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Abstract

In this thesis, we study the monodromy groups of Fuchsian Differential Equa-

tions and its properties. We find circuit matrices at all singularities of a

Fuchsian differential equation. These circuit matrices forms a group called

monodromy group. In a Fuchsian differential equation, if there are three

singularities then we can predict the properties of its monodromy group by

finding the trace of circuit matrices at all singularities.

Chapter 1 deals with basic definitions and terminologies. In Chapter 2, we

provide a formula to calculate the traces of the circuit matrices at singular

points which depends on analytic coefficients of our Fuchsian differential

equation. We state our main theorem in Chapter 3 and discuss few examples.

In Chapter 4 we prove several interesting group theoretic lemmas that are

needed for the main theorem and outline the proof of our main theorem. All

our proofs and examples can be found in [Chu99].
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Chapter 1

Important Statements and results

This chapter contains definitions and few results which will be used later.

1.1 Important Definitions

Regular Singular Point: Consider the differential equation

Dny + P1(z)Dn−1y + ...+ Pn−1(z)Dy + Pn(z)y = 0 (1.1)

where

D =
d

dz
, Pi(z) ∈ C(z)

then a point z0 ∈ C is said to be regular singular iff lim
z→z0

(z − z0)
iPi(z) exists

∀i = 1, 2, ..., n. ∞ is said to be regular iff lim
z→∞

ziPi(z) exists ∀ i = 1, 2, 3..., n.

Fuchsian Differential Equation: It is a linear homogeneous ordinary differential

equation with analytic coefficients in the complex domain whose all singular points

are regular singular points.

Monodromy Group/ Circuit Matrix: Upon analytic continuation of solutions of

fuchsian differential equation, suppose that the solutions y = fi(z) are taken to the
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solutions y = gi(z). Since, solutions are linearly independent, therefore, there exists

a matrix [mij]
n
i,j=1 such that

gi =
n∑
j=1

mijfj ∀i

The matrix [mij]
n
i,j=1 is called the monodromy or circuit matrix.

Diagonalizable Group: Suppose G ⊂ SL(2,C), then G is said to be diagonalizable

if it has matrix representation in D (where D forms the group of all unimodular di-

agonal matrices)

Reducible Group: Suppose G ⊂ SL(2,C), then G is said to be reducible if it has

the matrix representation in group{[
λ 0

0 λ−1

]
such that λ ∈ C− {0}

}

Imprimitive/DP Group: Suppose G ⊂ SL(2,C), then G is said to be Imprimi-

tive/DP if it has matrix representation in D ∪ P (where P is the permutation group

which contains unimodular matrices of the form{[
0 η

−η−1 0

]
such that η ∈ C− {0}

}

Quaternionic Group: Suppose G ⊂ SL(2,C), then G is said to be quaternionic if

G is isomorphic to quarternion group.

Zariski closed sets: Let S ⊂ k[x1, x2, ..., xn] be a set of polynomials and let V (S) ⊂
An (where An is an affine n-space) denotes common zeroes of elements of S. i.e.

V (S) = {a ∈ An | f(a) = 0 ∀f ∈ S}
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Then, a subset X of An of the form V (S) is said to be Zariski closed in An.

Zariski closure: In a topological space X, the Zariski closure F of F ⊂ X is the

smallest closed set in X such that F ⊂ F .

Now, suppose that H denote the normal subgroups of GL(2,C). The elements of

H are of the form (C− {0})I. Let G ⊂ GL(2,C),and, suppose HG = G ∩ H. So,

projective group for G is given as G/HG. Now, let G ∈ GL(2,C), then

� G is Projectively Dihedral if G/HG is isomorphic to the dihedral group Dn

where n > 2

� G is Projectively Tetrahedral if G/HG is isomorphic to A4.

� G is Projectively Octadral if G/HG is isomorphic to S4.

� G is Projectively icosahedral if G/HG is isomorphic to A5.

1.2 Analytic Continuation

It is a technique of extending the domain of analytic function over which it is defined.

(from reference [Ahl78])

1.2.1 Continuation Principle

The function obtained by analytic continuation of any solution of an analytic differ-

ential equation, along any path in the complex plane, is a solution of the differential

equation along the same path.

1.2.2 Branch Point

A Branch Point of an analytic function is a point in the complex plane whose complex

argument can be mapped from a single point in the domain to the multiple points in
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range. for example, consider the function

f(z) = za a ∈ C and a /∈ Z

Write z = eiθ where θ ∈ [0, 2π), then at θ = 0, f(e0i) = 1 and at θ = 2π, f(e2πi) = e2πia

So, the values of f(z) at arg(z) = 0 and arg(z) = 2π are different, despite the fact

that they correspond to the same point in the domain. In this way we have also

extended the domain in which function is defined.

1.2.3 Analytic continuation of f(z) = zp

Firstly, we will look at the analytic continuation of the function g(z) = ln(z) in

complex plane. Let θ ∈ [0, 2π) be the argument of z. write z in polar form z = Reiθ,

then lnz = lnR+ iθ. For, the same point z = Reiθ+2nπi, lnz = lnR+ iθ+ 2nπi. Thus,

for the same point, function g(z) = ln(z) has different values.

Now consider the function f(z) = zp (where z, p∈ C) in complex plane, then

f(z) = zp = zα+iβ = eαlnzeiβlnz

= eα(ln|z|+iArgz)eiβ(ln|z|+iArgz)

= eα(ln|z|)eiβ(ln|z|)eα(iArg(z))eiβ(iArg(z))

Since, Arg(z) and Arg(z+ 2nπ) corresponds to the same point in domain. Therefore,

for the same point in domain

f(z) = e(α+iβ)ln|z|eiα(Arg(z)+2nπ)e−β(Arg(z)+2nπ)

= e(α+iβ)ln|z|e(iα−β)(Argz+2nπ)

= ep.ln|z|eip(Argz+2nπ)

= ep[ln|z|+iArgz]+2nπip = ep.logze2nπip

= zpe2πnip = f(ze2nπi)

(1.2)

So, for the same point in domain, f(z) = zp has different values. Hence, Analytic

continuation of f(z) is f(ze2nπi).

Remark 1. Analytic continuation of f(z) = zp is f(z) if p∈ Z.
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1.3 Normal Form of second order Fuchsian Equa-

tion

Suppose
d2y

dx2
+ A1(x)

dy

dx
+ A0(x)y = 0 (1.3)

is defined on the Riemann sphere P 1 having rational function coefficients. Let y =

ye−
∫
A1(x)/2, then, by substituting the value of y in (1.3), we can find the normal form

which is given as (from reference [Kov86])

d2y

dx2
+ ry = 0 (1.4)

where r =
A1(x)2

4
+
A1(x)′

2
− A0(x).
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Chapter 2

Calculation of Circuit Matrix

In this chapter, we will define the general form of Fuchsian Differential Equation and

will calculate the circuit matrix and its trace at regular singular points of a second

order Fuchsian Differential Equation.

The most general second order Fuchsian differential equation on Riemann sphere P 1

is of the form

y′′ +

(
m∑
j=1

Aj
x− aj

)
y′ +

(
m∑
j=1

Bj

(x− aj)2
+

m∑
j=1

Cj
x− aj

)
y = 0 (2.1)

such that a1, a2...., am are distinct complex numbers and Aj, Bj, Cj are complex con-

stants such that
m∑
j=1

Cj = 0(from reference [BR89]). The normal form of (2.1) is

y′′ +

(
m∑
j=1

Bj

(x− aj)2
+

m∑
j=1

Cj
x− aj

)
y = 0 (2.2)

where

Bj =
1

4
(1 + 4Bj − (1− Aj)2))

Cj = Cj −
1

2

(∑
i 6=j

Aj
aj − ai

)
.
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2.1 Circuit matrix for m=2

Fuchsian Equation (2.1) takes the form

y′′ +

(
2∑
j=1

Aj
x− aj

)
y′ +

(
2∑
j=1

Bj

(x− aj)2
+

2∑
j=1

Cj
x− aj

)
y = 0 (2.3)

For point a1, let us assume a series solution

y =
∞∑
n=0

cn(x− a1)n+r (2.4)

y′ =
∞∑
n=0

cn(n+ r)(x− a1)n+r−1 (2.5)

y′′ =
∞∑
n=0

cn(n+ r)(n+ r − 1)(x− a1)n+r−2 (2.6)

Putting (2.4),(2.5) and (2.6) in (2.3), we get the indicial equation as follows:

r2 + r(A1 − 1) +B1 = 0

Therefore,

r =
1

2

(
1− A1 ±

√
(A1 − 1)2 − 4B1)

)
(2.7)

These are called characteristic exponents. Generator exponents are given as:

w1(x) = x
1
2
(1−A1+

√
(1−A1)2−4B1)

w2(x) = x
1
2
(1−A1−

√
(1−A1)2−4B1)

So, the solutions for (2.3) will be of the form:

y = (x
1
2
(1−A1±

√
(1−A1)2−4B1))(c0 + c1(x− a1) + c2(x− a1)2 + ...)

By Remark(1) in chapter 2, Analytic continuation of function f(z) = zp is f(z) if

p ∈ Z. So, we don’t need to do analytic continuation of whole solution instead

we only need to do it for generator exponents. Analytic Continuation of generator
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exponents:

w1(xe
2πi) = x

1
2
(1−A1+

√
(1−A1)2−4Bj)eiπ(1−A1+

√
(1−A1)2−4Bj)

w2(xe
2πi) = x

1
2
(1−A1−

√
(1−A1)2−4Bj)eiπ(1−A1−

√
(1−A1)2−4Bj)

So, by Continuation principle

w1(xe
2πi) = w1(x)eiπ(1−A1+

√
(1−A1)2−4B1) + w2(x)× 0

Similarly,

w2(xe
2πi) = w1(x)× 0 + w2(x)eiπ(1−A1−

√
(1−A1)2−4B1)

Hence, circuit matrix (t1) is:[
eiπ(1−A1+

√
(1−A1)2−4B1) 0

0 eiπ(1−A1−
√

(1−A1)2−4B1)

]

Therefore,

trace(t1) = −2e−iπA1Cosπ
√

(A1 − 1)2 − 4B1 (2.8)

Similarly, we can find circuit matrix and its trace for point a2. In the same way, for

equation (2.1), we can find circuit matrix and trace for any x = aj(singularity) where

j = 1, 2, ...,m+ 1. So, trace at any singularity is given as

trace(tj) = −2e−iπAjCosπ
√

(Aj − 1)2 − 4Bj. (2.9)

Denote ∞ ∈ P 1 by am+1 and set

Am+1 = A∞ = 2−
m∑
j=1

(Aj), Bm+1 = B∞ =
m∑
j=1

(Bj + Cjaj). (2.10)

For equation (2.3), a3 = a∞ and b3 = b∞.
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For normal form (2.2) of general Fuchsian Equation trace(tj) for any aj where j =

1, 2..,m+ 1 is given as

tj = −2Cosπ
√

(Aj − 1)2 − 4Bj. (2.11)

2.2 ∞ as regular singular point

Let u =
1

x
. Then,

dy

dx
=
dy

du

du

dx
= −u2 dy

du
(2.12)

d2y

dx2
= 2u3

dy

du
+ u4

d2y

du2
(2.13)

Put (2.12) and (2.13) in (2.1), and then calculate

lim
u→0

u× coefficient of
dy

du
which gives, A∞ = 2 −

m∑
j=1

Aj which is finite. Similarly

calculate,

lim
u→0

u2× coefficient of y which gives, B∞ =
m∑
j=1

Bj + Cjaj which is also finite.

Hence, ∞ is a regular singular point of general Fuchsian differential equation.

9



Chapter 3

The Main Theorem

In the previous chapter, we found the formula for calculating the trace of circuit

matrix at regular singular points. In this chapter, we shall provide a group theoretic

formulation of the main theorem (whose proof will be given in chapter 4). We shall

also determine the properties of monodromy group of certain Fuchsian Differential

Equations.

3.1 The Main Theorem

Theorem. Assume that the Fuchsian Equation (2.1) has three regular singularities,

a1, a2 and a3 = a∞, and G ⊂ SL(2,C) is the monodromy group of its normal form

which is given by Equation (2.2). For j=1, 2, 3 set

tj = −2Cosπ
√

(Aj − 1)2 − 4Bj

such that A3 = A∞ and B3 = B∞ are as above in (2.10), and tj denotes the trace of

monodromy matrix at singularity aj. Then, we can say that:

(a) G is reducible if and only if one of the two equivalent conditions is satisfied :

1. t1
2 + t2

2 + t3
2 − t1t2t3 = 4.

2. at least one of the four possible cases of the expression
√

(A1 − 1)2 − 4B1)+√
(A2 − 1)2 − 4B2) +

√
(A3 − 1)2 − 4B3) is odd.
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(b) If G is irreducible. Then, G is DP if and only if one of the two equivalent

conditions is satisfied :

1. At least two of t1, t2 and t3 are zero.

2. At least two of 2
√

((A1 − 1)2 − 4B1), 2
√

((A2 − 1)2 − 4B2), 2
√

((A3 − 1)2 − 4B3)

are odd.

Further, in the irreducible DP case G is finite if and only if :

1. all three tj becomes zero for j = 1, 2, 3. or, equivalently all three of the

expressions above in (2) gives us odd integers, and, G becomes quaternionic

in this case; or

2. the non-zero trace is resonant, G becomes projectively dihedral in this

case.

(c) G is finite but irreducible and not DP if and only if G is projectively tetra-

hedral, projectively octahedral, projectively icosahedral. Further,

1. The group G is projectively tetrahedral if and only if t1
2 + t2

2 + t3
2 −

t1t2t3 = 2 such that t1, t2, t3 ∈ {0,±1}.

2. The group G is projectively octahedral if and only if t1
2 + t2

2 + t3
2 −

t1t2t3 = 3 such that t1, t2, t3 ∈ {0,±1,±
√

2}.

3. The group G is projectively icosahedral if and only if t1
2 + t2

2 + t3
2 −

t1t2t3 ∈ {2 − µ2, 3, 2 + µ1} = {1 + µ2
2, 3, 1 + µ1

2} such that t1, t2, t3 ∈
{0,±µ2,±1,±µ1}, where µ1 =

1

2
(1 +

√
5) and µ2 = −1

2
(1−

√
5).

(d) If none of (a) to (c) hold, then, the Zariski closure of G is SL(2,C).

Proof. (b) Assume that for some tj = −2Cosπ
√

(Aj − 1)2 − 4Bj = 0 for j = 1, 2, 3

which is possible if
√

(Aj − 1)2 − 4Bj = odd integer/2. Hence, 2
√

(Aj − 1)2 − 4Bj

must be an odd integer.

Now assume that 2
√

(Aj − 1)2 − 4Bj is an odd integer for some j = 1, 2, 3. It implies

that
√

(Aj − 1)2 − 4Bj = odd integer/2. Hence, tj = −2Cosπ
√

(Aj − 1)2 − 4Bj =

0.

The rest of the proof will be given by analogous theorm proved in chapter 4.

Now, we will give some examples of The Main Theorem.
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3.2 Examples of Main Theorem

Example 3.1 (The Hypergeometric Equation). The Hypergeometric equation is a

Fuchsian equation of the form

y′′ +
γ − (α + β + 1)x

x(1− x)
y′ − αβ

x(1− x)
y = 0 (E)

defined on the Riemann Sphere P 1, where α, βandγ are arbitrary complex constants.

Hypergeometric equation can also be written as

y′′ +

(
γ

x
− γ

x− 1
+
α + β + 1

x− 1

)
y′ +

(
−αβ
x

+
αβ

x− 1

)
y = 0.

The normal form of (E) is

y′′ +
1

4

(
1− λ2

x2
+

1− ν2

(x− 1)2
− λ2 − µ2 + ν2 − 1)

x
+
λ2 − µ2 + ν2 − 1

x− 1

)
y = 0

with parameters λ, µ, ν defined by

λ = 1− γ

ν = γ − (α + β)

µ = ±(α− β)

(3.1)

Characteristic exponents at singularity a1=0 are 0 and 1 − γ, at singularity a2=1

are 0 and γ − (α + β) and at singularity a3 =a∞ = ∞ are α and β. The traces at

singularities a1, a2, a∞ are as follows:

t1 = −2Cosπ(γ − 1) = −2Cosπλ

t2 = −2Cosπ(γ − (α + β)) = −2Cosπν

t∞ = −2Cosπ(α− β) = −2Cosπµ

(3.2)

Proposition 3.1. The monodromy group G of hypergeometric equation (E) is:

(a) reducible if and only if at least one of α, β, γ − α and γ − β is an integer or,

parellely, if and only if at least one determination of ±λ ± ν ± µ is an odd integer;

and

(b) DP but irreducible if and only if at least two of λ− 1
2
, ν− 1

2
and µ− 1

2
are integers
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and third has not the form n − 1
2

for some integer n. Further, G is quaternionic if

and only if all three of λ− 1
2
, ν − 1

2
and µ− 1

2
are integers.

Proof. (a) From main theorm, we know that monodromy group is reducible iff one of

the possible determinations of expression√
(A1 − 1)2 − 4B1 +

√
(A2 − 1)2 − 4B2 +

√
(A3 − 1)2 − 4B3

is an odd integer . In view of proposition let us assume that λ + µ + ν is an odd

integer which implies that 1 − 2β is an odd integer,which is only possible if β is an

integer. Similarly, we can prove for other cases. (from reference [BC90])

(b) From main theorm we know that monodromy group is DP but not reducible

iff at least two of three traces vanishes. Suppose that λ − 1
2

is an integer, then

λ = odd integer/2, which implies t1 = −2Cosπλ = 0. Similarly, we can show for

other cases also.

Example 3.2. The Legendre Equation:

The Legendre equation is of the form

y′′ − 2x

1− x2
y′ +

λ

1− x2
y = 0 (F)

where λ is real. It can also be written as

y′′ +

(
1

x− 1
+

1

x+ 1

)
y′ +

(
−λ/2
x− 1

+
λ/2

x+ 1

)
y = 0 (G)

Hence, it is Fuchsian. The normal form is given as

y′′ +
1

4

(
1

(x− 1)2
+

1

(x+ 1)2
− 2λ+ 1

x− 1
+

2λ+ 1

x+ 1

)
y = 0 (H)

For a1 = 1, characteristic exponents are r± =
1

2
(1− 1±

√
(1− 1)2 − 0) Hence, trace

of circuit matrix is t1 = −2. Similarly, for a2 = −1, t2 = −2. Now, A∞ = 0, B∞ =

−λ
2
− λ

2
= −λ. So, r± =

1

2
(1±

√
1 + 4λ). Therefore, trace at a3 = a∞ is t3 =

−2Cosπ
√

1 + 4λ. Hence,

t1
2 + t2

2 + t3
2 − t1t2t3 = 4(Cos(π

√
1 + 4λ) + 1)2 + 4 (3.3)

13



By main theorem, we can show that

� the corresponding monodromy group is reducible iff Cos(π
√

1 + 4λ) = −1, which

is only possible iff λ = k(k + 1).

� Clearly, G is not DP/Imprimitive as any two traces does not vanish.

� Clearly, equation (5.1) 6= 2or3. Hence, Monodromy group can’t be projectively

tetrahedral or octahedral.

� Monodromy group can’t be projectively icosahedral because t1
2+t2

2+t3
2−t1t2t3 6∈

(2− µ2, 3, 2 + µ2) where µ1 = −1
2
(1−
√

5), , µ2 = 1
2
(1+
√

5), and 2−µ2 = 5−
√
5

2
<

4, 2 + µ2 = 5+
√
5

2
< 4 and 3 < 4.

� Hence,monodromy group is either reducible or Zariski closure of G is SL(2,C).

Example 3.3. Riemann’s Equation.

It is the Fuschsian equation of the form y′′ + c1(x)y′ + c2(x)y = 0, where

c1(x) =
1− η1 − µ1

x
+

1− η2 − µ2

x− 1
(3.4)

c2(x) =
η1µ1

x2
+

η2µ2

(x− 1)2
+
η3µ3 − η1µ1 − η2µ2

x(x− 1)
. (3.5)

Complex constants ηj, µj are subject to the constraint∑
(ηj + µj) = 1.

Its normal form is given as

y′′ +
1

4

(
1− (η1 − µ1)

2

x2
+

1− (η2 − µ2)
2

(x− 1)2
+
ν

x
− ν

x− 1

)
y = 0 (I)

where ν = 1− (η1 − µ1)
2 − (η2 − µ2)

2 + (η3 − µ3)
2.

The traces at singularities a1 = 0, a2 = 1 and a3 =∞ are tj = −2Cosπ(ηj−µj) where

j = 1, 2,∞ and η∞ = η3 , µ∞ = µ3.

Proposition 3.2. The monodromy group G of Riemann equation (I) is :

(a) reducible if and only if one of η1 + η2 + η3, η1 + η2 + µ3 , η1 + µ2 + η3, µ1 + η2 + η3

is an integer; and
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(b) DP but irreducible if and only if at least two of the three expressions 2(ηj − µj)
are odd integers and third is an even integer. Furthermore, G is quaternionic if and

only if all three expressions are odd integers.

Proof. (a) We know that monodromy group G is reducible if and only if one of the

four expressions√
(A1 − 1)2 − 4B1 +

√
(A2 − 1)2 − 4B2 +

√
(A3 − 1)2 − 4B3

is an odd integer.

For equation (I)√
(A1 − 1)2 − 4B1 +

√
(A2 − 1)2 − 4B2 +

√
(A3 − 1)2 − 4B3

= η1 + η2 + η3 − (µ1 + µ2 + µ3) (3.6)

We know that
∑

(ηj +µj) = 1. Let η1 +η2 +η3= n(integer). Therefore µ1 +µ2 +µ3=1

- n. So, equation (3.6) becomes 2n-1 which is an odd integer.

Similarly, we can show for other possible expressions. (from reference [BC90])

(b) By main theorem, we know that G is DP but not reducible if and only if at least

two of

2
√

(Aj − 1)2 − 4Bj

where j = 1, 2,∞ are odd integers.

For equation (I)

2
√

(Aj − 1)2 − 4Bj = 2(ηj − µj)

where j = 1, 2,∞. Hence by main theorem, it is clear that monodromy group is DP

but not reducible iff at least two of the above integers are odd. If all three are odd,

then monodromy group is quaternionic.
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Example of Riemann Equation.

Consider the Riemann Fuchsian Equation:

y′′ −
(2/3

x
+

4/3

x− 1

)
y′ +

(2/3

x2
+

4/3

(x− 1)2
− 5/16

x(x− 1)

)
y = 0.

Observe that 1− η1−µ1 = −2
3

and η1µ1 = 2
3
. So, (µ1, η1) = (1, 2

3
) or (µ1, η1) = (2

3
, 1).

Also, 1− η2 − µ2 = −4
3

and η2µ2 = 4
3
. So, (µ2, η2) = (1, 4

3
) or (µ2, η2) = (4

3
, 1).

Now, η3µ3−η1µ1−η2µ2 = − 5
16

and η1+µ1+η2+µ2+η3+µ3 = 1. So, (µ3, η3) = (−9
4
,−3

4
)

and (µ3, η3) = (−9
4
,−3

4
).

For singularities a1 = 0, a2 = 1 and a3 =∞ the traces are as following:

trace(t1) = −2Cosπ(η1 − µ1) = −1 (3.7)

trace(t2) = −2Cosπ(η2 − µ2) = −1 (3.8)

trace(t3) = −2Cosπ(η3 − µ3) = 0 (3.9)

Hence, t21 + t22 + t23 − t1t2t3 = 2. Therefore, Monodromy Group of normal form is

projectively tetrahedral.
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Chapter 4

Reduction to Group Theory

The Main Theorem in previous chapter can be reduced to a purely group- theoretic

result which we will discuss in this chapter.

Theorem. Assume that S, T ∈ SL(2,C) such that G =
〈
S, T

〉
Then, we can say

that:

(a) G is reducible if and only if tS
2 + tT

2 + tST
2 − tStT tST = 4.

(b) If G is irreducible. Then, G is DP if and only if two of the three traces tS, tT

and tST becomes zero. Further, in the irreducible DP case G is finite if and only

if:

1. All of the three traces become zero, and, G becomes quaternionic in this

case.

2. non - zero trace is resonant, G becomes projectively dihedral in this case.

(c) Suppose G is finite but irreducible and not DP, then, G is projectively tetra-

hedral, projectively octahedral, projectively icosahedral. Further,

1. G is projectively tetrahedral if and only if tS
2 + tT

2 + tST
2− tStT tST = 2

such that tS, tT , tST ∈ {−1, 0,+1}.

2. G is projectively octahedral if and only if tS
2 + tT

2 + tST
2− tStT tST = 3

where tS, tT , tST ∈ {−
√

2,−1, 0, 1,
√

2}.

17



3. G is projectively icosahedral if and only if tS
2 + tT

2 + tST
2− tStT tST ∈

{2−µ2, 3, 2+µ1} = {1+µ2
2, 3, 1+µ1

2} and tS, tT , tST ∈ {−µ1,−1,−µ2, 0, µ2, 1, µ1},
where µ1 =

1

2
(1 +

√
5) and µ2 = (µ1)

−1 = −1

2
(1−

√
5).

(d) If no case from (a) to (c) holds, then, Zariski closure of G is SL(2,C).

Now, we will give proof for part(b) of the theorem.

Proof. Suppose G is DP but not reducible. So, it means G is matrix subgroup of

D∪P . Let S, T ∈ SL(2,C) and suppose that both are in D.

Let S =

[
α 0

0 α−1

]
and T =

[
β 0

0 β−1

]
where α, β∈ C . Then ST =

[
αβ 0

0 α−1β−1

]

So, tS
2 + tT

2 + t2ST − tStT tST = 4. Therefore (by theorem2(a)), G is reducible which

is a contradiction. Hence, at least one of S and T must be in Permutation Group(P ).

Without loss of generality, suppose that S∈ P , T∈ D.

Let S=

[
0 η

−η−1 0

]
, T =

[
γ 0

0 γ−1

]
where η, γ∈ C . So, ST=

[
0 ηγ−1

−η−1γ 0

]
Now, tS = tST = 0. Hence, two of the traces vanish.

Now, we will prove the reverse assertion. Without loss of generality assume that two

of the traces tT = tST = 0. Observe that tS = t−1S (because, S ∈ (SL(2,C)). Also,

since G is not reducible, it implies that tS 6= ±2.

We claim that if tS = ±2, then S is not diagonalizable.

Proposition 4.1. If tM = ±2, then M is not diagonilasable.

Proof.

Let M =

{[
a b

c d

]
such that (a,b,c,d) ∈ C− {0} and ad− bc = 1

}
.
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Firstly, we will find its eigen values. Let λ ∈ C, so

M − λI =

∣∣∣∣∣a− λ b

c d− λ

∣∣∣∣∣ =

Characteristic Equation is given as follows

λ2 − λ(a+ d) + 1 = 0. So, λ =
a+ d±

√
(a+ d)2 − 4

2
.

If a+ d = trace(M) = 2, then λ = 1, For λ = 1, we will find eigen vectors[
a− 1 b

c d− 1

] [
x

y

]
=

[
0

0

]

So, it implies (a− 1)x+ by = 0 and cx+ (d− 1)y = 0.

We can show that both the above equations are identical. So, eigen vector(v) is given

as r

(
b/a−1

1

)
, where r is a constant. Since, all the other vectors are not independent of

v, so, we can’t find any other eigen vector. Hence,we can’t diagonalize M . Similarly,

we can prove that M is not diagonalizable for eigen value λ = −1

Also, since we can find two different eigen vectors corresponding to two different eigen

values if trace(M) 6= ±2. Hence, M is diagonalizable if trace(M) 6= ±2.

Now, we know that tS 6= ±2, so, S can be diagonalized and also det(S) = 1.

So, we can take S =

{[
µ 0

0 µ−1

]
where µ ∈ C− {0}

}

Let T =

{[
x y

z −x

]
where x, y ∈ C

}
. So, ST =

[
µx µy

µ−1z −µ−1x

]

Now, tST = µx− µ−1x = µ−1(µ2 − 1)x = 0. If µ = ±1, then tS = ±2. So, x must be

0. Hence, T =

[
0 y

z 0

]
. Since, det(T ) = 1. It implies T∈ P .

Hence, G is a DP group.

Now, we will prove part(1) of this assertion
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Assume that all the three traces vanish. Let S be a matrix such that tS = 0 and

diagonal elemements of S6= 0 i.e.

S =

{[
a b

c d

]
where a, b, c, d ∈ C, a, d 6= 0, a+ d = 0 and ad− bc = 1

}

Now, we will diagonalise the matrix S. Firstly, we will find the eigen values for S. Let

λ be a complex constant. Then

S − λI =

∣∣∣∣∣a− λ b

c d− λ

∣∣∣∣∣ =

The characteristic equation is given as λ2 + 1 = 0, which implies λ = ±i. Now let us

find the eigen vectors corresponding to eigen values ±i

For λ = i[
a− i b

c d− i

] [
x

y

]
=

[
0

0

]

which implies, (a− i)x+ by = 0 and cx+ (d− i)y = 0

We can show that both the above equations are identical. Hence, eigen vector at λ = i

is s
(

1
−(a−1)/b

)
, where s is a complex constant.

For λ = −i[
a+ i b

c d+ i

] [
x

y

]
=

[
0

0

]

So, (a+ i)x+ by = 0 and cx+ (d+ i)y = 0

Both the above equations are identical. Hence, eigen vector at λ = −i is t
(

1
−(a+1)/b

)
,

where t is a complex constant. Now, Digonalisation matrix is given as

M =

[
1 1

− (a−i)
b
− (a+i)

b

]

Now, M−1 = −b
2i

[
− (a+i)

b
−1

(a−i)
b

1

]
and M−1SM =

[
i 0

0 −i

]
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Therefore, digonalisation of S is [
±i 0

0 ∓i

]

Assume that T =

[
0 1

−1 0

]
then, TST−1 ∈

[
±i 0

0 ∓i

]
.

Hence, we can rescale the second basis element without altering the form of S. G is

thus Quaternionic.

To see the converse firstly we will show that for any matrix M ∈ (SL(2,C))

tM4 = tM
4 − 4tM

2 + 2

Let M =

[
a b

c d

]
. Firstly, observe that tM2 = tM

2 − 2 Now,

M4 =

[
a2 + bc ab+ bd

ac+ dc d2 + bc

][
a2 + bc ab+ bd

ac+ dc d2 + bc

]

tM4 = (a2 + bc)
2

+ (ab+ bd)(ac+ cd) + (ac+ cd)(ab+ bd) + (d2 + bc)
2

= a4 + d4 + 6a2d2 + 4a3d+ 4ad3 − 4a2 − 4d2 − 8ad+ 2

tM
4 = (a2 + d2 + 2ad)

2

= a4 + d4 + 6a2d2 + 4a3d+ 4ad3

Hence, tM4 = tM
4 − 4tM

2 + 2. Now, if M ∈ Quaternion Group, then, it implies that

either tM = 0 or tM = ±2.

If tM = ±2, then M must be ±I, otherwise Jordan form would be

[
±1 1

0 ±1

]
forcing M to have an infinite order which is a contradiction.

Now suppose
〈
S, T

〉
>⊆ SL(2,C) is quaternionic. We have already seen that if

tS 6= 0 6= tT , then
〈
S, T 〉 ⊆ {I,−I}. So, without loss of generality, we may assume
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that tS = 0. So, S can be identified with the matrix[
i 0

0 −i

]

S has order 4, containing −I. If tT = ±2, then T = ±I, which has infinite order.

Hence,
〈
S, T

〉
cannot have order 8 unless tT = 0. Therefore, T can be identified with

the matrix {[
a b

c −a

]
, where a,b,c ∈ C

}

Now, ST =

[
ia ib

−ic ia

]
. If tST 6= 0, it implies ST = ±I. Hence, tST must be 0 to make

it of finite order. Therefore, a=0.

Hence, tS = tT = tST = 0.

Proof of Theorem 2(c) The proof of part (c) rests on some group theoretic results.

Notation: An is alternating group and Sn is symmetric groups; n ≥ 1

Proposition 4.2. (a) Assume that g, h ∈ A4 such that g /∈< h > and h /∈< g >.

Then, A4 =< g, h > if and only if g is a 3-cycle or h is a 3-cycle. Further, if

both are 3-cycles, then, {hg, hg−1}, consists of a 3-cycle and a product of disjoint

transpositions.

(b) Assume that g, h ∈ S4 such that g /∈< h > and h /∈< g >. Then, S4 =< g, h > if

and only if at least one of g, h and hg is a 4-cycle and at most one is of order 2.

To prove this proposition, we can assume that |g| ≥ |h| ≥ |gh|, which can be achieved

by switching generators, or, replacing generators by inverses.

Proof. (a) We know that A4 ⊂ S4 has identity, all 3- cycles and all products of disjoint

transpositions. Suppose none of g, h and gh is a 3-cycle. If, |g| = |h| = |gh| = 2, then

|G| = | < g, h > | = 4 6= 12 = |A4|.

If g and h are 3-cycles, then, without loss of generality let h = (123), g = (234),

so, {g, g−1} = {(234), (243)} and {hg, hg−1} = {(12)(34), (124)}. Hence, the final

assertion follows. If |g| = |h| = |gh| = 3, It is clear that G =< g, h >= A4. Now,
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suppose that |g| = |h| = 3 and |gh| = 2. It is clear that |G| = 6 or 12. We claim that

|G| 6= 2, 3, 4(Since, g /∈< h > and h /∈< g > and |g| = |h| = 3 = |gh| = 3, hence G

has more than 4 elements.) Also, by Langrange’s theorem |G| 6= (5, 7, 8, 9, 10, 11).

Claim: A4 doesn’t contain any subgroup of order 6.

Suppose to the contrary that A4 contains a subgroup G of order 6. Then, G is

isomorphic to Z6 or S3. But, A4 doesn’t contain any element of order 6. Therefore

G ∼= S3. Now, S3 contains 3 elements of order 2. Therefore, (12)(34), (13)(24), (14)(23)

which have order 2 must lie in G. Observe that these three elements and identity forms

a subgroup of G of order 4. But, 4 - 6 which is a contradiction. Therefore, A4 does

not contain any subgroup of order 6.

Hence, |G| = 12 = |A4|.

(b)Let g, h ∈ S4 such that g /∈< h >, h /∈< g > and w.l.o.g assume that |g| ≥ |h| ≥
|gh|. Firstly, we will prove that one of g, h and gh must be a 4-cycle and at most one

can be a 2-cycle.

If |g| = |h| = 3, then g, h ∈ A4, and, it is clear from part (a) that G =< g, h >=

A4 6= S4. If |g| = |h| = |gh| = 2, then |G| = 4 6= |S4|. If |g| = 3, |h| = |gh| = 2.

Suppose g = (i1i2i3), then, for this case, h must be (ijik) where j, k ∈ {1, 2, 3},
otherwise |gh| 6= 2. Hence, |G| ≤ 12 6= 24 = |A4|. If |g| = 4, |h| = |gh| = 2. In

this case, without loss of generality let g = (1234), h = (13), then G =< g, h >=

{(1), (1234), (13), (14)(23), (24), (12)(34), (13)(24), (1432)}, hence, |G| = 8 < 24 =

|S4|

Now, we will assume that g is 4-cycle and will consider different possible cases assum-

ing that h is at least a 3-cycle

If |g| = 4, |h| = 3, then, |G| = | < g, h > | can be 12 or 24.

Now, A4 is the only subgroup of order 12 in S4. Also, A4 doesn’t contain elements of

order 4. Therefore,|G| = 24 = |S4|. Hence, G =< g, h >= S4.

If |g| = 4, |h| = 4, then, without loss of generality assume that g = (1234), so

h ∈ {(1324), (1342), (1243), (1423), (1432)}. But, it implies that gh is a 3-cycle in all

the cases. Hence, G has elements of order 3 and 4 both. Hence, G = S4.
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Lemma 1. Assume that g, h ∈ A5 are 5 cycles such that g /∈< h >, h /∈< g >. Then,

at least one of hg and hg−1 is not a 5-cycle.

Proof. Assume that both hg and hg−1 are 5-cycles, then, without loss of generality

assume that h = (12345). Since, hg is a 5-cycle, so it has no fixed point. Hence,

there does not exist any map g : l � l − 1 = l + 4 for any l ∈ {1, 2, 3, 4, 5}; Observe

that hg−1 is such that it has no fixed point, therefore, for any l ∈ {1, 2, 3, 4, 5} there

does not exist any map g : l � l + 1; also, g cannot has any fixed point, so, for no

l ∈ {1, 2, 3, 4, 5}, there exist any mapg : l � l. Hence, ∀l ∈ {1, 2, 3, 4, 5}, we must

have map as g : l � {l + 2, l + 3}. Since, g /∈< h >, g cannot move cyclically i.e.

k cannot advance all the points by same ammount. So, now assume by cyclically

permuting labels that g : 1 � 3 and g : 2 � 5. But, the possibilities for 3 are

g : 3 � {5, 1}, hence g : 3 � 1, which is not possible, because, g is a 5-cycle.

Lemma 2. Suppose g, h ∈ A5 are 5-cycles such that g /∈< h > and h /∈< g >, then:

(a) When hg is a 3-cycle, then, for some 1 ≤ j ≤ 4, hjg is a product of disjoint

transpositions.

(b) When hg is the product of disjoint transpositions, then, the element h−1g is a

3-cycle.

Proof. (a) Without loss of generality suppose h = (12345) and assume that for hg

fix 1 and 2 both. Hence, we have g : 1 � 5 and g : 2 � 1. So, g = (15342) or

g = (15432) = h−1 ∈< h >. Hence, g = (15342). Now, h4g = h−1g = (14)(25) is a

product of disjoint transpositions. In, the same way we can prove for the cases if hg

fixes 3,4,5.

(b) Without loss of generality suppose h = (12345) and assume that hg fixes 1.

So, hg ∈ {(23)(45), (24)(35), (25)(34)}. When hg = (23)(45), then g = h−1.hg =

(15432)(23)(45) = (153), which is a contradiction, since, g is a 5-cycle. If hg =

(24)(35), then g = h−1.hg = (15432)(24)(35) = (15234), which is not a contradiction.

Now, h−1g = h4g = h3.hg = (14253)(24)(35) = (145), as required. If hg = (25)(34),

then g = h−1.hg = (15432)(25)(34) = (15)(24),which is again a contradiction, since,

g is a 5-cycle.
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Proposition 4.3. Assume that g, h ∈ A5 such that g /∈< h > and h /∈< g >. Then,

A5 =< g, h > if and only if at least one of g, h and hg is a 5-cycle and at most one

is of order 2.

To prove this proposition, again, we can assume that |g| ≥ |h| ≥ |gh|, which can be

achieved by switching generators, or, replacing generators by inverses.

Proof. A5 consists of identity, 5-cycles, 3-cycles and a product of disjoint transposi-

tions. Therefore, for non identity element, |g|, |h|, |gh| ∈ {5, 3, 2}. Without loss of

generality assume that |g| ≥ |h| ≥ |gh|. Firstly, we will show that |g| = 5.

If |g| = |h| = |gh| = 2, then |G| =< g, h >= 4 6= 60 = |A5|. If |g| = 3, |h| =

|gh| = 2, then, G = {1, g, g2, h, gh, g2h}. Hence, |G| ≤ 6 6= |A5|. Let |g| = |h| =

3, |gh| = 2. In this case, if g = (i1i2i3), then h must be ijikil such that one of

j, k, l /∈ {1, 2, 3} and other two ∈ {1, 2, 3} and they should be consecutive i.e they

can be 12,23 or 31. So, without loss of generality let g = (234), h = (345), then

G = {(1), (234), (243), (345), (354), (235), (253), (245), (254),

(23)(45), (24)(35), (25)(34)}. Hence, |G| ≤ 12 6= |A5|. Assume that |h| = |g| = |gh| =
3. We know that g /∈< h >, hence, it implies that there must be a point which is

transposed by g but not by h, but, since both g and h are of order 3, it also implies

that there must be a point transposed by both. So, without loss of generality suppose

that g = (123), then h is contained in the set {(234), (243), (235), (253), (245), (254)}.
Hence, hg for each case is as follows: (234)(123) = (13)(24); (243)(123) = (143);

(235)(123) = (13)(25), (253)(123) = (153); (245)(123) = (14523); (254)(123) = (15423).

Since, we assumed that |hg| = 3, so we will deal with second and fourth cases in the

list. Also, we can see that h−1g is a product of disjoint transpositions in these two

cases, hence these are of order 2.

Hence, |g| must be 5.

In this case assume that |h| = |gh| = 2, then G =< g, h >= {1, g, g2, g3, g4, h, gh,
g2h, g3h, g4h}. Hence, |g| ≤ 10 6= |A5|. Hence, |h| ≥ 3.

Now, let us fix |g| = 5 i.e. g is a 5-cycle. Since, we know that A5 has no proper

subgroups of order > 12, then, if |h| = 3, then by Langrange’s theorem it is clear that

G =< g, h >= A5.
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In the same case assume that |h| = 5, then Lemmas 1 and 2 gives elements of order

3 and 2 as well. Hence, by the same arguments as above we can easily show that

G = A5.

Remark 2. Assume that S ∈ SL(2,C), and let I be the identity matrix, then S

satisfies following properties:

(a) The jordan form of S is either diagonal or one of

[
±1 1

0 ±1

]
. Particularly, Jordan

form is diagonal if and only if tS 6= ±2 or S = ±I; any finite order element is

diagonalisable. (b) S2 = I iff tS = ±2. (c) S2 = −I iff tS = 0. (d) S3 = I iff

tS = −1. (e) S3 = −I iff tS = 1. (f) S4 = I iff S2 = −I, in which case (c) applies.

(g) S4 = −I iff tS = ±
√

2. (h) S5 = I iff tS = −1
2
(1−

√
5) or tS = 1

2
(1 +

√
5).

Fricke-Klein formulae

Assume that S, T ∈ SL(2,C) and let I be the identity matrix, then,

(a) tI = 2

(b) tST = tTS

(c) t(S,T ) = t2S + t2T + t2ST − tStT tST − 2

(4.1)

Consequences of Fricke-Klein formulae:

(a) tTST−1 = tS

(b) t(S−1T,T−1) = t(S,T )

(c) t(T,TS) = t(S,T )

(d) tS = t−1S

(e) t2S = tS
2 − 2

(f) (tS−1T − tST )(tS−1T + tST − tStT ) = 0

(g) (tS2T − tT )(tS2T + tT − tStST )

(4.2)

Lemma 3. Assume that S, T ∈ SL(2,C), tST = 0 and G =
〈
S, T

〉
. Then, G is a DP

group if and only if two of the three traces tS, tT and tST are zero and absolute value
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of third is
√

2. Particularly, when G =
〈
S, T

〉
and tST = 0, it should be the case that

{tS, tT , tST} /∈ {−1, 0, 1}.

Proof. By theorem 2(a), we can easily see that G is not reducible and by 2(b), we can

see that G is a DP group and since tS,T = 0, so by 5.1(c), third trace has absolute

value
√

2. Hence, {tS, tT , tST} /∈ {−1, 0, 1}.

Lemma 4. If S, T ∈ SL(2,C),then, the condition tST 6= tS−1T , implies that tS−1T =

tStT − tST .

On the other hand, if t(S,T ) = 0 and tS = ±1 the opposite condition tST = tS−1T

implies tT ∈ {±2
3

√
3}.

Proof. Since, tST 6= tS−1T , so by 5.2(f), we may see that tS−1T + tST − tStT must be 0.

Hence, tS−1T = tStT − tST .

To prove other assertion of lemma, since tS 6= ±2, so without loss of generality assume

that S =

[
λ 0

0 λ−1

]
and T =

[
a b

c d

]
. Now, since, t(S,T ) = 0, so, by, theorem 2(a), G

is irreducible. Also, G is not DP by theorm 2(b) and by two trace assumption.

Claim: bc 6= 0

Assume that bc = 0, we know that det(T ) = 1, so, ad− bc = 1, if bc = 0, either b = 0

or c = 0

w.l.o.g assume that b = 0, then,

T =

[
a 0

c a−1

]
has infinite order, which is a contradiction, because G is neither re-

ducible nor DP. By, rescaling the basis, we may then achieve T =

[
a ad− 1

1 d

]
.

Now ,the condition tS−1T = tST , implies that (λ2 − 1)(a− d) = 0, so, if λ = ±1, then

tS = ±2 but tS = ±1. Hence, a = d. Therefore, T =

[
a a2 − 1

1 a

]
Now, t2S + t2T + t2ST − tStT tST − 2 = 3a2 − 1 = 3

(
tT
2

)2

− 1. Hence, tT ∈ {±2
3

√
3}

We need the following proposition to give proof of theorem 2(c)

Proposition 4.4. Assume that G ⊂ SL(2,C), then G is either: (a) reducible in

which diagonalizable and abelian cases are included; or (b) DP but irreducible in which

quaternionic and projectively dihedral cases are included; or (c) if none of above cases
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occurs,then projectively tetrahedral, projectively octahedral or projectively icosahedral;

or (d) When none of above cases occurs ,then, Zariski closure of G is SL(2,C).

Next proposition gives the proof for theorem 2c(1)

Proposition 4.5. Suppose S, T ∈ SL(2,C) and G =
〈
S, T 〉. Then, G is projectively

tetrahedral iff t2S + t2T + t2ST − tStT tST = 2 and tS, tT , tST ∈ {−1, 0, 1}.

Proof. Assume that G is projectively tetrahedral group, so let H ⊂ G, such that

G/H ' A4. Let [P ] denote the equivalence class in G/H of P ∈ G. So, if, P /∈ H,

then, the posssibilities are [P ]3 = 1 or [P ]2 = 1. It implies that P 3 = ±I, P 2 = −I
and P 2 = I is not possible (since, P ∈ SL(2,C) and P /∈ H). So, by Remark2 [(c) -

(e)], we conclude that tP ∈ {−1, 0, 1}. Hence tS, tT , tST ∈ {−1, 0, 1}.

We claim that σ = t2S + t2T + t2ST ∈ {1, 2, 3}. Since, G =< S, T >, therefore, G/H =<

[S], [T ] >. Also, G/H ' A4. Hence, by proposition 4.2(a), at least one of S and

T must be a 3-cycle. Assume that S is 3-cycle. then, S3 = ±I, which implies that

tS = ±1 (by remark 2[(d),(e)]). Assume that S and ST are 2-cycles, then, T 2 =

(ST )2 = −I,which implies tT = tST = 0 (by remark 2(c)), therefore, σ = t2S + t2T + t2ST
is at least 1. Other conditions then can be verified.

Case1: If σ = 1, then elements [S], [T ] and [ST ], after relabelling satisfies the relation

s2 = t2 = (ts)3 =, which implies |G/H| ≤ 6, which implies |G| ≤ 12, which is a

contradiction. Since, |G| = 24. Hence, σ = 1 is not possible.

Case2: If σ = 2, then t2S + t2T + t2ST = 2, which is only possible iff two of tS, tT , tST are

3-cycles and one is 2-cycle. So, by remark (2), tStT tST = 0. Hence , G is projectively

tetrahedral.

Case(3): If σ = 3, then [S], [T ], [ST ] are 3-cycles, hence, by proposition 4.2(a)

[TS−1]
2

= e, which implies (TS−1)
2

= −I, hence, by Remark2(c) and 4.1(b), tTS−1 =

tS−1T = 0. Since, [ST ] is a 3-cycle, therefore, tST 6= 0. Hence, by lemma 4, tST = tStT ,

which implies tStT tST = 1 (by 5.2(d))Hence, t2S + t2T + t2ST − tStT tST = σ − 1 = 2.

Now by 5.1(c), t(S,T ) = 0, so, by Remark 2(c), (S, T )2 = −I ∈ G, hence H ⊂ G.

Clearly, by theorem2(b), G is not reducible and by lemma(3), G is not DP . Hence,

by proposition 4.4(c), |G| ≥ 24 ( which include the possibility |G| = ∞ ). Assume

that P ∈ G and tP = −1, then by substituting P by −P , we can assume that tP = 1.

Observe that replacements with P = S, T do not differ the value of tStT tST . Then,
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by relabelling, we get reduce to the possibility tS = tT = 1 and tST = 1 or 0. Now,

suppose tST = 1, then by lemma(4), tS−1T = 0. Replace S with S−1,we need to only

consider the second.

So, by Remark2[(c) to (e)], we note that [S]3 = [T ]3 = [TS]2 = e. So, it implies

that |G/H| ≤ 12. But we have already shown that |G| ≥ 24, so, |G/H| ≥ 12 =

|A4|, therefore, the map φ : A4 → G/H is isomorphism. Hence, G is projectively

tetrahedral.

Next proposition gives the proof for theorem 2c(2)

Proposition 4.6. Assume that S, T ∈ SL(2,C) such that G =
〈
S, T

〉
. Then, G is

projectively octahedral iff t2S+t2T+t2ST−tStT tST = 3 and tS, tT , tST ∈ {−
√

2,−1, 0, 1,
√

2}.

Proof. Assume that G is projectively octahedral, so, let H ⊂ G, such that G/H ' S4.

For, some, F ∈ G, suppose [F ] denotes its equivalence class. If F /∈ H, then the

possibilities are [F ]4 = e, [F ]3 = e and [F ]2 = e which is only case iff F 4 = −I, F 3 =

±I orF 2 = −I. Observe that F 4 = F 2 = I is not possible (since F ∈ SL(2,C) and

F /∈ H). Hence, by Remark2 [(c),(d),(e) and (g)], tS ∈ {0,±1,±
√

2}.

relabelling, we may assume that |tS| ≥ |tT | ≥ |tST |.

Since, G =
〈
S, T

〉
, therefore, G/H =

〈
[S], [T ]

〉
. Also, G/H ' S4. So, by proposition

4.2(b), at least one of S, T and ST is a 4-cycle and atmost one is of order 2. Hence,

by Remark2(g) |tS| =
√

2 and by Remark2[(d),(e) and (g)], |tT | = 1 or
√

2.

Hence, σ = t2S + t2T + t2ST ∈ {3, 4, 5, 6}.

Case1: σ = 3. The only possibility is tS =
√

2, tT = 1 and tST = 0. It implies

tStT tST = 0. Hence, G is projectively octahedral.

Case2: σ = 4. There are two possibilities in this case.

(a) |tS| = |tT | =
√

2, tST = 0 and (b) |tS| =
√

2, |tT | = 1, |tST | = 1 For (a), t(S,T ) = 2,

G is therefore reducible and by lemma 7(c ) G/H ' S4 is impossible, which is a

contradiction to the assumption. For (b), t(S,T ) = 2 ±
√

2 /∈ {0,±1,±
√

2}, which is

also impossible.
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Case3: σ = 5. The only possibility is |tS| = |tt| =
√

2, |tST | = 1. So, tStT tST = ±2

If tStT tST = −2. it implies t(S,T ) = 5 /∈ {0,±1,±
√

2}, which is impossible. If

tStT tST = 2. it implies t(S,T ) = 1 ∈ {0,±1,±
√

2}, which gives us desired result.

Case(4): σ = 6. The only possibility is |tS| = |tt| =
√

2, |tST | =
√

2. So, tStT tST =

±2
√

2 So, tST = 4± 2
√

2 /∈ {0,±1,±
√

2}. Hence this case is impossible.

To, prove the reverse assertion firstly it is clear that G is not reducible(by theo-

rem2(b)). Suppose that G is DP , so, assume that S ∈ D and T ∈ P . Then,

ST ∈ P , which implies tT = tST = 0, since tS, tT , tST ∈ {0,±1,±
√

2}, therefore,

t2S + t2T + t2ST < 3. Hence,G is not DP . Clearly, by proposition 4.4, G is not tetrahe-

dral. Since G is not DP ,reducible and projectively tetrahedral. Hence, by propostion

4.4(c), if G is finite, then G has either 48 or 120 elements.

Observe that −I ∈ G. If 0 ∈ {tS, tT , tST}, then it is immediate from Remark(2c),

so assume otherwise that t2S + t2T + t2ST > 3 implying |tS| =
√

2, and 4.3(d) gives

tS2 = t2S − 2 = 0, and by Remark(2c) again S4 = −I.

We know that, when tP < 0, for P ∈ SL(2,C), then, by subtituting P by -P, we

can get tP > 0 and such substitutions with P = S, T don’t differ the value for

tStT tST . Now, by relabelling, we can assume that tS ≥ tT ≥ tST which implies

that atleast tS ≥ tT ≥ 0. So, by the identity t2S + t2T − tStT tST = 3, we reduce to

two cases (tS, tT , tST ) = (
√

2,
√

2, 1) and (tS, tT , tST ) = (
√

2, 1, 0). If (tS, tT , tST ) =

(
√

2,
√

2, 1), since tS 6= ±2, we can choose a basis so to identify S with

[
λ 0

0 λ−1

]
,

where λ =
√
2
2

(1 ± i). Now, G is irreducible and not DP , so by lemma(4), we can

write T =

[
a ad− 1

1 d

]
. So, d =

√
2 − a, and, after solving tST = 1, a =

√
2
2

. Since,

tS2T = 0, and, since
〈
S, T

〉
=
〈
S, ST

〉
, so, by replacing T by ST this case is boiled

down to case 2. Now, suppose (tS, tT , tST ) = (
√

2, 1, 0), then, by Remark(2), we note

that [S]4 = [T ]3 = [ST ]2 = e, so, it implies |G/H| ≤ 24, since, it is the standard

representation for S4. We also know that |G| ≥ 48. So, the map, φ : S4 → G/H is

isomorphism. Hence, G is projectively octahedral.

We need the following lemma to prove proposition 2c(3)

Lemma 5. Assume that S, T ∈ SL(2,C) such that tS /∈ {−2, 2}. The following

conditions hold:(a) tT = tST = tS−1T implies tT = 0; (b) tST = 1, tS2T = tS implies
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tT = 0; (c) tS 6= 0, tS2T = 1 and tST = (tS)−1 implies tT = 0; (d) tS = (tT )−1 6= 0

implies ts−1T = 1.

Proof. Since, tS /∈ {2,−2}, so, let us assume S =

[
λ 0

0 λ−1

]
and T =

[
a b

c d

]
.

(a) Since, tST = tS−1T , it implies, (λ2 − 1)(a − d) = 0, since, tS /∈ {−2, 2}, therefore

λ = ±1 is not possible, so, a = d. Now, tST = tT and a = d, therefore, it implies,

a(λ2 − 1) = 0. Hence, a = 0.

(b) Since, tST = 1 and tS2T = tS, therefore,

λ2a+ d = λ, λ4a+ d = λ3 + λ

which gives us the unique solution a = λ
λ2−1 = −d, which implies tT = 0.

(c) Since, tS2T = 1, it implies λ2a + λ−2d = 1. We also know that tST = (tS)−1,

therefore, it implies λ2a+ λ−2d+ a+ d = 1, hence, a+ d = tT = 0.

(d) Since, tS = (tT )−1, it implies λ+λ−1 = (a+ d)−1 which implies λa+λ−1a+λ−1d+

λd = tST + tS−1T = 1. Hence, tS−1T = 1.

Next proposition gives the proof for theorem 2c(3)

Proposition 4.7. Assume that S, T ∈ SL(2,C) and G =
〈
S, T

〉
. Let µ1 = 1

2
(1+
√

5),

µ2 = µ−11 = −1
2
(1 −

√
5). G is projectively icosahedral if and only if t2S + t2T + t2ST −

tStT tST ∈ {2− µ2, 3, 2 + µ1} such that tS, tT , tST ∈ {−µ1,−1,−µ2, 0, µ2, 1, µ1}.

Proof. Suppose that G is projectively icosahedral i.e. if H ⊂ G, then G/H ∼= A5.

Now, let [F ] denote the equivalence class of F in G/H. So, for F ∈ G/H, possibilities

are [F ]5 = e, [F ]3 = e, [F ]2 = e, which is the case if and only if F 5 = ±I, F 3 =

±I, F 2 = I, again observe that F 2 = I is not possible, since, F ∈ SL(2,C) and F /∈ H.

Hence, from remark(2), we can conclude that tF ∈ {−µ1,−1,−µ2, 0, µ2, 1, µ1}.

Now, by proposition 4.3 and remark2[(h),(i)], tS ∈ {µ1, 1, µ2} and if tS = 1 then

{tT , tST} ∪ {±µ1,±µ2} 6= φ. Again by proposition(5) at most one of tT and tST

∈ {−2, 0, 2}. Now, if we list all the possibilities along with the condition t(S,T ) =

t2S + t2T + t2ST − tStT tST ∈ {2 − µ2, 3, 2 + µ1} ∈ {0,±1,±µ1,±µ2}, then we reduce to

the following ten possibilities.
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Case tS, tT , tST t(S,T )

1 (µ1, µ1, µ1) µ1

2 (µ1, µ1, 1) µ1

3 (µ1, 1, 1) 1

4 (µ1, 1, µ2) 1

5 (µ1, 1, 0) µ1

6 (µ1, µ2, 0) 1

7 (1, 1,−µ2) 1

8 (1, µ2, µ2) -µ2

9 (1, µ2, 0) -µ2

10 (µ2, µ2,−µ2) -µ2

For all the possibilities above it is clear that t2S+t2T +t2ST−tStT tST ∈ {2−µ2, 3, 2+µ1}.

Now, we will prove the opposite side of proposition. Since tST 6= 2, so, it is clear

that G is irreducible. We claim that G is not DP . Assume that G is DP and

let tT = tST = 0 and tS 6= 0, then t2S ∈ {2 − µ2, 3, 2 + µ1}, which is not possible

if tS ∈ {−µ1,−1,−µ2, 0, µ2, 1, µ1}.Hence, G is not DP . Thus, we are reduced to

irreducible non-DP group G. So, we need to examine the ten cases above.

Case 1: Substitute S−1 in place of S. Since, tT 6= 0, so, by lemma(5a) tST 6= tS−1T .

By (4.2f), we have tS−1T = tStT − tST = µ1
2 − µ1 = 1. So, we are reduced to case 2.

Case 2: In this case let us substitute S−1 in place of S and ST in place of T . Since,

tT 6= 0,by lemma(5b), we can see that tS2T 6= tS and by (4.2g) tS2T = tStST − tT =

µ1 − µ1 = 0. So, we are boiled down to case 5.

Case 3: Substitute S−1 in place of S. Since, tT 6= 0, so, by lemma(5a) tST 6= tS−1T .

By (4.2f), we have tS−1T = tStT − tST = µ1 − 1 = µ2. Thus, we are boiled to case 4.

Case 4: Substitute ST in place of S. Since, tT 6= 0, by lemma(5c), t2ST 6= tT , so, by

(4.2g), we have t2ST = tStST − tT = µ1µ2 − 1 = 0. This case is reduced to case 9.

Case 6: Substitute S−1T in place of T . Observe that tS = (t−1T ) 6= 0 and tST = 0, by

lemma(5d), it implies that tS−1T = 1. So, again we are reduced to case 4.

Case 7: Since tS 6= ±2, so, assume that S =

[
λ 0

0 λ−1

]
and T =

[
a b

c d

]
. Now,

S2 6= I, since G is irreducible. So, tS−1T = tST iff a = d. So, tST = a(λ + λ−1),

32



since, tS = tT = 1, it implies that tST = a = 1
2
6= −µ2. Hence, tS−1T 6= tST . So,

tS−1T = tStt − tST = 1 + µ2 = µ1. Replacing S by S−1, thus, reduces us to case 3.

Case 8: We have already shown that tS−1T = tST iff a = d in case 7. In this case

tT = tST , so, 2a = tT = a(λ + λ−1) = atS = a, which is a contradiction. Hence,

tS−1T = tStt − tST = 0. Hence, if we replace S by S−1, we are reduced to case 9.

Case 10: From case 7, we have seen that tS−1T = tST iff a = d. So, µ2 = tS =

λ + λ−1 = −tST = −a(λ + λ−1), which implies that a = −1, thus, tT = −2 6= µ2.

Hence, as we have seen earlier that tS−1T = tStt − tST = µ2 + µ2 = µ2µ1 = 1. So, if

we substitute S−1 in place of S, we are reduced to case 8.

Hence, for all the above cases, we are reduced to cases 5 and 9. So, we have boiled

down all the possibilities to (µi, 1, 0), such that i = 1 or 2. Observe that −I ∈ G,

by Remark (2c). Also, [S]5 = [T ]3 = [TS]2 = e in G/H (by remark2), so, it implies

|G/H| ≤ 60, and, since, A5 has elements of orders 2, 3 and 5, therefore |G/H| must

be divisible by 30. Hence, by proposition(3c), the order must be 60, which implies

that the map, φ : A5 → G/H, is an isomorphism.
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