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Abstract

Galaxy clusters are the most massive astrophysical objects bound by gravity. As the

name suggests, these are groups of few tens to up to thousands of galaxies along with

the intracluster medium and dark matter. These structures observable in optical, X-

ray and radio wavelengths. Besides being of astrophysical importance, galaxy clusters

prove to be reliable cosmological probes and can be used to understand the expan-

sion history of the Universe, and provide insights into questions such as the nature

of cosmic acceleration and growth rate. These are complementary to distance based

probes such as Type Ia Supernovae and Baryon Acoustic Oscillations. The distribu-

tion of masses and redshift depend on the structures in the universe. Studies have

demonstrated that Galaxy clusters using X-ray and Sunyaev Zel’dovich Effect(SZE)

observations are potential probes of cosmology. Angular Diameter Distance(ADD)

for galaxies derived from these observations are used as distance probes, that can be

compared with theoretical models of cosmology and constrain the cosmological pa-

rameters.

In this thesis, I attempt to constrain the cosmological parameters governing the

geometry and evolution of the Universe using galaxy clusters as distance probes and

calculating their angular diameter distances using X-ray and SZE observations of

different clusters. I will start by introducing different contesting cosmological models

for the Universe, then describe the processes responsible for X-ray emission and SZE

and the calculation of angular diameter distance from X-ray and SZE observations.

I also discuss the mathematical tools required for model selection and lastly, I study

the cosmological tests along with the effect of differently modelled morphologies of

galaxy clusters on cosmological tests.

iii





Chapter 1

Introduction

The Cosmological Principle assumes that the universe is homogeneous and isotropic.

Along with the Weyl’s postulate that stipulates that for a fluid cosmological model,

the existence of a preferred coordinate system that is comoving with the background

expansion flow. It reasoned that the universe is expanding on large scales and this

evolution is a time-ordered sequence of the 3-d space which follows the cosmological

principle. In the comoving frame, the large scale patterns stay the same. As the

universe expand, we don’t see the expansion effects. However, the physical distance

between two points in such an expanding universe, which is a function of time, is

proportional to the comoving distance, a constant in time. According to the Weyl’s

Postulate R(t) = a(t)r where R(t) is the proper distance between two points on the

spacetime and r is the constant comoving distance and a(t) is a universal function

dependent only on time. This leads to the famous Hubble Law, i.e, Ṙ = HR, where

the Hubble parameter,

H =
ȧ

a

1.1 Friedmann Universe

The Friedmann model, also called as the Friedmann-Lemaitre-Robertson-Walker model

(FLRW model) is often referred to as the standard model of cosmology. This model

uses Einstein’s General Theory of Relativity with the Cosmological Principle to define

the space-time and its dynamics.
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As discussed earlier, the cosmological principle states that the universe is homoge-

neous and isotropic (at large scales) and forms the basis of the simple models of

space-time. This simple coordinate system is valid for a class of observers for whom

the universe is isotropic. To define such a coordinate system (t, xα), the space-time

interval ds2 can be written as:

ds2 = gikdx
idxk = g00dt

2 + 2g0αdtdx
α − σαβdxαdxβ (1.1)

where σαβdx
αdxβ is a positive definite space metric. Assumption of isotropy implies

that g0αdtdx
α must vanish and using natural units, i.e, h = c = 1, g00 = 1, which

makes the space-time interval as:

ds2 = dt2 − σαβdxαdxβ ≡ dt2 − dl2 (1.2)

Now, Isotropy implies spherical symmetry at all times, therefore the space interval

following spherical symmetry can be defined as:

dl2 = a2[λ2(r)dr2 + r2(dθ2 + sin2θdφ2)] (1.3)

where a = a(t) can be the only variable dependent on time. The scalar curvature of

three-dimensional spherically symmetric space is:

3R =
3

2a2r3

d

dr

[
r2

(
1− 1

λ2

)]
(1.4)

For a homogeneous space, the curvature must be a constant k′,i.e,

1− 1

λ2
= kr2

where k = 2a2k′ which gives the space-time metric as:

ds2 = dt2 − a2(t)

[
dr2

1− kr2
+ r2(dθ2 + sin2θdφ2)

]
(1.5)

To simplify the representation of this metric, we define a coordinate χ as

χ =

∫
dr√

1− kr2

The metric can be written in terms of (χ, θ, φ) as:

dl2 = a2[dχ2 + S2
k(χ)(dθ2 + sin2θdφ2)] (1.6)
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where,

Sk(χ) =


sinχ for k = +1

χ for k = 0

sinhχ for k = −1

Friedmann universe can have positive, zero and negative curvatures (k = +1, 0,−1)

which indicate spatially open, flat and closed universes respectively.

1.1.1 Kinematics of the Friedmann Model

The proper distance between two spatial points changes in time in proportion to the

scale factor a(t) such that the proper distance is defined as:

l(t) = l0a(t) (1.7)

where l0 is the comoving distance.

The velocity of an object as seen by an observer with proper distance l to the object

is

δv =
dl

dt
= ȧl0 =

ȧ

a
l (1.8)

If the two observers are moving with a relative velocity δv, and one observer encounters

an electromagnetic radiation of frequency ω, they will observe, that the frequency of

the radiation, as received by the second observer is doppler shifted and is ω + δω,

therefore,

δω

ω
= −δv

c
= −δv δt

l
(1.9)

since δv = ȧ
a
l,

δω

ω
= − ȧ

a
δt = −δa

a
(1.10)

This equation can be integrated to find

ω(t)a(t) = constant (1.11)

These results indicate that the observed wavelength of radiation emitted by a source

at time te and observed at a later time to depends on the value of scale factors a at
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these two different times, a(te) and a(to) respectively. In an expanding phase, i.e,

a(to) > a(te), the wavelength is redshifted, such that

1 + z(t) =
a(to)

a(t)
=

ao
a(t)

(1.12)

Most cosmological observations are based on Electromagnetic waves which are emitted

from far away sources and observed on Earth(or other satellites in space). These waves

travel at velocity c and thus follow a null geodesic, i.e, ds2 = 0. For a photon emitted

by a source at rem from the observer at the origin, at time te and is observed at time

to, the path followed is

ds2 = dt2 − a2(t)
dr2

1− kr2
= 0 (1.13)

Integrating the above equation gives,∫ to

te

dt

a(t)
=

∫ rem

0

dr√
1− kr2

(1.14)

differentiating eq. 1.12 we can write,

dt =
−a(t)2

a(to)ȧ
dz (1.15)

dt

a(t)
=
−a(t)

a(to)ȧ
dz (1.16)

Hence, the above integral (eq. 1.14) can be written as a function of redshift z instead

of time t. The radial distance rem which gives the radial distance to the source from

the observer can be written as a function of redshift. Such a relation is of importance

to cosmological observations as it provides the epoch in which the observed light is

emitted. To determine the relation of rem with redshift z, we define Hubble radius

dH as

dH(t) = dH(z) =
a

ȧ
(1.17)

Integrating the above equation and writing the right-hand side as S−1
k (x) = [sinh−1(x),

x, sin−1(x)] for k = −1, 0 and +1 respectively we get:

1

ao

∫ z

0

dH(z)dz = S−1
k (rem) (1.18)

⇒ rem(z) = Sk(α),where α =
1

ao

∫ z

0

dH(z)dz (1.19)
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The radial distance to source plays a role in two important observable quantities:

luminosity or flux and the angular size of the source.

The flux F observed from a source of luminosity L is described as

F =
L

(area)
=

L

4πa2r2
em

=
L

aπa2
or

2
em(1 + z)2

(1.20)

Thus the Luminosity distance, distance to the objects with luminosity L and flux F

can be defined as

dL(z) =

√
L

aπF
= aorem(z)(1 + z) = ao(1 + z)Sk(α) (1.21)

The observed angular diameter or the angular size δ of the source of physical size D,

and angular diameter distance dA, is defined as

δ =
D

dA

The angular diameter distance(dA), thus describes the physical distance of the source

from the observer and can be written as:

dA = rema(te) = aorem(te)(1 + z)−1 (1.22)

From eq. 1.21 and eq. 1.22 we get the relation:

dL = (1 + z)2dA (1.23)

1.1.2 Dynamics of the Friedmann Model

The evolution of the universe populated by different sources can be determined by

the Einstein’s equations from the General theory of Relativity,givenby

Gi
k = Ri

k −
1

2
δikR = 8πGT ik (1.24)

where T ik is the stress-energy tensor of the form

T ik = dia[ρ(t),−p(t),−p(t),−p(t)] (1.25)

for ideal fluids and Ri
k and R are the Riccie tensor and scalar, respectively. Using the

FLRW metric, Gi
k can be calculated to give the following equations, which are called

the cosmological Equations.
ȧ2 + k

a2
=

8πG

3
ρ (1.26)
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2ä

a
+
ȧ2 + k

a2
= −8πGp (1.27)

From eq. 1.26,
k

a2
=

8πG

3
ρ− ȧ2

a2
(1.28)

=
ȧ2

a2

[
ρ

3H2/8πG
− 1

]
(1.29)

where H(t) ≡ ȧ
a

. This clearly implies that if ρ > 3H2/8πG that the curvature

of the space-time would be positive and if ρ < 3H2/8πG the curvature would be

negative. For a flat universe, the curvature k = 0, the critical density which achieves

this condition is given by

ρc(t) ≡
3H2

8πG
(1.30)

Therefore, the eq. 1.28 at t = to can be written as,

k

a2
= H2

o (Ω− 1) (1.31)

Where Ω ≡ Ω(t) ≡ ρ
ρc

is called the density parameter.

Substituting from eq. 1.31 to the second Friedmann equation, eq. 1.27, gives,

ä

a
= −4πG

3
(ρ+ 3p) (1.32)

To solve these equations explicitly, from eq. 1.26 we get,

ρa3 =
3

8πG
a(ȧ2 + k) (1.33)

Differentiating the above equation with respect to the scale factor a gives,

d(ρa3)

da
=

3a2

8πG

(
(ȧ2 + k)

a2
+

2ä

a

)
(1.34)

Substituting from eq. 1.32 we get,

d(ρa3)

da
= −3a2p (1.35)

For an equation of state ρ = ωp,which is the equation of state for isotropic fluid, the

above equation gives,
d(ρa3)

da
= −3a2ωρ (1.36)
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Integrating the above equation gives,

ρ ∝ a−3(1+ω) (1.37)

Thus, for non-relativistic matter ρ ∝ a−3 as ω = 0, for radiation ω = 1/3 and ρ ∝ a−4.

For ω = −1, ρ ∝ a0(constant) and ρ = −p, i.e, negative pressure and the universe

expands since ȧ
a
> 0.

From eq. 1.33, we can write (ȧ2/a2) ∝ a−3(1+ω) or ȧ2 ∝ a−
1
2

(1+3ω), integrating which,

we get

a(t) ∝



t
2

3(1+ω) for ω 6= −1

exp(λt) for ω = −1

t2/3 for ω = 0

t1/2 for ω = 1/3

t1/3 for ω = 1

(1.38)

Now, the total energy density can be written as:

ρtot(a) = ρR(a) + ρNR(a) + ρV (a) (1.39)

where ρR, ρNR and ρΛ indicate the densities of radiation, non-relativistic matter and

dark energy in the universe. The total energy density can thus, be written as:

ρtot(a) = ρc

[
ΩR

(ao
a

)4

+ ΩNR

(ao
a

)3

+ ΩΛ

]
(1.40)

Substituting the above equation in the Friedmann equation gives:

ȧ2

a2
+
k

a2
= H2

o

[
ΩR

(ao
a

)4

+ ΩNR

(ao
a

)3

+ ΩΛ

]
(1.41)

As the total density parameter should be 1 for a flat universe, we can write k
a2

=

(Ω−1)H2
o (ao/a)2 to account for the curvature, where Ω is the total density parameter.

Defining τ = Hot and a = aoq(t) and substituting it in eq. 1.41 gives:(
da

dτ

Ho

a

)2

= H2
o

[
ΩR

(ao
a

)4

+ ΩNR

(ao
a

)3

− (Ω− 1)
(ao
a

)2

+ ΩΛ

]
(1.42)

(
dq

dτ

)2

=

[
ΩR

q2
+

ΩNR

q
− (Ω− 1) + ΩΛq

2

]
(1.43)
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This can be written as:
1

2

(
dq

dτ

)2

+ V (q) = E (1.44)

where,

V (q) = −1

2

(
ΩR

q2
+

ΩNR

q
+ ΩΛq

2

)
, E =

1

2
(1− Ω) (1.45)

Considering a matter dominated universe, i.e, ΩΛ is zero and ΩR is negligible, then

eq. 1.42 can be integrated to give the solution:

Hot =
Ω

2(Ω− 1)3/2

[
cos−1

(
Ωz − Ω + 2

Ωz + Ω

)
− 2(Ω− 1)1/2(Ωz + 1)1/2

Ω(1 + z)

]
(1.46)

for Ω > 1 and,

Hot =
Ω

2(1− Ω)3/2

[
2(1− Ω)1/2(Ωz + 1)1/2

Ω(1 + z)
− cosh−1

(
Ωz − Ω + 2

Ωz + Ω

)]
(1.47)

For a dark energy / cosmological constant dominated flat universe, i.e, ΩV > ΩNR ,

and ΩNR + ΩΛ = 1 the solution is(
a

ao

)
=

(
ΩNR

ΩΛ

)1/3

sinh2/3

(
3

2

√
ΩΛHot

)
(1.48)

These equations completely define the scale factor a(t). From eq 1.17, Hubble radius

can be defined as

dH(z) = H−1
o [ΩR(1 + z)4 + ΩNR(1 + z)3 + (1− Ω)(1 + z)2 + ΩΛ]−1/2 (1.49)

From eq 1.22, we can calculate the angular diameter distance as

dA = (1+z)−1

∫ z

0

H−1
o [ΩR(1+z)4 +ΩNR(1+z)3 +(1−Ω)(1+z)2 +ΩΛ]−1/2dz (1.50)

1

1For a more detailed discussion refer to Theoretical Astrophysics Vol III, T Padmanabhan[1]
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Figure 1.1: Angular diameter distance as a function of redshift for different values of

Ωm = 0.1, 0.3, 0.5, 0.7 for a flat universe.

1.2 RH = ct universe

The gravitational radius of the universe that is defined as the radius containing all

the mass combined with the Friedmann equation for flat universe can also be written

as RH = c ȧ
a
(Melia, 2012)[2]. Combining Weyl’s postulate RH = a(t)RH with this we

can write RH = ct. The angular diameter distance in such a universe can thus be

described as

dA = (1 + z)−1

∫ z

0

RH(z)dz (1.51)

= (1 + z)−1

∫ z

0

1

1 + z
dz (1.52)

dA =
c

Ho

ln(1 + z)

(1 + z)
(1.53)
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Figure 1.2: Angular diameter distance as a function of redshift for a flat universe

following the RH = ct model.
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Chapter 2

Determination of Cosmic Distances

using SZE and X-ray

The intergalactic medium that occupies the space between galaxies in a cluster inter-

acts with the X-ray and thermal cosmic background radiations(CBR). This interac-

tion of diffuse matter(Te ≈ 107 − 108K) leaves a signature in the spectra of a cluster.

Combined analysis of these radio and X-ray spectra can be used to derive directly

the distances to these galaxy clusters. This method uses the Sunyaev-Zel’dovich Ef-

fect(SZE) and the emission of X-rays in galaxy clusters.

2.1 Sunyaev-Zel’dovich Effect

The CBR(T ≈ 3K) when passes through the hot diffuse plasma of the intracluster

medium gets scattered by free electrons. The CBR photons are Thomson scattered

by the hot electrons and produces visible effects in the CBR spectra. If the energy

of the electrons is much larger than CBR photons, doppler shift is introduced in the

scattered radiation. This effect is called the Sunyaev-Zel’dovich Effect(SZE).

2.1.1 Compton-Thomson Scattering

The electron-photon scattering reaction:

e+ γ ←→ e′ + γ′

11



If the electron energy and the energy of photon were small, the scattering of such

photons would produce only negligible deflection in the photon frequency and would

not change the spectra observed. In such a case, the net rate of the reaction can be

described as
dN

dt
= A[N −N ′] (2.1)

where N and N ′ are respectively the total numbers of available photons on the left

and right sides of the above mentioned reaction and A is the rate coefficient. Since the

photon energies are small compared to the mass of electrons, electron recoil can be

ignored. The integrated effect of many scatterings produces a random walk in photon

energies and can produce an observable effect on the CBR spectra. This evolution

of the spectrum of homogeneous and isotropic radiation being elastically scattered

by a homogeneous gas of electrons is defined by Kompaneets equation[3]. To derive

this equation, we assume a homogeneous and isotropic distribution of electron gas in

the laboratory frame, F1 and the initial rest frame is indicated as F . The Lorentz

transformation of electrons moving with speed v along the x-axis in F1 is:

t = γ(t1 + vx1) x = γ(x1 + vt1) (2.2)

And the energy transformation of photons moving at an angle θ with the x-axis is

given by:

ν = γν1(1 + vcosθ1) νcosθ = γν1(cosθ1 + v) (2.3)

and the energy transformation the other way around is given by:

ν1 = γν(1− vcosθ1) (2.4)

which gives:

γ(1− vcosθ1) =
1

γ(1 + vcosθ1)
(2.5)

and,

cosθ =
cosθ1 + v

1 + vcosθ1

(2.6)

which describes the transformation of the angle of motion of the photons. Differenti-

ating with respect to θ the above equation would give the transformation of the solid

angle (dΩ = dcosθdθ) of a beam of photons:

dΩ =
dΩ1

γ2(1 + vcosθ1)2
(2.7)
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Now, N1 = N is the transformation law for the photon distribution as it is a scalar

and would remain the same in both frames.

As the photons are assumed to be moving along the x-axis, net rate R1 of scattering

the photons into and out of the beam as observed in the rest frame of the electron is

given by:
∂N1

∂t1
+ cosθ1

∂N1

∂x1

= R1 (2.8)

From the above two equations, we get

∂N1

∂t1
= γ

∂N

∂t

∂N1

∂x1

= γv
∂N

∂x
(2.9)

Hence,

γ
∂N

∂t
(1 + vcosθ1) = R1 (2.10)

Using eq 2.5 we get,
∂N

∂t
= 〈γ(1− vcosθ)R1〉θ (2.11)

After scattering, the momentum of electron in the electron rest frame is

mv′1 = ~ν1 − ~ν ′1 (2.12)

The final kinetic energy of the electron, which is equal to the energy lost by the photon

gives the Compton shift:

ν1 − ν ′1 = δν1 =
ν2

1

m
(1− cosθ) (2.13)

And the rate of change of number of photons in a beam element of solid angle dΩ1

and range of frequency ν1toν1 + dν1 is given by

R1ν
2
1dν1dΩ1 =

d

dt1
N1(θ1, ν1)ν2

1dν1dΩ1 =

∫
dσ

Ωs

I, (2.14)

where dσ
Ωs

is the cross section of scattering and I is the rate of scattering of photons

into the beam element minus the rate of photons scattered out of the beam. From

eq. 2.3 the Compton shifted photon energy can be written as:

ν± = ν±1 γ(1 + vcosθ′1) (2.15)

= ν
ν±1
ν1

(1 + vcosθ′1)

1 + vcosθ1

(2.16)

13



where ν± = ν ± dν and expanding v2 and ν/m, we get,

ν± = ν[1± (ν/m)(1− cosθ) + v(cosθ′1 − cosθ1) + v2(cos2θ1 − cosθ′1cosθ1)] (2.17)

From eq. 2.16, The momentum volume element form the rate of scattering of photons

into the beam element in I, can be written as:

〈
ν+

1

〉2
dν+

1 =
[
1 + 4

ν1

m
(1− cosθ)

]
ν2

1dν1 (2.18)

From eq. 2.10 and eq. 2.14, we can write the equation for the rate of collision as

∂N

∂t
=

∫
γ(1− vcosθ)dΩ

4π

dσ

dΩs

dΩ′1(A+B) (2.19)

where A = 4ν
m

(1−cosθ)Nν[1+Nν] and B = [1+Nν]N(ν+∆+)− [1+N(ν+∆−)]Nν

By expanding B in ∆± and rearranging, and keeping terms till first order in ν we can

write
∂N

∂t
=

∫
(1− 3vcosθ1)

dΩ1

4π

dσ

dΩs

dΩ′1(A+B) (2.20)

Using classical Thomson cross-section, we can write

∂N

∂t
= σtC

Where C is the expectation value calculated for scattering by a single electron:

C =
ν

m

[
4N(1 +N) + (1 + 2N)ν

dN

dν

]
+

4

3

dN

dν
νv2 +

1

3

d2N

dν2
ν2v2

The Kompaneets equation thus becomes:

1

σtne

∂N

∂t
=

ν

m

[
4N(1 +N) + (1 + 2N)ν

dN

dν

]
+

4

3

∂N

∂ν
ν
〈
v2
〉

+
1

3

∂2N

∂ν2
ν2
〈
v2
〉

(2.21)

If the electrons have a Maxwell-Boltzmann distribution for energy at temperature Te,

then the dispersion relation can be written as:

〈
ν2
〉

= 3kTe/me

Using scaled variable x = hν
kTe

, dy = kTe
mec2

σtnecdt, eq. 2.21 can be written as

∂N

∂y
= x2∂

2N

∂x2
+ (x2 + 4x+ 2x2N)

∂N

∂x
+ 4xN(1 +N) (2.22)
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where y = k〈Te〉
mec2

∫ t
σtnecdt .

Since the plasma in ICM is much hotter than CMBR, x << 1. In this limit, eq.

2.22 can be written as:
∂N

∂y
= ν2∂

2N

∂ν2
+ 4ν

∂N

∂ν
(2.23)

Since the CMBR is approximately like a black body spectrum, the occupation number

can be written as

N =
1

ehν/kT − 1

we can write in the limit x << 1:

δN

N
= −2y

, In Rayleigh-Jeans approximation N ∝ T , we get the temperature decrement as:

δT

T
= −2

k 〈Te〉
mec2

∫ t

σtnecdt (2.24)

2.2 X-Ray Emission in Cluster of Galaxies

X-ray emission in the galaxy clusters was first discovered in the Coma and Perseus

clusters and proved that the space between the galaxies in a cluster was occupied by

extremely hot(≈ 108K), low density(≈ 10−3ne/cm
−3) ionised gas which was termed

as the Intra cluster medium(ICM). Thermal bremsstrahlung was suggested by Felten

et al.(1966)[4] as the phenomena that caused X-ray emission from the cluster plasma.

2.2.1 Thermal Bremsstrahlung from ICM

At the physical conditions of ICM(T ≈ 108K and ≈ 10−3ne/cm
−3), the primary

emission process from the cluster plasma (constituted mainly of hydrogen) is free-free

emission of thermal bremmstrahlung, and hence is the main cooling process for high

temperature plasma. The emissivity at a particular frequency ν is given by:

effν =
25πe6

3mec3

(
2π

3meKb

)1/2

Z2nenigff (Z, Tg, ν)T−1/2
g e

−hν
KbTg (2.25)
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where Z is the charge of the ion, Tg is the temperature of the gas, ni and ne are

the number densities of ions and electrons respectively and gff is the gaunt factor

(Sarazin 1988[5]). Observations indicate that the cluster plasma fits fairly well to this

equation at gas temperature 107 to 108K which indicates that the emission decreases

exponentially with an increase in frequency.

The cooling coefficient, ΛeH is defined as the integral of emissivity over all frequencies:

ΛeH =

∫
effν dν

The elastic coulomb collisions between the ions and elctrons in the plasma has a time

scale much lower than the age of the plasma and these particles follow a Maxwell-

Bolzmann distribution at high temperatures which determines the rates of excitations

and ionization processes. So the X-ray surface brightness of clusters depend upon

the gass mass distribution and the emissivity integrated over all frequencies, i.e, the

cooling coefficient. The surface brightness is thus defined as:

Sx ∝
∫
LOS

n2
eΛeHdl

2.3 Angular Diameter Distance from SZE and X-

Ray observations

We have seen in the earlier sections that the measured temperature decrement ∆T

arising from SZE and the measure of X-ray surface brightness Sx depend on the

distribution of cluster gas and thus the cluster morphology. Hence, it is essential to

build a model for the distribution of cluster gas which has a higher density at the

centre, such that the radiative cooling time scale is lesser than the age of the cluster.

This is suggested from the X-ray observations which show increased density at the

cluster centre which decreases at a higher radius. For this, the isothermal β model

suggested first by Cavalier and Fusco-Feriano(1976) [6] and later generalised into a

double β model gave:

ne(r) = ne0

[
f

(
1 +

r2

r2
c1

)−3β
2

+ (1− f)

(
1 +

r2

r2
c2

)−3β
2

]
(2.26)
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where neo is the high central density, rc1 is radius of the core and rc2 is the outer

radius of the cluster and β is the slope at large radii.

The measured temperature decrement of the CMB is given by:

∆T = TCMBf(ν, te)
KBσT
mec2

∫
LOS

neTedl (2.27)

where Te is the temperature of ICM, TCMB = 2.728K(Fixsen et al. 1996)[7], KB, σT ,me

and c are the Boltzmann constant, Thomson cross section of the electron, the mass

of electron and speed of light in vacuum respectively. f(ν, Te) is the function which

accounts for frequency shifts and relativistic corrections and is taken to be −2. The

central temperature decrement resulting from the line of sight integration above equa-

tion is given by:

∆T = TCMBf(ν, Te)
KBσTTe
mec2

neo
√
π
Daθc√
eproj

g(β/2) (2.28)

, with

g(α) =
Γ(3α− 1/2)

Γ(2α)
(2.29)

where, Da is the angular diameter distance, θc the projected angular position and

eproj is the projected eccentricity of the cluster.

The X-Ray surface brightness due to thermal bremsstrahlung and line emission gives

X-ray surface brightness as

Sx =
1

4π(1 + z)4

∫
LOS

n2
eΛeHdl (2.30)

where ΛeH is the X-ray cooling function of the intra cluster medium and z is the

redshift of the cluster. The observed surface brightness obtainbed after the LOS

integration with the isothermal β model of ICM plasma gives:

Sx =
ΛeH(µe/µH)

4
√
π(1 + z)4

n2
eo

Dcθc√
eproj

g(β) (2.31)

Combining eq 2.28 and eq.2.31 to eliminate the central electron density we obtain

angular diameter distance as:

Da =
∆T 2

Sx

(
mec

2

KBTeo

)2
ΛeH(µe/µH)

4π3/2f(ν, Te)2T 2
CMBσ

2
T (1 + z)4θc

g(β)

g(β/2)2
(2.32)

The theoretical angular diameter distance can then be compared with the one obtained

from observations.
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Chapter 3

Optimisation of Parameters and

Model Selection

In this work, we have used the χ2 statistics for finding the best fit parameters and

model selection tools such as Akaike Information Criterion(AIC) and Bayes Informa-

tion Criterion(BIC)(Wei et al. (2014)[9]) are used for cosmological model comparison.

3.1 The χ2 Distribution

This method of finding the best fit for a parameter (a) with a data of n points (tj)

uses the method of least square, wherein the weighted sum of squares of deviations is

minimised; i.e,

χ2 =
n∑
j=1

(
yj − y(tj, a, ..)

∆yj

)2

(3.1)

is minimised. In this method, the measurements with smaller ∆y are given higher

weight.

Each measurement or data point is represented as a random variable X with a normal

probability distribution with mean zero and variance σ2 = 1. The probability density

of X is thus,

f(x) =
1

σ
√

2π
e−x

2σ2

(3.2)
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The probability density of a random variable Y = X2, which takes positive values

will be zero if y ≤ 0. Thus, the probability distribution for Y can be written as:

g(y) =
d

dy
[P (
√
y)− P (−√y)] =

1

2
√
y

(f(
√
y) + f(−√y))

=
1

σ
√

2πy
e−y/2σ

2

(3.3)

The goodness of fit is assessed by the random variable Y =
∑n

y=1X
2
j where n is the

number of degree of freedom. n = N−r for N measured data points and r parameters

that are to be fitted. The probability density of this random variable can be written

in the form of gamma distribution:

gn(y) =
yn/2−1

2n/2σnΓ(n/2)
e−y/2σ

2

(3.4)

From eq. 3.3 the mean and variance of the random variable Y is

〈Y 〉 = nσ1

and

σ2(Y ) = 2nσ4

Figure 3.1: χ2 Probability density[10]
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And the probability distribution of χ2 with n degrees of freedom can be written

as the integral of eq. 3.4 as:

P (χ2 ≥ yo) =
1

2n/2σnΓ(n/2)

∫ ∞
yo

yn/2−1e−y/2σ
2

dy (3.5)

The confidence interval is thus, the interval in the parameter space, in which the

probability that the unknown parameter lies in the interval is high or of a given

probability.

3.2 Model Selection Tools

In this study, we use model selection tools such as Akaike Information Criteria(AIC)

and Bayesian Information Criteria(BIC) in conjunction with maximum likelihood has

been used for finding the best model of cosmology fitting the observed data. Use of

model selection tools for cosmological parameter fitting has been used for long and

the use of AIC and BIC for the same has been discussed in Shi et al. (2002)[11].

3.2.1 Akaike Information Criterion

The Akaike Information Criteria(AIC) uses Kullback-Leibler information (KLI) as a

tool for model selection. The K-L information I, for two models f and g is defined

as:

I(f, g) =

∫
f(x)log

(
f(x)

g(x|θ)

)
dx (3.6)

for continuous functions denotes the information lost when g(x|θ) is used as an ap-

proximate model for the reality f , or is the distance from g to f . Similarly for discrete

distributions the K-L information or the K-L distance is defined as

I(f, g) =
k∑
i=1

pi.log

(
pi
πi

)
(3.7)

where k is the total possible number of outcomes, pi is the true possibility of the ith

outcome and πi is the model probability of the i th outcome. The K-L information

I(f, g) is always positive and T (f, g) = 0 only when f = g as the approximate model

is exactly equal to the true model then the distance between the two is zero. Thus
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this tool can be used to find out the relative distance of different models from the

true model as an approximate model becomes closer to reality by minimising I(f, g).

To compute I(f, g), however, both f and g must be known. But to find the relative

distance between two models, this is not necessary. One can thus, find the relative

accuracy amongst different models without knowing the how consistent these models

are with reality. From eq. 3.6,

I(f, g) =

∫
f(x)log(f(x))dx−

∫
f(x)log(g(x|θ))dx (3.8)

I(f, g) = Ef [log(f(x))]− Ef [log(g(x|θ))] (3.9)

where Ef is the expectation of f(x) and Ef [log(f(x))] is a constant depending

only upon the true model and is an unknown. Hence, eq. 3.9 can be written as

I(f, g)− C = −Ef [log(g(x|θ))] (3.10)

where, I(f, g)−C is the relative distance between f and g. For different approximate

models, this can be written as

I(f, gi)− C = −Ef [log(g(x|θi))] (3.11)

and gi is the better fitting model if I(f, gi) is the smallest relative distance. Moreover,

I(f, g1)− I(f, g2) = Ef [log(g(x|θ2))]−Ef [log(g(x|θ1))] can be computed without the

knowledge of the real model.

There must exist a value of θ or a model g(x|θ) for which the K-L distance is min-

imised, i.e, there exists a model which is closest to the real model and such a value

for θ from the assumed models can be estimated using Maximum Likelihood analysis.

Thus, g(x|θo) is the closest given approximate model to f(x), the real model.

In data analysis, however, such parameters are estimated with a substantial amount of

uncertainty and the approximate models are based on the estimation of these parame-

ters θ̂o rather than their real values θo. Thus model selection deals with minimising the

expected K-L distance over the known K-L distance. In Akaike(1973)[12], it has been

shown that the maximum log-likelihood is biased due to the number of parameters in

a model and can be corrected by:

2log(L(θ̂|data))− 2K = C − Ê[I(f, ĝ)] (3.12)
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where the bias correction K is the number of parameters in an approximate model.So,

AIC = −2log(L(θ̂|data)) + 2K (3.13)

which is an estimate of the expected relative K-L distance between two approximate

models fitted to an unknown real model. In the case of least squares regression

statistics, AIC can be computed as

AIC = nlog(σ̂2) + 2K (3.14)

where σ̂2 is the sum of the estimated residuals in an approximate model and for chi

square statistics

AIC = χ2 + 2K (3.15)

and the likelihood of the model is given by

Lα =
exp(−AICα/2)

exp(−AIC1/2) + exp(−AIC2/2)
(3.16)

3.2.2 Bayesian Information Criterion

The Bayesian Information Criterion (BIC) involves an equal prior probability to all

approximate models gi as πi. The marginal likelihood or the likelihood of a model gi,

given the true model and the prior probabilities on θi is given by:

gi(x, πi) =

∫
gi(x|θi)πi(θi)dθi (3.17)

The marginal probability of the data can thus be written as∫ [ n∏
i=1

g(xi|θ)

]
π(θ)dθ (3.18)

which can be written as ∫
[L(θ|x, g)]π(θ)dθ (3.19)

As data is generated, true values for θ is not obtained but an estimate θ̂ is obtained,

so the marginal likelihood of the data can be written as:

L(θ|x, g) = L(θ̂|x, g)e
1
2

(θ−θ̂)′V (θ̂)−1(θ−θ̂) (3.20)
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where V (θ̂) is the K × K dimensional variance-covariance matrix of the maximum

likelihood estimate(MLE). Thus, the marginal probability can now be written as:

L(θ̂|x, g)

∫
e

1
2

(θ−θ̂)′V (θ̂)−1(θ−θ̂)π(θ)dθ (3.21)

This marginal probability becomes exact as n tends to infinity and the likelihood

reaches θ̂ which converges to θo, the true model. As the prior probability π is uniform

for all approximate models, it can be assumed as a constant and taken out of the

integral. The normalised marginal probability can be written approximately as:

L( ˆθ|x, g)
[
(2π)K/2n−K/2||V (θ̂)−1||1/2

]
(3.22)

Multiplying −2× log and dropping the negligible terms, we get the BIC as :

−2log(L(θ̂|x, g)) +Klog(n) (3.23)

For data using chi square statistics, the BIC is defined as:

BIC = χ2 + log(n)K (3.24)

1

1For a detailed discussion, refer Model Selection and Multimodel Inference:A Practical

Information- Theoretic Approach, Second Edition[8]
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Chapter 4

Cosmological Tests using Angular

Diameter Distance

Hoyle in 1959 proposed the use of cosmological objects or structures with no evolu-

tionary effects to measure cosmic distances termed as standard rulers. Supernovae

type Ia were considered standard candles as they gave fairly constant luminosity and

the observed 40% scatter in the peak luminosity was corrected using Phillip’s rela-

tion to obtain their luminosity distance and hence used to constrain the cosmological

parameters. This use of Supernova Ia as standard candles is however not completely

justified and any systematic differences between high redshift and low redshift type

Ia supernova is still a controversial subject. Simultaneously in the late 20th century a

search for standard rulers to constrain cosmological parameters was going on. Radio

galaxies of kpc scale, were first considered as metric rulers but their angular sizes’

relation with redshift was an uncertain indicator of an actual evolution in size or a

relation arising due to selection effects (Wei et al(2015)[9]). With a larger sample

over a range of redshift facilitated by the Very Large Baseline Interferometer(VLBI),

it was demonstrated that the angular size-redshift relation was consistent with the

FLRW model(Gurvits et al. 1999)[13]. However, this does not seem consistent with

an expanding cosmology, unless the selected radio galaxies’ sizes have increased six

times from redshift 3.2 to now (McIntosh et al. 2005)[14]. Galaxy clusters as demon-

strated in earlier sections, can be used as standard rulers. The combined data from

SZE and X-ray emission combined, provides a method to measure their angular di-
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ameter distances which can be compared to the angular diameter distance derived for

different cosmologies theoretically and constrain the cosmological parameters.

In this chapter, we first consider a larger dataset compiled by Bonamente et al.(2006)[15]

and perform parameter fitting to find the better fitting cosmological model and pa-

rameters. Then we calculate the angular diameter distance and perform parameter

fitting for data compiled in Reese et al. (2002)[16], taking into account cluster mor-

phology to understand the effects of morphology on parameter estimation and discuss

the results.

4.1 The Cluster Angular Size Sample

We use the calculated angular diameter distances to 38 galaxy clusters of redshift

range 0.142 ≤ z ≤ 0.89 which uses X-ray Chandra data and SZE data from Owens Val-

ley Radio Observatory (OVRO) and Berkely-Illinois-Maryland Association (BIMA)

array, given in Wei et al. (2014)[9].

Table 4.1: Angular Diameter Distance of Galaxy Clusters using data from X-ray

Chandra and BIMA-OVRO arrays

Cluster z Da(Mpc)

Abell 1413 0.142 780+180
−130

Abell 2204 0.152 610+60
−70

Abell 2259 0.164 580+290
−250

Abell 586 0.171 520+150
−120

Abell 1914 0.171 440+40
−50

Abell 2218 0.176 660+140
−110

Abell 665 0.182 660+90
−100

Abell 1689 0.183 650+90
−90

Abell 2163 0.202 520+40
−50

Abell 773 0.217 980+170
−140
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Table 4.2: Angular Diameter Distance of Galaxy Clusters using data from X-ray

Chandra and BIMA-OVRO arrays

Cluster z Da(Mpc)

Abell 2261 0.224 730+200
−130

Abell 2111 0.229 640+200
−170

Abell 267 0.23 600+110
−90

RX J2129.7+0005 0.235 460+110
−80

Abell 1835 0.252 1070+20
−80

Abell 68 0.255 630+160
−190

Abell 697 0.282 880+300
−230

Abell 611 0.288 780+180
−180

ZW 3146 0.291 830+20
−20

Abell 1995 0.322 1190+150
−140

MS 1358.4+6245 0.327 1130+90
−100

Abell 370 0.375 1080+190
−200

MACS J2228.5+2036 0.412 1220+240
−230

RX J1347.5-1145 0.451 960+60
−80

MACS J22149.9-1359 0.483 1440+270
−230

MACS J1311.0-0310 0.49 1380+470
−370

CL 0016+1609 0.541 1380+220
−220

MACS J1149.5+2223 0.544 800+190
−160

MACS J1423.8+2404 0.545 1490+60
−30

MS 0451.6-0305 0.55 1420+260
−230

MACS J2129.4-0741 0.57 1330+370
−280

MS 2053.7-0449 0.583 2480+410
−440

MACS J0647.7+7015 0.584 770+210
−180

MACS J0744.8+3927 0.686 1680+480
−380

MS1137.5+6625 0.784 2850+520
−630

RX J1716.4+6708 0.813 1040+510
−430

MS 1054.5-0.321 0.826 1330+280
−260

CL J1226.9+3332 0.89 1080+420
−280
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4.1.1 Parameter fits and Results

We have considered three different models for fitting the hubble constant Ho:

1. Concordance model(ΛCMD): The standard model of cosmology for flat universe

with the matter density parameter Ωm = 0.3 and the equation of state parameter for

dark energy wde = −1 in the Friedmann Model.

2. Einstein- deSitter Model: Matter only flat universe with the matter density pa-

rameter Ωm = 1.0.

3. RH = ct model: Friedmann model which takes the dark energy equation of state

parameter w = −1/3 at all times in the history of the universe.

The Hubble constant Ho is optimised by minimising the χ2 function, i.e,

χ2 =
38∑
i=1

Dthe
a (zi)−Dobs

a (zi)

σ2
tot

(4.1)

Where σ2
tot includes the systematic, statistical and modelling errors which have been

referred from Bonamante et al.(2006).

Figure 4.1: Reduced χ2 function constraining Ho for sample from X-ray Chandra

and BIMA-OVRO for RH = ct universe, concordance and Einstein-deSitter models

of universe
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From the χ2 statistics, the optimised Ho was obtained as 73.7+19.82
−12.89Kms

−1Mpc−1

for RH = ct model, 77.5+15.99
−16.675Kms

−1Mpc−1 for ΛCDM concordance model and

68.44+19.91
−12.59Kms

−1Mpc−1 for Einstein deSitter model of the universe. Fig(4.1) shows

the reduced χ2 functions for optimising the Hubble constant.

Figure 4.2: Constant χ contours for relaxed parameters in ΛCDM model

For ΛCDM model of cosmology, the equation of state parameter for dark energy

is wde = −1. Relaxing the matter density parameter and the Hubble constant and

performing chi-square analysis of the same give the best fit parameter as Ωm = 0.37

and Ho = 76.0Kms−1Mpc−1.The χ2 per degree of freedom for optimised Hubble

parameter for this model of the universe with constant Ωm(Concordance model) =

χ2
dof = 0.52 and for parameters allowed to vary χ2

dof = 0.55. Fig(4.2) shows 1σ, 2σ

and 3σ constant χ contours for relaxed parameters in ΛCDM universe.

For wCDM model of cosmology, where the equation of state parameter of dark

energy is constant but, wde 6= −1 and Ωm and Ho are variables. In this analysis, we
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have considered the value for the matter density asΩm = 0.3 and kept wde and Ho

as variables. By performing the χ2 analysis of the same we get wde = −0.90 and

Ho = 76.0Kms−1Mpc−1 as the best-fit parameters and the χ2
dof = 0.54. Fig(4.3)

shows 1σ, 2σ and 3σ constant χ contours for relaxed parameters in wCDM uni-

verse.Fig(4.3) shows 1σ, 2σ and 3σ constant χ contours for relaxed parameters in

wCDM universe.

Figure 4.3: Constant χ contours for relaxed parameters in wCDM model

The RH = ct model of cosmology only deals with one free parameter, the Hubble con-

stant. Fig(4.4) shows the data points for ADD for 38 galaxy clusters and theoretical

fits for RH = ct model with Ho = 73.7+19.82
−12.89Kms

−1Mpc−1, along with the theoretical

fit for ΛCDM model using the best-fit parameters obtained. The χ2 per degree of

freedom is χ2
dof = 0.54.

From fig(4.4), the ΛCDM and RH = ct models of cosmology appear to fit the data

comparably well, however since the models derive different best-fit parameters for the

observed data and the number of free parameters are different for the two models,
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Figure 4.4: Angular Diameter Distances for 38 galaxy clusters with error bars and the

best fit theoretical curves for ADD as a function of redshift (z) for ΛCDM universe

and the RH = ct model of cosmology

likelihood analysis is needed to select a model of cosmology as the more probable

model of the universe.

We use AIC and BIC (chapter 3) along with likelihood estimates for model selection.

From eq.(3.11)

AIC = χ2 + 2K

For two models that have been separately fitted, the one with the least AIC is deemed

to be more likely with the likelihood described as

Lα =
exp(−AICα/2)

exp(−AIC1/2) + exp(−AIC2/2)

From eq.(3.20) Bayesian information criterion is defined as

BIC = χ2 + ln(n)K

From the obtained parameters for different models AIC analysis prefers RH = ct

universe over the ΛCDM model and wCDM model by ≈ 70.32% over ≈ 29.67% on
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ΛCDM and ≈ 70.41% over ≈ 29.58% on wCDM . BIC also prefers the RH = ct

universe over the ΛCDM model and wCDM model by ≈ 83.96% over ≈ 16.03% on

ΛCDM and ≈ 84.36% over ≈ 15.63% on wCDM .

4.2 Effects of Morphology on Angular Diameter

Distance: Circular and Elliptical β-Models

The projection of galaxy clusters are rarely circular, but the analysis of X-ray imaging

data and SZE data assumes a spherical symmetry. By correcting for this bias, by

modelling the X-ray surface brightness and β using elliptical β-model, it is observed

that there is no significant change in the surface brightness, but there is a change in

the core radii which effects the θc(de Fillipis et al.2005)[17]. The projection on the

plane of sky for the galaxy clusters for modelled with elliptical β-model is given by

the relation:

θc|ell = θc
2eproj

1 + eproj
(4.2)

Thus the angular diameter distance for clusters modelled with elliptical β- model is

given by the relation:

Da|ell = Da
1 + eproj

2eproj
(4.3)

(a)
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(b)

(c)

Figure 4.5: Comparison of quantities for galaxy clusters modelled with circular

β-model and elliptical β-model. (a) shows the variation of the surface brightness, (b)

shows the variation in the slopeβ and (c) shows the variation in the core radii of the

cluster.(de Fillipis et al 2005)[17]

4.2.1 Galaxy Cluster Sample

The distance calculations require SZE, X-ray imaging and spectroscopic data sets

for galaxy clusters. For the SZE data Owens Valley Radio Observatory(OVRO)

and Berkely-Illinois-Maryland Association interferometers(BIMA) have been used to

observe X-ray clusters with redshift greater than 0.14 and declination greater than

−15 deg for 0.1− 2.4keV band for ROSAT clusters. Table 4.3. contains the compiled
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positions, redshifts and X-ray luminosities.

Table 4.3: Cluster Sample

Cluster R.A. (J2000) Decl.(J2000) redshift
Lx

(×1044h−2ergss−1)

MS 1137.5+6625 ....... ... ... 0.784 5.4

MS 0451.6-0305........ 04 54 22.1 -03 01 25 0.550 20.0

Cl 0016+16 ................ 00 18 31. 16 20 45 0.546 14.6

RX J1347.5-1145 ...... 13 47 30.7 -11 45 09 0.451 73.0

A370 .......................... 02 39 55.5 -01 34 06 0.374 11.7

MS 1358.4+6245 ....... 13 59 50.6 62 31 05 0.327 10.6

A1995 ........................ 14 53 00.5 58 03 19 0.322 13.4

A611 .......................... ... ... 0.288 8.6

A697 .......................... ... ... 0.282 19.2

A1835 ........................
14 01 02.0

14 01 00.5

02 52 42

02 51 53
0.252 32.6

A2261 ........................ 17 22 17.1 32 09 14 0.224 20.6

A773 .......................... ... ... 0.216 12.1

A2163 ........................ 16 15 43.3 -06 08 40 0.202 37.5

A520 ..........................

04 54 01.1

04 54 17.0

04 54 20.3

02 57 47

02 55 32

02 54 56

0.202 14.5

A1689 ........................
13 11 31.6

13 11 30.1

-01 19 33

-01 20 37
0.183 20.7

A665 .......................... 08 31 30.9 65 52 35 0.182 15.7

A2218 ........................

16 35 22.1

16 35 47.7

16 36 16.0

66 13 23

66 14 46

66 14 23

0.171 8.2

A1413 ........................ 11 55 08.7 23 26 17 0.142 10.9
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Table 4.4 contains ROSAT X-ray data, Gas temperature and the cooling functions

(calculated using the Raymond-Smith spectrum(1977)[18] with relativistic corrections

(Reese et al. 2000)[19].

Table 4.4: ROSAT X-ray data and Cooling Functions

Cluster
kTe

(keV)

ΛeH

(×10−24ergss−1cm3)

MS 1137.5+6625 ....... 5.7+1.3
−0.7 7.751

MS 0451.6-0305........ 10.4+1.0
−0.8 6.948

Cl 0016+16 ................ 7.55+0.72
−0.58 6.922

RX J1347.5-1145 ...... 9.3+0.7
−0.6 6.922

A370 .......................... 6.6+0.7
−0.5 6.790

MS 1358.4+6245 ....... 7.48+0.5
−0.42 6.717

A1995 ........................ 8.59+0.86
−0.67 6.434

A611 .......................... 6.6+0.6
−0.6 6.511

A697 .......................... 9.8+0.7
−0.7 6.334

A1835 ........................ 8.21+0.19
−0.17 6.462

A2261 ........................ 8.82+0.37
−0.32 6.359

A773 .......................... 9.29+0.41
−0.36 6.171

A2163 ........................ 12.2+1.1
−0.7 6.135

A520 .......................... 8.33+0.46
−0.4 6.119

A1689 ........................ 9.66+0.22
−0.2 6.158

A665 .......................... 9.03+0.35
−0.31 6.102

A2218 ........................ 7.05+0.22
−0.21 6.112

A1413 ........................ 7054+0.17
−0.16 6.133
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Table 4.5 contains the modelled ICM parameters, β, θc, surface brightness and

SZE temperature decrement.

Table 4.5: ICM Parameters

Cluster β
θc

(arcsec)

eproj
Sx × 10−12

(ergss−1cm−2arcmin−2)

∆T

(µK)

MS 1137.5+6625 ....... 0.786+0.220
−0.120 19.4+6.4

−4.0 1.113± 0.014 0.443+0.074
−0.059 −818+98

−0113

MS 0451.6-0305........ 0.806+0.052
−0.043 34.7+3.9

−3.5 1.307± 0.015 0.956+0.086
−0.022 −1431+98

−93

Cl 0016+16 ................ 0.749+0.024
−0.018 42.3+2.4

−2.0 1.205± 0.013 0.617+0.022
−0.028 −1242+105

−105

RX J1347.5-1145 ...... 0.604+0.011
−0.012 9.0+0.5

−0.5 1.453± 0.019 27.4+1.6
−1.4 −3950+350

−350

A370 .......................... 0.518+0.090
−0.080 39.5+10.5

−10.5 1.564± 0.018 0.270+0.043
−0.030 −1253+218

−533

MS 1358.4+6245 ....... 0.622+0.015
−0.015 18.2+1.4

−1.5 1.325± 0.019 1.70+0.15
−0.11 −784+90

−90

A1995 ........................ 0.770+0.117
−0.063 38.9+6.9

−4.3 1.242± 0.010 1.08+0.08
−0.07 −1023+83

−77

A611 .......................... 0.565+0.050
−0.040 17.5+3.5

−3.5 1.14± 0.05 2.01+0.36
−0.26 −853+120

−140

A697 .......................... 0.540+0.045
−0.035 37.8+5.6

−4.0 1.334± 0.016 1.02+0.07
−0.08 −1410+160

−180

A1835 ........................ 0.595+0.007
−0.005 12.2+0.6

−0.5 1.225± 0.012 20.2+1.4
−1.0 −2502+150

−175

A2261 ........................ 0.516+0.014
−0.013 15.7+1.2

−1.1 1.022± 0.017 4.31+0.26
−0.26 −1697+220

−200

A773 .......................... 0.597+0.064
−0.032 45.0+7.0

−5.0 1.237± 0.022 0.828+0.065
−0.065 −1260+160

−160

A2163 ........................ 0.674+0.011
−0.008 87.5+2.5

−2.0 1.206± 0.004 1.36+0.03
−0.03 −1900+140

−140

A520 .......................... 0.844+0.040
−0.040 123.3+8.0

−8.0 1.06± 0.05 0.408+0.018
−0.018 −662+95

−95

A1689 ........................ 0.609+0.005
−0.005 26.6+0.7

−0.7 1.141± 0.012 6.01+0.18
−0.15 −1729+105

−120

A665 .......................... 0.615+0.006
−0.006 71.7+1.5

−1.5 1.238± 0.012 0.678+0.012
−0.012 −728+150

−150

A2218 ........................ 0.692+0.008
−0.008 67.5+1.5

−1.8 1.162± 0.009 0.708+0.016
−0.014 −731+125

−100

A1413 ........................ 0.639+0.009
−0.009 47.7+2.0

−2.0 1.473± 0.019 2.04+0.09
−0.09 −856+110

−110
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Using eq(2.26) and eq(4.3) calculated angular diameter distance for both circular

β model and elliptical β model is tabulated in table 4.6.

Table 4.6: Calculated Angular Diameter Distances

Cluster Da|cir (Mpc) Da|ell (Mpc)

MS 1137.5+6625 ....... 2878.27+728.04
−137.19 2732.16+703.08

−147.48

MS 0451.6-0305........ 1124.43+159.67
−166.70 992.37+145.11

−152.86

Cl 0016+16 ................ 1832.28+104.32
−68.73 1676.42+103.20

−71.49

RX J1347.5-1145 ...... 1081.83+46.14
−8.94 913.19+43.55

−12.52

A370 .......................... 3932.12+827.27
−2839.75 3223.13+660.79

−2323.66

MS 1358.4+6245 ....... 780.69+13.85
−24.64 684.94+16.24

−17.46

A1995 ........................ 1084.13+65.63
−49.33 978.51+62.51

−48.23

A611 .......................... 897.28+37.97
−25.19 842.19+51.47

−6.09

A697 .......................... 881.01+90.09
−128.05 770.71+74.49

−108.59

A1835 ........................ 904.87+14.11
−28.17 821.77+16.34

−22.05

A2261 ........................ 934.04+96.20
−116.94 923.98+86.92

−108.92

A773 .......................... 1284.90+222.65
−164.20 1161.81+190.68

−140.27

A2163 ........................ 718.97+34.44
−9.39 657.56+32.44

−7.61

A520 .......................... 644.37+81.24
−100.95 626.13+63.53

−85.40

A1689 ........................ 609.02+22.67
−41.01 571.39+18.39

−35.83

A665 .......................... 413.73+132.15
−129.53 373.96+120.03

−115.95

A2218 ........................ 926.37+241.12
−174.57 861.79+220.45

−159.87

A1413 ........................ 514.55+78.93
−82.70 431.94+63.69

−67.51
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4.2.2 Parameter fits and Results

For each model of universe, best fit parameters are obtained by minimising the χ2

function for Ho Hubble’s Constant, i.e, minimising eq.(4.1)

Fig 4.6 shows the χ2 functions for optimising the Hubble constant for differnt

models of universe. The best-fit for Hubble constant obatined for the three models

of universe i.e, RH = ct, Einstein de-Sitter and concordance model, for circular and

elliptical β model are tablulated in table 4.7

Table 4.7: Optimised Hubble Constant for different models of universe

E-dS RH = ct Conc

Circular β model 62.53 66.34 70.0

Elliptical β model 69.5 73.78 78.0

(a)
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(b)

Figure 4.6: Constraining the Hubble parameter(kms−1Mpc−1) for RH = ct, Einstein

de-Sitter universe and concordance universe for Galaxy cluster sample modelled with

(a) circular β model and (b) elliptical β model

From χ2 statistics, the optimised Ho for circularly modelled galaxy clusters were

obtained as 62.53+20.22
−12.008Kms

−1Mpc−1 for Einstein deSitter model,

66.34+20.015
−12.485Kms

−1Mpc−1 for RH = ct model and 70.0+19.5
−12.5Kms

−1Mpc−1 for ΛCDM

concordance model. The χ2
dof , the χ2 per degree of freedom for these were calculated

to be 0.537, 0.513 and 0.31 respectively.From the χ2 statistics analysis, the optimised

values for Ho for elliptically modelled galaxy clusters were obtained as

69.495+19.85
−12.63Kms

−1Mpc−1 for Einstein deSitter model, 73.78+19.67
−12.82Kms

−1Mpc−1 for

RH = ct model and 78.0+19.0
−13.0Kms

−1Mpc−1 for ΛCDM concordance model. The

χ2
dof , the χ2 per degree of freedom for these were calculated to be 0.781, 0.755 and

0.630 respectively.
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(a)

(b)

Figure 4.7: Constraining contours for Hubble parameter(kms−1Mpc−1) and Ωmfor flat

ΛCDM model of the universe for Galaxy cluster sample modelled with (a) circular β

model and (b) elliptical β model
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For ΛCDM model(wde = −1), with relaxed parameters Ωm and Ho, χ
2 analysis gave

the best-fit parameters as 0.07 and 74.0 respectively for circularly modelled galaxy

clusters and 0.29 and 78.0 respectively for elliptically modelled galaxy clusters. The

χ2 per degree of freedom was calculated as 0.57 and 1.046 for circularly and

elliptically modelled galaxy clusters respectively.

For wCDM model(Ωm = 0.3), with relaxed parameters wde and Ho, χ
2 analysis gave

the best-fit parameters as −1.15 and 73.0 respectively for circularly modelled galaxy

clusters and −0.9 and 77.0 respectively for elliptically modelled galaxy clusters. The

χ2 per degree of freedom was calculated as 0.89 and 1.045 for circularly and

elliptically modelled galaxy clusters respectively.

Figure 4.8: Constraining contours for Hubble parameter(kms−1Mpc−1) and wdefor flat

wCDM model of the universe for Galaxy cluster sample modelled with (a) circular β

model and (b) elliptical β model

(a)
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(b)

Fig.(4.9) shows the theoretical best-fit curves for angular diameter distance as a

function of redshift for ΛCDM and RH = ct models of the universe along with the

data points for galaxy clusters modelled with circular β model and elliptcial β

model. The theoretical fits for the two different models are consistent with each

other and with the data points, hence, preferred model can be found using likelihood

analysis for the two models.

The likelihood analysis based on χ2
dof and AIC prefers RH = ct model over ΛCDM

and wCDM models by ≈ 53.8% over ≈ 15.21% and ≈ 15.32% respectively.

Similarly, likelihood analysis using BIC weights prefer RH = ct model over ΛCDM

by ≈ 84.4% and wCDM models by ≈ 85.15% for circularly modelled galaxy clusters.

For elliptically modelled galaxy clusters, he likelihood analysis based on χ2
dof and

AIC prefers RH = ct model over ΛCDM and wCDM models by ≈ 78.1% over

≈ 10.9% and ≈ 10.9% respectively. Similarly, likelihood analysis using BIC weights

prefer RH = ct model over ΛCDM by ≈ 95.03% and wCDM models by ≈ 95.02%.

42



(a)

(b)

Figure 4.9: Angular Diameter Distances for 38 galaxy clusters with error bars and the

best-fit theoretical curves for ADD as a function of redshift (z) for ΛCDM universe

and the RH = ct model of cosmology for (a) circularly modelled galaxy clusters (b)

elliptically modelled galaxy clusters.
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4.3 Summary and Conclusions

In this work we have investigated the constraints on cosmological parameters using

angular diameter distance for two data sets:

Data Sample 1: Data for 38 galaxy clusters from X-Ray Chandra and BIMA-OVRO

arrays

Data Sample 2.a: Data for 18 galaxy clusters from ROSAT and BIMA-OVRO

arrays modelled using Circular-β model

Data Sample 2.b: Data for 18 galaxy clusters from ROSAT and BIMA-OVRO

arrays modelled using Elliptical-β model

Table 4.8: Best-Fit Parameters and χ2
dof Obtained

Sample data 1 Sample data 2.a Sample data 2.b

RH = ct
Ho = 73.7

χ2
dof = 0.54

Ho = 66.34

χ2
dof = 0.513

Ho = 73.78

χ2
dof = 0.755

ΛCDM

Ωm = 0.37

Ho = 76.0

χ2
dof = 0.55

Ωm = 0.07

Ho = 74.0

χ2
dof = 0.57

Ωm = 0.29

Ho = 78.0

χ2
dof = 1.046

wCDM

wde = −0.90

Ho,= 76.0

χ2
dof = 0.54

wde = −1.15

Ho = 73.0

χ2
dof = 0.89

wde = −0.9

Ho = 77.0

χ2
dof = 1.045

Comparing these results to the best fit parameters obtained from Supertnovae Type

Ia data :0.05 ≤ Ωm ≤ 0.43 and −1.57 ≤ wde ≤ −0.66 with best fit parameters

Ωm = 0.29 and wde = −1.09 [20] and 69.4 ≤ Ho ≤ 79.94 with best-fit at

Ho = 74Kms−1Mpc−1[21], we can see that all the parameters calculated are within

the confidence interval fron Supernovae Type Ia data. Sample 1 and Sample 2.b

slighly over determines the best-fit for Hubble parameter for ΛCDM and wCDM

models. Sample 2.a underdetermines Ωm and wde for ΛCDM and wCDM models

and Ho for RH = ct model. And from observations, RH = ct universe is preferred

over ΛCDM and wCDM models of the universe.
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