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Abstract

Usually billiards are studied in the framework of the theory of dynamical systems.

My work actually emphasizes connections to the geometry and to physics, and

billiards are treated here in their relation with geometrical optics. For this I

studied various types of geometries like affine and projective. The main aim of

my project was billiard study, their transformations and the Poncelet theorem

which is consequence of the integral billiard map.
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Chapter 1

Affine Geometry

1.1 Geometry and transformations

Definition 1.1. (Euclids Five Axioms of Geometry). Euclid stated five axioms for

Euclidean geometry of the plane.

1. A straight line can be drawn between any two points.

2. A line can be extended indefinitely in either direction.

3. Any segment can be described as radius and circle with any point as center.

4. All right angles are equal.

5. Through a point not on a line there exists a unique line parallel to the given line.

Definition 1.2. An isometry is a distance-preserving transformation.

Every isometry has a translation along a line, a reflection in a line, a rotation

about a point, a composite of translations, reflections and rotations in R2. If we

compose two isometries then it will give an isometry and also it forms a group under

composition of functions which helps in building transformations in proving Euclidean

results.

The most commonly used transformation is an Euclidean transformation. It is

either a translation, a rotation, or a reflection.
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Definition 1.3. A Euclidean transformation of R2 is a function t : R2 → R2 of

the form

t(x) = Ux + a

where U is an orthogonal 2 × 2 matrix and a ∈ R2.

We can say that every isometry of the plane is an Euclidean transformation of R2.

1.2 Affine Transformations

Length and angle measure are preserved by Euclidean transformation. Moreover, the

shape of a geometric object will not change. That is, lines transform to lines, planes

transform to planes, circles transform to circles, and ellipsoids transform to ellipsoids.

Only the position and orientation of the object will change. Affine transformations

are generalizations of Euclidean transformations. Under affine transformations, lines

transforms to lines; but, circles become ellipses. Length and angle are not preserved.

In this section we will see geometries in R2 - affine geometry which consists of the

space R2 together with a group of transformations, the affine transformations, acting

in R2

Definition 1.4. An affine transformation of R2 is a function t : R2 → R2 of the

form

t(x) = Ax + b (1.1)

where A is an invertible 2 × 2 matrix and b ∈ R2.

Remark : Since every orthogonal matrix is invertible, every Euclidean transfor-

mation of R2 is an affine transformation of R2.

2



1.3 Properties of Affine Transformations

The set of affine transformations forms a group under composition of functions.

Basic Properties of Affine Transformations

The affine transformations:

1. maps a line to a line;

2. maps a line segment to a line segment;

3. preserves the property of parallelism among lines and line segments;

4. preserve ratios of lengths of the two parallel segments.

Images of sets under Affine transformations

We can find the image of a line under affine transformation with the help of the

definition of affine transformation. The set of such transformations forms a group, in

which the inverse of the transformation t is given by

t−1(x) = A−1x− A−1b. (1.2)

We use equations (1.1) and (1.2) to find images under t. To avoid the confusion

we denote the symbol x and the coordinates (x, y) for points in the domain of t, and

use the symbol x′ and the coordinates (x′, y′) to denote the image of x under t. With

this notation, we may rewrite equations (1.1) and (1.2) in the form

x′ = Ax + b,

x = A−1 x ′ − A−1b.

1.4 The Fundamental Theorem of Affine Geome-

try

In this section we prove that all triangles are affine congruent and they share the

same affine properties. Since a triangle is completely determined by its three vertices,

the congruence of triangles follows from the Fundamental Theorem of Affine Geometry

which states that any three non-collinear points can be mapped to any other three

non-collinear points by affine transformation.
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Theorem 1. Fundamental Theorem of Affine Geometry

Let p, q, r and p′, q′, r′ be two sets of three non-collinear points in R2. Then :

1. there is an affine transformation t which maps p, q and r to p′, q′ and r′,

respectively;

2. the affine transformation t is unique.

Proof We first show special triplet of vectors.

~0 =

[
0

0

]
, ~i =

[
1

0

]
, ~j =

[
0

1

]

can be mapped by an appropriate affine transformation to arbitrary triplet of vec-

tors.

~p =

[
p1

p2

]
, ~q =

[
q1

q2

]
, ~r =

[
r1

r2

]

corresponds to three non-collinear points.

p = t(0, 0) = (e, f) so (e, f) = p

q = t(1, 0) = (a, c) + (e, f) (a, c) = q − p
r = t(0, 1) = (b, d) + (e, f) (b, d) = r − p

A =

[
q1 − p1 r1 − p1
q2 − p2 r2 − p2

]

~b = ~p =

[
p1

p2

]

Note columns of A correspond to vectors ~q-~p and ~r-~p. Since points (p1, p2), (q1, q2),

(r1, r2) are non-collinear, vectors ~q-~p and ~r-~p are non-parallel vectors. Hence determi-

nant is non-zero. Thus A is invertible and

t(x) = Ax + b.

is affine transformation by definition.
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1. Let ~p, ~q, ~r and ~p ′, ~q ′, ~r ′ be two ordered triples of position vectors representing

two arbitrary triples of non-collinear points. Using the result we have just

proven, there exist affine transformations t1 and t2 mapping the special triple

~0, ~i, ~j to ~p, ~q, ~r and to ~p ′, ~q ′, ~r ′ respectively. Then t = t2 o t1
−1 is an affine

transformation, and it maps ~p, ~q, ~r to ~p ′, ~q ′, ~r ′ respectively.

2. Suppose we have affine transformations t and s which maps ~p, ~q, ~r to

~p ′, ~q ′, ~r ′ respectively. Let t1 be affine transformation defined in part (1).

Then compositions t o t1 and s o t1 are both affine transformations which map

~0, ~i, ~j to the points ~p ′, ~q ′, ~r ′ respectively. Since an affine transformation is

determined uniquely by its effect on the points ~0,~i, ~j it follows that t o t1 = s o

t1. If we then compose both t o t1 and s o t1 on right with t1
−1, it follows that

t = s. �

Remark : Two figures are affine-congruent if there is an affine transformation

which maps one onto the other. For example all triangles are affine-congruent.
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1.5 Using Fundamental theorem of Affine Geome-

try

By fundamental theorem of Affine Geometry there is an affine transformation which

maps vertices A, B, C to D, E, F respectively. Since this transformation maps straight

lines to straight lines, it must map the sides of ∆ ABC to ∆ DEF sides. So how we

use this theorem to deduce that fact by theorem given below.

Theorem 2. The medians of any triangle are concurrent from special case that me-

dians of an equilateral triangle are concurrent.

Proof Consider an equilateral triangle ∆ABC, with medians AP, BQ, and CR. Since

∆ABC. The medians are concurrent if the triangle is equilateral.

If you have to show that the medians of an arbitrary triangle meet at a point, consider

arbitrary ∆ABC, and let P, Q, and R be the midpoints of BC, CA and AB, which

are sides of the triangle respectively. Now, choose a particular equilateral triangle

∆A′B′C′ and also let P′, Q′ and R′ be the midpoints of the sides B′C′, C′A′ and A′B′,

respectively.

There is an affine transformation t which maps ∆ABC onto ∆A′B′C′. Since affine

transformations preserves ratios of lengths along lines, it follows that t maps the

midpoints P, Q, R to midpoints P′, Q′ and R′.

From above we know that the medians of any equilateral triangle meet at a point so

in particular we know that A′P′, B′Q′ and C′R′ meet at point X’.

6



Now t has an inverse t−1 which also is a affine transformation. then there is a

inverse mapping of medians A′P′, B′Q′ and C′R′ back to the medians AP, BQ, and

CR of original ∆ABC. We can see that X′ lies on all three of the lines A′P′, B′Q′ and

C′R′, it follows that t−1 maps X′ to an arbitrary point X which is lying on all three

of the lines AP, BQ and CR i.e. medians of ∆ABC are concurrent. �
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Chapter 2

Projective Geometry

In Euclidean geometry, the object sides have lengths, angle are determined by in-

tersecting the lines, and parallel condition is determined if two lines lie in the same

plane which never meets. Applying Euclidean transformations these properties are

unchanged. Euclidean geometry is actually a subset of what is known as projective

geometry which we will discuss in the following sections.

2.1 The Projective plane RP2

In this section we begin our discussion of projective geometry by first investigating

its space of points.

2.1.1 Projective points

If an eye is situated at the origin of R3 which is looking at a fixed screen. Each point

is determined by the ray of light which enters the eye from that point. If we want

this idea in mathematical terms, we have a point which is said to be projective point

which is a Euclidean line in R3 passing through the origin.

Definition 2.1. A Point (or projective point) is a line in R3 that passes through

the origin of R3. The real projective plane RP2 is the set of all such Points.

Using an algebraic notation we can specify the points of RP2. We mention the

point [a, b, c] as the point with the homogeneous coordinates [a, b, c].

Definition 2.2. Let us take a point (a, b) in the Euclidean plane. To represent this

same point in the projective plane, we simply add a third coordinate of 1 at the

9



Figure 2.1: Projective point

end: (a, b, 1). Overall scaling is unimportant, so the point (a, b, 1) is the same as

the point (αx, αy, α), for any nonzero α. In other words, The expression [a, b, c],

where a, b, c are not all zero represents the point P in RP2 which consists of the

unique line in R3 that passes through (0, 0, 0) and (a, b, c) and we refer to [a, b, c] as

homogeneous coordinates of P . If (a, b, c) has position vector v. Then we often

denote P by [v] and we say that P can be represented by v.

Notice that there is no uniqueness in homogeneous coordinates of a point. For

example, suppose if (a, b, c) is any point on a line passing through the origin, then

(λa, λb, λc) also lies on the line where λ is any real number. Moreover, if (a, b, c) is

not at the origin and λ 6= 0. We express this by writing

[a, b, c] = [λa, λb, λc], for any λ 6= 0.

Suppose if there is no non-zero real number λ such that [a, b, c] = [λa′, λb′, λc′],

then the homogeneous coordinates [a, b, c] and [a′, b′, c′] represent different points of

RP2.

Further, [a′, b′, 1] = [a′′, b′′, 1] if and only if a′ = a′′ and b′ = b′′.

We defined projective points above, now we’ll define what is a projective figure.

Just as a figure in Euclidean geometry is defined to be a subset of R2, so figures in a

10



projective geometry is a subset of R2. which are sets of lines in R3 that are passing

through the origin. The examples of projective figures is a double cone with a vertex

at O and a double square pyramid with a vertex at O.

2.1.2 Projective Lines

Just as we saw before in which we used ’Point’ to refer to a ’projective point’, just

like that we define ’Line’ to refer to a ’projective line’. It is actually the completion

of the affine line having a projective point, the point at infinity.

Definition 2.3. A Line (or projective line) in RP2 is a plane in R3 that passes

through the origin. Points in RP2 are collinear if they lie on a line.

The general equation of a line in RP2 is ax+ by+ cz = 0, where a, b, c are real and

not all zero.

Collinearity Property of RP2

Any two distinct points of RP2 lie on a unique Line.

Strategy Let us find out an equation for the line in RP2 through the Points [d, e, f ]

and [g, h, k] :

1. we write down an equation as

∣∣∣∣∣∣∣
x y z

d e f

g h k

∣∣∣∣∣∣∣ = 0

2. We have to obtain the equation which is needed in the form ax + by + cz = 0.

This can be done by expanding the determinant in terms of the entries in the

first row.

It is also possible to calculate line equation through two points without using the

determinant.

Strategy We have to find whether the three points [a, b, c], [d, e, f ] and [g, h, k] are

collinear or not :

1. Calculate the determinant

∣∣∣∣∣∣∣
a b c

d e f

g h k

∣∣∣∣∣∣∣;
11



2. If the determinant is zero then only the Points [a, b, c], [d, e, f ] and [g, h, k] are

collinear.

The points [1, 0, 0], [0, 1, 0], [0, 0, 1] are known as the triangle of reference. The point

[1, 1, 1] is called the unit point.

Incidence Property of RP2.

Any two distinct Lines in RP2 intersect in a unique point of RP2.

Let π be any plane in R3 not passing through the origin O. Then there is one-one

correspondence between the points of π and those points of RP2 piercing π. Those

points of RP2 not piercing π are called the ideal Points for π.

The set of ideal Points for π is actually a plane through O which is parallel to π,

called the ideal Line for π.

So an Embedding plane is a plane together with the set of all Ideal points for π,

not passing through the origin. Standard embedding plane is the plane in R3 with

equation z = 1. The mapping of RP2 into the standard embedding plane is called the

standard embedding of RP2.

Remark : As there is no parallel lines dependence on the embedding planes choice,

the parallel lines concept is meaningless.

2.2 Projective Transformations

We are known with the idea that a geometry consists of a space of points together

with a group of transformations acting on that space. As we have introduced the

space of projective points RP2, now we will describe the transformations of RP2.

Recall that a point of R3 (other than the origin) on an embedding plane π (that

does not pass through the origin) has coordinates x = (x,y,z) with respect to the

standard basis of R3, and homogeneous coordinates of the corresponding Point [x] in

RP2 are [λx,λy,λz] for some real λ 6= 0. Since the points of RP2 are just lines through

the origin of R3 onto the lines through the origin of R3.

12



Definition 2.4. A Projective transformation of RP2 is a function t : RP2 →
RP2 of the form

t : [x] 7→ [Ax]

where A is an invertible 3 × 3 matrix. Here A is a matrix associated with t. P(2)

is the set of all projective transformations of RP2.

If A is a matrix associated with t, so is λA for any non-zero number λ.

This P(2) is the set of projective transformations forming a group under the op-

eration of composition of functions. In particular, if t1 and t2 are projective transfor-

mations with associated matrices A1 and A2 respectively, then so are t1 o t2 and t1
−1

projective transformations with associated matrices A1A2 and A1
−1.

Strategy Composing two projective transformation t1 and t2 :

1. Writing the matrices A1 and A2 associated with t1 and t2;

2. Calculate the matrices A1A2;

3. write down the composition t1 o t2 with which the matrices A1A2 is associated.

Strategy Now in finding the inverse of a projective transformation t :

1. Writing the matrix A associated with t;

2. calculate the matrices A1
−1;

3. write down the inverse t−1 with which the matrices A1
−1 is associated.

Strategy If we want to find the image of a Line in the form ax+ by+ cz = 0 under a

projective transformation t : [x] 7→ [Ax] :

1. writing the equation of the Line in the form Lx = 0, where L is the matrix (abc);

2. finding a matrix B associated with t−1;

3. writing the equation of the image as (LB)x = 0.

13



2.3 The Fundamental theorem of Projective Ge-

ometry

Let us first look at two dimensional situation where we are only talking about lines

and perspectivities between the lines.

Here is the point O which is called the centre of perspectivity to the coordinate

points on a line l onto line l′.

So we connect A to A′, B to B′ and we continue for all the points on these line

l associating points on line l′. That association of points on l to points on l′ is called

perspectivity.

Now we have another line l′′ with perspectivity point P (say). which means we

draw lines from P . So A′ corresponds to A′′, B′ to B′′ and all the points corresponds

to l′′ from l′. That’s another perspectivity in which one has centre as O and other

has centre P .

So projectivity is the sequence of perspectivities. We can have many perspec-

tivities followed by one other. Here we have one perspectivity followed by another

perspectivity and that gives projectivity which is defined as association of points on

line l to points on l′′.

We can find a projective transformation which maps any set of four points to any

set of four points. The only constraint is that no three of the Points in either set

14



can be collinear. In the following statement of the Fundamental Theorem we express

that each of the four sets of points lie at the vertices of some quadrilateral, where

the quadrilateral is defined as a set of four points A,B,C,D (no three of which are

collinear), together with the Lines AB,BC,CD, and DA.

Theorem 3. Fundamental Theorem of Projective Geometry

Let ABCD and A′B′C′D′ be two quadrilaterals in RP2. Then :

1. there is a projective transformation t which maps A to A′, B to B′, C to C′, D

to D′;

2. the projective transformation t is unique. [BEG99]

Proof There is a projective transformation which maps the points [1, 0, 0], [0, 1, 0],

[0, 0, 1], [1, 1, 1] to the points A,B,C,D respectively. Similarly there is a projective

transformation which maps the points [1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 1, 1] to the points

A′, B′, C ′, D′ respectively.

The composite t = t2ot1
−1 is then a projective transformation which maps A to A′,

B to B′, C to C ′, D to D′.

In checking the uniqueness of t, we check that the identity transformation is the

only projective transformation which maps each of the points [1, 0, 0], [0, 1, 0], [0, 0, 1],

[1, 1, 1] to themselves.

Next suppose we have two projective transformations t and t′ satisfying the conditions

of the theorem. Then the compositions t2
−1 o t o t1 and t2

−1 o t′ o t1 must both be

projective transformations which mapping points [1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 1, 1] to

themselves. Since we can see that both compositions are equal to the identity, so we

deduce that

t2
−1 o t o t1 = t2

−1 o t′ o t1.

Composing both sides of this equation with t2 on the left and with t1
−1 on the right,

we obtain t = t′ as needed. �

The Fundamental Theorem tells us that there is a projective transformation which

maps any given quadrilateral onto any other given quadrilateral. So we have the

following corollary.
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Corollary 2.1. All quadrilaterals are projective-congruent.

Projective Geometry is the study of figures in RP2 which has property that they

are preserved by projective transformations. There are two important properties of

projective geometry which is collinearity and incidence.

Collinearity property : Any two distinct points lie on a unique line.

Incidence property : Any two distinct Lines meet in a unique point.

We can obtain one property from the other by interchanging the words ’Point’ and

’Line’. We say that each statement is the dual of other statement. Triangles are the

self dual figures.

We talked about the perspectivity.

1. Perspectivity between the two ranges : Suppose if we have line l1 and line

l2, then take a point O connecting lines through O to line l1 and line l2. That

gives association of all points on l1 with all points on l2.

2. Perspectivity between two pencils : There is complete duality between the

above perspectivity and perspectivity between the pencils. Now we need line of

perspectivity. Pencil of lines usually means the straight lines that are incident

with one point.
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Chapter 3

Billiards and Geometry

Mathematical billiards describes the motion of a mass point in a particular domain

containing elastic reflections off the boundary. In differential geometry, the billiard

flow is the geodesic flow on a manifold with boundary.

3.1 Introduction to Mathematical Billiards

A billiard table is a Riemannian manifold M having a piecewise smooth boundary.

The billiard dynamical system in manifold M is described by the free motion of a

mass-point which we can say it as a billiard ball containing elastic reflection in the

boundary such that the point moves along a straight line in M with a unit speed until

it hits the boundary. In two dimension this collision is described with the familiar law

: the angle of incidence equals the angle of reflection.

Figure 3.1: Billiard Reflection
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As soon as the reflection happens, the ball (point) continues its free motion with

the new velocity until it hits the boundary again. Thus there are many features in

common between the theory of billiards and the theory of geometrical optics. We

assume that the reflection occurs at the smooth point of the boundary. Suppose if

the billiard ball hits a corner of the table, its further motion is not defined and the

motion of the ball terminates right there.

Now let us discuss another source of motivation for the study of billiards, geomet-

rical optics. According to the Fermat principle, light propagates from point A to

point B in the least possible time. In Euclidean geometry this means that the light

chooses the straight line AB.

Figure 3.2: Flat mirror reflection

As a consequence of the Fermat principle, billiard reflection law is obtained.

The billiard transformation acts on those pairs (x; v) with x ∈M; v ∈ TxM whose

trajectories undergo finitely many reflections in the boundary avoiding the corners on

the time interval [0, t]. The phase space of billiard is the unit tangent bundle to M

and the configuration space is the manifold M.

3.2 Billiard Ball Map and Invariant measure

We will discuss here billiard ball map. The billiard transformation has an invariant

area form. First of all we deal with discrete time system vs continuous time system. In

billiard situation if one has a point it moves inside is continuous time system but then
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there is a discontinuity when we hit the boundary and reflect. For various reasons, it

is better to avoid this discontinuity but to treat continuous time systems for discrete

time systems. For that purpose we can have argument in two ways. One way is to

consider only those position of the billiard ball which are on the boundary curve.

Let M be a bounded plane billiard table. Consider a point on the boundary and

unit tangent vectors (x; v) with the inward direction v. A vector (x; v) moves along

the straight line through x in the direction of v to the next point of its intersection

x′. We are describing a map which takes unit tangent vector on the foot point of the

boundary to the other. We call it as a billiard ball map. It is a discrete time system

but the configuration space where this x is two dimension, one degree of freedom for

the point and other for the direction. Whereas if we want to do a continuous time

system, it is three dimension containing two degrees of freedom inside and one for the

direction.

We define the billiard transformation T as T (x; v) = (x′; v′).

A fundamental property of the billiard ball map is the existence of an invariant area

form.

Figure 3.3: Billiard ball map

Theorem 4. The billiard ball map has a T -invariant form ω = sin α dα ∧ dt.

Proof The proof is an application of understanding of billiard ball map. Let us

introduce coordinates in figure 3.3. One is arc length parameter of the curve t, where

t varies from 0 to L ( L is the length of the curve) and second is the angle made by

the positive direction of the curve α where (α ∈ π).

Let T (t;α) = (t1;α1). To prove its invariance, let us consider a function f(t, t1), where

f(t, t1) is the distance between the points x(t) and x(t1). The partial derivatives of
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the function with respect to its ordinates t and t1. Now let us see the point t1. The

perpendicular component of the point doesn’t change the length while the tangential

component changes the length. So, only tangential component matters and it is given

by cos α1. Therefore,

∂f
∂t1

= cos α1 and ∂f
∂t

= −cos α.

Hence df = ∂f
∂t
dt+ ∂f

∂t1
dt1 = −cos α dt + cos α1 dt1.

and hence,

0 = d2f = sin α dα ∧ dt − sin α1 dα1 ∧ dt1.

This means that ω is a T -invariant area form. �

3.3 Billiard Transformation of the Space of Rays

in the Plane

It would be more in the spirit of geometrical optics to deal with space of rays of light.

So in dimension two a ray of light is just an oriented line. It can be characterized

by choosing the positive direction of reference, an angle φ, and its signed distance p

from the origin O (the sign of p is given by the right hand rule and depends on the

orientation of the frame).

We identify the space of lines with an infinite cylinder (S1 × R1) (φ varies on

the circle and p is real number). We have the area form on the space of lines which is

Ω = dp ∧ dφ.

Suppose if we change the origin O, how much of this coordinates depend upon

the choice of the origin i.e. if we move the origin O by some vector we don’t change the

coordinate ϕ, we change the coordinate p by the linear combination of first harmonic

sin and cosine ϕ.

Change O ↔ p 7→ p+ a cos ϕ + b sin ϕ and ϕ′ = ϕ. Another characterizations

of this area form is invariance under motions of the plane.

• The area form Ω is invariant under the motions of the plane. Every orientation

preserving motion is a composition of a rotation about the origin and a parallel

translation.
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Figure 3.4: Relating two area forms

• The next claim is that the area form Ω coincides with the area form ω.

Proposition 3.3.1 : Ω = ω.

Proof Previously when we wrote the formula for ω as sin α dα ∧ dt, it is definitely

dependent on the billiard table where as the Ω doesn’t depend on anything only on

the metric in the space where the action takes place.

The two spaces, M and N , are related by the map Φ : M → N . Let (t, α) be the

coordinates in M and (ϕ, p) the respective coordinates in N . Denote by Ψ(t) the

direction of the positive tangent line to the curve γ at point γ(t), and let γ1 and γ2

be the two components of the position vector γ that associates the oriented line with

a unit vector. We have few relations and one of them is :

ϕ = ψ + α and p = γ× (cos ϕ, sin ϕ)

= γ1 sin ϕ − γ2 cos ϕ

Differentiating we get,

dϕ= dα + ψ′ dt and dp= ( γ1
′ sin φ− γ2′ cos ϕ ) dt+ ( γ1 cos ϕ+ γ2 sin ϕ ) dϕ

By taking wedge product it follows that,

dϕ ∧ dp = ( γ1
′ sin φ − γ2

′ cos ϕ ) dα ∧ dt.

Since (γ1
′, γ2

′) = (cos ϕ, sin ϕ), we have γ1
′ sin φ − γ2′ cos ϕ = sin α and therefore

dϕ ∧ dp = sin α dα ∧ dt. �
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3.4 Elliptical Billiards and confocal conics in the

Euclidean plane

Let us see another notion of geometrical optics used in Mathematical billiards. The

simplest billiard table is a circular one in which each trajectory makes a constant angle

with the boundary and remains tangent to the concentric circle. The transformation

which is induced on this tangent circle is a rotation through a fixed angle, which is a

translation. Let us first see the concept.

Definition : The elliptical billiard is a dynamical system of the unit mass moving under

inertia, or in other words, with a constant velocity inside an ellipse and obeying the

reflection law at the boundary. [Tab95]

Any segment of a given elliptical billiard trajectory is tangent to the same conic,

confocal with the boundary.

Theorem 5 (Chasles Theorem). The theorem states that each segment of a given

billiard trajectory is tangent to a fixed conic that is confocal to the boundary. This

conic is called the caustic of the given trajectory. [Figure 3.5]

Moreover, for any pair of conic, there is a projective transformation of coordinates

such that conics become confocal in the new coordinates. Then the polygonal lines

inscribed in one of the conics and circumscribed about the other conic will become

billiard trajectories.

Figure 3.5: Caustic of the billiard trajectory

Suppose we have Billiard table which has round circle, then by symmetry every

concentric circle is a caustic simply because of rotation of symmetry.
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Elliptical Billiards : The next case to consider is that of conics. Recall that an

ellipse consists of points whose sum of distances to two given points F1 and F2 is fixed

which are called the foci of an ellipse. An ellipse can be constructed using a string,

whose ends are fixed at the foci (the method carpenters and gardeners actually use).

See Figure 3.6.

Figure 3.6: Gardener’s construction for an ellipse

Similarly, the sum of distances replaced by the absolute value of their difference

is an hyperbola and a parabola is the set of points at equal distances from a given

point (the focus) and a given line (the directrix). Ellipses, hyperbolas and parabolas

all have second order equations in Cartesian coordinates.

The construction of an ellipse with given foci has a parameter, the length of the
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string. A family of conics all of which share the same foci is called confocal. An

equation that describes a confocal family that includes both ellipses and hyperbolas

is
x21

a21 + λ
+

x22
a22 + λ

= 1 (3.1)

where λ is a parameter.

Fix foci F1 and F2. For a generic point X in the plane there exist a unique ellipse

and a unique hyperbola with foci F1 and F2 that passes through X. The ellipse and

the hyperbola are orthogonal to each other: this follows from the fact that the sum

of two unit vectors is perpendicular to their difference.

Let us now discuss geometry of billiard caustics.

Let Γ be a strictly convex closed billiard curve. Figure 3.3 is the configuration plane

where the billiard table lives. But there is another plane which is called phase plane

(Figure 3.7) of the billiard ball map T which consists of oriented lines that intersect Γ.

We will use the same coordinates (t, α) where t ∈ [0, L] as it is a circular coordinate

where L being the perimeter length of the billiard curve and α ∈ [0, π]

Now we want to see what does the caustics in figure 3.3 corresponds in the

phase plane. We define an invariant curve where an invariant circle of the billiard

ball map is a simple closed invariant curve δ that makes one turn around the phase

cylinder. We can think δ as a smooth one-parameter family of oriented lines which

intersects the billiard table if it is a smooth curve.

Since we are dealing with billiards, this is an important result due to Birkhoff’s

theorem.

Theorem 6 (Birkhoff’s Theorem). If a billiard ball map has an invariant curve δ,

then this curve is the graph α = f(t) of a continuous function f

This theorem holds in a more general setup, so what we need here is the area

preserving twist maps of a cylinder. The twist condition for a map T : (t, α) 7→ (t1,

α1) means that ∂t1/∂α > 0. This condition clearly holds for the billiard ball map in

a convex billiard.

Geometrically this implies that a caustic, if it exists lies strictly inside our table

then we have a lemma.
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Figure 3.7: Phase portrait

Lemma 3.1. Let γ be the caustic corresponding to an invariant circle δ of the billiard

ball map inside a convex curve Γ. Then by Birkhoff’s theorem γ lies inside Γ.

Figure 3.8: Caustics lie inside the billiard table

More general for circles and ellipses, caustics do exist. According to KAM

(Kolmogorov-Arnold-Moser) theory, what we have known is caustics always exist. It

is not one particular theory rather it is collection of methods. So the statement is for

every billiard which is strictly convex and smooth in arbitrary small neighbourhood

of the boundary, there exists the caustic. But they don’t make foliation, there are
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gaps between them. If we measure transversely, the relative measure goes to 1 across

the boundary then there are many caustics which exist near the boundary. [Tab93]

Now if the billiard table is smooth and convex but not strictly convex where

strictly convex means the curvature is positive everywhere. Suppose that there is one

point where the curvature is zero then there are no caustics at all. Let us see the

converse part.

Let Γ be a billiard curve and γ a caustic. Suppose if we erase the billiard curve,

and only the caustic remains. Then the question is can we recover the curve Γ from γ

which is a elementary problem and the solution is given by the String Construction

which produces a one-parameter family of billiard curves.

Lemma 3.2. Wrap a closed inelastic string around γ, pull it tight at a point and

move the point around γ to construct the billiard curve Γ.

Proof Pick a reference point y on curve γ. For a point x ∈ Γ, let f(x) and g(x)

be the distances from x to y by going around γ on the right and left tangentially,

respectively. Then Γ is a level curve of the function f + g.

Figure 3.9: String Construction

Now let us see the gradient of these two functions. The point x is not restricted so

we can move it in any direction. So there are two gradient unit vectors going in the

tangential directions. Its gradient at x is the sum of two unit vectors in the directions

of the tangent lines to γ. Hence the gradient makes equal angles with these tangent

lines, and therefore, so does Γ. �

28



Thus we saw the converse to construct curve from the caustic by this String

Construction method. Note that the string construction provides a one-parameter

family of billiard curves Γ : the parameter is the length of the string.

Now we consider phase portrait of billiards inside the circle (Figure 3.10). As

we mentioned earlier, for circles one has a one-parameter family of caustics which are

concentric circles which is obvious from symmetry and each caustic corresponds to the

invariant curve and the whole phase space is foliated by the curves which are parallel

in the coordinate system. That’s why we labelled it as (t, α), each invariant curve is

just a constant angle.

Figure 3.10: Phase portrait of the billiards in circle

Now for an ellipse we have the canonical equation as :

x21
a21

+
x22
a22

= 1.

There is a one parameter family of caustics which consists of confocal ellipses.

These ellipses are given by a string construction which is fixed at the two points (foci)

and pulled tightly shown in the figure 3.11. There is a segment which connects the two

foci. Now there is another family of caustics which consists of confocal hyperbolas.

Hyperbolas are given by a similar geometrical condition that if the locus of points in

which sum of distances of two foci is fixed then the confocal hyperbolas is a locus of

points such that its difference of length to foci is fixed and suppose the segment of
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billiard trajectories is tangent to one of these confocal hyperbolas then the reflected

one is tangent to same confocal hyperbola.

Figure 3.11: Confocal Hyperbola and ellipse.

So in particular, if a ray goes between two foci then the reflected ray will also

cross the segment and it will continue the same way. On the other hand if the ray

does not cross the segment then all the reflected rays will not cross it ever.

Figure 3.12: Phase portrait of the billiards in Ellipse.

Figure 3.3 is the configuration plane while in the phase plane (Figure 3.12), caustic

is one parameter family invariant curve of the billiard ball map T which corresponds

to caustics of confocal ellipses. Points in phase plane are oriented lines in the figure.
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So the curve in phase portrait is one parameter line in the figure. This singular curve

(eye shaped) corresponds to a particular family of rays which pass through foci. If

we shoot ray of light from one focus of ellipse, it reflects to another focus and then

the process goes on. It is totally different from the Poncelet theorem which we will

discuss later.

Figure 3.10 and Figure 3.12 are definitely different from each other. In the the-

ory of billiards there is a famous problem which is called as Birkhoff’s conjecture. It

concerns billiards which has the phase portraits in the figures. Birkhoff’s conjecture

states that the curve is an ellipse if the neighborhood of strictly convex smooth billiard

curve is foliated with the invariant curves (caustics). So far, this conjecture remains

open. There were many false proofs given. The best result was given by M. Bialy who

proved that figure 3.10 happens only when the table is circle. So if the whole space is

foliated by invariant circles then it must be a circle.

Now working towards punch line, looking to the figure 3.12, we have a phase

cylinder which has an area form having a billiard ball map which is area preserving

which also has invariant curves. So every point of the curve is sent to another point on

the curve by billiard ball map. There is a way to introduce the measure of coordinate

on each invariant curve such that that the map will become parallel translation x 7→
x+ c. We define an important construction.

Let us choose a function f = c whose level curves are the invariant curves. We

introduce some kind of length on each invariant curve. Consider a nearby curve γε

given by f = c + ε. By taking a strip between the two invariant curves i.e. interval

of the curve I and considering the area w(I, ε) between γ and γε over the interval I.

”Length of the curve I” is defined as

lim
ε→0

w(I, ε)

ε
(3.2)

This is the value which we assign to this interval of invariant curve and it is almost

well defined. The function f is not well-defined while level curves are well defined.

The length of an element is dx by choosing a coordinate x and this coordinate is well

defined. We define an affine structure which is that invariant curve has a canonical

coordinate system which is defined up to an affine reparametrization x 7→ ax + b. If

the invariant curves are closed, then T is a parallel translation in the respective affine

coordinate.
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Corollary 3.1. Let T be an area preserving integrable map and assume that invariant

curves are closed. If an invariant curve γ contains a k-periodic point, then every point

of γ is k-periodic.

Proof In an affine coordinate we have T (x) = x + c. If T k(x) = x, then kc ∈ Z ,

and therefore T k = id. �

Next we will discuss the Integral ball map inside the ellipse. This means that there

is a smooth function on the phase space, called an integral, which is invariant under

T . We have the equation of an ellipse so let us consider symmetric 2 × 2 matrix with

entries

B =


1

a21
0

0
1

a22


Then in terms of this matrix the ellipse is given by Bx.x = 1. Let (x, v) be the

foot point of the boundary while the vector direction is inward (Refer figure 3.13) and

(x′, v′).

Claim : Bx.v = Bx′.v′.

Proof The proof consists of two parts. Billiard ball map has many similar maps.

It is composition of two involutions. In the figure below one involution interchanges

points without changing the vector i.e. (x, v) 7→ (x′, v) and other one fix the point

and change the vectors i.e (x′, v) 7→ (x′, v′).

Figure 3.13: Billiard ball map.

(i) For the first involution we write the identity B(x′ + x).(x′ − x) = 0, which

follows from the fact that x and x′ belong to the ellipse and B is symmetric. (x′− x)

is collinear with v which means that Bx.v = −Bx′.v
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(ii) For the second involution to use the fact that the sum of two vectors v and

v′ both being unit is tangent to the ellipse at point x′. The condition for a vector to

be a tangent to a conic given by the equation B x.x = 1 at a point is B x.v = 0.

Thus here we have Bx′.(v + v′) = 0 which implies that Bx′.v = −Bx′.v′.
It follows that Bx.v = Bx′.v′ which is an integral of the billiard ball map. �

3.5 The Poncelet porism

The integrability of the billiard ball map in an ellipse which we discussed has an

interesting consequence.

If we have two conics. We can take any pair of conics. They need not be nested

ellipses. Let us consider two confocal ellipses γ and Γ. Choose any point x1 ∈ Γ. We

can see there can be two tangent lines through x1. So we choose one of those two

tangent lines to γ through x1. There exists a polygon inscribed in Γ and circumscribed

about γ. Here polygon means cyclically ordered collection of lines (l1, l2, ...., ln) and

points (x1, x2, ....., xn) respectively. Configuration is that all the points xi ∈ Γ and Li

are tangent lines to γ.

Now L1 will meet the curve γ at a second point and we have no choice, that has

to be next vertex of the polygon. So we have to take x2 as other point of L1 ∩ Γ.

Assume that this is n-periodic trajectory, i.e. it closes up after n steps. Now repeat

this construction choosing another starting point . It follows from Corollary 3.1 that

the respective billiard trajectory closes up after n steps as well. Indeed, the family

of lines tangent to γ is an invariant curve of the billiard ball map in Γ. In fact, the
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assumption that Γ and γ are confocal is not necessary at all for the conclusion of the

closure theorem to hold. We have the following Poncelet theorem.

Theorem 7 (The Poncelet Theorem). Suppose we have two plane conics γ and

Γ and there is a polygon inscribed in Γ and circumscribed about γ. Then there are

infinitely many such polygons, and all of them have the same number of sides. [DR14]

However the above theorem is a special case of Poncelet porism, it implies the

general version. This is because a generic pair of nested ellipses is projectively equiv-

alent to a pair of confocal ones. We start with a Poncelet polygon and it better be a

big one and also not too small and what we see is bunch of lines and bunch of points

and all this system of lines and points is Poncelet Grid. [Sch07]

Figure 3.14: Poncelet closure theorem.

Let us draw a heptagon (7-gon) which contains ellipse inside so that all the lines

are tangent to it and there is another ellipse so that it becomes a Poncelet polygon

which is inscribed into one conic and circumscribed about the other. We want to view

is the collection of lines by labelling the lines in general 1 to n. The figure below

is referred to as Poncelet grid and there are two ways to organize the collection of

points, we can view it as concentric finite sets.

Now we see the definition, we have the lines li and consider cyclic sets which

we denote it by Pk where k are the levels.The Poncelet grid consists of n(n+1)
2

points

li ∩ lj.
Define the sets :

Pk =
⋃

i−j=k

li ∩ lj (3.3)
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Figure 3.15: 7-gon inside the ellipse

Qk =
⋃

i+j=k

li ∩ lj (3.4)

The cases of odd and even n differ somewhat,we assume that n is odd. There are
(n+1)

2
sets Pk, each containing n points, and n sets Qk, each containing (n+1)

2
points.

[Tab05]

Lemma 3.3. A confocal family of conics consists of all conics tangent to four fixed

lines.

Proof A curve, projectively dual to a conic, is a conic. The 1-parameter family of

conics, dual to the confocal family (3.1), is given by the equation

(a21 + λ)x21 + (a1 + λ)x22 = 1.

This is an equation of a pencil, a 1-parameter family of conics that pass through

four fixed points; these are the intersections of the two conics, a21x
2
1 + a22x

2
2 = 1 and

x21 + x22 = 1. Projective duality interchanges points and tangent lines; applied again,

it yields a 1-parameter family of conics sharing four tangent lines. �
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theorem (1813–2013): current advances, Bull. Amer. Math. Soc. (N.S.) 51

(2014), no. 3, 373–445. MR 3196793

[Sch07] Richard Evan Schwartz, The Poncelet grid, Adv. Geom. 7 (2007), no. 2,

157–175. MR 2314815

[Tab93] Serge Tabachnikov, Poncelet’s theorem and dual billiards, Enseign. Math. (2)

39 (1993), no. 3-4, 189–194. MR 1252062

[Tab95] , Billiards, Panor. Synth. (1995), no. 1, vi+142. MR 1328336

[Tab05] , Geometry and billiards, Student Mathematical Library, vol. 30,

American Mathematical Society, Providence, RI; Mathematics Advanced

Study Semesters, University Park, PA, 2005. MR 2168892

37


	List of Figures
	Abstract
	Affine Geometry
	Geometry and transformations
	Affine Transformations
	Properties of Affine Transformations
	The Fundamental Theorem of Affine Geometry
	Using Fundamental theorem of Affine Geometry

	Projective Geometry
	The Projective plane RP2
	Projective points
	Projective Lines

	Projective Transformations
	The Fundamental theorem of Projective Geometry

	Billiards and Geometry
	Introduction to Mathematical Billiards
	Billiard Ball Map and Invariant measure
	Billiard Transformation of the Space of Rays in the Plane
	Elliptical Billiards and confocal conics in the Euclidean plane
	The Poncelet porism

	Bibliography

