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"God exists since mathematics is consistent, and the Devil exists since we
cannot prove it."

-André Weil

"One should study mathematics simply because it helps to arrange one’s
ideas."

-M.W. Lomonossow

"Algebraic geometry seems to have acquired the reputation of being esoteric,
exclusive, and very abstract, with adherents who are secretly plotting to take
over all the rest of mathematics. In one respect this last point is accurate..."

-David Mumford

"Algebra is the offer made by the devil to the mathematician. The devil says:
I will give you this powerful machine, it will answer any question you like.
All you need to do is give me your soul: give up geometry and you will have
this marvelous machine."

-Michael Atiyah

"As long as algebra and geometry traveled separate paths their ad-
vance was slow and their applications limited. But when these two sciences
joined company, they drew from each other fresh vitality and thenceforward
marched on at a rapid pace towards perfection."

-Joseph-Louis Lagrange
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Preface
The Inverse Galois Problem over Q(t) is concerned with determining whether a given
finite group G occurs as Galois group of some finite regular (ramified) extension, say E
of Q(t). Classical Inverse Galois Problem is concerned with solving the above problem
over Q instead of Q(t). In this book, we describe various methods to construct Galois
extension of Q(t). Due to theorem of Hilbert, also known as Hilbert’s irreducibility
theorem, which roughly speaking says that if a group G occurs as Galois group over
Q(t), then it also occurs as Galois group over Q. Therefore it is enough to work over
Q(t). Working over Q(t) has geometric advantage, as extension of Q(t) corresponds
to covering of P1 define over Q.

The first part of the book (Chapter 1-4) lays the groundwork. It includes definitions,
statement of theorems, important propositions that will be required for understanding
rest of the book. Another purpose is to keep this book self contained. For readers,
who already have a basic knowledge about these topics, may skip the Part I, and
directly start reading part II . Chapter 1 gives a short introduction to covering space
and fundamental theorem of Galois theory for covering spaces. Chapter 2 gives a
short introduction to basic elements of algebraic geometry. the main goal is to show
that there is a correspondence between covering of P1 defined over Q and field ex-
tension of Q(t). Chapter 3 gives a concise introduction to algebraic groups. If the
field extension is not finite, classical Galois correspondence ceases to exist. In this
case, we introduce a topology on Galois group, known as Krull’s topology which gives
G a structure of an algebraic group. As we will see, in some sense it restores this
correspondence. Chapter 4 gives a short introduction to theory of rational function
fields. We show that concepts of places, primes and valuations are same.

Part II (Chapter 5-7) is the heart of the book. It gives logical foundation to rest
of the thesis. In these chapters we develop the main theory. we discuss ideas and
methods to construct Galois extension of Q(t). The central result of this part is Basic
Rigidity Theorem and the Rigidity Criterion (Chapter 7). This method has been very
successfull in realizing finite simple groups as Galois group. In Chapter 6, we describe
the strategy proposed by E. Noether in 1918 to attack the problem.

In Part III (Chapters 8-11) we apply the ideas/methods developed in part II to
various finite groups. In chapter 8, we attack the problem using Noether’s Trick. In
Chapter 9 and Chapter 11, we apply the theory of rigidity and rationally to realize
finite groups as Galois group over Q(t). In chapter 11, we have tried to realize the
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sporadic simple groups as Galois group over Q(t), using the rigidity method. Since
we have made extensive use of GAP and ATLAS, Chapter 10 serves the purpose of
giving a short introduction on these topics.

Appendix contains a short exposition on Hilbert’s irreducibility theorem. We have
made a program in python to show that An is (2, 3) generated. Using the theory
of modular curves, we present a alternating way to realize the alternating groups as
Galois group. This uses the fact that An is (2, 3) generated.

If you find any mistake or flaw in this book kindly notify the author by sending
an email to vikas.math123@gmail.com
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Notation

Let An denote the affine space and Pn denote the projective space.
If X is a finite set, we denote the cardinality of X by |X|. V/K denote the variety
defined over K. V (L) denote the set of L-rational points of V .
We denote by Q,Z,R,C the filed of rational numbers, integers, real numbers and
complex numbers respectively.

For a group G, we denote by Aut(G) the automorphism group of G. Let := to
denote "defined to be equal to". If K/k is field extension, Aut(K/k) denote the group
of automorphism of K that fixes k.

We say that G has property GalT , if there is a finite regular (ramified) Galois ex-
tension of Q(t) with Galois group G. We will write "Galois extension of Q(t)" to
denote the Galois extension with above properties.
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Chapter 1

Covering Space Theory

1.1 Introduction

This chapter gives short introduction to Galois theory of covering spaces. We start
with definition of covering spaces. In the last section, we will state the algebraic
topology version of fundamental theorem of Galois theory.

We have followed the approach of [26]. All definition, theorem and proofs are from
the book Introduction to Topological Manifolds by J. Lee. See [26].

To keep the exposition short, we have left small details. There are lot of good book
where the material presented here is covered. See [25], [28].

1.2 What is a Covering space?

Let us begin with definition first, then we will worry about why we are studying them.
We will try to give some motivation for the topic.

Definition 1.1. A map p : X̃ −→ X is called a covering map if for every point x ∈ X,
there is a neighborhood U of x so that p−1(U) is a disjoint union Uα of open sets in
X̃, each mapped homeomorphically onto U by (the restriction of) p . X is called the
base space of the covering; X̃ is called the total space.
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U

p

...p−1(U)

Building the Intuition

Intuitively, p “wraps” X̃ onto X, We can visualize p−1(V ) as stack of pancakes
that are projected onto V by p.
There is another approach to understand this, a map p : Y −→ X is a covering map
if p locally looks like the projection from

X × { a discrete space} → X.

More precisely: each point x ∈ X has a neighbourhood U such that the map p−1(U)→
U is isomorphic to a projection

U × { a discrete space } → U.

It is very similar to notion of fibre bundle, an object which appears a lot in topology
and geometry. Loosely speaking Covering spaces are the simplest example of fibre
bundles with discrete fibres.

Proposition 1.2.

• Every covering map is a local homeomorphism, an open map, and a quotient
map.

• An injective covering map is a homeomorphism.

• A finite product of covering maps is covering map.

• The restriction of a covering map to a saturated, connected, open subset is a
covering map onto its image.
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Definition 1.3. A covering space is a universal covering space if it is simply con-
nected.

Example 1.4. The exponential quotient map ε : R −→ S1 given by ε(x) = exp(2πιx)
is a covering map.

Example 1.5. The n− th power map pn : S1 −→ S1.

The fundamental lemma is that covering spaces have the path lifting property:

Lemma 1.6. (Path Lifting Properties)Suppose X̃ p→ X is a covering.

1. Given a path γ : I → X and a lift of the initial point x̃0 ∈ X̃, there is a unique
lift γ̃ : I → X̃ with pγ̃ = γ.

2. If γ ' γ′ are homotopic paths in X, then they lift to homotopic paths γ̃ ' γ̃′

in X̃ (in particular, the endpoints agree).

Immediate consequences of the path lifting property include

Corollary 1.7. If X̃ p→ X is a covering then p∗ : π1(X̃, x̃)→ π1(X, x) is injective.

1.3 Monodromy

All the theorems and proof in this section can be found in the [26].

Theorem 1.8. (Monodromy Theorem) Let q : E −→ X be a covering map.
Suppose f and g are path in X with the same initial point and same terminal point
and f̃e, g̃e are their lifts with the same initial point e ∈ E.
a) f̃e ∼ g̃e if and only if f ∼ g

b) If f ∼ g then f̃e(1) = f̃e(1).

Proof. See [26]

Theorem 1.9. (Injectivity Theorem) Let q : E −→ X be a covering map. For
any point e ∈ E, the induced homomorphism q∗ : π1(E, e) −→ π1(X, q(e)) is injective.

Proof. [26]

Definition 1.10. The above theorem shows that the fundamental group of a covering
space is isomorphic to a certain subgroup of the fundamental group of the base. We
call this the subgroup induced by the covering.
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Definition 1.11. Suppose G is a group, a set S endowed with a left or right G−action
is called a G − set. For any s ∈ S, the isotropy group of s, denoted by Gs, is the
set of all elements of G that fix s:

Gs = {g ∈ G : s.g = s}.

One can check that action is free if and only if the isotropy group of every point is
trivial.

Theorem 1.12. (The Monodromy Action) Suppose q : E −→ X is a covering
map and x ∈ X. There is a transitive right action of π1(X, x) on the fibre q−1(x),
called the monodromy action, given by e.[f ] = f̃e(1) for e ∈ q−1(x) and [f ] ∈ π1(X, x).

Theorem 1.13. (Isotropy groups of the Monodromy Action). Suppose q :
E −→ X is a covering map and x ∈ X. For each e ∈ q−1(x), the isotropy group of e
under the monodromy action is q∗π1(E, e) ⊆ π1(X, x).

Proof. See [26]

Corollary 1.14. Suppose q : E −→ X is a covering map. The monodromy action is
free on each fibre of q if and only if E is simply connected.

Corollary 1.15. Suppose q : E −→ X is a covering map and E is simply connected.
Then each fibre of q has the same cardinality as the fundamental group of X.

Corollary 1.16. Covering of Simply Connected Spaces If X is a simply con-
nected space, every covering map q : E −→ X is a homeomorphism.

Proposition 1.17. (Isotropy Groups of Transitive G− sets). Suppose G is a
group and S is a transitive right G-set.

a)For each s ∈ S and g ∈ G
Gs.g = g−1Gsg

b) The set {Gs : s ∈ S} of all isotropy groups is exactly one conjugacy class of
subgroups of G. This conjugacy class is called the isotropy type of S.

Theorem 1.18. (Conjugacy Theorem.) Let q : E −→ X be a covering map. For
any x ∈ X, as e varies over the fiber q−1(x), the set of induced subgroups q∗π1(E, e)
is exactly one conjugacy class in π1(X, x).

Definition 1.19. A covering map q : E −→ X is called a normal(Galois) covering
if the induced subgroup q∗π1(E, e) is a normal subgroup of π1(X, q(e)) for some e ∈ E.
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Proposition 1.20. (Characterization of Normal Coverings.) Suppose q :
E −→ X is a covering map. Then the following are equivalent:

a)The subgroup q∗π1(E, e) is normal for some e ∈ E , i.e. q is normal.
b) For some x ∈ X, the subgroups q∗π1(E, e) are the same for all e ∈ q−1(x).
c) For every x ∈ X, the subgroups q∗π1(E, e) are the same for all e ∈ q−1(x).
d) The subgroups q∗π1(E, e) is normal for every e ∈ E.

1.4 The Automorphism Group of a Covering

Definition 1.21. Suppose q : E −→ X is a covering map. An automorphism of
q is a covering isomorphism from q to itself, that is, a homeomorphism φ : E −→ E

such that q ◦ φ = q. Covering automorphisms are also variously known as Deck
transformation or covering transformations.

Definition 1.22. Let Autq(E) denote the set of all automorphism of the covering
q : E −→ X. It is easy to see it forms a group and called the automorphism group of
the covering(covering group).

Proposition 1.23. (Properties of Automorphism Group). Let q : E −→ X be
a covering map.

a) If two automorphisms of q agree at one point, they are identical.
b)Given x ∈ X, each covering automorphism restricts to a π1(X, x)− automorphism
of the fibre q−1(x) with respect to monodromy action.
c)For any evenly covered open subset U ⊆ X, each covering automorphism permutes
the components of q−1(U).
d)The group Autq(E) acts freely on E by homeomorphism.

Proposition 1.24. ( Normal Coverings/Galois Covering). Let q : E −→ X

is a covering map, if Autq(E) acts transitively on each fibre we say q is a normal
covering.

The next theorem is a central result concerning the relationship between covering
spaces and fundamental groups. It gives an explicit for the automorphism group of a
covering in terms of the fundamental groups of the covering space and the base.

Theorem 1.25. Covering Automorphism Group Structure Theorem Suppose
q : E −→ X is a covering map, e ∈ E, and x = q(e). Let G = π1(X, x) and
H = q∗π1(E, e) ⊆ π1(X, x) For each path class γ ∈ NG(H) there is a unique covering
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automorphism φγ ∈ Autq(E) that satisfies φγ(e) = e.γ. The map γ 7→ φγ is a
surjective group homomorphism from NG(H) to Autq(E) with kernel equal to H, so
it descends to an isomorphism from NG(H)/H to Autq(E):

Autq(E) ' Nπ1(X,x)(q∗π1(E, e))/q∗π1(E, e).

Corollary 1.26. If q : E −→ X is a normal covering then for any x ∈ X and any
e ∈ q−1(x), the map γ 7→ φγ above induces an isomorphism from π1(X, x)/q∗π1(E, e)
to Autq(E).

Corollary 1.27. If q : E −→ X is a covering map and E is simply connected, then
the automorphism group of the covering is isomorphic to the fundamental group of
X.

1.5 Galois Correspondence

So Finally we are ready to state the correspondence between Galois theory and topol-
ogy.

The Galois group of a covering Let us revisit automorphism group of covering.

Definition 1.28. A morphism from a covering X̃1
p1→ X to a covering X̃2,

p2→ X is a
continuous function f : X̃1 → X̃2 satisfying p2 = fp1.

X̃1 X̃2

X

f

p′1
p2

Definition 1.29. An automorphism of a cover p : X̃ → X is called a covering
transformation or a deck transformation. Let G(X̃) := Aut(X̃) denote the group of
automorphisms of a cover p : X̃ → X. The group G(X̃) is called the Galois group
or the deck group of the cover. If necessary, one can write G(X̃,X) to indicate the
dependence on the base space X.

Proposition 1.30. We have two groups associated to a covering p : (X̃, x̃)→ (X, x):
namely, the fundamental group H = π1(X̃, x̃) ⊂ G := π1(X, x) and the Galois group
G(X̃). For spaces X satisfying a necessary local condition, we have a “Galois theory”
of covering spaces, where based covers p : (X̃, x̃) → (X, x) correspond bijectively to
subgroups H and
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• Morphisms between covering spaces X̃1 → X̃2 correspond to inclusions of sub-
groups H1 → H2.

• There is a universal cover Ỹ corresponding to H = {e} and G(Ỹ ) ' G. All
other covers are obtained as quotients of the universal cover.

• A covering is called regular if G(x̃) acts transitively on the fibers. Regular covers
correspond to normal subgroups G, and for a regular cover X̃, we have G(X̃) ∼=
G/H.

• If X̃1 → X̃2 is a morphism between regular covers that is itself a regular cover,
then G(X̃2, X) ∼= G(X̃1, X)/G(X̃1, X̃2).

To appreciate this link between Galois Theory of Field Extensions and Galois the-
ory of Covering spaces. Recall Fundamental theorem of Galois Theory

Theorem 1.31. (Fundamental Theorem of Galois Theory) Let K/F be Galois
and set G = Gal(K/F ). There is a bijection

{ subfields E of K with F ⊆ E ⊆ K} ←→ { subgroups H ≤ G}

with the following correspondences

E 7−→ Gal(K/E)

and
KH = {x ∈ K : σ(x) = x ∀σ ∈ H} ←− H

Under this correspondence:

1. If E1, E2 correspond to H1, H2 respectively, then E1 ⊆ E2 if and only if H2 ≤ H1.

2. [K : E] = |H| and [E : F ] = |G : H|.

3. K/E is always Galois with Galois group Gal(K/E) = H.

4. E is Galois over F if and only if H is a normal subgroup in G, in which case
Gal(E/F ) ' G/H.

5. If E1, E2 correspond to H1, H2, respectively, then E1 ∩ E2 corresponds to the
group < H1, H2 > and E1E2 corresponds to H1 ∩H2.

7



Theorem 1.32. (Fundamental Theorem of Galois Theory for Covering
Spaces) Let X be a path-connected, locally path-connected, and semilocally simply-
connected space with universal cover p : X̃ −→ X Then there is a isomorphism be-
tween the fundamental group of X and the group of deck transformation of p(Sometimes
we denote it by G(X̃))

There is one to one correspondence between Isomorphism classes of path connected
covers and subgroups of fundamental group π1(X). Following pictures make it more
clear (Image credit: Math3ma.com).

8



Chapter 2

Smooth Curves and Their Function
Fields

Our main goal is to show that there is a close connection between smooth curves and
their function fields. We will need basic theory of algebraic geometry. For the sake
of completeness, we describe the basic theory required to understand this beautiful
connection.

The correspondence between coverings and field extension helps to rephrase the in-
verse Galois problem purely in geometric terms. Then the results of algebraic topology
and covering space theory can be used to study the problem.
Let me fix some notation. We will use it throughout this chapter, K is a perfect field,
K̄ is algebraic closure of K and GK denote the absolute Galois group of K.

All the definitions, proposition and theorems in this chapter are taken from [11].

2.1 Varieties

We start with definition of affine varieties. Roughly speaking they are common zeros
of system of polynomial equations.

Definition 2.1. Affine n-space (over K) is the set of n-tuples,

An = An(K̄) = {P = (x1, · · · , xn) : xi ∈ K̄}.

We define the set of K-rational points of An by

An(K) = {P = (x1, · · · , xn) : xi ∈ K}.

9



Definition 2.2. A subset of affine space An is called affine algebraic set if it is of
the form VI for some I. If V is an algebraic set, we define the ideal of V to be

I(V ) = {f ∈ K̄[X] : f(P ) = 0 for all P ∈ V }

Definition 2.3. We say that an algebraic set is defined over K if its ideal I(V ) can
be generated by polynomials in K[X]. We denote this by V/K. If V is defined over
K, then the set of K-rational points of V is the set

V (K) = V ∩ An(K)

Notation From now on by V/K we will mean that variety V is defined over K.
To each variety V , a geometric object we associate a polynomial ring, an algebraic
object. Later we will see that many interesting results about varieties can be obtained
by just studying the affine coordinate ring. We say two varieties are isomorphic (we
will define it in next section) if and only if their affine coordinate ring is isomorphic.
Many concepts like dimension of variety is defined using coordinate ring.

Definition 2.4. The affine coordinate ring of V/K is given by K[X]/I(V/K).
The ring K[V ] is an integral domain. Its quotient field (field of fractions) is denoted
by K(V ) and is called the function field of V/K.

We are studying geometric objects so it’s natural to talk about notion of smooth-
ness.

Definition 2.5. Let V be a variety, P ∈ V , and f1, · · · , fm ∈ K̄[X] a set of generators
for I(V ). then we say that V is non-singular(or smooth) at P if the m×n matrix

(
∂fi
∂Xj

(P )
)

1≤i≤m,1≤j≤n

has rank n − dim(V ). If V is nonsingular at every point, then we say that V is
nonsingular or smooth.

Definition 2.6. Let V be a variety. The dimension of V , denoted by dim(V ), is
the transcendence degree of K̄(V ) over K̄.

Let’s describe another characterization of smoothness, in terms of the functions
on the variety V .

Definition 2.7. For each point P ∈ V , we define an ideal MP

MP = {f ∈ K̄[V ] : f(P ) = 0}.

10



Notice that MP is a maximal ideal, since there is an isomorphism K̄[V ]/MP → K̄

given by f → f(P ). The quotient MP/M
2
P is a finite-dimensional K̄ vector space.

Proposition 2.8. Let Let V be a variety. A point P ∈ V is nonsingular if and
only if

dimK̄ MP/M
2
P = dim V.

To each point P of variety V , we associate a ring of functions.

Definition 2.9. The local ring of V at P , denoted by K̄[V ]P , is the localization of
K̄[V ] at MP . The functions in K̄[V ]P are said to be regular or defined at P .

Definition 2.10. (Projective Space)Projective n-space (over K) denoted by Pn is
the set of all (n+ 1) tuples

(x0, · · · , xn) ∈ An+1

such that at least one xi is nonzero, modulo the equivalence relation

(x0, · · · , xn) ∼ (y0, · · · , yn)

if there exists a α ∈ K̄× such that xi = αyi for all i. An equivalence class

{(αx0, · · · , αxn) : α ∈ K̄×}

is denoted by [x0, · · · , xn], and the individual x0, · · · , xn are called homogeneous
coordinates for the corresponding point in Pn. The set of K-rational points in Pn is
the set

Pn(K) = {[x0, · · · , xn] ∈ Pn : all xi ∈ K}.

Definition 2.11. A polynomial f ∈ K̄[X0, · · · , Xn] is homogeneous of degree d if

f(αX0, · · · , αXn) = αdf(X0, · · · , Xn)

for all α ∈ K̄.

We say that an ideal I is homogeneous if it is generated by homogeneous polyno-
mials.

Let f be a homogeneous polynomial and let P ∈ Pn . Now it makes sense to ask
whether f(P ) = 0 as it does not depend on the choice of homogeneous coordinates
for P . To illustrate this, choose a non homogeneous polynomial say f = x2 − y.
Consider the points P = (1, 1) and Q = (−1,−1). Note that P ∼ Q (take λ = −1),
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but f(P ) = 12 − 1 = 1 is not equal to f(Q) = (−1)2 − (−1) = 1 + 1 = 2. To each
homogeneous ideal I we associate a subset of projective space by the rule

VI = {P ∈ Pn : f(P ) = 0 for all homogeneous f ∈ I}.

Definition 2.12. A (projective) algebraic set is any set of the form VI for a homo-
geneous ideal I. If V is a projective algebraic set, the (homogeneous) ideal of V ,
denoted by I(V ), is the ideal of K̄[X] generated by

{f ∈ K̄[X] : f is homogeneous and f(P ) = 0 for all P ∈ V }.

Definition 2.13. As in the affine case, we say V is defined over K, denoted by V/K,
if its ideal I(V ) can be generated by homogeneous polynomials in K[X]. If V is
defined over K, then the set of K-rational points of V is the set

V (K) = V ∩ Pn(K).

Now we will show that in some sense, affine space cover the projective space.
Precisely speaking Pn contains many copies of An. For example, for each 0 ≤ i ≤ n,
There is an inclusion

φi : An −→ Pn,

(y1, · · · , yn) 7→ [y1, · · · , yi−1, 1, yi, · · · , yn].

We let Hi denote the hyperplane in Pn given by Xi = 0,

Hi = {P = [x0, · · · , xn] ∈ Pn : xi = 0},

and we let Ui to be the complement of Hi,

Ui = {P = [x0, · · · , xn] ∈ Pn : xi 6= 0}

There is a natural bijection,
φ−1
i : Ui −→ An,

[x0, · · · , xn] 7→ (x0/xi, · · · , xi−1/xi, xi+1/xi, · · · , xn/xi)

For a fixed i, we identify An with the set Ui in Pn via the map φi.

Definition 2.14. Let V be a projective algebraic set with homogeneous ideal I(V ) ⊂
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K̄[X]. Then V ∩ An, by which we mean φ−1
i (V ∩ Ui) for some fixed i, is an affine

algebraic set with ideal given by

I(V ∩ An) = {f(Y1, · · · , Yi−1, 1, Yi+1, · · · , Yn) : f(X0, · · · , Xn) ∈ I(V )}.

So heart of the above discussion is that most properties of a projective variety V
may be defined in terms of the affine subvariety V ∩ An.

Definition 2.15. Let V/K be a projective variety and choose An ⊂ Pn such that
V ∩ An 6= ∅. The dimension of V is the dimension of V ∩ An. The function field of
V , denoted by K(V ), is the function field of V ∩ An.

Definition 2.16. Let V be a projective variety, let P ∈ V , and choose An ⊂ Pn with
P ∈ An. Then V is nonsingular (or smooth) at P if V ∩An is nonsingular at P . The
local ring of V at P , denoted by K̄[V ]P , is the local ring of V ∩ An at P .

As you can see above all the theory we have developed in affine case can be used
to study projective varieties.
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2.2 Maps between Varieties

Next obvious question to ask is: What maps are allowed between the geometric objects
we just constructed in the above section ? What are morphism between varieties. We
follow from [11].

Definition 2.17. Let V1 and V2 ⊂ Pn be projective varieties. A rational map from
V1 to V2 is a map of the form

f : V1 → V2, φ = [f0, ..., fn],

where the functions f0, ..., fn ∈ K̄(V1) have the property that for every point P ∈ V1

at which f0, ..., fn are all defined,

φ(P ) = [f0(P ), ..., fn(P )] ∈ V2.

Definition 2.18. If there is some λ ∈ K̄× such that

λf0, ..., λfn ∈ K(V1),

then φ is said to be over K.

Definition 2.19. A rational map

φ = [f0, ..., fn] : V1 → V2

is regular (or defined) at P ∈ V1 if there is a function g ∈ K̄(V1) such that

1. each gfi is regular at P ;

2. there is some i for which (gfi)(P ) 6= 0.

If such a g exists, then we set

φ(P ) = [(gf0)(P ), ..., (gfn)(P )].

A rational map that is regular at every point is called a morphism.

Definition 2.20. Now using the definitions above, we can describe the notion of
"isomorphism" of varieties. Let V1 and V2 be varieties. We say that V1 and V2 are
isomorphic, and write V1 ∼= V2, if there are morphisms φ : V1 → V2 and ψ : V2 → V1

such that ψ ◦ φ and φ ◦ ψ are the identity maps on V1 and V2, respectively. We say
that V1/K and V2/K are isomorphic over K if φ and ψ can be defined over K.
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Proposition 2.21. Let C be a curve and P ∈ C a smooth point. Then K̄[C]p is a
discrete valuation ring.

Definition 2.22. Let C be a curve and P ∈ C a smooth point. The (normalized)
valuation on K̄[C]p is given by

ordP : K̄[C]p → {0, 1, 2, ...}
⋃
{∞},

ordP (f) = sup{d ∈ Z : f ∈Md
P}.

Using ordP (f/g) = ordP (f)− ordP (g), we extend ordP to K̄(C),

ordP : K̄(C)→ Z
⋃
∞.

Definition 2.23. A uniformizer for C at P is any function t ∈ K̄(C) with ordP (t) =
1, i.e., a generator for the ideal MP .

2.3 Digression: Approach of Hartshorne

Many books follows the notation of [4]. So for the sake of readers, we are providing
a short summary of approach taken in the book Algebraic Geometry by Hartshorne.
See [4]. Hartshorne, [4] defines the ring of regular functions of a point P on Y in
the following manner. Observe that both definition conveys the same idea. Since the
definitions are fundamental to mathematics, we have not made any attempt to alter
it.

Definition 2.24. Let Y be a variety. We denote by O(Y ) the ring of all regular
functions on Y . If P is a point of Y , we define the local ring of P on Y , OP,Y (or OP )
to be the ring of germs of regular functions on Y near P. In other words, an element
of OP is a pair (U, f) where U is an open subset of Y containing P , and f is a regular
function on U , and where we identify two such pairs (U, f). and (V, g). if f = g on
U ∩ V .

In this case also, we can see that O(Y ) is a local ring: its maximal ideal m is the
set of germs of regular functions which vanish at P . Because if f(P ) 6= 0, then 1/f is
regular in some neighborhood of P . The residue field O(Y )/m is isomorphic to K.

He defines the function field of variety in the following way:

Definition 2.25. If Y is a variety, we define the function field K(Y ) of Y as follows:
an element of K(Y ) is an equivalence class of pairs (U, f) where U is a nonempty
open subset of Y , f is a regular function on U , and where we identify two pairs (U, f)
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and (V, g) if f = g on U ∩ V . The elements of K(Y ) are called rational functions on
Y .

K(Y ) is a field (Why ?). Since Y is irreducible, any two nonempty open sets have
a nonempty intersection. Hence we can define addition and multiplication in K(Y ),
making it a ring. Then if (U, f) ∈ K(Y ) with f 6= 0 , we can restrict f to the open
set V = U − U ∩ Z(f) where it never vanishes, so that 1/f is regular on V , hence
(V, 1/f) is an inverse for (U, f).

So what we have done so far is that, Given any variety Y , we have the associated to
it, ring of global functions O(Y ) the local ring Op at a point of Y , and the function
field K(Y ).

There is a beautiful connection between the the ring of global functions O(Y ), the
local ring Op at a point of Y , and the function field K(Y ). We have this beautiful
theorem which relate these three concepts. Fir proof, see (page 16, Chapter I) of [4]

Theorem 2.26. Let Y ⊆ An be an affine variety with affine coordinate ring A(Y ).
Then:

(a) O(Y ) ' A(Y );
(b) for each point P ∈ Y , let mp ⊆ A(Y ) be the ideal of functions vanishing at P .
Then P −→ mp gives a 1−1 correspondence between the points of Y and the maximal
ideals of A(Y );
(c) for each P , Op ' A(Y )mp and dimOp = dim Y ;
(d) K(Y ) is isomorphic to the quotient field of A(Y ), and hence K(Y ) is a finitely
generated extension field of k, of transcendence degree = dim Y .

There is a similar theorem for projective variety

Theorem 2.27. Let Y ⊆ Pn be an variety with coordinate ring S(Y ). Then:

(a) O(Y ) ' k;
(b) for each point P ∈ Y , let mp ⊆ S(Y ) be the ideal of homogeneous functions van-
ishing at P .then for each P , Op ' S(Y )(mp) and dimOp = dim Y ;
(d) K(Y ) ' S(Y )((0)))

2.4 Smooth Curves and Their Function Fields

In this section we will show that there is a closed connection between smooth projective
curves and their function. Our main aim is to understand the bijective correspondence
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between covers of P1 defined over Q and the field extension of Q(t). By curve I will
always mean a smooth projective curve of dimension 1.

Theorem 2.28. Let C be a curve, let V ⊂ PN be a variety, let P ∈ C be a smooth
point, and let φ : C −→ V be a rational map. Then φ is regular at P . In particular,
if C is smooth, then φ is a morphism.

Proof. See [11]

Proposition 2.29. Let C/K be a smooth curve and let f ∈ K(C) be a function.
Then using f we can define a rational map, which we also denote by f ,

C → P1,

P 7→ [f(P ), 1].

This map is actually a morphism. It is given by

f(P ) =


[f(P ), 1] if f is regular atP,

[1, 0] if f has a pole atP.

In other direction, Let
φ : C → P1.

φ = [f, g] be a rational map defined over K. We have two cases. Case I: g = 0,
in that case φ is constant map φ = [1, 0], Case II φ is the map corresponding to the
function f/g ∈ K(C). Let’s denote the former map by ∞, we thus obtain a bijective
correspondence

K(C) ∪ {∞} ↔ {maps C → P1 defined over K}

We need the following proposition.

Proposition 2.30. Let φ : C1 → C2 be a morphism of curves. Then φ is either
constant or surjective.

Let C1/K and C2/K be two curves and let φ : C1 → C2 be a nonconstant rational
map defined over K. Then composition with φ induces an injection of function fields
fixing K,

φ? : K(C2)→ K(C1), φ?f = f ◦ φ.

We obtain our central result,
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Theorem 2.31. Let C1/K and C2/K be curves.

• Let φ : C1 → C2 be a nonconstant map defined over K. Then K(C1) is a finite
extension of φ?(K(C2)).

• Let i : K(C2) → K(C1) be an injection of function fields fixing K. Then there
exists a unique nonconstant map φ : C1 → C2 (defined over K) such that φ? = i

• Let K ⊂ K(C1) be a subfield of finite index containing K. Then there exist
a smooth curve C ′/K, unique up to K-isomorphism, and a nonconstant map
φ : C1 → C

′ defined over K such that φ? : K(C ′) = K

We conclude from the above theorem that there is a bijection between covers of
P1 and field extensions of Q(t) We summarize it as:



Objects: smooth
curves defined over K
Maps: nonconstant
rational maps
(equivalently
surjective morphisms)
defined over K


 



Objects: finitely
generated extensions
K/K of
transcendence degree
1 and
K ∩ K̄ = K

Maps: =field
injections fixing K


C/K  K(C)

φ : C1 → C2  φ? : K(C2)→ K(C1)

Let φ : C1 → C2 be a map of curves defined over K. If φ is constant, we define
the degree of φ to be 0. Otherwise we say that φ is a finite map and we define its
degree to be

deg φ = [K(C1) : φ?K(C2)].

Definition 2.32. Let φ : C1 → C2 be a nonconstant map of smooth curves, and
let P ∈ C1. The ramification index of φ at P , denoted by eφ(P ), is the quantity
eφ(P ) = ordP (φ?tφ(P )), where tφ(P ) ∈ K(C2) is a uniformizer at φ(P ). Note that
eφ(P ) ≥ 1. We say that φ is unramified at P if eφ(P ) = 1, and that φ is unramified
if it is unramified at every point of C1.

Definition 2.33. Let φ : C1 → C2 be a nonconstant map of smooth curves.

• For every Q ∈ C2, ∑
P∈φ−1(Q)

eφ(P ) = deg(φ).
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• For all but finitely many Q ∈ C2,

|φ−1(Q)| = degs(φ)

A map φ : C1 → C2 is unramified if and only if

|φ−1(Q)| = degs(φ) for all Q ∈ C2.
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Chapter 3

Algebraic Tori, Profinite Groups
and Infinite Galois Theory

3.1 Introduction

We know about the Galois correspondence between subgroups of Galois groups of
finite Galois extensions and intermediate fields. But what happens for infinite Galois
extension? It turns out that it is not valid for infinite Galois extension. We define
a topology on Galois group, Krull’s topology which helps to restore this correspon-
dence.It is a well known fact in Galois theory that Galois groups are inverse limits
of finite groups, that is they are profinite groups. In other direction, we can define
profinite groups, independently of Galois theoretic properties. One can show that
profinite group are realizable as Galois group.

This chapter gives a short presentation on this topic. Since profinite groups are
example of algebraic groups. We will start with the definition of algebraic groups.
We will state several important result which will be used throughout the chapter.

3.2 Definitions, Example and Morphisms

Definition 3.1. An algebraic group G is an algebraic variety as well as a group such
that the maps, m : G×G→ G and i : G→ G, given by m(x, y) = xy, i(x) = x−1 are
morphism of algebraic varieties.

Definition 3.2 (Morphism of Algebraic groups). If G and G′ are algebraic groups, a
map φ : G→ G

′ is a homomorphism of algebraic groups if φ is a morphism of varieties
and a group homomorphism. Similarly φ is an isomorphism of algebraic groups if φ
is an isomorphism of varieties and a group isomorphism.
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Example 3.3. The group GLn, SLn, Sp2n, SOn, On, Un, etc are some of the standard
examples of affine algebraic group.

3.3 Multiplicative Group and Algebraic Tori

Definition 3.4. As a special case, for n = 1, GL1 = Gm = k∗ and the coordinate
ring is k[GL1] = k[x][x−1] We call Gm the multiplicative group.
It has the underlying structure of punctured line A1

k − {(0)} ⊆ A1
k. The map m is

given by
k[t, t−1]→ k[u, v, u−1, v−1] : t 7→ uv

and the inverse map i is given by

k[t, t−1]→ k[t, t−1] : t 7→ t1

Definition 3.5 (Linear Algebraic Group). A linear algebraic group is an algebraic
group isomorphic to an algebraic subgroup of GLn for some n. Note the underlying
variety of a linear algebraic group is affine.

Algebraic tori are the simplest examples of algebraic groups.

Definition 3.6 (K-Torus). A K-Torus is an algebraic group over K which becomes
isomorphic to a product of multiplicative group

Gm ×Gm . . .×Gm

over the algebraic closure K̄ of K.

Definition 3.7 (Split Torus). If the above isomorphism is defined over K, then the
torus is said to be split.

Definition 3.8 (Isogeny). An isogeny between algebraic groups is a surjective mor-
phism with finite kernel; two tori are said to be isogenous if there exists an isogeny
from the first to the second. For any isogeny φ : T → T

′ there exists a "dual" isogeny
ψ : T ′ → T such that ψ ◦ φ is a power map. In particular being isogenous is an
equivalence relation between tori.

Before moving on to the next topic: Quasi Split Torus, Let’s recollect some basic
definitions

The Jacobson radical of an algebra over a field is the ideal consisting of all
elements that annihilate every simple left-module. The radical contains all nilpotent
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ideals, and if the algebra is finite-dimensional, the radical itself is a nilpotent ideal. A
finite-dimensional algebra is then said to be semisimple if its radical contains only
the zero element.

Definition 3.9. Let K be a field. An associative K-algebra A is said to be separable
if for every field extension L/K, the algebra A⊗K is semisimple.

Definition 3.10 (Quasi Split Torus). Let A be a finite-dimensional separable k-
algebra. Then there is a linear algebraic group G given by G(B) = Gm(A ⊗k B) =
(A⊗k B)×, denoted ResA/kGm.

Definition 3.11 (Character Group). Character of an algebraic group G is a homo-
morphism G → Gm. The characters of G form an abelian group under point wise
multiplication, denoted X∗(G).
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3.4 Profinite Groups

In this section on we have followed the Field Arithmetic by Fried, Michael D., Jarden,
Moshe. [30]

Definition 3.12. (Inverse limit)
An inverse system(also called a projective system) over a directed partially ordered

set (I,≤) is a data (Si, πji)i,j∈I where Si is a set and πji : Sj → Si is a map for all
i, j ∈ I with i ≤ j satisfying the following rules:

(2a) πii the identity map for each i ∈ I.
(2b) πki = πji ◦ πkj if i ≤ j ≤ k.
Let S be the subset of the cartesian product ∏i∈I Si consisting of all elements

s = (si)i∈I with πji(sj) = si for all i ≤ j. We say (S, πi)i∈I is the inverse (or
projective) limit of the family (Si)i∈I with respect to the maps πji. Denote S by
lim←−Si.

The collection of all subsets of S = lim←−Si of the form π−1
i (Ui) with Ui open in Si

is a basis for the topology of S forms a basis for topology.

Definition 3.13. An inverse limit of an inverse system of finite discrete spaces is
called a profinite space.

Proposition 3.14. Let (Gi, πji)i,j∈I be an inverse system of topological groups and
continuous homomorphisms πji : Gj → Gi, for each i, j ∈ I with j ≥ i. Then
G = lim←−Gi is a topological group and the projections πi : G → Gi are continu-
ous homomorphisms. Let 〈G′i.π′ji〉i,j∈I be another system of topological groups with
G′ = lim←−G

′
i. Suppose θi : Gi → G′i, i ∈ I, is a compatible system of continuous

homomorphisms. Then the corresponding map θ : G→ G′ is a continuous homomor-
phisms.

Theorem 3.15. For proof, look [30]

Definition 3.16. Consider an inverse system of finite groups (Gi, πji)i,j∈I . Assume
that each of the Gi has the discrete topology. We call the inverse limit G = lim←−Gi a
profinite group.

We summarize some important results. For detailed analysis, see [30].

• A subgroup H of G is open if and only if H is closed of a finite index. The
intersection of all normal closed subgroups of G is 1. Every open subset of G is
a union of cosets giNi with Ni open normal and gi ∈ G.
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• Every profinite group is compact, Hausdorff, and has a basis for its topology
consisting of open-closed sets.

• A subset C of a profinite group is closed if and only if C is compact.

• A subset B of a profinite group is open-closed if it is a union of finitely many
cosets giN with N open normal and gi ∈ G (use (a) and the compactness of B).

• Every homomorphism ϕ : G → H is tacitly assumed to be continuous. In
particular, ϕ maps compact subsets of G onto compact subsets of H. hence, ϕ
maps closed subsets of G onto closed subsets of H (use (c)).

• By the first isomorphism theorem for compact groups, every epimorphism ϕ :
G → H of profinite groups is an open map. In particular, ϕ maps open sub-
groups of G onto open subgroups of H.

3.5 Infinite Galois Theory

Let N be a Galois extension of a field K. By definition, the Galois group Gal(N/K)
associated with N/K consists of all automorphisms of N that fix each element of K.
If N/K is a finite extension and G1, G2 are subgroups of Gal(N/K) with the same
fixed fields in N , the G1 = G2. This result fails to hold if the extension is not finite.

We will now introduce the notion of Krull’s Topology

Definition 3.17. Let L denote the set of all intermediate fields K ⊆ L ⊆ N , with
L/K finite and Galois. If L′ ∈ L and L ⊆ L′, then resL : Gal(L′/K)→ Gal(L/K) is
an surjective homomorphism of groups.

Definition 3.18. (Krull’s Topology) Now consider the inverse limit lim←−Gal(L/K),
with L ranging over L. Let’s take σ ∈ Gal(N/K) correspondingly we define a
element (resLσ)L∈L of lim←−Gal(L/K). This element is unique. Conversely, every
(σL)L∈L ∈ lim←−Gal(L/K) defines a unique σ ∈ Gal(N/K) with resLσ = σL for each
L ∈ L. Thus, σ 7→ (resLσ)L∈L is an isomorphism Gal(N/K) ∼= lim←−Gal(L/K).

This isomorphism gives a topology on Gal(N/K) which arises from the topology
on lim←−Gal(L/K).
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We call this topology: the Krull’s topology. Under this topology, Gal(N/K) be-
comes a profinite group.

Definition 3.19. Let L be a finite extension of K contained in N . Then we define
Galois closure L̂ is the smallest Galois extension of K that contains L. It is finite
over K and is contained in N . We can write Gal(N/L) as a union of right cosets of
Gal(N/L̂).

If S is a set of automorphisms of N , then N(S) = x ∈ N |σx = x for every σ ∈ S}
is the fixed field of S in N .

Theorem 3.20. Let N be a Galois extension of a field K. Then L 7→ Gal(N/L) is a
bijection from the family of fields L lying between K and N onto the family of closed
subgroups of G = Gal(N/K). The inverse map is H 7→ N(H).

Proof. See [29]
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Chapter 4

Field Arithmetic

4.1 Introduction

In Chapter 2 we saw that there is a bijective correspondence between covers of P1

defined over Q and the field extensions of Q(t). This serves as a source of inspiration
for studying function fields and their extensions. In this chapter we give a short in-
troduction to function fields. We will show that concept of valuation and primes are
same. We further show that there is a bijective correspondence between k-rational
points and places. The idea is that to each point we can associate a maximal ideal.

We will generalize the notion of absolute values on rational numbers. A famous
theorem in number theory states that up to equivalence there are only two non trivial
absolute value on Q, either a given absolute value is equivalent to usual real absolute
value or p-adic absolute value.

4.2 Transcendental Extensions

A function field K over k is just a finitely generated transcendental extension of k,
with transcendence degree one. In this chapter we will study these fields. We will try
to generalize the notion of absolute value on Q. Later we will see how concepts of
valuations, places, valuation rings are same.

Definition 4.1. Let L/K be any field extension. A subset S of L is called alge-
braically dependent over K if there exist a natural number n, a nonzero polyno-
mial f(x1, · · · , xn) ∈ K[x1, · · · , xn] and n distinct elements s1, · · · , sn of S such that
f(s1, · · · , sn) = 0. If S is not algebraically dependent over K, it is called algebraically
independent over K.
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Definition 4.2. Let L/K be a field extension. A transcendental basis of L over K
is a maximal subset of L algebraically independent over K .

Note that L/K is algebraic if and only if S is the empty set.

Definition 4.3. A field extension L/K is called purely transcendental if L = K(S),
where S is a transcendental basis of L over K . In this case, K(S) is called a field of
rational functions in |S| variables over K.

Definition 4.4. Let L/K be a field extension. The cardinality of any transcendental
basis of L over K is called the transcendental degree of L over K and is denoted by
tr(L/K).

Definition 4.5. Let k be an arbitrary field. A field of algebraic functions K over k is
a finitely generated field extension of k with transcendence degree r ≥ 1. K is called
a field of algebraic functions of r variables.

Definition 4.6. Let K/k be a function field. The algebraic closure of k in K, that
is, the field

k
′ = {α ∈ K | α is algebraic over k}

is called the field of constants of K.

4.3 Valuation, Places and Primes

Definition 4.7. An ordered group G is an abelian group (G,+) with a relation <

satisfying, for a, b, c ∈ G:

• a < b or b < a or a = b (trichotomy),

• If a < b and b < c then a < c (transitivity),

• If a < b then a+ c < b+ c (preservation of the group operation).

Example 4.8. examples of ordered groups are Z,Q, and R with the sum and the
usual order

Definition 4.9. Let K be an arbitrary field. A valuation v over K is a surjective
function

v : K× → G,

where G is an ordered group called the value group or valuation group, satisfying

• For a, b ∈ K× , v(ab) = v(a) + v(b), that is, v is a group epimorphism,
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• For a, b ∈ K× such that a+ b 6= 0, v(a+ b) ≥ min{v(a), v(b)}.

We define v(0) =∞, where ∞ is a symbol such that ∞ /∈ G, a <∞ for all a ∈ G
and

∞+∞ =∞+ a = a+∞ = a

for all a ∈ G.

Example 4.10. As an example of valuation we have K = Q, G = Z, and v = vp the
p-adic valuation, for p prime. That is, for x ∈ Q× we write

x = pn
a

b
, n ∈ Z p - b, vp(x) = n

Definition 4.11. Consider an arbitrary field K and a valuation of K with values in
an ordered group G. Consider,

Vv = {x ∈ K | v(x) ≥ 0}.

Note that Vv is a ring. Units of Vv are

V×v = {x ∈ K | v(x) = 0}.

Definition 4.12. Let
Pv = {x ∈ K | v(x) > 0}

consist of nonunits of Vv. It’s easy to check that it is an ideal of Vv and in fact it
is the unique maximal ideal of Vv. Therefore Vv is a local ring with unique maximal
ideal Pv.

Let’s summarize what we have developed,
If K is a field and v a valuation over K, then

Vv = {x ∈ K | v(x) ≥ 0}

is a subring of K such that for all x ∈ K, x ∈ Vv or x−1 ∈ Vv. In particular, Vv is a
local ring with unique maximal ideal

Pv = {x ∈ K | v(x) > 0}.

Also we have quot(Vv) = K.

Definition 4.13. Every integral domain A that is not a field and such that each
x ∈ quot(A) satisfies x ∈ A or x−1 ∈ A is called a valuation ring.
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Proposition 4.14. If A is a valuation ring and K = quot(A), then K×/A× is an
ordered group and the natural projection is a valuation with valuation ring A and value
group K×/A×

The above discussion shows that concepts of valuations and concept of valuation
rings is essentially same.

Definition 4.15. Two valuations v1, v2 over a fieldK with value groupsG1, G2 respec-
tively are equivalent if and only if there exists an order-preserving group isomorphism
φ : G1 → G2 such that φv1 = v2. Also, two valuations over a field are equivalent if
and only if they have the same valuation ring.

Let’s define the concept of place. Let E be an arbitrary field, and let ∞ be a
symbol such that ∞ /∈ E. We define the set E1 = E ∪ {∞} with these additional
properties,

x+∞ =∞+ x =∞ ∀x ∈ E,

x.∞ =∞.x ∀ x ∈ E×,

and
∞.∞ =∞.

Definition 4.16. A place on a field K is a function φ : K → E ∪ {∞} (E a field)
satisfying:

• φ(a+ b) = φ(a) + φ(b) for all a, b ∈ K;

• φ(ab) = φ(a)φ(b) for all a, b ∈ K;

• There exists an element a ∈ K such that φ(a) =∞;

• There exists an element b ∈ K such that φ(b) =∞ and φ(b) = 0.

Definition 4.17. Given a place φ we define

Vφ = {x ∈ K | φ(x) 6=∞}.

We can show that Vφ is an integral domain.

Proposition 4.18. For any x ∈ K we have x ∈ Vφ or x−1 ∈ Vφ, in other words Vφ
is a valuation ring. The maximal ideal P of Vφ is the set of all nonunits of Vφ, that
is x ∈ P if x = 0 or x 6= 0 and x−1 /∈ Vφ
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Now we have seen how to obtain valuation ring from a place. For the converse,
we have the following proposition.

Proposition 4.19. Consider a valuation ring V, P its maximal ideal and K =
quot(V). Let E be the field V/P and E1 = E ∪ {∞}. Let φ : K → E1 be given
by

φ(x) =


x mod P x ∈ V

∞ x /∈ V

Then φ is a place and by definition, we have

Vφ = {x ∈ K | φ(x) 6=∞}.

Concept of valuation and place are essentially same.

Definition 4.20. Two places φ1 and φ2 over a field K are equivalent if and only if
Vφ1 = Vφ2 .

Proposition 4.21. Let K be a field and let v be a valuation over K. If the value
group G of v is contained in (R,+), then the valuation defines a function | | : K → R
given by

|x|v = e−v(x),

where v(0) =∞, and e−∞ = 0.
The function defined above by the valuation v over K is a non archimedean absolute
value that is nontrivial over K.
Let | | : K → R be a nonarchimedean absolute value over K . Then the function v| |

defined by
v| | = −ln|x|,

where by definition −ln|0| = +∞ is a valuation with value group contained in (R,+).

Proof. See [29].

By usisng the above proposition, we conclude that notion of nonar-
chimedean absolute value, valuation with value group contained in R, val-
uation ring, and place are essentially the same concept.

Definition 4.22. Let K be a field. A prime divisor, or simply a prime, of K is an
equivalence class of the set of nontrivial absolute values of K . If the absolute values
in the class are archimedean, the prime is called infinite; it is called finite otherwise.
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Notation
In the nonarchimedean case, a prime divisor can be considered a place or the maximal
ideal of the valuation ring associated with the absolute value.

We say the valuation is discrete if the value group is Z.

4.4 Valuations in Rational Function Fields

in this section, we will characterize all the valuations in Rational function fields. We
have followed from [29] and [30].

You can read the full proof here [29].

Theorem 4.23. The set of valuations v over k(x) such that v(a) = 0 for a ∈ k× is
exactly

{vf | f ∈ k[x] is a monic irreducible polynomial} ∪ {v∞}

Furthermore, all of them are pairwise inequivalent and the residue field is a finite
extension of k. In case the valuation is vf , the degree of the residue field is equal
to the degree of the polynomial f and in case the valuation is v∞, the degree of the
residue field is equal to one. Finally, all these valuations are discrete.

4.5 Galois Theory and Extension of Places

In this chapter, we will give a brief introduction to Galois theory of function fields.
We will talk about extension of places under field extension.

Let K ⊆ L be a field extension and let φK : K → E ∪ {∞} be a place over K.
Aim is to show that there exists a place over L, φL : L→ E1∪{∞}, such that E ⊂ E1

and φL|K = φK .

Theorem 4.24. Let K be a field, and let V subseteqK be a subring. Let φ : V → F

be a ring homomorphism, where F is an algebraically closed field. Then φ can be
extended to a monomorphism of K to F or to a place of K to F ∪ {∞}.

Proof. See [29]

As a consequence of the above theorem we get the following

Corollary 4.25. If K ⊆ L is a field extension and φ : K → E ∪ {∞} is a place of
K, then φ can be extended to a place of L
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We will use the following notation from now on,
Notation: If v is a valuation in K, P the associated maximal ideal, and VP the
valuation ring, we will write k(P) to denote the associated residue field.
Let K/k be a function field and let P be a maximal ideal associated to a place of K.
Then fP = dK(P) = [k(P) : k] <∞.

Definition 4.26. The number fP = dK(P) = [k(P) : k] is called the degree of the
place .

Definition 4.27. Given a function field K , the free abelian group generated by all
the places is called the divisor group of K and will be denoted by DK . The places
are also called prime divisors.

Definition 4.28. Let K/k and L/L be two function fields. We say that L is an
extension of K if K ⊆ L and l ∩K = k.

Definition 4.29. Let L be an extension of K. A place P of L is called variable or
trivial over K if vP(x) = 0 for all x ∈ K× . This is equivalent to saying that K ⊆ VP .

Definition 4.30. If P is nontrivial over K, then vP �K defines a nontrivial valuation
in K . In other words, there exists a prime divisor P of K such that vP �K' vP

Definition 4.31. When P is nontrivial over K and hence vP �K' vP , we say that
P is above P or that P divides P and this is denoted by P|P or P �K= P

Definition 4.32. Consider an extension L of K, P a nontrivial place of L over K
and P �K= P. Since the valuation are discrete, vP and vP are surjective but on the
other hand vP �K' vP is not surjective in general, so vP(K×) = eZ for some e ≥ 1.
Thus we have vP(x) = evP(x) for all x ∈ K. The number e obtained above is called
the ramification index of P over P and it is denoted by e = e(P �P)

Definition 4.33. Let L/K be an extension of function fields, and let P be a place of
L over a place P of K. We define the relative degree of P over P by

dL/K(P/P) = [l(P) : k(P)]

Theorem 4.34. Let L/l be an algebraic extension of K/k. given a place P of K,
the number of places of L over P is finite and nonzero.

The central result of this section is
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Theorem 4.35. Let L/l be an extension of K/k. let P be a place of K and let
P1, · · · ,Ph be the places of L over P. Then

[L : K] =
h∑
i=1

e(Pi �P)d(Pi �P)

For proof, see [29], [30], [31]

Definition 4.36. Let L/l and M/m be two extensions of K/k and let σ : L → M

be a field isomorphism such that σ(l) = m and σ �K= IdK . Then for a place
P of L we define the place σ(P) of M by means of the valuation vσP defined by
vσP(x) = vP(σ−1x) for all x ∈M .

Proposition 4.37. Let L/l be a normal finite extension of K/k. Let P be a place of
L over the place P of K. Let P ′ be any other place of L over P. Then there exists
σ ∈ G = Aut(L/K) such that σ(P) = P ′. In other words, G acts transitively on the
places of L that divide a given place of K.

Definition 4.38. Let L/l be a finite normal extension of K/k. If P is a place of L
over P of K, we define the decomposition group of P by

D(P �P) = {σ ∈ Aut(L/K) | σ(P) = P}

Definition 4.39. In any extension L/l of K/k, a place P of L is called ramified if
e = eL/K(P/P) > 1. Also we say that P is ramified in L/K if every prime lying
over it is ramified.
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Part II

Central Theory
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Chapter 5

Constructing Galois Extension of
Q(T ) : The Property GalT

5.1 Introduction

In this chapter we describe the problem we are primarily interested in. Given a finite
group G, our goal is to construct Galois extension of rational function field Q(t) with
the Galois group G. In the chapter on algebraic geometry we saw that there is a
close connection between smooth curves and it’s function field. So the problem of
constructing Galois extension of Q(t) can be rephrased in language of covering space
theory.

This problem is also known as Inverse Galois Problem. Classical Inverse Galois prob-
lem is concerned with realization of groups as Galois group over Q.

5.2 Problem

Given a finite group G, can we construct finite Galois (ramified) extension of Q(t)
with group G. Using the bijective correspondence between smooth curves and func-
tion fields, we can rephrase the problem in geometric terms.

Let E be a finite Galois Extension of Q(T ) with group G which is regular, i.e.
Q ∩E = Q. Geometrically E can be viewed as the function field of a smooth projec-
tive curve C which is absolutely irreducible over Q.

The inclusion
Q(T ) i

↪−→ E
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corresponds to a (ramified) Galois covering

C → P1

define over Q with group G. See Chapter 2.

Definition 5.1 (The property GalT ). Let us say that G has property GalT if there
is a regular G-covering C → P1 as above.

Remark If a regular G-covering exists over Pn, n ≥ 1, then such a covering also
exist over P1, by Bertini’s theorem. See [15].

5.3 Historical Remarks

• Hilbert (1892) first studied this problem systematically. Using the irreducibility
theorem, he could show that over Q and more generally over every field finitely
generated over Q, there exist infinitely many Galois extension with Sn and An.

• Work of E. Noether (1918), Scholz (1937) contributed a lot towards this problem.
Then came the celebrated theorem by Safarevic (1954), He solved the Inverse
Galois Problem over arbitrary number fields for all solvable groups.

• The next set of results were furnished by the works of Shih (1974), Fried (1977),
Belyi (1979), Matzat(1979, 1984) and Thompson(1984). Thompson introduced
the concept of Rigidity and Rationality of finite groups. We have extensively
used this idea to realize many finite groups as Galois group over Q(t).

5.4 Current Status Of The Problem

As of now, this problem is still open. Lot of work has been done in the last 10 − 20
years. Problem is solved over C(t). Krull and Neukrich in (1971) showed that Every
finite group occur as Galois group over R(t). In 1984, D. Harbater solved the
Inverse Galois Problem over F̄p(t). In 1987, David Harbater solved the Inverse
Galois Problem over Qp(t).
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Chapter 6

Noether’s Trick: Action of Group
on Varieties

6.1 A Little Diversion : Action of Group on Vari-
eties

We know about concept of group acting on a set. We defined the quotient space
corresponding to a group action to be the set of orbits. Now what happens if our
group G acts on a variety say X. We can ask several questions, First of all Is X/G a
variety ? Are theG-invariant elements finitely generated ? The branch of mathematics
which studies these topics is known as Geometric Invariant Theory. Interested
readers can refer [8], [9].

Theorem 6.1. Let A be a finitely generated algebra over k and G a finite group of
automorphisms of A. Assume that the order n of G is not divisible by char k. Write
AG for the subalgebra of elements a ∈ A such that g(a) = a for all g ∈ G. Then AG

is finitely generated as an algebra over k.

We will need knowledge of commutative algebra. See Chapter 5 and Chapter 7
of [55] for more details.

Proposition 6.2. The following are equivalent:

• x ∈ B is integral over A

• A[x] is a finitely generated A-module;
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• A[x] is contained in a subring C of B such that C is a finitely generated A-
module.

Proof. See Proposition 5.1, [55].

Let B be a ring and A be a subring of B. Both A and B are assumed to be
commutative rings with unity. We say that x ∈ B is integral over A, if x is a root
of a monic polynomial with coefficient in A.

Proposition 6.3. (Artin-Tate, 1951) Let A ⊆ B ⊆ C be rings. Suppose that A is
Noetherian, C is finitely generated as an A algebra and C is either finitely generated
as a B-module or C is integral over B. Then B is finitely generated as an A-algebra.

Proof. For original proof, See [55], Proposition 7.9

Remark: The lemma was introduced by E. Artin and J. Tate in 1951. [56].

Proposition 6.4. The ring extension AG ⊂ A is integral

Proof. Take a ∈ A, we want to construct a polynomial with coefficients in AG. Con-
sider the polynomial

q(t) =
∏
h∈G

(t− h.a).

Observe that q(a) = 0. Consider the action of G pn A and extend it to a action of G
on A[t] by setting the rule that G acts trivially on t. Hence

g.q(t) =
∏
h∈G

(t− g.(h.a)) =
∏
h∈G

(t− h.a) = q(t).

We see that coefficient of q(t) are invariant under the action of G. hence they belong
to AG. We conclude that a in integral over AG.

Proof. (Proof of Theorem 6.1) Consider the chain of extensions

k ⊂ AG ⊂ A.

Using the above proposition and Artin-Tate Lemma. We conclude our result.

Theorem 6.5. An algebra A over a field k is isomorphic to a coordinate ring k[X] of
some closed subset X if and only if A has no nilpotents (that is fn = 0 implies that
f = 0 for f ∈ A) and is finitely generated as an algebra over k.

Proof. See Page 30, Chapter I, [54]
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The following discussion is taken from page 30, Example 1.21 [54]. Let
X be a closed set and G a finite group of automorphisms of X. Suppose that the
characteristic of the field k does not divide the order N of G. Let A = k[X], and let
AG be the subalgebra of A as above, that is

AG = {f ∈ A | g∗(f) = f for all g ∈ G}.

According to above Theorem 6.1, the algebra AG is finitely generated over k. From
the Theorem 6.5, there exists a closed set Y such that AG ' k[Y ], and a regular map
φ : X → Y such that φ∗(k[Y ]) = AG. This set Y is called the quotient variety or
quotient space of X by the action of G, and is written X/G.

6.2 Main Strategy/Idea:The Noether’s Trick

Emmy Noether proposed the following strategy to tackle the inverse Galois prob-
lem. (Source: See Chapter I, [1].) It first appeared here, [57] in 1918.

Proposition 6.6. We take a finite group G, by Cayley Theorem, we know that every
finite group is isomorphic to a subgroup of symmetric group. So we embed G in
Sn. We define a G-action on the field Q(X1, . . . Xn) = Q(X). Let E be the fixed
field under this action. Then Q(X) is a Galois extension of E with Galois group
G. In geometric terms, the extension Q(X) of E corresponds to the projection of
varieties:

π : An → An/G

where An is affine n-space over Q. Let P be a Q-rational point of An/G for which π
is unramified, and lift it to Q ∈ An(Q).
Gal(Q/Q) acts on Q, Under this action the conjugates of Q are precisely sQ. Here
s belongs to decomposition group at Q. We denote it by HQ. If HQ = G, then Q

generates a field extension of Q with Galois group G.

See [57] for proof.

Definition 6.7. A variety is said to be rational over Q (or Q-rational) if it is bira-
tionally isomorphic over Q to the affine space An (equivalently to projective space )
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for some n, or equivalently, if its function field is isomorphic to Q(T1, . . . Tn), where
the Ti are indeterminate.

Hilbert in 1892, proved the below theorem. Using this theorem, it is enough to
show that variety is Q rational.

Theorem 6.8 (Hilbert). If An/G is Q-rational, then there are infinitely many points
P,Q as above such that HQ = G.

Proof. See [58]

In the Chapter 8 we will apply this trick to various finite groups.
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Chapter 7

Rigidity and Rationality Property

7.1 Introduction

In this chapter, we will develop the basic theory of rigidity and rationality of finite
groups. The term rigidity was coined by Thompson. It gives a purely group-theoretic
conditions for occurrence of finite groups as Galois group over Q(t). In this chapter,
we will prove the rigidity criterion. We will see how it can be applied to symmetric
group and alternating groups in the Chapter 9.

We will start with some classical results, we have used them while developing the
theory of rigidity. We start with a theorem of Grothendieck. We will use it as a result.
For proof, look [3]. Notation used in this theorem will be used throughout this chapter.

All the definitions, theorems and propositions in this chapter are taken from [3].

Theorem 7.1. (Grothendieck (1971)). Let k̄ be an algebraically closed subfield of
C, X = P1(C), X (k̄) = P1(k̄), S = {P1, · · · ,Ps} a finite subset of X (k̄), S =
{B1, · · · ,Bs} the set of valuations ideals of k̄(X) corresponding to S, and M̄S the
maximal algebraic extension field of k̄(X ) ' k̄(t) unramified outside S. then the
algebraic fundamental group Gal(M̄S/k̄(X )) has the form

〈γ1, γ2, · · · , γs | γ1 · · · γs = 1〉∧.

More over the elements γi are generators of inertia group of valuation ideal B̂i of
M̄S/k̄ lying over Bi;

I(B̂i/Bi) = 〈γi〉∧.

Notation: From now on, k̄, we will always mean the field of all algebraic numbers
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Q̄. We will denote the group Gal(M̄S/Q̄(X )) by Γs. We use another classical result
known as Splitting Theorem. For the proof, kindly see [3].

Theorem 7.2. (Splitting Theorem) Let k̄ be as above, and assume that S is invariant
under the absolute Galois group ΓQ, then M̄S is Galois over Q(t) and we have

Gal(M̄S/Q(t)) ' Γs o ΓQ.

7.2 Action via Cyclotomic Character

Take any δ ∈ ΓQ. It sends the n-th root of unity ζn := e2πi/n to a primitive power
ζcn(δ)
n , with cn(δ) ∈ (Z/nZ)×. This defines a continuous homomorphism

c : ΓQ −→ Ẑ×,

δ 7→ c(δ) := (cn(δ))n∈N

where Ẑ× denote the non units in profinite completion of integers.

Definition 7.3. The homomorphism c is called the cyclotomic character of ΓQ

In the statement of Splitting theorem, we assumed that the set S of prime ideals
ramified in M̄S/Q̄(t) is invariant under Gal(Q̄(t)/Q(t)). If we keep that assumption,
then we get the following:

Definition 7.4. The elements B1, · · · ,Bs of S are permuted by absolute Galois group
of Q. The action defined by

δ : S→ S,

Bi → B(i)δ := Bδi .

hence we get a permutation representation of ΓQ on S. In other, this induces a
permutation representation into the group Ss, symmetric group on s letters.

We will denote by Γ the group Γs o ΓQ. See Theorem 7.2. Let Γs denote the
Galois group of the maximal algebraic Galois extension M̄S/ ¯Q(t) unramified outside
S. See Theorem 7.1

Proposition 7.5. Each element δ ∈ Gal(Q̄(t)/Q(t)) ∼= ΓQ may be lifted uniquely
to an automorphism δ̃ ∈ Γ inside a given closed complement of Γs, It permutes the
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closed subgroups of Γs. We can use the Galois correspondence to conclude that it also
permutes the intermediate fields of M̄S/Q̄(t). Now let Ψ be an open normal subgroup
of Γs with fixed field N̄ and

G := Gal(N̄/Q̄(t)) = Γs/Ψ.

Both the normal subgroup Ψδ̃ and the field N̄ δ̃ are independent of the particular lifting
δ̃ of δ, we denote it by Ψδ, N̄ δ respectively.

Proof. See [3]

7.3 Rigidity Theorem

Definition 7.6. Let σ = (σ1, ..., σs) ∈ Gs be the image of γ = (γ1, ..., γs) under the
natural homomorphism ψ : Γs → G. Then σ is a generating system of G satisfying
the product relation σ1...σs = 1. We call such a system a generating s-system of G.
The set of all generating s-systems of G is denoted by

ΣS(G) := {σ ∈ Gs|〈σ〉 = G, σ1...σs = 1}.

We will use this fact that, if we take σ ∈ Σs(G) there exists precisely one (con-
tinuous) ψσ ∈ Hom(Γs, G) with ψσ(γ) = σ, the kernel of which constitutes a closed
subgroup of Γs denoted by ker(σ).

Proposition 7.7. There is a well defined action of ΓQ on Σs(G)/Inn(G) :

Σs(G)/Inn(G)× ΓQ → Σs(G)/Inn(G), ([σ], δ)→ [σ]δ−1 := [σδ̃−1].

where σδ̃ := ψσ(γ δ̃)

We introduced the action of ΓQ on Σs(G)/Inn(G) above. Let’s fix the notation
∆ := Gal(Q̄(t)/Q(t))

Proposition 7.8. ∆ acts on the classes of generating systems via the cyclotomic
character. More precisely, we have Let δ ∈ Gal(Q̄(t)/Q(t)), [σ] ∈ Σs(G)/Inn(G), and
denote by Ci, resp. Cδ

i , the conjugacy class of the i-th component of a representative
in [σ], resp. [σ]δ. Then we have
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Cδ
i = C

c(δ)
(i)δ .

We are leaving the proof. See page 27, [3], for in-depth analysis.

Proposition 7.9. Let C = (C1, ..., Cs) ∈ Cl(G)s be a class vector of G. Then the
fixed field QC := Q̄∆c is an abelian number field of degree

[QC : Q] = d(C).

It is generated over Q by the values of the complex irreducible characters of G on the
classes C1, ..., Cs:

QC = Q({χ(Ci)|χ ∈ Irr(G), i = 1, ..., s}).

Proof. Look [3]

We will use the above proposition to set up definitions which will form the base
of this chapter.

Definition 7.10. A class vector C ∈ Cl(G)s will be called rational if d(C) = 1 and
hence QC = Q.

For C = (C1, ..., Cs) ∈ Cl(G)s let

Σ(C) := {σ ∈ Σs(G)|σi ∈ Ci}

We denote by
l(C) := |Σ(C)/Inn(G)|

the number of generating s-system classes [σ] of G with components σi ∈ Ci.
Thompson (1984a),

Definition 7.11. A class vector C is called rigid if l(C) = 1. It is called rationally
rigid if moreover C is rational.

We directly state the central result of this. We are omitting the proof. It can be
found in any standard text on Inverse Galois theory like [3]. This result is due to

Theorem 7.12. (Basic Rigidity Theorem). Let G be a finite group in which the
center has a complement, and C ∈ Cl(G)s a rigid class vector of G. Then for any
arbitrarily chosen set S of s prime divisors βi ∈ P(QC(t)/QC) of degree one there
exists a Galois extension N/QC(t) unramified outside S with
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Gal(N/QC(t)) ∼= G

such that the inertia groups over the βi are generated by elements σi ∈ Ci.
If the class vector is rationally rigid, we have QC = Q.

It is possible to obtain Galois extension over Q(t) even if the class vector is not
rational. We will fix some notations and introduce some basic concepts and then we
will state a stronger version of Theorem 7.12.

For C ∈ Cl(G)s let

Sym(C) := {ω ∈ Ss|Cω ∈ C∗}

with (C1, ..., Cs)ω := (C1ω , ..., Csω) be the full symmetry group of C and V ≤ Sym(C)
a symmetry group of C. For such a V let

CV := {Cω|ω ∈ V } ⊆ C∗.

Furthermore,

Definition 7.13.
dV (C) := |C∗|/|CV |

is called the V -symmetrized irrationality degree of C.

Using the earlier definitions we have dV (C) = 1 precisely when CV = C∗. In this
situation we call class vector C is V -symmetric. We denote

∆V
C := {δ ∈ δ|Cc(δ) ∈ CV }

for the stabilizer of CV in ∆ under its action via the cyclotomic character. Analogous
to the previous situation where there was no choice of ramification points, we have
the following:

Proposition 7.14. The fixed field QV
C := Q̄∆V

C of ∆V
C is an abelian number field

contained in QC, of degree

[QV
C : Q] = dV (C).

In particular we have QV
C = Q if and only if the class vector C is V -symmetric.

Using the ideas developed above we state a more stronger version of rigidity the-
orem 7.12. We will call it Strong Rigidity Theorem. See [3] for proof of the theorem.
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Theorem 7.15. (Strong Rigidity Theorem). Let G be a finite group whose center
possesses a complement and with a rigid class vector C ∈ C1(G)s. Furthermore let V
be a symmetry group of C with the property that for each δ ∈ ∆V

C there exists precisely
one ω ∈ V with Cc(δ) = Cω. Then there exists a geometric Galois extension N/QV

C(t)
with

Gal(N/QV
C(t)) ∼= G.

If moreover C is V -symmetric, then we have QV
C = Q.

7.4 Rigidity Criterion

Our aim in this section is to prove a group theoretic criterion to check whether a given
class vector is rigid or not. This section is very important and forms the heart of the
thesis. The formula proved in this section will be used to show that many sporadic
groups occurs as Galois group over Q(t). We first enlarge the set Σ(C).

Σ̄(C) := {σ ∈ Gs|σi ∈ Ci, σ1...σs = 1}

of not necessarily generating s-systems. The group G also acts on this set by
conjugation in the components.

Definition 7.16. The quotient

n(C) := |Σ̄(C)|/|Inn(G)|

constitutes an estimate for the number of orbits under this action; it will be called
the normalized structure constant of C.

Using the class equation for the action ofG on Σ̄(C), normalized structure constant
of a class vector C ∈ C1(G)s of a finite group G is given by

n(C) =
∑

[σ]∈Σ̄(C)/Inn(G)

|Z(G)|
|CG(〈σ1, ..., σs〉)|

.

Using the above formula we can readily conclude that, for a class vector C ∈ Cl(G)s of
a finite group G we have l(C) ≤ n(C) and equality holds if and only if Σ̄(C) = Σ(C).

The most interesting part is yet to come. The normalize structure con-
stant of C may be computed directly from the values complex irreducible
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character values of G. Hence we can determine the value of n(C) by just using
the character tables. As you will see in the next chapters, we have implemented this
formula in GAP to do the computations efficiently.

We have taken the proof from the book Inverse Galois Theory Malle and Matzat.
See [3]. For an alternative approach you can look of the book by J. P. Serre titled
Topics in Galois Theory. See [1].

Theorem 7.17. Let C = (C1, ..., Cs) ∈ C1(G)s be a class vector of a finite group G,
where s ≥ 2. Then we have

n(C) = |Z(G)|
∑

χ∈Irr(G)

|G|s−2

χ(1)s−2

s∏
i=1

χ(σi)
|CG(σi)|

, σi ∈ Ci.

Proof. For χ ∈ Irr(G) let R : G→ GLn(C) denote a corresponding matrix represen-
tation. By the Schur’s Lemma for each σ ∈ G there exists an ω(σ) ∈ C satisfying

1
|G|

∑
ρ∈G

R(σρ) = ω(σ)In, where ω(σ) = χ(σ)
χ(1) ,

as follows from the evaluation of traces. Hence for all pairs (σ, τ) ∈ G2 we have

1
|G|

∑
ρ∈G

R(σρτ) = χ(σ)
χ(1)R(τ).

Induction on s now yields

1
|G|s

∑
ρ∈Gs

R(σρ1
1 ...σ

ρs
s τ) = χ(σ1)...χ(σs)

χ(1)s R(τ),

and evaluation of traces for τ = 1 then leads to

1
|G|s

∑
ρ∈Gs

χ(σρ1
1 ...σ

ρs
s ) = χ(σ1)...χ(σs)

χ(1)s−1 ,

Now let

ε := |G|
∑

χ∈Irr(G)
χ(1)χ

be the characteristic function of the identity in G. Accordingly, multiplying the
previous equation by χ(1)|G|s−1 and summing over χ ∈ Irr(G) we hence obtain

m(C) :=
∑
ρ∈Gs

ε(σρ1
1 ...σ

ρs
s ) = |G|s−1 ∑

χ∈Irr(G)

χ(σ1)...χ(σs)
χ(1)s−2 .

Here m(C) counts the number of solutions ρ ∈ Gs of σρ1
1 ...σ

ρs
s = 1.
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n(C) = 1
|Inn(G)| |{σ ∈ C|σ1...σs = 1}|

can be expressed as

n(C) = m(C)
|Inn(G)|

s∏
i=1
|CG(σi)|−1.

A frequently used criterion for rigidity is: A class vector C ∈ C1(G)s of a
finite group G is rigid, if the following two conditions are satisfied:

1. G = 〈σ1, ..., σs〉 for some σi ∈ Ci with σ1...σs = 1,

2. Σχ∈Irr(G)
χ(σ1)···χ(σs)
χ(1)s−2 = |CG(σ1)|...|CG(σs)|

|G|s−2|Z(G)| .

We have a group criterion to check whether a given class vector of finite group is rigid.
Basic Rigidity Theorem (See Theorem 7.12) is due to joint efforts Belyi, Matzat,
Thompson and Fried. The result proved above (see Theorem 7.17) is very helpful
because, in general it is not easy to check whether a given tuple of conjugacy classes
of a finite group is rigid. See the Chapter 9 and Chapter 11 for application of rigidity
to finite groups.
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Part III

Application
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Chapter 8

Application of Noether’s Trick

8.1 Introduction

In this chapter, we will see how the theory developed in chapter on Noether’s Trick
can be applied to various finite groups. The idea is simple, we will try to show that
the quotient variety An/G is Q rational. We first consider the case of Symmetric
group.

8.2 Symmetric Groups

Let Sn, be the symmetric group on n-letters. Let’s revisit the Fundamental theorem
of Elementary Symmetric Function.

The elementary symmetric polynomials in n variablesX1, . . . , Xn, written ek(X1, . . . , Xn)
for k = 0, 1, . . . , n are defined by

e0(X1, X2, . . . , Xn) = 1,

e1(X1, X2, . . . , Xn) = ∑
1≤j≤nXj,

e2(X1, X2, . . . , Xn) = ∑
1≤j<k≤nXjXk,

e3(X1, X2, . . . , Xn) = ∑
1≤j<k<l≤nXjXkXl,

and so forth, ending with

en(X1, X2, . . . , Xn) = X1X2 · · ·Xn.
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In general, for k ≥ 0 we define

ek(X1, . . . , Xn) =
∑

1≤j1<j2<···<jk≤n
Xj1 · · ·Xjk

Fundamental Theorem of Elementary Symmetric Functions

Theorem 8.1. For any commutative ring A, denote the ring of symmetric polynomi-
als in the variables X1, . . . , Xn with coefficients in A by A[X1, . . . , Xn]Sn. A[X1, . . . , Xn]Sn

is a polynomial ring in the n elementary symmetric polynomials ek(X1, . . . , Xn) for
k = 1, . . . , n.

(Note that e0 is not among these polynomials; since e0 = 1 it cannot be member
of any set of algebraically independent elements.)

It implies that for every symmetric polynomial P (X1, . . . , Xn) ∈ A[X1, . . . , Xn]Sn we
have

P (X1, . . . , Xn) = Q(e1(X1, . . . , Xn), . . . , en(X1, . . . , Xn))

for some polynomial Q ∈ A[Y1, . . . , Yn]. In other words A[X1, . . . , Xn]Sn is isomor-
phic to the polynomial ring A[Y1, . . . , Yn] through an isomorphism that sends Yk to
ek(X1, . . . , Xn) for k = 1, . . . , n.

Construction

By Fundamental Theorem above and using the theory developed in Chapter 6,
we conclude that Symmetric group acts on affine space An with quotient space An,
affine space of same dimension. The quotient is Q-rational.
Hence Sn has property GalT .
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8.3 Abelian Groups

Definition 8.2 (Permutation torus). A torus defined over Q is said to be a "per-
mutation torus" if its character group has a Z-basis which is stable under the action
of Gal(Q/Q), or equivalently if it can be expressed as a product of tori of the form
ResKi/Q Gm , where the Ki are finite extensions of Q. A permutation torus is clearly
rational over Q.

Now, let A be a finite abelian group. We have a beautiful result which says that
any abelian group can be embedded in a algebraic torus, see [1].

Theorem 8.3. There exists a torus S over Q, and an embedding of A in S(Q), such
that the quotient S ′ = S/A is a permutation torus and S ′ is a Q-rational variety.

Proof. For proof see [1].

Using the above theorem, we are done.

8.4 Dihedral Groups

Theorem 8.4. Let G be a finite group having property GalT , and let M be a finite
abelian group with G-action. Then the semi-direct product G′ = M · G also has
property GalT .

Proof. See [1], Chapter 4.

Let Dn denote the dihedral group. It has following presentation,

Dn = 〈a, b | an = e, b2 = e, b−1ab = a−1〉

Let Cn denote the cyclic group of order n, generated by a, and let C2 denote the cyclic
group of order 2 generated by b.

Dn is semidirect product of C2 and Cn and C2 acts on Cn by inversion. Hence by the
above theorem we conclude that Dn has the property GalT .
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8.5 Double Group Trick and Alternating Group An

.

Theorem 8.5. (Double Group trick) Let G be the Galois group of a regular ex-
tension K/k(T ), ramified at most at three places which are rational over k, and let H
be a subgroup of G of index 2. Then the fixed field K1 of H is rational.

Proof. In the proof we will use the Riemann-Hurwitz formula. If we have a finite
degree N map of curves Y → X over a number field of genus gY , gX respectively, then
we have:

2gY − 2 = N(2gX − 2) +
∑
P∈Y

(eP − 1)

where eP is the ramification index at P .

We have already seen the bijective correspondence between smooth curves and func-
tion fields. Using it in our case, we have X = P1

k and the function field corresponding
to it is k(T ). It is given that H has index 2 in G. So we have a curve Y of degree 2
over X such that fixed field of H is the function field of Y . As given in the statement
of theorem, it is ramified at most above 3 points. Since the map is of degree 2, the
ramification indices are all either 1 or 2.

2gY − 2 = 2 · (−2) + (0 or 1) + (0 or 1) + (0 or 1)

since gY is a positive integer, we get that gY = 0. It also shows that Y is ramified only
at two points. Since genus is zero and curve has rational point. The lemma follows.
See [59], Theorem A.4.3.1, page 75 and page 144, Chapter 5, Proposition 2.15 of [61]

I want to thank mathoverflow.net user oxeimon (user id:15242) for helping me
with proof. [60].

Application to Alternating Group, An

We know that alternating group is a index 2 subgroup of symmetric group Sn. In fact
more is true, it is the unique index 2 subgroup of Sn. We have already shown that
Sn has property GalT , so by the above theorem we get a field extension of Q(t) with
Galois group An.
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Chapter 9

Application of Rigidity and
Rationality I

In chapter 7 we developed the theory of rigidity. In this chapter, we will apply those
ideas in practical situations. We will use the Basic Rigidity Theorem, and its stronger
version to show that Symmetric groups and Alternating groups occurs as Galois group
over Q(t).

9.1 Galois Realization of Symmetric group Sn

We will apply theory developed in Chapter 7 to Sn, Symmetric group on n letters.
See [2] for original discussion.
Observation:
Suppose (C1, C2, C3) are conjugacy classes in a group G, and there exist genera-
tors g1, g2, g3 of G with gi ∈ Ci and g1g2g3 = 1. We can observe that the if the
triple (C1, C2, C3) is rigid in G then G has trivial center and for each g′2 ∈ C2 with
(g1g

′
2)−1 ∈ C3 and 〈g1, g

′
2〉 = G there is h ∈ H with hg1h

−1 = g1 and hg′2h−1 = g2.

Let C(i) be the class of i -cycles in Sn, n ≥ 3. Then the classes C(2), C(n−1) and
C(n) form a rigid triple in Sn.

Theorem 9.1. Let G be a group and X be a set with cardinality greater than equal
to 3. Suppose G acts on X, then action is doubly transitive if and only if for each
x ∈ X, the Stab(x) acts transitively on X − {x}.

Proof. Assume that for each x ∈ X the action of Stab(x) is transitive on the comple-
ment of x. Take two ordered pairs (x1, x2) and (y1, y2) in X × X with x1 6= x2 and

57



y1 6= y2. Let Stab(x1) and Stab(y2) denote the stabilizer of x1 and y2 respectively. By
hypothesis Stab(x1) acts transitively on X − {x1}, so we get element in G that takes

(x1, x2) 7→ (x1, y2).

Similarly Stab(y2) acts transitively on complement of y2, so we get a element in G

that takes
(x1, y2) 7→ (y1, y2).

The above method fails when x1 = y2. In that case choose from z not equal to x1

and y1 in X. We can find such z as we have taken the cardinality of X to be atleast
three. Now we can find a element in Stab(x1) that takes

(x,x2) 7→ (x1, z).

Use element of Stab(z) to map

(x1, z) 7→ (y1, z)

and finally use element of Stab(y1) to take

(y1, z) 7→ (y1, y2).

For the reverse direction: Observe that any doubly transitive action is transitive.

Using the above theorem and the fact that Sn is generated by transpositions. We
conclude, if a subgroup of Sn contains an n-cycle and an (n−1)-cycle then it is doubly
transitive.

Let τ = (n − 1, n), σ = (1, ..., n − 1), and π = (n − 1n, n − 2, ..., 2, 1). Then
σ.τ.π = 1. These elements generate Sn see the above paragraph. Now we have to
show that any transposition τ ′ such that στ ′ is an n-cycle is conjugate to τ under a
power of σ . Choose τ ′ as τ ′ = (j, n) for some j = 1, ..., n − 1. Then σn−1−j maps j
to n−1 while fixing n. therefore we get that σn−1−j conjugates τ ′ into τ . We are done.

Since all classes in Sn are rational (See [23]) and we have shown above that class
vector is rigid, therefore by basic rigidity theorem, we conclude G occurs as Galois
group over Q(t)
Remark: One can show that any conjugacy triple of Sn of the form (nA, 2A, (n−k)A)
is rigid if (k, n) = 1. See [1].
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9.2 Galois Realization of Alternating groups

Since An has index 2 in Sn. Result follows from the double group trick.

9.3 Rigid Classes of A5

We will show that class vector C = (2A, 3A, 5A) of A5 is rigid. The character table
of A5 looks like,(See [35] for more details ).

Order of Group is 60
Order of centralizer are 4, 3, 5 respectively.
Recall the rigidity criterion

1. G = 〈σ1, ..., σs〉 for some σi ∈ Ci with σ1...σs = 1,

2. Σχ∈Irr(G)
χ(σ1)···χ(σs)
χ(1)s−2 = |CG(σ1)|...|CG(σs)|

|G|s−2|Z(G)| .

It’s straightforward to check that second condition is satisfied. We know that A5 can
be generated by a 3-cycle and a 5-cycle. Hence we have shown that the class vector
C is rigid.

Not every class vector of A5 is rigid, for example if we take C = (2A, 2A, 5A)
of A5. It is easy to see that the triple in C generate a dihedral group of order 10.
Hence the triple of conjugacy class C = (2A, 2A, 5A) is not rigid.

Given a group G, there can be many class vectors which are rigid. To illustrate this
fact, consider the class vector C = (2A, 5A, 5B), C = (3A, 5A, 5B), C = (3A, 5A, 5B).
We can show that all these class vectors are rigid.
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We can also print the character table using GAP. See the introductory chapter on
GAP and ATLAS. For example,

gap> G:=CharacterTable("A5");

CharacterTable( "A5" )

gap> Display(G);

A5

2 2 2 . . .

3 1 . 1 . .

5 1 . . 1 1

1a 2a 3a 5a 5b

2P 1a 1a 3a 5b 5a

3P 1a 2a 1a 5b 5a

5P 1a 2a 3a 1a 1a

X.1 1 1 1 1 1

X.2 3 -1 . A *A

X.3 3 -1 . *A A

X.4 4 . 1 -1 -1

X.5 5 1 -1 . .

A = -E(5)-E(5)^4

= (1-Sqrt(5))/2 = -b5

gap>
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9.4 Rigid Class of SL2(8)

See [3] for original discussion. Let G = SL2(8). Let C = (9A, 9B, 9C) be the triple of
conjugacy class containing elements of order 9 ( where 9B = (9A)2 and 9C = (9A)4).

From the character table given above, we can calculate the structure constant.

n(C) = |G|
|CG(σ1|3

∑
χ∈Irr(G)

χ(σ1)χ(σ2)χ(σ3)
χ(1)

= 504
93 (1 + 1

7 + 1
7 + 1

7 + 1
7 −

1
8 + 0 + 0 + 0) = 1.

Now we want to show that no σ ∈ C generate a proper subgroup of G. Assuming
the contrary, let’s say there is some σ ∈ C with σ1σ2σ3 = 1 which generate a proper
subgroup of G.

Using GAP, we calculated that the only maximal subgroups of G with order divisible
by 9 are dihedral groups D18. It has order 18. As a result we have 〈σ〉 = Z9. This
implies σ2 ∈ {σ2

1, σ
7
1} and σ3 ∈ {σ4

1, σ
5
1}. But we have σ1σ2σ3 = 1, so their is a con-

tradiction. Hence the triple C = (9A, 9B, 9C) is a rigid.

We can use the GAP to print the character tables. See next chapter for details.
In case of SL2(8)

gap> Display(group);

L2(8)
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2 3 3 . . . . . . .

3 2 . 2 . . . 2 2 2

7 1 . . 1 1 1 . . .

1a 2a 3a 7a 7b 7c 9a 9b 9c

2P 1a 1a 3a 7b 7c 7a 9b 9c 9a

3P 1a 2a 1a 7c 7a 7b 3a 3a 3a

7P 1a 2a 3a 1a 1a 1a 9b 9c 9a

X.1 1 1 1 1 1 1 1 1 1

X.2 7 -1 -2 . . . 1 1 1

X.3 7 -1 1 . . . D F E

X.4 7 -1 1 . . . E D F

X.5 7 -1 1 . . . F E D

X.6 8 . -1 1 1 1 -1 -1 -1

X.7 9 1 . A C B . . .

X.8 9 1 . B A C . . .

X.9 9 1 . C B A . . .

A = E(7)+E(7)^6

B = E(7)^3+E(7)^4

C = E(7)^2+E(7)^5

D = E(9)^2+E(9)^4+E(9)^5+E(9)^7

E = -E(9)^4-E(9)^5

F = -E(9)^2-E(9)^7

gap>

Compare it with the previous character table of SL2(8).
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Chapter 10

Basic Introduction to GAP and
ATLAS

10.1 Introduction

In this chapter we give a short introduction to GAP and ATLAS. We have extensively
used them to compute structure constants, maximal subgroups and for constructing
character Table. We have also used the ATLAS notation in our proofs. Due to these
reasons, familiarity with ATLAS and GAP is necessary for better understanding of
the topic.
We have followed The ATLAS of Finite Groups (Conway et. al. 1985). We have used
the exact notations and definitions to avoid any confusion. See [35] for more
detailed introduction.

GAP - Groups, Algorithms, Programming - a System for Computational Discrete
Algebra provides a programming language, together with thousands of inbuilt func-
tions for efficient computation. GAP is very powerful tool which is used both in
teaching and research. It is helpful for people working in the area of group theory,
algebra and combinatorial structures. For more information about GAP see [38].

There are lot of good resources available on web. A good place to start is [37].
We have used the character table library of GAP to do the computation. See [36] for
more details.

63



10.2 ATLAS

The ATLAS of Finite Groups commonly known as ATLAS is a group theory book
by group of following mathematicians, John Horton Conway, Robert Turner Curtis,
Simon Phillips Norton, Richard Alan Parker and Robert Arnott Wilson (with com-
putational assistance from J. G. Thackray). It was published in December 1985 by
Oxford University Press. It contain basic information about 93 finite simple groups,
For example it contain the following data about the group: Schur multiplier, outer
automorphism group, order and various constructions (such as presentations), con-
jugacy classes of maximal subgroups (with characters group action they define) and
most importantly, character tables.

We will be mainly concerned with Character Table and list of maximal subgroups
of G and its automorphism group G. It is extensively used by group theorist to solve
problems or study properties of groups. When I first learned it, It was bit confusing
as there was whole mess of notation which were completely new to me, but it is good
to know about ATLAS. It is truly a beautiful piece of mathematics.

If you have access to the ATLAS you can read chapter 4, 5, 6, 7 to get going. For
the sake of readers, we start with a short introduction to some of the notations used
in the book. Proofs and GAP library will use the same notation.

Definition 10.1. A maximal subgroup H of G is a proper subgroup of G that is
contained in no strictly larger proper subgroup of G.
ATLAS list all maximal subgroups H of a given group G upto conjugacy

Definition 10.2. A × B is the direct product, or Cartesian product, of A and
B. It may be defined as the set of ordered pairs (a, b) (a ∈ A, b ∈ B), with
(a, b)(a′ , b′) = (aa′ , bb′).

A.B or AB denotes any group having a normal subgroup of structure A, for which
the corresponding quotient group has structure B. This is called an upward extension
of A by B, or a downward extension of B by A.

Definition 10.3. A : B indicates a case of A.B which is a split extension, or semi-
direct product. The structure can be completely described by giving the homomor-
phism φ : B → Aut(A) which shows how B acts by conjugation on A. It may
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be defined to consist of the ordered pairs (b, a)(b ∈ B, a ∈ A), with (b, a)(b′ , a′) =
(bb′ , aφ(b′ )a

′).

ATLAS use the notation [m] for m an integer, to denote an arbitrary group of
order m.

m denoting a cyclic group of order m. An for the direct product of n groups of
structure A. In particular pn where p is prime, indicates the elementary abelian
group of that order.

Definition 10.4. Class Names:
The conjugacy classes that contain elements of order n are named nA, nB, nC, ....

Definition 10.5. Permutation character
The permutation character of G associated with H is the character of the permutation
representation of G acting by right multiplication on the right cosets of H in G. The
irreducible constituents of this representation are indicated by their degrees followed
by lower case letters a, b, c, ... , which indicate the successive irreducible representations
of G of that degree, in the order in which they appear in the ATLAS character table.
A sequence of small letters (not necessarily distinct) after a single number indicates
a sum of irreducible constituents all of the same degree.

Relation between the characters of G and G.2

The splitting case

The first possibility is that a character χ of G may extend to G.2. It then nec-
essarily does so in two ways, giving two characters χ0 and χ1 of G.2, whose values
on elements of G.2 outside G are negatives of each other. ATLAS put the splitting
symbol (:) in the fusion column to denote the splitting case.

The fusion case

The other possibility is that two characters χm and χn of G may fuse to give a
single character χm,n of G.2, with values

χm,n = χm(g) + χn(g),

for elements of G
χm,n = 0,
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for elements of G.2 outside G. ATLAS indicate this case by drawing a fusion join
between dots against χm and χn in the fusion column, and then continuing only the
first of these two rows into the G.2 detachment, with the indicator of χm,n in the
indicator column, and the values (all 0) of χm,n on elements of G.2 outside G in the
remaining columns of the G.2 detachment. Any class of G on which χm and χn take
distinct values fuses with the class on which those values are taken in the other order
to give a single class of G.2.

For example If I take G = M12 then it has 15 irreducible characters. See the fol-
lowing GAP code. After fusion and splitting of irreducible characters, the character
table of Aut(G) has following irreducible characters.

gap> ct:=CharacterTable("M12");

CharacterTable( "M12" )

gap> AtlasLabelsOfIrreducibles(ct);

[ "\\chi_{1}", "\\chi_{2}", "\\chi_{3}", "\\chi_{4}",

"\\chi_{5}", "\\chi_{6}", "\\chi_{7}", "\\chi_{8}",

"\\chi_{9}", "\\chi_{10}", "\\chi_{11}", "\\chi_{12}",

"\\chi_{13}", "\\chi_{14}", "\\chi_{15}" ]

gap> automorphismgroup:=CharacterTable("M12.2");

CharacterTable( "M12.2" )

gap> AtlasLabelsOfIrreducibles(automorphismgroup);

[ "\\chi_{1,0}", "\\chi_{1,1}", "\\chi_{2+3}", "\\chi_{4+5}",

"\\chi_{6,0}", "\\chi_{6,1}", "\\chi_{7,0}", "\\chi_{7,1}", "\\chi_{8,0}",

"\\chi_{8,1}", "\\chi_{9+10}", "\\chi_{11,0}", "\\chi_{11,1}",

"\\chi_{12,0}", "\\chi_{12,1}", "\\chi_{13,0}", "\\chi_{13,1}",

"\\chi_{14,0}", "\\chi_{14,1}", "\\chi_{15,0}", "\\chi_{15,1}" ]

10.3 GAP

In this section I will explain in short how to use CharacterTable Library of GAP
to do the computation. If you are interested and want to learn more about it,
see [36], [37], [40]

Installing GAP on your machine
Open the terminal(I work on Linux OS) and type the below mentioned command to
install GAP on your computer.
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$ sudo apt-get install gap-core

gap> InstalledPackageVersion( "ctbllib" ) <> fail

true

If the result is false you need to install the Character Table Library package "ct-
bllib" from here.
It is easy to do the computation using GAP than looking at ATLAS tables and doing
all the calculation by hand, but sill one should know about it.

Using Character Table Library in GAP

We can access the character table from the GAP Character Table Library by call-
ing CharacterTable function. For example;

gap> CharacterTable("A5");

CharacterTable( "A5" )

gap> CharacterTable("S5");

CharacterTable( "A5.2" )

gap> CharacterTable("ON");

CharacterTable( "ON" )

gap> CharacterTable("J2");

CharacterTable( "J2" )

gap> CharacterTable("Suz");

CharacterTable( "Suz" )

Remark: Variables and Assignment

gap> FirstOddPrime:=3;

3

gap> 2+FirstOddPrime;

5

gap>
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There are some other ways to access the character table, This will be helpful, if
you don’t know the admissible name of group. You can call functions like AllChar-

acterTableNames( Size, n) to get the admissible name.

gap> AllCharacterTableNames( Size, 120 );

[ "2.A5", "2.A6M2", "2xA5", "A5.2", "A6.2_1M3", "D120", "L2(25)M3" ]

This library also contain the information about maximal subgroups and their charac-
ter tables. Let’s see how we can access it.

gap> ct:=CharacterTable("M12");

CharacterTable( "M12" )

gap> m:=Maxes(ct);

[ "M11", "M12M2", "A6.2^2", "M12M4", "L2(11)", "3^2.2.S4", "M12M7",

"2xS5", "M8.S4", "4^2:D12", "A4xS3" ]

gap> CharacterTable("A4xS3");

CharacterTable( "A4xS3" )

gap>s1:=CharacterTable(m[1]);

CharacterTable( "M11" )

gap> ct:=CharacterTable("A5");

CharacterTable( "A5" )

gap> Maxes(ct);

[ "a4", "D10", "S3" ]

gap> CharacterTable("D10");

CharacterTable( "D10" )

gap> ct:=CharacterTable("ON");

CharacterTable( "ON" )

gap> Maxes(ct);

[ "L3(7).2", "ONM2", "J1", "4_2.L3(4).2_1", "ONM5", "3^4:2^(1+4)D10",

"L2(31)", "ONM8", "4^3.L3(2)", "M11", "ONM11", "A7", "A7" ]

gap> Maxes(ct)[2];
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"ONM2"

gap> CharacterTable(Maxes(ct)[4]);

CharacterTable( "4_2.L3(4).2_1" )

gap> Length(Maxes(ct));

13

gap>

By calling Maxes you can get the list of all maximal subgroups of G up to conjugacy.
You can either use m[i] or directly type the admissible name to access the character
table of maximal subgroups.

Primitive Permutation Characters

To compute the primitive permutation characters of a group G, that is, the char-
acters of the permutation actions of G on the cosets of its maximal subgroups, We
can proceed by the following method, Let’s work it out by example, take G = A5

gap> group:= CharacterTable( "A5" );;

gap> m:= List( Maxes(group), CharacterTable );;

gap> t:= List( m, s -> TrivialCharacter( s )^group);;

gap> Display( group,

> rec( chars:= t, centralizers:= false, powermap:= false ) );

A5

1a 2a 3a 5a 5b

Y.1 5 1 2 . .

Y.2 6 2 . 1 1

Y.3 10 2 1 . .

gap>

In the ATLAS of finite groups, permutation character of A5 are given in following
notation. If you are confused please read the introductory section on ATLAS.

gap> PermCharInfo(group, t).ATLAS;

[ "1a+4a", "1a+5a", "1a+4a+5a" ]

gap>
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Another example,

gap> group:=CharacterTable("L2(7)");

CharacterTable( "L3(2)" )

gap> m:=List(Maxes(group), CharacterTable);;

gap> t:=List(m,s->TrivialCharacter(s)^group);;

gap> Display(group,

> rec( chars:= t, centralizers:= false, powermap:= false ) );

L3(2)

1a 2a 3a 4a 7a 7b

Y.1 7 3 1 1 . .

Y.2 7 3 1 1 . .

Y.3 8 . 2 . 1 1

gap> PermCharInfo(group,t).ATLAS;

[ "1a+6a", "1a+6a", "1a+7a" ]

gap>

Computing all the permutation characters.

gap> ctt:=CharacterTable( "A5" )

gap> p:=PermChars(ctt);

[ Character( CharacterTable( "A5" ), [ 1, 1, 1, 1, 1 ] ),

Character( CharacterTable( "A5" ), [ 5, 1, 2, 0, 0 ] ),

Character( CharacterTable( "A5" ), [ 6, 2, 0, 1, 1 ] ),

Character( CharacterTable( "A5" ), [ 10, 2, 1, 0, 0 ] ),

Character( CharacterTable( "A5" ), [ 12, 0, 0, 2, 2 ] ),

Character( CharacterTable( "A5" ), [ 15, 3, 0, 0, 0 ] ),

Character( CharacterTable( "A5" ), [ 20, 0, 2, 0, 0 ] ),

Character( CharacterTable( "A5" ), [ 30, 2, 0, 0, 0 ] ),

Character( CharacterTable( "A5" ), [ 60, 0, 0, 0, 0 ] ) ]

gap> t:=CharacterTable("S5");

CharacterTable( "A5.2" )

gap> PermChars(t);
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[ Character( CharacterTable( "A5.2" ), [ 1, 1, 1, 1, 1, 1, 1 ] ),

Character( CharacterTable( "A5.2" ), [ 2, 2, 2, 2, 0, 0, 0 ] ),

Character( CharacterTable( "A5.2" ), [ 5, 1, 2, 0, 3, 1, 0 ] ),

Character( CharacterTable( "A5.2" ), [ 6, 2, 0, 1, 0, 2, 0 ] ),

Character( CharacterTable( "A5.2" ), [ 10, 2, 1, 0, 4, 0, 1 ] ),

Character( CharacterTable( "A5.2" ), [ 10, 2, 4, 0, 0, 0, 0 ] ),

Character( CharacterTable( "A5.2" ), [ 12, 4, 0, 2, 0, 0, 0 ] ),

Character( CharacterTable( "A5.2" ), [ 15, 3, 0, 0, 3, 1, 0 ] ),

Character( CharacterTable( "A5.2" ), [ 20, 0, 2, 0, 2, 0, 2 ] ),

Character( CharacterTable( "A5.2" ), [ 20, 0, 2, 0, 6, 0, 0 ] ),

Character( CharacterTable( "A5.2" ), [ 20, 4, 2, 0, 0, 0, 0 ] ),

Character( CharacterTable( "A5.2" ), [ 24, 0, 0, 4, 0, 0, 0 ] ),

Character( CharacterTable( "A5.2" ), [ 30, 2, 0, 0, 0, 2, 0 ] ),

Character( CharacterTable( "A5.2" ), [ 30, 2, 0, 0, 6, 0, 0 ] ),

Character( CharacterTable( "A5.2" ), [ 30, 6, 0, 0, 0, 0, 0 ] ),

Character( CharacterTable( "A5.2" ), [ 40, 0, 4, 0, 0, 0, 0 ] ),

Character( CharacterTable( "A5.2" ), [ 60, 0, 0, 0, 6, 0, 0 ] ),

Character( CharacterTable( "A5.2" ), [ 60, 4, 0, 0, 0, 0, 0 ] ),

Character( CharacterTable( "A5.2" ), [ 120, 0, 0, 0, 0, 0, 0 ] ) ]

gap>

gap> group:=CharacterTable("M12");

CharacterTable( "M12" )

gap> max:=Maxes(group);

[ "M11", "M12M2", "A6.2^2", "M12M4", "L2(11)", "3^2.2.S4", "M12M7", "2xS5", "M8.S4", "4^2:D12", "A4xS3" ]

gap> s:= CharacterTable( max[1] );

CharacterTable( "M11" )

gap> TrivialCharacter( s )^group;

Character( CharacterTable( "M12" ), [ 12, 0, 4, 3, 0, 0, 4, 2, 0, 1, 0, 2, 0, 1, 1 ] )

gap> group:=CharacterTable("M12");

You can find the order of class representative of conjugacy classes by calling
OrdersClassRepresentatives and order of centralizer by calling SizesCentralizers.
Let’s work it out by an example.

gap> ct:=CharacterTable("ON");

CharacterTable( "ON" )
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gap> OrdersClassRepresentatives(ct);

[ 1, 2, 3, 4, 4, 5, 6, 7, 7, 8, 8, 10, 11, 12, 14, 15, 15,

16, 16, 16, 16, 19, 19, 19, 20, 20, 28, 28, 31, 31 ]

gap> SizesCentralizers(ct);

[ 460815505920, 161280, 3240, 80640, 256, 180,

72, 1372, 49, 32, 32, 20, 11, 36, 28, 45, 45, 16,

16, 16, 16, 19, 19, 19, 20, 20, 28, 28, 31, 31 ]

gap>

Using Display function, you can also print the character table on terminal.

gap> group:=CharacterTable("A4");

CharacterTable( "a4" )

gap> Display(group);

a4

2 2 2 . .

3 1 . 1 1

1a 2a 3a 3b

2P 1a 1a 3b 3a

3P 1a 2a 1a 1a

X.1 1 1 1 1

X.2 1 1 A /A

X.3 1 1 /A A

X.4 3 -1 . .

A = E(3)

= (-1+Sqrt(-3))/2 = b3

gap> SizesCentralizers(group);

[ 12, 4, 3, 3 ]

gap> OrdersClassRepresentatives(group);

[ 1, 2, 3, 3 ]

gap>
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Zeros in the table are represented by dots. The top part of table lists on the left prime
dividing the order of group. In the example above order of group is 120 so the prime
divisors are 2, 3, 5. You can see it on top left corner first column. After that table list
for each conjugacy class, exponents of prime factorization of centralizer order, but it’s
better to directly print it by calling SizesCentralizers.

Another example

gap> group:=CharacterTable("2.A6");

CharacterTable( "2.A6" )

gap> Display(group);

2.A6

2 4 4 3 1 1 1 1 3 3 1 1 1 1

3 2 2 . 2 2 2 2 . . . . . .

5 1 1 . . . . . . . 1 1 1 1

1a 2a 4a 3a 6a 3b 6b 8a 8b 5a 10a 5b 10b

2P 1a 1a 2a 3a 3a 3b 3b 4a 4a 5b 5b 5a 5a

3P 1a 2a 4a 1a 2a 1a 2a 8b 8a 5b 10b 5a 10a

5P 1a 2a 4a 3a 6a 3b 6b 8b 8a 1a 2a 1a 2a

X.1 1 1 1 1 1 1 1 1 1 1 1 1 1

X.2 5 5 1 2 2 -1 -1 -1 -1 . . . .

X.3 5 5 1 -1 -1 2 2 -1 -1 . . . .

X.4 8 8 . -1 -1 -1 -1 . . B B *B *B

X.5 8 8 . -1 -1 -1 -1 . . *B *B B B

X.6 9 9 1 . . . . 1 1 -1 -1 -1 -1

X.7 10 10 -2 1 1 1 1 . . . . . .

X.8 4 -4 . -2 2 1 -1 . . -1 1 -1 1

X.9 4 -4 . 1 -1 -2 2 . . -1 1 -1 1

X.10 8 -8 . -1 1 -1 1 . . B -B *B -*B

X.11 8 -8 . -1 1 -1 1 . . *B -*B B -B

X.12 10 -10 . 1 -1 1 -1 A -A . . . .

X.13 10 -10 . 1 -1 1 -1 -A A . . . .

A = E(8)-E(8)^3

= Sqrt(2) = r2
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B = -E(5)-E(5)^4

= (1-Sqrt(5))/2 = -b5

gap>

gap> OrdersClassRepresentatives(group);

[ 1, 2, 4, 3, 6, 3, 6, 8, 8, 5, 10, 5, 10 ]

gap> SizesCentralizers(group);

[ 720, 720, 8, 18, 18, 18, 18, 8, 8, 10, 10, 10, 10 ]

gap>

If you want to print the values taken by some particular irreducible character( say χ4

as in the example above). You can use the following command.

gap> group:=CharacterTable("A4");

CharacterTable( "a4" )

gap> Irr(group)[2];

Character( CharacterTable( "a4" ), [ 1, 1, E(3), E(3)^2 ] )

gap> Irr(group)[3];

Character( CharacterTable( "a4" ), [ 1, 1, E(3)^2, E(3) ] )

gap> ScalarProduct(Irr(c)[2],Irr(c)[3]);

gap> ScalarProduct(Irr(group)[2],Irr(group)[3]);

0

Class names in ATLAS notation can be printed by calling ClassNames. For example
in the above table,

gap> ClassNames(group);

[ "1a", "2a", "3a", "3b" ]

gap>

CharacterTableDirectProduct( tbl1, tbl2 ) prints the character table of the di-
rect product of the groups

CharacterTableWreathSymmetric( tbl, n ) prints the character table of the wreath
product of an arbitrary group G with the full symmetric group Sn.
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Some examples,

gap> cyclicgroup2:=CharacterTable("Cyclic", 2);

CharacterTable( "C2" )

gap> cyclicgroup1:=CharacterTable("Cyclic", 3);

CharacterTable( "C3" )

gap> prod:=CharacterTableDirectProduct(cyclicgroup1, cyclicgroup2);

CharacterTable( "C3xC2" )

gap> Display(prod);

C3xC2

2 1 1 1 1 1 1

3 1 1 1 1 1 1

1a 2a 3a 6a 3b 6b

2P 1a 1a 3b 3b 3a 3a

3P 1a 2a 1a 2a 1a 2a

X.1 1 1 1 1 1 1

X.2 1 -1 1 -1 1 -1

X.3 1 1 A A /A /A

X.4 1 -1 A -A /A -/A

X.5 1 1 /A /A A A

X.6 1 -1 /A -/A A -A

A = E(3)

= (-1+Sqrt(-3))/2 = b3

gap>

gap> cyclicgroup1:=CharacterTable("Cyclic", 2);

CharacterTable( "C2" )

gap> altgroup1:=CharacterTable("Alternating", 4);

CharacterTable( "Alt(4)" )

gap> prod:=CharacterTableDirectProduct(cyclicgroup1, altgroup1);

CharacterTable( "C2xAlt(4)" )

gap> Display(prod);

C2xAlt(4)
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2 3 3 1 1 3 3 1 1

3 1 . 1 1 1 . 1 1

1a 2a 3a 3b 2b 2c 6a 6b

2P 1a 1a 3b 3a 1a 1a 3b 3a

3P 1a 2a 1a 1a 2b 2c 2b 2b

X.1 1 1 1 1 1 1 1 1

X.2 3 -1 . . 3 -1 . .

X.3 1 1 A /A 1 1 A /A

X.4 1 1 /A A 1 1 /A A

X.5 1 1 1 1 -1 -1 -1 -1

X.6 3 -1 . . -3 1 . .

X.7 1 1 A /A -1 -1 -A -/A

X.8 1 1 /A A -1 -1 -/A -A

A = E(3)

= (-1+Sqrt(-3))/2 = b3

gap>

76



gap> cyclicgroup:= CharacterTable("Cyclic", 2);

CharacterTable( "C2" )

gap> wreathpro:= CharacterTableWreathSymmetric(cyclicgroup, 3);

CharacterTable( "C2wrS3" )

gap> Display(wreathpro);

C2wrS3

2 4 4 4 4 3 3 3 3 1 1

3 1 . . 1 . . . . 1 1

1a 2a 2b 2c 2d 4a 2e 4b 3a 6a

2P 1a 1a 1a 1a 1a 2b 1a 2b 3a 3a

3P 1a 2a 2b 2c 2d 4a 2e 4b 1a 2c

X.1 1 1 1 1 -1 -1 -1 -1 1 1

X.2 3 1 -1 -3 -1 -1 1 1 . .

X.3 3 -1 -1 3 -1 1 -1 1 . .

X.4 1 -1 1 -1 -1 1 1 -1 1 -1

X.5 2 2 2 2 . . . . -1 -1

X.6 3 -1 -1 3 1 -1 1 -1 . .

X.7 3 1 -1 -3 1 1 -1 -1 . .

X.8 2 -2 2 -2 . . . . -1 1

X.9 1 1 1 1 1 1 1 1 1 1

X.10 1 -1 1 -1 1 -1 -1 1 1 -1

gap>

We end this chapter by showing how to print character table of some known and
frequently used finite groups.

gap> group2:=CharacterTable("Quaternionic", 8);

CharacterTable( "Q8" )

gap> Display(group2);

Q8

2 3 2 3 2 2

1a 4a 2a 4b 4c
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2P 1a 2a 1a 2a 2a

X.1 1 1 1 1 1

X.2 1 1 1 -1 -1

X.3 1 -1 1 1 -1

X.4 1 -1 1 -1 1

X.5 2 . -2 . .

gap> group1:=CharacterTable("Dihedral", 8);

CharacterTable( "Dihedral(8)" )

gap> Display(group1);

Dihedral(8)

2 3 2 3 2 2

1a 4a 2a 2b 2c

2P 1a 2a 1a 1a 1a

X.1 1 1 1 1 1

X.2 1 1 1 -1 -1

X.3 1 -1 1 1 -1

X.4 1 -1 1 -1 1

X.5 2 . -2 . .

gap>

gap> group2:=CharacterTable("Symmetric",4);

CharacterTable( "Sym(4)" )

gap> Display(group2)

> ;

Sym(4)

2 3 2 3 . 2

3 1 . . 1 .

1a 2a 2b 3a 4a

2P 1a 1a 1a 3a 2b
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3P 1a 2a 2b 1a 4a

X.1 1 -1 1 1 -1

X.2 3 -1 -1 . 1

X.3 2 . 2 -1 .

X.4 3 1 -1 . -1

X.5 1 1 1 1 1

gap>

Remark: In general we can use CharacterTable( "Alternating", n ), Char-
acterTable( "Cyclic", n ), CharacterTable( "Dihedral", 2n ), CharacterTable(
"Symmetric", n ) for printing character tables of alternating group, cyclic group,
symmetric group, dihedral group.
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Chapter 11

Application of Rigidity II: Sporadic
Groups

11.1 Introduction

In this chapter, we will apply the ideas developed in chapter on Rigidity and Ratio-
nality of finite groups to some sporadic groups. The algorithm is simple, we will start
with triple of conjugacy class, show that value of structure constant n(C) = 1 and
then show that no triple in C, generate a proper subgroup of G. In short our aim will
be to show that C = (C1, C2, C3) is rationally rigid and then we can use the Rigidity
Criterion to conclude that given group occurs as Galois group over Q(t).
As of now there is no unified proof, we will do the case by case analysis. We have
made extensive application of computer program GAP, and Atlas of Finite Groups.
Look [35] and [36].
Note: We will use the Double Group Trick, which roughly speaking says that if G
occurs as Galois group then index 2 subgroup of G also occurs as Galois group. We
have already proved this result, so readers are advised to go through it once.
To make yorself familiar with GAP and ATLAS, kindly go through the Chapter 10.

11.2 Galois Realization of Co1

The Conway group Co1 is a sporadic simple group of order roughly around 4× 1018.
Co1 is one of the 26 sporadic groups. It was discovered by John Horton Conway
in 1968. Out of three Conway groups, this is the largest. The outer automorphism
group is trivial and the Schur multiplier has order 2. Wilson in (1983) found the 22
maximal subgroups of Co1 upto conjugacy.
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Let’s define the group in GAP. We use the command Maxes to get the information
about the maximal subgroups of G.

gap> G:=CharacterTable("Co1");;max:=Maxes(G);

[ "Co2", "3.Suz.2", "2^11:M24", "Co3", "2^(1+8)+.O8+(2)",

"U6(2).3.2", "(A4xG2(4)):2", "2^(2+12):(A8xS3)", "2^(4+12).(S3x3S6)",

"3^2.U4(3).D8", "3^6:2M12", "(A5xJ2):2", "3^(1+4).2U4(2).2",

"(A6xU3(3)):2", "3^(3+4):2(S4xS4)", "A9xS3", "(A7xL2(7)):2",

"(D10x(A5xA5).2).2", "5^(1+2):GL2(5)", "5^3:(4xA5).2", "7^2:(3x2A4)", "5^2:2A5" ]

gap> len:=[1..22];

There are 22 maximal subgroups upto conjugacy.

Claim:
The class vector (3A, 5C, 13A) of Co1 is rationally rigid.
Let’s compute the value of structure constant n(C), using the code written in GAP,
It is found to be n(C) = 1.

ms:=function( table, class )

local exp;

exp := Length( class ) - 2;

if exp < 0 then

Error( "length␣should␣be␣atleast␣least␣2" );

fi;

return Sum( Irr( table ), function ( chi )

return Product( chi{class}, 1 ) / chi[1] ^ exp;

end, 0 ) * Product( SizesConjugacyClasses( table ){class}, 1 ) / Size( table );

end;

We can look up the order of class and class names as used in the ATLAS, [35] by
using the following commands.

gap> OrdersClassRepresentatives(G);

[ 1, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4,

5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 8,

8, 8, 8, 8, 8,

9, 9, 9, 10, 10, 10, 10, 10, 10, 11,

12, 12, 12, 12, 12, 12,

12, 12, 12, 12, 12, 12, 12, 13, 14,

14, 15, 15, 15, 15, 15, 16, 16, 18, 18, 18,

20, 20, 20, 21, 21, 21, 22, 23, 23, 24, 24,
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24, 24, 24, 24, 26, 28, 28, 30, 30, 30, 30,

30, 33, 35, 36, 39, 39, 40, 42, 60 ]

gap> ClassNames(G);

[ "1a", "2a", "2b", "2c", "3a", "3b", "3c", "3d", "4a",

"4b", "4c", "4d", "4e", "4f", "5a", "5b", "5c", "6a", "6b",

"6c", "6d", "6e", "6f",

"6g", "6h", "6i", "7a", "7b", "8a", "8b", "8c", "8d",

"8e", "8f", "9a", "9b", "9c", "10a", "10b", "10c", "10d",

"10e", "10f", "11a", "12a",

"12b", "12c", "12d", "12e", "12f", "12g",

"12h", "12i", "12j", "12k", "12l", "12m", "13a", "14a",

"14b", "15a", "15b", "15c", "15d", "15e",

"16a", "16b", "18a", "18b", "18c", "20a", "20b",

"20c", "21a", "21b", "21c", "22a", "23a", "23b", "24a",

"24b", "24c", "24d", "24e", "24f",

"26a", "28a", "28b", "30a", "30b", "30c", "30d", "30e",

"33a", "35a", "36a", "39a", "39b", "40a", "42a", "60a" ]

Let’s find out which maximal subgroups have order divisible by 13.

gap> for i in len do

> if Size(CharacterTable(max[i])) mod 13 = 0 then

> Print(max[i],"\n");

> fi;

> od;

3.Suz.2

(A4xG2(4)):2

Now we will show that no σ ∈ C generate a proper subgroup of G, for this purpose we
will use the knowledge of maximal subgroups of G. Let H denote the proper subgroup
of G generated by σ ∈ C. We will try to arrive at a contradiction.

So there are only two maximal subgroups of G whose order is divisible by 13. As
you can see from above, 9 does not divide the order of centralizer of 5C-elements. In
A4×G2(4), all 5-elements have centralizer order 12.300, ( using GAP). Hence this
possibility is cancelled out. See [3] for rest of the proof.
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11.3 Galois Realization of M22

Mathieu group M22 is a sporadic simple group of order 443520. This group was dis-
covered by Mathieu in (1861, 1873). The outer automorphism group has order 2.

First we will show that Aut(M22) occurs as Galois group over Q(t).
Claim:
The conjugacy class triple (2B, 4C, 11A) of of Aut(M22) is rationally rigid.
As done earlier, we compute the value of n(C), It is found to be 1.

gap> G:=CharacterTable("M22.2");

CharacterTable( "M22.2" )

gap> Maxes(G);

[ "M22", "L3(4).2_2", "M22.2M3", "M22.2M4",

"2x2^3:L3(2)", "A6.2^2",

"L2(11).2" ]

gap> length:=[1..7];

[ 1 .. 7 ]

gap> m:=Maxes(G);

[ "M22", "L3(4).2_2", "M22.2M3", "M22.2M4", "2x2^3:L3(2)", "A6.2^2",

"L2(11).2" ]

gap> for i in length do

> if Size(CharacterTable(m[i])) mod 11=0 then

> Print(m[i],"\n");

> fi;

> od;

M22

L2(11).2

gap>

We find that only PGL2(11) has order divisible by 11, Let H be a proper subgroup
generated by σ ∈ C. Now suppose H is contained in PGL2(11), then the intersection
of this maximal subgroup with G is equal to L2(11). Elements present in outer class of
involution of PGL2(11) fuse into 2B ( see [3] for proof). Using character table, we see
that the centralizer order for 2B in Aut(M22) is not divisible by 5, but in PGL2(11),
it is divisible. Hence we arrive at the contradiction.

Conclusion:
Aut(M22) and M22 (being the index 2 subgroup ) occurs as Galois group over Q(t).

84



11.4 Digression: Congruence properties of Char-
acter Values

The goal of this section is to state a result about congruence property of character
value. We will be using the result in the next section. We have tried to keep the
exposition short and concise. All the proofs can be found [24]. Please keep in mind
that proofs given in this section are not original. Let’s start with a proposition.

Proposition 11.1. Let p be a prime number and let g ∈ G then there exist x, y ∈ G
such that

• g = xy = yx

• the order of x is a power of p and

• the order of y is a coprime to p.

Proof. Let the order of g be upv, where u, v ∈ Z and gcd(u, p) = 1. By Bezout’s
lemma, there exist integers a, b such that

au+ bpv = 1.

Now, put x = gau and y = gbp
v .Then we get,

xy = yx = g

xp
v = gaup

v = 1

,
yu = gbup

v = 1

Here the order of x is a power of p and the order of y divides u, so is now coprime
to p. therefore x and y satisfy all the conditions.

The most beautiful part is that the element x and y of G which satisfy this
condition is unique. Do it as a small exercise.

Definition 11.2. We call the element y which appears in the previous lemma the
p
′-part if g.

Example 11.3. if p = 2 and g has order 6 the the p′-part of g is g−2
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Let n be a positive integer and let ζ = e2πi/n. Define Z[ζ] to be the subring of C
generated by Z and ζ

Let p be a prime number and let pZ[ζ] = {pr : r ∈ Z[ζ]} is a Principal ideal of
Z[ζ]

Proposition 11.4. There are only finitely many ideals I of Z[ζ] which contain pZ[ζ].

Proof. By ideals correspondence, It’s enough to show that there are only finitely many
ideals in factor ring Z[ζ]/pZ[ζ].

So consider the factor ring Z[ζ]/pZ[ζ]. By definition, this has its element all the
cosets pZ[ζ] + r where r ∈ Z[ζ]. Every such coset contain an element of the form
a0 + · · ·+ an−1ζ

n−1 with ai ∈ Z and 0 ≤ ai ≤ p− 1 for all i.
As there only finitely such elements, we can conclude that factor ring is finite.

therefore there are finitely many such ideals.

Recall, We say a proper ideal M of a ring R is maximal if it is not contained in
any larger proper ideal. By proper ideal, I mean an ideal which is not equal to R.
We deduce from the previous proposition that there is a maximal ideal P of pZ[ζ]
which contains Z[ζ]

Proposition 11.5. We have P ∩ Z = pZ

Proof. Let m ∈ P ∩ Z. If p does not divide m then there are integers a, b with
am + bp = 1 but this implies that 1 ∈ P , which is false, since P is proper. Thus p
divides m. Reverse inclusion is easy as p ∈ P .

Theorem 11.6. Let g ∈ G and let y be the p′ part of g. If χ is any character if G
then

χ(g)− χ(y) ∈ P .

Corollary 11.7. Let p be a prime number. Suppose that g ∈ G and that y is the p′-
part of g. If χ is a character of G such that χ(g) and χ(y) are both integers, then

χ(g) ≡ χ(y)( mod p)

Proof. As χ(g) and χ(y) are both integers. We can conclude the result from the
previous lemma
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Corollary 11.8. Let p be a prime number. Suppose that g ∈ G and the order of g
is a power of p. If χ is a character of G such that

χ(g) ≡ χ(1)( mod p).

Proof. As p′ part of g is 1, so from previous corollary, result is immediate.

11.5 Galois Realization of M12

M12 was discovered by Mathieu. It belongs to the list of 26 sporadic group. It has
order 95040.

Automorphism group of M12 contain M12 as index 2 subgroup. As done in previ-
ous section, first we will show that Aut(G) occurs as Galois group and since G is a
normal subgroup of index 2, by Double Group Trick proven earlier G also occurs as
Galois group over Q(t).

Claim:
The class vector (2C, 3A, 12A) of Aut(M12) is rationally rigid.

Let’s define the group in GAP.

gap> G:=CharacterTable("M12.2");

CharacterTable( "M12.2" )

gap> Maxes(G);

[ "M12", "L2(11).2", "M12.2M3", "(2^2xA5):2", "D8.(S4x2)", "4^2:D12.2",

"3^(1+2):D8", "S4xS3", "A5.2" ]

gap>

Using the code below, value of n(C) is found to be 1.

ms:=function( table, class )

local exp;

exp := Length( class ) - 2;

if exp < 0 then

Error( "length␣should␣be␣atleast␣least␣2" );

fi;

return Sum( Irr( table ), function ( chi )

return Product( chi{class}, 1 ) / chi[1] ^ exp;
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end, 0 ) * Product( SizesConjugacyClasses( table ){class}, 1 ) / Size( table );

end;

Let H be a proper subgroup of G generated by triple in C. Using the code below, we
find that only maximal subgroup containing H is M = S4 × S3.

ts:=function(ct,C)

for name in Maxes(ct) do

ctm:=CharacterTable(name);

fus:=Filtered(ComputedClassFusions(ctm),y->y.name="M22.2")[1].map;

if IsSubset(fus,C) then

Print(name); Cm:=List(C, x->Positions(fus,x));

Print("\n", List(Cm, x->ClassNames(ctm){x}), "\n");

for Ch in Cartesian(Cm[1],Cm[2],Cm[3]) do

cs:=ClassStructureCharTable(ctm, Ch);

if cs <> 0 then

Print("alpha_", ClassNames(ctm){Ch}, "=", cs/Size(ctm),"*|H|\n");

fi;

od;

fi;

od;

end

Suppose M has a (2, 3, 12)-system, then what possibility we have for the last class.
The only possible option is option is : 4-cycles in S4 times the 3-cycles in S3. Hence

C ∩M = ((2)× (1), (3)× (3), (4)× (3)).

Now M has three classes of elements of order three, namely (1) × (3), (3) × (1) and
(3)× (3), with centralizer in M of order 72, 18 and 9 respectively. See [35]. If struc-
ture constant does not vanish in M , then first class fuses into 3B and third into
3A, see [35]. possible value of permutation character is χ(3A) = 12, χ(3B) = 5 or
χ(3A) = 18, χ(3B) = 1.
Conclusion
Using the result proved in previous section, we arrive at the contradiction as we
should have χ(3A) ≡ χ(3B) mod 3. Therefore Aut(M12) and hence M12 occurs as
Galois group over Q(t).

See [3] for original proof.
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11.6 Sporadic group O’Nan and its Galois realiza-
tion over Q(t)

O’Nan group O′N is a sporadic simple group of order roughly around 5× 1011. O′N
is one of the 26 sporadic groups. It was constructed by Michael O’Nan (1976) in a
study of groups with a Sylow 2-subgroup of Alperin type.

The Schur multiplier of O′N has order 3, and its outer automorphism group has
order 2. R. L. Griess demonstrated that O’Nan cannot be a subquotient of the mon-
ster group. Thus it is one of the 6 sporadic groups called the pariahs.

Claim:
The class vector (2B, 4A, 22A) of Aut(ON) is rationally rigid.

First we compute the value of structure constant using the code,

ms:=function( table, class )

local exp;

exp := Length( class ) - 2;

if exp < 0 then

Error( "length␣should␣be␣atleast␣least␣2" );

fi;

return Sum( Irr( table ), function ( chi )

return Product( chi{class}, 1 ) / chi[1] ^ exp;

end, 0 ) * Product( SizesConjugacyClasses( table ){class}, 1 ) / Size( table );

end;

It is found to be 1.

gap> G:=CharacterTable("ON");

CharacterTable( "ON" )

gap> M:=Maxes(G);

[ "L3(7).2", "ONM2", "J1", "4_2.L3(4).2_1", "ONM5", "3^4:2^(1+4)D10",

"L2(31)", "ONM8", "4^3.L3(2)", "M11", "ONM11", "A7", "A7" ]

gap> G:=CharacterTable("ON.2");

CharacterTable( "ON.2" )

gap> M:=Maxes(G);

[ "ON", "J1x2", "4_2.L3(4).(2^2)_{12*3}", "(3^2:4xA6).2^2",

"3^4:2^(1+4).(5:4)", "4^3.(L3(2)x2)", "7^(1+2)_+:(3xD16)", "31:30",
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"A6.2_2", "L3(2).2" ]

gap> Length(M);

10

gap> l:=[1..10];

[ 1 .. 10 ]

gap> for i in l do

> if Size(CharacterTable(M[i])) mod 11=0 then

> Print(M[i],"\n");

> fi;

> od;

ON

J1x2

gap>

Let H be a proper subgroup generated by triple σ ∈ C. Using the program written,
we find the maximal subgroup of Aut(ON) whose order is divisible by 11. If we see
which maximal subgroup have order divisible by 11, we find out that there is only
one type J1 × 2. But J1 does not contain an element of order 4, hence J1 × 2 also.
Hence H = Aut(ON).
Conclusion:
We conclude that Aut(ON) occurs as Galois group over Q(t). Since ON sits inside
Aut(ON) as index 2 subgroup, by Double Group Trick, we conclude that ON also
occurs as Galois group over Q(t).
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ON CONSTRUCTING GALOIS COVER OF P1 WITH

ALTERNATING GROUPS AS GALOIS GROUP

VIKAS SRIVASTAVA

Dedicated To my parents and Prof. Kapil Paranjape

Abstract. This paper presents a method of Constructing Galois Cover of

P1 with Alternating Groups as Galois Group. The construction works for all
values of n, except n = 6, 7 and 8, where n is the degree of Alternating Group.

.

1. Theory

1.1. Basic Ideas: Free Product and Group Action. Let’s introduce the notion
of free product and free amalgamated products. Intuitively It is a construction that
”glues” two groups along a common subgroup.

Definition 1.1 (Free product with amalgamation, universal property). Let A be
a group and let α1 : A → G1 and α2 : A → G2 be group homomorphisms. A
group G together with homomorphisms β1 : G1 → G and β2 : G2 → G satisfying
β1 ◦ α1 = β2 ◦ α2 is called amalgamated free product of G1 and G2 over A (with
respect to α1 and α2) if the following universal property is satisfied:
For any groupH and any two group homomorphisms φ1 : G1 → H and φ2 : G2 → H
with φ1 ◦ α1 = φ2 ◦ α2 there is exactly one homomorphism φ : G → H of groups
with φ ◦ β1 = φ ◦ β2.
Such a free product with amalgamation is denoted by G1 ∗A G2.

Definition 1.2 (Free Product). If A is trivial group, the we write G1 ∗ G2 :=
G1 ∗A G2 and call G1 ∗G2 the free product of G1 and G2.

Let’s give purely abstract and generalized definition of group action. Those who
don’t know about category theory, Don’t worry!. We will also give a simplified
definition.

Definition 1.3 (Group Action). Let G be a group, Let C be a category and
let X be an object in C. An action of G on X in the category C is a group
homomorphisms G→ AutC(X). In other words, a group action of G on X consist
of a family (fg)g∈G of automorphism of X such that

fg ◦ fh = fg.h

holds for all g, h ∈ G.

Definition 1.4. Let G be a group and let X be a set. A (left) group action of G
on X is a function α : G×X → X satisfying:

Date: November 2016.
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(1) α(e, x) = x for all x ∈ X.
(2) α(gh, x) = α(g, α(h, x)) for all g, h ∈ G and x ∈ X.

We will use the following notation, α(g, x) := g.x.

Definition 1.5. (Orbit and Quotient Space) Let G be a group action on a set X.
The orbit of an element x ∈ X with respect to this group action is the set

G.x := {g.x|g ∈ G}.

We define the quotient of X by a given G-action(or orbit space) is the set

G \X := {G.x|x ∈ X}
of orbits.

1.2. Ping Pong Lemma. We will need the Ping Pong Lemma. If the reader is
interested, look up [1], for more information.

Theorem 1.6. (Ping-pong Lemma) Let G be a group, generated by elements a and
b. Suppose there is a G-action on a set X such that there are non empty subsets
A,B ⊂ X with B not included in A and such that for all n ∈ Z \ {0} we have

an.B ⊂ A and bn.A ⊂ B
Then G is a free of rank 2, freely generated by {a, b}.

We will use the following version of ”Ping pong lemma”

Theorem 1.7. Let G be a group, let G1 and G2 be two subgroups of G with |G1| ≥ 3
and |G2| ≥ 2, and suppose that G is generated by the union G1 ∪G2. If there is a
G -action on a set X such that there are non-empty subsets X1, X2 ⊂ X with X2

not included in X1 and such that

∀g∈G1\{e}g.X2 ⊂ X1 and ∀g∈G2\{e}g.X1 ⊂ X2

then G ' G1 ∗G2.

1.3. Some results on PSL(2,Z) and An. Let us denote by SL(2,Z) the set of
2 × 2-matrices with integer entries whose determinant is 1, and by PSL(2,Z) the
quotient SL(2,Z)/{±Id}.

Before proceeding to the next result, Let me comment on SL(2,Z). It lies
discretely inside SL(2,R). It is the most basic example of a discrete nonabelian
group. It has a role, which is very similar to that of Z inside R.

Theorem 1.8. Let

S =

(
0 −1
1 0

)
and T =

(
1 1
0 1

)
.

The matrix S and T generate SL(2,Z)

Proof. The matrix S has order 4, while T has infinite order and

ST =

(
0 −1
1 1

)

has order 6. Let G = 〈S, T 〉 be the subgroup of SL(2,Z) generated by S and T .
Let’s see what is the effect of S and Tn on any matrix,
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S.

(
a b
c d

)
=

(
−c −d
a b

)

Tn.

(
a b
c d

)
=

(
a+ nc b+ nd
c d

)

Now pick any γ =
(
a b
c d

)
in SL(2,Z).

Suppose c 6= 0. If |a| ≥ |c|, write a = cq+ r with 0 ≤ r < |c|. Then T−qγ has upper
left entry a− qc, Now observe that |a− qc| < |c|. Applying S, switch the entries (
with a sign change), and we apply the Euclidean lemma again if the lower entry is
non zero.
Eventually multiplication of γ on the left by enough copies of S and powers of T
gives a matrix in SL(2,Z) with lower left entry 0. Such a matrix, since it is integral
with determinant 1, has the form

(±1 m
0 ±1

)
= Tm or T−m, where m ∈ Z. We can

deduce that for some g ∈ G and ∈ Z, gγ = ±Tn. Since Tn ∈ G and −I2 = S2 ∈ G,
we conclude that γ ∈ G.

�

Theorem 1.9. PSL(2,Z) ' Z2 ∗ Z3

Proof. Let PSL(2,Z) acts on set of irrational numbers via
(
a b
c d

)
.r =

ar + b

cr + d

Since r is irrational, cr + d 6= 0 for all c, d ∈ Z We will be using the ”Ping
Pong lemma” to give the result. By the previous theorem we know that following
matrices

B =

(
0 −1
1 0

)
and A =

(
1 1
0 1

)
.

generate SL(2,Z). Let C = AB Then B and C also generate SL(2,Z). Since
B2 = −I2, It has order 2 in PSL(2,Z) and C3 = −I2, therefore It has order 3 in
PSL(2,Z). Since B and C generate SL(2,Z) their images generate the quotient
PSL(2,Z).

Observe

B = B−1 : z → 1

z

C : z → 1− 1

z
and

C−1 : z → 1

1− z .

Now let P and N denote the set of positive and negative irrational respectively.
Clearly B.P ⊂ N and C±1.N ⊂ P

Now to finish the proof, we show that for any alternating word w from Z2 ' 〈B〉
and Z3 = 〈C〉, w 6= 1 in PSL(2,Z
CASE 1: If w has odd length. then either w begins and ends with a B, hence
w.P ⊂ N or w begins and ends with a C±1, hence w.N ⊂ P. In particular w 6= 1
in PSl(2,Z).
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CASE 2: If w has even length. Without loss of generality we may suppose that w
begins with a C±1, otherwise just conjugate w by B. Then either w begins with a
C and ends with a B, hence

w.P ⊂ C.N ⊂ {r irrational | r > 1}
or w begins with a C−1 and ends with a B, hence

w.P ⊂ C−1.N ⊂ {r irrational | r < 1}
In either case we deduce that w 6= 1 in PSL(2,Z) �

Theorem 1.10. Let An denote the alternating group of degree n. Then except for
n = 6, 7 and 8, we can find two element , one having order 2 and another having
order 3, which generate An. We refer this property by saying that An is (2, 3)
generated.

G. A. Miller proved this result in 1901,[3]. It is based on the truth of Bertrand’s
postulate and his generators depend on choosing a prime p in the range n−2 > p >
n/2, here n is the degree of groups under discussion. Proof is bit longer and wordier,
so we omit the proof. For another proof, see [2], The basis of the method is to give
an element a of order 3 and two elements x, y of order 2 in the relevant symmetric
group Sn , with x even and y odd, such that 〈a, x〉 and 〈a, y〉 are primitive on the
n symbols and both contain some cyclic permutation of prime order p (the prime
may differ in the two cases) such that p < n− 2.

Now the following theorem of (Jordan,1873)[4] can be applied. Let p be a prime
and G a primitive group of degree n = p+ k with k ≥ 13. If G contains an element
of degree and order p, then G is either alternating or symmetric.

1.4. Basic theory of Covering Spaces.

Definition 1.11. A map p : X̃ −→ X is called a covering map if for every point
x ∈ X, there is a neighborhood U of x (an evenly covered neighborhood) so that

p−1(U) is a disjoint union Uα of open sets in X̃, each mapped homeomorphically

onto U by (the restriction of) p . X is called the base space of the covering; X̃ is
called the total space.

U

p

...
p−1(U)
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Definition 1.12. Suppose q : E −→ X is a covering map. An automorphism of
q is a covering isomorphism from q to itself, that is, a homeomorphism φ : E −→ E
such that q ◦ φ = q. Covering automorphisms are also variously known as Deck
transformation or covering transformations

Definition 1.13. Let Autq(E) denote the set of all automorphism of the covering
q : E −→ X. It is easy to see it forms a group and called the automorphism group
of the covering (covering group).

Definition 1.14. (Normal(Galois) Cover) A covering space p : X̃ → X is called

normal if for each x ∈ X and each pair of lifts x̃, x̃
′

of x there is a deck transfor-
mation taking x̃ to x̃

′
.

Definition 1.15. (Covering Space Action)Suppose we are given an action by a
group Γ on a topological space E. It is called a covering space action if Γ acts
by homeomorphism and every point e ∈ E has a neighbourhood U satisfying the
following condition:

for each g ∈ Γ, U ∩ (g.U) = ∅ unless g = 1

Given a covering space action of a group G on a space Y , We have

1 The quotient map p : Y → Y/G is a normal covering.
2 G is the group of deck transformation of this covering space if Y is path

connected.

2. Construction

Let Γ denote the modular group PSL(2,Z). Let H denote the complex upper
half plane and H∗ denote the extended upper half plane.

Definition 2.1. Define Γ(N) to be the kernel of following natural map

PSL(2,Z)→ PSL(2,Z/NZ)

We call it Principal Congruence subgroup of level N

Notice that,

Γ(1) = PSL(2,Z)

Definition 2.2. (Modular Curve X(N)) Let Γ(N) acts on H∗ = H ∪ P1(Q). We
define,

X(N) := Γ(N)\H∗

.

Remark 2.3. The j-invariant is a Γ invariant holomorphic and surjective map from
H→ C, and descends to a holomorphic bijection

j : X(1)→ C

which has a pole at infinity. Γ(N) acts on H∗ = H ∪ P1(Q) with quotient X(N)
which is compact, and the j-invariant becomes a holomorphic bijection

X(1)→ P1(C)

with holomorphic inverse. In particular, X(1) ∼= P1(C) as Riemann surfaces.
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We know, An is (2, 3) generated (Theorem 1.9 ). More precisely An is generated
by two elements, Let’s give them a name, say a and x where order of a is 3 and
order of x is 2. Also PSL(2,Z) is a free product of cyclic group of order 2 and
cyclic group of order 3 (Theorem 1.8 ). Therefore, We have a surjective map

π : Z2 ∗ Z3 ' PSL(2,Z) = Γ(1)→ G

defined by sending generators of PSL(2,Z), (as in the Theorem 1.8 ) to a and x.
Namely send B to x and C to a. So An can be thought of as quotient of Z2 ∗ Z3

Let ΓAn denote the kernel of epimorphism π

We will use the following result from Hatcher’s Algebraic Topology, [5] without
proof. Proof is omitted because it is bit long.

Theorem 2.4. Given a covering space action of a group G on a path-connected, lo-
cally path-connected space X, then each subgroup H in G determines a composition
of covering spaces X → X/H → X/G. Show:

1 Every path-connected covering space between X and X/G is isomorphic to
X/H for some subgroup H in G.

2 Two such covering spaces X/H1 and X/H2 of X/G are isomorphic iff H1

and H2 are conjugate subgroups of G.
3 The covering space X/H → X/G is normal iff H is a normal subgroup of
G, in which case the group of deck transformations of this cover is G/H.

Let’s apply the above theorem, Take G = PSL(2,Z) = Γ(1), X = H∗ and
H = ΓAn

. Action of PSL(2,Z) is a covering space action as it is discrete subgroup
of PSL(2,R). As ΓAn

E Γ(1), By the part 3 of above theorem,

ΓAn
\ H∗ → Γ(1) \ H∗

is a Galois Covering with Galois group An.

Let’s denote by XAn
:= ΓAn

\ H∗. Also X(1) ' P1. Then by above discussion,
we conclude that

XAn → P1

is a Galois Covering of P1 with Galois Group An.
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Appendix B

Hilbert’s Irreducibility Theorem

B.1 Introduction

The purpose of this chapter is to give a short and concise introduction to Hilbert’s
theorem. His theorem is important in the sense that, it provides motivation for work-
ing over Q(t). Roughly speaking, his theorem says that if a group G occurs as Galois
group over Q(t) then G also occurs as Galois group over Q. So it is a important
tool in solving Classical Inverse Galois Problem(CIGP) which is concerned with oc-
currence of finite groups as Galois group over Q. It has a historical significance also.
Hilbert first studied this problem. This theorem was one of the major step towards
the solution of CIGP. We will take Hilbert’s Irreducibility Theorem for granted. For
interested readers we would like to recommend [1], [3], [2].

The subsequent theory is based on [2].

B.2 Hilbert’s Irreducibility Theorem

Theorem B.1. The following conditions on k are equivalent:
(1) For each irreducible polynomial f(x, y) in two variables over k, of degree ≥ 1

in y, there are infinitely many b ∈ k such that the specialized polynomial f(b, y) (in
one variable) is irreducible.

(2) Given a finite extension l/k, and h1(x, y), ..., hm(x, y) ∈ l[x][y] that are irre-
ducible as polynomials in y over the field l(x), there are infinitely many b ∈ k such
that the specialized polynomials h1(b, y), ..., hm(b, y) are irreducible in l[y].

(3) For any p1(x, y), ..., pt(x, y) ∈ k[x][y] that are irreducible and of degree > 1
when viewed as polynomial in y over k(x), there are infinitely many b ∈ k such that
none of the specialized polynomials p1(b, y), ..., pt(b, y) has a root in k.

Proof. For proof, see [2].
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Definition B.2. A field k is called hilbertian if it satisfies (one of) the 3 equivalent
conditions.

Using (1) and (2) we see that every finite extension of a hilbertian field is hilbertian.

Proposition B.3. Suppose k is hilbertian, and f(x1, ..., xs) is an irreducible polyno-
mial in s ≥ 2 variables over k, of degree ≥ 1 in xs.

(i) Then there are infinitely many b ∈ k such that the polynomial f(b, x2, ..., xs)
(in s− 1 variables) is irreducible over k.

(ii) For any nonzero p ∈ k[x1, ..., xs−1] there are b1, ..., bs−1 ∈ k such that p(b1, ..., bs−1) 6=
0 and f(b1, ..., bs−1, xs) is irreducible (as polynomial in one variable).

Proposition B.4. Let f(x1, · · · , xs) be a polynomial in s ≥ 2 variables over k,of
degree ≥ 1 in xs. Then f is irreducible as polynomial in s variables if and only if
f is irreducible and primitive when viewed as polynomial in xs over the ring D =
k[x1, · · · , xs]. Note that f is irreducible over D if and only if f is irreducible over
F = k(x1, · · · , xs).

Corollary B.5. If k is hilbertian then so is every finitely generated extension field of
k.

Proof. For proof, see [2].

We can conclude from above:

Every algebraic number field (of finite degree over Q) is hilbertian.

By the previous result, we can easily show that,

Theorem B.6. Suppose k is hilbertian. If a finite group G occurs as Galois group
over k(x1, · · · , xm) then G also occurs as Galois group over k.

Definition B.7. Let G be a finite group. We say G occurs regularly over k if for
some m ≥ 1 there is a Galois extension of k(x1, · · · , xm), regular over k, with Galois
group isomorphic to G.

Corollary B.8. Suppose G occurs regularly over k. Then G occurs regularly over
every extension field k1 of k. Thus G is a Galois group over k1 if k1 is hilbertian.

Proof. Proof is taken from [2] Suppose x1, ..., xm are independent transcendentals
over k1, and set x = (x1, ..., xm). We can assume G = G(K/k(x)), with K regular
over k. Set n = |G| = [K : k(x)]. Write K in the form K = k(x)[y]/(f), for some
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f(x, y) ∈ k(x)[y]. Then f is irreducible over k̄1(x). Hence K1 = k1(x)[y]/(f) is a
field extension of k1(x) of degree n, regular over k1. Clearly, K1 is Galois over k1(x)
(because all the roots of f over k1(x) are already contained in K). Now G(K1/k1(x))
and G(K/k(x)) have the same order, and the former group embeds into the latter
via restriction. Hence they are isomorphic. This proves the first claim. The second
follows by Theorem B.6.

Theorem B.9. (Hilbert’s irreducibility theorem) The field Q is hilbertian.
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Appendix C

Alternating group is (2, 3)
generated: A Python
implementation

First question would be what does it mean to say An is (2, 3) is generated. (2, 3) gen-
eration means that there is an element of order 2 and an element of order 3 generating
An. We made a computer program based on an algorithm developed by I.M.S. Dey
and James Wiegold.

User inputs the n, the degree of alternating group and the program in output re-
turn the generators of alternating group An with relations.

We have used Python programming language to do all the coding.

See [17], [18] for more details.

#These Classes were originally defined Kragen Javier Sittler

( http://canonical.org/~kragen/about/).

class Permutation:

"""Eleemnt of Symmetric group.

"""
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def __init__(self, items):

self.items = tuple(items)

assert set(self.items) == set(range(len(self.items)))

def __mul__(self, other):

"Function␣composition."

return Permutation(self(other(item))

for item in range(max(self.end(), other.end())))

def __eq__(self, other):

return all(self(item) == other(item)

for item in range(max(self.end(), other.end())))

def __hash__(self):

return 1 + hash(self.items)

def __pow__(self, power):

"""Compose a permutation with itself N times."""

if power < 0:

return self.inverse() ** -power

if power == 0:

return cycle()

if power == 1:

return self

return (self * self) ** (power // 2) * self ** (power % 2)

def __call__(self, index):

return self.items[index] if index < len(self.items) else index

def __repr__(self):

"Using␣Python␣cycle␣notation."

cycles = list(self.cycles())

if not cycles:

return ’cycle()’

return ’␣*␣’.join(’cycle(%s)’ % ’,␣’.join(map(repr, cycle))

for cycle in cycles)
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def __str__(self):

"Using␣NORMAL␣cycle␣notation."

cycles = list(self.cycles())

if not cycles:

return ’()’

return ’␣’.join(’(%s)’ % ’␣’.join(map(str, cycle)) for cycle in cycles)

def cycles(self):

"""

leftovers = set(self.items)

min_leftover = 0

while leftovers:

while min_leftover not in leftovers:

min_leftover += 1

assert min_leftover < len(self.items)

ii = min_leftover

cycle = []

cycle_set = set()

while ii not in cycle_set:

cycle.append(ii)

cycle_set.add(ii)

leftovers.remove(ii)

ii = self(ii)

if len(cycle) > 1:

yield cycle

def end(self):

return len(self.items)

def inverse(self):
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items = range(len(self.items))

for index, item in enumerate(self.items):

items[item] = index

return Permutation(items)

def cycle(*seq):

"Generate a permutation from a single cycle."

items = range(max(seq or [-1])+1)

for ii in range(len(seq)):

items[seq[ii]] = seq[(ii+1) % len(seq)]

return Permutation(items)

def reversal(start, end):

return Permutation(range(start) + list(reversed(range(start, end))))

#####################################################################################

def a_n(n):

an=cycle(1)

k=n/3

for i in range(k):

an=an*cycle(1+3*i,2+3*i,3+3*i)

return an

###################################

def c_k(k):

ck=cycle(1)

for r in range(1,k+1):

#print r

ck=ck*(cycle(6*r,6*r+3)*cycle(6*r+1,6*r+4)*cycle(6*r+2,6*r+5))

#print ck

return ck

##################################

def alt_grp_gen(n):

m=n//6
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###################################

if (n%6==0 and m>3):

a=a_n(n-3)

b1=cycle(1,4)*cycle(2,n-2)*cycle(3,n-1)*cycle(n-6,n-3)*cycle(n-5,n)*c_k(m-2)

b2=b1*cycle(n-11,n-8)

if (m%2==0):

x=b2

relation="(ax)^{78} ia a 11- cycle"

else:

x=b1

relation="(ax)^{42} is an 11- cycle"

print colored("<a,x> generates the group where", ’cyan’)

print colored("a is ", ’cyan’), a

print colored("x is ", ’cyan’), x

print colored("and ",’cyan’), relation

##################################

elif (n%6==1 and m>2):

a=a_n(n-1)

b1=cycle(1,4)*cycle(2,n)*cycle(3,n-1)*cycle(n-6,n-3)*cycle(n-5,n-2)*c_k(m-2)

b2=b1*cycle(n-12,n-9)

if m==3:

x=b1

relation=’(ax)^{6} is a 13 cycle’

else:

if (m%2==0):

x=b2

relation="(ax)^18 is a 13 cycle"

else:

x=b1

relation="(ax)^6 is a 13 cycle"

print colored("<a,x> generates the group where", ’cyan’)

print colored("a is ", ’cyan’), a
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print colored("x is ", ’cyan’), x

print colored("and ",’cyan’), relation

###################################

elif (n%6==2 and m>2):

a=a_n(n-2)

b1=cycle(1,4)*cycle(2,n-1)*cycle(3,n)*cycle(n-8,n-5)*cycle(n-6,n-3)*c_k(m-2)

b2=b1*cycle(n-7,n-4)

if (m%2==0):

x=b2

relation="(ax)^6 is an 11 cycle "

else:

x=b1

relation="(ax)^18 is an 11 cycle "

print colored("<a,x> generates the group where", ’cyan’)

print colored("a is ", ’cyan’), a

print colored("x is ", ’cyan’), x

print colored("and ",’cyan’), relation

###################################

elif (n%6==3 and m>2):

a=a_n(n-3)

b1=cycle(1,4)*cycle(2,n-2)*cycle(3,n-1)*cycle(n-3,n)*c_k(m-1)

b2=b1*cycle(n-8,n-5)

if (m%2==0):

x=b2

relation="(ax)^{60} is an 11 cycle "

else:

x=b1

relation="(ax)^12 is an 11 cycle"
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print colored("<a,x> generates the group where", ’cyan’)

print colored("a is ", ’cyan’), a

print colored("x is ", ’cyan’), x

print colored("and ",’cyan’), relation

###################################

elif (n%6==4 and m>2):

a=a_n(n-1)

b1=cycle(1,4)*cycle(2,n)*cycle(3,n-3)*cycle(n-10,n-7)*cycle(n-8,n-5)*c_k(m-2)

b2=b1*cycle(n-9,n-6)

if (m%2==0):

x=b2

relation= " (ax)^6 is a 13 cycle"

else:

x=b1

relation= "(ax)^18 is a 13 cycle"

print colored("<a,x> generates the group where", ’cyan’)

print colored("a is ", ’cyan’), a

print colored("x is ", ’cyan’), x

print colored("and ",’cyan’), relation

###################################

elif (n%6==5 and m>2):

a=a_n(n-2)

b1=cycle(1,4)*cycle(2,n-1)*cycle(3,n)*cycle(n-5,n-2)*c_k(m-1)

b2=b1*cycle(n-10,n-7)

if (m%2==0):

x=b2

relation= "(ax)^12 is an 11 cycle"

else:

x=b1

relation= "(ax)^6 is an 11 cycle"
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print colored("<a,x> generates the group where", ’cyan’)

print colored("a is ", ’cyan’), a

print colored("x is ", ’cyan’), x

print colored("and ",’cyan’), relation

###################################

elif (n==2 or n==3 ):

print "trivial, nothing interesting"

elif(n==7 or n==6 or n==8):

print "Sorry to inform you but it is not (2,3) generarted, inconvenience is regreted"

elif (n==4):

print "(1,2,3) and (1,2)(3,4) generate the group"

###################################

elif (n==5):

a=a_n(3)

x=cycle(1,4)*cycle(2,5)

print colored("<a,x> generates the group where", ’cyan’)

print colored("a is ", ’cyan’), a

print colored("x is ", ’cyan’), x

###################################

elif(n==9):

a=a_n(9)

x=cycle(1,4)*cycle(2,9)*cycle(3,7)*cycle(5,6)

relation="(ax)^5 is a 3 cycle"

print colored("<a,x> generates the group where", ’cyan’)

print colored("a is ", ’cyan’), a

print colored("x is ", ’cyan’), x

print colored("and ",’cyan’), relation

###################################

elif(n==10):
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a=a_n(9)

x=cycle(1,4)*cycle(6,9)*cycle(3,10)*cycle(2,8)

relation="(ax)^7 is a 3 cycle"

print colored("<a,x> generates the group where", ’cyan’)

print colored("a is ", ’cyan’), a

print colored("x is ", ’cyan’), x

print colored("and ",’cyan’), relation

###################################

elif(n==11):

a=a_n(9)

x=cycle(1,4)*cycle(2,10)*cycle(3,11)*cycle(6,9)

relation="[a,x,a]^5 is a 3 cycle"

print colored("<a,x> generates the group where", ’cyan’)

print colored("a is ", ’cyan’), a

print colored("x is ", ’cyan’), x

print colored("and ",’cyan’), relation

###################################

elif (n==12):

a=a_n(9)

x=cycle(1,4)*cycle(2,10)*cycle(3,8)*cycle(6,9)*cycle(7,11)*cycle(5,12)

relation="(ax)^7 is a 5 cycle"

print colored("<a,x> generates the group where", ’cyan’)

print colored("a is ", ’cyan’), a

print colored("x is ", ’cyan’), x

print colored("and ",’cyan’), relation

###################################

elif(n==13):

a=a_n(12)

x=cycle(1,4)*cycle(2,13)*cycle(3,5)*cycle(6,9)*cycle(7,10)*cycle(8,11)

relation="(ax)^8 is a 3 cycle"
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print colored("<a,x> generates the group where", ’cyan’)

print colored("a is ", ’cyan’), a

print colored("x is ", ’cyan’), x

print colored("and ",’cyan’), relation

###################################

elif(n==14):

a=a_n(12)

x=cycle(1,4)*cycle(2,13)*cycle(3,14)*cycle(6,9)*cycle(7,10)*cycle(8,11)

relation= "(ax)^11 is a 3 cycle"

print colored("<a,x> generates the group where", ’cyan’)

print colored("a is ", ’cyan’), a

print colored("x is ", ’cyan’), x

print colored("and ",’cyan’), relation

###################################

elif(n==15):

a=a_n(15)

x=cycle(1,4)*cycle(3,14)*cycle(6,9)*cycle(7,10)*cycle(12,15)*cycle(5,13)

relation=" (ax)^35 is a 3 cycle"

print colored("<a,x> generates the group where", ’cyan’)

print colored("a is ", ’cyan’), a

print colored("x is ", ’cyan’), x

print colored("and ",’cyan’), relation

###################################

elif(n==16):

a=a_n(15)

x=cycle(1,4)*cycle(2,16)*cycle(6,9)*cycle(7,10)*cycle(8,11)*cycle(3,13)

relation=" (ax)^13 is a 3 cycle"

print colored("<a,x> generates the group where", ’cyan’)

print colored("a is ", ’cyan’), a

print colored("x is ", ’cyan’), x

print colored("and ",’cyan’), relation
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###################################

elif(n==17):

a=a_n(15)

x=cycle(1,4)*cycle(2,16)*cycle(3,17)*cycle(12,15)*cycle(6,9)*cycle(7,10)*cycle(8,11)*cycle(13,14)

relation=" (ax)^5 is 11 cycle"

print colored("<a,x> generates the group where", ’cyan’)

print colored("a is ", ’cyan’), a

print colored("x is ", ’cyan’), x

print colored("and ",’cyan’), relation

###################################

else:

a=a_n(15)

x=cycle(1,4)*cycle(2,16)*cycle(3,17)*cycle(12,15)*cycle(13,18)*cycle(6,9)*cycle(7,10)*cycle(8,11)

relation=" (ax)^11 is a 7 cycle"

print colored("<a,x> generates the group where", ’cyan’)

print colored("a is ", ’cyan’), a

print colored("x is ", ’cyan’), x

print colored("and ",’cyan’), relation

###################################

import sys

from termcolor import colored

print colored("Hello Prof. Paranjape,", "red", attrs=[’bold’])

print " "

print colored("This program is based on a research paper titled \"Generators For Alternating Groups\", by I.M.S. Dey and James Wiegold. The aim is to show that Alternating group is (2,3) generated. By (2,3) generation, I mean the following: Alternating group can be generated by two elements say a and x, where o(a)=3 and o(x)=2" , ’blue’)

print colored(’Note: For n=6,7 and 8, Result is not true’ , ’green’)

print "\n"

print colored("Input:",’red’)

print "Enter the degree of Alternating group, A_{n}, a positive integer."

115



print colored("Output:", ’red’)

print "Explicit generators for the group."

print "\n"

vvv=raw_input(’Press the enter to continue: ’)

n=input(’Enter the degree of the alternating group (A_{n}): ’)

alt_grp_gen(n)
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