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Abstract

The main goal of this thesis is to understand the paper 1 on “Division Algebras

of Degree 8 with Involutions” by S. A. Amitsur, J.P. Tignol and L.H. Rowen. To

this end we set up the foundations of central simple algebras and explore their

properties. We shall discuss the Artin-Wedderburn Theorem, the Skolem-Noether

Theorem, and some consequences of the same. Further in, we shall define the

Brauer group of a field, and what it means to split a central simple algebra. We

shall discuss the existence of Galois splitting fields, and then move on to discuss

Brauer Groups of certain fields, concluding with Chevalley’s Theorem.

For a central simple F -algebra A, the dimension [A : F ] is a perfect square, say

n2. The number n is called the degree of the central simple F -algebra. A central

simple F -algebra is defined to be a quaternion algebra, if n = 2. An involution

(of the first kind) of A is an antiautomorphism of degree 2 fixing F . It can be

shown that, any central simple algebra with involution has degree 2m for some m.

A tensor product of quaternion sublagebras with involutions results in a central

simple algebra of degree 2m, with the natural involution. Conversely, if a central

simple F -algebra with an involution has degree 2m for some m, can it always be

written as a tensor product of quaternion F -algebras? We set up the necessary

and sufficient conditions for a central simple F -algebra to have involutions, and

to be tensor products of quaternion algebras. We use these conditions on “generic

abelian crossed products” to construct a counterexample; a division algebra of

degree 8 with involution, which cannot be expressed as the tensor product of

quaternion subalgebras.

1S.A. Amitsur, L.H. Rowen, J.P. Tignol, Division Algebras Of Degree 4 And 8 With Involu-
tion, Israel Journal Of Mathematics, Vol.33, No.2, 1979.
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Chapter 1

Preliminaries

In this chapter, we open up with some preliminaries, discussing the basic structure

of semisimple and simple rings. Using the Artin-Wedderburn theorem, one can

lay out a definitive structure for all finite dimensional central simple algebras. We

shall briefly discuss the lemmas and propositions necessary to prove the Artin-

Wedderburn theorem and its consequences. The proofs which are omitted in this

chapter can be found in [1].

1.1 Semi-Simple Modules

Definition 1.1. Let A be a ring. An A-module M is said to be simple if it has

no non-trivial submodules. An A-module M is semi-simple if it can be written as

a sum of a family of simple A-submodules.

Lemma 1.2 (Schur). Let A be a ring and f : M → N be an A-linear map, where

M and N are A-modules.

a) If M is simple, then either f = 0 or f is injective.

b) If N is simple, then either f = 0 or f is surjective.

Corollary 1.3. The endomorphism ring of a simple module is a division ring.
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2 Semi-Simple Modules

Remark. The homomorphic image of a semi-simple module will also be a semi-

simple module. This is a simple consequence of Schur’s Lemma; any map between

two simple modules is either an isomorphism or trivial. Thus, the image of a semi-

simple module M can be written as a sum of simple modules, which are isomorphic

images of simple submodules of M .

We state the following theorem without proof;

Theorem 1.4. Let A be a ring, and M an A-module. Then, the following condi-

tions are equivalent:

a) M is a semi-simple A-module.

b) M is a direct sum of simple modules.

c) Every submodule of M is direct summand of M .

Corollary 1.5. Every submodule of a semi-simple module is semi-simple.

Remark. a) If M =
∑

i∈I Si with Si simple and S is a simple submodule of M ,

then S is isomorphic to Si for some i ∈ I.

b) If M = S1 ⊕ S2 ⊕ · · ·Sn = T1 ⊕ T2 ⊕ · · ·Tm, then n = m and there exists a

permutation σ of {1, 2, 3 · · ·n} such that Si = Tσ(i), for all i ∈ {1, 2, 3 · · ·n}.

Definition 1.6. Let S be a simple A-module. An A-module M is said to be

isotypical of type S, if M is the sum of a family of simple submodules each of

which is isomorphic to S.

Let M =
⊕

i∈I Si, where Si is simple for all i ∈ I. By collecting all isomorphic

Si’s together, we can write M =
⊕

γ∈ΓMγ, where each Mγ is the direct sum of

submodules isomorphic to Sγ, where Sγ 6= Sγ′ for γ 6= γ′. The submodules Mγ

are called the isotypic components of M . It can be further shown that every Mγ

is the sum of all submodules of M which are isomorphic to Sγ.

We state the following without proof;



3 The Artin-Wedderburn Theorem

Theorem 1.7. Let M be a semi-simple A-module with isotypical components

{Mγ}γ∈Γ. Then, EndA(M) ∼=
∏

γ∈Γ EndA(Mγ).

Theorem 1.8. Let M be an A-module and M = M1 ⊕M2 ⊕ · · ·Mn, where each

Mi is isomorphic to an A-module N . Then EndA(M) ∼= Mn(EndA(N)).

Corollary 1.9. Let M be semi-simple A-module of length n, isotypical of type S.

Then EndA(M) ∼= Mn(D), where D denotes the (division) ring of endomorphisms

of S.

1.2 The Artin-Wedderburn Theorem

Definition 1.10. A ring A is semi-simple if it semi-simple as a left module over

itself.

Remark. a) It can be shown that a ring A is semi-simple if and only if every

A-module is semi-simple.

b) Every semi-simple ring can be written as a direct sum of a finite number of

simple left ideals.

Theorem 1.11. A semi-simple ring is a finite direct product of matrix rings over

division rings.

Proof. Let A be a semi-simple ring. Then, we can write A as a finite direct sum

of simple ideals, say; A = S1 ⊕ S2 ⊕ S3 ⊕ · · ·Sn. We observe that A as an A-

module will have finite length as a result. Let M1,M2, · · ·Mr be the isotypical

components of A. Then, as we have seen before, EndA(A) ∼=
∏r

i=1 EndA(Mi).

Since EndA(A) ∼= A◦, (where A◦ is the opposite ring of A), and EndA(Mi) is

isomorphic to a matrix ring over a division ring, it follows that A◦ is isomorphic

to a finite product of matrix rings over division rings. Therefore, A must be

isomorphic to a finite product of matrix rings over division rings.

Definition 1.12. A ring A is said to simple if it is semi-simple and has no non-

trivial two-sided ideals.



4 The Artin-Wedderburn Theorem

Theorem 1.13 (Wedderburn). A ring is simple if and only if it isomorphic to

Mn(D), for some division ring D. The integer n and (upto isomorphism) the

division ring D are uniquely determined.

Proof. For the sake of brevity, we shall omit the proof of uniqueness from the

theorem. Let A be a simple ring. By the Artin-Wedderburn Theorem, it must be

isomorphic to a finite product of matrix rings over division rings. But, since A

has no non-trivial two-sided ideals, the number of factors is such a decomposition

must be one. Therefore A ∼= Mn(D), for some integer n and division ring D.

Conversely, we need to show that A = Mn(D) is simple, for an arbitrary division

ring D and any integer n. Let Sj =
∑n

i=1DEij. Clearly, every Sj is a left ideal

of A, and A = S1 ⊕ S2 ⊕ · · ·Sn. It can be shown that each Sj is simple as well.

Furthermore, all Sj are clearly isomorphic to each other, so A is a simple ring of

length n, and we are done.



Chapter 2

Central Simple Algebras

In this chapter, we shall explore the basic properties of central simple algebras in

depth. Again, we closely follow the notes written by R. Sridharan [1]. We shall

evaluate the tensor product of two central simple algebras and discover that it

too, is a central simple algebra. We shall find ways to create new central simple

algebras over extended fields, and then prove the well known result; the dimension

of the central simple algebra over its base field is a perfect square. We shall

prove the famous Skolem-Noether theorem, and discuss some of its consequences.

Further on, we define the Brauer Group of a field, and show how the structure is

formulated. We use this concept to define what it means to split a central simple

algebra, and then discuss the existence of Galois splitting fields.

Throughout this chapter, K will denote a (commutative) field and all tensor prod-

ucts are taken over K unless mentioned otherwise. By a K-algebra, we shall

mean an associative algebra over K. Unless otherwise stated, the K-vector space

dimension of every K-algebra A, denoted by [A : K], will be assumed to be finite.

Let A be a K-algebra. The natural homomorphism K → A (given by k → k1)

is a K-algebra monomorphism and we shall often identify K with its image in A

under this monomorphism.
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6 Properties of Central Simple Algebras

2.1 Properties of Central Simple Algebras

Definition 2.1. Let A be a K-algebra. A is central if the center of A coincides

with K. Furthermore, A is central simple if A is central and simple as well.

We shall call a ring A quasi-simple if it has no non-trivial two-sided ideals. Notice

that, any finite dimensional quasi-simple algebra is simple.

Lemma 2.2. Let B be a quasi- simple ring. Then, the matrix ring Mn(B) is

quasi-simple for any integer n ≥ 1.

Proof. Let ∆ ∈ Mn(B) be a non-zero two-sided ideal. Let ∆′ be the subset of

all elements in B such that an element of ∆′ is an entry in some element of

∆. It is a simple matter of computation to show that ∆′ is a two-sided ideal

as well. Therefore, ∆′ = B, and Eij ∈ ∆ for all i, j ∈ {1, 2, 3, · · ·n} (since

Ekl = Ekk′Ek′l′El′l, for all 1 ≤ k, k′, l, l′ ≤ n). Therefore, Mn(B) is quasi-simple as

well.

Theorem 2.3. Let A be a central simple K-algebra. Then if B is a (not necessarily

finite dimensional) quasi-simple K-algebra, then A⊗B is quasi-simple as well.

Proof. Since A is simple, by Wedderburn’s Theorem, there exists a division ring

D such that A ∼= Mn(D). Notice that D is a central division algebra over K. We

have;

A⊗B ∼= Mn(D)⊗B ∼= Mn(D ⊗B)

If D ⊗ B is quasi-simple, the above lemma would imply that the same is true of

A ⊗ B, and the theorem would be proved. So, it is enough to prove the theorem

in the case when A is a central division algebra.

Let then D be a central division algebra and let ∆ be any non-zero two-sided ideal

of D⊗B. Let (eα)α∈I be a basis of B over K. Clearly, any element a ∈ ∆ can be
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written uniquely in the form a =
∑

α∈I aα ⊗ eα, with aα ∈ D, aα = 0 for almost

all α.

Let us write J(a) = {α ∈ I : aα 6= 0}. Then for each a ∈ ∆, J(a) is a finite subset

of I.

Let c =
∑

α∈I cα⊗ eα be a non-zero element of ∆ such that J(c) is minimal in the

set {J(a) : a ∈ ∆, a 6= 0}.

Multiplying c by an element of D, we can clearly assume that at least one cα, say

cβ, is equal to 1. Since ∆ is a two-sided ideal, we have, for any d ∈ D,

c′ = (d⊗ 1)c− c(d⊗ 1) =
∑
α∈I

(dcα − cαd)⊗ eα ∈ ∆

Since cβ = 1, dcα = cαd and thus J(c′) ⊂ J(c). Hence, by the minimality of J(c),

it follows that c′ = 0, or, dcα = cαd for all α. Since d is arbitrary and D is central,

it follows that cα ∈ K. In other words c ∈ ∆ ∩ (1⊗B).

Thus ∆ ∩ (1⊗B) is a non-zero two-sided ideal of 1⊗B. Since B is quasi-simple,

it follows that ∆∩ (1⊗B) = 1⊗B. In particular, 1⊗ 1 ∈ ∆, or, ∆ = A⊗B, and

the theorem is proved.

Definition 2.4. If A is any ring and E is a non-zero subset of A, then we define

the commutant E ′ of E as the set {a ∈ A : ae = ea,∀e ∈ E}.

The following lemma is stated (using the notation given in the above definition)

without proof;

Lemma 2.5. Let A and B be two K-algebras. If C ⊂ A and D ⊂ B are K-

subalgebras, then (C ⊗D)′ = C ′ ⊗D′.

Corollary 2.6. a) If A and B are K-algebras, then Z(A ⊗ B) = Z(A) ⊗ Z(B),

where Z(C) denotes the center of any K-algebra C.
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b) If A and B are central simple K-algebras, then A ⊗ B is a central simple K-

algebra as well.

c) Let L be a finite field extension of K, and A be any central simple K-algebra,

then L⊗ A is a central simple K-algebra as well.

d) If A is a central simple K-algebra, then [A : K] is always a perfect square.

Let A be a central simple K-algebra and A◦ be the opposite ring of A. Clearly,

A◦ is again a central simple K-algebra. For any a ∈ A, let La denote the K-

linear endomorphism of A given by left multiplication by a. Similarly, let Ra

denote right multiplication by a. The mappings Φ : A → EndK(A) and Ψ :

A◦ → EndK(A) given respectively by Φ(a) = La and Ψ(a◦) = Ra are K-algebra

homomorphisms. Since every element of Φ(A) commutes with every element of

Ψ(A◦), we have an induced K-algebra homomorphism θ : A ⊗ A◦ → EndK(A)

defined by θ(a⊗ b◦) = Φ(a)Ψ(b◦) = LaRb. A⊗A◦ is called the enveloping algebra

of A, and it is isomorphic to EndK(A) under the above induced homomorphism.

Notice that if [A : K] = m, then A⊗ A◦ ∼= Mm(K) as a corollary.

2.2 The Skolem-Noether Theorem

First, we state without proof, a small corollary of the Artin-Wedderburn Theorem;

Corollary 2.7 (Artin-Wedderburn). Let D be a division ring. Suppose M and N

are two Mn(D)-modules which have the same dimension as vector spaces over D.

Then M and N are isomorphic as Mn(D)-modules.

Theorem 2.8. Let A be a central simple K-algebra, and let B be a simple K-

algebra. If f, g : B → A are K-algebra monomorphisms, then there exists an

invertible element u ∈ A such that, for any b ∈ B, g(b) = uf(b)u−1.

Proof. Suppose, A is a matrix algebra Mn(K) over K. Then, to say that we are

given two K-algebra monomorphisms f, g : B → Mn(K) is the same as saying
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we are given two B-module structures on Kn. Call them Vf and Vg, given by the

actions; b � v = f(b)v, if v ∈ Vf or b ◦ v = g(b)v, if v ∈ Vg, for all b ∈ B. By

the above corollary, these two B-modules will be isomorphic. However, they are

isomorphic as K-modules as well. Therefore, we must have an invertible element

u ∈Mn(K), such that, for any b ∈ B and v ∈ Kn,

u(f(b)v) = u(b � v) = b ◦ u(v) = g(b)u(v)

Since this holds for all v ∈ Kn, uf(b) = g(b)u, for all b ∈ B.

We shall use the above case to finish the proof. Since we know that A ⊗ A◦ is

a matrix algebra over K, we shall obtain the induced K-algebra monomorphisms

f ⊗ 1◦, g ⊗ 1◦ :→ A⊗ A◦, (where 1◦ is the identity map of A◦). Since we have an

invertible element in A⊗ A◦, say u, we have;

(g ⊗ 1◦)(b⊗ a◦) = u(f ⊗ 1◦)(b⊗ a◦)u−1

for every b ∈ B and a◦ ∈ A◦.

First, substitute b = 1, and we notice that u commutes with every element in

1 ⊗ A◦, so u ∈ (1 ⊗ A◦)′ = A ⊗ 1. So, we have an invertible element t ∈ A such

that u = t⊗ 1.

Next, substituting a◦ = 1 and u = t⊗ 1, we get;

(g ⊗ 1◦)(b⊗ 1) = (t⊗ 1)(f ⊗ 1◦)(b⊗ 1)(t−1 ⊗ 1)

and so, pulling back the map from the induced tensor, we get g(b) = tf(b)t−1 for

all b ∈ B, as required.

Corollary 2.9. Every K-algebra automorphism of a central simple K-algebra is

an inner automorphism.

Theorem 2.10. Let A be a central simple K-algebra and B be a simple K-

subalgebra of A. Let B′ be the commutant of B in A. Then B′ is simple, B′′ = B,

and [B : K][B′ : K] = [A : K].
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Proof. Consider EndK(B), the K-vector space endomorphisms of B, as a K-

algebra. Notice that, it is a matrix algebra over K, so it is a central simple K-

algebra. Therefore, A⊗EndK(B) must be a central simple K-algebra as well. The

inclusion of B in A induces a K-algebra monomorphism f : B → A⊗ EndK(B).

On the other hand, B can be embedded in EndK(B) under the map b→ Lb where

Lb is the left multiplication by b. This induces a K-algebra monomorphism g :

B → A⊗EndK(B) such that g = (I(u))◦f (where I(u) is the inner automorphism

of A⊗EndK(B) given by u). Thus I(u) maps f(B) isomorphically onto g(B) and

hence the commutant f(B)′ onto g(B)′. But, it is clear that f(B)′ = B′⊗EndK(B)

and g(B)′ = A⊗B◦. Thus B′⊗EndK(B) ∼= A⊗B◦. Since B◦ is simple, it follows

that A⊗B◦ is simple and hence B′⊗EndK(B) is also simple, which implies that

B′ is simple.

Equating dimensions of B′ ⊗ EndK(B) and A⊗B◦, we get

[B′ : K][B : K]2 = [A : K][B : K]

which gives

[B′ : K][B : K] = [A : K]

. Applying this formula to the simple subalgebra B′, we get [B′′ : K][B′ : K] =

[A : K] so that we get [B′′ : K] = [B : K]. Since B ⊆ B′′, it follows that B = B′′,

and this completes the proof of the theorem.

Corollary 2.11. a) If B is a central simple K-subalgebra of a central simple K-

algebra A, then B′ is also central simple over K and the inclusions B ↪→ A,and

B′ ↪→ A, induce an isomorphism B ⊗B′ ↔ A.

b) Let A be a central simple K-algebra and let L be a commutative subfield of A

containing K. Then the following conditions are equivalent:

i) L is a maximal commutative subring of A.

ii) L coincides with its commutant.

iii) [A : K] = [L : K]2.
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c) Let D be a central division algebra over K. If L is a maximal commutative

subfield of D containing K, then [D : K] = [L : K]2.

2.3 Brauer Groups And Splitting Fields

Definition 2.12. We say that two central simple K-algebras are equivalent (or

Brauer equivalent), and write A ∼ B, if there exist matrix algebras Mm(K) and

Mn(K) such that A ⊗Mm(K) ∼= B ⊗Mn(K), or, Mm(A) ∼= Mn(B). It can be

checked that this is an equivalence relation on the set of central simple K-algebras.

Remark. Let A,B be central simple K-algebras and let DA and DB denote the

division algebra of A and B respectively. Then A ∼ B if and only if DA
∼=

DB. This reduces the study of central simple algebras to their respective division

algebras.

The set of equivalence classes of central simple K-algebras is denoted by Br(K).

For any central simple K-algebra A, we shall denote its equivalence class by [A].

If A and B are central simple K-algebras, then it follows that A ⊗ B is again

central simple over K. We define a binary composition in Br(K) by setting

[A]◦ [B] = [A⊗B]. It is a simple task to check that this operation is well-defined.

With the above composition Br(K) is an abelian group. The identity of this group

is [K], the class of K and consists of all matrix algebras over K. The inverse of

[A] is [A◦].

Definition 2.13. Let L be a field extension of K and A be a central simple K-

algebra. We say that L is a splitting field for A or that L splits A if L ⊗ A is

L-isomorphic to Mn(L) for some n. (For example, if L ⊃ K is an algebraically

closed field, then L splits any central simple K-algebra A).

Theorem 2.14. Let L|K be a finite field extension. For any central simple K-

algebra A, the following conditions are equivalent :

a) L is a splitting field for A.
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b) L is a maximal commutative subring of some central simple K-algebra equiva-

lent to A.

Proof. Let Φ : L⊗A↔ EndL(V ) be an L-isomorphism, where V is a finite dimen-

sional L-vector space. Since L is finite dimensional over K, V is finite dimensional

over K and EndK(V ) is a central simple K-algebra containing EndL(V ). Let C

be the commutant of Φ(1⊗A) in EndK(V ). Since the commutant of Φ(L⊗A) in

EndK(V ) is clearly L (L1) and 1⊗A ⊂ L⊗A, it follows that C ⊃ L. Since Φ(1⊗A)

is central simple it follows that C is central simple and that A⊗C ∼= EndK(V ),or,

A ∼ C◦. If we set B = C◦, then clearly B ⊃ L and we would be through provided

we show that L is a maximal commutative subring of B. It is enough to show that

[B : K] = [L : K]2. But we have [B : K] = [C : K] and

[A : K][C : K] = [EndK(V ) : K] = [EndL(V ) : K][L : K]

= [L⊗ A : K][L : K]

= [L : K]2[A : K]

which shows that [C : K] = [L : K]2.

Conversely, let L be a maximal commutative subring of some central simple K-

algebra equivalent to A. It is enough to show that if L is a maximal commutative

subring of A, then L splits A. We know that A ⊗ A◦ ∼= EndK(A). Since L ⊂ A

and L is commutative, it follows that L ⊂ A◦. The commutant of 1⊗L in A⊗A◦

is A⊗L. On the other hand, the commutant of L in EndK(A) is EndL(A). Thus

A⊗ L ∼= EndL(A) = Mn(L) with n = [A : L], and this finishes the proof.

Corollary 2.15. Any maximal commutative subfield of a central division algebra

D is the splitting field for D.

We state the following lemma without proof, for the sake of brevity;

Lemma 2.16. Let D 6= K be a central division algebra over K. Then D contains

a separable algebraic extension of K containing K properly.
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Theorem 2.17. Every central division algebra D over a field K contains a max-

imal commutative subfield which is separable over K.

Proof. Let L be a subfield of D which is a maximal separable extension of K. We

assert that L is a maximal commutative subfield of D. For, if not, let L′ 6= L be

the commutant of L. Then L′ can be thought of as a division algebra of center

L. By the above lemma there exists a proper separable extension of L contained

in L′. But this is a contradiction to our assumption on L. This shows that L is

maximal commutative subfield, and the theorem is proved.

Corollary 2.18. a) Let K be a field and L ⊃ K be a separably algebraically closed

field (a field which has no proper separable algebraic extensions). Then L splits

any central simple algebra over K.

b) Every central simple algebra A over a field K admits a splitting field which is

a (finite) Galois extension of K.

Proof. a) Let A be any central simple algebra over K. Then L⊗A ∼= Mn(D) where

D is a (finite) central division algebra over L. If D 6= L, D must contain, by

the above theorem, a proper finite separable extension of L. This is however

impossible, since L is, by our assumption, separably algebraically closed. Thus

D = L and L splits A.

b) Let D be the division algebra of A. By the above theorem, D contains a

maximal commutative subfield L which is separable over K. The field L splits

D, and hence splits A also. Now, let L∗ be the normal closure of L. Clearly

L∗ is finite and a Galois extension of K which splits A.



Chapter 3

Central simple algebras with

involutions

Let R be a central simple algebra over a field F . If deg(R) = 2, R is called a

quaternion F -algebra. We can find elements al, a2, in R such that 0 6= a2
1 ∈ F, 0 6=

a2
2 ∈ F , a1a2 = −a2a1 and R = F + Fal + Fa2 + Fala2. R has an involution (∗),

given by;

(γ1 + γ2a1 + γ3a2 + γ4a1a2)∗ = γ1 − γ2a1 − γ3a2 − γ4a1a2

A tensor product (over F ) of m quaternion F -algebras is of degree 2m and has

the natural involution. On the other hand, any central division algebra D with

involution has degree 2m for some m, and it is possible to show that D is a tensor

product of quaternion sublagebras when m = 2. Conversely, we would like to

answer;

If a central simple F -algebra with an involution has degree 2m for some m, is it

isomorphic to a tensor product of quaternion subalgebras?

14
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3.1 Tensor product of quaternions

Let R be a central simple F -algebra. A set S = {ri} is called a quaternion

generating set, or a q-generating set if;

a) 0 6= r2
i ∈ F

b) rirj = ±rjri

c) If i 6= j, there exists rk ∈ S commuting with either one of ri or rj, and

anticommuting with the other.

It is easy to check that a q-generating set S of a central simple algebra R is F -

independent. Furthermore, if {r1, r2} is a q-generating set, then {1, r1, r2, r1r2} is

also a q-generating set and the induced structure Q = F + Fr1 + Fr2 + Fr1r2 is

a quaternion F -algebra.

Theorem 3.1. Suppose deg(R) = 2t. R is a tensor product of quaternion F -

algebras, iff R has a q-generating set S containing 4t elements (in which case, S

is a base of R).

Proof. Let R be a tensor product of quaternions Q1 ⊗ · · · ⊗ Qr, where each Qi

is of the form Fr0i + Fr1i + Fr2i + Fr3i, where r0i = 1 and r0i = r1ir2i. Then,

S = {ri11ri22 · · · ritt|iu = 0, 1, 2, 3} forms a base for R. Conversely, suppose R has

a q-generating set S satisfying the hypothesis. Take r1, r2 ∈ S such that they

anticommute, and let Q1 be the quaternion subalgebra generated by these two

elements. Then, R ∼= Q1⊗R1, R1 being the centralizer of Q1 in R. If we show that

S ∩R1 is a q-generating set for R1, having 4t−1 elements, induction will finish the

proof, since deg(R1) = 2t−1. For any ru ∈ S, either ru ∈ R1, or ru /∈ R1. Suppose,

ru /∈ R1. Either r1ru = −rur1 or r2ru = −rur2. Let ru = f0 + f1r1 + f2r2 + f3r1r2,

where each fi ∈ R1. We see that exactly one of the fi’s must be non-zero, and

so S = T0 ∪ T1r1 ∪ T2r2 ∪ T3r1r2, with each Ti ⊆ R1. The number of elements in

each Ti will be at most 4t−1, since the elements are F -independent. Since the total
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number of elements is 4t, T0 = S∩R1 will have 4t−1 elements, and is a q-generating

set for R1.

3.2 Abelian Crossed Products

Suppose R is a crossed product having a maximal subfield K which is Galois over

F , with an abelian Galois group G = 〈σ1〉⊕〈σ2〉⊕· · · 〈σq〉, where each σi has order

2 in G. We shall define Ni(x) = xσi(x), as the norm with respect to σi. Notice

that Ni is multiplicative and commutes with all σj and Nj.

From the Skolem-Noether theorem, we can find zi ∈ R such that σi(x) = zixz
−1
i ,

for all x ∈ K. Define uij = zizjz
−1
i z−1

j , and bi = z2
i . Notice that all uij and bi

are in K since they are in the centralizer of K. Write U = {uij|1 ≤ i, j ≤ q},

B = {bi|1 ≤ i ≤ q}. It is possible to show that the following conditions are

satisfied;

(A) uii = 1, uij = u−1
ji

(B) σi(ujk)σj(uki)σk(uij) = ujkukiuij

(C) Ni(Nj(uij)) = 1

(D) σj(bi)b
−1
i = Ni(uji)

On the other hand, suppose K is an abelian extension of F with Galois group

G = 〈σ1〉 ⊕ 〈σ2〉 ⊕ · · · 〈σq〉, where each σi has order 2 in G, and the sets U,B ⊆ K

satisfy conditions (A) - (D), then it is possible to determine a unique central simple

F -algebra R with K as its maximal subfield, and {zi} ⊆ R satisfying all the above

properties. Since (K,G,U,B) are enough to completely understand R, we denote

R by (K,G,U,B).

Remark. a) If U,B satisfy conditions (A), (B), (D), then U satisfies (C).

b) If U satisfies conditions (A) - (C), then there exists a set B whose elements are

determined uniquely upto multiplication by elements in F , satisfying (D). This
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is obtained from a generalization of Hilbert’s Theorem 90, and in particular,

we have elements ak such that akσi(a
−1
k ) = Nk(uik), and we choose bk = a−1

k .

We need to determine the conditions for a central simple algebra to possess in-

volutions. The following theorem is stated without its proof, but for a detailed

proof, refer [2] and [3].

Theorem 3.2. Let τ ∈ G and R = (K,G,U,B). Then the following conditions

are equivalent;

i) R has an involution of the first kind.

ii) R has an involution whose restriction to K is τ .

iii) If we adjust the conditions of {U,B}, we can write R = (K,G,U,B) satisfy-

ing;

(E) τ(uij)σiσj(uij) = 1, for all i, j

(F) τ(bi) = bi, for all i

Therefore, the six conditions that determine our central simple F -algebra R with

involution, denoted by (K,G,U,B,τ), are given by;

(A) uii = 1, uij = u−1
ji

(B) σi(ujk)σj(uki)σk(uij) = ujkukiuij

(C) Ni(Nj(uij)) = 1

(D) σj(bi)b
−1
i = Ni(uji)

(E) τ(uij)σiσj(uij) = 1, for all i, j

(F) τ(bi) = bi, for all i
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Denote the central simple F -algebraR with involution henceforth as (K,G,U,B, τ)

with the restriction of involution to K being τ . For the reminder of the section,

q = 3, K = F (ξ1, ξ2, ξ3), with ξ2
i ∈ F and σi(ξi) = −ξi, σj(ξi) = ξi, for i 6= j. Let

S3 denote the permutation group of three elements, and for any π ∈ S3, sgn(π),

the sign of π.

Theorem 3.3. Suppose U ⊆ K satisfies (A), (B) and (E) for τ = σ1σ2σ3. Define

vπ(3) = u
sgn(π)
π(1)π(2), for all π ∈ S3. Then, the following hold;

1) The vi’s satisfy the following relations;

i) v1v2v3 = ±1

ii) Ni(vi) = 1, for all i

2) The exists a set B = {b1, b2, b3}, uniquely determined upto multiples of F ,

satisfying;

i) σπ(1)(bπ(2))b
−1
π(2) = Nπ(2)(vπ(3))

sgn(π)

ii) σi(bi) = bi

3) The set {U,B} satisfies (A) - (F).

Proof. Notice that τ = σ1σ2σ3 = σπ(1)σπ(2)σπ(3), so by (E), we have;

1 = σπ(1)σπ(2)σπ(3)(uπ(1)π(2))σπ(1)σπ(2)(uπ(1)π(2)) = σπ(1)σπ(2)(Nπ(3)(v
sgn(π)
π(3) ))

Thus, (1ii) is satisfied. Furthermore, σi(vi) = v−1
i for all i, and (B) implies

that;

v−1
1 v−1

2 v−1
3 = σ1(v1)σ2(v2)σ3(v3) = σ1(u23)σ2(u31)σ3(u12) = u23u31u12 = v1v2v3

Therefore, v2
1v

2
2v

2
3 = 1, and we are done.
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Observe that U satisfies (C) as well, since;

Nπ(1)Nπ(2)(uπ(1)π(2)) = Nπ(1)Nπ(2)(vπ(3))
sgn(π) = Nπ(1)Nπ(2)((v

−1
π(1)v

−1
π(2)))

sgn(π)

= Nπ(2)Nπ(1)(vπ(1))
−sgn(π)Nπ(1)Nπ(2)(vπ(2))

−sgn(π) = 1

Therefore, by an earlier remark, it is possible to determine a set B which satisfies

(D). Trivially, we get σi(bi) = bi from (D), and the other condition is clear by

definition of the vi’s.

It remains to show that B satisfies (F) as well. This is achieved by seeing that;

σπ(2)(bπ(1))b
−1
π(1) = Nπ(1)(vπ(3))

−sgn(π) = Nπ(1)((vπ(1)vπ(2)))
sgn(π)

= Nπ(1)((vπ(2)))
sgn(π)

= σπ(3)(bπ(1))b
−1
π(1)

So, σπ(2)(bπ(1))b
−1
π(1) = σπ(3)(bπ(1))b

−1
π(1). Therefore, since σi(bi) = bi, we have;

τ(bπ(1)) = σπ(1)σπ(2)σπ(3)(bπ(1)) = σπ(2)σπ(3)(bπ(1)) = bπ(1)

and B satisfies (F) as well.

The converse of this theorem holds as well;

Theorem 3.4. Given v1, v2, v3 satisfying conditions (1i) and (1ii) in Theorem 3.3,

we can define u
sgn(π)
π(1)π(2) = vπ(3) and uii = 1. Then, U = {uij} is well defined, and for

τ = σ1σ2σ3, U satisfies (A), (B) and (E), and hence all conditions of Theorem 3.3.

Proof. Clearly, U is well defined and satisfies (A). Notice that, by the proof used

in (1ii) of Theorem 3.3, we get,

σπ(1)σπ(2)(Nπ(3)(v
sgn(π)
π(3) )) = σπ(1)σπ(2)σπ(3)(uπ(1)π(2))σπ(1)σπ(2)(uπ(1)π(2)) = 1
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so, U satisfies (E). Also, σ1(v1)σ2(v2)σ3(v3) = v−1
1 v−1

2 v−1
3 = v1v2v3, and we are

done, since U satisfies (B) as well.

The above two theorems present interesting consequences on the elements of B,

as we shall see.

Corollary 3.5. Let B = {b1, b2, b3} be determined in the nature of Theorem 3.3.

Then, bπ(1) ∈ F (ξπ(2)ξπ(3)) ∩ F (ξπ(2))Nπ(1)(K).

Proof. We have that σπ(1)(bπ(1)) = bπ(1), by the conditions of the hypothesis. We

had seen earlier that σπ(2)(bπ(1)) = σπ(3)(bπ(1)). Therefore, bπ(1) is invariant under

σπ(1) and σπ(2)σπ(3), so bπ(1) ∈ F (ξπ(2)ξπ(3)).

By Hilbert’s Theorem 90, we can obtain y ∈ K such that vπ(3) = σπ(3)(y)y−1.

Since σπ(2)(bπ(1)) = σπ(3)(bπ(1)), we have;

σπ(2)(bπ(1))b
−1
π(1) = σπ(3)(bπ(1))b

−1
π(1) = Nπ(1)(vπ(3))

−sgn(π) = Nπ(1)(σπ(3)(y)y−1)−sgn(π)

proving that w = bπ(1)Nπ(1)(y)sgn(π) is invariant under σπ(3). But both bπ(1) and

Nπ(1)(y) are invariant under σπ(1), proving that bπ(1) ∈ F (ξπ(2))Nπ(1)(K), since

w ∈ F (ξπ(2)).

By varying π, we can see that;

(G) b1 ∈ F (ξ2ξ3) ∩ F (ξ2)N1(K) ∩ F (ξ3)N1(K).

The converse for the above holds as well.

Theorem 3.6. Suppose b exists in K satisfying (G). Then, there exists a set

V = {v1, v2, v3} satisfying (1i) and (1ii) and a corresponding set B = {b1, b2, b3}

satisfying (2i) and (2ii) of Theorem 3.3. Furthermore, b1 = b.

Proof. Let b = a2N1(y2) = a3N1(y−1
3 ), where ai ∈ F (ξi) and yi ∈ K. Define

v2 = σ2(y3)−1y3, v3 = σ3(y2)−1y2 and v1 = (v2v3)−1. By definition, v1v2v3 = ±1.
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We see that Ni(vi) = 1 for i = 2, 3. For, i = 1, we have;

N1(v3)−1 = N1(y2)−1σ3(N1(y2)) = b−1σ3(b) = b−1σ2(b)

N1(v2) = N1(y3)−1σ2(N1(y3))−1 = b−1σ3(b) = b−1σ2(b)

Therefore, N1(v1) = N1(v2)−1N1(v3)−1 = 1, so Ni(vi) = 1 for all i. B satisfies (2i)

and (2ii) by the conditions of the hypothesis. If we show that b and b1 differ by a

multiple of an element in F , we can replace b by b1 as desired. To do this, we see

that;

σ2(bb−1
1 )(bb−1

1 ) = N1(v3)−1N1(v3) = 1

σ3(bb−1
1 )(bb−1

1 ) = N1(v2)−1N1(v2) = 1

Therefore, bb−1
1 ∈ F , and we are done.

3.3 Generic abelian crossed products

with involutions

Let K be an abelian extension of a field F with Galois group

G = 〈σ1〉 ⊕ 〈σ2〉 ⊕ · · · 〈σq〉, where each σi has order 2 in G, and U ⊆ K satisfies

conditions (A) - (C). The ”generic ableian crossed product” is constructed as

follows [4]:

Consider the ring of polynomials K[x1, x2 · · · xq] with non-commutative variables

satisfying xik = σi(k)xi, for all k ∈ K and xixj = uijxjxi, for all i, j. It can be

shown that K[x1, x2 · · ·xq] is an Ore domain whose quotient division ring, written

as K(x1, x2 · · ·xq), has the following structure:

From an earlier remark, it is possible to determine B = {bl, · · · , bq}, which satisfy

(D). Define yi = b−1
i x2

i . We have Cent(K(x1, x2 · · · xq)) = F (y1, · · · , yq) which will

be denoted by F ′. The algebra K(x1, x2 · · · xq) turns out to be a crossed product

by the earlier notation, given by (K ′, G, U,B′), where B′ = {x2
i |1 ≤ i ≤ q} and
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K ′ = K(y1, · · · yq), with the automorphisms σ ∈ G extended to K ′, given by

σ(yi) = yi for all i. Clearly, the invariant field of K ′ will be F (y1, · · · , yq). Since

B′ is equivalent to B in our case, the set {U,B} satisfies (A) - (D). Furthermore,

if we allow U to satisfy (E) for some τ ∈ G, the algebra K(x1, x2 · · · xq) has an

involution as well, if B satisfies (F). However, the last requirement is superfluous

if we take q = 3 and τ = σ1σ2σ3. We shall now denote the generic crossed product

(K ′, G, U,B′, τ) by (K,U, τ) from this point forwards.

Denote K[x1, x2 · · · xq] by K[x]. For any element f ∈ K[x], f can be written

uniquely as
∑
kµx

µ1
1 · · ·x

µq
q . Let v(f) denote the element kµx

µ1
1 · · ·x

µq
q with the

largest (µ1 · · ·µq), ordered lexicographically. The involution (∗) now acts on K[x]

by (
∑
kµx

µ1
1 · · ·x

µq
q )∗ =

∑
x
µq
q · · ·xµ11 τ(kµ).

Theorem 3.7. If the algebra A = (K,U, τ) can be written as a tensor product

of quaternions, then A has a q-generating set S containing 4q elements of the

following form: Each element of S has the form kix
µ1
1 · · ·x

µq
q , where ki,∈ K and

µ1, µ2 · · ·µq ∈ {0, 1}.

Proof. Since A has degree 2q, A must have a q-generating set, say, {a1, a2, · · · a4q}.

Let ai = fig
−1
i , where gi’s are in the centre, for all i. Then {f1, f2, · · · f4q} is

a q-generating set, therefore, {v(f1), v(f2), · · · v(f4q)} is as well. We know that

each v(fi) can be uniquely written in the form aix
i1
1 · · ·x

iq
q , where ai ∈ K. Let

ci = yj11 · · · y
jq
q , where jn = [in/2], for all n. Now, v(fi)c

−1
i is in the desired form,

kµx
µ1
1 · · ·x

µq
q . Since each ci is in F ′, {v(f1)c−1

1 , v(f2), · · · v(f4qc
−1
4q )} is a q-generating

set as well.

We are now in a position to determine when the algebra A = (K,U, τ), can be

written as a tensor product of quaternions.

Theorem 3.8. Suppose τ = σ1σ2σ3, U satisfies (A), (B), (C), and B is chosen to

satisfy (D). Then the generic abelian crossed product A = (K,U, τ) is a product

of quaternions iff b1 ∈ FN1(K).
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Proof. If A is a tensor product of quaternion subalgebras, then A has some set of

square-central elements a1, · · · a64, independent over Cent(A) with aiaj = ±ajai
for all i, j. Consider the q-generating set of A, which would contain some element

kx1, and so (kx1)2 ∈ F ′, which is Cent(A). But, (kx1)2 = kσ1(k)x2
1 = kσ1(k)b1y1.

Therefore, kσ1(k)b1 ∈ F ′ ∩K = F , and b1 ∈ FN1(K).

Conversely, if kσ1(k)b1 ∈ F for some k in K, then (ξ1, kx1) is a q-generating set

of A. A has an F ′-quaternion subalgebra Q1, thus A ∼= Q1⊗F ′ A′, where A′ is the

centralizer of Q1 in A. A has exponent 2 in the Brauer group, so A′ has exponent

2. Therefore, A′ is a product of quaternions, so A is a product of quaternions.

Therefore, for our purposes, we need to find b which satisfies (G), but b /∈ FN1(K).

Then there is a generic abelian crossed product A = (K,U, τ) for some U , such

that A is a division algebra of degree 8, with involution, which is not isomorphic

to a tensor product of quaternion algebras.

3.4 Equivalent conditions

To simplify the proofs necessary to show the existence of such a b and a field K

that satisfy our propositions, we weaken them with some equivalent conditions.

We introduce some notation here that will be used throughout this section.

Suppose H is a finite field extension of L, and T is a subset of H. Write

N(T ;H/L) = {norm(x)|x ∈ T}, where the norm is taken from H to L and

denote N(H;H/L) by N(H/L). Take K = F (ξ1, ξ2, ξ3), and F1 = F (ξ2ξ3).

Lemma 3.9. N1(K) ∩ F1 = N(F (ξ1)/F1)N(F1(ξ1ξ2)/F1).

Proof. Suppose a = N1(u) ∈ F1, where u ∈ K. If u ∈ F1(ξ1), then we are done.

Suppose not, then u = u1(u2 + ξ2), for some u1, u2 ∈ F1(ξ1), since 1 and ξ2 form

a base of K over F1(ξ1). Now, we can write a = N1(u) = N1(u1(u2 + ξ2)), which
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is in F1. Therefore, N1(u2 + ξ2) ∈ F1, since the norm is multiplicative. Now,

N1(u2 + ξ2) = N1(u2) + ξ2(u2 + σ1(u2)) + ξ2
2 , and so, u2 + σ1(u2) = 0. We can now

say that u2 = wξ2 for some w in F1. Finally;

a = N1(u) = N1(u1)(−N1(w)ξ2
1 + ξ2

2) = N1(u1ξ1)N1(w + ξ−1
1 ξ2)

which is in N(F1(ξ1ξ2)/F1).

Corollary 3.10. If b ∈ FN1(K) ∩ F (ξ2ξ3), then;

N(b;F1/F ) ∈ N(F (ξ1)/F )[N(F (ξ1ξ2)/F ) ∩N(F (ξ2ξ3)/F )].

Proof. Let b = da, where d ∈ F and a ∈ N1(K) ∩ F1. By the above lemma,

a ∈ N(F (ξ1)/F )N(F1(ξ1ξ2)/F1). Notice that;

N(N(F (ξ1)/F1);F1/F ) = N(F1(ξ1)/F )

= N [N(F1(ξ1)/F (ξ1));F (ξ1)/F ]

⊆ N(F (ξ1)/F )

N(N(F (ξ1ξ2)/F1);F1/F ) = N(F1(ξ1ξ2)/F )

= N [N(F1(ξ1ξ2)/F (ξ1ξ2));F (ξ1ξ2)/F ]

⊆ N(F (ξ1ξ2)/F )

N(F1(ξ1ξ2)/F ) = N(N(F1(ξ1ξ2)/F1);F1/F )

⊆ N(F1/F )

Therefore, we must have;

N(b;F1/F ) ∈ d2N(F (ξ1)/F )[N(F (ξ1ξ2)/F ) ∩N(F1/F )

⊆ N(F (ξ1)/F )[N(F (ξ1ξ2)/F ) ∩N(F (ξ2ξ3)/F )]

Lemma 3.11. Let b ∈ F (ξ2, ξ3), then b ∈ F (ξ2)N1(K) iff N3(b) ∈ N(F (ξ1, ξ2)/F (ξ2)).
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Proof. For some a2 ∈ F (ξ2) and k ∈ K, let b = a2N1(k). We have;

N3(b) = N3(a2N1(k)) = a2
2N1(N3(k)) = N1(a2N3(k))

so a2N3(k) ∈ F (ξ1, ξ2).

Conversely, suppose N3(b) = N1(k0), for some k0 ∈ F (ξ1, ξ2). Let k = b + k0. To

simplify notation, let k′ = k0 + σ1(k0) ∈ F (ξ2). Then;

N1(k) = N1(b+ k0) = b2 + bk′ +N1(k0) = b2 + bk′ +N3(b) = b(b+ σ3(b) + k′).

Notice that (b + σ3(b)) + k′ ∈ F (ξ2). If b = −k0, then take k0 = 1, otherwise, we

are done.

Corollary 3.12. If b ∈ F (ξ2ξ3), then b ∈ F (ξ2)N1(K) ∩ F (ξ3)N1(K) iff;

N2(b) = N3(b) ∈ N [F (ξ1, ξ2)/F (ξ2)] ∩N [F (ξ1, ξ3)/F (ξ3)]

3.5 The counterexample

Let F = Q(λ), the field of rational functions in the indeterminate λ over Q. Take

ξ2
1 = −1, ξ2

2 = −(λ2 + 1) and ξ2
3 = λ. Set b = ξ2ξ3 ∈ F (ξ2ξ3). Then, we have;

N2(b) = N3(b) = λ(λ2 + 1)

=
1

4
N1 (ξ2[λ− 1− ξ2) + (λ− 1 + ξ2)ξ1])

= N1[(ξ1, ξ3)(λξ1 − 1)]

Therefore, we must have b ∈ F (ξ2ξ3) ∩ F (ξ2)N1(K) ∩ F (ξ3)N1(K). Suppose, to

the contrary,

N(b;F1/F ) = N1(f1)[N(f2;F (ξ1ξ2)/F )] = N1(f1)[N(F (f3; ξ2ξ3)/F )]



26 The counterexample

for appropriately chosen f1, f2, f3. For some polynomials g, g1, g2, g3, g4, g5, g6 ∈

Z[λ], we must have f−1
1 = (g1 + g2ξ1)g−1, f2 = (g3 + g4ξ1ξ2)g−1, and

f3 = (g5 + g6ξ2ξ3)g−1. Clearing out g−1, we obtain;

λ(λ2 + 1)(g2
1 + g2

2) = g2
3 − (λ2 + 1)g2

4 = g2
5 + λ(λ2 + 1)g2

6.

We assume that none of the gi’s have any common divisor, but this proves to

be impossible, as seen by taking the cannonical homomorphism into
Z
2Z

[λ], and

nullifying all gi’s. (Note that in
Z
2Z

, c̄2 + d̄2 = (c̄+ d̄)2). We have;

λ̄(λ̄+ 1)2(ḡ1 + ḡ2)2 = (ḡ3 + (λ̄+ 1)ḡ4)2 = ḡ5
2 + λ̄(λ̄+ 1)2ḡ6

2.

Since all the powers of λ̄ in the middle are even, but odd on the other sides, by

unique factorization, all sides must be zero. Therefore, ḡ1 = ḡ2, ḡ3 = (λ̄ + 1)ḡ4,

ḡ5
2 = λ̄(λ̄ + 1)2ḡ6

2. We can apply the same argument to the last equation, and

obtain ḡ5 = ḡ6 = 0. Therefore, 2|g5 and 2|g6, implying that 4|g2
5 + λ(λ2 + 1)g2

6,

and similarly, 4|g2
3 − (λ2 + 1)g2

4, 4|λ(λ2 + 1)(g2
1 + g2

2). For appropriately chosen

polynomials h1, h2, write g1 = g2 + 2h1 and g3 = (λ+ 1)g4 + 2h2.

We see that 4|2g2
2 + 4g2h1 + 4h2

1 and 4|2λg2
4 + 4(λ+ 1)g4h2 + 4h2

2. Therefore, 2|g1,

2|g2, 2|g3, 2|g4, and we obtain a contradiction.



Appendix A

Brauer groups of some fields

Let A be a central simple algebra over a field K and let L be a splitting field for

A. Choose an L-isomorphism Φ : L ⊗ A ↔ Mn(L). For any x ∈ A the element

det(Φ(1 ⊗ x)) is independent of the isomorphism Φ. In fact, if Φ′ : L ⊗ A ↔

Mn(L) is another L-isomorphism, then by Skolem-Noether theorem, there exists

an invertible element u ∈Mn(L) such that Φ′(z) = uΦ(z)u−1 for every z ∈ L⊗A

so that

det(Φ′(1⊗ x)) = det(uΦ(1⊗ xu−1) = det(Φ(1⊗ x))

We will call det(Φ(1⊗ x)) the reduced norm of x (with respect to L) and denote

it by NL
rd(x).

We shall show that NL
rd(x) belongs to K, and that it is independent of L. Let

L,L′ be splitting fields for A and let θ : L → L′ be a K-monomorphism. Let

Φ : L⊗ A↔Mn(L) be an L-isomorphism. Then there exists an L′-isomorphism;

Φ′ : L′ ⊗ A ∼= L′ ⊗L L⊗ A↔ L′ ⊗L Mn(L) ∼= Mn(L′)

such that Φ′ ◦ (θ⊗1) = Mn(θ)◦Φ. It follows from this that we have for any x ∈ A,

NL′

rd (x) = θ(NL
rd(x))

27
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Let now L be a Galois splitting field for A. Then, for any element σ ∈ G(L|K),

we have that,

NL
rd(x) = σ(NL

rd(x))

This shows that NL
rd(x) belongs to K.

Let now L′ be any splitting field of A. There exists a field extension L′′ of K and

K-monomorphisms θ : L→ L′′, θ′ : L′ → L′′. Therefore,

θ′(NL′

rd (x)) = NL′′

rd (x) = θ(NL
rd(x)) = NL

rd(x)

This shows that NL′

rd (x) is independent of L′, and we call it the reduced norm of

x and denote it by Nrd(x).

Theorem A.1. Let A be a central simple K-algebra of dimension n2. Then, for

any x ∈ A, if Lx denotes the left multiplication by x in A, we have det(Lx) =

(Nrd(x))n.

Proof. Let L be an extension of K such that L⊗ A ∼= Mn(L). Since det(L1⊗x) =

det(Lx), we assume by replacing A by L ⊗ A that A is a matrix algebra over K.

Thus, we have to show that if x ∈Mn(K), and Lx denotes the left multiplication by

x in Mn(K), then det(Lx) = (det(x))n. Let Mn(K) = S⊕· · ·⊕S (n times), where

S is the unique simple (left) Mn(K)-module. If lx denotes the endomorphism of S

induced by x, then we have det(Lx) = (det(lx))
n. But, with respect to a suitable

K-basis for S, we can choose the matrix of lx as x itself. This proves the theorem.

Let H denote the algebra of quaternions over R. For any x ∈ H, given by x =

a+ bi+ cj+ dk, denote x = a− bi− cj− dk. It is easy to show that H is a central

division algebra over R.

It is easy to check that x+ y = x + y and xy = yx for x, y ∈ H. This means

that x→ x defines an isomorphism of H onto its opposite H◦. Hence we have an
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R-algebra isomorphism of H ⊗R H onto H ⊗R H◦ and the latter is isomorphic to

M4(R). This shows that the class of H in Br(R) is of order 2. This gives us some

motivation for the following theorem.

Theorem A.2. The Brauer group of R is cyclic of order two and is generated by

the class of H.

Proof. Let D be any finite dimensional division algebra over R. The center K

of D, being a finite algebraic extension of R, is isomorphic to either C or R. In

case K = C, we have D = C, since C is algebraically closed. Suppose K = R.

Then any maximal subfield of D being a proper extension of R is isomorphic to C.

Hence, we must have dimR(D) = 4. We fix a maximal subfield L of D and choose

i ∈ L such that i2 = −1. Then L = R(i). By the Skolem-Noether Theorem, the

automorphism z → z of L, given by a+ ib→ a− ib, can be extended to an inner

automorphism of D. This means that there exists an element u ∈ D such that

uzu−1 = z for all z ∈ L. Since z → z is an automorphism of order 2, we have

u2z = zu2 for all z ∈ L. Since L is a maximal subfield of D, we have u2 ∈ L. We

claim that u2 is actually in R. For, if u2 /∈ R, then R(u2) = L and uzu−1 = z for

all z ∈ L, which is a contradiction. Hence u2 ∈ R. We assert that u2 < 0. Indeed,

if u2 = a > 0, then u = ±
√
a. This is impossible. Hence u2 = −a for some a ∈ R,

a > 0. We put j = u/
√
a and ij = k. Then we have j2 = −1. Since j−1ij = −i,

we see that k = ij = −ji and k2 = ijij = −i2j2 = −1. Moreover k /∈ L, since

k ∈ L implies j ∈ L. Since dimL(D) = 2, {1, j} is a basis for D as a vector space

over L. Hence {1, i, j, k} is a basis for D over R. Thus we have shown that any

finite dimensional division algebra over R is isomorphic to C,R or H. Thus the

only central division algebras over R are R and H.

Definition A.3. Let f be a form (a homogeneous polynomial in one or more

variables) over a field K. A field K is said to be Ci if every form f(X1, · · · , Xn)

in n variables and of degree d, with n > di, has a non-trivial zero in K; there exist

a1, · · · , an ∈ K, not all zero, such that f(a1, · · · , an) = 0.

The following lemma is stated without proof;
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Lemma A.4. Let K be a C1 field. Then Br(K) = {1}.

We shall use this in order to prove that the Brauer Group of a finite field is always

trivial. If we show that all finite fields are C1, then we are done.

Theorem A.5 (Chevalley). A finite field is C1.

Proof. Let K be a finite field of characteristic p and let q = pr be the number of

elements in K. For a polynomial f ∈ K[X1, · · · , Xn], let Z(f) denote the number

of zeros of f in Kn. We may assume that f is a non-constant polynomial. In the

field K, we have the identity

Z(f) · 1 =
∑

(x1,··· ,xn)∈Kn

(1− f q−1(x1, · · · , xn))

The polynomial F (X1, · · · , Xn) = 1− f q−1(X1, · · · , Xn) is of degree d(q− 1). We

write,

Z(f) · 1 =
∑

(x1,··· ,xn)∈Kn

F (X1, · · · , Xn)

For ai1···in ∈ K, let,

F =
∑

i1+···+in≤d(q−1)

ai1···inX
i1
1 · · ·X in

n

The above formula can be written as;

Z(f) · 1 =
∑

i1+···+in≤d(q−1)

ai1···in
∑

(x1,··· ,xn)∈Kn

xi11 · · ·xinn

We have,

∑
(x1,··· ,xn)∈Kn

xi11 · · ·xinn = (
∑
x∈K

xi1)(
∑
x∈K

xi2) · · · (
∑
x∈K

xin)
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Since i1 + · · ·+ in ≤ d(q− 1) < n(q− 1), we have ik < q− 1 for some k. Consider∑
x∈K x

ik , ik < q − 1. If ik = 0, then
∑

x∈K x
ik = q = 0. Suppose ik > 0. Since K

is finite, K∗ is cyclic. Let θ ∈ K∗ generate K∗. We then have

∑
x∈K

xik =
∑
x∈K∗

xik =
∑

0≤m≤q−2

θmik =
∑

0≤m≤q−2

(θik)m

Now,

(θik − 1)
∑

0≤m≤q−2

(θik)m = (θik)q−1 − 1 = 0

Since ik < q − 1, θik 6= 1. Hence,

∑
0≤m≤q−2

(θik)m = 0

Thus
∑

x∈K x
ik = 0. This shows that Z(f) · 1 = 0, so Z(f) ≡ 0(mod p). This

proves the theorem.

Corollary A.6. If K is a finite field, then Br(K) = {1}.



Appendix B

Construction of abelian crossed

products

In this chapter, we shall talk about how the properties (A) - (D) (modify bi = zqii ,

instead of bi = z2
i ) determine a unique abelian crossed product, for some Galois

extension K over F with Galois group G = 〈σ1〉 ⊕ 〈σ2〉 ⊕ · · · 〈σr〉, where each σi

has order qi, for all r, in G.

Consider the ring of polynomials K[x1, x2 · · ·xr] with non-commutative variables

satisfying xik = σi(k)xi, for all k ∈ K and xixj = uijxjxi, for all i, j. Call this

domain Ar. Consider the left ideal M of Ar generated by {xqi − bi|1 ≤ i ≤ r} and

Mi = 〈xqi − bi〉. Notice that these ideals are both two-sided ideals. The algebra

(K,G,U,B) is defined as the quotient ring Ar/M . It remains to show that it is

an abelian crossed product.

Write m̄ = (m1,m2, · · ·mr) for a set of non-negative integers mi, and am̄ =

am1
1 am2

2 · · · amr
r , for elements of a group or ring a = (a1, a2, · · · ar). Notice that

all elements in G have the form σm̄ (m̄ is not fixed for each element) and xm̄

forms a basis for Ar over K. For some a ∈ K, we can see that xm̄xn̄ = axm̄+n̄.

Therefore, any monomial axm̄ has a unique degree, and the product axm̄bxn̄ has

degree deg(axm̄) + deg(bxn̄).

32
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We shall now show that zm̄ = xm̄ + M forms a basis of Ar/M over K. For any

f [x] ∈ Ar, we can write f [x] = g[x](xqii − bi) + h[x], where each monomial h has

degree less than qi in xi. Therefore, zm̄ spans Ar/M . It now suffices to show that

any for monomial f [x] in M that has degree less than qi will automatically be 0.

Let f [x] =
∑r

j=1 hj[x](x
qj
j − bj). We can assume that each hj other than hr has

degree less than qr in xr. But, hr[x](xqrr − br) has degree more than qr in xr, unless

hr = 0. Inductively, we can see that f [x] = 0.

Therefore, [Ar/M : K] = q1q2 · · · qr = n, and [Ar/M : F ] = n2. Ar/M has its

maximal subfield as K and its center as F ; if a(
∑
amz

m̄) = (
∑
amz

m̄)a, for all

a ∈ K, then
∑
am(a−σm̄(a))zm̄ = 0. Thus, if am 6= 0, a = σm̄(a), for all a ∈ K, so

m̄ = (0, 0 · · · 0). Therefore, we must have a0 ∈ K. If a is central, then azm̄ − zm̄a

or σm̄(a) − a is 0 for all m̄, so a ∈ F . This concludes the construction of the

abelian crossed product from our hypothesis.
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