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Abstract

Frustrated spin systems show exotic ground state known as spin liquid. Spin liquid is

a disordered state where the system does not undergo any magnetic ordering even at

very low temperature due to fluctuations. Understanding of spin liquid is challenging

as it is hard to find their existence experimentally. Spin liquid can show both gapless

and gapped excitations. However, spin liquid cannot be studied with conventional

Landau-Ginzburg order parameter as it does not show any spontaneous symmetry

breaking. Rather, the gapless phases are protected by some gauge fields. Recently,

Kitaev[1] has proposed a two dimensional exactly solvable spin 1/2 model on honey-

comb lattice which hosts quantum spin liquid as its ground state. This model has

bond directional interactions which make it a frustrated system and it is different than

geometrical frustration. This has generated significant interests to look for materials

which can show Kitaev like spin interaction. Kitaev like interaction is observed in the

presence of Heisenberg spin coupling term which is called Kitaev-Heisenberg model.

Recently, people have found bond directional interaction in iridates[7] and observed

the Kitaev spin liquid behaviour in α − RuCl3[10]. In first part of my thesis work,

I understood the analytical techniques required to solve the Kitaev model[1]. Using

the fermionisation of spin 1/2 method, Kitaev spin 1/2 interacting Hamiltonian can

be simplified to a non-interacting Majorana fermions hopping Hamiltonian in pres-

ence of constant background gauge fields. In the second part of my thesis, classical

Kitaev-Heisenberg Hamiltonian[9] was explored. In order to understand classical KH

model, certain thermodynamical quantities like energy, specific heat, magnetisation,

have been calculated using classical Monte-Carlo simulations on honeycomb lattice

and triangular lattice. We have shown that if we go away from the Kitaev limit, the

system shows phase transition on honeycomb lattice. But for α = 1(Kitaev limit) the

specific heat and energy curves show no transitions on honeycomb lattice. However,

using CMC we observe that for triangular lattice, the system always shows phase

transitions occurring at low temperature for all ranges of α. Corresponding structure

factors plots guide us to the ferromagnetic(α = 1) and anti-ferromagnetic(α = 0)

ground states on triangular lattice.
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Chapter 1

Introduction

Real materials around us are diverse. Understanding the nature of real materials is

challenging as they show various exotic phases. Condensed Matter Physics tries to

capture the understanding of these real materials by modelling them using various

effective methods theoretically and experimentally. As the number of real materials

are huge, we expect to discover plenty of exotic characters shown by them. It is

this existence of various exotic phases which makes this field interesting as well as

challenging. Every kind of material should be modelled appropriately so that we can

understand its properties and behaviours completely.

Towards the understanding of such materials, we look for suitable model to describe

them separately. For example, Free Electron model is one of the simplest models

which can describe the properties of metals like Na,K in a very accurate sense. One

of the very interesting models which describes the properties of transition metals is

Tight Binding model.

But all these models do not incorporate electron-electron interaction. However, in

real materials electron-electron interaction is present. If we take into account electron-

electron interaction in the model Hamiltonian, it gets incredibly difficult to solve them

analytically. For instance, Hubbard model which is one of the simplest toy models

which includes electron-electron interaction is still unsolved even in two dimension

analytically. So, there are very few models which can be exactly solved in Condensed

Matter Physics if we incorporate electron electron interaction. For this purpose, we

are limited to the analytical tools available to us and it is fruitful to explore models

with the help of computer simulation.
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Using computer simulations we can probe the systems at any scale and calculate

quantities we are interested in. In addition to that, One can also predict the emergence

of new phases of matter with the help of simulations.

1.1 Classifications of Materials and Methods

The real materials more or less can be categorised them in the following list;

• Metals

• Insulators

• Semi-Conductors

• Semi-metals

• Mott Insulators

• Topological Insulators

• Superconductors

• Magnets

• Spin-Liquids

The research in Condensed Matter Physics is developing rapidly everyday and this list

will require new additions to classify new kind of systems in future. There are several

computational techniques that have also been developed to investigate real materials.

Some of them which are commonly used are following;

• Exact Diagonalisation

• Classical Monte-Carlo

• Quantum Monte Carlo

• Hatree-Fock and Density Functional Method

• Density Matrix Renormalisation Group Method

• Cluster Mean Field Theory Method
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1.2 Spin-Liquids

In Condensed Matter systems most common phases are liquid, solid and gas. Any

of such phases can be characterised by some local order parameter. This order pa-

rameters take different values in different phases. As there exists symmetry in phases

one can define such order parameters corresponding to particular phase. When the

symmetry is broken spontaneously we can have phase transition. It means that we

can go from one phase to another phase.

Similar analog can be drawn to magnetism. Magnetism occurs due to the electron-

Figure 1.1: spin liquid[26]

electron interaction in the system. It can be understood by studying various spin

models. Ising model, Hubbard model, Heisenberg model are some of the key models

to understand magnetism. Solid phases of matter can be thought of as the ordered

Ferromagnetic or Anti-ferromagnetic states in magnetism. Gas phase could be asso-

ciated with Paramagnetism where spins are not ordered in arranged manners. It is

interesting that the liquid phase of matter does not have any counterpart in mag-

netism. To establish such an analogy of liquid state in magnetism we have Spin

Liquid. Spin liquid is a disordered phase of matter in which fluctuations dominate

even at temperature close to 0 K. Generally, when we cool down the system, system

goes to some ordered state. But for spin liquids due to the presence of large degener-

acy in ground states, the system fluctuates even at low temperature. Spin liquid is a

signature of frustrated spin system[23].
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For instance, a triangular lattice which has anti-ferromagnetic interaction term

among spins is a frustrated spin system as the third spin will try to satisfy the need

of other two spins simultaneously. This competition to satisfy the overall nature of

anti-ferromagnetic interaction makes the system frustrated. We can realise that in

order for the system to be anti-ferromagnetic in nature, the system can have six fold

degeneracy. This large degeneracy of the system gives rise to spin liquid type ground

state to appear where there is no ordering. Nevertheless, this frustration is arising

due to the geometry of the lattice. This is called geometrical frustration.

The concept of quantum spin liquid was first proposed by Anderson in 1973. Since

then, the quest for experimental realisation of spin liquid is on. More detail about

spin liquids can be found in this review article[16]. Some systems which have been

experimentally discovered to host quantum spin liquid ground state are following:

• Two dimensional triangular lattice: k−(BEDT−TTF )2Cu2(CN)3, Ba3IrT i2O9.

• Two dimensional Kagome lattice: ZnCu3(OH)6Cl2 (Herbertsmithite).

• Two dimensional honeycomb lattice: α−RuCl3, A2IrO3 where (A = Na,Li).

To capture spin liquid like character in experiments is very much challenging due to

their fluctuations. Frustrated systems can be characterised by a parameter called

frustration parameter which is defined by the following way:

f =
|ΘCW |
Tc

(1.1)

where ΘCW is the Curie-Weiss temperature and Tc is the transition temperature.

For frustrated systems f � 1. in the case of frustrated systems even at very low

temperature, there does not exist any long range order. Spin liquid has one more

interesting property which is called fractional excitations. It is a very counter-intuitive

phenomena where an electron can actually get split and show its spin, charge and

orbital components independently. By performing neutron scattering experiments

fractional excitations have recently been found in kagome-lattice anti-ferromagnet[3].
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Interestingly, spin liquids show both gapless and gapped excitations. Gapless ex-

citations are traditionally understood from the Goldstone mode concept where they

appear due to spontaneous symmetry breaking of the system. However, in the case of

spin liquids, this is not applicable as the system does not show any spontaneous sym-

metry breaking. For spin liquids the gapless modes are protected by gauge fields[14].

In order to understand quantum spin liquids microscopically, one can use Schwinger-

boson or Schwinger-fermion techniques where spin operators are represented by either

bosons or fermions. To obtain the ground state of spin liquid system, first we need

to calculate the mean field ground state using Schwinger-boson or Schwinger-fermion

methods. After that one can apply corresponding projection group to obtain the exact

ground state of the system[13].

1.3 Motivation

Very recently, Kitaev has given an exactly solvable spin 1/2 model on two dimensional

honeycomb lattice with bond directional interaction[1]. The spin component of one

spin will interact with the same component of the nearest neighbour spin through the

assigned bond. Hence, the model is an example of a frustrated system as at any site

one spin cannot satisfy all three interaction of spin components with three other spins

simultaneously. This frustration is arising from the anisotropic nearest neighbour

interaction which is different than geometrical frustration. The ground state of this

model is a quantum spin liquid which can show gapless and gapped excitations. To

characterise the nature of spin liquid theoretically, quasi-particle fractional statistics

are needed. In two dimension spin liquid can give rise to excitations of quasi-particles

which are called Anyons. Anyons are neither Bosons nor Fermions. They follow a

different statistics called Braid group. Kitaev model shows both type of spin liquids:

• Gapped phase spin liquid

• Gapless Z2 spin liquid

The gapless Z2 spin liquid supports fractionalised excitations. Majorana fermions

could be observed here as quasi-particles. These particles are called non-abelian

anyons. The gapped phase supports abelian anyon excitation.

5



Recently, people are trying to understand finite temperature properties of Kitaev

model[20]. In doing so, one needs to understand the dynamics of Majorana fermions.

Here, Majorana fermions can be divided into two categories. One is localised and

the other is itinerant. The specific heat has two peaks meaning there is a crossover

between this two different temperature phases. The high temperature phase is the

contribution of itinerant Majorana fermions where as the low temperature region

is caused due to the thermal fluctuations of localised Majorana fermions. While

calculating thermodynamical quantities, the value of all background gauge fields are

set to some constant. So, one can derive the dispersion relation and density of states

of Majorana fermions for certain configuration of background gauge fields. This gives

a nice way to understand the behaviours of Majorana fermions.

Experimental realisation of Kitaev like interaction in real materials is challenging.

However, in presence of Heisenberg exchange term, Kitaev like interaction can be

explored. The presence of Heisenberg spin exchange term brings magnetic ordering

at low temperature.

Transition metal oxides with partially filled 4d or 5d orbitals show strong spin-orbit

coupling which can exhibit unconventional magnetic ordering. Materials with strong-

orbit coupling can also show anisotropic interaction. In Na2IrO3 material, Ir4+ ions

are in 5d5 configuration forming two dimensional hexagonal layers. in presence of

octahedral crystal field there is a splitting in orbitals into t2g and eg. Then due to

strong spin orbit coupling t2g level is filled with j = 3/2 and eg is partially filled with

j = 1/2 band. The behavior of this effective j = 1/2 moment can be described by KH

model. A coherent description of different kinds of Kitaev material can be found in the

article[17]. So, KH model on iridate materials is a very interesting model to explore

spin liquid state along with some long range magnetic ordered states. Recently, people

are also exploring KH model on triangular lattice[19].

6



1.4 Thesis Plan

Motivated by the exotic features of frustrated spin system, the work has been carried

out to understand spin liquids. The work can be divided into two parts:

• Understanding the exact analytical solution of Kitaev model and theoretical

understanding of spin liquids.

• Numerical investigations of classical KH model on honeycomb lattice and trian-

gular lattice using Classical Monte-Carlo method.

7
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Chapter 2

Theoretical Background

In this chapter I will focus on the exact solution of the Kitaev model. In doing so,

I will discuss about some symmetries and corresponding conserved quantities which

will divide the dimension of the original Hilbert space into two sectors. After which,

I will go through the technique called fermionisation of spin 1/2 and diagonalise the

Hamiltonian to get the energy spectrum. The phase diagram of Kitaev model will be

explained. Finally, I will briefly introduce the Kitaev-Heisenberg model and its Phase

diagram which have been there in the literature.

2.1 Kitaev model on honeycomb lattice

Kitaev model on honeycomb lattice is a two dimensional exactly solvable spin 1/2

model. This model captures the physics of strongly correlated electrons. It is a very

interesting model which supports fractional excitations. The Kitaev model described

on honeycomb lattice looks like following:

Figure 2.1: Honeycomb lattice with three anisotropic interaction
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The model describes the interaction between spin 1/2 which are residing at each

site of the hexagon. The bonds shown by different colors represent anisotropic in-

teraction between the spins. Thus we need to label the links properly. The black

color link represents ’x’ bond, violate color link represents ’y’ bond and the blue color

link represents the ’z’ bond. We have labeled the bonds x,y,z because any two nearest

neighbour spins will interact with their spin components corresponding to the assigned

link. If a spin is connected to its neighbour by x bond then their x component of spin

will only interact. So is true for the other bonds.

It is in this sense the system has anisotropic interaction. Each spin at one site cannot

satisfy its interaction of all three spin components with nearest neighbour spin. That

is why this system is a frustrated spin system. It is important to mention that this

frustration is different from geometrical frustration where frustration appears due to

the geometrical structure of lattice. For example, a spin system on triangular lattice

which has anti-ferromagnetic ground state will show geometrical frustration. Frus-

trated systems show very interesting features. One of which is the presence of spin

liquid ground state. This kind of systems do not show any magnetic ordering even at

very low temperature i.e. fluctuation still dominates even at low temperature which

prevents the system from ordering.

2.2 Kitaev Hamiltonian

The Hamiltonian[1] of the system can be written as following:

H = −Jx
∑
<ij>,x

σxi σ
x
j − Jy

∑
<ij>,y

σyi σ
y
j − Jz

∑
<ij>,z

σzi σ
z
j (2.1)

where the summation is taken over all nearest neighbour spins i and j and all the links.

σx, σy, σz are the Pauli spin 1/2 matrices. Jx, Jy, Jz are the exchange constants. So,

we need to solve the Hamiltonian in order to get the energy spectrum of the system.

We know that if we find some symmetries of the system then it will correspond to

some conserved quantities. Hence, it can reduce the large dimension of the Hilbert

space of the system. So, it is therefore important to investigate for symmetries before

diagonalising the Hamiltonian.

10



2.3 Symmetries and Conserved quantities

In order to find symmetries of the system we focus on each plaquette. On each

plaquette we can define one operator Wp in the following form;

Wp = σx1σ
y
2σ

z
3σ

x
4σ

y
5σ

z
6 (2.2)

We can easily identify how the above form of the operator is obtained. We consider

one plaquette and write down all possible link from the Fig.(2.1).

Wp = σz1σ
z
2σ

x
2σ

x
3σ

y
3σ

y
4σ

z
4σ

z
5σ

x
5σ

x
6σ

y
6σ

y
1 (2.3)

Now if we use the relation σxσy = iεxyzσz then Wp retains the form (2.2).

The operator Wp remarkably commutes with the Hamiltonian of the system H giving

rise to some local conserved quantities.

First we define the following relations:

{σiα, σiβ} = 2δαβ where α, β = x, y, z (2.4)

[
σiα, σjβ] = 0 if i 6= j (2.5)

The above two relations indicate that all components of spins on various links are

mutually commuting where as on a given link different Cartesian spin components

anti-commute.

Let us take only one component of the Hamiltonian, say z component of spin interac-

tion term and check the commutation relation with the operator Wp.[
Wp, σ

z
1σ

z
2

]
= σx1σ

y
2σ

z
3σ

x
4σ

y
5σ

z
6σ

z
1σ

z
2 − σz1σz2σ

y
1σ

y
2σ

z
3σ

x
4σ

y
5σ

z
6 (2.6)

By using the above two commutation relations, we can bring σz1σ
z
2 to the left in the

first term and it will then cancel out with the other term. Hence

[
Wp, σ

z
1σ

z
2

]
= 0 (2.7)

Similarly y component interaction and z component interaction term of the Hamilto-

nian will commute with the operator Wp.

11



Thus, the operator Wp commutes with the total Hamiltonian H.

[
Wp, H

]
= 0 (2.8)

It means on each plaquette there is a conserved quantity which is associated with this

operator Wp. So, the operator Wp and H will have same set of eigenfunction. One

more important thing is to notice the structure of the operator Wp. The structure

can easily guide us to get what is the corresponding eigenvalues of the operator Wp.

We can take the square of Wp and see its form which is the following;

W 2
p = (σx1σ

y
2σ

z
3σ

x
4σ

y
5σ

z
6) (σx1σ

y
2σ

z
3σ

x
4σ

y
5σ

z
6) (2.9)

We can pair all the σx, σy and σz operator together and using the identity form of σ2

operator we see that,

W 2
p = 1 (2.10)

Wp = +1,−1 (2.11)

Hence, the operator Wp has two eigenvalues +1 or -1. So, can divide the Hilbert space

of the system into two sectors. One sector corresponds to the eigenvalue Wp = 1 and

the other sector corresponds to Wp = −1. Initially the dimension of the Hilbert space

was 2n where n is the number of spins present in the system. The degrees of freedom

described by {Wp} will be equal to the number of plaquettes n/2. Thus, each of this

sectors will correspond to the Hilbert space which is of 2n/2 dimensional.

The variables Wp act like a static Z2 Ising field. So, the problem boils down to solve

the Hamiltonian for each such configuration of Wp which can have two values 0 or 1.

2.4 Fermionisation Technique for Spin 1/2

In this section we will understand how the problem of interacting spin 1/2 can be

mapped to non interacting Majorana fermions. To solve the Hamiltonian we need

to use the technique called fermionisation[1] of spin 1/2 where each complex Dirac

fermion is represented by two real Majorana fermions.

First, we are defining the system with two spin 1/2 present at each vertex of the

hexagon. So, we need to introduce four Majorana fermions for two Dirac fermions

present at each vertex.

12



The creation and annihilation operators for this two Dirac fermions are C†1, C
†
2, C1, C2.

The corresponding four Majorana operators are the following:

C = (C1 + C†1) (2.12)

Cx = (1/i)(C1 − C†1) (2.13)

Cy = (C2 + C†2) (2.14)

Cz = (1/i)(C2 − C†2) (2.15)

Where all the Majorana fermionic operators obey the anti-commutation relation:

{
Cα, Cβ

}
= 2δαβ where α, β = x, y, z (2.16)

Cα = Cα†
(2.17)

Cβ = Cβ†
(2.18)

In the above anti-commutation relation the site index has not been introduced for the

Majorana operators as they are living on the same site. Nevertheless, all the Majorana

operators which are at different site will commute with each others. The equations

(2.17) and (2.18) are true because Majorana particles are their own antiparticle.

Now we can represent the spin 1/2 operators in the Hamiltonian with these new four

Majorana fermionic operators.

σx = iCxC (2.19)

σy = iCyC (2.20)

σz = iCzC (2.21)

With this construction one can easily check that the spin 1/2 operators follow the

fermionic anti-commutation relation for α 6= β (A.1). In order to satisfy Pauli spin

algebra there is one more condition which needs to be satisfied by these Majorana

fermionic operators.

σxσyσz = i (2.22)

We can multiply (2.19), (2.20), (2.21) and the resulting expression is

σxσyσz = iCxCyCzC (2.23)

One has to put a constraint on Majorana operators to satisfy the expression (2.22).
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The constraint is CxCyCzC = 1. We call CxCyCzC a new operator D̂. This new

operator can be expressed as following (A.2) in terms of spin 1/2 operators.

D̂ = (2C†1C1 − 1)(2C†2C2 − 1) (2.24)

D̂ should have the eigen value 1 which came from applying the constraint. Earlier,

we mentioned that at each site we have two spin 1/2. So, the Fock space is four

dimensional. The states can be represented with the occupation number notation

as |0, 0〉, |0, 1〉, |1, 0〉, |1, 1〉. Acting the operator D̂ on these states should give the

eigenvalue 1.

D̂|0, 0〉 = (2C†1C1 − 1)(2C†2C2 − 1)|0, 0〉

= (4C†1C1C
†
2C2 − 2C†1C1 − 2C†2C2 + 1)|0, 0〉

= −4C†1C
†
2C1C2|0, 0〉 − 2C†1C1|0, 0〉 − 2C†2C2|0, 0〉+ 1|0, 0〉

= 1|0, 0〉

The first three terms give 0 as the rightmost annihilation operator destroys the state.

So, we see that the operator retains its eigenvalue 1.

D̂|1, 0〉 = (2C†1C1 − 1)(2C†2C2 − 1)|1, 0〉

= (4C†1C1C
†
2C2 − 2C†1C1 − 2C†2C2 + 1)|1, 0〉

= −4C†1C
†
2C1C2|1, 0〉 − 2C†1C1|1, 0〉 − 2C†2C2|1, 0〉+ 1|1, 0〉

= (0− 2 + 0 + 1)|1, 0〉

= −1|1, 0〉

Here we see that the eigenvalue of the operator D̂ is −1 which is not expected as it will

violate Pauli’s spin algebra. Similarly, if we operate D̂ on the state |0, 1〉 it will give

the eigenvalue −1 where as the state |1, 1〉 will give the correct eigenvalue of 1. We can

clearly infer from the above calculation that the states which gave eigenvalue −1 are

unphysical. If we want to retain all the possible physical states in the Hilbert space

then we have to get rid of these unphysical states. Here in these case the physical

states are |0, 0〉 and |1, 1〉. And the corresponding unphysical states are |0, 1〉 and

|1, 0〉.
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Our next task is to eliminate all these unphysical states from the Hilbert space. In

order to project out all the unphysical states we can construct one operator for each

site i

P̂i =
1 + D̂i

2
(2.25)

If we operate this P̂ [1] on the states |0, 1〉 and |1, 0〉 it will project out these two states

from the Hilbert space.

P̂ |0, 1〉 =
1 + D̂i

2
|0, 1〉

=
1

2
|0, 1〉+

1

2
(2C†1C1 − 1)(2C†2C2 − 1)|0, 1〉

=
1

2
|0, 1〉+

1

2
(−1|0, 1〉)

= 0 (2.26)

Similarly, P̂ |1, 0〉 = 0 is also true. So, the projection operator P̂ is able to project out

all the unphysical states from the Hilbert space. Though we can define such an oper-

ator for each site, the process of eliminating all the unphysical states is cumbersome.

So, if we are interested in finding out the eigen states of the system systematically

then we should use another method called Jordan-Wigner transformation[24].

One should notice why these unphysical states appear in the Hilbert space. The rea-

son for this is when we are introducing the Majorana fermionic operators for the spin

1/2, we are enlarging the corresponding Hilbert space with many gauge copies. These

extra states are present in the Hilbert space but are not significant. The spectrum

of the Hamiltonian will be same even in the extended Hilbert space as we can verify

that when we take the commutator of D̂i and H.

[
Di, σ

x
i

]
= i {CxCyCzCCxC − CxCCxCyCzC}

= i
{
−CxCxCyCzC2 + CxC2CxCyCz

}
= i {CyCz − CyCz} (2.27)

= 0

The expression (2.27) is obtained using the anti-commutation relations of Majorana

fermionic operators which give C2 = 0, (Cx)2 = 0. We took the commutator of D̂i and

σxi because σxj will anyway commute with D̂i(because spin components at different

site always commute).
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We can carry out the same thing and observe that all three terms in the Hamil-

tonian commute with the operator D̂i and hence the spectrum of the Hamiltonian

retains same in the extended Hilbert space also. Thus, we need to diagonalise this

fermionised Hamiltonian to get the energy spectrum.

Now let us write down the Hamiltonian in terms of Majorana fermionic operators:

H = −Jx
∑
<ij>,x

(i)2Cx
i CiC

x
j Cj − Jy

∑
<ij>,y

(i)2Cy
i CiC

y
jCj − Jz

∑
<ij>,z

(i)2Cz
i CiC

z
jCj

= −Jx
∑
<ij>,x

(iCx
i C

x
j )(−iCiCj)− Jy

∑
<ij>,y

(iCy
i C

y
j )(−iCiCj)− Jz

∑
<ij>,z

(iCz
i C

z
j )(−iCiCj)

H = Jx
∑
<ij>,x

(iCx
i C

x
j )(iCiCj) + Jy

∑
<ij>,y

(iCy
i C

y
j )(iCiCj) + Jz

∑
<ij>,z

(iCz
i C

z
j )(iCiCj)

(2.28)

It is clear that the Hamiltonian[22] described by the equation (2.28) is quartic in Majo-

rana fermionic operators. The terms (iCx
i C

x
j ), (iCy

i C
y
j ), (iCz

i C
z
j ) individually commute

with the Hamiltonian and hence correspond to conserved quantities. We can denote

them with a new notation which is the following:

iCx
i C

x
j = uxi,j (2.29)

iCy
i C

y
j = uyi,j (2.30)

iCz
i C

z
j = uzi,j (2.31)

As these quantities (2.29), (2.30), (2.31) are conserved, we can take them to be some

constant gauge fields and then the Hamiltonian reduces to quadratic in nature. These

quantities are some constant fields which are sitting on x, y and z bonds. If we replace

these quantities and rewrite the Hamiltonian, it will look like:

H = Jx
∑
<ij>,x

uxi,j(iCiCj) + Jy
∑
<ij>,y

uyi,j(iCiCj) + Jz
∑
<ij>,z

uzi,j(iCiCj) (2.32)

The above Hamiltonian describes the tight binding Majorana fermions hopping in

presence of constant Z2 gauge fields defined on each x, y and z bonds.
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One can ask what are the these constant values which can be taken by these

constant fields. For that we have to notice the structure of uαi,j where α = x, y, z. It

is easy to realize that |ui,j|2 = 1. Hence the eigen values of ui,j are +1 or −1. Thus

we can solve the Hamiltonian for +1 or −1 configuration of ui,j.

So after fermionisation the Hamiltonian we are getting some conserved quantities in

the extended Hilbert space which are the above mentioned gauge fields. For a specific

plaquette we can define one vortex operator;

V̂p =
∏

<i,j>(plaquetteboundary)

ui,j (2.33)

where i, j belong to different sub-lattice of the hexagon. This vortex operator should

reduce to Ŵp when we restrict it to the physical space where D̂ = 1. Another impor-

tant thing to remember is ûi,j = −ûj,i .

V̂p = û2,1û2,3û4,3û4,5û6,5û6,1

= (i)6(−1)Cz
1C

z
2C

x
2C

x
3 (−1)Cy

3C
y
4C

z
4C

z
5 (−1)Cx

5C
x
6C

y
6C

y
1

= σx1 D̂1σ
y
2D̂2σ

z
3D̂3σ

x
4 D̂4σ

y
5D̂5σ

z
6D̂6

= σx1σ
y
2σ

z
3σ

x
4σ

y
5σ

z
6 (2.34)

using iCz
i C

x
i = −σyiDi and cyclic permutation, we have got the final expression (2.34)

which is same as equation (2.2). So, we can say that each of the ûi,j is not gauge

invariant but their product over one plaquette is gauge invariant which commutes

with the original Hamiltonian. Hence in the physical space where D̂ = 1 the operator

V̂p = Ŵp.

We have come close to diagonalise the Hamiltonian for certain configuration of ui,j

and get the eigen value spectrum. However, with this technique it is tedious to get

the eigen states as we need to project out all the unphysical states first. The following

formula can be used to get the physical eigen state of the system:

|ψ〉phys =
∏
i

(
1 +Di

2

)
|ψ〉 (2.35)
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Now, the question is for what value of the plaquette operator Wp the system

corresponds to the ground state?

A proof given by Lieb[21] which states that, in order to find the minimum energy

configuration one needs to take Wp = 1 for each plaquette which is achieved by fixing

the ui,j = 1 for every link.

2.5 Diagonalising the Fermionised Hamiltonian

We are now in the perfect position for diagonalising this fermionised Hamiltonian in

presence of the constant background fields. The Hamiltonian is quadratic in Majorana

operators representing a simple tight binding model. We have translational invariance

symmetry in the system. So, the way to solve the Hamiltonian is to represent all the

Majorana operators in the Fourier space as we do it for any general tight binding

model. Honeycomb lattice is not a Bravais lattice. In order make it a Bravais lattice

we can redefine a unit cell. We represent a z-link as the new unit cell and then it will

get reduced to a square lattice.

Ca,b
i =

∑
k

1√
N
ei
~k·~rCa,b

k (2.36)

where N is the number of unit cells. As it is a square lattice now, its momentum

belongs to −π,+π. The property C†i = Ci for Majorana fermions gives one condition

which is:

Ck = C†−k (2.37)

So, there is an inversion symmetry exists in the momentum space. Now, the two

vectors which define the lattice are:

n̂1 =
1

2
êx +

√
3

2
êy (2.38)

n̂2 = −1

2
êx +

√
3

2
êy (2.39)
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Only the nearest neighbour interaction is included. After Fourier transformation

and applying summation we can get the following Hamiltonian:

H =
∑

k∈
1

2
B.Z

(
C†k,aC

†
k,b

) [ 0 if ∗(k)

−if(k) 0

](
Ck,a

Ck,b

)
(2.40)

where

f(k) = (e−ikxJx + e−ikyJy + Jz) (2.41)

equation (2.41) has the property of f ∗(k) = f(−k). The fact that the system has

inversion symmetry in momentum space makes the summation go over half Brillouin

zone. It is now easy to diagonalise the matrix in equation (2.40) and the corresponding

eigenvalues are ±|f(k)|.

In doing the diagonalisation the unitary transformation chosen is given below:

(
Ck,a

Ck,b

)
=

1√
2

 if ∗k
|f(k)|

− if ∗k
|f(k)|

1 1

( ωk

γk

)
(2.42)

After diagonalising the Hamiltonian, it takes the following form;

H =
∑
k

|f(k)|(ω†kω − γ
†
kγ) (2.43)

Here ω, γ are the quasi-particle operators. From the expression it is obvious that the

minimum energy state can be obtained by filling up the quasi-particle γk. Hence the

ground state is

|G.S〉 =
∏

k∈
1

2
B.Z

γ†k|0〉 (2.44)

where |0〉 represents the vacuum of quasi-particle. However, this ground state is not

the exact physical ground state of the system as we have solved the system with

Majorana fermionic operators. And there are still unphysical states present in the

enlarged Hilbert space. To obtain the exact ground state, we need to symmetrise the

above ground state with the projection operator.
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2.6 Excitation and Phase Diagram of Kitaev Model

The next interesting question is to ask what is the nature of excitation in the

energy spectrum?

To understand the nature of the excitation we have to look whether the spectrum

is gapless or gapped. So, the problem is to look for the solution of |f(k)| = 0. So

basically, we need to solve:

e−ikxJx + e−ikyJy + Jz = 0 (2.45)

We can separate the real and the imaginary part and then equate them to 0.

Jx cos(kx) + Jy cos(ky) + Jz = 0 (2.46)

−Jx sin(kx)− Jy sin(ky) = 0 (2.47)

For analysis purpose, we impose the condition that all exchange constants to be

positive. Also if we take the following conditions kx ≤ 0 and ky ≥ 0 or kx ≥ 0 and

ky ≤ 0 to be true then from the equation (2.47) we will get:

Jx sin(kx) = Jy

√
1− cos2(ky) (2.48)

On squaring the above equation we get

J2
y cos2(ky) = J2

y − J2
x sin2(kx) (2.49)

From equation (2.46) we have,

Jy cos(ky) = −Jx cos(kx)− Jz (2.50)

Squaring the above expression we get,

J2
y cos2(ky) = J2

x cos2(kx) + J2
z + 2JxJz cos(kx) (2.51)
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From equation (2.49) and (2.51) we will get the following:

J2
x cos2(kx) + J2

z + 2JxJz cos(kx) = J2
y − J2

x sin2(kx)

J2
x cos2(kx) + J2

z + 2JxJz cos(kx) = J2
y − J2

x(1− cos2(kx))

2JxJz cos(kx) = J2
y − J2

x − J2
z

cos(kx) =
J2
y − J2

x − J2
z

2JxJz
(2.52)

Similarly we will obtain;

cos(ky) =
J2
x − J2

y − J2
z

2JyJz
(2.53)

After all, we are looking for the values of kx and ky for which the energy spectrum is

gapless. And the solutions for them are the following:

kx = ± arccos
J2
y − J2

x − J2
z

2JxJz
(2.54)

ky = ± arccos
J2
x − J2

y − J2
z

2JyJz
(2.55)

From the above two equation, we can have limitations on the exchange constants.

− 2JxJz ≤ J2
y − J2

x − J2
z ≤ 2JxJz (2.56)

− 2JyJz ≤ J2
x − J2

y − J2
z ≤ 2JyJz (2.57)

On simplifying (2.56) further we can get,

J2
y − J2

x − J2
z ≤ 2JxJz

J2
y ≤ (Jx + Jz)

2

Jy ≤ (Jx + Jz) (2.58)

Similarly, from (2.57) we get,

Jx ≤ (Jy + Jz) (2.59)

−2JxJz ≤ J2
y − J2

x − J2
z (2.60)

−2JyJz ≤ J2
x − J2

y − J2
z (2.61)
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Finally, adding the two equations above we find the last inequality:

Jz ≤ (Jx + Jy) (2.62)

Thus, we see that the spectrum will be gapless if all the three inequalities (2.58),

(2.59) and (2.62) are satisfied simultaneously. These three inequalities are called

triangle inequalities. If one of these inequalities is even violated, the system will not

show gapless excitation. Having been equipped with all the information, we can now

look at the phase diagram.

If we restrict the plane by the Jx + Jy + Jz = 1. The phase diagram of Kitaev model

will look like:

Figure 2.2: Phase diagram of Kitaev model with all ui,j = 1 sector. The bigger
triangular part is Jx + Jy + Jz = 1.[1]

In Fig.(2.2) the phase B is the gapless phase where all three triangle inequalities hold.

The other three phases Ax, Ay, and Az are the gapped ones where the inequalities

violate. Depending on the various values of exchange constants, the corresponding

phases are decided.
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2.7 Dispersion plots for various phases

In this section, we will plot the dispersion relation for the four phases of Kitaev model.

The expression (2.41) will be used.

Figure 2.3: (2.3a) Ax gapped phase for Jx, Jy, Jz = 0.6, 0.1, 0.3 respectively.
(2.3b) Ay gapped phase for Jx, Jy, Jz = 0.2, 0.7, 0.1 respectively. (2.3c) Az gapped
phase for Jx, Jy, Jz = 0.1, 0.2, 0.7 respectively. (2.3d) boundary of the gapped and
gapless phase for Jx(0.1) + Jy(0.4) = Jz(0.5)
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Figure 2.4: Mid point of the Phase B where energy vanishes.

The gapped phases are described by Ax, Ay and Az where the triangle inequalities

are not obeyed. The diagram for Jx = Jy = Jz corresponds to the middle point of the

gapless phase. The energy becomes 0 exactly at two points and those points come

from the solution of equations (2.55) and (2.55).

The solutions are kx = ±arccos(−1

2
) = ±2π

3
and ky = ±arccos(−1

2
) = ±2π

3
.
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2.8 Kitaev-Heisenberg Model

After studying Kitaev model in details it is important to realize in what kind of real

systems we can observe this type of specific bond directional interaction. It is really

strange to have bond directional interaction in the system. However, recently people

have shown the existence of Kitaev like interaction in real materials like Iridates[7].

Kitaev like interaction will give rise to the spin liquid ground state which is disor-

dered. But introducing Heisenberg type spin interaction in presence of Kitaev type

interaction in the Hamiltonian will take the system to some ordered ground state away

from the Kitaev limit. So, it is in this sense Kitaev like interaction can be realised in

presence of Heisenberg exchange interaction term.

2.9 KH Hamiltonian and its Phase Diagram

The Kitaev-Heisenberg[11] Hamiltonian can be written formally as the following:

H = (1− α)
∑
i,j

~σi · ~σj − 2α
∑

<i,j>,γ

σγi σ
γ
j (2.63)

where σ are the Pauli spin 1/2 matrices and γ = x, y, z bonds. α is the parametrised

exchange coupling constant which has the value between 0 to 1. The Heisenberg

coupling term is anti-ferromagnetic and Kitaev coupling term is ferromagnetic in

nature. For α = 1 we will recover the spin liquid as ground state. However, if we

go away from this limit, at α = 0.5 a phase called stripy anti-ferromagnetic ground

state appears[5]. At α = 0 it is expected that we will obtain conventional anti-

ferromagnet as Kitaev term vanishes. However, very recently people have explored

the full parameter space by generalising the previous Hamiltonian. In full parameter

space Kitaev-Heisenberg Hamiltonian[6] will be written as:

Hγ
ij = A cosφ

∑
<ij>

(~Si · ~Sj) + 2A sinφ
∑
γ

Sγi S
γ
j (2.64)

where A =
√
K2 + J2. K, J are corresponding Kitaev and Heisenberg exchange con-

stants. K = A sinφ and J = A cosφ. The angle φ can vary from 0 to 2π.
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In full parameter space the phase diagram of Kitaev-Heisenberg model is following:

Figure 2.5: Phase diagram of KH model[6].

Fig (2.5) there are six phases present. Four of them are ordered and two of them are

spin liquids. Black dots correspond to spin up direction and white dots correspond to

spin down direction.

Energence of four ordered states in KH model is very exciting. This motivates peo-

ple to realise Kitaev like interaction on honeycomb magnet in presence of Heisenberg

coupling. Very recently, Kitaev like spin liquid behaviour has been observed exper-

imentally in α − RuCl3[10]. Here, spins of magnetic ruthenium ions form a two

dimensional hexagonal frustrated spin system structure. Existence of four ordered

states in KH model have also been confirmed analytically using series expansions[8].

Finite temperature phase diagram of KH model has been explored on honeycomb lat-

tice using functional renormalisation group method[15]. In the next chapter, we will

focus on classical KH model using CMC simulation.
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Chapter 3

Results and Discussion

In this chapter, we will take up the classical version of KH model and calculate some

of the physical thermodynamical quantities using CMC simulation. In doing the

simulation, standard Metropolis algorithm has been implemented.

3.1 Classical KH Hamiltonian

As we are discussing the classical KH model, we will consider the spins as three

dimensional vectors of unit magnitude i.e. S2
x +S2

y +S2
z = 1. The Hamiltonian[12] for

classical KH model is the following:

H = (1− α)
∑
<i,j>

~Si · ~Sj − 2α
∑
<i,j>γ

Sγi S
γ
j (3.1)

where the parameter α varies between 0 and 1. The Hamiltonian has anti-ferromagnetic

Heisenberg spin coupling and ferromagnetic Kitaev spin coupling. I will use this

Hamiltonian for calculating various thermodynamical quantities. For α = 0 the sys-

tem will be an Heisenberg anti-ferromagnet and for α = 1 the system will be Kitaev

spin liquid.

3.2 Metropolis Algorithm

Monte-Carlo is a very good stochastic method to calculate thermodynamical quanti-

ties. Any sample spin configuration is weighed by the Boltzmann factor.
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The probability that any initial state Si moves to a final state Sf is following:

P (Si → Sf ) = e−β(Ef−Ei) if Ef > Ei (3.2)

= 1 if Ef ≤ Ei (3.3)

where Ei and Ef are the initial and final energy of the system respectively.

The Metropolis algorithm[23] can be implemented in a following manner:

• First, one initialises the lattice by giving a arbitrary spin configuration of the

system.

• After that choose an initial site i.

• Calculate the energy difference ∆E of the system if the spin at i is given another

configuration.

• Generate a random number r between 0 and 1.

• If exp(−∆E

kBT
) > r then select the new spin configuration of the system.

• Then, one needs to go the next site j and repeat the same prescription.

3.3 Thermodynamical Quantities

Using the CMC method, some of the important thermodynamical quantities have

been calculated. In the thermodynamical limit, the interesting quantities are average

energy, average magnetisation, specific heat. I calculated these quantities varying

with temperature for classical KH model on honeycomb lattice and triangular lattice.

Cv = N2 〈E2〉 − 〈E〉2

T 2
(3.4)

〈M〉 = (1/N2)

〈√∑
i

(Sxi )2 +
∑
i

(Syi )2 +
∑
i

(Szi )2

〉
(3.5)

3.4 MC results on honeycomb lattice

We have carried out the CMC simulation on classical KH model on honeycomb lattice.

We have explored how thermodynamical quantities like specific heat, magnetisation,
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energy change with temperature. We have calculated the following quantities on

14 × 14 lattice size. While running the simulations, the following parameters were

used:

• Equilibration steps were 10000.

• Averaging steps were 10000.

• Temperature step size was 0.07 in the unit of exchange constant α.

Figure 3.1: (3.1a) Cv(T, α = 0) (3.1b) Cv(T, α = 0.5) (3.1c) Cv(T, α = 0.75)
(3.1d) Cv(T, α = 1)

From the above figures we see how the specific heat changes with temperature

for various values of α. It is interesting to see that when we are approaching the

Heisenberg limit(α tending towards 0), there is a clear indication of phase transition

as the specific heat curves start getting a peak.
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Figure 3.2: (3.2a) E(T, α = 0) (3.2b) E(T, α = 0.5) (3.2c) E(T, α = 0.75)
(3.2d) E(T, α = 1)

Figure 3.3: (3.3a) M(T, α = 0) (3.3b) M(T, α = 0.5) (3.3c) M(T, α = 1)
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3.5 MC results on triangular lattice

We have also investigated the variation of specific heat, magnetisation and energy with

temperature on triangular lattice. In this case, the system size taken was 60 × 60.

While running the simulations, the following parameters were used:

• Equilibration steps were 20000.

• Averaging steps were 20000.

• Temperature step size was 0.026 in the unit of exchange constant α.

Figure 3.4: (3.4a) Cv(T, α = 0) (3.4c) Cv(T, α = 0.5) (3.4b) E(T, α = 0)
(3.4d) E(T, α = 0.5)

In the above figures, we see that the system always goes to some ordered state

when we approach to the low temperature for various α values.
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Figure 3.5: (3.4e) Cv(T, α = 1) (3.4f) E(T, α = 1)

Figure 3.6: (3.6a) M(T, α = 0) (3.6b) M(T, α = 0.5) (3.6c) M(T, α = 1)
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3.6 Structure Factor

We also calculate structure factors for triangular lattice in order to find the magnetic

ordering of ground states at two extreme limit of α namely for α = 1 and α = 0. The

structure factor formula can be written as following:

S~k =
1

N2

∑
<ij>

(~Si · ~Sj)ei
~k(~ri−~rj) (3.6)

Figure 3.7: (3.7a) Structure factor for α = 1 on 30×30 triangular lattice. (3.7b)
Structure factor for α = 0 on 30× 30 triangular lattice.
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For α = 1, there appears one peak in the structure factor plot corresponding to

the ferromagnetic ground state. Where as for α = 0 the system shows the signature

of neel type anti-ferromagnetic ground state.

3.7 Conclusion

• After calculating several thermodynamical quantities using CMC method, we

have shown that in the classical KH model on honeycomb lattice there do exist

a spin liquid state for α = 1. We come to this conclusion based on the specific

heat, energy and magnetisation curves. As we change α from 1 and go towards

0, at low temperature long range ordered state starts appearing. And hence we

can observe significant changes in the specific heat, energy and magnetisation

plots. Even though Mermin-Wagner theorem[18] states that we cannot have

long range ordered state in two dimension or below at finite temperature, here

the ordered state is emerging due to order by disorder mechanism[9].The clear

peaks appearing in specific heat plots away from Kitaev limit indicate the phase

transition. So, the existence of spin liquid in Kitaev limit and phase transition

away from the Kitaev limit is observed.

• On honeycomb lattice for α = 0 the anti-ferromagnetic state is observed from the

magnetisation graphs as expected. Because α = 0 means Kitaev term vanishes

and the Heisenberg term remains. So, the system prefers anti-ferromagnetic

ordering as the exchange constant value is positive.

• We have carried out CMC simulations on triangular lattice also. However, in

this case, we have not found any existence of spin liquid behaviour for α = 1.

Rather, we observe phase transition taking place for various ranges of α at

different temperature. So, CMC simulation is not able to give any trace of spin

liquid states on triangular lattice for classical KH model.

• From the structure factor calculation on triangular lattice we can see that there

exist ferromagnetic ground state for α = 1 and anti-ferromagnetic ground state

for α = 0.
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3.8 Future Outlook

• It will be interesting to study Majorana fermions of the spin 1/2 Kitaev Hamil-

tonian (2.32) in presence of constant background fields numerically. For each

configuration of static background gauge field, one can diagonalise the quadratic

Majorana fermionic Hamiltonian. So the energy spectrum can be obtained and

density of states for itinerant Majorana fermions can also be plotted. In relation

to that, transport property like optical conductivity can give information about

metallic behaviour of Majorana fermions. One may also calculate thermody-

namical quantities[20] like specific heat, entropy.

• One can use CMFT method to understand the dynamics of Majorana fermions.

In CMFT, lattice sites are divided into clusters in such a way that equivalence

of all sites is preserved in a cluster[25]. Here interaction between clusters are

treated on a mean field level.

• Spin-spin correlation can give information about the orderedness of the system.

So, it will be interesting to calculate spin-spin correlation function using CMFT.
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Appendix A

Anti-Commutation Relation

{
σx, σy

}
= σxσy + σyσx

= iCxCiCyC + iCyCiCxC

= −CxCCyC − CyCCxC

= +CxCyC2 + CyCxC2

= CxCy + CyCx using C2 = 1

= CxCy − CxCy using
{
Cx, Cy

}
= 0

= 0

{
σx, σx

}
= 2(σx)2

= 2i2CxCCxC

= −2CxCCxC

= +2(Cx)2C2 using
{
Cx, C

}
= 0

= 2 using (Cx)2 = 1 and C2 = 1

Hence, {
σα, σβ

}
= 2δαβ where α, β = x, y, z (A.1)
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D̂ = CxCyCzC

= CxCCyCz

=
1

i
(C1 − C†1)(C1 + C†1)(C2 + C†2)

1

i
(C2 − C†2)

= −1(C1 − C†1)(C1 + C†1)(C2 + C†2)(C2 − C†2)

= (C†1 − C1)(C1 + C†1)(C2 + C†2)(C2 − C†2)

=

(
C†1C1 + (C†1)2 − (C1)

2 − C1C
†
1

)(
(C2)

2 − C2C
†
2 + C†2C2 − (C†2)2

)
=

(
C†1C1 − C1C

†
1

)(
C†2C2 − C2C

†
2

)
using (C1)

2, (C†1)2, (C2)
2, (C†2)2 = 0

=

(
C†1C1 − (1− C†1C1)

)(
C†2C2 − (1− C†2C2)

)
= (2C†1C1 − 1)(2C†2C2 − 1) (A.2)
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