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Notation

k Field

Z Ring of integers

R[y] Ring generated by y over R

R[y1, .., yn] Ring generated by y1, ...., yn over R.

Y n-tuple y1, ...., yn.

R[Y ] Ring generated by y1, ...., yn over R.

Z {....,−2,−1, 0, 1, 2, ....}.

R Field of Real numbers.

C Field of Complex numbers.
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Abstract

This work consists of four chapters. In the first three chapters work is done only

over field k. The initial part includes the study of division algorithm in the polynomial

ring in one variable y over the field. It is shown that ideal description problem (IDP)

and ideal membership problem (IMP) are solvable in k[y]. In division algorithm in k[y]

for every division one get a unique remainder. But the uniqueness of remainder fails

for the division algorithm in the polynomial ring in multiple variables y1, ...., yn over k.

The division algorithm in k[y] helps in solving the IMP. In k[y], r = 0 is the only con-

dition for solving IMP. But because uniqueness of r fails in k[y1, ...., yn], r = 0 is the

sufficient condition for IMP in k[x1, ...., xn], not the necessary. So some ”good” gen-

erators with special properties are needed such that when some polynomial get divided

by these generates one get unique remainder and r = 0 mean that polynomial belongs

to the ideal. These ”good” generators are called ”Groebner Basis”. So in this work,

the ideal membership problem and ideal description problem are solved using Groebner

Basis in an algorithmic fashion. Groebner bases are constructed using S− polynomials

by Buchberger’s algorithm in this thesis.(see [DO07])

In the third chapter, it is shown that how algebra is linked to geometry. Then the con-

cept of variety is introduced. The ideal-variety correspondence is proved. Ideal and

variety connect the algebra with geometry. Varieties provide a geometrical view to the

algebraic understanding given by ideals. Then weak, strong and Hilbert’s Nullstellen-

satz is given, which establishes some connection between ideals and varieties. Next,

it is given that any property of varieties leads to some property for ideals in an almost

opposite way and vice versa. Construction of radical of an ideal using Groebner ba-

sis is given. The decomposition of a variety into irreducibles is given and since there

is a correspondence between ideals and variety, decomposition of ideals is also possible.

In the last chapter, the work is done on the commutative Noetherian ring with iden-

tity. It’s given that for zero-dimensional ideals Groebner basis possesses some special

properties. It is possible to recognize a zero-dimensional ideal just by looking at it’s
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Groebner basis. Then the ways by which one can compute Groebner bases for some

basic operations on ideals are given. An algorithm is given which is helpful in checking

whether a given ideal is prime or not. Then primary decomposition of zero-dimensional

ideals is being presented. One is the general standard way. The second is when the co-

efficient ring is the field of characteristic 0, then one first makes the ideal in the general

position then decompose it. Then an algorithm to primary decompose a general ideal

where the ring is a polynomial ideal domain is given. It’s given how one can reduce the

high dimensional ideals into zero-dimensional ideals by using the localization at princi-

pal prime ideals. So first these general ideals can be turned into some zero-dimensional

ideals and then the primary decomposition can be done. (see [GG])
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Chapter 1

Polynomial ring in one variable over

field

I will use Groebner basis in giving the solutions of the two important problems related

to ideals in K[y1, ..., yn]. These problems that I want to solve are Ideal membership

problem and ideal description problem. The solution will be derived in an algorithmic

way.

These are the statements of the problems that are mentioned above-

1. Ideal Description Problem (IDP):- Is it possible to find some finite basis for

ideals in k[y1, ..., yn]?

2. Ideal Membership Problem (IMP) :- Given a finite generating set for an ideal

I ⊂ k[y1, ..., yn], is there any way to find out whether a given polynomial h be-

longs to ideal I or not?

In this chapter, I will prove that there is always a way to find solution for IDP and

IMP in k[y].

Assume that g = b0y
n + b1y

n−1 + ....+ yn, clearly g ∈ k[y]. The conditions b0 ̸= 0

and every bi ∈ k are given. So lt(g) (lt means leading term) is equal to b0yn.

Given that g, h ̸= 0, if the degree of h is greater than the degree of g then lt(g) will

divide lt(h) and vice versa.

1



2 CHAPTER 1. POLYNOMIAL RING IN ONE VARIABLE OVER FIELD

Proposition 1 (The division algorithm) Suppose k is a field , h ̸= 0 and in k[y]. Then

every l in k[y] has the following form

l = ph+ r,

Here p and r conditioned to be unique and they belong to k[y]. r is zero or the degree of

r is less than the polynomial h. There exists an algorithm which helps us to find p and

r.

1: Input : h, l

2: Output : p, r

3: p := 0; r := l

4: WHILE r ̸= 0 AND lt(h) divides lt(r) DO

5: p := p+ lt(r)/lt(h)

6: r := r − (lt(r)/lt(h))h

Proof: First, let me explain the each step of the algorithm. So here p and r are the

output means the result that we want. We are changing the values of p and r every time

we go through the while-do loop. This loop will go on until the value of r becomes zero

or the leading term of h stop dividing leading term of r (means the degree of r becomes

smaller than the degree of h). For every algorithm, there are three things to check about

it -

(1) It always works which means that even after that p and r keep changing the values

the form of l l = ph+ r, should always be the same.

(2) It should terminate. Which simply means that the while-do loop must stop some-

where. As we mentioned earlier that it implies that r should become zero at some point

in time or the leading term of h should stop dividing leading term of r.

(3) In the end, when it terminates, it should give the expected values of p and r means

that it must give us the unique p and r.

For proving (1) let us first see that the values that we decided for p and r in the

starting of the algorithm satisfy the form l = ph+ r. So in the starting the values were
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p = 0; r = l, when we put these values in l = ph+ r it becomes l = 0.h+ l = l = l so

the argument is proved for the initial values. Now let this prove for the changing values

of p and r. For that let us put p := p + lt(r)/lt(h) and r := r − (lt(r)/LT (h))h in

l = ph+ r. Then l = ph+ r becomes

l = (p+ lt(r)/lt(h))h+ (r − (lt(r)/lt(h))h) = ph+ r.

So our argument is proved for every value of p and r.

For proving (2) let us first prove our claim that r := r − (lt(r)/LT (h))h is zero or

its degree is less than degree of r. For proving the claim I would like to assume some

form of h and r.

h = a0y
s + ....+ as, lt(h) = a0y

s,

r = b0y
q + ....+ bq, lt(r) = b0y

q,

Let us assume that degree of r is greater than degree of h means q ⩾ s. So

r − (lt(r)/lt(h))h = (b0y
q + ...)− (b0/a0)y

q−s(a0y
s + ....),

If we look at this we sense that deg(r) has to drop. we have value q finite which clearly

means that degree can’t drop more than finite times. And that implies that algorithm

will terminate at some finite point.

Now, this is time to prove our third point. Let us say we don’t have the unique p and

r, we also have p′ and r′ with same properties such that l = ph + r = p′h + r′. Here

as we said the degree of r is less than the degree of h and degree of r′ is less than the

degree of h′. Which implies that degree of r − r′ is less than the degree of h.

By readjusting l = ph + r = p′h + r′ we get (p − p′)h = r − r′. Since r and

r′ are different (p − p′) can’ be 0. So we see that deg(r − r′) which we can write as

deg((p− p′)h) = deg((p− p′)) + deg(h) which is definitely greater than deg(h). That

is the contradiction and this makes r = r′, and q = q′. Hence we proved our third point.

Here the proof ends.

□
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Example 1 Let us give an example of the division algorithm- We want to divide l(y) =

y5 − 3y2 + 1 by h(y) = y2 − 4y + 7,

As we keep in our mind the leading term of these polynomials we write them in decreas-

ing order of terms. lt(l(y)) = y5 = y3.lt(h(y))),

so we will subtract y3.h(y) from l(y) to cancel lt(l(y)).

So, l(y)− y3.h(y) = 4y4 − 7y3 − 3y2 + 1.

Now lt(l(y)− y3.h(y)) = 4y2.lt(h(y)) ,so let us do

(l(y)− y3.h(y))− 4y2.(h(y)) = 9y3 − 31y2 + 1

and we will continue with the same calculation till we get a polynomial which does not

have degree more than 1.

9y3 = 9y.lt(h(y)) so, (9y3 − 31y2 + 1)− 9y.h(y) = 5y2 − 63y + 1

5y2 = 5.lt(h(y)) , so (5y2 − 63y + 1)− 5.h(y) = −43y − 34

So, l(y)− y3.h(y)− 4y2.h(y)− 9y.h(y)− 5.h(y) = −43y − 34

so, l(y) = (y3 + 4y2 + 9y + 5).h(y) + (−43y − 34)

here p(y) = y3 + 4y2 + 9y + 5 and r(y) = −43y − 34.

Here we have the following order on the variable y

.... > yn+1 > yn > ..... > y2 > y > 1.

The credit of the algorithm being successful goes to the the systematic way of working

on leading terms of h and l.

Corollary 1 The ideals of k[y] have a single element as their generator.

Proof: k[y] is a Euclidean domain whichmakes it a PID. This completes our argument.

□
So we found solution to our IDP in above corollary.

We can always compute the greatest common divisor of elements of k[y]. We have an

algorithm named Euclidean algorithm for computing greatest common divisor. [DO07]

Now I will explain the method to derive solution for IMP.

Step 1- The very first thing that we are supposed to do is to find greatest common divisor
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of the finite basis of our given ideal.

Step 2- Then we divide the given polynomial h by the generators of the ideal with the

help of division algorithm.

Step 3 - Now we will check the value of r. If our r is zero then h belongs to the ideal

otherwise, doesn’t.
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Chapter 2

Polynomial ring in n variables over

fields

2.1 Monomial ordering and the Division Algorithm in

k[y1, ..., yn]

There exists a relation between monomials in Polynomial ring of n variables and el-

ements of Zn
≥0 because the elements of Zn

≥0 are of the form β = (β1, ..., βn) and the

monomials have the form yβ = yβ1

1 ...yβn
n . So if we have an ordering on Zn

≥0 that will

directly form the ordering on monomials.

Basically monomial ordering on the polynomial ring with multiple variables is a

relation > on Zn
≥0, such that (1) > is a total order on Zn

≥0 (2) If two elements β and γ

are there in Zn
≥0 such that β > γ and we have α in Zn

≥0 then then sum of β + α > γ + α.

The last property is (3) Each subset of Zn
≥0 should have a smallest element in it under

the relation >.

So basically if we have β > γ then it is confirmed that yβ > yγ .

There exists many kinds of ordering on the elements of Zn
≥0. Mostly we use these

two -

Definition 1 (Lexicographic Order) Assume that we have two elements β and γ ofZn
≥0.

The elements β and γ can be written as β = (β1, ..., βn) and γ = (γ1, ..., γn). When we

take the difference between them say β − γ = (β1 − γ1, ..., βn − γn) then if the β1 − γ1

7
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is positive, then it means that β >lex γ. This implies that yβ >lex yγ .

Definition 2 (Graded Lex Order) Assume that we have two elements β and γ of Zn
≥0.

The elements β and γ can be written as β = (β1, ..., βn) and γ = (γ1, ..., γn). Let us say

we have |β| =
∑n

i=1 βi and |γ| =
∑n

i=1 γi. Then (1) if |β| > |γ| then β >grlex γ. And

(2) if |β| = |γ| then we will check for lexicographic order and then if we have β >lex γ,

then |β| >grlex |γ|.

If we are going to work in say 3 variables then instead of y1, y2, y3 wewill use y, x, z.

The lexicographic ordering will be defined like y > x > z.

Suppose we have a polynomial h in k[y1, ..., yn] which is not zero. Let us say it has

the form h =
∑

β bβy
β . Assume that we are given a monomial ordering >. We want to

define some terms- Multidegree of h is the maximum of β such that bβ is non-zero. bβ

where the β is the multidegree is called leading coefficient (lc(h)). Similarly yβ where

β is the multidegree is called the leading monomial (lm(h)), it should have coefficient

1. And finally, the multiplication of leading coefficient and leading monomial of h is

known as the leading term (lt(h)).

Lemma 1 Consider two elements g and h from k[y1, ...., yn], which are nonzero. Then

we can see that

(1)Multidegree of the multiplication of g and h is equal to the sum of multidegree of g

and the multidegree of h.

(2) If the sum of those two polynomials is non-zero then multidegree of the sum of g and

h is less than or equal to the maximum of multidegree of g and h. If we add one more

condition to it that multidegree of g and h are different then the multidegree of the sum

of g and h is equal to the maximum of multidegree of g and h.

Theorem 1 Assume that we have a monomial ordering> on Zn
≥0. If we have a m-tuple

H = (h1, ..., hm) which is ordered, all hi are polynomials. Then each h of k[x1, ..., xn]

has the form

h = b1h1 + ....+ bmhm + r

all the bi and r belongs to k[y1, ..., yn]. Here r is conditioned to be 0 or a linear combina-

tion of monomials where none of the lt(h1), ..., lt(hm) can divide them and the coefficient

in the linear combination are from k. r is called remainder of the polynomial h whenH



2.1. MONOMIAL ORDERING AND THE DIVISION ALGORITHM IN K[Y1, ..., YN ]9

divides it. When the terms bihis are non zero then the multidegree of h is greater than

or equal to multidegree of bihi.

Proof: Here we introduce some new variables like q and divisionoccurred. So we call

q the intermediate dividend. And the divisionoccurred is a term by which we means

that lt(q) is divided by some lt(hi). Going through the while do means that one of the

following two steps is happening-

• (Division Step) Whenever lt(q) is being divided by some lt(hi), then the division

algorithm works like the algorithm of k[y].

• (Remainder Step) If lt(q) is not divisible by any lt(hi) then lt(q) is added to r by

the algorithm.

1: Input : h1, ...., hm, f

2: Output : b1, ...., bm, r

3: b1 := 0; ....; bm := 0; r := 0

4: q := h

5: WHILE q ̸= 0 DO

6: i = 1

7: divisionoccurred := false

8: WHILE i ⩽ m AND divisionoccurred = false DO

9: IF lt(hi) divides (q) THEN

10: bi := bi + lt(q)/lt(hi)

11: q := q − (lt(q)/lt(hi))hi

12: divisionoccurred:= true

13: ELSE

14: i := i+ 1

15: IF divisionoccurred = false THEN

16: r := r + lt(q)

17: q := q − lt(q)

Just as the case of one variable we need to check three things about this algorithm
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but here we have on more thing to check, that is the multidegree of h and bihi. So we

need to check the following-

(1) It always works which means that even after that p, r and bis keep changing the

values according to the division and remainder step, the form of h,

h = b1h1 + ....+ bmhm + p+ r (2.1)

should always be the same.

(2) It should terminate. Which simply means that the while-do loop must stop some-

where. It implies that lt(q) must be divided by some lt(hi) in the end.

(3) In the end, when it terminates, it should give the expected values of p and r men-

tioned in the theorem statement.

(4) In the last, we need to check that When the terms bihis are non-zero then the multi-

degree of h is greater than or equal to multidegree of bihi.

For proving (1) let us first see that the values that we decided for bi, .., bm ,p and r

in the starting of the algorithm satisfy the equation (2.1). So in the starting the values

were p = h; bi, .., bm = 0 and r = 0, when we put these values in (2.1) it becomes

h = 0.h1 + .... + 0.hm + h + 0 = h. The argument is true in the starting. Now let us

check whether it holds on the division step or not. So in the division step lt(q) is being

divided by some lt(hi). so bihi+ q becomes (bi+ lt(q)/lt(hi))hi+ q− (lt(q)/lt(hi))hi

and by this we get bihi + q again. As we didn’t change other variables so (2.1) holds.

Now we check for the remainder step. In this step values of q and r changes and if put

the new values of p and r in q + r then it becomes q − lt(q) + r − lt(q) which will

become q + r again. We didn’t change any other variable so (2.1) is the same.

Now I will prove (2), We need to prove that in the end, q will be zero. So first let us

look at q at the time of division step let us say q′ = q − (lt(q)/lt(hi))hi

By the lemma (1), we get lt((lt(q)/lt(hi))hi) = (lt(q)/lt(hi)).lt(hi) = lt(q) So

basically the leading term of q will get canceled and then multidegree of q′ will become

less than multidegree of q. which means the multidegree of q is decreasing. Now we see

that in the remainder step q′ := q − lt(q).Again the leading terms are getting canceled

so multidegree of q is decreasing. It is decreasing with every step. So we are having a

sequence of mutidegrees which is a decreasing sequence. Since the monomial order is

well-ordering, this sequence infinite. So the algorithm will be ended after finite steps.
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Now let us prove the point (3). When we have the value of q zero then (2.1) have

the form h = b1h1 + .... + bmhm + r. And according the algorithm we only add those

terms to r which are not divisible by lt(hi). From here we see that all bi and r have the

expected values.

In the end, I will prove the point (4). So we can see that bi have the term lt(q)/lt(hi).

In the starting, we had the value of q, hAnd by the timemultidegree of q start to decrease.

So lt(q) < lt(h). By the property of monomial ordering multidegree of bihi will be less

than multidegree of h. So we proved the theorem. □

I would like to give an example of the uniqueness of r.

Example 2 Let us assume that h1 = xy + 1, h2 = x2 − 1 belongs to k[y, x]. We have

the lex order here. Whe we divide h = yx2 − y by H = (h1, h2) then we get

yx2 − y = x.(xy + 1) + 0.(x2 − 1) + (−y − x).

But when we change the order of polynomials such H = (h2, h1) then we get

yx2 − y = y.(x2 − 1) + 0.(xy + 1) + 0.

So we get two different r because of the change in the order of polynomials. Which

contradicts the uniqueness of r.

Division algorithm in k[y1, ..., yn] doesn’t solve the IMP in the way Division al-

gorithm in k[y] do. As even if h belongs to the ideal which has generating elements

h1, h2,there is a possibility that we get the value of r not equal to zero on getting divided

by H = (h1, h2).

Thus r = 0 is a sufficient condition for IMP. But, according to the above example,

we can have the polynomial in the ideal even if the value of r is not zero.

We want our remainder r on division by the generators to be provided uniquely and the

condition r = 0 should be same as having that the polynomial belongs to the ideal. So,

we want different generators with special properties.
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2.2 Groebner Bases and their properties

Definition 3 Suppose that we have a subset H of Zn
≥0. If an ideal J of k[y1, ..., yn]

contains all polynomials which are finite sums of the form
∑

β∈H fβy
β , then J is said

to be monomial ideal. Here fβ is an element of k[y1, ..., yn]. We denote J as the ideal

generated by yβ .

Lemma 2 Suppose that J is a monomial ideal generated by yβ . Then we see that yγ

belongs to the ideal J iff yβ divides yγ where γ and β belongs to the subset H of Zn
≥0.

Proof: Suppose that yβ divides yγ which means that yγ can be written as b.yβ for some

b in k[y1, ..., yn] . Which simply implies that yγ belongs to the ideal J .

Now to prove the other containment let us assume that yγ belongs to the ideal J so we

can write yγ as
∑n

i=1 fiy
β(i) here the fi are polynomials in k[y1, ..., yn] and β(i) belongs

toH . Since we every fi can be written as a linear combination of monomials which will

implies that we can divide every term of
∑n

i=1 fiy
β(i) by some xβ(i).So, xβ must have

the same property. □
For being two monomial ideal to be equal they must have all same monomials and

vice versa.

Theorem 2 (Dickson’s lemma) Suppose that J is a monomial ideal in k[y1, ..., yn]

which is generated by yβ where β belongs to H . Then we can see that J has a finite

generating set, say yβ(1), ..., yβ(m) such that β(1), .., β(m) belongs to the subset H .

Proof: We will prove the theorem by the induction on the number of the variables n.

If we take n = 1 then J is generated by the monomials yβ1 , where β belongs to H . Let

us assume that α is the smallest element of H . Then α ⩽ β for all β belongs to H . So

now we can see that yα1 divides all other generators y
β
1 . So it follows that J is generated

by yα1 .

Now suppose that this theorem is true for n − 1 and we need to prove it for n, where

n > 1. Now let us write the variables as y1, ...., yn−1, x such that the monomials in

k[y1, ...., yn−1, x] can be written as yβxs, where β = (β1, ...., βn−1) which belongs to

Zn−1
⩾0 and s belongs to Z⩾0.

Let us assume that J ⊂ k[y1, ...., yn−1, x] is a monomial ideal. Suppose that I is the ideal
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in k[y1, ...., yn−1] generated by the monomials yβ such that yβxs belongs to J for some

s ⩾ 0. Since I is a monomial ideal in k[y1, ...., yn−1], our inductive hypothesis implies

that finitely many of the yβ’s generate I . Let us say J = ⟨yβ(1), ...., yβ(m)⟩. We can see

the ideal I as the projection of J into k[y1, ...., yn−1]. According to the way we defined

I , yβ(i)xsi will belong to J , for each 1 ⩽ i ⩽ m and some si ⩾ 0. Suppose that s is the

largest of the si . Then, for each 0 ⩽ k ⩽ s− 1, consider the ideal Ik ⊂ k[y1, ...., yn−1]

generated by the monomials yα such that yαxk belongs to J . We can think of Ik as

the slice of J generated by monomials which contains x exactly to the kth power. By

using our inductive hypothesis again, we can see that Ik has a finite generating set of

monomials, say Ik = ⟨yβk(1), ...., yβk(mk)⟩ .

Now we claim that J is generated by the monomials in the following list:

fromI : yβ(1)xs, ...., yβ(m)xs

,

fromI0 : y
β(1), ...., yβ0(m0),

fromI1 : y
β1(1)x, ...., yβ1(m1)x

,

..

..

fromIs−1 : y
βs−1(1)xs−1, ...., yβs−1(ms−1)xs−1,

We claim that we can divide every monomial in J by one on the list. To prove the

claim let yβxp belongs to J . If p ⩾ s, then by the way we constructed I we can see that

some yβ(i)xs divides yβxp. On the other hand, if p ⩽ s− 1, then by the construction of

Ip we see that some yβp(j)xp divide yβxp. Now from lemma (2) it follows that the above

monomials generate an ideal having the same monomials as J . So the ideals will be

same. So our claim is proved now.

The last thing we need to show is that the finite set of generators can be chosen from

a given set of generators for the ideal. If we switch back to writing the variables as

y1, ...., yn, then our monomial ideal is J = ⟨yβ : β ∈ H⟩ ⊂ k[y1, ...., yn]. So We need to

show that J is generated by finitely many of the yβ’s, where β ∈ H . We already know

that J = ⟨yα(1), ...., yα(m)⟩ for some monomials yα(i) in J . Since yα(i) ∈ J = ⟨yβ : β ∈
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H⟩, we can see that each yα(i) is divisible by yβ(i) for some β(i) ∈ H . From here we

can see that J = ⟨yβ(1), ...., yβ(m)⟩. This completes the proof. □

Definition 4 Suppose I is an ideal of k[y1, ..., yn] and it is not the zero ideal then-

1. lt(I) denotes the set which contains the leading terms of all elements of the ideal

I . So, we have

lt(I) = {byβ : ∃h ∈ I such that lt(h) = byβ}

2. The elements contained in lt(I) generates the ideal ⟨lt(I)⟩.

Let us say that I is generated by some finite elements h1, ..., hm. Then it is not nec-

essary for lt(I) and the ideal generated by lt(h1), .., lt(hm) to be equal.

Proposition 2 Suppose we have an ideal I of k[y1, ..., yn]

1. Then the ideal ⟨lt(I)⟩ is monomial ideal.

2. ∃ some elements g1, ..., gm in I so that the ideal ⟨lt(I)⟩ is equal to the ideal gen-

erated by lt(g1), .., lt(gm).

Proof:

1. As we knowwe can always have an ideal generated by monomials of polynomials

of I which is the monomial ideal. And we know that there is only the difference

of constant between the leading monomial and the leading term of an element.

So the monomial ideal will be equal to the ideal generated by leading terms of

polynomials of I . Our argument is proved.

2. As we have seen before that leading monomials of elements gi of I generates

⟨lt(I)⟩ so according to the Dickson’s lemma only finitely many leading monomi-

als of g1, .., gm will generate ⟨lt(I)⟩. And as I mentioned earlier there is only the

difference of constant between the leading monomial and the leading term of an

element. So finitely many leading terms of elements g1, .., gm of the ideal I will

generate ⟨lt(I)⟩. Our argument is proved.
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□

Theorem 3 (Hilbert Basis Theorem) There exists a generating set g1, .., gm for every

ideal in k[y1, ..., yn] . This set is finite and elements g1, .., gm belongs to I .

Proof: So let us start with the zero ideal. Then zero will generate the ideal.

Now if we have some element in I then we can construct the basis g1, .., gm for it. As

we proved in the last proposition that ∃ some elements g1, ..., gm in I so that the ideal

⟨lt(I)⟩ is equal to the ideal generated by lt(g1), .., lt(gm). So now I want to prove that

the basis for the ideal I is g1, .., gm.

As gi’s are the elements of I so the ideal generated by g1, .., gm will also be in the

I . For the other inclusion let us assume that we have a polynomial h from I . Let us use

the division algorithm here, when g1, .., gm will divide h we will have

h = b1g1 + ....+ bmgm + r

Here lt(gi)’s don’t divide the any term of r. We want to prove that r is equal to 0. We

can write

r = h− b1g1 − ....− bmgm

which will belong to I . If we have r nonzero then since my r is in I , it’s leading term

will be in ⟨lt(I)⟩. Which is equal to the ideal generated by lt(g1), .., lt(gm). That means

some lt(gi) divides lt(r). Which contradicts the properties of r. So r has to be zero.

So h will be h = b1g1 + .... + bmgm . Which simply means that h belongs to the ideal

generated by g1, .., gm. So we proved the theorem. □

Definition 5 Let us determine a monomial ordering. Groebner basis is a subset of I

,G = {g1, ..., gm}, which is finite and has the property -

⟨lt(I)⟩. = ⟨lt(g1), ..., lt(gm)⟩

Corollary 2 Let us determine a monomial ordering. Groebner basis exists for each

ideal in k[y1, ...., yn] .

So by the above theorem, the ideal description problem is solved for ideals in poly-

nomial rings in multiple variables.
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Proposition 3 Suppose that for an ideal I in k[y1, ..., yn], G = {g1, ..., gm} is a Groeb-

ner basis. We have a polynomial h from k[y1, ..., yn]. Then there exists a polynomial r,

which is unique and belong to k[y1, ..., yn] ,with properties given below-

1. None of the lt(g1), ..., lt(gm) can divide terms of r.

2. We always have a f from I so that we can write h as h = f + r.

Basically, whenever h gets divided by G we have r as the remainder. When we

use division algorithm listing order of elements {g1, ..., gm} does not matter, we

will always get the same r.

Proof: Whenever h gets divided by G we have h = b1g1 + ....+ bmgm + r according

to division algorithm. The properties of the r from division algorithm satisfies the point

(1). Now if we assume that f = b1g1 + .... + bmgm, then f will belong to I as well as

full fill the point (2). So at least till now we proved that r exists.

The only part that is remained to prove is the uniqueness of r. So to prove that, let us

say we have another f ′ and r′ with the same properties. Then h = f + r = f ′ + r′, by

rearranging the terms we get r − r′ = f ′ − f which belongs to I . Now we see that if r

and r′ are not equal then leading term of r− r′ will belong to ⟨lt(I)⟩. That is equivalent

to have that some lt(gi) will divide lt(r− r′). Which is a contradiction as we know that

none of the lt(gi)’s can divide r and r′, so they can’t divide r − r′ also. So r and r′ has

to be same. □

Corollary 3 Suppose that ideal I belongs to k[y1, ..., yn] has G = {g1, ..., gm} as a

Groebner basis. Assume we have a polynomial h from k[y1, ..., yn]. Then we see h is

contained in I iff when G divides h we get the value of r zero.

Proof: If h is contained in I then we can write h as h + 0. Here 0 indicated that r is

zero.

If the remainder r has value zero then we already know that h is contained in I . □

This gives us the solution of IMP.

h
H denotes the remainder which we get when the ordered m-tupleH = (h1, ..., hm)

divides h.
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Next, we want to see is there any way to identify that the given basis is Groebner

basis.

Basically, there is only one answer to the question- why a particular set of basis say

{h1, ..., hm} is not Groebner basis. The answer is that in some linear combination of

these elements the leading terms get canceled. Because of which the leading term of

this combination will not belong to the ideal ⟨lt(h1), ..., lt(hm)⟩ but always belong to

⟨lt(I)⟩.

Example 3 Let I = ⟨h1, h2⟩, where h1 = y3 − 2xy and h2 = xy2 − 2x2 + y, and let

us define grlex ordering in k[y, x]. Then we will have one linear combination of h1 and

h2 be like

y.(xy2 − 2x2 + y)− x.(y3 − 2xy) = y2

Here as we can see y2 will belong to I . Thus the leading term of polynomial y2 which

is y2 will belong to ⟨lt(I)⟩. But lt(h1) which is y3, or lt(h2) which is xy2,both does not

divide y2 which means that y2 does not belong to ⟨lt(h1), lt(h2)⟩.

Let us present S − polynomial. which will explain the cancellation that happened

above-

Definition 6 Let us assume that g, h are polynomials from k[y1, ..., yn].

1. Suppose α is the multidegree of g where we have α = (α1, .., αn) and β is the

multidegree of h such that β = (β1, .., βn) then we have γ = (γ1, ..., γn) such that

each γi is the maximum of αi and βi. So basically yγ is the LCM of lm(g) and

lm(h).

2. We can write S − polynomial of g and h in the following way-

S(g, h) =
yγ

lt(g)
.g − yγ

lt(h)
.h

Lemma 3 Let us say there is a sum
∑m

i=1 bihi such that each coefficiant bi is in the

field k and each hi has multidegree δ which belongs to Zn
⩾0. Whenever we see that

multidegree of the sum
∑m

i=1 bihi is less than δ then it is fixed that this sum is basically

equal to the linear combination of S − polynomials of hj, hk foe every j, k between 1

tom, and coefficients belong to k. So multidegree of each S- polynomial is less than δ.
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Theorem 4 (Buchberger’s Criterion) Suppose I is ideal in k[y1, ..., yn]. Then gener-

ating set of I , G = {g1, ..., gm} is called a Groebner basis iff When G divides S(gi, gj)

for all i ̸= j, we get zero as the remainder.

Proof: First assume that G is Groebner basis. Since S(gi, gj) is basically a linear

combination of gi and gj , which is a elements of I so when whenGwill divide S(gi, gj)

we will get zero as the remainder.

For proving the other way, assume that h is a polynomial from I , which is not 0. Thenwe

want to prove that that lt(h) will belong to ⟨lt(g1), ...., lt(gm)⟩, if we have remainder’s

value 0 whenG divides S−polynomials. There exists polynomials fi’s in k[y1, ...., yn]

so that we can write h in the form

h =
m∑
i=1

figi (2.2)

According to lemma (1) we can see that

multideg(h) ⩽ max(multideg(figi)). (2.3)

Suppose m(i) is the multidegree of (figi) and let us assume that δ is the maximum of

allm(i)s. So from here we can see that

multideg(h) ⩽ δ.

Since we can write f as equation (2.3) in many possible ways. And there is a possibility

that for every different expression ,δ will be different. We want to have the such a way

to write h so that we can have δ minimum and this is possible as monomial ordering

possesses a property of well ordering.

Basically what I want to do to prove this theorem is that I want to prove that mul-

tidegree of h is actually equal to the maximum of multidegrees of figis. Because If

I prove so, I would be able to see that some lt(gi) divides lt(h). Which proves our

theorem. Now for proving that multidegree of h is actually equal to the maximum of

multidegrees of figis, I have to write h in terms of S − polynomials, which I can do

because if we see that there is no equality in the equation (2.3), then it means that some

leading terms are cancelling each other. As we said in the statement that when G di-

vides S(gi, gj) for all i ̸= j, we get zero as the remainder. that means we can write
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S − polynomials in some linear combination of gis. By which at some point in time

we can get leading terms which will not cancel out each other. So, in the end, I will be

able to prove that there is an equality in equation (2.3).

As I mentioned earlier I need to prove that multideg(h) is equal to δ. I would like

to use contradiction here.

I want to write h in such a way that I can put those terms separately which have

multidegree δ .

h =
∑
mi=δ

figi +
∑
mi<δ

figi =
∑
mi=δ

lt(fi)gi +
∑
mi=δ

(fi − lt(fi))gi +
∑
mi<δ

figi (2.4)

So for multidegree(f) being less than δ, the sum at the first place must have multidegree

less than δ.

I will study the first sum separately-

Assume that lt(fi) = diy
β(i). First sum can be written as∑
mi=δ

lt(fi)gi =
∑
mi=δ

diy
β(i)gi

According to lemma (3) this sum can bewritten as a linear combination ofS(yβ(j)gj, yβ(k)gk).

From the definition of S − polynomials

S(yβ(j)gj, y
β(k)gk) =

yδ

yβ(j)lt(gj)
yβ(j)gj −

yδ

yβ(k)lt(gk)
yβ(k)gk = yδ−αjkS(gj, gk)

, Here yαjk is the least common multiple of lm(gj and lm(gk). Now we can write the

first sum as ∑
mi=δ

lt(fi)gi =
∑
j,k

djky
δ−αjkS(gj, gk) (2.5)

where djk are the coefficients from k.

Now we will write S − polynomials as a combination of gis for the reason that I

mentioned earlier. Then

S(gj, gk) =
m∑
i=1

cijkgi (2.6)

such that cijk are from k[y1, ...., yn]. Accordng to the division algorithm multidegree

of cijkgi is less than equal to multidegree of S(gj, gk) for all i, j, k. Now we do the

follwing multiplication

yδ−αjkS(gj, gk) =
m∑
i=1

aijkgi
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, Here aijk denotes yδ−αjkcijk. Then by applying lemma (3) we can see that

multideg(aijkgi) ⩽ multideg(yδ−αjkS(gj, gk)) < δ. (2.7)

Now let us put the another form of xδ−γjkS(gj, gk) in equation (2.5), we will get

∑
mi=δ

lt(fi)gi =
∑
j,k

djk(
m∑
i=1

aijkgi) =
∑
i

fi gi

As given above multidegree of (fi gi is less than δ for all i. So now we need to

put the new form of
∑

mi=δ lt(fi)gi in (2.4). By doing that such a form of f can be

achieved in which multidegee of every term is less than δ. This is a contradiction to the

minimality of δ. Our theorem is proved.

□
With the help of S-polynomial, we can construct Groebner basis.

Theorem 5 (Buchberger’s Algorithm:-) Soppose we have an ideal I from k[y1, ..., yn]

which is generated by finite elements h1, ...., ht . Then in finitely many steps we can

construct the Groebner basis of I with the help of algorithm-

1: Input : H = (h1, ..., ht)

2: Output : A Groebner basis G = (g1, ..., gm) for I, with H ⊂ G

3:

4: G := H

5: REPEAT

6: G′ := G

7: FOR each pair p, q, p = q in G′ DO

8: S := S(p, q)
G′

9: IF S ̸= 0 THEN G := G ∪ S

10: UNTIL G = G′

Proof: For every algorithm, there are three things to check about it -

(1) G should always be contained in the I .

(2)When the algorithmwill be terminatedwewill get aG, thatG should be the Groebner
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basis.

(3) The algorithm must be terminated at some finite point.

So in order to prove (1) let us see that in the starting we have said that G is equal to

the H . H is a basis of I so it has to be in the ideal so G will also be contained in the I .

Now at some point G will be G ∪ S, where S is the remainder that we get by dividing

S(p, q), for p, q inG, withG′. Now as know thatG is contained in I so p, q does belong

to I . By following the same argument S− polynomial of p and q also belongs to I and

G′ also belongs to I . So basically the remainder will also be in I . So from here, we have

G ∪ S will belong to I . There is one more thing to notice that F is always contained in

G so for I G is also a basis. So we proved our argument.

Now for proving the second point we see that we get G equal to G′ in the end when

algorithm gets terminated. So at that time, we will have the remainder of the S(p, q) by

dividing with G′ zero. Then according to the above theorem, G will be considered as

Groebner basis.

Only things which are left to prove is that at some finite point the algorithm will

end. We have to see what happens when one loop ends and we for next loop. So we

see that when algorithm goes on G′ and the remainder that we get when we divide

S − polynomials of elements of G′ by G′, belongs to the new G. As we know that G

contains G′ so we can see that ⟨lt(G)⟩ ⊃ ⟨lt(G′)⟩. Now I wish to prove that whenever

G andG′ are not equal, we see that ideal generated by leading terms of element osG′ is

strictly contained in ideal generated by leading terms of elements ofG. For proving this

let us see that new G has remainder r along with G′, so leading term of this r belongs

to the ideal ⟨lt(G)⟩, but since we get this r when G′ divided S − polynomials which

means that no term of (r) can be divided by leading term of any element of G′. So

leading term of r doesn’t belongs to the ⟨lt(G′)⟩. Which means that ⟨lt(G′)⟩ is strictly

contained in ⟨lt(G)⟩. Now we can see that every time we finish one loop one element

get attached to G, this whole process makes a chain of ⟨lt(G′)⟩, which is ascending. So

by the ACC of ideals, this chain has to stabilize, which will happen after finite steps. So

in the end we will get that ⟨lt(G)⟩ is equal to ⟨lt(G′)⟩. Which implies that both G and

G′ are same. So basically algorithm gets terminated after some finite steps. □
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Lemma 4 Suppose we have an ideal J in k[y1, .., yn]. And we have the Groebner basis

of J . Suppose that we have an element g of G such that it’s leading term belongs to the

ideal generated by the leading terms of the elements of G− {g}. Then G− {g} is also

considered to be the Groebner basis of J .

Proof: As we have seen that ideal generated by lt(G) is equal to the ideal generated by

lt(I). If we assume that lt(g) belongs to the ideal generated by the leading terms of the

elements of G− {g}. Then since lt(g) is in lt(I), so it implies that the ideal generated

by the leading terms of the elements of G − {g} has to be equal to ideal generated by

lt(G). So eventually it will be equal to the ideal generated by lt(I). Which proves that

G− {g} is a Groebner basis. □

Definition 7 Suppose we have a Groebner basis G of I in k[y1, .., yn]. If leading coef-

ficient of each element of G is 1 and leading term of any element won’t belong to the

ideal generated by leading terms of every other element of G. Then G is said to be a

minimal Groebner basis.

Definition 8 Suppose we have a Groebner basis G of I in k[y1, .., yn]. If leading coef-

ficient of each element of G is 1 and no monomial of any element of G, belong to the

ideal generated by leading terms of every other element of G. Then G is said to be a

reduced Groebner basis.

Example 4 We want to construct the Groebner bases for the ideal J generated by two

polynomials h1 and h2. h1 is y3 − 2xy and h2 = y2x − 2x2 + y given in example (4).

Let us use grlex ordering on monomials in k[y, x]. From example (4) we concluded that

H = {h1, h2} is not a Groebner basis for I . So we will first calculate S − polynomial

of h1 and h2-

S(y3 − 2xy, y2x− 2x2 + y) = −y2

This belongs to J . so,

S(h1, h2)
H
= −y2

, This is not zero, let us denote −y2 as h3 so have to add this to the generating set. So

generating set become H = (h1, h2, h3). So now compute

S(h1, h2) = h3
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, so now since the H includes h3 also-

S(h1, h2)
H
= 0,

S(h1, h3) = (y3 − 2xy)− (−y)(−y2) = −2xy

,but the remiander is-

S(h1, h3)
H
= −2xy

Since the remainder in not zero, hence let us take h4 = −2xy. So now our generating

set is H = (h1, h2, h3, h4) so we have-

S(h1, h2)
H
= S(h1, h3)

H
= 0

Now calculate -

S(h1, h4) = x(y3 − 2xy)− (−1

2
)y2(−2xy) = −2yx2 = xh4,

since it is a multiple of h4 , it is divisible by h4 and will have 0 remainder-

S(h1, h4)
H
= 0

S(h2, h3) = (y2x− 2x2 + y)− (−x)(−y2) = −2x2 + y,

but

S(h2, h3)
H
= −2x2 + y.

Since the remainder is not 0 we should add this to H . So till now H has become H =

{h1, h2, h3, h4, h5}, Now if we compute the S-polynomials of hi and hj for all i not equal

to j, then we get 0 remainder. So, our Groebner basis for J will be

{h1, h2, h3, h4, h5} = {y3 − 2xy, y2x− 2x2 + y,−y2,−2xy,−2x2 + y}

.

Example 5 Let J = ⟨h1, h2⟩ = ⟨xz − x2, y3 − z2⟩ ∈ [y, x, z], and we have considered

the grlex ordering. Suppose we have given h = −4y2x2z2+x6+3z5. We wish to check

if h belongs to the ideal J .

Since S-polynomial of h1 and h2 belongs to the ideal J it’s leading terms will also be-

long to the lt(J). Since S(h1, h2) = −y2x2 + z3 so it’s leading term is −x2y2. Since

the ideal ⟨lt(h1), lt(h2)⟩ = ⟨yz, y3⟩. As we can see that −x2y2 doesn’t belong to the
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⟨lt(h1), lt(h2)⟩ but belong to the ideal generated by lt(J). Which means the given gen-

erating set is not a Groebner basis. Now we will find the Groebner basis of J as we did

in the previous example. So we get

G = (xz − x2, y3 − z2, x2y2 − z3, yx4 − z4, x6 − z5).

now we need to divide h by G so we have

h = (−4yx2z−4x4)·(xz−x2)+0.(y3−z2)+0.(x2y2−z3)+0.(yx4−z4)+(−3).(x6−z5)+0·

As we can see we get 0 remainder, it means that h belongs to the ideal J .



Chapter 3

Affine varieties and Ideals

3.1 Introduction to Affine varieties

Definition 9 (Affine Space:-) Suppose that k is a field then

kn = {(b1, ..., bn) : b1, ..., bn ∈ k}

is called the n-dimensional affine space over k, where n is +ve integer.

Definition 10 (Affine variety:-) Suppose that k is a field. Assume that we have polyno-

mials h1, ..., hm from k[y1, ..., yn]. Then the affine variety defined by h1, ..., hm is given

by-

V (h1, ..., hm) = {(b1, ..., bn) ∈ kn : hi(b1, ..., bn) = 0 for all 1 ⩽ i ⩽ m}

Lemma 5 Assume that we have two affine varieties,V and T which belongs to kn, then

V ∪ T and V ∩ T are also the affine varieties.

Proof: Let us assume that V and T are defined as V = V (h1, ..., hs) and T =

V (f1, ..., ft). Then we want to prove that

V ∩ T = V (h1, ..., hs, f1, ..., ft),

V ∪ T = V (hifj : 1 ⩽ i ⩽ s, 1 ⩽ j ⩽ t).

We want to prove the first claim first- intersection of varieties V and T means that in

this intersection all hi’s and all fi’s all zero. Which is same as having a variety of all

25
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fi’s and gi’s.

Now we want to prove the second one- So let us say that we have an element (b1, ..., bn)

from the variety defined by hifj). I want to prove that it belongs to the V� ∪ T . So

let us assume that variety defined by hifj) is not contained in the V then it must have

some hi0(b1, ..., bn) which is not zero. But since we have that hi0fj is zero in V (hifj)

for all j at the point (b1, ..., bn). That implies that fj’s are zero at (b1, ..., bn). So V (hifj)

should be contained in T . The same argument can be given by using T instead of V .

That means variety defined by hifj) contained in V ∪ T . Now let us assume that we

have an element (b1, ..., bn) of V . Since all hi’s are zero at (b1, ..., bn), so hifj) will also

be zero at this element. So V is contained in V (hifj). The same argument can be given

for variety T . That proves the theorem. □

Proposition 4 If we have an affine variety named V which belongs to kn then I(V )

defined as-

I(V ) = {h ∈ k[y1, ..., yn] : h(b1, ..., bn) = 0 for all(b1, ..., bn) ∈ V }.

is called an ideal in k[y1, ..., yn].

Proof: Since we all know that zero polynomial is zero everywhere. It is also zero in

V . which means that it belongs to I(V ).

Now let us assume that we have two elements of I(V ) say h and f . We need to prove

that basis properties of being in a ideal will be satisfied. So imagine one polynomial g

from k[y1, ..., yn] and take one arbitary element (b1, ..., bn) from V . The sum h(b1, ..., bn)

+ f(b1, ..., bn) is zero. which means that h+ f also belongs to I(V ). Now the multipli-

cation g(b1, ..., bn).f(b1, ..., bn) is equal to 0 as f(b1, ..., bn) is zero, that means gf also

belongs to I(V ). So I(V ) is proved to be an ideal. □

Proposition 5 Assume that we have two affine varieties V and T in kn. So,

1. T ⊃ V ⇐⇒ I(T ) ⊂ I(V ).

2. V = T ⇐⇒ I(V ) = I(T ).
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Proof: Let us assume that T ⊃ V so every polynomials which vanishes in T , has to

vanish in V also. That simply means that I(T ) ⊂ I(V ).

Now let us suppose that I(T ) ⊂ I(V ). Let us say that polynomials h1, ..., hm which

belongs to k[y1, ..., yn], define the variety T . Which means that all these hi’s will be

in I(T ). Since I(T ) is contained in I(V ), all hi’s will be in I(V ). This implies that

h1, ..., hm will vanish in V . As we know that all the common solution of these h1, ..., hm

are in T so T ⊃ V .

We can prove T ⊂ V ⇐⇒ I(T ) ⊃ I(V ) in the same manner. And by combining these

two arguments we can say that V = T ⇐⇒ I(V ) = I(T ). The theorem is proved

now. □

3.2 The Elimination and Extension Theorem

We have some fine way in which variables can be eliminated from the polynomial equa-

tions system. The idea is given by the Elimination Theorem and the Extension Theorem.

Definition 11 If we have an ideal I in k[y1, ..., yn] generated by h1, ..., ht k[y1, ..., yn].

Then we can define a new ideal in k[ym+1, ..., yn]

Im = I ∩ k[ym+1, ..., yn]

This ideal is called the m-th elimination ideal Il.

If we find some polynomials in the Im, which are not zero, then we can see that they

are in the variables ym+1, ..., yn, so basically we eliminated y1, .., ym.

We need a way to find polynomials in Im, that’s what the Elimination theorem is all

about.

Theorem 6 (TheElimination Theorem:-) Suppose we have I as an ideal in k[y1, ..., yn].

We decide a lex order which is y1 > y2 > ... > yn.Assume that I has a Groebner basis

say G. Then we define Groebner basis

Gm = G ∩ k[ym+1, ..., yn]

for them− th elimination ideal Im, where 0 ⩽ m ⩽ n
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Proof: 0 ⩽ m ⩽ n, choose some m. I want to show that Gm is Groebner basis for

Im. There are two things that I want to prove. First is that Im contains Gm. The second

thing is that the ideal generated by lt(Im)’s and ideal ⟨lt(Gm)⟩ are equal. The first thing

we can see from way we defined Gm.

Now I want to prove the second thing. So we see that ⟨lt(Gm)⟩ is contained in ⟨Im⟩. So

we should prove that ⟨Im⟩ is also contained in ⟨lt(Gm)⟩. So if I take h from I and prove

that some lt(gi) divide lt(h) then automatically h will belong to ⟨lt(Gm)⟩.

So since h is in Im, it is also in I .For some gi inG, lt(gi)will divide lt(h). But we know

that lt(h) is in the variables ym+1, ..., yn so gi will be in these variables only. According

to the order that we defined on the variables, terms which doesn’t includes y1, .., ym are

smaller than the ones which includes them. Since lt(gi) only has ym+1, ..., yn variables

hence gi is in k[ym + 1, ..., yn]. Which implies that gi belongs to Gm. That completes

the proof. □

Let use take the last example of the last section. If we apply elimination theorem on

that Groebner basis thenwe see that Groebner basisG1 for I1, where I1 is the intersection

of I with C[x, z], is x3 − z2 so we can put that equal to zero and find the values of

variables. G2 for I2, where I2 is the intersection of I with C[z] is {0}.

We are done with the elimination step, now I would like to discuss the extension

step. Let us say we have an ideal I in k[y1, ...., yn]. If I say that I want to find about

all the elements of the variety of this ideal, then there is a way to do it. First I will

compute them− th elimination ideal and say that we have an element (bm+1, ...., bn) of

the variety V (Im). This element is called the partial solution. Then we need to expend

it to the element of the V (I) which is (b1, ...., bn) we refer as the complete solution. We

will add one coordinate at a time. First we must add such bm to (bm+1, ...., bn) that can

make it an element of V (Im−1). For finding this bm let us say that Im is generated by

g1, .., gt which belongs to k[ym, ...., yn]. and consider bm as a variable say ym then we

need to solve the following system of polynomials to find bm-

g1(ym, bm+1, ...., yn) = .... = gt(ym, bm+1, ...., bn) = 0.

But sometimes we don’t have a solution for this system. That means those particular

partial solutions can’t be extended.

I am presenting such an example where one partial solution can’t be extended.
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Example 6 Let us have an ideal I in k[y, x, z] generated by

yx = 1, yz = 1 (3.1)

First we find its Groebner basis and conclude that elimination ideal I1 is generated by

x − z. By putting this equal to zero I get (b, b) as a solution where b varies over field

k. We can see that y = 1
x
so y = 1

b
will be added to the partial solution in order to get

complete solution. So (1
b
, b, b) is the complete solution but as we can see that the partial

solution (0, 0) can’t be extended to this complete solution.

Theorem 7 (TheExtension Theorem:-) Suppose that we have an ideal I inC[y1, ..., yn]

which has a basis h1, ..., ht. Assume that first elimination ideal is I1. hi can be written

as

hi = fi(y2, ..., yn)y
Ni
1 + terms in which y1 has degree < Ni,

for every i between 1 and t. HereNi is greater than zero. Here these fi’s are not zero and

belong to the C[y2, ..., yn]. Assume that (b2, ..., bn) exists in V (I1) as a partial solution .

Then there ∃ b1 in the field C which will extend to the (b1, b2, ..., bn) such that it belongs

to V (I) only if the partial solution is not an element of variety defined by (f1, ..., ft).

Wewill use the statement of the Extension theorem but we don’t need the proof here.

(see [DO07])

This theorem can’t be true on real numbers. Because sometimes when we solve

polynomial system where lc(y) is non-zero, we see that variable have values from com-

plex numbers. So the partial solution which contains real number can extend, but rest

can’t.

When we say that partial solution (b2, ..., bn) is not an element of variety defined

by (f1, ..., ft). Here these fi’s are basically the lc(hi)’s. So basically we are saying

that at these (b2, ..., bn) the lc(hi)’s should not be zero simultaneously. In the previous

example at (0, 0) the lc(y) which are x and z be zero. So by extension theorem (0, 0)

doesn’t extend.

We have defined our extension theorem only for the first elimination ideal. But we

can generalize it to as many elimination ideals as we want. We just extend our partial

solution belongs to some elimination ideal, one coordinate at a time to reach the partial
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solution of the next elimination ideal. Each time at this step we check that at this partial

solution leading coefficient should not be zero. If it’s not zero then we extend it. And go

for adding the next coordinate in this partial solution till we reach our complete solution.

Corollary 4 Suppose that we have an ideal I inC[y1, ..., yn]which has a basis h1, ..., ht.

Assume that first elimination ideal is I1. hi can be written as

hi = ayN1 + terms in which y1 has degree < N,

for some i between 1 and t. Here N is greater than zero. Here a’s is not equal to zero

and it’s belong to C Assume that (b2, ..., bn) exists in V (I1) as a partial solution . Then

there ∃ b1 in the field C which will extend to the (b1, b2, ..., bn) such that it belongs to

V (I).

Proof: We just have to recall the extension theorem and see that fi from the theorem

are a here which is not zero so this means that variety defined by (f1, ..., ft) is empty.

This implies that no partial solution belongs to the variety defined by (f1, ..., ft). So

there ∃ b1 in the field C which will extend to the (b1, b2, ..., bn) such that it belongs to

V (I). □

3.3 The Ideal–VarietyCorrespondence and radical ideal

Whenever we have a variety in kn we can define it’s ideal. This is we have seen before.

And when we have an ideal we can define its variety. So there is always a map in ideal

and variety.

We can’t say that this map is 1-1. Because same variety can exist for two ideals. Let

us assume that we have ideals ⟨y⟩ and ⟨y2⟩ in k[y]. We can see that both have empty

variety. But we solve this problem in k[y] when k is an algebraically closed field. Since

in k[y], every ideal will be generated by a single polynomial. So the variety of ideal just

have the roots of that polynomial. And we know that there ∃ root of a polynomial in k[y]

because it is algebraically closed. So if we want our variety empty we must have the

generator of the ideal a constant except zero. Assume that I = ⟨h⟩, since h is constant

which is not zero so its inverse also belong to the field. Which simply implies that 1

belongs to the ideal. Which means ideal I is the whole k[y]. So the only ideal which
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has empty variety is the whole k[y] itself. We can generalize this onto the [y1, .., yn].

Theorem 8 (The Weak Nullstellensatz:-) Suppose the field k is algebraically closed

field. We have an ideal I in the polynomial ring k[y1, ..., yn], which has empty variety.

Then we can say that this ideal I is the whole k[y1, ..., yn].

Proof: To prove this theorem we need to prove that 1 is in the ideal I . We will induc-

tion here. For n = 1 we proved it above. Suppose that the theorem is true for n − 1

variables.

Let us suppose that we have ideal I in k[y1, ..., yn] which is generated by h1, .., hm. Let

us assume that h1 is polynomial which has degree N more than 1. We would like to

change the coordinates to get the special form of h1. Consider-

y1 = y1

y2 = y2 + b2y1

..

..

yn = yn + bny1

bi are the constant that are not determined yet. So after substitution h1 has the form

h1(y1, ..., yn) = h(y1 , y2 + b2y1 , ...., yn + bny1 ) == c(b2, ..., bn)y1
N .

+terms in which y1 has degree < N

. Since we know that k is infinite as it is algebraically closed field. So we have se-

lect a combination of b2, ..., bn so that c(b2, ..., bn) becomes the polynomial which is not

zero.By this coordinate change eachh from k[y1, ..., yn] changed intoh in k[y1 , y2 , ....., yn ].

If we make these h generators for some set I , where h belongs to I , then I will def-

initely be ideal in k[y1 , y2 , ....., yn ]. As we know that if these new polynomials are

solvable then so are the old ones so V (I ) is also empty. Basically now I want to show

that (I ) has 1, because then I will also have 1.

So let us say that I1 = I ∩ k[y2 , ...., yn ]. We have V (I1 ) = π1(V (I )). (see chap-

ter 3[DO07]). We have seen before that V (I ) is empty so V (I1 ) will also be empty.
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Which means that I is the whole k[y2 , ...., yn ] . So 1 will be contained in I1 , therefore

it will be contained in I . Which means that 1 is in I . Hence the theorem is proved. □
We have a question about the variety that is generally called consistency problem.

Let us assume that I is ideal generated by h1, ...., hm. h1, ...., hm are polynomials in

k[y1, ..., yn] We want to know whether V (I) is empty or not. We assume that k is an

algebraically closed field. From the above theorem, we can see that variety of ideal I

will be empty if the ideal contains 1.

We first want to look at the reduced Groebner basis g1, .., gt for such an ideal which is

generated by 1. Since 1 will belong to the ⟨lt(I)⟩ hence some lt(gi)will divide 1. Which

makes that gi a constant. Now we know that rest of the lt(gi)’s are just the multiple of

this constant. So we will remove every other gi. Now since we know that for that par-

ticular gi leading term was constant. So that gi will be constant. And we can make it 1

by multiplying it by some constant. So we proved that for an ideal which is generated

by 1, reduced Groebner basis are just 1. So for proving that V (I) is empty, we just need

to compute the reduced Groebner basis. If it’s 1 then yes, V (I) is empty. If it’s not 1,

then V (I) is not empty.

Theorem 9 (Hilbert’s Nullstellensatz) Suppose that some polynomials h, h1, ...., hm

belongs to k[y1, ...., yn], where k is algebraically closed field. We assume that h be-

longs to the ideal of V (h1, ...., hm). Then we always have an integer s such that

hs ∈ ⟨h1, ...., hm⟩

where s is greater than or equal to 1. The converse is also true.

Proof: Basically we need to prove that there ∃ integer s which is greater than or equal

to 1, and some polynomials p1, .., pm such that h can be written as-

hs =
m∑
i=1

pihi

Assume the ideal given below-

I = ⟨h1, ...., hm, 1− xh⟩

belong to k[y1, ...., yn, x]. First I want to prove that variety of I is empty. This will lead

us to the proof of the theorem.
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For proving that variety of I is empty assume that (b1, ...., bn, bn+1) belongs to kn+1.

There are only two possibilities that

1. h1, ...., hm all vanishes at (b1, ...., bn).

2. not all of h1, ...., hm vanishes at (b1, ...., bn).

Let us take the first case first. Since h belongs to the ideal of V (h1, ...., hm) so h will

also vanish at (b1, ...., bn). Now we can write 1− xf as 1− bn+1h(b1, ..., bn) which will

be 1 not zero.So by this we can see that (b1, ....., bn, ab+1) is not an element of V (I ).

Now take the second case. We will have at least one hi such that hi(b1, ...., bn) is not

zero. Assume that hi is a function of n+1 variables. But hi is independent of n+1. So

we see that hi(b1, ...., bn, bn+1) is not zero. Which means that (b1, ....., bn, bn+1) is not

contained in the variety of I . As we considered (b1, ....., bn, bn+1) an arbitrary element

of kn+1 ,so we proved that V (I ) is empty.

So now from the above theorem we can see that 1 will be contained in I . Which means

we can write 1 as

1 =
m∑
i=1

fi(y1, ..., yn, x)hi + g(y1, ...., yn, x)(1− xh) (3.2)

Here fi, g are polynomials which belongs to k[y1, ..., yn, x]. Consider x = 1/h(y1, ....., yn)

and put this in the above equation then

1 =
m∑
i=1

fi(y1, ...., yn, 1/h)hi (3.3)

If we multiply the above equation with hs then we get

hs =
m∑
i=1

pihi (3.4)

where all the denominators gets canceled out because we selected s that way. The the-

orem is proved. □

Lemma 6 Suppose that hs belongs to the I(V ). Then h will belong to I(V ).

Proof: Assume that b is an element of V . So if hs is in I(V ), then we can see that

(h(b))s is zero. Which simply implies that h(b) is zero. As we considered b as an arbi-

trary element to V , it’s proved that h is in I(V ). □
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Definition 12 I is called to be a radical ideal if whenever hs belongs to I , h also belong

to I , where s is some non negative integer.

Definition 13 Suppose that I is an ideal in k[y1, ...., yn]. Then the set

{h : hs ∈ I for some non negative integer}.

is called the radical of I . We denote is as
√
I .

By the above lemma and definition, we can see that I(V ) is, in fact, a radical ideal.

Theorem 10 (The Strong Nullstellensatz:-) Suppose that we have an ideal I which

belongs to k[y1, ..., yn], then

I(V (I)) =
√
I

Proof: Let us consider an arbitrary element h of I(V (I)). Which means that h is zero

in V (I). And by the above theorem, we know that hs will be in I for some nonnegative

integer s. Which implies that h is contained in the
√
I . As we considered h an arbitrary

element, I(V (I)) will be contained in
√
I .

Now let us prove the other inclusion.Suppose we have an element h in the radical of

ideal I . Which means that hs will be in I for some nonnegative integer. Which implies

that hs will be zero in the variety of I . As we have seen before which simply mean that

h will also be zero in V (I). So h is an element of I(V (I)).

□

Theorem 11 (The Ideal–Variety Correspondence:-) Assume that k is an arbitrary field.

1. The map I

affine varieties → ideals

and the map identified as V

ideals → affine varieties

are inclusion-reversing which means that if I1 is contained in I2 are ideals, then

V (I2) will be contained in V (I1). In the same way if V1 is contained in V2 then

I(V2) will be contained in I(V1). And also for any variety V , V (I(V )) = V so

that I is always one-to-one.
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2. Now suppose that k is algebraically closed and we only consider radical ideals,

then the map identified as I

affine varieties → radical ideals

and the map V

radical ideals → affine varieties

are inclusion-reversing bijections which are inverses of each other.

Proof:

1. We have shown this before that variety and ideals are inclusion reversing.Now

we just want to show that V (I(V )) = V . Let us say that V = V (h1, ...., hm) is

contained in kn. So whenever we take an element h of I(V ) we know that it is

zero in V , which implies that variety is a subset of V (I(V )).

Now since we know that h1, ...., hm are elements of ideal fo variety. Hence the

ideal generated by these h1, ...., hm will also be in I(V ). As we know that variety

is inclusion-reversing, so the V (I(V ))will be contained in V (⟨h1, ...., hm⟩)which

is equal to the V . So we get that V (I(V )) = V . As map I has a left inverse it is

one-one.

2. We know that I(V ) is radical ideal, it means that I works like a map which corre-

spond varieties to radical ideals. We have seen above that V (I(V )) = V for every

variety from the first part. We just need to prove it for radical ideals I(V (I)) = I .

In the above theorem we saw that I(V (I)) =
√
I . As we are talking about radical

ideals I would be equal to the radical of I . Which implies that I(V (I)) = I . So

it is proved that variety and ideal maps are inverses of each other.That completes

the proof.

□

Proposition 6 (Radical Membership:-) Suppose that we have k as an arbitrary field.

Assume that we have an ideal I of k[y1, ......, yn], which is generated by h1, ....., hm.

Then h belongs to the radical of the I iff 1 is contained in the ideal from k[y1, ...., yn, x],

I = ⟨h1, ...., hm, 1− xh⟩.
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Proof: As we have in the proof of theorem (9), if 1 is contained in I then hs will be

contained in I for some non negative s. And that without any doubt implies that h will

be in the radical of I .

Now suppose that we have an element h from the radical of I . Which implies that hs is

in I for some non negative s and as we know that I is a subset of I . So hs will also be

in I . Since 1− xh is also a element of I so 1 can be written as-

1 = xshs + (1− xshs)

which will be equivalent of having-

1 = xs.hs + (1− xh).(1 + xh+ ....+ xs−1hs−1)

which is contained in I . That completes the proof. □
This leads to the radicalmembership algorithm. If we have a question that whether

h is in the radical ideal of I or not, where I is generated by h1, ...., hm, then we first need

to consider the ideal I generated by h1, ...., hm, 1 − xh and then we will fix some or-

dering on the variables and compute the reduced Groebner basis for I . If the reduced

Groebner basis is 1 then h is in the radical of ideal I . Otherwise, it won’t be contained

in radical of I .

Proposition 7 Let us suppose that h is an element of k[y1, ..., yn] and we have an ideal

I generated by h. If we can factorize h as h = bhc1
1 ...h

cs
s which is a product of distinct

irreducible polynomials, then the radical of I will be generated by h1h2...hs.

Proof: The very first thing I want to prove is that h1h2...hs belong to the radical of I .

Let us consider integerM which is not less than any of ci’s. So we can write -

(h1h2...hs)
M = hM−c1

1 hM−c2
2 ...hM−cs

s h

Since this is multiple of h it will belong to I , which mean that h1h2...hs will be in the

radical of I . So the ideal generated by h1h2...hs will also belong to the radical of I .

Now let us assume that f is an element of
√
I . Then fN will be in I for some integer

N . Since I is generated by h ,so we can write fN as g·h where g is in k[y1, ..., yn].
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Now let us factor the f in product of irreducible polynomials which are all distinct. So

f = fa1
1 fa2

2 ...fat
t . So now we also have factorization of fN = fa1N

1 fa2N
2 ...fatM

t which

is a product of irreducible polynomials which are all distinct. So, we have-

fN = fa1N
1 fa2N

2 ...fatM
t = g.hc1

1 ...h
cs
s

So now we know that we have irreducible polynomials in the right hand side as well as

left hand side. We know that it is supposed to be a unique factorization. So basically

each hi is some multiple of some fk so f is basically a multiple of h1h2...hs. From

here we can see that f is in the ideal which is generated by h1, ..., hs Now the proof is

complete. □

3.4 Decomposition of a Variety into Irreducible and Pri-

mary Decomposition of Ideals

Definition 14 An affine variety V which is contained in kn is called irreducible if when

we write V as V = V1 ∪ V2, then either V1 = V or V2 = V , where V1 and V2 are affine

varieties.

Proposition 8 Suppose that V which is contained in kn is an affine variety. Then V is

irreducible ⇐⇒ ideal of the variety is a prime ideal.

Proof: Let us suppose that V is an irreducible variety. Suppose that gh belongs to the

ideal of the variety I(V ). Let us say that V1 is the intersection of V and V (g), and V2 is

the intersection of V and V (h). As we know that intersection of affine varieties gives

us another affine variety. which implies that we have V1 and V2 as affine varieties. As

we assumed that gh is in I(V ) it means that gh vanishes on V , so it gives us that V is

the union of varieties V1 and V2. Since we assumed that V is an irreducible variety, so

it can be equal to only V1 or V = V2. Suppose that it is equal to V2 then V will be the

intersection of V and V (h). That makes it clear that h is zero on V , it implies that h

belongs to I(V ). Which proves that I(V ) is a prime ideal.

Now suppose that I(V ) is a prime ideal. Let us say that V is the union of varieties

V1 and V2. Let us assume that V is not equal to the V1. Now at first, I want to prove that
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I(V ) is same as the I(V2). So for this as we know that V2 is contained in V since V is

the union of V1 and V2. We also know that map I is inclusion reversing so we can see

that I(V )will be contained in I(V2). Now I want to prove the other containment. So we

can see that since V1 is contained in V , but it’s not equal to V , so it means that I(V ) is

contained in I(V1) but it’s not equal to that. Let us pick an element h such that it belong

to the I(V1) but doesn’t belong to I(V ). Let us take a polynomial f from I(V2). Then

we can see that hf will be zero in V as V is the union of V1 and V2. Which means that

hf will belong to I(V ). Since ideal of variety is prime ideal, only one of h or f will be

in I(V ). We have picked f in such a way that it doesn’t belong to I(V ) so we are left

with h that h is in I(V ). It means that I(V ) is same as I(V2). As we know map I is 1-1

so it is proved that V is equal to the V2. So V is irreducible variety. □

Corollary 5 Let us suppose that k is an algebraically closed field then we can see that

there is a 1-1 correspondence between irreducible varieties, which belong to kn and

prime ideal, which are contained in k[y1, ..., yn], induced by maps I and V .

Proposition 9 (The Descending Chain Condition:-) If we have a chain

V1 ⊃ V2 ⊃ V3 ⊃ ....

Which is descending then there must ∃ some +ve integerM such that chain gets stabi-

lized by having the property that VM will be equal to VM + 1 and so on.

Proof: As we know that the map I is inclusion reversing so we will have the following

chain-

I(V1) ⊂ I(V2) ⊂ I(V3) ⊂ .....

So from the ACC which is for ideals, we know that there ∃M so that chain of ideals get

stabilized by having the property that I(VM) will be equal to I(VM + 1) and so on. As

we know that we have V (I(V )) = V so by mapping V , VM will be equal to VM+1 and

so on. So the chain of varieties will be stabilized. □

Theorem 12 Let us assume that we have a variety V which is in kn. Then we can write

V as a finite union of irreducible varieties, say

V = V1 ∪ .... ∪ Vs
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Proof: We are going to prove this with contradiction so suppose that we can’t write

V as a finite union of irreducibles. So basically V is not irreducible so we can write V

as the union of V1 and V2 which the property that V is not equal to V1, as well as V , is

not equal to V2. Now, for keeping V irreducible it is important that one of V1 and V2

won’t be a finite union of irreducibles. Let us assume that V1 is not a finite union of

irreducibles. By continuously repeating the process, we can write V1 as a union of V3

and V4 with the property that V1 is not equal to V3 as well as it is also not equal to V4

and we must have that V3 is not a finite union of irreducibles. So by the process, we will

have an infinite sequence

V ⊃ V1 ⊃ V3 ⊃ ....

where none of them are equal, which is a contradiction to DCC of varieties.That com-

pletes the proof. □

Definition 15 Let us assume that we have a variety V which is in kn. Then minimal

decomposition of variety V is the decomposition of V into irreducibles

V = V1 ∪ .... ∪ Vs

where Vi’s are not contained in Vj’s when i and j are not same .

Theorem 13 Let us assume that we have a variety V which is in kn. Then V has a

minimal decomposition

V = V1 ∪ .... ∪ Vm

And this minimal decomposition is unique up to the order in which V1, ...., Vm are writ-

ten.

Proof: First we see that we canwrite V as finite union of irreducibles V = V1∪....∪Vs.

And whenever we see that Vi is contained in Vj for some i which is not same as j then

we will remove Vi from the union. So continuing this way, in the end, we will achieve

the minimal decomposition of the V .

Now we want to show the uniqueness of the minimal decomposition. So assume that

we have some another minimal decomposition for V say, V = V ′
1 ∪ .... ∪ V ′

t . Now we

see that we can write each Vi belonging to the first decomposition as following

Vi = Vi ∩ V
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Now we will put the first minimal decomposition at the place of V

Vi = Vi ∩ (V ′
1 ∪ .... ∪ V ′

t ) = (Vi ∩ V ′
1) ∪ ... ∪ (Vi ∩ V ′

t ).

AS Vi belong to the minimal decomposition it is irreducible so we will have Vi as the

intersection of Vi and V ′
k for some k. Which means that Vi is contained in V ′

k . Now we

can apply the same argument to V ′
k . So we will write V ′

k as an intersection of V ′
k and V.

Then we will put the second minimal decomposition of V in this intersection in place of

V . By which in the end we will get that V ′
k is contained in some Vj . So basically we have

thatVi is contained inV ′
k which is contained inVj but by theminimality of decomposition

Vi can’t be contained in Vj as this will contradict the minimality of decomposition. So

Vi will be equal to Vk.Which implies that Vi will be equal to V ′
k . So we can see that every

Vi will be appearing in the V = V ′
1 ∪ .... ∪ V ′

t which simply follows that s is smaller

than t. And since every V ′
k will be appearing in V = V1, .., Vs so t will be smaller than

s. So basically s and t are equal. Vi and V ′
i are just the permutations of each other. So

it’s unique. That completes the proof. □

Theorem 14 Let us assume that k is a algebraically closed field, then we can write

every radical ideal which belongs to k[y1, .., yn] as -

I = P1 ∩ .... ∩ Ps

here s is a finite number and P ’s are prime ideals, this intersection is unique- such that

Pi are not contained in Pj when i and j are not equal.

Definition 16 We call an ideal I primary if when some gh belong to I then either g

belong to I or h belongs to the radical of I , where I is an ideal in k[y1, .., yn].

Definition 17 Let us assume that we have two ideals I and J in k[y1, ...., yn], the ideal

quotient I : J is defined by-

{h ∈ k[y1, ...., yn] : fh ∈ I for all f ∈ J}

.

Theorem 15 Let us say that we have any ideal I in the k[y1, ...., yn]. Then we can write

this I in the form of an intersection of primary ideals.This intersection will be finite.
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Proof: First I want to prove that we can write every ideal as a finite intersection of

irreducible ideals. We are going to prove this with contradiction so suppose that we

can’t write I as a finite intersection of irreducibles. So basically I is not irreducible so

we can write I as the intersection of I1 and I2 with the property that I is not equal to I1,

as well as I , is not equal to I2. Now, for keeping I irreducible it is important that one of

I1 and I2 won’t be the finite intersection of irreducibles. Let us assume that I1 is not a

finite intersection of irreducibles. By continuously repeating the process, we can write

I1 as a intersection of I3 and I4 with the property that I1 is not equal to I3 as well as it is

also not equal to I4 and we must have that I3 is not a finite intersection of irreducibles.

So by the process, we will have an infinite sequence

I ⊂ I1 ⊂ I3 ⊂ ....

where none of them are equal, which is a contradiction to ACC of ideals.

Now I want to prove that irreducible ideals are always the primary ideals. So if we take

an element from the irreducible ideal then I want to see that definition of primary ideal

work on that element. Now suppose that we consider I as an irreducible ideal. and pick

an element gh from I . So for I being the primary ideal, we need to show that either g is

in I or hM where M is positive integer will belong to I . So Let us assume that g does

not belong to I . So we need to show that hm wherem is positive integer will belong to

I .

First, let us see some other inclusions. So we the definition of quotient ideals we can see

that elements of I : hm+1 are multiples of elements of I : hm so it means that I : hm is

contained in I : hm+1 for all nonnegative integersm. So by this, we have the following

chain-

I : h ⊂ I : h2 ⊂ ....

it’s a chain of ideal because there is quotient ideal and it’s ascending. So we can apply

ACC here. So we can see that this chain gets stabilized with the property that for some

nonnegativeM , I : hM = I : hM+1 and so on. Now we can observe that when we take

an intersection of (I + ⟨hM⟩) with (I + ⟨g⟩) we will anyhow get I . And as we assumed

I is irreducible and only one of the terms in the intersection can be equal to it. Since

we know that g is not in the ideal because we assumed it the starting so the first term

(I+ ⟨hM⟩) is equal to I . So this shows that hM is in the ideal I . That’s what we wanted

to prove. □
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Definition 18 If we can write I as- I =
∩s

i=1 Ji where Ji’s are primary ideals and I is

an ideal in k[y1, .., yn] then this intersection is called the primary decomposition. When

no
√
Ji’s are the same and none of the Ji contains the intersection of all Jj’s when i is

not equal to j, then we will refer it as minimal decomposition .

Whenever we have two primary ideals such that their radical are equal then we can

see that their intersection is also primary.

Theorem 16 ( (Lasker–Noether)) There exists a minimal primary decomposition for ev-

ery ideal of k[y1, .., yn].

Proof: As we have see in the earlier given theorem that we can write ideal I as I =∩s
i=1 Js. Now let us take two primary ideals Ji and Jk such that they have the same

radical then as mentioned before intersection of Ji and Jk, say Jj will also be the primary

ideal sowe can remove the Ji and Jk from the primary decomposition and put Jj there.So

by following this process in the end we will get a form of I such that radical of all Ji be

different.

Now I want to show that none of the Ji will contain the intersection of all Jk’s for i

not equal to k. We will prove this by contradiction. So assume that we have Ji such

that intersection of all Jk’s for i is not equal to k, is contained in Ji. Then we can drop

Ji from the intersection I =
∩s

i=1 Js. And put the intersection of all Jk’s for i is not

equal to k at the place of Ji. By following this process we will get the decomposition in

which none of the Ji contains the intersection of all Jj’s when i is not equal to j. That

completes the proof. □



Chapter 4

Primary Decomposition of Polynomial

ideals

4.1 Operation on Ideals

Throughout this chapter, we will consider R as a Noetherian commutative ring with

identity such that it is possible to solve linear equations in it.

Whenwe say that it is possible to solve linear equations inR, wemean that two prob-

lems called IMP and syzygies are solvable in it. We already mentioned IMP is the first

chapter. let us explain what do we mean when we say that syzygies is solvable in R. It

means that suppose some elements ofR are given, say b1, ...., bs then it is possible to find

a basis, which is finite, for the R- module- {(c1, ....., cs) ∈ Rs| such that
∑

cibi =

0}.

Definition 19 Let us assume that we have a subset M of R, which is multiplicatively

closed, then we can define the ring of fractions of R w.r.tM as following-

M−1R = {s/t| where s ∈ R and t ∈ M}

.

Definition 20 Assume that we have an element h of R such that M = {hm} , then

localisation of R at h denoted by Rh, can be defined asM−1R.

43
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Definition 21 Assume that we have a prime ideal p of R, and a setM = R − p. Then

we can define Rp, which is the localisation of R at p asM−1R.

Definition 22 Assume that we have an ideal I ofR, whereR is a Noetherian ring. Then

the following set-

Ass(I) = {Q ⊂ R|Q are prime ideals,Q = I : ⟨a⟩forsomeainR}.

is called the associated primes of I .

Definition 23 Let us assume that we have an elementh and a subsetG of theR[y1, .., yn].

Then h is said to be reducible modulo G only if h ̸= 0, and leading term of h contained

in the ideal generated by leading terms of elements of G.

If h doesn’t not satisfy these conditions then it is called reduced modulo G.

Proposition 10 (Reduction algorithm) Let us assume that we have given an element

h and a subset G of the R[y1, .., yn]. where G = {g1.....gs}. Then we can always

construct such an element h′ of R[y1, .., yn] which itself is reduced modulo G so that

h = h′mod(gl, ....gs)R[y1, ..., yn].

Proof: Since we know that IMP is solvable inR. So by using it we can easily check if

h is in the ideal generated by elements ofG, if it is true then we can see that leading term

of h is divisible by leading term of some element of the generating set, which implies

that leading term of h is contained in the ideal generated by leading terms of G. So

basically we can check if h is reducible modulo G. If f is not reducible then we can

see that h = h′ and we are done. And if f is reducible modulo G then we can find ai

such that lt(h) =
∑

ailt(gi). Now suppose h1 = h −
∑

aigi. So the lt(
∑

aigi) will

cancel the lt(h) by construction, so we will get that degree of h1 is less than degree of h.

Since induction is applicable on the well ordering < hence by using induction here we

are able to find a reduced h′ with the property that h′ ≡ h1 mod (g1, ..., gs). But since

h ≡ h1 mod (g1, ..., gs) so h ≡ h′ mod (g1, ..., gs). That completes the proof. □
The old definition that we read in the second chapter was that the basis has the prop-

erty that ideal generated by leading terms of elements of the basis is equal to the ideal

generated by the leading terms of elements of the ideal.

Now we will redefine Groebner Bases.
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Definition 24 Let us assume that we have an ideal I of the R[y1, .., yn] and a subset G

of this ideal thenG is called to be a Groebner basis if any element of I which is not zero,

is reducible modulo G.

If we observe the following proposition, we will notice that it is basically a replace-

ment of division algorithm for checking if an element belongs to the ideal or not.

Proposition 11 Assume that we haveG as Groebner basis for the ideal I inR[y1, .., yn].

Then an element h of R[y1, .., yn] will belong to the ideal I if and only if when we apply

reduction algorithm to h we get h′ to be zero.

Proof: Suppose h ̸= 0 ,where h ∈ R[y1, .., yn]. Consider h′ is same as in the reduction

algorithm. Aswe it is given thatG is Groebner basis of I whichmeans that it is contained

in I so we can write h = h′modI instead of h = h′mod(gl, ....gs)R[y1, ..., yn].

So now suppose that h belongs to the ideal I then we know from the above that h′ will

also belong to the ideal I . so leading term of h′ which belongs to the ideal generated by

leading term of elements of ideal I , also belong to the ideal generated by leading terms

of elements of G. Which happens when h′ is reducible modulo G, but we assumed h′

such a way that it is reduced modulo G. That’s a contradiction so h′ has to be zero.

Conversely, as we mentioned earlier h = h′modI so if say that h′ is suppose to be zero

then from this equality it is clear that h belong to the ideal I . That completes the proof.

□

Corollary 6 Assume that we have two ideals in R[y1, .., yn] such that one ideal is con-

tained in the other. If the ideal generated by leading term of one ideal is same as the

ideal generated by the leading term of the second ideal then these two ideals are bound

to be equal.

Proof: The given property that the ideal generated by leading term of one ideal is same

as the ideal generated by the leading term of second ideal forces both ideals to be each

others Groebner basis. Which simply means that these ideals generate each other. But

we know that ideal possess a special property that the only ideal it generates is itself. So

from here, we conclude that both ideals are just the same. □

Proposition 12 If a generating set is given for any ideal in R[y1, .., yn]. Then it is pos-

sible to compute Groebner basis of it.
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Proof: I have proved this for for the case of R being field. For general case see [Tri]

. □

Proposition 13 Let us consider that we have an ideal I in the R[x1, ....xm, y1, ...., yn].

Suppose that we are provided with two monomial orders, one is >1 for the monomials

in y and the second one is >2 which is for the monomials is x. Then we define a new

order on the monomials in yx such that yaxa′ > ybxb′ if ya >1 yb or if we have ya is

equal to the yb according to the ordering>1 then xa′ >2 x
b′ . Now suppose that we have

an order > and Groebner basis G for an ideal I in R[x1, ....xm, y1, ...., yn]. Then-

1. If we consider monomial ordering>1 onR([x1, ....xm])[y1, ...., yn], even then also

I has the same Groebner basis G.

2. The ideal I ∩R[x1, ..., xm] has Groebner basis G ∩R[x1, ..., xm] w.r.t. the order

>2.

Proof:

1. Basically wewish to prove that the ideal generated by leading terms of elements of

G is equal to the ideal generated by leading terms of elements of I w.r.to monomial

ordering>1. So if we have an element h ofR[x1, ....xm, y1, ...., yn], then if we first

choose leading term of h w.r.t. ordering >1 and then apply ordering > on it, we

get the same leading term if we have applied directly>. Because in the> anyhow

we first work on y’s. Let us denote the ideal generated by leading terms of any

subset G as LT (G).

LT>(LT>1(G)) = LT>(G)

From the assumption made in the statement of the theorem LT>(G) = LT>(I),

And by above LT>(I) is equal to LT>(LT>1(I)). So

LT>(LT>1(G)) = LT>(LT>1(I))

Which basically implies that LT>1(G) = LT>1(I) by corollary (6).

2. As we see from the monomial ordering > that whenever we add any yi to some

term, it becomes greater than all other terms which are only in xi’s. Which simply

implies that if we have an element such that its leading term only contains xi’s



4.1. OPERATION ON IDEALS 47

means the leading terms belongs to R[x1, ....xm], then since it’s a leading term it

must be the greatest term so no remaining terms can have any yi’s. That means

that leading term of h is in R[x1, ....xm] if and only if the element itself is in

R[x1, ....xm]. So in the following equality contraction with R[x1, ....xm] won’t

bother us.

LT>(G ∩R[x1, .., xm]) = LT>(G) ∩R[x1, .., xm]

Since from the assumption made in the statement of the theorem LT>(G) =

LT>(I), so the above equality becomes-

LT>(I) ∩R[x1, .., xm] = LT>(I ∩R[x1, .., xm])

. Which shows that I ∩ R[x1, .., xm] has G ∩ R[x1, .., xm] as a Groebner basis

w.r.t. monomial ordering >. Since we are only talking about the ordering on

R[x1, .., xm] so> and>2 will work in the same way. So this completes the proof.

□

Corollary 7 Assume that we have two ideals I and J in the R[y1, .., yn] and we are

given the Groebner basis for both of them, then we can compute the Groebner basis for

followings-

1. I ∩ J .

2. I : J , where J doesn’t have zero divisors as the generating set.

3. The kernel of a given homomorphism ϕ : R[x1, .., xn] 7→ R[y1, .., yn]/J .

4. The ideal of polynomial relations among hl, ...., hs which are the elements of

R[y1, .., yn].

5. IR[y1, .., yn]h ∩ R[y1, .., yn] for any nonzero divisor h which is an element of

R[y1, .., yn].

Proof:

1. I ∩ J will be given by (tI, (t − 1)J)R[y1, .., yn, t] ∩ R[y1, .., yn], where t is the

new indeterminate.

We should prove that I∩J is equal to the (tI, (t−1)J)R[y1, .., yn, t]∩R[y1, .., yn]
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so first let us assume that an element h belongs to the intersection of I and J .

Which means that h belongs to I as well as J . So since h is in I it means that

th will be in tI . In the same way since h is in J , it implies that (1 − t)h will

be in (1 − t)J . Since h can be written as h = th + (1 − t)h which belongs to

tI + (1 − t)J . As as assumed that I and J are ideals in R[y1, .., yn] so it means

that h belongs to (tI, (t − 1)J)R[y1, .., yn, t] ∩ R[y1, .., yn]. So it is proved that

intersection of I and J is contained in (tI, (t− 1)J)R[y1, .., yn, t] ∩R[y1, .., yn].

Now it is time to prove the other containment. So suppose that h is an ele-

ment of (tI, (t − 1)J)R[y1, .., yn, t] ∩ R[y1, .., yn]. Then h can be written as

h(y1, .., yn) = f(y1, .., yn, t)+g(y1, .., yn, t) such that f(y1, .., yn, t) belongs to tI

and g(y1, .., yn, 1− t) belongs to (1− t)J . Let us assume that t is equal to 0 then

since we know that every element of tI is a multiple of t so f(y1, .., yn, t) will be

zero when we put t zero. So in this case h(y1, .., yn) = 0+ g(y1, .., yn, 0). Which

implies that h belongs to J . When we put t 1 instead of 0 then since we know that

every element of (1 − t)J is a multiple of 1 − t, so g(y1, .., yn, 1) will be zero.

So h(y1, .., yn) = f(y1, .., yn, 1) + 0 Which implies that h belongs to I . Now as

we have see that h belongs to both I and J , it will be in their intersection. So

(tI, (t− 1)J)R[y1, .., yn, t] ∩ R[y1, .., yn] is contained in intersection of I and J .

Which proves that I ∩J is equal to the (tI, (t− 1)J)R[y1, .., yn, t]∩R[y1, .., yn] .

So we will first compute the Groebner basis for (tI, (t − 1)J)R[y1, .., yn, t] and

we will pick only those Groebner basis which doesn’t contain t. So those will be

the required Groebner basis.

2. Assume that the idea J has a generating set (h1, ...., hs). Then from the properties

of ideal quotient we can write I : J as
∩s

i I : (hi). So we first need to compute

each I : (hi). Then we will take the intersection of all I : (hi) to get I : J

and compute the intersection using part (1). So for computing I : (hi) we first

compute I ∩ (hi) with the help of (1). Let us assume that when we compute the

Greobner basis for I ∩ (hi) we get {g1, ...., gt}, then the basis for I : (hi) will be

{g1/hi, ...., gt/hi}. So we wish to prove that if the basis for I∩(hi) is {g1, ...., gt}

then the basis for I : (hi) will be {g1/hi, ...., gt/hi}.

So assume that b belongs to (hi) so we can write b as chi, where c belongs to

R[y1, .., yn]. So if we say that f belongs to the ideal generated by g1/hi, ...., gt/hi,
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then we can see that bf which is equal to chif belongs to the ideal generated by

g1, ...., gt. which is equal to I ∩ (hi). It is conatined in I . So it implies that f

belongs to I : (hi). Now for proving the other way round let us assume that f

is an element of I : (hi). Which mean that fhi belongs to I . As we know that

fhi also belongs to (hi), so we can see that fhi is in the intersection of I and

(hi). Since I ∩ (hi) is generated by elements g1, ...., gt so we can write fhi as∑
aigi. As we know that every gi is an element of (hi) so it implies that gi/hi is

some polynomial. So f can be written as f =
∑

ai(gi/hi). Which implies that

f belongs to the ideal generated by elements g1/hi, ...., gt/hi. So it is proved that

I : (hi) will be {g1/hi, ...., gt/hi}.

3. Let the homomorphism ϕ : R[x1, .., xn] 7→ R[y1, .., yn]/J is given by ϕ(xi) = fi

mod J . Then the kernal of themapϕ is generated by ((xi−fi), J)R[y1, ..., yn, x1, ..., xn]∩

R[x1, .., xn]. We will prove this by showing that ϕ(gi) ∈ J , where gi is an arbi-

trary element from ((xi − fi), J)R[y1, ..., yn, x1, ..., xn]∩R[x1, .., xn]. Let us say

that gi =
∑

hi(xi − fi) + j where j ∈ J .

So ϕ(gi) = ϕ(
∑

hi(xi − fi)) + ϕ(j). Since fi belong to R[y1, .., yn] we can’t

apply ϕ to it. So we need a new mapping. First let us define an inclusion say Ψ,

Ψ : R[x1, .., xn] 7→ R[y1, .., yn, x1, ..xn]

. Let us define a new mapping

Π : R[y1, .., yn, x1, .., xn] 7→ R[y1, .., yn]/J

defined asΠ(yi) = yimodJ andΠ(xi) = fimodJ . Then by the universal property

we can use Π instead of Φ so

Π : R[y1, .., yn, x1, .., xn] 7→ R[y1, .., yn]/J

such that Π(gi) = Π(
∑

hi(xi − fi)) + Π(j) which will be equal to 0. Which

implies that gi is in J . Since gi is an arbitrary element so it is proved that kernal

will be given by ((xi − fi), J)R[y1, ..., yn, x1, ..., xn] ∩ R[x1, .., xn]. So first we

will compute the Groebner basis for the ideal ((xi− fi), J)R[y1, ..., yn, x1, ..., xn]

and then we will pick only those elements of Groebner basis which contains only

variables x1, .., xn. Those will be the required Groebner basis.
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4. We just need to take J = 0 in the (3).

5. As we can see that R[y1, .., yn]h is isomorphic to R[y1, .., yn, t]/(th − 1), where

t is the new indeterminate. So it follows that IR[y1, .., yn]h ∩ R[y1, .., yn] will

be generated by (I, th− 1)R[y1, .., yn, t] ∩R[y1, .., yn]. So we will first compute

the Groebner basis for the ideal (I, th − 1)R[y1, ..., yn, t] and then contract it to

R[y1, .., yn]. We are basically applying elimination theorem here. By eliminating

terms which contains t, from the Groebner basis we will have Groebner basis for

IR[y1, .., yn]h ∩R[y1, .., yn].

□

Proposition 14 Suppose that we have an ideal J in R[y1, .., yn] and we have a quotient

map, given by Π : R[y1, .., yn] 7→ (R/J ∩R)[y1, .., yn]. Suppose we have a subset G of

J then -

1. If J hasG as a Groebner basis, then J ∩R will be generated byG∩R, and Π(J)

will be generated by Π(G).

2. J has G as minimal Groebner basis ⇐⇒ J ∩ R has G ∩ R as minimal basis.

Π(J) will have Π(G − G ∩ R) as minimal Groebner basis such that Π(lt(g)) is

not equal to zero for any g which belongs to G−G ∩R.

Proof: First wewish to prove thatΠ(LT (J)) = LT (Π(J)). Since as we knowΠ(lt(h))

is either 0 or lt(Π(h)) where lt(h) ∈ R[y1, .., yn]. From here we have that Π(LT (J)) is

a subset of LT (Π(J)). Now conversely, if h ∈ J is given then we can see h = h0 + h1

such that Π(h0) = 0 and Π(lc(h1)) is not equal to 0. So from here we see that h0 be-

longs to J , so h1 will also be contained in J . So, lt(Π(h)) = lt(Π(h1)) = Π(lt(h1)) ∈

Π(LT (J)). So we finally get Π(LT (J)) = LT (Π(J)) and our claim is proved. There-

fore LT (Π(G)) = Π(LT (G)) = Π(LT (J)) = LT (Π(J)). so it’s proved that Π(J) is

generated byΠ(G). From proposition (13) it directly follows thatG∩R generates J∩R.

The second part also follows directly from the proposition (13)(2) and the definition of

minimal Groebner basis. □

Now we want to talk about the ring of fractions of R[y1, .., yn] w.r.t. the subsets

which are multiplicatively closed. We can compute the Groebner basis for ideal in this

ring also-
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Proposition 15 Let us assume that we have a subsetM of R which is multiplicatively

closed. Assume that we have an ideal J in R[y1, .., yn] which has Groebner basis G.

Then the Groebner basis forM−1J ideal in (M−1R)[y1, .., yn] will be G again.

Proof: As we can see that LT (M−1J) is equal to the M−1LT (J). Since we know

that LT (J) = LT (I). so LT (M−1J) = M−1LT (G). Which means that LT (G) is the

generating set of Lt(M−1J) inM−1R[y1, .., yn]. □

Now let us have a look at the constructionM−1J ∩R[y1, .., yn]. which is called the

saturation of an ideal J of R[y1, .., yn] w.r.t. to the subsetM of the ring R.

Lemma 7 Suppose that we have two subsetsM andN ofR, which are multiplicatively

closed. Assume that we have an ideal J in R[y1, .., yn]. Then if-

M−1LT (J) ∩R[y1, .., yn] = N−1LT (J) ∩R[y1, ., yn]

then

M−1J ∩R[y1, .., yn] = N−1J ∩R[y1, .., yn]

Proof: Since we know that intersection of LT (M−1J with N−1R[y1, .., yn]) is con-

tained in the intersection ofLT (M−1J)withN−1R[y1, .., yn]. And SinceLT (M−1J) is

equal to theM−1LT (J). Sowe canwrite the intersection ofLT (M−1J)withN−1R[y1, .., yn]

as the intersection ofM−1LT (J) with N−1R[y1, .., yn]. Now since we know that N is

contained in M so we can write M−1LT (J) ∩ N−1R[y1, .., yn] as N−1(M−1LT (J) ∩

R[y1, .., yn]). Now from the equality that is given, we canwrite this asN−1(N−1LT (J)∩

R[y1, .., yn]) which is equal to the N−1LT (J). Which is same as LT (N−1J). So

basically till here we proved that intersection of LT (M−1J with N−1R[y1, .., yn]) is

eventually contained in LT (N−1J). Since we can see clearly that N−1J is a sub-

set of M−1J ∩ N−1R[y1, .., yn]. so if we take ideals generated by leading terms of

their elements we get that LT (N−1J is contained in LT (M−1J ∩ N−1R[y1, .., yn]).

The other containment is already proved above so that gives us that intersection of

LT (M−1J with N−1R[y1, .., yn] is equal to the LT (N−1J . Then as mentioned ear-

lierM−1J ∩N−1R[y1, .., yn] is equal toN−1J . Now let us take the intersection of these

terms withR[y1, .., yn] so we will getM−1J ∩R[y1, .., yn] = N−1J ∩R[y1, .., yn]. That

completes the proof. □
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The interpretation of the above lemma is that if we say that set N only has 1 as

an element then if the ideal generated by the leading terms of elements of ideal J is

saturated then we see that J is also saturated w.r.t. M .

Proposition 16 Suppose that we have a subsetM ofR, which is multiplicatively closed.

Assume that we have an ideal J in R[y1, .., yn]. So if-

M−1LT (J) ∩R[y1, .., yn] = (LT (J)Rr[y1, .., yn]) ∩R[y1, .., yn] (4.1)

for some r ∈ M then

M−1J ∩R[y1, .., yn] = JRr[y1, .., yn] ∩R[y1, .., yn]

Proof: Basically by Rr we mean that we are localising R at r which means that we

are inverting the elements rm for some non negative integer m. So if we just say that

set N from the previuos lemma has only one element which is {rm}. Then the result

will follow. □
If we find a r ∈ M which satisfy the condition (4.1) thenM−1J ∩ R[y1, .., yn] can

be computed. Because

M−1J ∩R[y1, .., yn] = JRr[y1, .., yn] ∩R[y1, .., yn]

and we have seen in corollary (7) that computation of JRr[y1, .., yn] ∩ R[y1, .., yn] is

possible.

Proposition 17 Assume that R is an integral domain and we have a prime ideal (q),

which is principal, in R. Now assume that Groebner basis G = g1, .., gn for ideal J of

R[y1, .., yn] is given. Then we can find an element r which belongs to R − (q) so that

JR(q)[y1, .., yn] ∩R[y1, .., yn] is same as having JRr[y1, .., yn] ∩R[y1, .., yn].

Proof: The most important thing that we need in this proof is the result that
∩
(qj) is

zero. So we wish to prove this first. So assume that we have an element h in the inter-

section of (qj). Then we can write h as qj.a. And qj as qj+1.b. So qj = qj+1.b, which

implies that qj(1− qb) = 0. So from here qj will be equal to 0. Which means that h =

qj.a will be 0. So we proved that
∩
(qj) is zero.

So basically any element s of the ring R, which is not zero, belong to some ideal (qj),
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but will not belong to (qj+1). Then we can write s as rqj where r can not contained in

(q) otherwise s has to be in the (qj+1), which will be contradiction. From ideal mem-

bership algorithm we can easily compute j and r.

We can write lt(gi) = riq
jiybi where ri ̸∈ (q). Then LT (J) = (riq

jiybi). And

LT (J)Rq[y1, .., yn] ∩ R[y1, .., yn] = (qjiybi). So for applying the proposition (18) we

have to find an r such that every ri is invertible in Rr[y1, .., yn]. We can see clearly that

r =
∏

ri satisfies the condition. □

Essentially from this proposition, we learned to construct the element r.

Corollary 8 Suppose that R be an integral domain, K the quotient field of R. Now

assume that Groebner basis G = g1, .., gn for ideal J of R[y1, .., yn] is given. Then we

can compute the intersection of JK[y1, .., yn] and R[y1, .., yn].

Proof: If we take (q) = 0 in the previous proposition which means that we are having

every element ofR is invertible so JR(0)[y1, .., yn] can be written as JK[y1, .., yn]. Here

we see that the product of leading coefficient of elements of the G is the mentioned r

which satisfies the condition (4.1). □

4.2 Primality Test and Zero- dimensional Ideals

We want to construct a way to check whether a given ideal is a prime ideal or not be-

cause it is very complicated to take every element of the ideal and see if it satisfies the

required properties of elements of prime ideals. I am stating some useful facts which

will provide the base to our algorithm- Suppose we have an ideal J inR[y1, ..., yn]. Then

J is a prime ideal if and only if its contraction to R is a prime ideal of R and if we take

the image of J in (R/J ∩R)[y1, .., yn], then that is also prime ideal. (see [OZ])

Assume that R is an integral domain, K is the quotient field of R. Let us assume

that we have such an ideal J in R[y1, ..., yn] so that when we contract this ideal to R

it becomes the zero ideal. Then this ideal J is a prime ideal if and only if the ideal

JK[y1, .., yn] is also a prime ideal and ideal J is equal to the ideal JK[y1, .., yn] ∩

R[y1, .., yn].(see [OZ]).
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Here we make some assumption that we know the test to see whether an ideal is

prime or not in the ring R. And also that we know the test to see whether a uni variate

polynomial over quotient fields of residue rings of R[y1, ..., yn] is irreducible or not.

Proposition 18 Assume that we have any ideal J inR[y1, .., yn] such that its generating

set is given. Then We can check whether J is a prime ideal or not.

Proof: We will use induction here to prove the theorem, on variables. Let us consider

that we have an ideal J which belongs to R[y1]. Let us say J c is the contraction of J to

R. J c can be computed since we know the generating set of J , by proposition (13). As

we assumed that we can test whether ideal in R is a prime ideal or not, since J c is an

ideal in R, so we can check it. If it is not a prime ideal then as we mentioned above the

proposition, J will also not be the prime ideal. And we are done with the primality test

for J .

Now if J c is prime then we only need to check whether the image of J in (R/J ∩R)[y1]

is prime ideal or not. Let us assume that R is an integral domain where the contraction

of J to R is zero ideal then we can put R instead of (R/J ∩ R) in (R/J ∩ R)[y1]. So

we are left with R[y1]. Assume that we have the quotient field K of R. So now we

check the primality of ideal by the second fact that I mentioned earlier. As can see that

JK[y1] is an ideal in the field so it is a principal ideal. Since a principal ideal is a prime

ideal if and only if its generator is irreducible. By the assumption that I made earlier,

we can test the irreducibility of its generator. If it is not irreducible then J is not prime.

Otherwise, we will compute the intersection of JK[y1] and R[y1] and see if it equal to

J itself. If it is, then J is prime ideal, otherwise not. □
For variable n = 1 we proved it in the proof. When n = 2 we already know about

n = 1. So we will consider that ideal for n = 1 as I mentioned in the algorithm.

And check for n = 2 and so on. So basically if we need to check whether an ideal in

R[y1, .., yn] is prime or not then we have to go through this algorithm n times.

We want to see what special properties Groebner basis possess for zero-dimensional

ideals.

Lemma 8 Suppose we have an ideal J in R[y1, .., yn]. We have the property that con-

traction of J toR is zero dimensional. Then we see that J is said to be zero dimensional
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Algorithm 1 PT (R;Y ; J). Primality test
1: Input : Ring R; variables Y = y1, ...., yn;ideal J ⊂ R[Y ].

2: Assumptions : (none)

3: Output : TRUE if I is prime, otherwise FALSE.

4: Step 1 : If n = 0 then J ⊂ R is prime the return TRUE otherwise FALSE.

5: Step 2 : Compute I = J ∩R[y2, ...., yn].

6: Step 3 : If PT (R; y2, ...., yn; I) = FALSE then return FALSE.

7: Step 4 : Let R′ = R[y2, ...., yn]/I , J ′ = JR′[y1], K ′ = quotient field of R′.

8: Step 5 : Compute J ′K ′[y1] = (h).

9: Step 6 : If h is not irreducible overK ′ then return FALSE.

10: Step 7 : Compute Jec = J ′K ′[y1] ∩R′[y1].

11: Step 8 : If Jec ⊂ J ′ then return TRUE, otherwise return FALSE.

⇐⇒ R[y1, .., yn]/J is integral over R.

Proposition 19 Supposewe have an ideal J inR[y1, .., yn]. Thenwe see thatR[y1, .., yn]/J

is integral over me ⇐⇒ the ideal generated by (y1, .., yn) is contained in the radical

of LT (J).

Proof: IfR[y1, .., yn]/J is integral overR then it means that each yi+J ∈ R[y1, .., yn]/J

is integral over R. It means that J contains a monic polynomial h(yi) ∈ R[yi] for

each i. So, lt(h(xi)) ∈ LT (J). And as we know that lt(h(yi)) is a power of yi, so

(yl, ...., yn) ⊂
√
LT (J).

Conversely let (yl, ...., yn) ⊂
√

Lt(I). We wish to prove that R[y1, .., yn]/J is integral

over R. When we say that R[y1, .., yn]/J is integral over R then it is equivalent of hav-

ing that R[y1, .., yn]/J is finitely generated as an R- module. Let us assume that ysii
belongs to the LT (I). Let us say that

M =
∑
ci<si

Ryc11 .....ycnn

is the finitely generated R-module. Let us define a R module map Π say Π : M 7→

R[y1, .., yn]/J , such that Π(f) = f +J . We wish to prove that this map is surjective. If

we prove this claim, eventually we are proving that R[y1, .., yn]/J is finitely generated

as an R- module. Suppose h ∈ R[y1, .., yn]. Let us imagine that h + J belongs to
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R[y1, .., yn]/J . As we see that 0 + J is in the image of Π, we can imagine that h does

not belong to J . By the reduction algorithm we can see that there ∃ an h′ which belongs

to h+J with the property that leading term of h′ does not belong to theLT (J). From our

assumption it means that lt(h′) ̸∈ (ys11 , ...., ysnn ). Which implies that leading term of h′

belongs toK.As we know that h−h′ belongs to J and leading term of h′ is not inLT (J),

so we get that lt(h−h′) is not equal to lt(h′). So we can see that degree of h′ is smaller

than degree of h. Which implies that degree of h′ − lt(h) is smaller than the degree of

h. Now by applying induction on the deg(h) we can suppose that (h′ − lt(h′))+ J is in

the image of Π, let’s assume that Π(f) = (h′ − lt(h′)) + J for some element f of K.

Then we can see that Π(lt(h′)+ f) can be written as Π(lt(h′))+Π(f) which is same as

(lt(h′)+J)+(h′− lt(h′)+J) = h′+J = h+J . That shows that h+ I is in the image

of Π. Which shows that the map Π is surjective and proves the claim. That completes

the proof. □
So we can see that if yi ̸∈

√
LT (J) then yi + J is not integral over R.

Let us assume G is the Groebner basis for J , then let

Gi = {g ∈ G|lt(g) = bysi for some b ∈ R, s is non negative}

and

Li = ⟨lc(gi)|gi ∈ Gi⟩

We will notice that LT (Gi) is just the contraction of LT (G) toR[yi]. Which means that

yi ∈
√
LT (J) =

√
LT (G) ⇐⇒ yi ∈

√
LT (Gi). There is only one way to make is

possible which is Li has to be (1). So we can decide if yi belongs to the
√
LT (J) just

by verifying this single condition whichmeans just by examining a Groebner basis for J .

Since we can check if yi’s belongs to the radical of LT (J) or not, which means

that we can directly check that R[y1, .., yn]/J is integral over R or not. And if it is

not integral then as I mentioned above we can even find the i for which yi + J is not

integral over R, as we can find that i for which yi won’t belong to radical to LT (J).

Which implies that we can check J is a zero-dimensional ideal or not, And if not then

for which i contraction of J with R[yi] fails to be zero-dimensional, just by following

the steps mentioned above.

Proposition 20 Suppose that we have an ideal J in R[]y1, .., yn. Imagine that contrac-
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tion of J to R is zero dimensional and primary ideal. Suppose that Groebner basis for

J is given. Then J is said to zero dimensional ideal ⇐⇒ there ∃ an element gi of G

with the property that leading term of gi is biysii , for every i. Here bi which belongs to

R is a unit modulo the contraction of J to R.

Proof: Suppose thatGi andLi are same as I mentioned earlier. We see thatGi ⊃ G∩R

so Li ⊃ J ∩ R. As we assumed that J ∩ R is zero- dimensional primary then
√
J ∩R

is maximal. For J being zero-dimensional, the only condition is Li hs to be (1). So

Li = (1) ⇐⇒ Li ̸⊂
√
J ∩R. Which can happen if and only if there ∃ some gi ∈ Gi

with the property that leading coefficient of (gi) does not belong to the radical of I ∩R.

And this is equivalent of having that there exists a gi ∈ G such that lt(gi) = biy
si
i ,

bi ∈ R a unit modulo J ∩R. □

As we can see that any f ∈ J such that ysii divides lt(fi), is said to be reducible

modulo {gi}∪(G∩R). Let us say that we have given a Groebner basisG of J , which is

minimal. Assume we have an element gi ofGwith the property that leading term of gi is

biy
si
i and suppose that we have another element gj inGi which has degree in yi, s where

s ⩾ si. If we go modulo intersection of J and R, then all the leading coefficient of

elements of Gi will be 1.So then leading term of gj will divide leading term of gi which

is the contradiction to minimality of G. So except gi, degree of remaining elements of

Gi in yi will be less than si.

So if we have given a minimal Groebner basis G for J , and we need to see that J is

zero-dimensional ideal or not, then by the above discussion e ifG has only one element

with the largest degree and unit ideal is generated by its leading coefficient and G ∩R.

Then it is confirmed that J is zero-dimensional. There is no need to check other ele-

ment’s leading coefficients.

Lemma 9 Suppose that we have an ideal J on R[y1]. Imagine that intersection of J

and J is zero dimensional. Let us assume that ys1 belong to the LT (J) but ys−1
1 does not

belong to LT (J). Then we see that each element of J which has degree less than s is a

zero divisor modulo intersection of J and R.
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Proof: Suppose we have L ⊂ R defined as

L = ⟨lc(h)|h ∈ J, deg(h) < s⟩

We claim that if deg(h) < s where h ∈ J then h ≡ 0modL. So let us say h =

a1y
s−1
1 + ....+ as, then we can see that a1 = 0 or a1 = lc(h) which means that a1 ∈ L.

There ∃ a g which belongs to J such that leading term of (g) is ys1 by our assumption.

Now suppose we have h′ = y1h − a1g. Then as we see h′ belongs to J and h′ can be

written as h′ = a′1y
s−1
1 + ....+a′s where a′1 ≡ ai+1modL. So from induction we see that

ai’s are in L for every i, which proves the claim.

Now we see that if L is equal to (1) then it means that L contains a monic polynomial

t such that deg(t) < s, which contradict the assumption that ys−1
1 ̸∈ LT (J). So it

means that L is a proper ideal which will be contained in some maximal ideal. Since

contraction of J to R is zero dimensional, its associated primes are maximal. Since

J ∩R are contained in L hence L is contained in some associated prime of contraction

of J to R. So there ∃ an element b which is not in J ∩ R with the property that bL is

contained in J ∩ R. Then we can see that bh ≡ 0modJ ∩ R whenever the degree of h

is less than s. □

Lemma 10 Suppose that we have an ideal J onR[y1], which is zero-dimensional. Imag-

ine that intersection of J and R is zero-dimensional as well as primary ideal. Suppose

that we are given a minimal Groebner basis G of J . Imagine that g1 is an element of G

with the property that leading term of g1 is b1ys11 . Then we can see that radical of J is

same as the radical of the ideal generated by the element g1 with J ∩R.

Proof: As we mentioned above leading term of g1 is b1ys11 where b1 is a unit modulo

intersection of J andR by assumption. As we can see that ys11 belongs to LT (g1, J ∩R)

which is a subset of LT (J). As we assumed G is a minimal Groebner basis of J so

LT (J) can not contain any smaller powers of y1. Because if it has smaller powers than

g1 will be reducible which will contradict the minimality of G. Each element h of I

such that deg(h) < s1 is a zero divisor modulo intersection of J and R by the previous

lemma. Since we know that J∩R is primary. Assume that we have an element cdwhich

belongs to J ∩R. Then c will belong to J ∩R or some power of d will belong to J ∩R.

Assume that c does not belong to J ∩ R, then some power of d will belong to J ∩ R.
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which means that d will belong to the radical of J ∩R. So when we go modulo J ∩R,

the set of zero divisors clearly will be radical of J ∩ R. So from this can see that if h

is in J such that deg(h) is less than s1 then h ≡ 0mod
√
J ∩R. Now suppose h is in J

then from the reduction algorithm there ∃ h′ with the property that h′ is congruent to h

mod (g1, J ∩R) and h′ is reduced modulo (g1, J ∩R). As we know that ys11 belongs to

LT (g1, J ∩R) and deg(h′) < s1 hence we can see that h′ ≡ 0mod
√
J ∩R.

So we see that h is contained in (g1, J ∩R) +
√
J ∩R which is equal to (g1,

√
J ∩R).

Which means that

I ⊂ (g1,
√
J ∩R) ⊂

√
J

Now by taking radicals it will be

√
J =

√
(g1, J ∩R)

. That completes the proof. □

Proposition 21 Suppose that we have an ideal J on R[y1, .., yn], which is zero dimen-

sional. Imagine that intersection of J and R is zero dimensional as well as primary

ideal. Consider the laxicographical ordering with y1 > .... > yn. Suppose that we are

given a minimal Groebner basisG of J . Assume that element g1, ....gn ofG are same as

mentioned in (20). Then we see that J is said to be primary ideal ⇐⇒ elements gi’s of

G are some power of irreducibles modulo the radical of J ∩R[yi+1, ...., yn] for every i.

Tf this happens than every f such that it belongs to the contraction of G to R[yi, .., yn]

but it’s not equal to gi, is congruent to 0 mod radical of J ∩R[yi+1, ...., yn].

Proof: We can reduce this problem to a much simpler problem. suppose that R′ =

R[y2, ...., yn] and J ′ is the contraction of J to R′. Then we can see that hypothesis of

the this proposition is satisfied by J ′ and g2, ..., gn which belongs toG∩R′ as J ′ is also

zero dimensional ideal. So now we only need to show that J is primary ⇐⇒ J ′ is.

And instead of all gi’s now we just need to see for g1 that it is some power of irreducible

modulo radical of J ′. Then every other element of G except g1 is 0 modulo radical of

J ′.

So it is clear that if J is primary then so is J ′ because J ′ is just the contraction of J toR′

. Now suppose that leading term of g1 is b1ys11 . Assume that f belongs toGwhich is not

equal to g1 then since we don’t want it to be reducible by (g1, J
′) so deg(f1) ≤ s1. So
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from (9), we can see that f =≡ 0mod
√
J ′. As J is zero dimensional then we know that

it will be primary ideal ⇐⇒ its
√
J is prime ideal. So as we know that radical of J can

be written as
√
(g1, J ′) which is now equal to

√
(g1,

√
J ′). So we see that J is primary

⇐⇒ (g1,
√
J ′) is primary, which is same as having ⟨gi⟩ is primary in (R′/

√
J ′)[y1].

That completes the proof. □

Proposition 22 Suppose that we have an ideal J on R[y1, .., yn], which is zero dimen-

sional. Imagine that intersection of J and R is zero dimensional as well as prime ideal.

Consider the laxicographical ordering with y1 > .... > yn. Suppose that we are given

a minimal Groebner basisG of J . Assume that element g1, ....gn ofG are same as men-

tioned in proposition (20). Then we see that J is said to be a prime ideal ⇐⇒ gi’s are

irreducible polynomials modulo contraction of J to R[yi+1, .., yn], for every i. If this

happens then G is equal to the union of {gl, ....., gn} and (G ∩R).

Proof: Let us assume that J is a prime ideal. And gi ≡ fai
i where ai is an irreducible

polynomial modulo I ∩ R[yi+1, ...., yn]. Now as we assumed that J is a prime ideal so

fi has to be in J . We can see that if the power of fi, which is ai, is larger than 1 then

gi will be reducible by fi which has degree less than gi. It will ne contraction as G is

minimal. So ai has to be 1. And therefore we can directly see that gi is reducible mod

J∩R[yi+1, ...., yn]. Conversely , let us assume that J∩R[xi+1, ...., xn] is prime and gi is

not reducible modulo J ∩R[yi+1, ...., yn]. Thus we can see that (gi, J ∩R[yi+1, ...., yn])

which is a subset ofR[yi, ...., yn] is prime. Suppose f belongs toG∩R[yi, ..., yn]which

is not equal to gi then we see that f ≡ 0 mod J ∩ R[yi+1, ...., yn] by the previous

proposition. So basically f is reducible moduloG∩R[yi+1, ..., yn]. SinceG is a minimal

Groebner basis so f has to be an element of G ∩ R[yi+1, ...., yn] otherwise it will be

contradiction due to the minimality ofG . It means that except gi every other element of

G∩R[yi, ..., yn] basically belongs to G∩R[yi+1, ..., yn]. So G∩R[yi, ..., yn] = {gi} ∪

(G∩R[yi+1, ..., yn]). And then consequently J∩R[yi, ..., yn] = (gi, J∩R[yi+1, ..., yn]).

Since (gi, J ∩R[yi+1, ..., yn]) is prime so J ∩R[yi, ..., yn] is prime. Now the proposition

will follow by induction. □
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4.3 Zero-dimensional Primary Decomposition

Suppose that a maximal ideal of the ring R is given, say Q. Then we make an assump-

tion that polynomials in 1 variable can be factorized over algebraic extensions of R/Q,

where the extensions are finitely generated. (see [Dav])

Proposition 23 Suppose that we have an ideal J in R[y1, .., yn], which is zero dimen-

sional. Assume that radical of intersection of J withR is the maximal idealQ ofR. Then

it is possible to construct ideals J1, .., Jt in R[y1, .., yn] and distinct ideals Q1, .., Qt in

R[yn], where all Ji’s are zero dimensional ideals and all Qi’s are maximal ideals with

the property that J can be written as the intersection of all Ji’s and radical of the inter-

section of Ji with R[yn] is simply Qi.

Proof: Suppose J c = J ∩ R[yn]. Since J c ∈ R[yn] is a zero dimensional ideal and

satisfies all the conditions of lemma (10) so it is possible for us to find an element

g which belongs to Groebner basis of J c such that
√
J c =

√
(g,Q). Let gn be the

element of largest degree. Let us do the complete factorization of g modulo Q, say

g(yn) =
∏

pi(yn)
si mod Q. Which simply means the image of polynomials pi(yn) are

irreducible non-units in (R/Q)[yn] and they are also pairwise comaximal. As we see∏
psii ∈ (g,Q). Since

√
J c =

√
(g,Q) hence (g,Q) ⊂

√
J c. So

∏
psii ∈

√
J c which

implies (
∏

psii )
s ∈ J c for some s.

Now as we know pi and pj are comaximal modulo Q .By assumption J ∩ R is Q-

primary so J contains a power of Q. So all this implies that pi and pj are comaximal

modulo J . Since pi and pj are irreducible thus
∩

i(p
sis
i , J) = (

∏
psisi , J) = J . Now

let Ji = (psisi , J) and Qi = (pi, Q)R[yn]. We can see clearly that Qi’s are maximal.

As Ji ∩ R[yn] contains a power of Qi, so it is either a unit ideal or Qi-primary. If we

take the first possibility that Ji = (1) then since we have
∏

j ̸=i p
sis
j Ji ⊂ J it implies

that
∏

j ̸=i pj ∈
√
J c =

√
(g,Q). If we go modulo Q then we see that

∏
j ̸=i pj belongs

to
√

(g,Q)/Q, where
√

(g,Q)/Q is contained in R/Q[yn]. We see that elements of√
(g,Q)/Q has to be of the form (

∏
i pi)R/Q[yn]. So pj’s will be some multiple of

pi’s, means pi’s have to divide pj’s. But since pj’s are irreducible, pi’s have to be unit

modulo Q. But we factorized g in such a way that pi’s are non-units modulo Q. So this
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is a contradiction. Which implies that Ji can’t be unit ideal. So it is proved that Ji is

Qi-primary. □

The above proof described the reason behind every step of the following algorithm

for zero dimensional primary decomposition.

Algorithm 2 ZPD (R;Y ;M); Zero-dimensional primary decomposition
1: Input : Ring R; variables Y = y1, ...., yn;ideal J ⊂ R[y1, .., yn];ideal Q of R.

2: Assumptions : Q is maximal , J is zero-dimensional,
√
J ∩R = Q.

3: Output : {(J1, Q1), ...., (Jt, Qt)}, Ji,Qi ideals in R[y1, .., yn] where Qi is maximal,

Qi ̸= Qj ,
√
Ji = Qi and J =

∩
i Ji.

4: Step 1 : If n = 0 then return {(J,Q)}.

5: Step 2 : Compute a minimal Groebner basis G for J ∩R[yn].

6: Step 3 : pick the g ∈ G with maximum degree.

7: Step 4 : Compute the complete factorization of g mod Q, g =
∏

psii in (R/Q)[yn],

pi ∈ R[yn].

8: Step 5 : Find s such that (
∏

psii )
s ∈ J ∩R[yn].

9: Step 6 : Let Ji = (psii , J), Qi = (pi, Q)R[yn].

10: Step 7 : Return
∪

i ZPD(R[yn]; y1, ...., yn−1; Ji;Qi).

So basically what we saw is first we will make the case in 1 variable by taking the

contraction of the ideal in R[y1, .., yn] with R[yn] so that we can factorize its element of

basis. Then the irreducible polynomials that we got from this factorization will be the

whole meat of this algorithm.

4.4 Zero-dimensional Ideals over Fields of Characteris-

tic 0

Let us consider here that K is a field of characteristic zero. For every ideal J in the

K[y1, .., yn], elements of their Greobner basis has leading coefficients 1.

Imagine that we have an ideal J inK[y1, .., yn]. Thenwe can have ideals Ji’s inK[yi, .., yn]

such that they are the contraction of J withK[yi, .., yn]. If we consider that a prime ideal

J is zero dimensional and consider lexicographical ordering on monomials, then as we

have seen earlier thatminimalGroebner basis for J will be like {g1(yl, ..., yn), g2(y2, ...., yn), ....gn(yn)}.
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Elements of its Groebner basis are in a particular form. Each element gi of G has lead-

ing elements in yi with coefficient 0. Each gi is irreducible modulo the contraction of J

withK[yi+1, .., yn].

Proposition 24 Suppose that we have a prime ideal J in K[y1, .., yn], which is zero-

dimensional. It has minimal Groebner basis in the form described above. Then for

almost all linear transformations of co ordinates we will get elements of new Groebner

basis in the form gi = yi − pi(yi+1, ...., yn) where i is strictly less than n.

Proof: Primitive element theorem (see [OZ]) tells us that suppose thatK is an infinite

field. K[y1, ...., yn] is the algebraic extension of the field k the we can find elements

c1, ...., cn ∈ K such that by setting β = c1y1 + c2y2 + .... + cnyn we get that the

algebraic extension of the fieldK is equal toK(β). Since we know thatK[y1, .., yn]/J

is the algebraic extension of the field K then we can find c1, ...., cn ∈ K such that we

get

K[y1, .., yn]/J ≃ K(c1y1 + c2y2 + ....+ cnyn)

This is true for almost all elements of K. Now let us do the change of coordinates. Let

yi’s be xi’s where i is strictly less than n. And put xn as c1y1 + c2y2 + .... + cnyn. So

the above relation will change into-

K[x1, ...., xn]/J ≃ K(xn)

. As we can see that each xi belongs to K[xn],then because of above relation it implies

that xi = hi(xn) also belongs toK[x1, ...., xn]/J . As we can see that xi−hi(xn) is equal

to 0 so they are contained in the ideal J in K[x1, ...., xn]/J where i is strictly less than

n.

Now assume that we get new Groebner basis G for the ideal J after the coordinate

change. Since xi − hi(xn) belongs to the ideal J hence it will be reducible modulo G.

As we can see from the form of given Groebner basis that gi is the single element of

G which have the ability to reduce xi because gi’s have leading terms in yi’s. Thus we

have the leading term of gi equal to zi as we need it to be. □
Suppose that we have a prime ideal J in K[y1, .., yn], which is zero-dimensional.

Consider we have lexicographical ordering on the monomials then if the elements of
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minimal Groebner basis for J satisfies all the properties given in the above proposition

then J is said to be in the general position.

So if we want to check whether an ideal whose Groebner basis is given, is in general

position or not, then we first check if the ideal is prime. For that we will check the form

of elements of Groebner basis if they have the form given in the starting of the section

then it means that ideal is prime then we check if the elements of Groebner basis are in

the form mentioned in the above proposition. If the condition satisfies then ideal is in

general position.

If we have an arbitrary ideal which is zero-dimensional. Then if its associated primes

are in general position and their contraction to K[yn] are pairwise comaximal then the

ideal is said to be in general position.

Corollary 9 Let us assume that we have a primary ideal J inK[y1, .., yn]which is zero-

dimensional and also in the general position. Then we can say that the element gi’s of

Groebner basis mentioned in proposition (20), will be the powers of linear equations

modulo radical of the contraction of ideal J to K[yi+1, .., yn] where i is strictly less

than n.

Proposition 25 Suppose that we have a zero-dimensional ideal J inK[y1, .., yn], which

is in general position. Let us consider the lexicographical ordering on the monomials.

Suppose that we are given the Groebner basis Gof J . All elements of G are same as

mentioned in prop (20). Let us say that we are given irreducible decomposition gn =∏t
i=1 p

si
i . Thenwe see that primary decomposition of J will be the intersection of (p

si
i , J)

over all i.

Proof: First we will prove that J =
∩t

i=1(p
si
i , J). It’s clear that J ⊂

∩t
i=1(p

si
i , J).

Now for the other way round imagine that p(i) := gn/p
si
i for i = 1, ...., t. Then from

the construction of these polynomials p(1), ...., p(t) in K[yn] will have GCD 1. So there

will exist some c1, ...., ct ∈ K[yn] with
∑t

i=1 cig
i = 1. Now suppose h ∈

∩t
i=1⟨J, p

si
i ⟩

. It means that for some element hi of J and some element αi of K[y1, .., yn], h can be
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written as h = hi + αip
si
i for i is 1 to t. Therefore

h =
t∑

i=1

cig
i(hi + αip

si
i ) =

t∑
i=1

(cig
ihi + ciαign) ∈ J

. So it’s proved that J =
∩

i(p
si
i , J).

So now we can see that ⟨J, psii ⊊ K[y1, .., yn] and Ass(⟨J, psii ⟩) ⊂ Ass(J).We can

see this in the following manner-

Let us say that 1 can be written as 1 = h + cpsii for some element h of the ideal

J and c of K[y1, .., yn], then we can clearly see that gn/psii belongs to the ideal gener-

ated by h and gn which will be contained in J which contradicts that contraction of J

with K[yn] is generated by gn. And J ⊂ ⟨J, psii ⟩ and from the uniqueness property of

associated primes we see that some associated prime of J is bound to be contained in

every associated prime of the ideal generated by J , psii . But as know the property of

zero-dimensional ideals also, that is- its associated primes will be the maximal ideals.

Let us suppose that we denote associated primes of J by Q1, ...., Ql. We also assume

that contraction of these primes toK[yn] is generated by fi. So we can see that

l∩
i=1

(Qi ∩K[yn]) =
l∩

i=1

⟨fi⟩

We can see as a result of existing assumptions that these f1, ...., fl are pairwise coprime.

That implies that
l∩

i=1

⟨fi⟩ = ⟨
l∏

i=1

fi⟩

So basically
l∩

i=1

(Qi ∩K[yn]) = ⟨
l∏

i=1

fi⟩

Now let us notice that
∩l

i=1(Qi ∩K[yn]) also can be written as (
∩l

i=1Qi) ∩K[yn].As

we know that radical of J is equal to the intersection of these Qi’s. So

l∩
i=1

(Pi ∩K[xn]) =
√
J ∩K[yn]

. Hence, according to the assumption J ∩K[yn] = ⟨gn⟩ we can see that gn is divisible

by
∏l

i=1 fi, also some power of
∏l

i=1 fi is divisible by gn. This gives us that l and t are

equal. Basically we can consider that pi’s and fi’s are equal for i which varies from 1
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to t. So from here we can state that Qi is the the unique associated prime of J which

contains psii . Now from all this discussion that we had we can come up with the result

that Ass(⟨J, psii ⟩) are simply the primes Qi. Which gives us that ideal generated by J

and psii is primary ideal. That completes the proof. (see, [GMG]) □

Algorithm 3 ZPDF (K;Y ; I); Zero-dimensional primary decomposition over a field
1: Input : FieldK; variables Y = y1, ...., yn;ideal J ⊂ K[y1, .., yn].

2: Assumptions : K is a field of characteristic 0; J is zero-dimensional.

3: Output : {J1, ...., Jm} such that , Ii ⊂ K[y1, .., yn] is a primary ideal, J =
∩

i Ji

and
√
Ji ̸=

√
Jj .

4: Step 1 : Select random a1, ....., an−1 ∈ K and replace yn by yn +
∑

aiyi.

5: Step 2 : Compute J ∩K[yn] = (g).

6: Step 3 : Compute the complete factorization of g, g =
∏

psii .

7: Step 4 : If (psii , J) is not a primary ideal in general position then go to step 1.

8: Step 5 : Replace yn by yn −
∑

aiyi.

9: Step 6 : Return {(psii , J)}.

So basicallywe canmake an ideal in general position by doing the coordinate changes.

So in the algorithm, we see that first, we attempt to make the ideal in general position.

Since we are given the Groebner basis for the ideal, we find the Groebner basis for this

new ideal we got by coordinate changing. Then we contract them to K[yn] to get the

Grobner basis for contraction of ideal toK[yn]. Since it is an ideal of the field, we will

get a single element in the basis. Then we do the complete factorization of this element,

say g =
∏

psii . Then this
∩

i(p
si
i ) can be the primary decomposition for an ideal J

which is in general position only if we can prove that (psii , J) are the primary ideals in

general position. So we take (psii , J) and compute their Groebner basis and see if they

satisfie the corollary (9). If it does then these are the primary ideals in general position.

Then we again change the coordinates in the old ones. And get our primary decompo-

sition. But if it is not then we keep changing the coordinates until we make our ideal in

general position.
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4.5 Primary Decomposition in Principal Ideal Domain

Lemma 11 Let us assume that we have an ideal J in R[y1, .., yn] and a subsetM of R

which is multiplicatively closed. Assume that we have an element r of M . If we have

that intersection ofM−1J with R is contained in (J : r), then we can see that

J = (J : r) ∩ (J, r).

Proof: It is clear from the definition of (J : r) and (J, r) that the intersection of (J : r)

and (J, r) contains the ideal J .

Now let h belongs to the intersection of (J : r) and (J, r). We want to prove that

h will also belong to the ideal J . So according to the assumption h can be written as

h = j + br where j is an element of J . Then as we know j + br is in (J : r) which

implies that jr+br2 is in J so that br2 belongs to J . And the fact that br2 is in J implies

that b belongs to M−1J ∩ R So it gives us that b belongs to (J : r) that means br is in

J so now it’s proved that h has to be in J . Which completes the proof. □

Proposition 26 Suppose that R is an integral domain. We assume that (q) is a prime

ideal of R, which is principal. So we can find an element s of R− (q) so that ideal J is

equal to the intersection of (J, s) and JRq[y1, .., yn]∩R[y1, .., yn], where J is any ideal of

R[y1, .., yn] such that its generating set is given. We denote JR(q)[y1, .., yn]∩R[y1, .., yn]

as Jec.

Proof: Wehave given a construction for such an element r ofR−(q) so that JR(q)[y1, .., yn]∩

R[y1, .., yn] will be equal to JRr[y1, .., yn] ∩ R[y1, .., yn]. So we will get r. We know

how to compute Jec by corollary (7). As mentioned in the starting of this chapter that

we consider R as a Noetherian ring, so some t will ∃ which will make rtJec a subset of

J . Once we compute the groebner basis for Jec, we can easily find t. We just need to

check for what values for t , rtG will be contained in J . So according to the statement

of theorem s = rm is value of s that is required. □

Proposition 27 Suppose that R is a principal ideal domain. We have an ideal J of

R[]y1, .., yn. Assume that we have an ideal (q) in R such that it is a maximal ideal. If

the radical of contraction of J to R is equal to the (q) then we can compute the primary

decomposition of the ideal J .
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Proof: First we will check whether J is a zero-dimensional ideal or not. If it is

then we know how to compute its primary decomposition. We can use any algorithm

given before. Otherwise we can find an i for which contraction of ideal J to R[yi] is

not zero dimensional with the help of proposition (19). Now denote R′ = R[yi] and

y′ = y1, ...., yi−1, yi+1, ...., yn. So basically we have that R[y1, .., yn] is same as R′[y′]

and contraction of J toR′ is not zero dimensional ideal. Now we can apply the previous

proposition. So eventually we will find element s′ of R′ − (q)R′ so that J will be equal

to intersection of (J, s′) and Jec. which is equal to (J, s′)∩JR′
q[y

′]∩R′[y′]. So now we

will decompose (J, s′) and Jec separately.

First we will try to decompose (J, s′). Since (q)-primary ideal J ∩ R and s′ ̸∈ (q)R′

both are contained in (J, s′)∩R′. Any ideal which is generated by both of J ∩R and s′

will have dimension greater than (q), since J∩R is a (q) primary ideal. If we go modulo

then R/(q) is an integral domain and basically we have a map from the ideal generated

by both J ∩R and s′ to s′(R/(q)). As we can see that any ideal in s′(R/(q)) is one di-

mensional so its preimage ideal which is contained in the ideal generated by both J ∩R

and s′ to s′(R/(q)) will be of 1 dimensional. That means the ideal generated by both

J ∩R and s′ to s′(R/(q)) is zero dimensional. Which simply implies that (J, s′)∩R′ is

zero dimensional ideal or a unit ideal. So let us suppose (J, s′)∩R′ is zero dimensional

ideal then we can compute the primary decomposition of (J, s′) by the algorithms given

before. And if (J, s′)∩R′ is unit ideal then J = Jec and there is need to decompose Jec

only.

Now we want to decompose Jec which is JR′
(q)[y

′] ∩ R′[y′]. So for computing Jec

first JR′
(q)[y

′] = Je should be decomposed and then we will do its contraction to R′[y′].

We can see that R′
(q) is a principal ideal domain. Since (q) is a maximal ideal in R,

(q)R′
(q) has to be maximal in R′

(q) . We first wish to prove that radical of Je ∩ R′
(q) is

same as (q)R′
(q). So basically by proving this claim we will putR′

(q) , (q)R
′
(q) , J

e∩R′
(q)

in position of R, (q) and J ∩ R respectively and they will satisfy the hypothesis of the

proposition. Now we will prove the claim. As we can see that radical of contraction of

J toR is equal to (q) and some power of q is contained in JR′
((q)) because J contains a

power of q. So there is only need to show that J ′R′[y′]∩R′ is contained in (q)R′. Assume

that we have some associated prime of I ∩R′ whose dimension is not zero, sayQ. Then
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we see that (q)R′ is conatined in Q. Since R′ is two dimensional, (q)R′ has to be one

dimensional so Q must be equal to (q)R′. This proves the claim. And as I mentioned

earlier Ie full fills our hypothesis of this proposition. So it can be decomposed by the

induction on n. □
So basically we are reducing high dimensional ideals in zero-dimensional ideal by

using some localization at principal primes.

Corollary 10 Let us assume that we have a field K. Then every ideal of K[y1, .., yn]

can be primary decomposed.

Proof: We just need to take p = 0 in the previous proposition and the whole proof

will follow. □

Proposition 28 Suppose that R is a principal ideal domain. Assume we have an ideal

J in R[y1, .., yn]. Then primary decomposition can be computed for J .

Proof: First we will check whether intersection of J and R is zero dimensional or

not. I ∩ R won’t be zero dimensional if it is zero or R is a field. So if it is not zero

dimensional then then we use the proposition (27) by taking p = 0 and find a nonzero

s so that we can write J as (J, s)∩ (JR(0)[y1, .., yn]∩R[y1, .., yn]). We can decompose

(JR(0)[y1, .., yn]∩R[y1, .., yn]) by first decomposing JR(0)[y1, .., yn] by putting q = 0 in

the proposition (27) and then by contracting it to R[y1, .., yn]. Now we only have to de-

compose (J, s). (J, s) contracts to a ideal inRwhich is zero dimensional. So now by this

we can assume that J∩R is zero dimensional. So we can write J∩R = (
∏

pmi
i ), where

(pi)R is maximal ideal. Then we can see that (pmi
i , J) ∩R is (pi)-primary. So (pmi

i , J)

satisfies all the hypothesis of the proposition (27). So we can decompose (pmi
i , J) by

using the algorithm given in proposition (27). Since J =
∩

i(p
mi
i , J), so by getting the

decomposition of (pmi
i , J) we get the decomposition of J . □
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Algorithm 4 PPD (R;Y ; J); Primary decomposition over a PID
1: Input : Ring R; variables Y = y1, ...., yn;ideal J ⊂ R[y1, .., yn].

2: Assumptions : R is a PID.

3: Output : {Q1, ...., Qm} such that Qi ⊂ R[y1, .., yn] is a primary ideal, J =
∩

i Qi.

4: Step 1 : Find s ̸= 0 such that J = (J, s) ∩ (JR(0)[y1, .., yn] ∩R[y1, .., yn]).

5: Step 2 : Let {Q1, ...., Qk} = PPD − 0(R(0));Y ; JR(0)[y1, .., yn]; 0)

6: Step 3 : Let Qc
i = Qi ∩R[y1, .., yn].

7: Step 4 : Compute (J, s) ∩R = (s′).

8: Step 5 : If s is a unit, return {Qc
1, ...., Q

c
m}.

9: Step 6 : Factor s′ =
∏

pmi
i , pi is irreducible.

10: Step 7 : For each i let {Qi
1, ...., Q

i
ki
} = PPD − 0(R;Y ; (J, pmi

i ); pi).

11: Step 8 : Return {Qc
1, ...., Q

c
m} ∪

∪
i{Qi

1, ...., Q
i
ki
}.

Algorithm 5 PPD-0 (R;Y ; J ; q); Primary decomposition over a PID, primary contrac-

tion case
1: Input : Ring R; variables Y = y1, ...., yn;ideal J ⊂ R[y1, .., yn]; q ∈ R

2: Assumptions : R is a PID, (q)R is maximal, J ∩R is (q)- primary.

3: Output : {Q1, ...., Qm} such that Qi ⊂ R[y1, .., yn] is a primary ideal, J =
∩

i Qi.

4: Step 1 : If J is not zero-dimensional then return its decomposition using ZPD or

ZPDF.

5: Step 2 : Find i such that J ∩R[yi] is not zero-dimensional.

6: Step 3 : Let R′ = R[yi], y′ = y1, ...., yi−1, yi+1, ...., yn, Je = JR′
(q)[y

′].

7: Step 4 : Find s′ ∈ R′ − (q)R′ such that J = (J, s′) ∩ (Je ∩R′[y′]).

8: Step 5 : Let {Q1, ...., Qm} = PPD − 0(R′
(q); y

′; Je; q).

9: Step 6 : Let Qc
i = Qi ∩R′[y′].

10: Step 7 : If (J, s′) = (1) then return {Qc
1, ...., Q

c
m}.

11: Step 8 : Let {Q′
1, ...., Q

′
k} = PPD − 0(R;Y ; (J, s′); q).

12: Step 9 : Return {Qc
1, ...., Q

c
m, Q

′
1, ...., Q

′
k}
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