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Abstract

In recent times, many disciplines (like biology, chemistry or finance) have seen an

explosion of data. The statistical methods face challenging tasks when dealing with

such high-dimensional, multi-variate data. However, much of the data is highly re-

dundant and can be efficiently brought down to a much smaller number of variables

without a significant loss of information. The mathematical procedures making this

reduction possible are called Dimensionality Reduction Techniques. Each and ev-

ery technique reduces the dimensions of the data based on different criteria. This

project has been done in three parts. In the first part, a simulation-based com-

parative study of variable selection was done in a linear-regression setting using

a penalized-regression method - Least Absolute Selection and Shrinkage Operator

(LASSO) versus univariate regression followed by the False Discovery Rate (FDR).

Sensitivity, Specificity and Receiver Operating Characteristic (ROC) curves were

used for comparison of these methods. In the second part, one of the Dimension Re-

duction Technique the Principal Component Analysis (PCA) was used to compare

codon usage bias of HIV-1 viral genomes and genes to its human host using whole

genome sequences. In the third part, Single Nucleotide Polymorphism (SNP) selec-

tion was done using Empirical Bayes strategy in Genome-wide Association Studies

(GWAS).

v





Chapter 1

Introduction

During the last decade, life sciences have undergone a tremendous revolution with

the accelerated development of high-throughput technologies and laboratory instru-

mentations. A good example is the biomedical domain that has experienced a huge

advance since the advent of complete genome sequences. This post-genomic era

has led to the development of new high-throughput techniques that are generating

enormous amount of data, which has given rise to the exponential growth of many

biological databases. In many cases, these datasets have much more variables than

observations. Many scientific fields have seen an explosion of the number of variables

measured for a single experiment. This is the case of image processing, mass spec-

trometry, time series analysis, internet search engines, etc. The statistical approach

to study such data involves Multivariate Analysis [ZB86] methods.

1.1 Linear Regression

A linear regression model assumes that the regression function f(X) is linear in the

inputs X1, X2, ...Xp.. Given a vector of input variables X = (X1, X2, ...Xp), if we

want to predict a real-valued output Y , the linear regression model will have the

form

f(X) = β0 +

p
∑

j=1

Xjβj (1.1)

Here βj ’s are unknown parameters. The linear model either assumes that the regres-

sion function f(X) is linear, or that it is a reasonable approximation. The model is

linear in parameters. If there are N number of data points (i.e., measurements) for

each input variable Xj, for the response variable Y , the normal equations in matrix

1



notation are:

X =













1 x11 x12 x13 . . . x1p

1 x21 x22 x23 . . . x2p

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 xN1 xN2 xN3 . . . xNp













(1.2)

Y =













y1

y2
...

yN













and β =













β0

β1

...

βp













(1.3)

1.2 Feature Selection and Feature Extraction

Statistical and machine learning methods face a formidable problem when dealing

with such high-dimensional data and normally the number of input variables is

reduced before a data mining algorithm can be successfully applied. The dimen-

sionality reduction can be made in two different ways: by only keeping the most

relevant variables from the original datasets (feature selection) or by exploiting the

redundancy of the input data and by finding a smaller set of new variables, each be-

ing a combination of the input variables, containing basically the same information

as the input variables (feature extraction).

There are number of techniques available to reduce the dimensions of a large dataset.

Each and every technique reduces the dimensions of the data based on different cri-

teria. In recent years, Principal Component Analysis (PCA) [Hot33] and Linear

Discriminant Analysis (LDA) [McL04] are regarded as the most fundamental and

powerful tools of dimensionality reduction for extracting effective features of high-

dimensional vectors in input data. Depending on the data, the reduction techniques

are classified as linear techniques and non-linear techniques.

In this project, I have first learnt the mathematical insights behind different di-

mension reduction techniques that are used in Linear regression problems, such as

the Least Absolute Selection and Shrinkage Operator (LASSO) [HTF09], False Dis-

covery Rate (FDR) [Efr05], linear Principal Component Analysis (PCA), and then

applied them on large sets of real biological data. In Chapter 2, I have shown, with

a toy example, that LASSO performs better than FDR in most conditions. I have

then studied two biological problems. In Chapter 3, I have compared the codon

usage pattern of HIV-1 genes and its host human from 241 whole genome sequences

2



using the PCA. The results show differential adaptation of codon usage in HIV-1

genes towards that of the human hosts. In Chapter 4, I have studied the Single

Nucleotide Polymorphism (SNP) selection from Genome-wide Association Studies

(GWAS) of the disease Psoriasis, where more than 5.8 lakh SNPs were analysed

using empirical Bayes strategy in the logistic regression model. The results sug-

gest that incorporating the empirical Bayes strategy certainly improves prediction

of disease-associated SNPs.

3
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Chapter 2

Comparison of Two Feature

Selection Methods - LASSO and

FDR

Before comparing the two feature selection methods, it is necessary to study basic

method of ordinary least square to fit a linear regression model, its drawbacks and

how to simplify the model with respect to mean-squared error by other methods,

such as Subset Selection and Shrinkage methods [HTF09].

2.1 Ordinary Least Square Model

As per Section 1.1, let the best fit model be

f(xi) = β0 +

p
∑

j=1

xijβj ; 1 ≤ i ≤ N

In this method we minimize the following Residual Sum of Squares (RSS):

RSS(β) =

N
∑

i=1

(yi − f(xi))
2 (2.1)

=

N
∑

i=1

(yi − β0 −
p
∑

j=1

xijβj)
2 (2.2)

From statistical point of view, this criterion is reasonable if the observations (xi, yi)

represent the independent random draws from their population. Even if the xi’s not

drawn randomly, the criterion is still valid if the yi’s are conditionally independent

5



given the inputs xi.

Using above matrices, we can write Residual Sum of Squares in the matrix form as

follows:

RSS(β) = (Y −Xβ)T (Y −Xβ) (2.3)

This is a quadratic function in p+ 1 parameters. Differentiating with respect to β,

we obtain

∂RSS(β)

∂β
=

∂RSS(β)

∂(Y −Xβ)

∂(Y −Xβ)

∂β

= 2(Y −Xβ)T (−X)

(using if y = xTAx then ∂y
∂x

= xT (AT + A))

∂RSS(β)

∂βT∂β
= 2(−XT )(−X)

= 2XTX

Assuming (for a moment) that X has full column rank, and hence, XTX is positive

definite, we set the first derivative to zero

2(Y −Xβ)T (−X) = 0 (2.4)

−2Y TX + 2βTXTX = 0 (2.5)

(βTXTX)T = (Y TX)T (2.6)

XTXβ̂ = XTY (2.7)

β̂ = (XTX)−1XTY (2.8)

Ŷ = Xβ̂ = X(XTX)−1XTY (2.9)

From equation (2.7) we have,

XT (Y −Xβ̂) =< X, (Y − Ŷ ) >= 0

which implies that (Y − Ŷ ) is orthogonal to the column space of X that span the

subspace of RN and the resulting estimate Ŷ is therefore the orthogonal projection

of Y onto this subspace.

It might happen that the columns of X are not linearly independent, so that X is

6



not of full rank. This would occur, for example, if two of the inputs were perfectly

correlated (e.g. x2 = 3x1). Then XTX is singular and the least square coefficients

β̂ are not uniquely defined. However (̂Y ) = Xβ̂ are still the projection of Y onto

the column space X ; there is more than one way to express the projection in terms

of the column vectors of X .

Assume that the observations yi are uncorrelated and have constant variance σ2

and that the xi’s are fixed (non random). Then

var(β̂) = ((XTX)−1XT )(σ2I)((XTX)−1XT )T

= (XTX)−1XTσ2IX(XTX)−1

= X−1σ2I(xT )−1

= (XTX)−1σ2

E(β̂) = (XTX)−1XTE(Y )

= (XTX)−1XTE(Xβ)

= (XTX)−1XTXβ

= β

Hence β̂ is an unbiased estimate of β.

2.2 Gauss-Markov Theorem

This theorem asserts that the least squares estimates of the parameters β have the

smallest variance among all linear unbiased estimates. Consider the mean squared

error of an estimator θ̃ in estimating θ:

MSE(θ̃) = E(θ̃ − θ)2

= V ar(θ̃) + [E(θ̃)− θ]2

The first term is the variance, while the second term is the squared bias. Mean

squared error is intimately related to prediction accuracy. The Gauss-Markov theo-

rem implies that the least squares estimator has the smallest mean squared error of

all linear estimators with no bias. However there may well exist a biased estimator

with smaller mean squared error. Such an estimator would trade a little bias for a

larger reduction in variance.
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2.3 Subset Selection

In this approach, we retain only a subset of the variables, and eliminate the rest

from the model. Least square estimate is used to estimate the coefficients of the

inputs that are retained. The question of how to choose k inputs involves the

tradeoff between bias and variance, and there are number of criteria that one may

use. Typically we choose the model that minimises an estimate of the expected

prediction error.

Forward step-wise selection starts with the intercept and then sequentially adds the

predictor into the model that improves the fit most. Suppose our current model

has k inputs, represented by parameter estimates β̂ and we add in a predictor that

results in estimates β̃, then the improvement in fit is often based on the F-statistic

given by,

F =
RSS(β̂)− RSS(β̃)

RSS(β̃)/(N − k − 2)

A typical strategy is to add in, sequentially, the predictor producing the largest

value of F, and stopping when no predictor produces an F-ratio greater than the

90th percentile of the F1, N − k − 2 distribution.

Backward Stepwise selection starts with the full model, and sequentially deletes

predictors. Like Forward selection, it typically uses an F-ratio as above to choose

the predictor to delete. In this case we drop the predictor producing the smallest

value of F at each stage, stopping when each predictor in the model produces a value

of F greater than the 90th or 95th percentile when dropped. Backward selection can

only be used when N ≥ p, while Forward Step-wise can be used always. There

are hybrid stepwise selection strategies that consider both forward and backward

moves at each stage, and make the best move; these require a parameter to set the

threshold between when an “add” move is chosen over a “drop” move.

2.4 Shrinkage Methods

By retaining a subset of the predictors and discarding the rest, subset selection

produces a model that is interpretable and has possibly lower prediction error than

the full model. However because it is a discrete process - variables are either retained

or discarded - it often exhibits high variance, and therefore does not reduce the

prediction error of the full model. Shrinkage methods are more continuous, and do

not suffer as much from high variability.
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2.4.1 Ridge Regression

Ridge regression shrinks the regression coefficients by imposing the penalty on their

size. The ridge coefficients minimize a penalised residual sum of squares,

β̂ridge = argmin
β

(

N
∑

i=1

(yi − β0 −
p
∑

j=1

xijβj)
2 + λ

p
∑

j=1

β2
j

)

(2.10)

Here λ ≥ 0 is a complexity parameter that controls the amount of shrinkage. An

equivalent way to write the ridge problem is

β̂ridge = argmin
β

N
∑

i=1

(yi − β0 −
p
∑

j=1

xijβj)
2

subject to

p
∑

j=1

β2
j ≤ s, (2.11)

There is one-to-one correspondence between the parameters λ and s. When there

are many correlated variables in a linear regression model, their coefficients can be-

come poorly determined and exhibit high variance. By imposing size constraint on

the coefficients, this phenomenon is prevented from occurring.

The ridge solutions are not equivalent under scaling of the inputs, and so one nor-

mally standardises the inputs before solving. For reparametrization we use the

centred inputs: each xij gets replaced by xij − x̄j . We estimate β0 by ȳ =
∑N

1 yi/N .

The remaining coefficients get estimated using centred inputs.

Writing the equation (2.10) in matrix form,

RSS(λ) = (Y −Xβ)T (Y −Xβ) + λβTβ (2.12)

Differentiating with respect to β, we obtain

∂RSS(β)

∂β
=

∂RSS(β)

∂(Y −Xβ)

∂(Y −Xβ)

∂β
+ 2λβT

= 2(Y −Xβ)T (−X) + 2λβT

∂RSS(β)

∂βT∂β
= 2(−XT )(−X) + 2

= 2XTX + 2

9



We set the first derivative to zero

2(Y −Xβ)T (−X) + 2λβT = 0

−2Y TX + 2βTXTX + 2λβT = 0

(βTXTX + λβT )T = (Y TX)T

(XTX + λI)β̂ = XTY

β̂ = (XTX + λI)−1XTY (2.13)

where I is the p× p matrix. Ridge regression solves the problem of singularity even

if XTX is not of full rank.

2.4.2 The LASSO (Least Absolute Selection and Shrinkage

Operator)

The LASSO estimate is defined by

β̂lasso = argmin
β

N
∑

i=1

(yi − β0 −
p
∑

j=1

xijβj)
2

subject to

p
∑

j=1

|βj| ≤ t, (2.14)

Just as in Ridge regression, we can reparametrize the constant β0 by standardiz-

ing the predictors; the solution for β̂0 is ȳ, and thereafter we fit a model without

an intercept. The L1 penalty makes the solutions non-linear in yi and quadratic

programming algorithm is used to compute them.

2.5 False Discovery Rate (FDR)

Suppose we have N null hypotheses to consider simultaneously, each with its own

test statistic,

Null hypotheses: H1, H2, ..., Hi, ..., Hn

Test statistic: z1, z2, ..., zi, ..., zn

10



N must be large for local FDR calculations, at least in the hundreds, but the zi

need not be independent. we assume that the N cases are divided into two classes,

null or non-null, occurring with prior probabilities p0 or p1 = 1 − p0 , and with the

density of test statistic z depending upon its class,

p0 = Pr(null)

p1 = Pr(non− null)

f0(z) : density if null

f1(z) : density if non-null.

Define the null subdensity

f+
0 (z) = p0f0(z)

and the mixture density

f(z) = p0f0(z) + p1f1(z)

The local False Discovery Rate is

FDR(z) = Pr(null|z)
= p0f0(z)/f(z)

= f+
0 (z)/f(z)

2.6 Comparison of LASSO and FDR methods

Conventions:

X is a n × p data matrix, Y is n × 1 response variable matrix. Σp×p covariance

matrix of X . t is number of true β values. βi ∼ N(µβ , σ
2
β) for 1 ≤ i ≤ t and βi = 0

for (t+ 1) ≤ i ≤ p.

The simulations are done for three cases: (a) p ≪ n (b) p ∼ n (c) p ≫ n

And plots are produced for different values of a parameter π, where π = t/p.

For LASSO, ‘glmnet’ package (https://cran.r-project.org/web/packages/glmnet/index.html)

is used while for FDR t-statistics are used (since FDR generally gives same rank of

variables as the t-statistics) in ‘R software’ (www.r-project.org).
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2.6.1 Performance criteria

LASSO and FDR methods were evaluated using the following measurements:

The True Positives (TP)

It is the number of positive decisions when tests are true or they can be called as

correctly identified signals.

The True Negatives (TN)

It is the number of negative decisions when tests are false or they can be called as

correctly rejected signals.

The False Positives (FP)

It is the number of positive decisions when tests are false or they can be called as

incorrectly identified signals.

The False Negatives (FN)

It is the number of negative decisions when tests are true or they can be called as

incorrectly rejected signals.

The True Positive Rate (TPR)

It is the probability that the decision is positive when the test is true. This is also

called as Sensitivity and is defined by

Sensitivity = TPR =
TP

TP + FN

The False Positive Rate (FPR)

It is the probability that the decision is positive when the test is false and is defined

by

FPR =
FP

FP + TN
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Specificity

It is the probability that the decision is negative when the test is false and is defined

by

Specificity = 1− FPR

=
TN

TN + FP

Receiver Operating Curve (ROC)

It is created by plotting between TPR and FPR according to various cut-off values.

The Area Under ROC Curve (AUC)

It is used to measure the efficiency of a method.

∆AUC

This is defined as

∆AUC = AUC(LASSO)− AUC(FDR)

2.6.2 The simulation-based estimates

The simulation-based estimates of AUC(LASSO), AUC(FDR) and ∆AUC/AUC(LASSO)

are as follows:
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(a) AUC(LASSO)

(b) AUC(FDR)

Figure 2.1: Area under ROC of both the methods LASSO and FDR, for different
values of π for the three cases - p ≪ n, p = n, and p ≫ n for p = 2000 and varying
n as 500, 2000 and 4000
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Figure 2.2: Relative Difference = ∆AUC/AUC(LASSO)
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2.6.3 ROC of LASSO and FDR methods

(a) Very Sparse

(b) Dense

Figure 2.3: ROC (TPR vs FPR) for p ≪ n case. Red lines represent FDR method
and Black lines represent LASSO method. (a) The ROC curves for π values π = 0.01
(solid line), π = 0.045 (dashed line), π = 0.080 (dotted line), π = 0.115 (dot-dash
line), π = 0.15 (big dashed line). (b) The ROC curves for π values π = 0.75 (solid
line), π = 0.80 (dashed line), π = 0.85 (dotted line), π = 0.90 (dot-dash line),
π = 0.95 (big dashed line)
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(a) Very Sparse

(b) Dense

Figure 2.4: ROC (TPR vs FPR) for p = n case.
Red lines represent FDR method and Black lines represent LASSO method. (a) The
ROC curves for π values π = 0.01 (solid line), π = 0.045 (dashed line), π = 0.080
(dotted line), π = 0.115 (dot-dash line), π = 0.15 (big dashed line). (b) The ROC
curves for π values π = 0.75 (solid line), π = 0.80 (dashed line), π = 0.85 (dotted
line), π = 0.90 (dot-dash line), π = 0.95 (big dashed line)
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(a) Very Sparse

(b) Dense

Figure 2.5: ROC (TPR vs FPR) for p ≫ n case
Red lines represent FDR method and Black lines represent LASSO method. (a) The
ROC curves for π values π = 0.01 (solid line), π = 0.045 (dashed line), π = 0.080
(dotted line), π = 0.115 (dot-dash line), π = 0.15 (big dashed line). (b) the ROC
curves for π values π = 0.75 (solid line), π = 0.80 (dashed line), π = 0.85 (dotted
line), π = 0.90 (dot-dash line), π = 0.95 (big dashed line)

18



2.7 Observations

◮ When p ≪ n, ∆AUC/AUC(LASSO) increases as truths (π) increases.

◮ AUC(LASSO) and AUC(FDR) decreases as truths increases for p = n and

p ≫ n cases.

◮ AUC(LASSO) and AUC(FDR) decrease as we go from p ≪ n to p ≫ n for

almost all the truths (π).

◮ For most cases, ∆AUC is positive.

2.8 Conclusion

In general LASSO performs better than univariate t-test, except in highly sparse

cases. The reasons for above observations of AUC pattern will be investigated in

the future.
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Chapter 3

Principal Component Analysis and

its Application to Codon Usage

Patterns

3.1 Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is one of the feature extraction methods to

identify patterns in data, and expressing the data in such a way as to highlight their

similarities and differences. One of the main advantage of PCA is that once these

patterns are found in the data, the data can be compressed (i.e. the number of

dimensions can be reduced) without much loss of information. This method also

solves the problem of correlation among the variables.

3.1.1 Method

Step 1 : Get a dataset

Let R be a data matrix of dimension n × p where there are p number of variables

(columns) and n number of observations (rows).

R =













r11 r12 r13 . . . r1p

r21 r22 r23 . . . r2p

. . . . . . . . . . . . . . . . . . . . . .

rn1 rn2 rn3 . . . rnp













(3.1)
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Step 2 : Normalize the dataset

Variables can be in different units or scales. So, we need to normalize them to make

them comparable. Normalized matrix will be

X =















r11−r̄1
σr1

r12−r̄2
σr2

r13−r̄3
σr3

. . . r1p−r̄p
σrp

r21−r̄1
σr1

r22−r̄2
σr2

r23−r̄3
σr3

. . .
r2p−r̄p
σrp

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
rn1−r̄1
σr1

rn2−r̄2
σr2

rn3−r̄3
σr3

. . . rnp−r̄p
σrp















(3.2)

where, rj be the jth column of data matrix R, r̄j =
∑

i rij

n
, and σrj is the standard

deviation of rthj column or variable..

Now let,

xij =
rij − r̄j
σrj

(3.3)

The normalized data matrix will be

X =













x11 x12 x13 . . . x1p

x21 x22 x23 . . . x2p

. . . . . . . . . . . . . . . . . . . . . . .

xn1 xn2 xn3 . . . xnp













(3.4)

Step 3 : Calculate the covariance matrix

The covariance matrix of Xn×p is given by

CX =
1

n− 1
XTX =













σ2
11 σ2

12 σ2
13 . . . σ2

1p

σ2
21 σ2

22 σ2
23 . . . σ2

2p

. . . . . . . . . . . . . . . . . . . . . .

σ2
p1 σ2

p2 σ2
p3 . . . σ2

pp













(3.5)

where σ2
ij is the covariance between ith and jth variables (columns).

Step 4 : Calculate eigen values and eigen vectors of covariance matrix

According to the Singular Value Decomposition theorem, for a m × n matrix A

whose entries are real or complex numbers, there exists a factoriazation (Singular

Value Decomposition) of the form

A = UΣV ⋆ (3.6)
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where, U is a m ×m unitary matrix, Σ is a diagonal m × n matrix with diagonal

entries as singular values, V is a n × n unitary matrix and V ⋆ is the conjugate

transpose of V and thus also unitary.

Hence, data set X can be written as a singular value decomposition as

X = UΣV ⋆

XTX = (UΣV ⋆)T (UΣV ⋆)

(XTX)V = V Σ2V ⋆V

(XTX)V = V Σ2

This reduces to a eigen value problem, where V is the matrix of eigen vectors of

XTX and Σ2 is the square matrix whose diagonal entries are the eigen values of

XTX . Hence,

CXV =
1

n− 1
(XTX)V =

1

n− 1
V Σ2 (3.7)

These eigen vectors, when arranged in decreasing order of eigen values, form the

new directions or dimensions.

Step 5 : Deriving the new data set

The above analysis gives the new rotated directions. Now, we need to project the

original data on these new rotated axes. Hence, the new dataset is

Z = XV (3.8)

Z is called as Score Matrix. The columns Zi’s of Z are called the Principal

Components (PC). They account for the variance in the data in decreasing order.

Here, the ith Principal Component is given by

PCi =
[

x1 x2 x3 . . . xp

]



















v1i

v2i

v3i
...

vpi



















(3.9)
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where, i ∈ [1, n]. Variance accounted for ith PC is given by

V ar(PCi) = V ar(Xvi)

= vTi Cov(X)vi

= vi
V Σ2V ⋆

n− 1
vi

=
(Σ2)ii
n− 1

Hence, when eigen values are arranged in the decreasing order, ith eigen value rep-

resents the variance accounted by ith Principal Component.

3.2 Application of PCA to Codon Usage Data of

Human and HIV-1 Genes

3.2.1 Introduction

The information about the making of an organism is transferred between genera-

tions through its DNA, which is composed of a string of four nucleotide bases A,

T, G and C. The information coded in this string is elaborated through transcrip-

tion (DNA to mRNA) and translation (mRNA to protein) which function in the

regulation of the biochemical pathways and other cellular processes. Many viruses

store their genetic information in RNA (Retroviruses), which reverse transcribe the

RNA to DNA, integrate their DNA into the host cellular DNA, and then complete

the protein synthesis process. The Human Immunodeficiency Virus, HIV-1, which is

the causative agent of the disease AIDS, is a RNA virus. On entering the host cells

in human, it integrates to the host DNA. HIV-1 uses the host’s translational ma-

chinery to translate their own genes. Thus, HIV-1 can be called as ‘a translational

parasite’ on humans. Additionally, HIV genome is rich in A and T nucleotides,

whereas human genome is G-C rich. This implies that HIV genes are translated

poorly in the G-C rich host. Thus, deciphering the molecular basis of host-pathogen

interactions is useful in understanding the factors governing pathogen evolution and

disease propagation.

The three-letter genetic code used for translation from mRNA to proteins is degen-

erate, as multiple codons can code for the same amino acid (synonymous codons).

Most organisms exhibit differences in base composition and significant codon bias

(unequal usage of synonymous codons). Synonymous mutations (that alter the code
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but not amino acid) can change the base composition of genes without altering the

corresponding protein sequence. Intuitively, synonymous mutations appear to be

‘neutral’ or ‘near neutral’ in their effects, however, their evolutionary consequences

are being increasingly understood [PRL04, EP04, UH03, A08]. Studies show that

codon bias and synonymous mutations are under weak selection, driving evolution

in various organisms [CPH06, Ike85, Sto08]. Genes that are enriched for the pre-

ferred codons are known to have higher translational efficiency [CH09, KCT+03].

It has been shown in few bacteria-bacteriophage host-pathogen systems that long

term co-evolution has resulted in some genes of bacteriophage being enriched in the

codons preferred by their respective bacterial hosts [LNKP08]. In contrast, several

RNA viruses show low association with their hosts in both base composition and

codon usage [JH03]. Rationally, for a pathogen, which translates inside the host,

having a codon bias similar to host’s bias would help it to exploit the host’s resources

more efficiently. A balance between selection, mutation, and genetic drift maintains

codon bias in host and pathogens. Thus, studies revealing determinants of the bias

and its dynamics are central to the understanding of host-pathogen evolution.

In this project, we examine the codon usage pattern as a signature of pathogen

genome evolution in host-pathogen interactions, for the Human Immunodeficiency

Virus type 1 (HIV-1), in relation to its human host. HIV-1 is capable of undergoing

rapid sequence level changes to evade the host’s defence machinery, which is par-

tially a result of strong immune selection pressure levied by the host. HIV-1 genome

comprises of nine genes, which can be divided into two classes based on their func-

tion: structural genes (env, gag and pol) that form the essential components of the

virus particle [Wil03, WPB+05]; and regulatory genes (nef, rev, tat, vif and vpu).

Of these, regulatory genes rev and tat are mandatory [AC91, DSR+86, FFJ+86]

and the remaining four genes are termed “accessory”, as they are required for effi-

cient replication of virus, but have been shown to be mandatory for survival in vitro

[AH04, MS97, Tro95]. Below I show the codon usage pattern for the nine HIV-1

genes and compare them to that of the human genes.

3.2.2 Materials and Methods

Data Acquisition

To perform large scale codon usage analysis of the nine genes of HIV-1, we chose

241 whole genomes collected over a period of 13 years. HIV-1 genome sequence files

were downloaded (in FASTA format) from the Los Alamos National Laboratory HIV
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Sequence Database (www.hiv.lanl.gov, Oct 2016). 241 whole genome sequences

of various subtypes deposited from year 1983 to 1995 were analysed. To avoid

database bias, several checks were carried out. Only one sequence per patient was

downloaded per year in order to avoid bias within a year. To avoid bias in gene-

specific sequence deposition, we used Gene Cutter (www.hiv.lanl.gov) to clip all the

genes from the whole genome sequence. Thus, equal number of sequences for all

genes were available for each year, which were used for the analysis. Codon usage

table for the average of human genes was retrieved from the Codon Usage Table

Database (http://www.kazusa.or.jp/codon/) derived from GenBank Release 160.0

(June 15, 2007) [NGI00].

Codon Usage Analysis

Different scaling methods have been proposed for the study of codon usage pattern as

they are associated with different biases like gene length, amino acid composition and

the number of synonymous codons [PT02]. In order to avoid such biases in the codon

usage data, I used the normalized codon frequency values calculated by scaling the

frequencies for each codon with respect to the maximally-used synonymous codon

for a particular amino acid [SST05],

nij =
xij

xjmax

(3.10)

where, nij is the normalized value for ith codon and jth amino acid, xij is the fre-

quency of ith codon for the jth amino acid, and xjmax is the frequency of the maxi-

mally used synonymous codon for the jth amino acid. The start codon (AUG), the

single codon (UGG) for tryptophan, and the three stop codons (UAA, UAG and

UGA) were not included in the analysis.

Statistical Analysis

Multivariate Analysis methods are performed to reduce large number of variables or

dimensions to a smaller number of new variables, so that they can be analysed while

preserving most of the information of the original data. PCA was performed on the

codon usage data for the nine HIV-1 genes and the average of human genes. Here we

had 59 variables corresponding to the 59 degenerate codons, with 10 observations

corresponding to the normalized codon usage value for HIV-1 genes and human.

Thus the total data analysed is (241 genomes × 9 genes × 59 codons) plus the
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average codon usage of the human genes. Data curation was done manually, and

the ‘R software’ (www.r-project.org) was used for the analysis.

3.3 Results

3.3.1 Codon usage pattern of HIV-1 genes

The codon usage pattern of nine HIV-1 genes was normalized (refer Materials and

Methods) by taking the total frequency for each of the 59 codons for 9 genes extracted

from 241 whole genomes. Figure 3.1 shows the table of normalized codon usage data

of 18 amino acids for 9 genes for all years, along with the host human. This data was

analysed using PCA. Figure 3.2(a) shows the biplot of the first two components of

PCA (accounting for 50.23% variance). The figure shows presence of a cline in the

HIV-1 genes with respect to human. Of the four regulatory genes (nef, rev, tat and

vpr), rev gene is closest to human followed by tat, nef and vpr, respectively. The

three structural genes (env, gag, and pol) and the two other regulatory genes (vif

and vpu) cluster away from human. This indicates that the codon usage patterns

are different among the HIV-1 genes, and some of them are closer to the human

host.

3.3.2 Temporal variability in the codon usage patterns of

HIV-1 genes

In order to study if the non-random distribution of codon usage pattern of HIV-1

genes (as seen in Figure 3.2(a)) has any temporal trend, I performed a year-wise

study of the normalized codon usage pattern of the HIV-1 genes from 1983 to 1995

using PCA. The first six Principal Components accounted for 89.65% of the variance

in data. Figure 3.2(b) shows the first three PCs (accounting for 62.82% variance)

for the data, where 13 points in PCA space (for 13 years) for each gene cluster close

to each other. Four genes env, gag, pol and vif that clustered away from human in

Figure 3.2(a), exhibit low cluster variance over the years - indicating comparatively

stable (invariant) codon usage pattern. The nef, rev, tat, vpr and vpu genes exhibit

high cluster variance indicating larger variation in their codon usage pattern over

the 13 years. Since all gene sequences for each year were obtained from the same

genomes, this variability in Figure 3.2(b) is representative of the intrinsic difference

in codon usage, and not due to within-sample variations for any specific year. This

analysis implies that the genes (nef, rev, tat, and vpr) of HIV-1 not only show
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differential segregation (with respect to human host), they also exhibit far more

temporal variability in their codon usage patterns compared to the other genes.

Figure 3.1: Normalized codon usage data of 18 amino acids for nine HIV-1 genes
from 241 whole genomes for 13 years and average human codon usage
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(a) Biplot

(b) Plot of 3 principal components

Figure 3.2: Multivariate Analysis of the codon usage patterns of nine HIV-1 genes
and human. (a) Biplot of the first two Principal Components for nine HIV-1 genes
and human. (b) First three Principal Components plot for human genes and nine
HIV-1 genes for 13 years. Different colours are assigned for different HIV-1 genes
and human. Each gene-specific cluster contains 13 data points corresponding to the
genomes from 13 years.
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Chapter 4

Hierarchical Model for Genome

Wide Association Study (GWAS)

of Psoriasis

4.1 Bayesian Statistics

Scientific hypotheses typically are expressed through probability distributions for ob-

servable scientific data. These probability distributions depend on unknown quan-

tities called parameters. In the Bayesian paradigm, current knowledge about the

model parameters is expressed by placing a probability distribution on the parame-

ters, called the ‘prior distribution’, often written as

p(θ)

When new data become available, the information they contain regarding the model

parameters is expressed in the ‘likelihood’, which is proportional to the distribution

of the observed data given the model parameters, written as

p(y|θ)

This information is then combined with the prior to produce an updated probability

distribution called the ‘posterior distribution’, on which all Bayesian inference is

based. Bayes’ Theorem, an elementary identity in probability theory, states how the

update is done mathematically: the posterior is proportional to the prior times the
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likelihood, or more precisely,

p(θ|y) = p(y|θ)p(θ)
∫

θ
p(y|θ)p(θ)dθ (4.1)

where the denominator is the ‘marginal likelihood’.

The fullest version of the Bayesian paradigm casts statistical problems in the frame-

work of decision making. It entails formulating subjective prior probabilities to

express pre-existing information, careful modelling of the data structure, checking

and allowing for uncertainty in model assumptions, formulating a set of possible

decisions and a utility function to express how the value of each alternative decision

is affected by the unknown model parameters (http://bayesian.org/Bayes)

4.2 Some Genetics Concepts

4.2.1 Single Nucleotide Polymorphisms (SNP)

Single Nucleotide Polymorphisms, frequently called SNPs, are the most common

type of genetic variation among people. Each SNP represents a difference in a single

DNA building block, called a nucleotide. For example, a SNP may replace the nu-

cleotide cytosine (C) with the nucleotide thymine (T) in a certain stretch of DNA.

SNPs occur normally throughout a persons DNA. They occur once in every 300 nu-

cleotides on average, which means there are roughly 10 million SNPs in the human

genome. Most commonly, these variations are found in the DNA between genes.

They can act as biological markers, helping scientists locate genes that are associ-

ated with disease. When SNPs occur within a gene or in a regulatory region near a

gene, they may play a more direct role in disease by affecting the genes function.

Most SNPs have no effect on health or development. Some of these genetic differ-

ences, however, have proven to be very important in the study of human health. Re-

searchers have found SNPs that may help predict an individuals response to certain

drugs, susceptibility to environmental factors such as toxins, and risk of developing

particular diseases. SNPs can also be used to track the inheritance of disease genes

within families. Future studies will work to identify SNPs associated with complex

diseases such as heart disease, diabetes, and cancer.

4.2.2 Genotype and Phenotype

The genotype is a person’s complete heritable genetic identity. Personal genome se-

quencing reveals the unique genome of each individual. However, the word genotype
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can also refer just to a particular gene or set of genes carried by an individual. For

example, if a person carries a mutation that is linked to diabetes, then that may

just be referred to its genotype with respect to this mutation without consideration

of all the other gene variants that it may carry.

In contrast, the phenotype is a description of the person’s actual physical charac-

teristics. This includes straight-forward visible characteristics like, height and eye

color, but can also include overall health, disease history, and even behavior and

general disposition. However, not all phenotypes are a direct result of a person’s

genotype. Most phenotypes are influenced by both the genotype and by the unique

circumstances in which a person has lived its life. These two inputs are often referred

to as nature, the unique genome one carries, and nurture, the environment in which

one has lived one’s life.

4.2.3 Allele

An allele is a variant form of a gene. Some genes have a variety of different forms,

which are located at the same position, or genetic locus, on a chromosome. Humans

are called diploid organisms because they have two alleles at each genetic locus, with

one allele inherited from each parent. Each pair of alleles represents the genotype

of a specific gene. Genotypes are described as homozygous if there are two identical

alleles at a particular locus and as heterozygous if the two alleles differ. Alleles

contribute to the organism’s phenotype, which is the outward appearance of the

organism.

Some alleles are dominant or recessive. When an organism is heterozygous at a

specific locus and carries one dominant and one recessive allele, the organism will

express the dominant phenotype. Alleles can also refer to minor DNA sequence

variations between alleles that do not necessarily influence the gene’s phenotype.

4.2.4 Linkage Disequilibrium (LD)

Linkage disequilibrium (LD) is a property of SNPs on a contiguous stretch of ge-

nomic sequence that describes the degree to which an allele of one SNP is inherited

or correlated with an allele of another SNP within a population. The term LD was

coined by population geneticists in an attempt to mathematically describe changes

in genetic variation within a population over time. It is related to the concept of

chromosomal linkage, where two markers on a chromosome remain physically joined

through generations of a family. Recombination events within a family from gen-

eration to generation break apart chromosomal segments. This effect is amplified
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through generations, and in a population of fixed size undergoing random mating,

repeated random recombination events will break apart segments of contiguous chro-

mosome (containing linked alleles) until eventually all alleles in the population are

in linkage equilibrium or are independent. Thus, linkage between markers on a

population scale is referred to as linkage disequilibrium.

4.3 Genome-Wide Association Studies (GWAS)

A genome-wide association study is an approach that involves rapidly scanning

markers across the complete sets of DNA, or genomes, of many people to find genetic

variations associated with a particular disease. Once new genetic associations are

identified, researchers can use the information to develop better strategies to detect,

treat and prevent the disease. Such studies are particularly useful in finding genetic

variations that contribute to common, complex diseases, such as asthma, cancer,

diabetes, heart disease and mental illnesses.

4.3.1 Dataset for Case-Control Studies

Let, there be p SNPs considered in GWAS data for n individuals (n1 Controls and

n2 Cases such that n = n1 + n2 ).

Genotype Data - Let, Xn×p be the Genotype data matrix where Xij be the genotype

of ith individual for jth SNP. The three possible genotypes at a particular locus are

encoded in the following way:

AA - 0, Aa - 1, and aa - 2

Where ‘A’ is a major allele and ‘a’ is a minor allele.

Phenotype Data - Let, Yi be the phenotype of the ith individual. In case-control

studies it is given as:

Yi = 0 for control and Yi = 1 for case

We applied the hierarchical model on GWAS data of Psoriasis disease which com-

prises of 586266 SNPs for 688 Controls and 926 Cases [www.ncbi.nlm.nih.gov/projects/gap/cgi−
bin/study.cgi?studyid = phs000019.v1.p1].

4.3.2 Quality Control Check

The following quality control checks were done on GWAS genotype data :
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1. Dropped the SNPs having ≥ 90% individuls data and also the individuals

having ≥ 90% missing SNP data.

2. Dropped the SNPs having Minor Allele Frequency (MAF) ≤ 1%

3. Replaced the missing values for each SNPs by the average genotype value.

4. Dropped the SNPs which are monomorphic or for which variance equals to

zero.

The above quality control check is done on both the control genotypic data and also

in cases genotypic data. Then only those SNPs are included in the analysis which

are left in both the datasets after quality control check.

4.3.3 PCA on GWAS data

Let, after the quality control check, we are left with X1(t×n1) (Control genotype

matrix) and X2(t×n2) (Case genotype matrix). Since some SNPs can be correlated as

an effect of LD, PCA is performed on Genotypic data of controls (XT
1 ), which will

be used to solve population stratification problem later. Let, Vt×n1 be the loading

matrix of this PCA. Then, the two Score (S) matrices are computed as

Scontrols = XT
1 V Scases = XT

2 V (4.2)

If the proportion of cases in the population is very low, only loading matrix of control-

PCA is used. There are a total n1 PCs. After concatenating the two matrices we

get a Score for S(n1+n2)×n1
for n1 controls and n2 cases.

Let, Y(n1+n2)×1 be the disease status data matrix, where the first n1 entries are 0′s

representing controls, and the remaining n2 entries are 1′s representing cases. Since

the data is now binary, Logistic regression is performed on Y and S by taking first

l components from S, where l varies from 1 to n1.

4.4 Hierarchical Model

In association studies, statistical models have been developed to identify shared char-

acteristics of SNPs that influence a disease. In a hierarchical modelling framework,

the probability that a given SNP is a causal can then depend on these character-

istics. In the GWAS context, the number of loci unambiguously associated with a

given trait or a disease has historically been very small. The goal of this approach
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is to identify the shared characteristics of SNPs and find those SNPs that causally

influence the trait or disease [Pic14].

4.4.1 Method

The basic building block of the modelling process is the linear regression model.

Let, ȳ be the vector of phenotypes and ḡ be the vector of genotypes. A standard

additive linear model is -

E(yi) = α + βgi (4.3)

The Null and Alternative hypotheses are defined as

H0 : β = 0

H1 : β 6= 0

Let us consider a set of M SNPs, each of which has been genotyped in N individuals

in a GWAS. Because of LD, there will be many SNPs whose associations are not

causal. However, these will all be restricted to a block around the truly causal site.

Hence, the genome is split into contiguous blocks of size K SNPs such that there

are M/K blocks. The block size is chosen to be much larger than the extent of LD

in the population.

Let, Πk be the prior probability that block k contains a causal SNP associated with

the trait. Let ∆k be the parameter for the region k denoting if the region contains

a causal SNP or not (having values 1 or 0). The probability of the data (the set of

observed phenotypes) is then given by

P (ȳ) =

M/K
∏

k=1

(1− Πk)P
0
k +ΠkP

1
k (4.4)

where

P 0
k = P (Data|∆k = 0)

P 1
k = P (Data|∆k = 1)

P 1
k =

∑

i∈Sk

πikP
1
ik

where Sk is the set of SNPs in the block k. Assume that there is a single association

in block k. Let δik be the parameter for the ith SNP in the kth region to be causal
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or not (1/0). So,

πik = P (δik = 1|∆k = 1)

P 1
ik = P (Data|δik = 1)

4.4.2 Computing Bayes factor

Let, β̂ be the maximum-likelihood estimate of β such that

β̂ ∼ N(β, V )

β ∼ N(0,W )

Then, Bayes factor (BF) is given as

BF =
P (ȳ|ḡ, H1)

P (ȳ|ḡ, H0)
=

∫

P (β̂|β)Π(β)dβ
P (β̂|β = 0)

(4.5)

where

P (β̂|β) = 1√
2V 2π

exp−
(β̂−β)2

2V 2

Π(β) =
1√

2W 2π
exp−

(β)2

2W2

P (β̂|β = 0) =
1√
2V 2π

exp−
(β̂)2

2V 2

The second equality in equation 4.5 is computed in Wakefield [Wak09], which uses

summary of the linear regression for finding the Bayes factor.

4.4.3 Fitting the Model

When the terms above are combined, the likelihood of the data can be written as,

L(ȳ|θ) =
M/K
∏

k=1

(1−Πk)P
0
k +Πk

K
∑

i=1

πijP
1
ik (4.6)

L(ȳ|θ) =
M/K
∏

k=1

P 0
k [(1−Πk)P

0
k +Πk

K
∑

i=1

πijBFi] (4.7)

where θ contains all the parameters of the model. This function is maximised to get

Π̂k.
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4.4.4 Posterior Probabilities of Association (PPA)

Once the model has been fit, it produces empirical estimates of the prior probability

that region k contains an association, Π̂k, and of the prior probability that SNP i is

the causal one, π̂ik (on the condition that there is an association). Let us define a

Bayes factor that summarizes the evidence of association in the region as,

BFR
k =

∑

i∈Sk

π̂ikBFi = P 1
k /P

0
k

where

BFi =
P 1
ik

P 0
k

Now the posterior probability that region k contains an association is given by

P (∆k = 1|Data) =
P (Data|∆k = 1)P (∆k = 1)

P (Data)

=
P 1
kΠk

(1− Πk)P 0
k +ΠkP 1

k

=
Π̂kBFR

k /(1− Π̂k)

1 + Π̂kBFR
k /(1− Π̂k)

We can also define the posterior probability that any given SNP i in region k is the

causal one under the model

P (δik = 1|Data,∆k = 1) =
P (Data|δik = 1,∆k = 1)P (δik = 1|∆k = 1)

P (Data|∆k = 1)

=
P 1
ikπ̂ik

P 1
k

=
P 1
ikπ̂ik

∑

j∈Sk
π̂jkP 1

jk

=
P 1
ikπ̂ik/P

0
k

∑

j∈Sk
π̂jkP 1

jk/P
0
k

=
π̂ikBFi

∑

j∈Sk
π̂jkBFj

Hence, the Posterior probability that any given SNP is causal is given by

P (δik = 1|Data) = P (∆k = 1|Data)P (δik = 1|Data,∆k = 1) (4.8)

38



4.4.5 Population Stratification (PS)

Population stratification [ZZQ+15] refers to the presence of a systematic difference

in allele frequencies between subpopulations in a study due to ancestry difference

between the study subjects.

Problems caused due to PS in GWAS-

1. Unrecognized population stratification can lead to both false-positive and false-

negative findings.

2. It can obscure the true association signals if not appropriately corrected.

Recognizing the issue of population stratification induced by population structures,

various methods have been developed to control for population stratification. Two

approaches are

1. Genomic control [DR99] and

2. EIGENSTRAT [PPR06]

Genomic control -

The genomic control method corrects for stratification by adjusting association

statistics with an overall inflation factor obtained from a set of random markers

that are not associated with the phenotypes of interest. However, some markers dif-

fer in their allele frequencies across ancestral populations more than others. Thus,

the uniform adjustment may be insufficient at markers having strong differentiation

across ancestral populations and may be superfluous at markers lacking such differ-

entiation.

EIGENSTRAT -

The current state-of-the-art approach for the correction of population stratification is

EIGENSTRAT, which computes principal components for SNPs across the genome

to identify population structure. In this approach, a small number of top principal

components will capture the main axes of genetic variation in the study subjects.

Correction for population stratification is carried out by including these top princi-

pal components as covariates in a regression framework. In this study, I test each

SNPs association with the outcome of interest by building a logistic regression model

that includes the specific SNP as one factor and the selected PCs as covariates.
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(a) Q-Q plot before PS correction (b) Q-Q plot after PS correction

Figure 4.1: Q-Q plots before and after PS correction. (a) P-values from logistic
regression on Psoriasis data. (b) P-values obtained after correcting population
stratification problem by using 20 PCs in EIGENSTRAT correction (equation (4.9))

4.4.6 Association testing using Logistic Regression models

To perform the association analysis for each SNP, a logistic regression model was

used with the specific SNP as one factor and the PCs from the robust method as

the covariates for the Psoriasis data.

logit(Y ) = α+ βg + γX (4.9)

where Y represents the binary response variable (such as the disease status - 0/1),

g represents the genotype value of the specific SNP, X represents the PCs from the

EIGENSTRAT method. The plots show the results obtained for the specific data

(see Section 4.3.1) analysed.

4.4.7 Quantile-Quantile (Q-Q) plot

QQ plots are used to visualize the relationship between the expected and observed

distributions of SNP-level test statistics. In Figure 4.1(a), observed − log(p−value)

is plotted against expected − log(p− value) by using p-values from the logistic re-

gression from equation (4.3). The tail of the distribution of observed values deviate

considerably from expected. The tail is brought closer to the y = x line after ac-

counting for potential confounding by population stratification (as shown in 4.1(b))

in which p-values are obtained by equation (4.9) . Even after that, the two lines do

not overlap, which implies that some form of association is present in the data.

Genomic Inflation Factor
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The genomic inflation factor (λ ) is defined as the ratio of the median of the empir-

ically observed distribution of the test statistic (χ2) to the expected median, thus

quantifying the extent of the bulk inflation and the excess false positive rate.

λ = median(χ2)/0.456

χ2
adjusted = χ2/λ

Inflated λ values or residual deviations in the QQ plot may point to undetected sam-

ple duplications, unknown familial relationships, a poorly calibrated test statistic,

systematic technical bias or gross population stratification. For Psoriasis data, I

computed genomic inflation factor as 1.87, which shows the presence of population

stratification. So, we corrected it by using EIGENSTRAT approach with first 3

principal components (equation (4.9)).

4.4.8 Manhattan plots

Manhattan plots are used to visualize GWA significance level by chromosome lo-

cation as shown in Figure 4.2. Here, each dot corresponds to a single SNP. The

x-axis represents gene coordinates, and the numbers shown correspond to chromo-

some numbers. The y-axis is the negative of the log(p-value) in Figure 4.2(a) and the

negative of the log(1-PPA) in Figure 4.2(b), where PPA stands for Posterior Proba-

bility of Association for SNP. The red line in Figure 4.2(a) indicates the Bonferonni

corrected significance threshold − log(5 × 10−8). The black line is a less stringent

suggestive association threshold − log(5 × 10−6) that we use as an indicator of a

suggestive association and requiring further validation.
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(a) Manhattan plot of p-values

(b) Manhattan plot of (1-PPA)

Figure 4.2: Manhattan plots of p-values and (1-PPA) for the SNPs in the Psoriasis
data-set. (a) By using p-values from frequentist approach which shows marginal
association using logistic regression (equation (4.9)). (b) By using (1-PPA) from
Empirical Bayes approach (Hierarchical model). The red line is for PPA = 0.9

.
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4.5 Summary

◮ We replicated the approach of Pickrell 2014 [Pic14], implemented it in R and

applied it on Psoriasis GWAS data.

◮ SNPs rs2844627, rs13191258, rs12191877, rs9267673 on the 6th chromosome were

found to have significant posterior probability of being causal (PPA≥ 0.9).

◮ Due to high correlation of SNPs in local neighbourhoods, locating causal SNPs

is a hard problem in GWAS. The strategy of assuming one causal SNP per region

(prior) helps significantly to solve this problem.
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APPENDIX : Programs

1. Comparison of LASSO and FDR methods

#Simulat ions :

s e t . seed (150)

n <− 500

p <− 2000

pi <− seq ( 0 . 0 1 , 0 . 1 5 , l ength . out=5)

t <− f l o o r (p∗pi )
sigma <− matrix (0 , p , p )

diag ( sigma ) <− 1

l i b r a r y (mvtnorm)

xs <− rmvnorm(n , mean=rep (0 , p ) , sigma=sigma )

s i g . t rue <− 20

#LASSO:

l a s s o mat <− func t i on (y )

{
l i b r a r y ( glmnet )

f i t <− glmnet ( x=xs , y=y)

seq <− unique ( f i t $ df )

lambda . new <− NULL

f o r ( r in 1 : l ength ( seq ) )

{
lambda . new [ r ] <− f i t $lambda [ which ( f i t $ df==seq [ r ] ) [ 1 ] ]

}
f i t 1 <− glmnet ( x=xs , y=y , lambda=c ( lambda . new , 1 0 ˆ ( seq ( log10 ( 0 . 7 ) ,

log10 ( 0 . 0 0 2 ) , l ength . out=50) ) , 0 ) )

mat1 <− as . matrix ( c o e f ( f i t 1 ) )

seq1 <− unique ( f i t 1 $ df )

mat1 <− mat1 [−1 , ]

mat l a s s o <− t (mat1 )

f o r ( k in 1 : nco l (mat l a s s o ) ) {mat l a s s o [ mat l a s s o [ , k ] != 0 , k ] <− 1}
l i s t (mat=mat la s so , df=seq1 )

}
#FDR:

fd r mat <− func t i on (y , vec )

{
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l i b r a r y ( l o c f d r )

bet <− NULL

f o r ( k in 1 : p )

{
bet [ k ] <− summary( lm (y˜xs [ , k ] ) ) $ c o e f [ 2 , 3 ]

}
no<− as . l i s t ( rep (NA, length ( vec ) ) )

s o r t bet <− s o r t ( abs ( bet ) , de c r ea s ing=TRUE)

f o r ( q in 1 : l ength ( vec ) ) {no [ [ q ] ]<− which ( abs ( bet ) >= so r t bet [ vec [ q

] ] ) }
mat fd r <− matrix (0 , l ength ( vec ) ,p )

f o r ( l in 1 : l ength ( vec ) )

{
f o r (m in 1 : l ength ( no [ [ l ] ] ) ) {mat fd r [ l , no [ [ l ] ] [m] ] <− 1}

}
r e turn (mat fd r )

}
summarize <− func t i on ( type )

{
TP <− TN <− FP <− FN <− nvar <− as . l i s t ( rep (NA, length ( t ) ) )

sens <− spec <− TPR <− FPR <− as . l i s t ( rep (NA, length ( t ) ) )

l en <− rep (NA, length ( t ) )

f o r ( j in 1 : l ength ( t ) )

{ t t <− t [ j ]

mat type <− i f ( type==” l a s s o ” ) a r r . l i s t [ [ 1 ] ] [ [ j ] ] e l s e a r r . l i s t

[ [ 2 ] ] [ [ j ] ]

l en [ j ] <− nrow(mat type )

gamma <− t ( as . matrix ( c ( rep (1 , t t ) , rep (0 , p − t t ) ) ) )

sens [ [ j ] ] <− spec [ [ j ] ] <− FPR [ [ j ] ] <− TPR[ [ j ] ] <− numeric ( l en [ j ] )

f o r ( i in 1 : l en [ j ] )

{ TP <− sum(mat type [ i , 1 : t t ]==1)

TN <− sum(mat type [ i , ( t t +1) : p]==0)

FP <− sum(mat type [ i , ( t t +1) : p]==1)

FN <− sum(mat type [ i , 1 : t t ]==0)

pr in t (TP/FP)

sens [ [ j ] ] [ i ] <− TP/ (TP + FN)

spec [ [ j ] ] [ i ] <− TN / (TN + FP)

FPR [ [ j ] ] [ i ] <− 1 − spec [ [ j ] ] [ i ]

TPR[ [ j ] ] [ i ] <− sens [ [ j ] ] [ i ]

}
}
l i s t ( Spec=spec , Sens=sens , FPR=FPR, TPR=TPR, l en=len )

}
#plo t s

p l o t s <− func t i on ( type , curve name , r e s )
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{
f o r ( j in 1 : l ength ( t ) )

{
t t <− t [ j ]

f i r s t <− ( type == ” l a s s o ” && j == 1)

x var <− y var <− numeric ( r e s $ l en [ j ] )

f o r ( i in 1 : r e s $ l en [ j ] )

{ i f ( curve name==” sens ” )

{
x var [ i ] <− vect [ [ j ] ] [ i ]

y var [ i ] <− r e s $Sens [ [ j ] ] [ i ]

x lab <− ” df ”

y lab <− ” s e n s i t i v i t y ”

x l im <− c (0 , p )

p lo t name <− ” S e n s i t i v i t y vs #Var iab l e s s e l e c t e d ”}
e l s e i f ( curve name==” spec ” )

{x var [ i ] <− vect [ [ j ] ] [ i ]

y var [ i ] <− r e s $Spec [ [ j ] ] [ i ]

x lab <− ” df ”

y lab <− ” s p e c i f i c i t y ”

x l im <− c (0 , p )

p lo t name <− ” S p e c i f i c i t y vs #Var iab l e s s e l e c t e d ”}
e l s e i f ( curve name==”ROC” )

{x var [ i ] <− r e s $FPR [ [ j ] ] [ i ]

y var [ i ] <− r e s $TPR[ [ j ] ] [ i ]

x lab <− ”FPR”

y lab <− ”TPR”

x l im <− c (0 , 1 )

p l o t name <− ”ROC Curve”}
}
i f ( f i r s t ) p l o t ( x var , y var , ” l ” , x lab=x lab , y lab=y lab , xlim=x lim

, ylim=c (0 , 1 ) ,main=p lo t name , l t y=1)

i f ( ! f i r s t && type==” l a s s o ” ) l i n e s ( x var , y var , ” l ” , x lab=x lab , y lab=

y lab , main=p lo t name , l t y=j )

i f ( ! f i r s t && type==” fdr ” ) l i n e s ( x var , y var , ” l ” , x lab=x lab , y lab=y

lab , main=p lo t name , c o l=”RED” , l t y=j )

}
}
i f (TRUE)

{
y <− matrix (NA, length ( t ) , n)

f o r ( j in 1 : l ength ( t ) )

{
beta <− rnorm( t [ j ] , mean=1, sd=0.5)

beta . t rue <− c ( beta , rep (0 , (p − t [ j ] ) ) )
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p lo t ( dens i ty ( beta . t rue ) )

y [ j , ] <− rnorm(n , mean=drop ( xs $\%$∗$\%$ beta . t rue ) , sd=s i g . t rue

)

}
vect <− as . l i s t ( rep (NA, length ( t ) ) )

a r r . l i s t <− as . l i s t ( c (NA, NA) )

a r r . l i s t [ [ 1 ] ] <− as . l i s t ( 1 : l ength ( t ) )

a r r . l i s t [ [ 2 ] ] <− as . l i s t ( 1 : l ength ( t ) )

f o r ( j in 1 : l ength ( t ) )

{
l a s s o . r e s <− l a s s o mat(y [ j , ] )

vect [ [ j ] ] <− l a s s o . r e s $ df

fd r . r e s <− fd r mat(y [ j , ] , vec=vect [ [ j ] ] )

a r r . l i s t [ [ 1 ] ] [ [ j ] ] <− l a s s o . r e s $mat

a r r . l i s t [ [ 2 ] ] [ [ j ] ] <− fd r . r e s

}
}
r e s 1 <− summarize ( ” l a s s o ” )

r e s2 <− summarize ( ” fd r ” )

pdf ( ” l a s s o+fdr wrt t univ ( fd r ) beta . pdf ” )

p l o t s ( ” l a s s o ” , ” sens ” , r e s=re s1 )

p l o t s ( ” fd r ” , ” sens ” , r e s=re s2 )

p l o t s ( ” l a s s o ” , ” spec ” , r e s=re s1 )

p l o t s ( ” fd r ” , ” spec ” , r e s=re s2 )

p l o t s ( ” l a s s o ” , ”ROC” , r e s=re s1 )

p l o t s ( ” fd r ” , ”ROC” , r e s=re s2 )

dev . o f f ( )

2. Three PC Plot for codon usage data

l i b r a r y ( x l sx )

l i b r a r y ( r g l )

data1 <− read . x l sx ( ” yearwise . x l s x ” , sheet Index=1) #input the codon

usage data

data1 <− data1 [ 1 : 5 9 , 3 : 1 2 ]

data1 <− t ( data1 )

data1 <− as . matrix ( data1 )

j <− 2

whi l e ( j <= 13)

{
data <− read . x l sx ( ” yearwise . x l s x ” , sheet Index=j )

data <− data [ 1 : 5 9 , 3 : 1 2 ]

data <− t ( data )

data <− as . matrix ( data )

data1 <− rbind ( data1 , data )

j <− j+1
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}
co l our <− c ( rainbow (10) , rainbow (10) , rainbow (10) , rainbow (10) , rainbow

(10) , rainbow (10) , rainbow (10) , rainbow (10) , rainbow (10) , rainbow (10)

, rainbow (10) , rainbow (10) , rainbow (10) )

pc <− prcomp( data1 , c ente r=TRUE, s c a l e=TRUE)

pr in t ( pc )

pr in t ( pc$x )

p lo t3d ( pc$x [ , 1 ] , pc$x [ , 2 ] , pc$x [ , 3 ] , c o l=co lour , type=” s ” , s i z e =0.7)

texts3d ( pc$x [ 1 : 1 0 , 1 ] , pc$x [ 1 : 1 0 , 2 ] , pc$x [ 1 : 1 0 , 3 ] , t e x t s=c ( ”env” , ”gag” ,

” ne f ” , ” po l ” , ” rev ” , ” ta t ” , ” v i f ” , ”vpr” , ”vpu” , ”human” ) , c o l=rainbow

(10) , cex=2)
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