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Introduction

Subnormality is a very natural generalisation of normality. Not much attention was

given to subnormal subgroups until Wielandt proved his classic result on join of sub-

normal subgroups of finite groups in 1939.[3]

In my thesis, I am reviewing the properties of subnormal subgroups and those groups

which have every subgroup subnormal.

I have devoted the first chapter to give elementary results on join of subnormal sub-

groups. In the end of the first chapter, I have given three proofs of Wielandt join

theorem.

In the second chapter, I have focused on those groups which have every subgroup

subnormal. My main focus is to study non-nilpotent groups with every subgroup

subnormal, mainly Heineken-Mohamed groups.
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Chapter 1

Subnormal Subgroups

1.1 Definitions

• A subgroup N of a group G is normal in G if g−1Ng = N ∀ g ∈ G, or equiva-

lently, A subgroup N of a group G is normal in G if N is a kernel of a homo-

morphism from φ : G→ H for some group H. Then we write N CG.

• A subgroup H of a group G is said to be subnormal in G if there exists a non

negative integer m and a series

H = Hm CHm−1 C ......CH0 = G

of subgroups of G such that each Hi+1 is normal in Hi ∀ 0 ≤ i ≤ m− 1. We

shall call this series as subnormal series of H in G. If H is subnormal in G, we

denote

H sn G or HCmG or H CC G

Now for a given subgroup H of a group G, we can have a number of subnormal

series with different length m. The smallest such m is called as subnormal defect

of H in G. Sometimes we use the notation HCmG, for convinience, to say that

the subnormal defect of H in G is at most m.
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Examples :

1) Every group has a subnormal subgroup, the group itself, with defect 0.

2) Every normal subgroup of a non trivial group is subnormal subgroup with de-

fect 1.

3) A subgroup of order 2 in the alternating group of degree 4 and the non-central

subgroups of order 2 in the dihedral group of order 8 are examples of subnormal sub-

groups of defect 2.

4) Let M be any non-central subgroups of order 2 in the dihedral group of order

2m are subnormal of defect m− 1, for all m ≥ 3.

5) The subgroups of order 2 in the symmetric group with 3 indices(S3) are not sub-

normal in the S3.

1.2 Fastest decreasing subnormal series

Given a subgroup of a group, how will we determine whether the subgroup is sub-

normal or not? We will address this problem, which will be sufficient to produce the

most efficient subnormal series for subnormal subgroup, in this section.

Take H to be any subgroup of a group G. We define normal closure of a subgroup H

in the group G, denoted by HG, as the smallest normal subgroup of G containing H. So

HG = 〈hg | h ∈ H, g ∈ G〉.

Here hg = g−1hg and for any subsets X and Y of group G, we write

Xy = 〈xy| x ∈ X, y ∈ Y 〉.
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We keep H0 = G and H1 = HG, the smallest normal subgroup of G containing

H. Similarly we define H2 to be the smallest normal subgoup of H1 containing H.

Inductively for all i ≥ 0,

Hi+1 = HHi .

Hence

H ≤ ..... E Hi+1 E Hi E .... E H1 E H0 = G.

Claim:- This is the fastest decreasing subnormal series containing H.

Suppose we have an arbitrary subnormal series of H in G.

H ≤ ......Ki+1 E Ki E ....... E K1 E K0 = G

We will prove the claim by induction

For i = 0, G = H0 ≤ K0 = G

Suppose it is true for i, Hi ≤ Ki

Then for i+ 1,

Hi+1 = HHi ≤ HKi ≤ Ki+1

So Hi ≤ Ki for all i ≥ 0.

We proved that the inductively defined subnormal series is the fastest decresing

subnormal series. We call this series and Hi as normal closure series of H in G and

the ith normal closure of H in G respectively.

Comment: We defined subnormal series for subnormal subgroups but in this sec-

tion, we defined subnormal series for any subgroup. We can define subnormal series

for a subgroup which is not a subnormal subgroup. The difference is that we will not

get finite m such that Hm = H.

Given two elements x and y in G, we define [x, y] = x−1y−1xy, the commutator of x

and y. Given any two subsets X and Y in G, we define [X, Y ] = 〈[x, y] | x ∈ X, y ∈ Y 〉

the commutator subgroup of X and Y .
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Since [x, y]−1 = [y, x], we conclude [X, Y ] = [Y,X]. For subsets X0, X1, ...., Xn of

a group G, we define [X0] = 〈X0〉 and inductively

[X0, X1, ......, Xn−1, Xn] = [[X0, X1, ..., Xn−1]Xn] ∀ n ≥ 1 and when X1 = X2 = ..... =

Xn = X, we write [X0,nX] = [[X0, X1, ..., Xn−1]Xn]

Proposition 1.1[1] Suppose K is a subgroup of a G. Then

(i) ith normal closure of K in G is K[G,iK];

(ii) K Cm G if and only if K coincides with its mth normal closure in G.

Proof. (i) The proof goes by induction.

For i = 0 ; K0 = G and K[G,0K] = G

For i = 1; we have to prove KG = K[G,K]

Take a generator element g−1kg from KG

g−1kg = kk−1g−1kg = k[k, g] = k[g, k]−1 ∈ K[G,K]

To prove every element of K[G,K] is also in KG. Clearly K ⊆ KG and [G,K] ⊆ KG.

So KG = K[G,K] = K1.

Suppose it is true for i ≥ 0. We have to prove for i+ 1.

Given Ki = K[G,iK] and to prove Ki+1 = K[G,i+1K]

Now Ki+1 = KKi = KK[G,iK] = K [G,iK] = K[G,i+1K]

(ii) If KCmG then K coincides with its mth normal closure in G since normal closure

series is the fastest decreasing subnormal series and the converse part is obvious.

Proposition 1.2[1]

(i) Suppose H Cm G and K ≤ G. Then H ∩K Cm K.In particular, H is subnormal

in any subgroup L, containing H, of the group G .

(ii) If Hλ Cm G,∀ λ ∈ Λ (an indexing set) where m does not depend on λ, then

∪λHλ Cm G.
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Proof. (i) Given H Cm G ; so

H = Hm E Hm−1 E ..... E Hi+1 E Hi E .... E H1 E H0 = G

It will suffice to prove that Hi+1 ∩K E Hi ∩K.

Take any y ∈ Hi+1 ∩K and any x ∈ Hi ∩K.

See that yx ∈ Hi+1 and yx ∈ K so yx ∈ Hi+1 ∩K.

So Hi+1 ∩K E Hi ∩K.

(ii) We have

Hλ = Hλ,m C ........CHλ,1 CHλ,0 = G , ∀ λ ∈ Λ

It will suffice to prove

∩λHλ,i+1 C ∩λHλ,i

This can be proved by the same method as used in (i).

Proposition 1.3[1] If H Cm K Cn G, then H Cm+n G.

Proof. The proof is trivial so we omit the proof.

Proposition 1.4[1] Suppose H CmG and φ is a homomorphism of G, then φ(H)Cm

φ(G). Thus if NCG, then HN/NCmG/N and HNCmG. In fact the normal closure

series of any subgroup M of G is mapped by φ onto the normal closure series of φ(M)

of φ(G).

Proof. Given H = Hm CHm−1 C .....CH1 CH0 = G

It will be enough to prove that φ(Hi+1) C φ(Hi) .

Now take hi+1 ∈ Hi+1 and hi ∈ Hi.

Consider this

φ(hi+1)
φ(hi)

φ(hi)
−1φ(hi+1)φ(hi)
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φ(hi
−1hi+1hi) ∈ φ(Hi+1)

So φ(Hi+1) C φ(Hi) and homomorphism preserves subnormality.

Given N CG and we have to prove that Hi+1N CHiN.

It easily follows from the fact that Hi+1 CHi and N normalizes Hi.

HN/N Cm G/N easily follows from the above (Choose suitable φ).

1.3 Some Results on Joins

Subnormality is just the transitivization or (say generalization) of normality. Normal

subgroups enjoy the property of making lattice that is to say that join and intersec-

tion of two normal subgroups are again normal subgroups. The intersection of two

subnormal subgroups of a group is again subnormal. Now the question arises for

their join. In 1939, Wielandt, in his classic paper[7], gave the affirmative answer for

finite groups. Then Zassenhaus, in 1958[8], constructed the first example where join

of two subnormal subgroups can fail to be subnormal. In this section, we will make a

progress on join of subnormal subgroups.

Theorem 1.5.[1] Suppose H and K are subnormal subgroups of G and J = 〈H,K〉.

If K normalizes H i.e. HK = H, then J is subnormal in G. More precisely, if HCmG

and K Cn G, then J Cmn G.

Proof. Hi is the ith normal closure of H in G. First, we will prove that every

K normalizes Hi for all i.

We go by induction to prove this. We will apply induction on i.

For i = 0, H0 = G

GK = G

Suppose K normalizes Hi for some i ≥ 0, we have to prove for K normalizes Hi+1.

Given HK
i = Hi
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To prove HK
i+1 = Hi+1 ............. (1)

We know that Hi+1 = HHi

We take left side of equation (1).

HK
i+1 = (HHi)K = H(HK

i ) = HHi = Hi+1

So Hi+1 CHiK .

Observe that K Cn HiK (using proposition 1.2).

And by proposition 1.4, we see that Hi+1K Cn HiK.

Then by proposition 1.3,

J = 〈H,K〉 = HK = HmK Cmn H0K = G

Corollary 1.6.[1] Suppose H C2 G and K is subnormal in G, then their join J =

〈H,K〉 is always subnormal in G.

Proof. Since H CHG CG, it follows from Proposition 1.1,

We get Hg CHG for all g ∈ G (follows from H is normal in HG) .

So HK C HG C G (Normal subgroups in HG forms lattice) and since K normalizes

HK , we get J = 〈H,K〉 = 〈HK , K〉 is subnormal in G with subnormal defect 2n by

previous theorem.

Theorem 1.7.[1] G has two subnormal subgroups H,K and J = 〈H,K〉. Then

the following conditions are equivalent:

(i) J CC G.

(ii) HK CC G.

(iii) [H,K] CC G.

Proof. (i) =⇒ (ii):

J is subnormal in G. We claim HK is normal in J then Proposition 1.3 will enable

us to prove (ii) from (i).
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J = 〈H,K〉, clearly (HK)K = HK and H ≤ HK

So (HK)J = HK C J CC G.

(ii) =⇒ (iii):

Given : HK sn G.

To prove : [H,K] sn G.

Claim: [H,K] is normal in HK .

Clearly, H and K both normalizes [H,K]. Now see that hk = h[h, k] (enough to prove

the claim).

So by proposition 1.3, we get [H,K] sn G.

(iii) =⇒ (i)

Given: [H,K] sn G.

To prove: J = 〈H,K〉 sn G.

Since K normalizes [H,K]. By theorem 1.5, we get [H,K]K sn G.

However H normalizes [H,K]K and again by the Theorem 1.5 we have

J = H[H,K]K sn G

We will be using a result (every subgroup of nilpotent groups are subnormal) which

will be proved later in second chapter.

Corollary 1.8.[1]

If H, K are two subnormal subgroups of a group G and the derived subgroup G
′

is

nilpotent then 〈H,K〉 is subnormal in G.

Proof. Since [H,K] ≤ G
′

and all subgroups of a nilpotent group are subnormal,

we have [H,K] sn G
′
C G. So [H,K] Cm G for some m.

By the previous theorem we have J is also subnormal in G.

Proposition 1.9.[1]

Let H and K be two subnormal subgroups of a group G and J = 〈H,K〉 = HKH,

then J = HK.
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Proof. Let H Cm G. We will proceed by induction on m. The result is clear for

m = 0 or 1 Assume m ≥ 2 and the usual induction hypothesis. Then with HJ = H1,

H1 = H(H1 ∩KH) = H(H1 ∩K)H = H(H1 ∩K),

By induction , since J = H1K = H(H1 ∩K)K = HK.

1.4 Wielandt’s Join Theorem

Wielandt’s Join Theorem states that the join of two subnormal subgroup in a finite

group is again subnormal. In this section, we will give three proofs of this theorem.

Theorem 1.10.[1] Let H,K be two subnormal subgroups of a finite group G. Then

J = 〈H,K〉 is subnormal in G.

Definition.

A group G is said to satisfy Max− sn or maximal condition for subnormal subgroups

if there exist at least one maximal element for any non-empty set of subnormal sub-

groups of G.

Certainly finite groups satisfy Max− sn.

First proof of Theorem 1.10

Theorem 1.11[1] G saisfies Max− sn and H and K are subnormal subgroups of G.

Then J = 〈H,K〉 is also subnormal subgroup in G.

Proof. Given: H Cn G and K Cm G.

We will prove by induction on n, the subnormal defect of H in G.

For n = 1, H CG and by proposition 1.4 we got J = 〈H,K〉 = HK sn G

Suppose n ≥ 2 and assume the induction hypothesis.

We have H Cn−1 HG and apply second induction on r, the join of any finite number
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r of conjugates of H in G is subnormal in G.

Since G satisfies Max−sn, it follows that HK is generated by finitely many conjugates

of H by elements of K and by induction hypothesis, join of finitely many conjugates

of H in G is subnormal in G, thus HK is subnormal in G.

Second proof of Theorem 1.10

Theorem 1.12.[1] Let H,K be subnormal subgroups of G and suppose that the

set of subnormal subgroups of G lying between H and J = 〈H,K〉 contains a maxi-

mal member. Then J sn G.

First we prove a lemma which will bolster in the proof of theorem.

Lemma 1.13.[1] Let T be a subgroup of G and suppose that H is a maximal member

of the set of subnormal subgroups of G lying in T . Then H C T .

Proof. We wiil go by the subnormal defect n of H in T . By contradiction; sup-

pose n ≥ 2

H = Hn CHn−1 CHn−2 C ...........CH1 CH0 = T

Hi is the ith normal closure of H in T .

There exists x ∈ Hn−2 such that x does not belong to Hn−1.

Hx normalizes H since H CH1 = HHn−2

Realize that Hx 6= H. So

H < HHx = H∗

Then H∗ ≤ T and by Theorem 1.5, H∗ sn G. Contradiction to H being maximal

member of the set of subnormal subgroups of G lying in T .

Hence H CG.

Proof of Theorem 1.12 Suppose M is the maximal member of the set of sub-
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normal subgroups of G lying between H and J = 〈H,K〉. Then by previous lemma,

we see that M C J and H ≤ M so J = 〈M,K〉 and MK = M . Both M and K are

subnormal in G. Then by Theorem 1.5, we conclude that J = 〈M,K〉 = 〈H,K〉 is

subnormal in G.

Corollary 1.14.[1] Let H,K be two subnormal subgroups of G and J = 〈H,K〉.

Suppose the index |J : H| is finite then J is subnormal in G.

Proof. The proof is the same as the proof of Theorem 1.12.

Theorem 1.15.[1] Let H and K be subnormal subgroups of G and J = 〈H,K〉.

Suppose that the set

{〈H,Hx1 , Hx2 , ...., Hxs〉|x1, x2, .....xs ∈ J, s ≥ 0}

satisfies the maximal condition. Then J sn G.

Proof. Suppose M is the maximal member of the set of subnormal subgroups of

G which belong to above mentioned set. Then M C J and Theorem 1.5 establishes

the result.

Theorem 1.16.[1] Let {Hλ|λ ∈ Λ} be a set of subnormal subgroups of G and let

J be their join. Then J is subnormal in G if and only if the set of subnormal sub-

groups of G lying in J contains a maximal member.

Proof. If J is subnormal in G, J is the maximal member lying in J .

Conversely, suppose K is the subnormal subgroup of G maximal with respect to lying

in J . By Lemma 1.13, K C J and so HλK CC G by Theorem 1.5.

So Hλ ≤M for all λ ∈ Λ amd hence J = M CC G.

Theorem 1.17[1] Let N be minimal normal subgroup of a finite group G. Then

N normalizes every subnormal subgroup of G.
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Proof. A normal subgroup N is said to be minimal normal if N does not have

any non-trivial normal subgroup in G.

We will go by induction on |G|. Suppose K is subnormal in G, K 6= G and put

K1 = KG. So K1 < G.

Now if N � K1, then N ∩K1 = 1 and thus [N,K1] = 1.

Hence [N,K] ≤ [N,K1] = 1 implies [N,K] = 1.

Now if NCK1, then N = N1
G for some minimal normal subgroup N1 of K1 (N1 could

be N also). So each conjugate N1
g, for g ∈ G, will be a minimal normal subgroup of

K1 and so be a minimal normal subgroup of H1 and so will normalize H, by induction.

Hence N normalizes H.

Third proof of Theorem 1.10[1] We proceed by induction on |G| and let N be a

minimal normal subgroup of G. By induction JN/N sn GN/N and so, by Theorem

1.17, J CC G.

Theorem 1.18[1] Suppose H and K are subnormal subgroups of G and G
′

satis-

fies Max− sn. Then J = 〈H,K〉 sn G.

Proof. Suppose n is the subnormal defect of H in G. Let H1 = HG so that H1
′
= G

′

and therefore H1
′

satisfies Max− sn. Therefore,by induction on n and second induc-

tion on r,

X = {〈Hx1 , Hx2 , ....., Hxr〉|x1, x2, ...., xr ∈ J, r ≥ 1}

is a set of subnormal subgroups of G. We show that HK ∈ X and then Theorem 1.7

applies.

Suppose HK /∈ X . Then there exists an infinite strictly ascending chain of subgroups

X1 < X2 < ......

withXi = 〈H,Hx1 , Hx2 , ..., Hxi〉 where x1, ...., xi ∈ K. SupposeMi = 〈[H, x1], [H, x2], ..., [H, xi]〉,

then

Mi C 〈H,Mi〉 = Xi sn G

14



and so Mi sn G
′
. From the hypothesis, it follows that there exists s ≥ 1 such that

Ms = Ms+1 = Ms+2 = .... and then Xs = Xs+1 = Xs+2 = ..., contardicting the

assumption.
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Chapter 2

Groups With All Subgroup

Subnormal

We will make a progress studying all those groups which have every subgroup sub-

normal. We will denote the class of groups which have every subgroup subnormal by

N1. Our aim is to construct an example of non-nilpotent N1 groups.

2.1 Classes of groups

Class of Groups- A class of groups is a family of groups which is closed under iso-

morphism and contains trivial group.

Examples - Trivial group, Class of abelian groups, Class of nilpotent groups, Class

of soluble groups, Class of groups in which every subgroup has every subgroup sub-

normal etc.

Countable recognition

A class of groups S is countably recognizable if a group G belongs to S provided that

all countable subgroups of G belong to S.
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2.2 Groups having every subgroup subnormal

Clearly, the class of abelian groups (denoted by R) is contained in the class N1. A

group where every subgroup is normal also belongs to N1. We will denote this class

by C. This result is due to Dedekind and Baer.

Dedekind and Baer[3]

All the subgroups of a group G are normal if and only if G is abelian or the di-

rect product of a quaternion group of order 8, an elementary abelian 2-group and an

abelian group with all elements of odd order.

2.3 Nilpotent Groups

First we will define a series of normal subgroups

G = G0 ⊇ G1 ⊇ G2 ⊇ ...... ⊇ Gm ⊇ .....

G0 = G,Gn+1 = [G,Gn]

We write γi(G) = Gi−1

Definition

A group G is said to be nilpotent if Gn = 1 for some n. The smallest n such that

Gn = 1 is called the nilpotency class of G.

Theorem 2.1. Every subgroup of a nilpotent group is subnormal.

Proof. Let G be a nilpotent group and H be its subgroup.

ith normal closure of H in G is H[G,iH]. (by Proposition 1.1)

But [G,nH] ≤ [G,nG] = 1 for some n.

So H coincides with its nth normal closure which means to say that H is subnormal

in G.
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The subnormal defect of any subgroup of a nilpotent group does not exceed the

nilpotency class of the nilpotent group. Much more can be said when the group is

finite.

Theorem 2.2. Let G be a finite group. All of its subgroups are subnormal if and

only if G is nilpotent.

Proof. Proof immidiately follows from the following result:

A finite group Gis nilpotent if and only if for every proper subgroup of H of G, we

have NG(H) > H.

Theorem 2.3.[2] Let 1 ≤ c ∈ N. The following classes of groups are countably

reognizable: nilpotent groups, nilpotent groups of class atmost c.

Now we have seen that all finite N1 groups are nilpotent. So the natural question

arises whether the converse is true or not. We will answer it in the following section.

2.4 Non-Nilpotent N1 Groups

Two completely disparate methods have been developed for establishing non-nilpotent

N1 groups. The first method goes to a celebrated 1968 paper[4] by H. Heineken and

I.J. Mohamed while the second was discovered by H. Smith[9] in 1982.[2]

2.4.1 Remarks

H. Heineken and I.J. Mohamed provided the first example of non-nilpotentN1 groups[4].

The groups they constructed are p-groups and every proper subgroup is nilpotent and

obviously subnormal. We call non-nilpotent groups which have every proper subgroup
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subnormal and nilpotent Heineken- Mohamed groups (in short H-M groups).

Heineken and Mohamed construction was studied by many authors. Here, we will

present a construction of H-M groups by F. Menegazzo [5] but before that we will

prove the following fact.

Proposition 2.4.[4] Suppose p is a prime and G is a p−group of Heineken-Mohamed

type such that G 6= G
′
. Then

(i) G is countable;

(ii) G/G
′ ' Cp∞ and (G

′
)p 6= G

′
= γ3(G);

(iii) for every H ≤ G, G
′
H = G implies H = G.

Conversely, if G is a non-nilpotent p-group with a normal nilpotent subgroup N

of finite exponent such that G/N ' Cp∞ and NK 6= G for every proper subgroup K

of G, then G is a group of Heineken- Mohamed type.

Lemma2.5.[6] Suppose G is a non-trivial group such that ST 6= G for every pair

of proper normal subgroups S and T of G. Then there is a prime number p such that

G/G
′

is locally cyclic p-group and G
′
= γ3(G).

Proof. We know that G/G
′

is abelian. Suppose G/G
′

is generated by two proper

normal subgroups then G is also generated by two proper normal subgroups (not the

case).

We start with the case when G is abelian. Let 1 6= x ∈ G; then there is a prime p

such that < xp > 6= < x >.

Consider

B = {K s.t. K < G,< xp > ⊆ K but < x > * K}

Certainly < xp >∈ B, so B is non-empty. It is partially ordered set by inclusion so

it contains at least one maximal element S by Zorn’s Lemma. Then S is a maximal
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subgroup of G such that xp ∈ S but x does not belong to S.

Then every non-trivial subgroups of G/S contain xS. Since G/S is abelian, we have

that G/S is either a non-trivial cyclic p-group or isomorphic to Cp∞ . If G is not a

p-group there exists s ∈ G and prime q 6= p such that < sq > 6= < s >. Similarly we

get a proper subgroup T of G such that G/T is a q-group. But, then clearly, G = ST

(not the case).

So G is a p-group with either being cyclic or of type Cp∞ .

For general case, we have to check G
′

= γ3(G). But this follows from T = G/γ3(G)

being nilpotent group and T/T
′ ' G/G

′
is cyclic or Prufer group, and so T is abelian.

Lemma 2.6.[1] Let M and N be two normal nilpotent subgroup of a group G.

Then their join 〈M,N〉 = MN is also nilpotent.

Proof. The commutator identity [mn, l] = [m, l]n[n, l] shows that if L is also a

normal subgroup of G then [MN,L] = [M,L][N,L]. For any group Y , and for i ≥ 1,

we write

γi(Y ) = [Y,i Y ]

the ith term of lower central series.

Suppose M and N have nilpotency class c and d respectively. By induction on j we get

γj(MN) = Π[Y1, Y2, ....Yj+1]

where Yi, for each i, is either from M or from N and all 2j+1 possible factors in prod-

ucts are included. Taking j = c+ d, each factor must contain c+ 1 M ′s or d+ 1 N ′s

among Yi. Since γc(M) = γd(N) = 1 and M,N C G so is each γi(M) and γi(N). So

γc+d(MN) = 1.

Lemma 2.7. Let G be a N1-group, and M a normal nilpotent subgroup of G.

If G/M is finitely generated, then G is nilpotent.

Proof. Let G be a N1-group, and M be a normal nilpotent subgroup such that
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G/M is finitely generated. Let y1M, y2M, ...., ynM be a set of generators of G/M .

Then, since G is a N1-group, H = 〈y1, y2, ...yn〉 is a nilpotent subnormal subgroup of

G. So G = MH is nilpotent (by lemma 2.6).

Proof of Proposition 2.4.

(i) If G satisfies the condition given in proposition 2.4, then G can not be finite. If

G is countable then we are done. Suppose G is uncountable and all of its countable

subgroups are nilpotent then by Theorem 2.3, G is nilpotent (not the case). So G

must be countable.

(iii) Since G 6= G
′
, then ,by lemma 2.6, for every H ≤ G , G

′
H = G implies H = G.

(ii) By Lemma 2.7 , G/G
′

is not finitely generated and also by Lemma 2.6, G is not

the product of two proper normal subgroups and therefore G/G
′ ' Cp∞ by Lemma

2.5. Suppose G
′p

= G
′
. Then, by Lemma 2.5, G

′
is an abelian divisible group. Every

cyclic subgroup Y of G is subnormal and so G
′

is centralized by Y . We conclude that

G
′ ≤ Z(G) which implies G is nilpotent. So G

′p 6= G
′
.

Conversely, suppose K is any proper subgroup of G. Then NK 6= G and it is also

given that G/K ' Cp∞ , NK/N is finite. Therefore NK is nilpotent which implies K

is also nilpotent and subnormal in KN . Since KN is normal in G, so K is subnormal

in G. So G is a Heineken-Mohamed group.

2.5 Construction[2]

We will follow Menegazoo’s approach [5].

First we choose a prime p and denote the Prufer group Cp∞ by T . We fix standard

generators t1, t2, t3, ..... for T . So

T = 〈t1, t2, t3, ..... | t1p = 1, ti+1
p = ti ∀ i ≥ 1〉
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We write Ti = 〈ti〉 for every i ≥ 1. R = Fp[T ] is the group algebra of T over the field

Fp = Z/pZ and we denote its augmentation ideal by T.

Augmentation ideal is the kernel of the map φ : R→ Fp defined by

φ(
∑
t∈T

stt) =
∑
t∈T

st

Claim: T is generated by elements of type t− 1 for t ∈ T .

Clearly 〈t− 1 | t ∈ T 〉 ⊆ T

Take any element s =
∑

t∈T stt ∈ T , so
∑

t∈T st = 0

Now

s =
∑
t∈T

stt

=
∑
t∈T

stt+
∑
t∈T

st −
∑
t∈T

st

=
∑
t∈T

st(t− 1)

For every i ≥ 1, we keep Ri = Fp[Ti] and we reserve Ti for augmentation ideal of Ri.

Then the followings are easy to verify

(i) R = ∪i≥1Ri

(ii) T = ∪i≥1Ti
(iii) Ti = (ti − 1)Ri for i ≥ 1

Every elements of T are nilpotent (follows from (ti − 1)p
i

= 0). Any element in R

which is not in T is invertible.

Take s =
∑

t∈T stt ∈ R but s /∈ T then∑
t∈T

st 6= 0

s =
∑
t∈T

stt

=
∑
t∈T

stt+
∑
t∈T

st −
∑
t∈T

st

=
∑
t∈T

st(t− 1) +
∑
t∈T

st

So any element s can be written in the form of r + b where r is nilpotent and b is

invertible. The rest work is elementary ring theory.

23



Lemma 2.8.[2] The ideals of Ri are principal ideals of the form

(ti − 1)m for 0 ≤ m ≤ pi.

All these ideals are distinct and with respect to inclusion, they form a totally ordered

set.

Proof. The proof follows from the fact that Ri ' Fp[x]
〈xpi−1〉

.

Lemma 2.9.[2] The set of ideals in R is totally ordered set.

Proof. Take a, b ∈ R. There exists an i ≥ 1 such that a, b ∈ Ri. But by previ-

ous Lemma either aRi ≤ bRi or aRi ≤ bRi. Thus the Lemma is proved.

We can parametrize the set of all ideals of R with the help of Lemma 2.8. Let J

be any ideal of R then for each i ≥ 1, there is a unique 0 ≤ mi ≤ pi such that

J ∪Ri = (ti − 1)miRi

So, we associate the sequence (m1,m2,m3, ......) to J . This sequence uniquely de-

termines J . Observe that, since (J ∩ Ri+1) ∩ Ri = J ∩ Ri, the sequence is such

that,

p(mi − 1) < mi+1 ≤ pmi for all i ≥ 1.(∗)

Conversely, a sequence (m1,m2,m3, ....) of integers 0 ≤ mi ≤ pi satisfying (*) is the

sequence associated to the ideal
∑

i≥1(ti − 1)miR of R.

Lemma 2.10.[2] Suppose J is a non zero ideal of R and let (s1, s2, s3, ...) be the

sequence associated to J. Then JT = J iff for each i ≥ 1, there exists a j ≥ i such

that psj > sj+1.
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Proof. Suppose that the sequence given for J satisfies the condition in the state-

ment and let i ≥ 1. Now choose such j ≥ i for that psj > sj+1. Then,

(tj − 1)sj = (tj+1 − 1)psj = (tj+1 − 1)sj+1(tj+1−1)
t

for some t > 0.

We conclude that (tj − 1)sj ∈ JT and consequently, (ti− 1)si ∈ JT. Therefore JT has

the same sequence as J and so JT = J.

Conversely, assume JT = J and let i ≥ 1 with (ti − 1)si 6= 0. Then there exists

m ≥ i such that (ti − 1)si ∈ (J ∩ Rm)Tt. Since J ∩ Rm = (tm − 1)smRm and

Tm = (tm − 1)Rm, we have that (ti − 1)si = (tm − 1)sm+1v for some v ∈ Rm. Hence

(ti − 1)siR < (tm − 1)smR, and so in the chain

(ti − 1)siR ≤ (ti+1 − 1)si+1R ≤ .... ≤ (tm − 1)smR

at least one of the inclusion is proper ((tm − 1)smR < (tj+1 − 1)sj+1R) , which means

kj+1 < pkj.

Now we will define an HM-system. Take M to be a right R-module which is generated

by a sequence x = (xi)i≥l for some positive integer l. For any sequence m = (mi)i≥l

of elements of M , we set

τi,k(m) = −mi +
k∑
s=0

xi+s(ti+s − 1)p
s−1 +mi+k+1(ui+k+1 − 1)p

k+1−1

for all i ≥ l, k ≥ 0.

Then we say that x is a HM-system in M is

M = 〈τi,k(m) | i ≥ l, k ≥ 0〉

for every sequence m = (mi)i≥l.

Proposition 2.11[5] Suppose G is a p − group with a normal elementary abelian

subgroup N 6= 1 such that [G,N ] = N and G/N ' Cp∞ = T . Let ξ : T → G/N be an
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isomorphism, and make N into a R −module in the usual way. For every i ≥ 1, let

gi ∈ Ri such that giN = ti
ξ, and let xi = gi

−1gi+1
p ∈ N . Suppose that G = 〈gi | i ≥ l〉

for some l ≥ 1. If the sequence x = (xi)i≥l is a HM − sequence for N then G is a

Heineken-Mohamed group.

Proof. Since [G,N ] = N 6= 1, then G is not nilpotent. So, by Proposition 2.4,

it suffices to show that KN = G forces K to be equal to G for every K ≤ G. For

n ∈ N and t ∈ T , we denote nt = nt
ξ
, and ∀ i ≥ l, k ≥ 0, we set

χi,k =
k∏
s=0

xi+s
(ti+s−1)p

s−1

.

We show by induction on k ≥ 0, that gi+k+1
pk+1

= giχi,k for all i ≥ l.

For k = 0, χi,0 = xi [Obvious from the fact xi = gi
−1gi+1

p]

Let k ≥ 1 and assume gi+k
pk = giχi,k−1.

Then

gi+k+1
pk+1

= (gi+k+1
p)p

k

= (gi+kxi+k)
pk

= gi+k
pkxi+k

ti+k
pk−1+....+ti+k+1

= giχi,k−1xi+k
ti+k−1p

k−1

= giχi,k.

Now, let K ≤ G with NK = G. Then ∀ i ≥ l, K contains an element of the form

gimi with mi ∈ N . Let m be the sequence (mi)i≥l. For every i ≥ l, k ≥ 0, denoting

τi,k = τi,k(m) and using the identities established above, we get

(gi+k+1mi+k+1)
pk+1

= gi+k+1
pk+1

mi+k+1
(ti+k+1−1)p

k+1−1

= giχi,kmi+k+1
(ti+k+1−1)p

k+1−1

= gimi(mi
−1χi,kmi+k+1

(ti+k+1−1)p
k+1−1

) = gimiτi,k

As a consequence, τi,k ∈ K for every i ≥ l and k ≥ 0, and therefore K contains the

subgroup generated by the elements τi,k, which is N and since x is a HM − system.

Therefore K ≥ NK = G, and so K = G as wanted.

Proposition 2.12.[2] Suppose J is a non-zero ideal of R such that JT = J < T,
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and let (s1, s2, s3, ....) be the sequence associated to J. Keep l ≥ 1 with 0 < sl < pl,

and for each i ≥ l, set

ci =
(ti − 1)si ifsi+1 = psi

(ti+1 − 1)psi−1 ifsi+1 < psi

Then c = (ci)i≥l is a HM − system for J as a R−module.

Proof. We will prove that c generates J. Let I be the ideal generated by c.

Then I ≤ J. By definition if si+1 = psi, then ci ∈ J and, if si+1 < psi, then

ci = (ti+1 − 1)psi−1 ∈ (ti+1 − 1)si+1R ≤ J.

For reverse inclusion, consider first i ≥ l. If si+1 = psi, then Ri ∩ J = ciRi ≤ I; if

si+1 < psi,

Ri ∩ J = (ti − 1)siRi = (ti+1 − 1)psiRi = ci(ti+1 − 1)Ri ≤ I

If 1 ≤ i ≤ l, then (ti − 1)si ∈ (tl − 1)slR ≤ I.

Therfore J = I.

Now we have to make sure that c satisfies the conditions of a HM − system for J

as a R − module. Let m = (mi)i≥l be a sequence of elements of J, and for each

i > l ,∃ d ≥ 0 such that

(ti+1 − 1)si−1 ∈ τi,dR.

This implies that J is generated by the set {τi,d | i ≥ l, d ≥ 0} . So c is a HM−system

for J.

Therefore, suppose i ≥ l. If si = psi−1 then by Lemma 2.10, there exists j ≥ i such

that (ti−1 − 1)si−1 = (tj−1 − 1)sj−1 and sj < psj−1. So we may assume si < psi−1.

Then there exists h > 0 such that mi ∈ J ∩ Ri+h, and there exists k ≥ h such that

si+k+1 < psi+k. Then ci+k = (ti+k+1 − 1)psi+k−1, and

τi,k = −mi + ci + .....+ ci+k+1(ti+k+1 − 1)p
k−1−1 + y....(∗∗)

where y = ci+k(ti+k − 1)p
k−1 +mi+k+1(ti+k+1 − 1)p

k−1−1

Then

y = (ti+k+1 − 1)psi+k−1(ti+k − 1)p
k−1 +mi+k+1(ti+k+1 − 1)p

k+1−1
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= (ti+k+1 − 1)psi+k−1+p
k+1−p +mi+k+1(ti+k+1 − 1)p

k+1−1

= (ti+k+1 − 1)p
k+1−1(mi+k+1 + (ti+k+1 − 1)p(si+k−1))

= (ti+k+1 − 1)p
k+1−1(mi+k+1 + (ti+k − 1)(si+k−1)).

Now mi+k+1 ∈ J and (ti+k − 1)si+k−1 /∈ J, and so it follows from total orderness of

R that (ti+k − 1)si+k−1 and (ti+k − 1)si+k−1 + mi+k+1 generate the same ideal of R.

Hence, there exists an invertible element µ ∈ R such that

(ti+k − 1)si+k−1 +mi+k+1 = (ti+k − 1)si+k−1µ.

Therefore, y = (ti+k+1 − 1)p
k+1−1+p(si+k−1)µ. Rest of the summands in right term of

(∗∗) belongs to J ∩ Ri+k; hence writing by y
′

their sum, we get y
′

= (ti+k − 1)fε =

(ti+k+1−1)pfε for some f ≥ si+k and some invertible elements ε ∈ Ri+k. The exponents

of ti+k+1 − 1 in y and in y
′

are not congruent modulo p, we conclude that the two

ideals y
′
R and yR are distinct. Therefore τi,k = y + y

′
generates the largest of the

ideals yR and y
′
R. Particularly,

(ti+k+1 − 1)p
k+1−1+p(si+k−1) = yµ−1 ∈ τi,kR....(∗ ∗ ∗)

Now, we have (from psi−1 ≥ si + 1)

pk+2si−1 ≥ pk+1(si + 1) ≥ psi+k + pk+1 > pk+1 − 1 + p(si+k − 1),

and by (∗ ∗ ∗), (ti−1 − 1)si−1 = (ti+k+1 − 1)p
k+2si−1 ∈ τi,kR. This proves (∗) and the

proposition.

Now we proceed to construction of Heineken-Mohamed groups.

Theorem 2.13.[5] For every non-zero ideal J of R such that J = JT < T, there

corresponds to a Heineken-Mohamed group G = G(J) such that G/G
′ ' T and

G
′ ' J (as R-modules). Moreover, if I is another ideal of R with I = IT < T and

J 6= I, then G(J) and G(I) are not isomorphic.

Proof. Suppose (s1, s2, s3, ....) is the associated sequence of J. Select l ≥ 1 such
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that 1 < sl < pl and for every i ≥ l define the element ci as in Proposition 2.12. Now

we will define a sequence (xi)i≥l of elements of R inductively such that

xi ∈ (ti − 1)R and xi+1(ti+1 − 1)p−1 = xi + ci.....(?)

for each i ≥ l. Set xl = 0, and assume xl, xl+1, ....xi have the desired properties. Now

si ≥ sl > 1 and ci is either (ti−1)si or (ti+1−1)psi−1; then conclude that ci ∈ (ti−1)R

in any case and so there exists d ∈ R such that ci + xi = (ti − 1)d = (ti+1 − 1)pd. By

setting xi+1 = (ti+1 − 1)d, a new element has been introduced in the sequence which

satisfies (?).

Now consider the semidirect product V = R o T , where R is the additive group of

the ring and for each i ≥ l, let gi = (xi, ti). Let G = G(J) be the subgroup of V

generated by all the gi’s:

G = 〈(xi, ti) ∈ V | i ≥ l〉.

So for each i ≥ l,

gi+1
p = (xi+1(ti+1 − 1)p−1, ti+1

p) = (xi + ci, ti) = gi(ci, 1)

and hence G ∩ (R × 1) contains the T-invariant subgroup N generated by the set

{(ci, 1) | i ≥ l} which is isomorphic to J. Clearly G/N = 〈giN | i ≥ l〉 ' T. Since

JT = J, we get N = [N, T ] = [N,G]. Finally the sequence (gi
−1gi+1 = (ci, 1)) for i ≥

l is a HM-system for N 'T J, and we apply proposition 2.11 to say that G is a

Heineken-Mohamed group.

Let I be another ideal with I = IT < T. Denote G1 = G(J), G2 = G(I). Suppose

there exists an isomoprphism ι : G1 → G2. By construction G1
′ 'R J and G2

′ 'R I.

Now ι induces an isomorphism between G1/G1
′

and G2/G2
′
, which together with the

natural isomorphisms with T , gives an isomorphism of T , which we extend by linear-

ity to an isomorphism ϑ of R. Then, for each x ∈ J = G1
′

and t ∈ R:

ι(xt) = ι(x)ϑ(t)

. It follows that AnnR(ι(x)) = AnnR(x) for each x ∈ J. If x = (ti − 1)mp
i−k

with

1 ≤ k ≤ i and (m, p) = 1, it is clear that

AnnR(x) = (tk − 1)p
k−mR.
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Hence for all i ≥ l, AnnR(ι(ci)) = AnnR(ci) implies ι(ci)R = ciR. So we conclude

that J = ι(J) = I.

Corollary 2.14. [2]

For every prime p there are 2N0 non-isomorphic group G of Heineken-Mohamed type

such that G/G
′ ' Cp∞ and G

′
elementary abelian.
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