree is maximized given the data. To compute 

distances between taxa, it uses similar models of amino acid substation as in NJ method. 

 

NJ method utilizes distance between sequences to construct phylogeny. NJ starts with all 

the taxa rooted at a node, and then proceeds to build a pairwise distance matrix, according 

to which neighbors are grouped in a hierarchical fashion. The distance matrix can be 

generated using various models like, Dayhoff, Jones-Taylor-Thornton (JTT), Kimura’s 

distance, each of which explain the differences in the amino acid sequences, in different 

ways. This method is employed to effectively sort out the large database of sequences, 

since it uses a polynomial time algorithm, which provides a nearly optimum tree at a fast 

computational speed (Saitou and Nei, 1987). 
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First, we generated ML tree for 2272 sequences and using visualization in MEGA 

grouped similar taxa together, which resulted in 181 representative taxa. We constructed 

phylogeny for this set of sequences. The ML tree was constructed using the G+I (Gamma 

+ site invariant) model to generate site variation distribution and WAG model to construct 

the distance matrix. This tree was still quite difficult to interpret. Hence, we further 

reduced the number of representative sequences to 61, including sequence with kinetic 

parameters. For these 61 sequences, NJ tree was constructed using JTT model for amino 

acid substitution and sites are modeled using Gamma distribution (ɑ =1.25). The 

bootstrap method using 500 replicates was used to find reliable branches.  

3 Results and discussion 
 

We have identified 5053 TIM orthologs in 5077 genomes. In general, both ML and 

NJ tree concur both the trees concur on the position of most of the taxonomic clades. The 

ML based phylogenetic tree for selected taxonomic clades viz. Eukaryota, Gamma 

Proteobacteria, Beta Proteobacteria, Alpha Proteobacteria, Bacteroidetes, Terrabacteria 

Group, Aquificae, Spirochaetes, FCB group, Synergistes, Chlymydia, Mycoplasma and 

Archaea shows (Figure 7) a clear segregation between Prokaryotes and Eukaryotes 

lineages. Interestingly, within prokaryotic lineage archaea and eubacteria forms 2 distinct 

groups. In fact, this is also evident from the sequence alignment between archaeal and 

eubacterial TIM orthologs. The archaea has been suggested as an ancestral clade in 

previous studies as well (Keeling and Doolittle, 1997). Importantly, in most cases TIM 

follows vertical pattern of inheritance. This makes it suitable to assess evolution of TIM 

specificity under Jensen’s hypothesis. 

 

Previous studies have argued that eukaryotic TIM was most likely derived from an early 

symbiotic bacterium of Alpha-Proteobacteria lineage, in fact Rhizobium etli sequences 

was suggested to be ancestral to eukaryotic lineage (Keeling and Doolittle, 1997). 

However, in both NJ and ML tree we observed that ancestral sequence could be of beta- 

or gamma-proteobacterial origin. Even though the ancestral node before bifurcating into 

eukaryotic and bacterial group does not have very high bootstrap values, we have seen 

this kind of lineage separation in tree constructed using other methods as well. This could 

be investigated further to understand evolutionary origin of eukaryotic TIM sequences. 
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We overlay Km/Kcat and Km values on phylogenetic tree generated using NJ method with 

500 bootstraps (Figure 8). Considering catalytic efficiency (Km/Kcat) TIM ancestral TIM 

enzymes are not less efficient, in fact, ancestral archaeal enzymes are highly efficient. 

Hence, viewing TIM evolution with respect to catalytic efficiency Jensen’s hypothesis is 

not evident. This could be because of central role of this enzyme in glycolysis. Hence, 

possibly organism cannot afford to have a less efficient enzyme. Archaea used in present 

study are hyper-thermophiles, which have atypical TIM and sequences are quite different 

from eubacterial or eukaryotic lineages. It has been suggested that this could be due to 

their adaptation toward thermostability (Maes, 1999; Verhees, 2004). 
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Figure 7: Maximum likelihood tree for 181 TIM sequences 

 

Taking Km values of TIM enzymes in various evolutionary lineages (Figure 8), ancestral 

enzymes have higher Km , less affinity, compared to more recently evolved enzymes, 

which have lower Km. This suggests that in course of evolution modern enzymes have 

increased specificity towards its substrates. Hence, this indicates that Jensen’s idea of 

ancestral enzyme having broader specificity may be possible correct in this context. 
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However, one thing to note is that we are looking at specificity to only one substrate; 

whether archaeal enzyme have broad specificity is yet to studied experimentally. 

 

Figure 8: Neighbor joining tree for 61 sequences with overlay of kinetic data 

 

The ability of enzymes to bind with different substrates, even if in a non-optimized 

manner at first, is responsible for the existing repertoire of enzymes and their activities. 

Through the changes in environmental requirements, selection pressure shifts from one 

enzymatic activity to another, and the new activity selected is further optimized, further 

leading to the development of a new, more specific enzyme, due to gene duplication and 

divergence. Investigating enzyme evolution in the context of their kinetic parameters can 

open up the possibility of classifying enzymes and their promiscuity by the kinetic 

parameters. Moreover, such studies can provide insights that can assist in rational design 

of enzymes exploiting their promiscuity (Copley, 2015).  
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PART II 

 

 

To extract protein-ligand interaction features using 

Canonical Correspondence Analysis (CCA) 
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1 Introduction 

1.1 Protein-ligand interactions 

 

The knowledge of protein interaction partners is often starting point to describe its 

molecular function. In prediction of macromolecular interactions, finding interacting 

ligands could greatly assist in function annotation. Moreover, understanding of protein-

ligand interaction can assist in rational design of drugs or substrates for new enzymatic 

activities. 

 

Many sequence and/or structure-based approached have been developed to predict and 

model protein-ligand interactions. However, detailed insights into their mode of 

interaction are usually limited. With availability of protein tertiary structures molecular 

docking provided useful hints of protein-ligand interaction. However, such approaches 

are limited by lack of tertiary structures (Yamanishi et al., 2011; Lacapère J-J et al., 

2007).  

 

Recently, statistical methods have been developed as an alternative approach to 

investigate protein-ligand interactions (Keiser et al., 2009; Yamanishi et al., 2011). This is 

also feasible because of many protein structures are now available in PDB database. 

Many of these methods use both chemical and genomic information in their prediction 

approaches and usually referred as chemogenomics. For example, new drug targets have 

been predicted using statistical mining a comprehensive network of drug-target 

associations (Keiser et al., 2009). Usually, chemogenomics involves mining a given 

chemical space, for example drugs, in the context of its relation to the biological space, 

for example, drug targets. The fundamental assumption behind this approach is that 

similar molecule can bind similar targets (Jacob and Vert, 2008). Subsequent to 

prediction, one can analyze most important features and gain insights into protein-ligand 

interactions.  

 

The ligand-protein interactions are often due to common chemical structures that are 

usually shared by the ligands and binding site residues (Yamanishi et al., 2011). It has 

been shown that binding site residues have relatively high sequence and structure 

conservation in comparison to other residues. Based on this assumption, in the present 
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work we sought to derive the conservation patterns between chemical substructures and 

binding site residues using statistical method canonical correspondence analysis between 

chemical substructures derived from small molecules and features extracted from protein 

sequences. The main idea in this analysis is it will extract chemical substructures and 

sequence features, which jointly appear in the interaction pairs and disappear in the other 

pairs. The broad goal of such a study would be to identify and define rules for molecular 

recognition between chemical substructures and protein functional binding sites. 

In the present approach, we represent proteins as k-mers of their respective amino acid 

sequences, and their associated ligands as stereo-chemical signatures of their respective 

chemical structures. The relation between these two defined sets of proteins and ligands, 

and their respective feature vectors, was given by creating a dataset of protein and ligand 

interactions. 

1.2 Stereo-chemical signature 

 

Chemical structures can be numerically characterized by using Graph Theory 

(Schultz, 1989). A molecule can be represented as a signature, containing a vector of its 

associated atomic signatures and their occurrence. An atomic signature is a canonical 

representation of the subgraph surrounding a particular atom. This subgraph includes all 

atoms and bonds up to a predefined distance from the given atom. This distance is called 

the signature height h. Moreover, this subgraph has all the vertices labeled in a canonical 

order, which at a molecular level help in giving a global description of the molecules 

(Faulon et al., 2004; Carbonell and Faulon, 2010). This method is optimized to reduce 

the size of the signature information, by avoiding duplicates in the storage. This is done 

by checking for isomorphic graph; when the bijection between two sets of vertices of two 

graphs is actually an isomorphic map of a graph's map onto the other one despite different 

forms, hence, only one of the graph is taken into account. A prerequisite for this is graph 

canonicalization, which assigns a unique label each atom, and is invariant to the atom 

order (Carbonell et al., 2013).  

 

Mathematically, molecular signature descriptors can be defined as a 2D representation of 

the molecular graphs as undirected graphs: G(V, E, C), where V is atoms present in the 

molecule, E is the bonds connecting the atoms, and C is the atom type (Carbonell et al., 

2013). Then the molecular signature of G is given by: 
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Where, h(xi) is atomic signature of G rooted at atom xi of height h.  

 

 

Figure 9: An example of molecular signature 

 

The signature descriptor of height h (Figure 9) of an atom x belonging to the molecular 

graph G is a canonical representation of the subgraph of G, which contains all the atoms 

present at a distance of h from the atom, x. In other words, if the height, h = 1, the 

signature will comprise of all the immediate neighbors of the atom, x; at h = 2, these 

neighbors will become the vertices, whose immediate neighbors will be considered, in a 

progressive fashion (Carbonell et al., 2013). These descriptors are then expressed as a 

string of characters corresponding to the canonized subgraph. Branch levels are indicated 

by a set of parentheses following the parent vertex 

(http://www.issb.genopole.fr/~faulon/signatures.php). But, the generic molecular 

descriptors do not take in account of a compound's chirality, that is their property of 

asymmetry, which, in turn, affects their chemical and biological properties. Therefore, 

stereochemistry information needs to be included in the molecular descriptors, to discern 

the chirality (Carbonell et al., 2013). 

The approach used in this project, SSCAN (Faulon, 2012) takes in account the chirality 

of compounds, and represents ligand as a wholesome stereo-chemical signature. It does 

so by simultaneously describing chirality and signature descriptor, through an iterative 

algorithm, which follows a predefined set of conventions called Cahn-Inglod-Prelog 

priority rules (Carbonell et al., 2013; Provisional Nomenclature Recommendations, 

2005). 
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1.3 The statistical approach: Canonical Correspondence Analysis (CCA) 

 

CCA falls under the category of ordination techniques, which, in statistics, are 

exploratory data analytics. Ordination methods help in representing a multivariate data 

matrix with reduced dimensions. The term 'canonical', in mathematics, refers to reducing 

functions or relations to their simplest yet most comprehensive form, without a loss of 

generality (Blasius and Greenacre, 2014). Constrained ordination analyzes two data sets, 

response matrix and explanatory matrix, and allows for measuring the relationship 

between the two. It computes axes, which are the linear combination of the explanatory 

variables and best explain the variance within the response variables. Correspondence 

analysis differs from Principal Component Analysis in the type of data employed in 

analysis. CCA uses categorical data, rather than continuous data. CCA is basically CA 

with the canonical axes being the linear combinations of the explanatory variables, by 

using weighted multiple regression (Borcard et al. 2011).  

 

CCA helps in dimension reduction for two co-dependent databases. The two databases 

are: a response matrix (say, X {n x p}), and an explanatory matrix (say, Y {n x q}). 

Ordination of Y is constrained such that the resulting ordination vectors are a linear 

combination of variables in X. It computes a general singular value decomposition of a 

matrix Q {p x q}, which constitutes weighted averages for the columns of Y using the row 

totals of X. 

 

The history of CCA stems from ecological analyses; where the multivariate method is 

used to elucidate the relationships between species abundance and the environmental 

variables present at the site (Braak and Verdonschot, 1995). In ecology, the matrix X is 

sites vs species and the matrix Y is sites vs environmental variables. Using the matrix X, 

site and species weights are computed, from which a correlation matrix of Y is computed. 

This correlation matrix and site weights are used to create a weighted matrix, A, in which 

each entry is an average environmental variable for a given species. Further the matrix A 

is decomposed into eigenvalues through Singular Value Decomposition (SVD). The aim 

is to reduce the dimensions of the matrix A, by transforming the data, such that the first 

two canonical dimensions (or axes) can explain the majority of other dimensions. SVD is 
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a way of linear transformation, which operates upon a matrix and reduces redundancy 

within it. Suppose there is a matrix W {r x t}, using SVD, it can be decomposed as: 

 

In the present approach, we applied CCA method to extract conserved patterns 

between chemical substructures and binding site residues such that both concurring 

features of protein and ligand appear and disappear together. Suppose n  proteins have p  

k-mers and m ligands have q molecular signatures, such that they can be represented as 

linear combinations of their features, u and v  respectively, with weights α and β 

respectively, and I is the indicator function. Then correlation maximized is (adopted from 

Yamanishi et al., 2010): 

 

where, the indicator function = 1 when there is an interaction between a protein and a 

ligand, otherwise it is 0 (Yamanishi et al., 2011). This data exploratory analysis can 

provide new insights into protein ligand interactions. 

 

 

 

2 Methodology 
Three kinds of matrices were generated, described as follows: 

2.1  Protein k-mer Matrix 

 

All PDB sequences were downloaded from RCSB site and atom record sequence 

was extract for each pdb chain using an in-house code. The proteins having length < 40 

amino acids were removed from the analysis. We used CD-hit to remove redundant 

sequences with sequence identity ≥ 70% from the set of sequences. Using an in-house 

code overlapping stretches of 6 residues long was extracted, which we referred to as 6-

mers. For example, if a sequence reads like, FPDGEDTPE, then the 6-mers would be: 

FPDGED, PDGEDT, DGEDTP, GEDTPE. The count of unique 6-mers is the signature 

for that sequence. Apart from the obvious advantage of computational efficiency, k-mers 
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can prove to be good signatures to represent proteins and connect proteins otherwise 

unrelated in their secondary structures and functions (Havukkala, 2010). Subsequently, a 

matrix (Figure 10 E) was generated between the proteins and the 6-mers, such that each 

entry represents the occurrence of the 6mer {column value}, in the chain of a protein 

{row value}. 

2.2 Ligand-Protein Matrix 

 

The protein structures were parsed through a program called LPC (Ligand - Protein 

Contacts) (Sobolev et al., 1999), which allows discerning the ligands, which interact with 

a given protein. Any ligand, which is interacting with 6 or more residues of the protein 

were considered for ligand protein matrix. A binary indicator matrix (Figure 10 B) was 

constructed with this information between ligands and proteins, with the entry of 1 

denoting an interaction, and 0 denoting otherwise. 

2.3 Signature-Ligand Matrix 

 

The ligands interacting with at least one protein from the Ligand-Protein Matrix 

were downloaded as .sdf {structure data files} file, from RCSB, excluding the hydrogen 

atoms. The .sdf files were then converted into .mol format using OpenBabel (O'boyle et 

al., 2011) and further stereochemical signatures were extracted using SSCAN (Faulon, 

2012) algorithm, at the height of 6. A frequency matrix (Figure 10 A) was computed 

between ligands and signatures. The top 92 ligands interacting with the most number of 

proteins were selected and consequently, a subset covering the selected ligands and their 

associated proteins were extracted, from the matrices.  

2.4 Matrix manipulation and CCA 
 

The matrices Signatures-Ligands and Ligands-Proteins were multiplied and 

transposed to generate the response matrix, Proteins-Signatures. While, the matrix, 

Proteins-6mers was used as the explanatory matrix. CCA was conducted on these two 

matrices using the R package, ade4 (Dray et al., 2007), treating 6-mers as environmental 

variables and signatures as species (Table 2) 
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. 

 

Figure 10: Summary of matrices used for CCA 

 

 

Table 2: Parallel between variables used in ecological and our present study 

Ecological Variables Variables used in this study 

Species Chemical signatures of ligands 

Sites Proteins 

Environmental Variables 6-mers present in the proteins 
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3 Results and discussion 
 

From the summary of the analysis, it is observed that 6-mers and their patterns of 

occurrence can explain that 58.3% of the total constrained inertia or variance in the 

distribution of the ligand signatures. This constrained inertia is project on different axes, 

in order to explain most of the variance on minimum number of axes. The first two axes 

have the highest eigenvalues of 0.90 and 0.81, respectively. This explains most of the 

variance (Figure 11). Therefore, the first two axes would be ideal to plot the distribution 

scores on.  

 

Figure 11: Barplot (scree plot) showing variance 

 

The 6-mers distribution (Figure 12) and molecular signature (species) distribution 

(Figure 13) and the superimposition of the two (Figure 14) suggest that there are clusters 

in the distribution of the signatures and, the groups of 6-mers point towards one cluster. 

The length and the direction of the arrow depict the strength of correspondence between 

the associated 6-mer and the signature. In general, correlations amongst the 6-mers and 

signature can be ascribed to the ligands bound to proteins. 
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Figure 12:  Visualization of 6-mers 

 

Figure 13:  Signature distribution 
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Figure 14: Canonical correspondence analysis map of both signature and 6-mers. 

 

A few 6-mers clustered together were extracted to validate the data (Table 3). The 6-mers 

were then traced back to the proteins they belong to, which in turn were traced to the 

ligands with which they interact. It can be noted that there's correspondence between 

these 6-mers and the ligands BCL, LDA, SCN, MPD, etc. A cluster of signatures towards 

which this cluster of 6-mers was pointing was extracted too, and it could be seen that the 

majority of those signatures are present in the ligand BCL, and a few others like LDA, 

and MPD.   

 

In conclusion, this result can be attributed to the existence of inherent patterns in protein-

ligand interactions. In this preliminary analysis, we only considered 92 ligands. The 

analysis on whole dataset may lead to better understanding of ligand-protein interactions. 

Moreover, 6-mers thought to be in a correspondence with a few signatures could be 

looked at in the spatial context of the protein they belong to, in other words, the said 6-

mers could be placed in the 3D structures of the proteins they hail from, in order to 

investigate if they're present near or at the ligand binding sites of the protein and are 

directly involved in the binding with ligand signatures.  This initial analysis provides 

CCA1 

C
C

A
2
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usefulness of CCA in elucidating patterns from protein and ligands that could be 

exploited to predict their interactions. 

 

Table 3: Summary of relation between 6-mer and ligands 

6-mers extracted PDB id with 6-mers Ligands the proteins 

bind to 

DFWVGP 3WMM_L 

4CAS_B 

4IN7_L 

BCL 

BCL 

BCL 

FDFWVG 3WMM_L 

4CAS_B 

4IN7_L 

BCL 

BCL 

BCL 

LFDFWV 3WMM_L 

4CAS_B 

4IN7_L 

BCL 

BCL 

BCL 

VGFFGV 3WMM_L 

4CAS_B 

4IN7_L 

BCL 

BCL 

BCL 

LGKIGD 3KHS_A 

3WMM_M 

4CAS_C 

TRS 

BCL 

BCL 

REGYPL 1EYS_H 

1VRN_H 

4IN7_H 

BCL 

LDA 

BCL, LDA 

EEEAIA 1LGH_B 

1XQ9_B 

3KXL_A 

BCL 

SCN 

SCN 

TLLGVL 1SDI_A 

2PNO_A 

3WMM_L 

ACY,  MPD 

LMT, GSH 

BCL 
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