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Abstract

Class field theory characterizes abelian extensions of number fields. Both local and

global class field theory involve a canonical one to one correspondence between abelian

field extensions L|K and certain subgroups of a corresponding module AK associated

with the field K. At the heart of this correspondence lies a reciprocity law, which is a

canonical isomorphism of the abelianization of the Galois group GL|K of the extension

L|K and the ”norm residue group”, AK/NL|KAL, where NL|KAL is the subgroup of

AK mentioned above. In this thesis, this theory has been studied and presented in

utmost generality. A purely group theoretic machinery, which culminates in Tate’s

theorem, is described in the first chapter. This involves the study of cohomology of

finite groups. The next chapter deals with the development of the notion of class

formation. This is the main criterion which, when combined with Tate’s theorem,

yields the general reciprocity law or the main theorem of abstract class field theory.

Following this, the class formation of unramified extensions of p-adic number fields is

described, which provides a simple yet concrete instance where this theory holds.
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Chapter 1

Background

1.1 Preliminaries

In class field theory, we come across the action of Galois groups of Galois extensions

of algebraic number fields L|K on the set of units L×.

• Motivated by this, we consider the action of a finite, multiplicatively written

group, G on an additively written group A. Let a ∈ A and σ, τ ∈ G.

Through this action, A becomes a G-module under the following considerations:

– 1a = a

– σ(a+ b) = σa+ σb

– (στ)a = σ(τa)

• Define the group ring Z[G] as Z-linear combinations of elements of G:

Z[G] = {Σσ∈Gnσσ|nσ ∈ Z}

The action of G induces the action of Z[G] on A in a natural way -(∑
σ∈G nσσ

)
· a =

∑
σ∈G nσ(σ · a) for a ∈ A.

• Consider the augmentation map ε : Z[G]→ Z where,

ε

(∑
σ∈G

nσσ

)
=
∑
σ∈G

nσ.
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This is a homomorphism of rings, and the kernel of this map is called the

augmentation ideal, IG.

• Consider the coaugmentation map µ : Z→ Z[G] where, µ(n) = n·NG. This

too is a ring homomorphism. We shall call NG =
∑

σ∈G σ the norm of the group

G.

• Thus we have the following exact sequences of rings and ring homomorphisms:

0→ IG → Z[G]
ε−→ Z→ 0,

0→ Z µ−→ Z[G]→ JG → 0.

• Throughout this exposition, we will consider Z as a G-module with the trivial

action of G:

G× A→ A

(g, a) 7→ a, ∀g ∈ G

• Let A and B be abelian groups. Then the set of all Z homomorphisms between

them is denoted throughout by Hom(A,B) and the tensor product over Z by

A⊗B. Both these new sets are Z modules.

Proposition 1.1. Consider the group ring Z[G] as defined above.

1. The augmentation ideal IG is a free group generated by the elements σ−1, where

σ ∈ G and σ 6= 1.

2. JG = Z[G]/Z · NG is the free group generated by the elements σ mod Z · NG,

where σ 6= 1.

Using the terms defined above, we define some important submodules of A. They

are given as follows:

AG = {a ∈ A | σa = a} (Fixed group under the G-action on A.)

NGA = {
∑

σ∈G σa | a ∈ A} (Norm subgroup of A.)

NG
A = {a ∈ A | NGa = 0}

IGA = {
∑

σ∈G(σ − 1)a | a ∈ A}



3 Preliminaries

Definition 1.1. Let A,B be two G-modules. A homomorphism f : A→ B is said to

be a G homomorphism if f(σa) = σf(a).

Note that both the augmentation and the coaugmentation maps areG-homomorphisms.

Hom(A,B), which denote the set of all Z-homomorphisms between the Z-modules A

and B form an abelian group under pointwise operation. This is a G-module under

the following action of G:

Let σ ∈ G, and f ∈ Hom(A,B). Then, σ(f) = σ ◦ f ◦ σ−1. The set of all G-

homomorphisms denoted by HomG(A,B) is a subgroup of Hom(A,B). In particular,

HomG(A,B) = Hom(A,B)G

Definition 1.2. A G-module is said to be G-free if it is the direct sum of G modules

that are isomorphic copies of Z[G].

Remark. G-free modules are also Z-free.

Lemma 1.1. Let · · · → Xq+1
dq+1−−−→ Xq

dq−→ Xq−1
dq−1−−→ · · · be an exact sequence

of Z-free modules and Z homomorphisms and D be a Z module. Then the sequence

· · · → Hom(Xq−1, D) → Hom(Xq, D) → Hom(Xq+1, D) → · · · is exact. In other

words, under these considerations, the Hom( , D) functor is exact.

Remark. In general, the HomG( , D) functor is not exact.

Definition 1.3. Let G be a finite group written multiplicatively. Then the complete

free resolution of the G- module Z (defined by letting G act on Z trivially, i.e, as

the identity) is the complex defined as follows:

· · · d−2←−− X−2
d−1←−−X−1

d0←− X0
d1←− X1

d2←− X2
d3←− · · · (∗)

µ↖ ↙ ε

Z

↙ ↘

0 0

such that the following properties are satisfied:

• Xq are free G modules

• All maps are G-homomorphisms
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• d0 = µ ◦ ε; ε, µ are the augmentation and coaugmentation maps respectively.

• At every term we have exactness

Set Xq = X−q−1 =
⊕

Z[G](σ1, σ2, ..., σq), where (σ1, σ2, ..., σq) is a q-tuple and

q ≥ 1 and σis run over all elements of G. This direct sum can be thought of as

the set of all Z[G]-linear combinations of elements from
∏q

i=1G. For q = 0, we have

X0 = X−1 = Z[G].

Let A be a G module. Set Aq = HomG(Xq, A). For any x ∈ Aq = Hom(Xq, A), x

can be thought of as a map x :
∏q

i=1 G → A. Now from the exact sequence (∗), we

get the complex:

· · · ∂−2−−→ A−2
∂−1−−→ A−1

∂0−→ A0
∂1−→ A1

∂2−→ A2
∂3−→ · · · (∗∗)

This complex is not exact. From (∗), we have dq ◦ dd+1 = 0, ∀q ∈ Z. Therefore,

∂q+1 ◦ ∂q = 0 ∀q ∈ Z. Thus, ∀q ∈ Z:

im∂q ⊆ ker∂q+1

Set Zq = ker∂q+1 and Rq = im∂q. Elements of Zq are called q-cocycles and those of

Rq are called q-coboundaries.

We now define the maps dq and ∂q explicitly.

Definition 1.4. The G-homomorphisms dq as in (∗)are defined as follows:

d01 = NG;

d1(σ) = σ − 1;

d−11 =
∑

σ∈G(σ−1(σ)− (σ))

dq(σ1, σ2, ..., σq) = σ1(σ2, ..., σq) +

q−1∑
i=1

(−1)i(σ1, ..., σiσi+1, ..., σq)

+ (−1)q(σ1, σ2, ..., σq−1); q > 1

d−q−1(σ1, σ2, ..., σq) =
∑
σ∈G

[σ−1(σ, σ1, σ2, ..., σq)+

q∑
i=1

(−1)i(σ1, ..., σi−1, σiσ, σ
−1, σi+1..., σq)

+ (−1)q+1(σ1, σ2, ..., σq, σ)]; −q − 1 < −1
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Definition 1.5. The G-homomorphisms ∂q as in (∗∗) are defined as follows:

∂0x = NGx; x ∈ A−1 = A

∂1x(σ) = σx− x; x ∈ A0 = A

∂−1x =
∑

σ∈G(σ−1x(σ)− x(σ)); x ∈ A−2

For q ≥ 1 we have,

∂qx(σ1, σ2, ..., σq) = σ1x(σ2, ..., σq) +

q−1∑
i=1

(−1)ix(σ1, ..., σiσi+1, ..., σq)

+ (−1)qx(σ1, σ2, ..., σq−1); x ∈ Aq−1

∂−q−1x(σ1, σ2, ..., σq) =
∑
σ∈G

[σ−1x(σ, σ1, σ2, ..., σq)+

q∑
i=1

(−1)ix(σ1, ..., σi−1, σiσ, σ
−1, σi+1..., σq)

+ (−1)q+1x(σ1, σ2, ..., σq, σ)]; x ∈ A−q−2

Definition 1.6. The factor group

Hq(G,A) = Zq/Rq

is called the cohomology group of dimension q ( q ∈ Z) of the G-module A or

the q-th cohomology group with coefficients in A.

Computations of some general factor groups of low dimension are given below:

H−1(G,A) =NG
A/IGA

H0(G,A) = AG/NGA (Norm residue group)

H1(G,A) = Z1/R1 where, Z1 = {x : G → A | x(στ) = σx(τ) + x(σ)}, and

R1 = {σa− a | a ∈ A}

1.2 Towards the canonical isomorphsim Gab ∼= H−2(G,Z)

Theorem 1.1. Let 0 → A
i−→ B

j−→ C → 0 be an exact sequence of G-modules and

G-homomorphisms. This induces a sequence of cohomology factor groups,

· · · → Hq(G,A)
īq−→ Hq(G,B)

j̄q−→ Hq(G,C)
δq−→ Hq+1(G,A)→ · · ·
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which is also exact. It is called the exact cohomology sequence. Here īq, j̄q are induced

by the maps iq and jq respectively, and δq is the connecting homomorphism.

Corollary 1.1.1. If Hq(G,A) = 0 for all q, Hq(G,B) ∼= Hq(G,C). Similarly, if

Hq(G,B) = 0 (resp. Hq(G,C) = 0) for all q, δq : Hq(G,C) → Hq+1(G,A) (resp.

īq : Hq(G,A)→ Hq(G,B)) is an isomorphism.

Definition 1.7. A G-module A is said to be G-induced if there is a subgroup D of A

such that

A =
⊕
σ∈G

σD

Example: Z[G] =
⊕

σ∈G σ(Z · 1)

Proposition 1.2. Let X be a G-induced module, and A be an arbitrary G-module.

Then X ⊗ A is a G-induced module.

Proof. Recall that we have fixed the notation X ⊗A to be the tensor product over Z.

As X is a G-induced module, we have X =
⊕

σ∈G σD, where D is a subgroup of X.

Thus,

X ⊗ A =
(⊕

σ∈G σD
)
⊗ A ∼=

⊕
σ∈G(σD)⊗ (σA) ∼=

⊕
σ∈G σ(D ⊗ A).

Proposition 1.3. Let A be a G-induced module, and K is a subgroup of G. Then A

is a K induced K module. If K is normal in G, then AK is a G/K - induced G/K

module.

Definition 1.8. We say that a G module A has trivial cohomology if Hq(K,A) = 0

for all q ∈ Z and all subgroups K ⊆ G.

Theorem 1.2. Every G-induced module has trivial cohomology.

Proof. By Proposition 1.3, it suffices to show that Hq(G,A) = 0. For each

factor group to be trivial, we need to show that the sequence obtained from the exact

sequence (∗),
· · · → HomG(Xq, A)

∂q−→ HomG(Xq+1, A)→ · · ·

is exact. By hypothesis, A is G-induced, therefore A =
⊕

σ∈G σD, where D is a

subgroup of A. Let π : A→ D be the natural projection of A onto D. Now, as each Xq

is finitely generated, we have the isomorphism Hom(Xq, A) = Hom(Xq,
⊕

σ∈G σD
∼=



7 Towards the canonical isomorphsim Gab ∼= H−2(G,Z)⊕
σ∈GHom(Xq, σD). Then the map f 7→ π ◦ f induces an isomorphism between

HomG(Xq, A) and HomZ(Xq, D) = Hom(Xq, D). Therefore, it suffices to consider

· · · → Hom(Xq, D)→ Hom(Xq+1, D)→ · · ·

which is exact by Lemma 1.1.

Theorem 1.3. There is a canonical isomorphism H−2(G,Z) ∼= Gab

Proof. Consider the exact sequence,

0→ IG → Z[G]
ε−→ Z→ 0.

From Theorem 1.1, we obtain the exact cohomology sequence:

· · · → Hq(G, IG)→ Hq(G,Z[G])→ Hq(G,Z)
δq−→ Hq+1(G, IG)→ · · ·

We know that Z[G] is a G-induced module. Therefore, by Theorem 1.2,

Hq(G,Z[G]) = 0, ∀q ∈ Z.

By Corollary 1.1.1, we have the isomorphism:

Hq(G,Z) ∼= Hq+1(G, IG), ∀q ∈ Z.

In particular, we have the isomorphism H−2(G,Z) ∼= H−1(G, IG).

Note that H−1(G, IG) = IG/I
2
G.

Therefore, it suffices to show that Gab ∼= IG/I
2
G

Consider the map Φ : G→ IG/I
2
G such that σ 7→ (σ − 1) + I2

G.

Φ is a homomorphism because:

Φ(στ) = στ − 1 + I2
G

= (σ − 1) + (τ − 1) + (σ − 1) · (τ − 1) + I2
G

= (σ − 1) + (τ − 1) + I2
G

= Φ(σ) + Φ(τ)

The last two inequalities hold because we have seen in Proposition ?? that IG is the

additive free abelian group generated by the elements σ − 1 where σ ∈ G − {1}.
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As IG/I
2
G is Abelian, the commutator subgroup G

′ ⊆ kerΦ. Therefore we have the

homomorphism:

log : G/G
′ → IG/I

2
G

Now we claim that log is an isomorphism. To prove this claim, consider the map:

exp : IG/I
2
G → G/G

′

such that (σ − 1) + I2
G 7→ σG

′
. This map is a surjective homomorphism. Its a

homomorphism because :

exp((σ − 1) + (τ − 1) + I2
G) = exp((σ − 1) + (τ − 1) + (σ − 1) · (τ − 1)

+ I2
G)

= exp(στ − 1) = (στ)G
′

= exp((σ − 1) + I2
G) · exp((τ − 1) + I2

G)

Since, (σ − 1) · (τ − 1) = (στ − 1) − (σ − 1) − (τ − 1) 7→ στσ−1τ−1G
′

= 1̄, we have,

I2
G ⊆ ker exp.

Observe that log ◦ exp = IdIG/I2G , and exp ◦ log = IdG/G′ .

Thus the claim holds. This finishes the proof.

1.3 Inflation, Restriction, and Corestriction

Lemma 1.2 (Method of dimension shifting). Let A be a G- module. Then there

exist G-modules indexed by m defined as follows:

Am =

(⊗mi=1JG)⊗ A m ≥ 0

(⊗mi=1IG)⊗ A m < 0

with the property that the m-fold composition of the connecting homomorphism δ in-

duces ∀q ∈ Z and every subgroup K ⊆ G the isomorphism:

δm : Hq−m(K,A)→ Hq(K,A), m ∈ Z.



9 Inflation, Restriction, and Corestriction

This is a crucial method employed to formally extend the definition of the infla-

tion, restriction and corestriction maps from the dimension 0 to arbitrary dimensions.

Before defining the aforesaid maps, we will state a simple application of dimension

shifting in calculating cohomology factor groups, which will be useful later.

Theorem 1.4. Let A be a G-module where G is a finite group. Then Hq(G,A) is a

torsion group and the orders of elements in Hq(G,A) divide the order n of the group

G:

n ·Hq(G,A) = 0

Proof. We know that, H0(G,A) = AG/NGA, and NGa = n · a ∀a ∈ A. Thus n ·
H0(G,A) = 0. From Lemma 1.2, we have the isomorphism Hq(G,A) ∼= H0(G,Aq).

The theorem follows from this

Definition 1.9. An abelian group A is said to be uniquely divisible if for every a ∈ A
and every n ∈ N, we have a unique solutionto the equation nx = a for x in A .

Corollary 1.4.1. A uniquely divisible G-module has trivial cohomology.

In particular, the G-module Q with the trivial action of G has trivial cohomology,

as Q is uniquely divisible.

Corollary 1.4.2. There is a canonical isomorphism:

H2(G,Z) ∼= H1(G,Q/Z)

where Z and Q/Z are G-modules with the trivial action of G.

Proof. Consider the long exact cohomology sequence obtained from the following exact

sequence:

0→ Z→ Q→ Q/Z→ 0

Q is uniquely divisible, and thus from Corollary 1.4.1, we have Hq(G,Q) = 0, ∀q.
Therefore by Corollary 1.1.1 we have the isomorphism Hq(G,Q/Z) ∼= Hq+1(G,Z).

Take q = 1 and the result follows.

Definition 1.10. χ(G) := Hom(G,Q/Z) is called the character group of G.

Definition 1.11 (Inflation). Let A be a G-module and K a normal subgroup of G.

The homomorphism

infq : Hq(G/K,AK)→ HQ(G,A), q ≥ 1,
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induced by the homomorphism from the q-th group of cochains of the G/K-induced

module AK to the q-th group of cochains of the G-module is called inflation.

Note that the inf map is defined only for normal subgroups and for positive

dimensions.

Definition 1.12 (Restriction). Let G be a finite group and K be a subgroup. Then

restriction is the uniquely determined family of homomorphisms:

resq : Hq(G,A)→ Hq(K,A), q ∈ Z, such that

• res0 : H0(G,A)→ H0(K,A), q ∈ Z
a+NGA 7→ a+NKA (a ∈ AG)

• For every exact sequence 0→ A→ B → C → 0 of G-modules and G homomor-

phisms, the following diagram is commutative:

Hq(G,C) Hq+1(G,A)

Hq(K,C) Hq+1(K,C)

δ

resq resq+1

δ

The definition of restriction is extended to all dimensions from the zeroth di-

mension by the method of dimension shifting shown by the following commutative

diagram:

H0(G,Aq) Hq(G,A)

H0(K,Aq) Hq(K,A)

δq

res0 resq

δq

Definition 1.13 (Corestriction). Let G be a finite group with a subgroup K and A

a G-module Thencorestriction is the uniquely determined family of homomorphisms,

corq : Hq(K,A)→ Hq(G,A), q ∈ Z,

with the properties:
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• If q = 0, then

cor0 : H0(K,A)→ H0(G,A), a+NGA 7→ NG/Ka+NGA (a ∈ AK)

• For every exact sequence 0 → A → B → C → 0 of G-modules and G-

homomorphsims, the following diagram is commutative:

H0(K,C) Hq+1(K,A)

H0(G,C) Hq+1(G,A)

δ

corq corq+1

δ

The definition of corestriction can be extended to arbitrary dimensions using the

method of dimension shifting:

H0(K,Aq) Hq(K,A)

H0(G,Aq) Hq(G,A)

δq

cor0 corq

δq

An important property of inf , res and cor maps is that they commute with

connecting homomorphisms and G-homomorphisms.

1.4 Towards Shapiro’s lemma

Lemma 1.3. Let {Ai|i ∈ I} be a family of G-modules, and let X be another G-module.

Then we have the canonical isomorphisms

X ⊗ (
⊕
i

Ai) ∼=
⊕
i

(X ⊗ Ai)

Moreover, if X is a finitely generated as an abelian group, then

X ⊗ (
∏
i

Ai) ∼=
∏
i

(X ⊗ Ai)
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Lemma 1.4. Let {Ai|i ∈ I} be a family of G-modules. Then,

Hq(G,
⊕
i

Ai) ∼=
⊕
i

Hq(G,Ai)

Definition 1.14. Let G be a finite group and K be a subgroup. A G-module A is

called G/K-induced if it has the following representation:

A =
⊕

σ∈G/K

σD

where D ⊆ A is a subgroup of A which is a K- module and σ ranges over a system of

left coset representatives of K in G.

Theorem 1.5. Shapiro’s Lemma: Let A =
⊕

σ∈G σD be a G/K induced G module

where K is a subgroup of G. Then,

Hq(G,A) ∼= Hq(K,D)

and this isomorphism is given by the composition:

Hq(G,A)
res−→ Hq(K,A)

π̄−→ Hq(K,D)

where π̄ is induced by the natural projection π : A→ D.

Proof. As A is a G/K-induced G-module, we have A =
⊕m

i=1 σiD, where σi ranges

over a system of left coset representatives of G/K, in particular let σi = 1. For q = 0,

define the following composition of maps:

AG/NGA
res−→ AK/NKA

π̄−→ DK/NKD

Now define a map in the opposite direction of the above homomorphism:

ν : DK/NKD → AG/NGA
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where ν(d+NKD) =
∑m

i=1 σid+NGA. We observe that (π̄◦res)◦ν = id on DK/NKD

and ν ◦ (π̄ ◦ res) = id on AG/NGA, which makes π ◦ res bijective. Now, we set

Aq = (⊗qi=1JG)⊗ A Aq =
(
⊗|q|i=1IG

)
⊗ A

Dq
∗ = (⊗qi=1JG)⊗D, resp Dq

∗ =
(
⊗|q|i=1IG

)
⊗D

Dq = (⊗qi=1JK)⊗D Dq =
(
⊗|q|i=1IK

)
⊗D

for q ≥ 0 resp, q < 0. As A =
⊕m

i=1 σiD, we have,

JG = JK ⊕K1 resp IG = IK ⊕K−1,

where K1 and K−1 are K-induced modules as defined below:

K1 =
⊕
τ∈K

τ

(
m∑
i=2

Z · σ̄−1
i

)
resp K−1 =

⊕
τ∈K

(
m∑
i=2

Z · (σ−1
i − 1)

)

Substituting these expressions for IG and JG in Dq and D∗q respectively, and using

Proposition 1.2 and Lemma 1.3, we obtain for all q the canonical K-module decom-

position

Dq
∗ = Dq ⊕ Cq

for some K-induced K-module Cq. Using the method of dimension shifting stated in

Lemma 1.2, we then obtain the diagram,

H0(G,Aq) H0(K,Aq) H0(K,Dq
∗) H0(K,Dq)

Hq(G,A) Hq(K,A) Hq(K,D) Hq(K,D)

res

δq δq

π̄∗ ρ̄

δq

res
π̄ id

in which the map π∗ ◦ res in the upper row in dimension 0 is bijective as shown

above. From Lemma 1.4 H0(K,Dq) ∼= H0(K,Dq
⊕

Cq) ∼= H0(G,Dq)
⊕

H0(G,Cq).

As Cq is K-induced, we use Theorem 1.2 and Corollary 1.1.1 to conclude that ρ̄ is

bijective. Now we need to show that this diagram commutes. Since the composition

Aq
π−→ Dq

∗
ρ−→ Dq is induced by the projection A

π−→ D and δq is an isomorphism, we

see it does. As the upper map ρ ◦ π̄∗ ◦ res is bijective, so is the lower map π̄ ◦ res.
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1.5 Towards Tate’s Theorem

Definition 1.15 (Cup Product). If A and B are G-modules, then there exists a

uniquely determined family of bilinear mappings, the cup product

Hp(G,A)×Hq(G,B)
∪−→ Hp+q(G,A⊗B)

with the following properties:

• For p = q = 0, the cup product is given by

(ā, b̄) 7→ ā ∪ b̄ = ¯a⊗ b, ā ∈ H0(G,A), b̄ ∈ H0(G,B)

• If the sequences of G modules

0→ A→ A
′ → A

′′ → 0

0→ A⊗B → A
′ ⊗B → A

′′ ⊗B → 0

are both exact, then the following diagram commutes:

Hp(G,A
′′
)×Hq(G,B) Hp+q(G,A

′′ ⊗B)

Hp+1(G,A)×Hq(G,B) Hp+q+1(G,A⊗B)

∪

δ×1 δ

∪

so that

δ(ā
′′ ∪ b̄) = δ ¯a′′ ∪ b, ā

′′ ∈ Hp(G,A
′′
), b̄ ∈ Hq(G,B)

• If the sequences of G-modules

0→ B → B
′ → B

′′ → 0

0→ A⊗B → A⊗B′ → A⊗B′′ → 0

are both exact, then the following diagram commutes:

Hp(G,A)×Hq(G,B
′′
) Hp+q(G,A⊗B′′)

Hp(G,A)×Hq+1(G,B) Hp+q+1(G,A⊗B)

∪

1×δ (−1)pδ

∪
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so that

δ(ā ∪ b̄′′) = (−1)p( ¯a ∪ b′′ , ā ∈ Hp(G,A), b̄
′′ ∈ Hq(G,B

′′
)

For a fixed element, a ∈ Hp(G,A), the following map provides a whole family of

maps:

a∪ : Hq(G,B)→ Hp+q(G,A⊗B)

b 7→ a ∪ b

Theorem 1.6. Let A be a G-module with the following properties. For each subgroup,

K ⊆ G, we have

I. H−1(K,A) = 0

II. H0(K,A) is a cyclic group of order |K|
If a generates the group H0(G,A), then the cup product map

a∪ : Hq(G,Z)→ Hq(G,A)

is an isomorphism ∀q ∈ Z.

Theorem 1.7. Tate’s theorem: Let A be a G-module with the following properties.

For each subgroup K of G,

I. H1(K,A) = 0, and

II. H2(K,A) is a cyclic group of order |K|.
If a generates the group H2(G,A), then the cup product map,

a∪ : Hq(G,Z)→ Hq+2(G,A)

is an isomorphism ∀q ∈ Z.

Proof. Let A2 be as defined in Lemma 1.2 for q = 2. Shift the cohomology factor

group by two dimensions using the method of dimension shifting via the map δ2 :

Hq(a,A2) → Hq+2(K,A) from Lemma 1.2. By assumptions I and II, H−1(K,A2) =

H1(K,A) = 0, and that H0(g, A2) = H2(K,A) is cyclic of order |K|. Thus, the

generator a ∈ H2(G,A) can be mapped back from the generator δ−2a ∈ H0(G,A2).

It follows from Definition 1.15 that the diagram



Background 16

Hq(G,Z) Hq(G,A2)

Hq(G,Z) Hq+2(G,A)

δ−2a∪

id δ2

a∪

commutes. Since δ−2a∪ is bijective by Theorem 1.6, so is a∪.

For class field theory, the dimension q = −2 is of particular interest. By Tate’s

theorem, we get the canonical isomorphism between Gab ∼= H−2(G,Z) and the norm

residue group AG/NGA = H0(G,A),

Gab 7→ AG/NGA.

This canonical isomorphism is the abstract formulation of class field theory, the so

called ”reciprocity law”. For this reason, one can consider Tate’s theorem as the

foundation of the purely group theoretically formulated abstract version of class field

theory. However, this reciprocity map is not canonical as it depends upon the genera-

tor of the factor group of dimension 2. To circumvent this, we develop further theory

in the next chapters.



Chapter 2

Abstract Class Field Theory

Motivation

The main goal of field theory is to classify all algebraic extensions of a field. The

main goal of class field theory is to classify all abelian extensions of a field. Class field

theory gives rise to the famous theorem of Kronecker and Weber:

Theorem. Every abelian extension of the field Q is a cyclotomic field, i.e, a

subfield of the cyclotomic extension Q(ζ), where ζ is a root of unity.

At the heart of class field theory lies a canonical one-to-one correspondence be-

tween abelian extensions of a field K, and norm subgroups of a module corresponding

to this field, say AK . This correspondence obeys the ”reciprocity law”, i.e., if a sub-

group I ⊆ AK corresponds to an abelian field extension L|K, then there is a canonical

isomorphism between the Galois group GL|K and AK/I. The Galois group is compact

and Hausdorff with respect to the Krull toplogy. Thus, to describe class field theory in

its abstract form, we consider a profinite group G, and impose certain formal notions

to obtain a formal Galois theory.

17
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2.1 Abstract formalism

• We considerG as a profinite group1. We may think ofG as the Galois group of an

infinite Galois extension endowed with Krull topology. The open subgroups are

precisely the closed subgroups of finite index. Consider the family {GK |K ∈ X}
of all open subgroups. The indices, K, are called fields.

• We label K0 with GK0 = G as the base field. If GL ⊆ GK , we write formally

K ⊆ L. Define [L : K] := (GK : GL).

• A is a G-module on which the G-action is continuous. Such a pair (G,A) is

called a formation.

• L|K is called a normal extension if GL is a normal subgroup of GK . In this

case, define GL|K := GK/GL. For a normal extension L|K, AL becomes a GL|K

module. Similarly, L|K is cyclic, abelian or solvable if GL|K is cyclic, abelian or

solvable.

• A is assumed to be a multiplicative G-module on which the action of G is

captured by:

G× A→ A(σ, a) 7→ aσ.

Note that the norm
∑

σ∈G σa as denoted in the previous section with an abelian

group A becomes
∏

σ∈G a
σ.

• Once our G and A are fixed, we denote AGK as AK , and Hq(GL|K , AL) by

Hq(L|K).

• The intersection of the fields Ki is defined as K = ∪ni=1Ki, if GK is topologically

generated by GKi
in G, and K =

∏n
i=1 Ki if GK = ∩ni=1GKi

.

• L′ is said to be conjugate with L if GL′ = σGLσ
−1 for some σ ∈ GK . In this

case, we write L
′
= σL.

2.2 Towards the reciprocity map

If N ⊇ L ⊇ K is a tower of normal extensions, then we have GL|K E GN |K . Thus,

we have the inflation map Hq(GL|K , A
GN|L
N )

inf−−→ Hq(GN |K , AN). As, A
GN|L
N = AL, we

1For theory of infinite Galois extensions and profinite groups, see [Neu99], Chater 4, §1, 2, and 3
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write Hq(GL|K , AL)
inf−−→ Hq(GN |K , AN). This induces a map

infN : Hq(L|K)→ Hq(N |K), q ≥ 1.

Similarly, the restriction and corestriction maps,

Hq(GN |K , AN)
res−→ Hq(GL|K , AN) and Hq(GN |L, AN)

cor−→ Hq(GN |K , AN),

induce ∀q ∈ Z the maps:

Hq(N |K)
resL−−→ Hq(L|K) and Hq(N |L)

corK−−→ Hq(N |K).

Also, for σ ∈ G we have the isomorphisms GL|K ∼= GσL|σK and A ∼= σA defined by the

maps τGL 7→ στσ−1GσL, and a 7→ σa respectively. These maps yield the isomorphism

Hq(L|K)
σ∗−→ Hq(σL|σK).

This isomorphism commutes with infN , resL, and corK .

Definition 2.1. A formation (G,A) is called a field formation if H1(L|K) = 1 for

each normal extension L|K.

On a field formation (G,A), imposition of the hypothesis of Tate’s theorem yields

the isomorphism Gab
L|K
∼= AK/NL|KAL. However, this isomorphism is not canonical

as it depends upon the generator of H2(GL|K , AL). Thus, some extra conditions are

required.

Definition 2.2. A formation (G,A) is called a class formation if it satisfies the

following axioms:

I. H1(L|K) = {1} for every normal extension L|K.

II. For every normal extension L|K there exists an isomorphism

invL|K : H2(L|K)→
1

[L:K]
Z

Z

called the invariant map with the following properties

• K ⊆ L ⊆ N is a tower of normal extensions, then

invL|K = invN |K
∣∣
H2(L|K)

.
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• K ⊆ L ⊆ N is a tower of extensions with N |K normal then

invN |L ◦ resL = [L : K] · invN |K

.

Definition 2.3. Let L|K be a normal extension. There exists a uniquely determined

element uL|K ∈ H2(L|K),

s.t. invL|K
(
uL|K

)
=

1

[L : K]
+ Z, called the fundamental class of L|K.

Proposition 2.1. Let N ⊇ L ⊇ K be a tower of extensions with N |K normal. Then

a. invN |Kc = invL|Kc, if L|K is normal and c ∈ H(L|K),

b. invN |L(resLc) = [L : K] · invN |Kc, for c ∈ H2(N |K),

c. invN |K(corKc) = invN |Lc, for c ∈ H2(N |L),

d. invσN |σK(σ∗c) = invN |Kc, for c ∈ H2(N |K) and σ ∈ G.

From the properties of the invariant map stated in Proposition 2.1, we deduce the

following properties of the fundamental classes of different field extensions.

Proposition 2.2. Let N ⊇ L ⊇ K be a tower of extensions with N |K normal. Then

a. uL|K = (uN |K)[N :L], if L|K is normal,

b. resL(uN |K) = uN |L,

c. corK(uN |L) = (uN |L)[L:K],

d. σ∗(uN |K) = uσN |σK, for σ ∈ G.

Theorem 2.1 (Main Theorem). Let L|K be a normal extension. Then the map

uL|K∪ : Hq(GL|K ,Z)→ Hq+2(L|K)

is an isomorphism for all q.

In particular, for dimension q = −2, the canonical isomorphism

Gab
L|K
∼= H−2(GL|K ,Z),
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and simple computation H0(L|K) = AK/NL|KAL, yields the general reciprocity law

as stated in the next theorem.

Theorem 2.2 (General Reciprocity Law). Let L|K be a normal extension. Then

the map

uL|K∪ : H−2(GL|K ,Z)→ H0(L|K)

yields a canonical isomorphism

ΘL|K : Gab
L|K → AK/NL|KAL

between the abelianization of the Galois group and the norm residue group of the

module.

ΘL|K is also called the Nakayama map.

Definition 2.4. The inverse of the Nakayama map

AK/NL|KAL → Gab
L|K ,

is called the reciprocity isomorphism.

The reciprocity map is useful in the study of local and global class field theory

and has been found to be more accessible than the Nakayama map.

Definition 2.5. The Nakayama map induces a homomorphism ( , L|K) between AK

and Gab
L|K, with kernel NL|KAL:

1→ NL|KAL → AK
( ,L|K)−−−−−→ Gab

L|K → 1

called the norm residue symbol.

Definition 2.6. An element a ∈ AK is called a norm if and only if (a, L|K) = 1.

We now go on to obtain a one to one correspondence between abelian extensions

and norm subgroups.

Lemma 2.1. Let L|K be a normal extension and Lab the maximal abelian extension

of K contained in L. Then NL|KAL = NLab|KabAabL ⊆ AK.
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Theorem 2.3. Let L1 and L2 be abelian extensions of K. The map,

L 7→ IL = NL|KAL

gives an inclusion reversing isomorphism between the lattice of abelian extensions L|K
and the lattice of norm groups I of AK. Hence we have,

IL1 ⊇ IL2 ⇔ L1 ⊆ L2; IL1·L2 = IL1 ∩ IL2 ; IL1∩L2 = IL1 · IL2

if L1 and L2 are abelian extensions.

Moreover, every group I ⊆ AK containing a norm group is itself a norm group.

Proof. First we show that IL1·L2 ⊆ IL1 ∩ IL2 . Recall that field L1 ·L2 is defined by it’s

corresponding fixed group GL1·L2 = GL1∩GL2 . IL1·L2 = NL1·L2|K(a) =
∏

σ∈GL1
∩GL2

(a1·
a2)σ. By multiplicativity of norm, we have IL1·L2 =

∏
σ a

σ
1

∏
σ a

σ
2 where σ varies over

the elements of GL1 ∩GL2 .

To show the reverse containment, we first note that the following diagram com-

mutes for a tower of normal extensions N ⊇ L ⊇ K:

AK Gab
N |K

AK Gab
L|K

( ,N |K)

id πL

( ,L|K)

Let a ∈ IL1 ∩ IL2 . Then the element (a, L1 ·L2|K) has the projections by the map

πL1 and πL2 given by (a, L1|K) = 1 and (a, L2|K) = 1 inGL1|K andGL2|K , respectively.

Thus, (a, L1 · L2|K) = 1 which implies a ∈ IL1·L2 . Thus, IL1·L2 = IL1 ∩ IL2 .

Given this, we obtain

IL1 ⊆ IL2 ⇔ IL1 ∩ IL2 = IL1·L2 ⇔ [L1 · L2 : K] = [L2 : K]⇔ L1 ⊆ L2

This shows the injectivity of the correspondence L 7→ IL.

From lemma 2.1, every norm group I is the norm group of an abelian extension. This

shows that the correspondence is surjective.

To obtain the equality IL1∩L2 = IL1 · IL2 , we proceed as follows.

L1 ∩ L2 ⊆ Li, i = 1, 2. Thus, the inclusion reversing bijective correspondence yields

IL1∩L2 ⊇ ILi
i = 1, 2. This implies IL1∩L2 ⊇ IL1 ·IL2 . As IL1 ·IL2 is open, IL1 ·IL2 = NL
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for some finite abelian extension L|K. But ILi
⊆ IL implies L ⊆ L1 ∩ L2, so that

IL1 · IL2 = IL ⊇ IL1 ∩ IL2

2.3 Galois Cohomology

We state some Galois cohomological results that are crucial for proving results about

class formations. In particular, we will use them to prove why certain field formations

satisfy Axiom I of class formation.

Theorem 2.4. Hq(G,L+) = 0, ∀q ∈ Z.

Proof. Choose c ∈ L such that {σc | σ ∈ G} is a basis of L|K. We can do this as L

is a finite Galois extension and accommodates a normal basis.

L+ =
⊕
σ∈G

K+ · σc =
⊕
σ∈G

σ(K+ · c)

This implies that L+ is a G-induced module.Therefore by 1.2, all of its cohomology

groups are trivial.

Lemma 2.2. Let L|K be a finite Galois extension with Galois group G. Let L̄ be an

algebraic closure of L and G = Hom(L̄,K). Then, distinct elements of G are linearly

independent.

Theorem 2.5 (Hilbert-Noether). Let L|K be a finite Galois extension with Galois

group G. Then H1(G,L×) = 1.

Proof. Let φ : G→ L× be a 1-cocycle. We show that this is also a 1-coboundary. In

order to show that, given σ ∈ G, we need to find c ∈ L× such that φ(σ) = σ(c)
c

. This

implies φ ∈ R1(G,L×), and thus the factor group is trivial.

As φ is a crossed homomorphism, we have φ(στ) = σ(φ(τ)) · φ(σ). Consider the

set {φ(σ) · σ|σ ∈ G} of distinct elements of G. By Lemma 2.3, this is a linearly
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independent set. Thus, ∃ a ∈ L× such that∑
σ∈G

φ(σ) · σ(a) = b 6= 0 ∈ L×.

Let τ ∈ G. Then,

τ(b) = τ

(∑
σ∈G

φ(σ) · σ(a)

)
=
∑
σ∈G

τ (φ(σ)) · τσ(a)

=
∑
σ∈G

τ
(
tau−1

(
φ(τσ) · φ(τ)−1

))
· τσ(a)

=
∑
σ∈G

φ(τ)−1φ(τσ)τσ(a)

= φ(τ)−1 · b

This gives φ(τ) = b
τ(b)

= τ(b−1)(b−1)−1. Thus, choose c = b−1.

2.4 Class formation of unramified extensions

Let K be a p-adic number field, that is, a complete discrete valuation field2 of charac-

teristic 0 with a finite residue field. We wish to obtain the local reciprocity law with

respect to the Galois group GT |K of the maximal unramified field extensions T |K of

this field acting on the group of units T×. For this, we shall prove that (GT |K , T
×)

is a class formation and use Tate’s theorem. We start by establishing the following

notations:

v is the discrete valuation of K.

o = {x ∈ K|v(x) ≥ 0} is the valuation ring

p = {x ∈ K|v(x) > 0} is the maximal ideal

π is the prime element for p.

K̄ = o/p is the residue field of K and p is the characteristic and q = (o/p is the

number of elements of K̄. If f is the degre of K̄ over the prime field of p elements,

then q = pf .

U = o\p is the unit group.

2For theory of valuations and ramification of prime ideals, see [Neu99], Chapter 2.
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U1 = 1 + p is the group of principal units

Un = 1 + pn denotes higher unit groups.

We consider finite extensions L|K of p-adic number fields and append to the notation

the relevant field as an index thus writing vL, oL, pL, UL, etc.

The valuation vK has a unique extension to L, namely 1
e
vL where e is the ramification

index of L|K.

The extension is unramified when e = 1. This means that the prime element π ∈ K of

pK is also an element of pL. This is equivalent to the statement that [L : K] = [L̄ : K̄].

Lemma 2.3. If m is a positive integer, then the map x 7→ xm yields for a sufficiently

large n, an isomorphism

Un → Un+v(m).

We will skip the proof of this lemma for the sake of brevity.

An unramified extension is normal, and there is a canonical isomorphism

GL|K ∼= GL̄|K̄ .

If σ ∈ GL|K , we obtain the K̄ automorphism

σ̄(x+ pL) = σ(x) + pL, x ∈ oL

The group GL̄|K̄ is cyclic as the Galois group of a finite field L̄. We have the generating

automorphsim

x̄ 7→ x̄qK , x̄ ∈ L̄

where qK is the number of element in K̄. As GL|K ∼= GL̄|K̄ , we also obtain a canonical

K-automorphism of L which generates GL|K .

Definition 2.7. The automorphism ϕL|K ∈ GL|K, which is induced by the automor-

phism

x̄ 7→ x̄qK , x̄ ∈ L̄

of the residue field L̄ is called the Frobenius automorphism of L|K.

Proposition 2.3. Let N ⊇ L ⊇ K be a tower of unramified extensions of K. Then,

ϕL|K = ϕN |K
∣∣
L

= ϕN |KGN |L ∈ GL|K & ϕN |L = ϕ
[L:K]
N |K
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Proof. For all x ∈ oL, we have

(ϕL|Kx) mod pL = xqK mod pN = (ϕN |Kx) mod pN

For all x ∈ oN , we have

(ϕN |Lx) mod pN = xq
[L:K]
L mod pN = (ϕ

[L:K]
N |K x) mod pN

Theorem 2.6. Let L|K be an unramified extension. Then,

Hq(GL|K , UL) = 1, ∀q ∈ Z.

Proof. Consider the exact sequence,

1→ U1
L → UL → L̄× → 1 (2.1)

of GL|K modules. By Theorem 2.5, Hq(GL̄|K̄ , L̄
×) = 1 ∀q ∈ Z. As GL|K ∼= GL̄|K̄ , we

may identify the group GL̄|K̄ by the group GL|K . Thus Hq(GL|K , L̄
×) = {1}. As a

consequence, if we consider the long exact cohomology sequence for the above exact

sequence, we obtain Hq(GL|K , U
1
L) ∼= Hq(GL|K , UL). As the extension is unramified,

a prime element π ∈ K of pK is also a prime element of pL. Thus the map,

Un−1
L → L̄+

1 + a · πn−1 7→ a mod pL, a ∈ oL,

defines a GL|K-homomorphism.

Now consider the exact sequence:

1→ Un
L → Un−1

L → L̄+ → 0 (2.2)

From Theorem 2.4, we have Hq(L|K,L+) = 0, ∀q ∈ Z. Again, after obtaining the

long exact cohomology sequence from 2.2, we obtain the isomorphism

Hq(GL|K , U
n
L) ∼= Hq(GL|K , U

n−1
L ). Thus, it follows that the injection induces an iso-

morphism Hq(GL|K , U
n
L) ∼= Hq(GL|K , UL).

If m ∈ Z+, the map x 7→ xm defines a homomorphism UL
m−→ UL, and by 2.3 an
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isomorphism Un
L → U

n+v(m)
L , provided n is sufficiently large. Thus, we have a ho-

momorphism Hq(L|K,UL)
m−→ Hq(L|K,UL), and an isomorphism Hq(L|K,Un

L)
m−→

Hq(L|K,Un+v(m)
L ). Now, consider the commutative diagram:

Hq(L|K,Un
L) Hq(L|K,UL)

Hq(L|K,Un+v(m)
L ) Hq(L|K,UL)

'

m m

'

All maps but the right vertical map are bijections. Thus we have the isomorphism

Hq(L|K,UL)
m−→ Hq(L|K,UL)

c 7→ cm

This is true for arbitrary m ∈ Z+. However, elements in Hq(L|K,UL) have finite

order from 1.4.1. This forces Hq(L|K,UL) = 1.

We will now proceed to show that unramified extensions form a class formation.

To do this, we have to satisfy the two axioms of class formation. Axiom I is taken

care of by Theorem 2.5. We wish to satify the second axiom for which we an invariant

map which satifies the requisite properties in Definition 2.2 of class formation. We

proceed towards this goal with the following steps.

Consider the long exact cohomology sequence associated to the exact sequence:

1→ UL → L×
vL−→ Z→ 0.

As Hq(L|K,UL) = 1 ∀q, in particular we have the isomorphism,

H2(L|K,L×) ∼= H2(L|K,Z), via the map we will call v̄.

Now consider the exact sequence of GL|K modules under the trivial action of GL|K on

each of them:

0→ Z→ Q −→ Q/Z→ 0.

As Q is a uniquely divisible GL|K module, by Corollary 1.4.1 it is cohomologically

trivial. Thus the long exact cohomology sequence yields the isomorphism for the

particular case,

H1(L|K,Q/Z)
δ−→ H2(L|K,Z)
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where δ is the connecting homomorphism. Consider the inverse isomorphism:

H2(L|K,Z)
δ−1

−−→ H1(L|K,Q/Z) = Hom(GL|K ,Q/Z) = χ(GL|K)

If χ ∈ χ(GL|K), then χ(ϕL|K) ∈
1

[L:K]
Z

Z
⊆ Q/Z. Since ϕL|K generates GL|K , the map

H1(L|K,Q/Z) = χ(GL|K)
ϕ−→

1
[L:K]

Z
Z

is also an isomorphism.

Definition 2.8. If L|K is an unramified extension,

invL|K : H2(L|K,L×)→
1

[L:K]
Z

Z

is an isomorphism defined as

invL|K = ϕ ◦ δ−1 ◦ v̄

Definition 2.9. The maximal unramified extension, i.e, the union of all unramified

extensions, of a p-adic number field K is called the inertia field over K.

Before proceeding, we fix K0 as p-adic number field and T to be the inertia field

over K0.

Theorem 2.7. The formation (GT |K0 , T
×) is a class formation with respect to the

invariant map defined in definition 2.8.

Proof. By Theorem 2.5, Axiom I is satisfied.

Let N ⊇ L ⊇ K be a tower of unramified extensions of K. Consider the commutative

diagrams:

H2(L|K,L×) H2(L|K,Z) H1(L|K,Q/Z)

1
[L:K]

Z
Z

H2(N |K,N×) H2(N |K,Z) H1(N |K,Q/Z)

1
[N :K]

Z
Z

v̄

incl inf

δ−1 ϕ

inf incl

v̄ δ−1 ϕ
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H2(N |K,N×) H2(N |K,Z) H1(N |K,Q/Z)

1
[N :K]

Z
Z

H2(N |L,N×) H2(N |L,Z) H1(N |L,Q/Z)

1
[N :L]

Z
Z

v̄

res res

δ−1 ϕ

res [L:K]

v̄ δ−1 ϕ

The commutativity of the left squares and the middle squares follows from the com-

mutativity of 2-cocycles with v̄, inf and res, and the commutativity of inf and res

with the connecting homomorphism respectively.

Now we need to prove the commutativity of the right squares. For the first diagram,

let χ ∈ H1(L|K,Q/Z). Commutativity follows from the formula,

infχ(ϕN |K) = χ(ϕN |KGN |L) = χ(ϕL|K).

For the second diagram, commutativity follows from the formula,

resχ(ϕN |L) = χ(ϕN |L) = χ(ϕ
[L:K]
N |K ) = [L : K] · χ(ϕN |K).

Thus Axiom IIa and IIb are satisfied which completes the proof.

As (GT |K0 , T
×) is a class formation with respect to the invariant map defined in

Definition 2.8, we have the general reciprocity law for unramified extensions.

Theorem 2.8. Let L|K be an unramified extension of a p-adic number field K. Then

the map induced by the invariant map (as defined in 2.8):

invL|K∪ : H−2(GL|K ,Z)→ H0(L|K)

yields a canonical isomorphism

Gab
L|K → K×/NL|KL

×

between the abelianization of the Galois group and the norm residue group.

An example of an unramified extension of a p-adic number field is Qp(ζ)|Qp, where

ζ = ζpn−1(denoted for simplicity), is a primitive root of unity. The Galois group is

abelian, hence

Gab
Qp(ζ)|Qp

= GQp(ζ)|Qp
∼= Z/nZ.
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By the general reciprocity law, we have

GQp(ζ)|Qp
∼= Q×p /NQp(ζ)|QpQp(ζ)×

We know that Q×p ∼= µp−1 × Z × Zp. Thus, the local reciprocity law yields the

isomorphism Q×p /NQp(ζ)|QpQp(ζ)× ∼= Z/nZ.

ADDENDUM: THE LOCAL CASE

Fix a p-adic number field K0 and let Ω denote its algebraic closure. We obtain the

field formation (G,Ω×) by setting G = GΩ|K0 and A = Ω, which turns out to be a

class formation with respect to the invariant map invΩ|K . For every normal extension,

AL = L×.Then the local reciprocity law becomes:

uL|K∪ : Gab
L|K → K×/NL|KL

×,

where uL|K is the uniquely determined element such that invL|K(uL|K) = 1
[L:K]

+ Z.



Appendix A

Local fields and unramified

extensions

Here we provide a brief synopsis of valuation theory leading upto local fields and

ramification of prime ideals. These are the basic number theoretic preliminaries to

Chapter 2, §4. Here, we assume K to be a field of characteristic 0 and K× to be its

group of units.

A.1 Discrete valuation rings

Definition A.1. A valuation, v, on K is a group homomorphism

v : K× → R

such that the following properties are satisfied:

• v(x · y) = v(x) + v(y). In other words, this is a homomorphism from the multi-

plicative group K× to the additive group R.

• v(x+ y) ≥ min(v(x), v(y)).

Definition A.2. v as defined above is said to be a discrete valuation if v(K×) is a

discrete subgroup of R, in other words, v(K×) = mZ for m 6= 0.

One can normalize a valuation by a rescaling by a suitablem−1 such that v(K×) =

Z.

31
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Definition A.3. Define the sets

A := {x ∈ K | v(x) ≥ 0}

A× := {x ∈ K | v(x) = 0}

A is called the valuation ring of K with respect to the valuation v and A× is its

unit group.

Note that A is a commutative ring which is also an integral domain. A valua-

tion ring with respect to a discrete valuation is called a Discrete Valuation Ring

(DVR). An element π ∈ A is called a uniformizer or a prime element if v(π) = 1.

Note that in general, such a π is not unique as π× a unit will also be prime. However,

once a π is fixed, every element x of K× can be written as πn · u where u =
x

πn
is a

uniquely determined element of A×. This makes A a UFD. Every ideal of A can we

generated by πn for some n and thus A is a PID.

The ideal,

m := (π) = {x ∈ A | v(x) > 0},

is the unique maximal ideal of A and thus A/m is a field.

Definition A.4. The field A/m is called the residue field of the discrete valuation

ring A.

Absolute values and valuations are related in that one can define one with respect

to the other by means of exponentiation or natural logarithms. For instance,

| | : K → R

|x| = c−v(x)

is an absolute value.

An absolute value with respect to a discrete valuation is called a discrete absolute

value.
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A.2 Factorization of prime ideals in extensions

Let K be a perfect field complete with respect to a discrete absolute value and A its

valuation ring. We assume that it has a finite residue field k, which is also perfect.

Let L be an algebraic extension of K of degree n. We can define

B = {a ∈ L | |a| ≤ 1}

p = {a ∈ B | |a| < 1}

Here we call l = B/p the residue field of L. Suppose p is a prime ideal of A. Then,

pB = Pe1
1 Pe2

2 · · ·Peg
g

Here eis are ramification indices. The prime p is said to be ramified if ei > 1 for some

i. If ei = 1 for all i, the prime is split.

Let fi = [B/Pi : A/p], then it is well known that

n =

g∑
i=1

eifi,

and if L|K is a Galois extension, then all prime ideals are conjugate to each other and

we have

n = efg.

Let K be complete with respect to the absolute value | |K and L be a separable

extension of degree n. Then | |K extends uniquely to an absolute value | |L.

Consider the factorization of the unique maximal ideal in a discrete valuation ring

of L|K. Thus g = 1 and n = ef where e is the ramification index and f is the degree

of the residue field.

The normalized valuations ordK and ordL are characterized by the their respective

uniformizers π and Π of K and L respectively.

ordK(π) = 1 ordL(Π) = 1

π = Πe × u
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where u is a unit in the valuation ring. Thus we have,

ordK =
1

e
ordL

Also note that [B/pB : A/p] = n. Now if e = n, the the extension L|K is said to

be totally ramified, and if f = n, the extension is unramified over K.

For a field K complete with respect to an archimidean absolute value, the valuation

ring A is compact if and only if A/m is finite, where m is the unique maximal ideal

as defined previously.

Definition A.5. A local field is a field with a non-trivial absolute value such that it

is locally compact with respect to it (and hence complete).

A.3 Unramified extensions of a local field

Let K be a field with characteristic 0 which is complete with respect to a discrete

valuation | |. We assume that it has a finite residue field, k, and that both the K

and k are perfect fields.

Let A be the discrete valuation ring in K with respect to | |. Let L be a finite

extension of K. We have,

B = {a ∈ L | |a| ≤ 1}

p = {a ∈ B | |a| < 1}

where B is the valuation ring and p the unique maximal ideal.

Theorem A.1. We have a one to one correspondence between the sets {K ′ ⊂ L, finite

and unramified over K } and {k′ ⊂ l, finite residue field of K
′

over k }. Moreover,

• if K1 ↔ k1 and K2 ↔ k2 then K1 ⊂ K2 if and only if k1 ⊂ k2;

• if K1 ↔ k1, the K1 is Galois over K if and only if k1 is Galois over k. In this

case, we have the canonical isomorphism

Gal(K1|K) ∼= Gal(k1|k)
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Corollary A.1.1. There exists an unramified extension of K ⊂ L containing all

unramified extensions of K in L. We will call it the maximal unramified extension of

K in L. If the residue field k is finite, this extension is obtained by adjoining roots of

unity of order coprime to the the charateristic of k.

Any non-archimedian local field is in fact a finite extension of Qp for a prime p.

Let q be the order of the finite residue field, k. Recall from field theory that for every

finite field Fq, there exists a field extension Fqn of degree n for every n. This is the

splitting field of the polynomial xq
n − x. The Galois group of this extension is cyclic

of order n with the automorphism x 7→ xq as the generator. Thus, it follows that

every residue field k has an extension kn of degree n. By the theorem that describes

a one to one correspondence between the category of unramified extensions and finite

residue fields, we conclude that there is an unramified extension Kn|K of degree n for

every n, with a cyclic Galois group of order n. Let Bn be the discrete valuation ring

with respect to the uniquely extended valuation in Kn, and pn be the corresponding

maximal ideal. Then the Galois group is generated by the K-automorphism,

β 7→ βq (mod pn)

where β ∈ Bn. This automorphism is called the Frobenius automorphism. An

alternate definition of unramfied extensions is given below.

Definition A.6. An extension L|K is unramified if [L : K] = [l : k], where l and k

are the residue fields of L and K respectively.

For K = Qp, the residue field is Fp as the maximal ideal in its valuation ring Zp is

(p). By Corollary A.1.1, there exists a maximal unramified extension Qur
p of Qp, and

every ramified extension of degree n is obtained by adjoining roots of unity of order

coprime to p. Thus, there is a unique unramified extension Qp(ζpn−1) of Qp of degree

n for every n . Let Kn = Qp(ζpn−1), then

Qur
p = lim−→

n

Kn

Gal(Qur
p |Qp) = lim←−

n

Gal(Kn|Qp)

We have, Gal(Kn|Qp) ∼= Gal(Fpn|Fp) ∼= Z/nZ. Thus,

Gal(Qur
p |Qp) = lim←−

n

Z/nZ = Ẑ.
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For every σ ∈ Ẑ, we have σ(ζn) = ζsn, where s ≡ σ mod n.
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