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Abstract

By analyzing the Quark mixing and the Lepton mixing one can find an empirical

relation that exists between the solar mixing angle (θs) and the Cabibbo angle (θc),

which is θs + θc ≈ π/4, called Quark-Lepton complementarity (QLC). QLC suggests

a possible existence of Quark-Lepton unification. In literature, it has already been

shown that such an empirical relation can be obtained from the Grand unified theories.

We discuss an alternative approach in which such a relation emerges only from the

group theoretical consideration of the lepton mixing. We assume that the lepton mix-

ing are dominantly given by Bi-maximal mixing and then the corrections from the

charged leptons will generate a QLC like relation. Such corrections are also assumed

to be fixed by group theoretical constraints. After scanning several discrete subgroups

of SU(3) ( of order < 2000 ) we find that the corrections from the charged leptons

sector must be in terms of more than one angle to get a viable PMNS matrix. As one

of the consequences of the exercise, we find that θpmns23 > π/4, which can be confirmed

or ruled out from the currently ongoing experiments.
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Chapter 1

Introduction

The fundamental particles of nature interact via four forces, which are strong, weak,

electromagnetic and gravitational force. The interaction of elementary particles via

former three forces (that mentioned above) can be explained by the Standard Model(SM),

which is an extraordinarily succeful theory, based on quantum field theoritical frame-

work.

In the SM, particles are of two types, fermions and bosons. Fermions are the half

integer spin particles, which are the constituent of matter. Bosons are the integer

spin particle and considered as the force mediators between the particles.

Fermions are of two types, quarks and the leptons. Quarks particles have color charge,

so they can interact via strong force. Quarks also participitate in electro weak interac-

tion. But in the case of leptons, which do not posses any color charge, so they cann’t

participitate in strong interaction. But they participitate in eletroweak interactions.

Bosons also are of two types, gauge bosons and Higgs bosons. Gauge bosons can be

considered as the force carrieres between the particles,eg. W±, Z0 and photon. Higgs

bosons are scalar bosons, which are associated with the fundamental field called Higgs

field. These fundamental particles came to have mass via interacting with the Higgs

field.

In the SM the Yukawa interaction terms will lead to mass terms for the fermions after

the sponatneous symmetry breaking of the gauge group SU(2)L × U(1)Y into elctro-

magenetic gauge group U(1)em. Due to the non equivalence of flavour basis(in which

elctroweak interaction terms are diagonal) and mass basis(in which mass matrix of is

diagonal) of quarks, a unitary matrix will introduce in charged current weak interac-

tion term for the quarks as a consequence of the basis trasnformation from flavour to
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mass basis, this unitary matrix is called CKM matrix. There are four independent

parameters in the CKM matrix (three angles and one phase), in which one angle is

observed to be comparively larger than other two angles, called the Cabibbo angle θc,

which is about 13 degrees [1](in standrd parametrized form of the CKM matrix). In

the SM framework, there will not be any corresponding mixing matrix in the lepton

sector. This is because the neutrinos are remains massless in the SM. But the ex-

perimental evidence for the neutrino oscillations suggests that neutrinos are massive.

So one need to modify the SM to incorporate the mass terms for the neutrinos. In

this extended model, corresponding to CKM matrix there will be a mixing matrix in

the lepton sector, called PMNS matrix. If the neutrinos are Majorana type, then the

PMNS matrix will have two additional phases compare to the CKM matrix, called

the Majorana phases. But in the case of Dirac type of neutrinos, there will be four

independent parameters in the PMNS matrix (similar to the case of quarks). The

angle parameters of PMNS matrix consists of a large angle θ23(about 41.60) which

is nearly maximal, called the atmospheric angle, a relatively large angle θ12(about

33.560) but not maximal called the solar mixing angle and a small angle θ13(8.460)

called the reactor angle[2]. These wide range of angles (from small to nearly maximal)

in the case of PMNS matrix are in a sharp contrast to the CKM matrix parameters.

An understanding of this sharp contrast between the mixing patterns of the quarks

and the leptons considered as a major challenge in physics.

QLC can be considered as an approach to this problem. This is based on the empirical

relations that

θs + θc ≈
π

4
(1.1)

θpmns23 + θckm23 ≈
π

4
(1.2)

This emirical relations suggest that

Lepton mixing = BM mixing − quark mixing (1.3)

this is called QLC.

In literature it has already been shown that such relations can emerge from models

using quark-lepton unification and discrete groups [8]. They assumed that in the

leading order the PMNS matrix is exactly BM mixing and the CKM matrix is equivlent

to Identity. In the next leading order, the down quark mass matrix and charged

lepton mass matrix are equal(or nearly equal) in such a way that both mixing matrices

corrected by O(θc) corrections. In this way, a QLC emrge from quak-lepton unification
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at high scale.

In this work we will propose an alternative approach in which QLC emerges only from

the group theoretical considerations of the lepton mixing. In this approach we assume

that the PMNS matrix is dominantly Bi-maximal mixing (coming from the neutrino

sector) and then the corrections of CKM matrix like (coming from charged lepton

sector) will generate the lepton mixing matrix. In our approach these corrections also

constrained by the group theoretical considerations.

This report is organized in the following way

• In chapter 2 we will discuss the mixing matrices and their properties .

• In chapter 3 we will focus on the relation between the discrete symmetries and

the lepton mixing matrix.

• Chapter 4 we will the QLC and our alternative approach towards it. The results

of the anlysis and the conclusions also will be covered in that chapter.

• In the Appendix A, we will give a brief introduction to the discrete subgroups

of SU(3).
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Chapter 2

Quark Mixing and Lepton Mixing

The nonequivalence of flavour basis and mass basis will result in flavour changing

charge current terms in the weak interaction. This can be represented by a unitary

matrix (called mixing matrices). In this chapter, we will discuss this mixing matrices

in the lepton sector as well as in the quark sector.

2.1 Quark Mixing

The Yukawa interaction term in the Standard Model (SM) for the quark sector can

be written as

− Lquarky = ydijQ̄
f
Liφd

f
Rj + yuijQ̄

f
Liφ̃u

f
Rj + h.c (2.1)

Where yu,d are the Yukawa coupling constants for the up quark and down quark

respectively, Qf
L is the left-handed(LH) quark doublet in the flavour basis(where

Q = (u, d)T ), φ is the Higgs field doublet (φ =
1√
2

(φ+, φ0)T ),φ̃ = iσ2φ (Where σ2

is the pauli matrix) and dR ,uR are the right-handed(RH) down quark and up quark

singlets respectively.

After the spontaneous symmetry breaking of electroweak gauge group SU(2)L×U(1)Y

into U(1)em (by φ taking a vacuum expectation value φvev =
1√
2

(0, v)T ),the Yukawa

interaction term will lead to the quark mass terms, which can be written as

− Lquarkm = Md
ij d̄

f
Lid

f
Rj +Mu

ijū
f
Liu

f
Rj + h.c (2.2)
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where Mu,d are the up quark mass matrix and the down quark mass matrix respec-

tively.

The physical basis (mass basis) can be obtained by diagonalyzing Mu,d using uni-

tary matrices. Since these mass matrices are complex in nature it will require two

unitary matrices to diagonalize each mass matrix.

In the mass basis the corresponding quarks fields can be defined as

umL,R ≡ V u
L,Ru

f
L,R dmL,R ≡ V d

L,Rd
f
L,R (2.3)

Where V u,d
L,R are the unitary matrices which diagonalize Mu,d. That means

V u
LM

uV u†
R = Diag(mu

1 ,m
u
2 ,m

u
2) V d

LM
dV d†

R = Diag(md
1,m

d
2,m

d
2) (2.4)

Where mu,d
i are the eigen values of Mu,d respectively.

This basis transformation from flavour to mass basis will not alter any terms in the

SM lagrangian except the charged current weak interaction term in the quark sector.

This charged current weak interaction term will be modified by a unitary matrix. This

can be written as

− LQc.c =
g√
2

(ūL, c̄L, t̄L)γµW+
µ Vckm

 dL

sL

bL

+ h.c (2.5)

Where Vckm = V u
L V

d†
L , called CKM matrix (quark mixing matrix) .

2.1.1 Standard Parametrization of CKM matrix

The independent parameters in CKM matrix are 4 (three angles + one dirac phase).

The standard parametrized form of CKM matrix can be written as:

Vckm = R23(θ23)R13(θ13, δCP )R12(θ12) (2.6)
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=

1 0 0

0 c23 s23

0 −s23 c23


 c13 0 s13e

−iδcp

0 1 0

−s13eiδcp 0 c13


 c12 s12 0

−s12 c12 0

0 0 1

 (2.7)

(2.8)

=

 c12c13 s12c13 s13e
−iδcp

−s12c23 − c12s23s13eiδcp c12c23 − s12s23s13eiδcp s23c13

s12s23 − c12c23s13eiδcp −c12s23 − s12c23s13eiδcp c23c13

 (2.9)

Where cij = cos θij, sij = sin θij and δcp is the dirac phase (cp phase).

The experimental values of Vckm can be written as [1]

=

 0.974340.00011
0.00012 0.22506± 0.0005 0.00357± 0.00015

0.22492± 0.00050 0.97357± 0.00013 0.0411± 0.0013

0.008750.00032
0.00033 0.0403± 0.0013 0.99915± 0.00005

 (2.10)

2.2 Lepton Mixing

The Yukawa interaction term in the SM for the lepton sector can be written as

− Lleptonsy = ylij l̄
f
Liφe

f
Rj + h.c (2.11)

Where yl is the Yukawa coupling constants for the charged leptons, lfL is the LH lepton

doublet in the flavour basis (where l = (ν, e)T ), φ is Higgs field doublet and efR is the

RH SM singlet for the charged lepton in the flavour basis.

Since there is no RH neutrino field in the SM, there will not be any Yukawa term

corresponding to this field.

After the Spontaneous symmetry breaking of SU(2)L × U(1)Y → U(1)em, the mass

term for the leptons can be written as

− Llm = M l
ij

¯
efLie

f
Rj + h.c (2.12)

Where M l is the charged lepton mass matrix, efL,R are the charged lepton LH and RH

fields in flavour basis respectively. There will not be any mass term corresponding to
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neutrinos in the SM.

In order to diagonalize M l one required two unitary matrices. So in the physical

basis, the corresponding charged lepton fields can be defined as

emL,R ≡ V l
L,Re

f
L,R (2.13)

Where V l
L,R are the unitary matrices which diagonalize Ml.

This transformation from the flavour basis to the mass basis will not affect any other

term in SM lagrangian except the charged current weak interaction term for the lep-

tons. The charged current weak interaction term will be modified by a unitry matrix

V l
L . But since the neutrinos are massless in the SM one can absorb this unitary

matrix into neutrino field (by redefining the neutrino field). So there will not be any

lepton mixing in the SM formalism.

But the evidence for the neutrino oscillations indicates that neutrinos have non-zero

mass. In order include this fact, one need to modify the SM. This can be done by ex-

tending the fermion sector by including sterile neutrinos and/or extending the Higgs

sector. When we consider this extended model one will be able to explain the lepton

mixing matrix (similar to quark sector). This lepton mixing matrix is called PMNS

matrix and can be defined as

Upmns = U †l Uν (2.14)

Where Ul is the unitary matrix which diagonalize MlM
†
l ( where Ml is the charged

lepton mass matrix ) and Uν is the unitary matrix which diagonalize Mν (Mν is the

neutrino mass matrix ) in the case of Majorana type neutrinos (because in this case

Mν is a symmetric matrix ) and MνM
†
ν in the case of Dirac type neutrinos.

2.2.1 Standard Parametrization of PMNS matrix

The number of independent parameters in the PMNS matrix will be different for

different type of neutrinos.

In the case of Dirac type neutrinos the case will be similar to CKM matrix, that means

there will be four independent parameters in the PMNS matrix (3 angles + 1 dirac

phase). But in the case of Majorana type neutrinos there will be six independent

6



parameters in the PMNS matrix ( 3 angles + 1 dirac phase + 2 majorana phases )

Upmns =

1 0 0

0 c23 s23

0 −s23 c23


 c13 0 s13e

−iδcp

0 1 0

−s13eiδcp 0 c13


 c12 s12 0

−s12 c12 0

0 0 1

 (2.15)

=

 c12c13 s12c13 s13e
−iδcp

−s12c23 − c12s23s13eiδcp c12c23 − s12s23s13eiδcp s23c13

s12s23 − c12c23s13eiδcp −c12s23 − s12c23s13eiδcp c23c13

 (2.16)

Where cij = cos θij, sij = sin θij and δcp is the dirac phase. In the case of majorana

neutrinos two additional phases also required.

The maximum mixing angle considered to be π/4, this is because the oscillation

probabilities relate to the mixing angle as sin2 2θ, so the maximum probability will

be in the case where θ = π/4 and minimum will be in the case where θ = 0.

Now we will discuss two mixing matrices, which where proposed earlier as a pos-

sible candidates for the lepton mixing.

Bi-maximal Mixing (BM)

In the case of Bi-maximal mixing θ23, θ12 are maximal and θ13 is minimal, that means,

θ23 =
π

4
, θ12 =

π

4
and θ13 = 0 . So Bi-maximal mixing can be written as

UBM = R23(
π

4
)R13(0)R12(

π

4
) (2.17)

=


1√
2

1√
2

0

−1

2

1

2

1√
2

1

2
−1

2

1√
2

 (2.18)
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Tribimaximal Mixing (TB)

In the case of Tribimaximal mixing sin2 θ12 =
1

2
, sin2 θ23 =

1

3
and sin2(θ13) = 0 . So

tribimaximal mixing can be written as

UTB =



√
2

3

1√
3

0

− 1√
6

1√
3
− 1√

2

− 1√
6

1√
3

1√
2

 (2.19)

Now we will discuss the current values of the elements of PMNS matrix.

Current PMNS Matrix within 3σ

The current |Upmns| matrix within 3σ [2] can be written as

|Upmns| =

0.800→ 0.844 0.515→ 0.581 0.139→ 0.155

0.229→ 0.516 0.438→ 0.699 0.614→ 0.790

0.249→ 0.528 0.462→ 0.715 0.595→ 0.776

 (2.20)

Where the standard parameters (θ12, θ23, θ13)
pmns are (33.56+0.77

−0.75, 41.6+1.5
−1.2, 8.46+0.15

−0.15)

degrees.
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Chapter 3

Lepton Mixing and Discrete

Symmetry Models

Discrete groups were used as a tool to study and explain the lepton mixing patterns.

In this chapter, we will discuss about how one can use discrete groups to explain

the lepton mixing patterns and from the given mixing pattern how one can find the

corresponding discrete groups etc...At the end of the chapter we will discuss several

examples to clarify the ideas.

3.1 General Formalism

In this section, we will discuss a general formalism [3] of fixing the lepton mixing

patterns using discrete groups.

Suppose we have a discrete group Gf (called flavour group), under which the un-

derlying theory of the leptons is invariant. And using some symmetry breaking mech-

anism the flavour group Gf is broke down into Gν in the neutrino sector and Gl in

the charged lepton sector, these groups are called residual groups. The generators of

the group Gν (say Si’s) and the generator of the group Gl(say Tl) assume to have the

properties that

STi MνSi = Mν T †l MlM
†
l Tl = MlM

†
l (3.1)

Where Mν is the neutrino mass matrix and Ml is the charged lepton mass matrix.

The transpose kind of symmetry transformation in the case of Mν will preserve the

symmetric nature of neutrino mass matrix (in this case neutrinos are assumed to be

Majorana type, so the corresponding mass matrix will be symmetric).

9



In the case of Dirac type neutrinos, the symmetry transformations of neutrino mass

matrix will be

S†MνM
†
νS = MνM

†
ν (3.2)

It is also assumed that the elements within Gν and Gl will commute among themselves.

So that one can simultaneously diagonalize the elements of the respective residual

groups.

Denoting the unitary matrix that diagonalize Si as Vν and the unitary matrix that

diagonalize Tl as Vl. That means,

V †ν SiVν = ds V †l TlVl = dl (3.3)

Where ds and dl are the diagonal matrices.

Since Tl and MlM
†
l are commuting 3.1, one can simultaneously diagonalize them.

Similarly in the case of Si and Mν . Then one can write,

Uν = VνPν and Ul = VlPl (3.4)

Where Uν is the unitary matrix that diagonalize Mν , Ul is the unitary matrix that

diagonalize MlM
†
l [that already mentioned in section 2.2] and Pν and Pl are the diag-

onal phase matrices ( which can’t be determined by group theoretical methods).

Then one can write

Upmns = P ∗l V
†
l VνPν ⇒ |Upmns| = |V

†
l Vν | (3.5)

Note:

• One will have the freedom in permuting the columns and the rows Upmns ma-

trix ??. This is because the group theoretical considerations does not fix the

positions of eigen values. So one will have the freedom in choosing the position

of these eigen values. Permuting the columns and the rows of Umixing matrix

corresponds to the changing the position of these eigen values.

• One can consider continuous groups as the flavour Gf , but the problem is that it

will create additional complication like Goldstone modes in the theory (because

the symmetry breaking of a continuous group will result in massless Goldstone

bosons)

10



3.2 Bottom-Up Approach

In this section, we will discuss bottom-up approach [4], which is used to find the

group Gf from the given mixing matrix. In this discussion, we will assume that the

neutrinos are Majorana type and there are three of them.

Consider the basis where MlM
†
l is diagonal, then one write that

Ul = I ⇒ Uν = Upmns (3.6)

Then the neutrino mass matrix can be written as

Mν = U∗pmnsdiag(m1,m2,m3)U
†
pmns (3.7)

Where m1, m2 and m3 are the eigen values of Mν .

Since it is assumed that the neutrinos are Majorana type, then the symmetry trans-

formations of Mν will obey

S2 = I (3.8)

(This is because the neutrino mass terms are in the form νTi MijCνj, so under the

action of eiα on the neutrino field ν, the corresponding mass term will vanish, unless

α = 0, π.)

This kind of symmetry transformation will generate the group Z2 as Gν . But this

residual group is not sufficient enough to fully determine the |Upmns|, because the

eigen values of S are degenerate (pm1), so the columns of Vν(unitary matrix which

diagonalize S) is not fully determined. So one need to look for the next option, which

is Z2×Z2, this residual group is sufficient because it has three commuting generators,

so that the other columns can be fixed by simultaneously diagonalize them.

From the Upmns matrix one can find the generators of the group Gν . Which can

be written as [4],

Si = −I + 2uiu
†
i i = 1, 2, 3 (3.9)

Where ui is the ith column of Upmns. These generators will also obey the conditions,

S2
i = I SiSj = Sk = SjSi (3.10)

11



STi MνSi = Mν (3.11)

For i, j, k all are different and i, j, k = 1 to 3.

These properties of Si will justify that they can act as the generators of the group Gν .

In order to ensure the diagonality of MlM
†
l imposing a symmetry transformation F

on MlM
†
l , such that F is a diagonal matrix and

F n = I n ≥ 3 (3.12)

These symmetry transformations will generate the group Zn as the residual group Gl.

Then the flavour group Gf will be generated by F and Si’s, so that it will have both

Gν and Gl as its subgroups.

Note: In the case of Dirac type neutrinos, Gν can be more general groups like Zn (for

n ≥ 3) as well as Z2 × Z2. Because, in this case there will not be any constrains like

S2 = I, on the symmetry transformations of Mν .

3.3 Examples

In this section, we will give several examples to clarify the ideas that mentioned in

last two sections.

Tri-Bimaximal Mixing-Using Bottom-Up approach

TB mixing matrix is given in 2.19. Using 3.9 the generators of Gν can be written as

S2 =

−1/3 2/3 2/3

2/3 −1/3 2/3

2/3 2/3 −1/3

 S3 =

−1 0 0

0 0 −1

0 −1 0

 (3.13)

And F is taking to be

F =

1 0 0

0 ω 0

0 0 ω2

 (3.14)

Where ω3 = 1 ⇒ F 3 = I.

F will generate the group Z3 and Si’s will generate the group Z2 × Z2(as we already

mentioned earlier).
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It is found that[4] the group generated by Si’s and F will be S4 (which is the permu-

tation group of four objects).

Bi-maximal mixing and Current Values of Upmns within 3σ

Here we discuss a different method, in which determining the flavour group corre-

sponding to a lepton mixing matrix by scanning the discrete groups[3].

The idea is that for each discrete subgroup(DSG) of SU(3) there exist many possible

mixing matrices. So by scanning the DSG’s of SU(3) it is possible to find out the

smallest group, which will give the desirable mixing matrix.

The procedure to find out the possible mixing matrices of a discrete subgroup(say Gf )

of SU(3) is given below

1. Using the generators of the discrete subgroups(DSG) of SU(3) [AppendixA],

one can numerically generate all the elements of the group Gf .

2. The elements of Gf are divided into two sets. Set H1 contains all the elements

which satisfies the conditions that

g2i = I gigj = gk = gjgi gi,j,k ∈ H1 (3.15)

SetH2 contains all the elements which have all the three eigen values are distinct.

3. The elements of set H1 can be considered as the possible generators of the

residual group Gν (as Si’s) and the elements of set H2 can be considered as the

possible generators of the residual group Gl(as Tl).

Gl ⊂ Gf Gν ⊂ Gf (3.16)

4. Then using the ideas mentioned in section2(General formalism) one can generate

the corresponding mixing matrices for different choices of Gl and Gν within Gf .

After scanning the DSG’s of SU(3) it is found that group S4(permutation group of 4

objects) is the smallest group which gives Bi-maximal mixing matrix[4].

After scanning several DSG’s of SU(3), it is found that [3] in the case of Majorana
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type neutrinos, ∆(6× 182)[Appendix A] will give

|Umixing| =

0.804 0.577 0.142

0.279 0.577 0.767

0.525 0.577 0.625

 (3.17)

Which is within 3σ of the experimental value of Upmns [2].

In the case of Dirac type neutrinos, we need to modify the second step in the procedure.

Because in this case there is no constrains like 3.8 on the symmetry transformations

of the neutrino mass matrix (Which is mentioned in sec(3.2)). So here in this case

the set H1 and the set H2 will be same.

After taking these things into considerations, we found that ∆(6×92) will give lepton

mixing matrix which is exactly equal to |Umixing| in 3.17.

Note: In both cases the permutation of second and third row of |Umixing| 3.17 is

still allowed because experimentally it is still inconclusive that whether the θpmns23 is

greater than π/4 or less than π/4.
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Chapter 4

Quark Lepton Complementarity

and Discrete Symmetry Models

Quark Lepton Complementarity (QLC) can be viewed as an alternative description

of the fermion mixing[5]. In this chapter we will discuss what is mean by QLC and

its implications. In section 2 we will discuss an alternative approach in which QLC

emerges only from the group theoretical considerations of the lepton mixing.

4.1 Quark Lepton Complementarity

There exist empirical relations between the quark mixing and the lepton mixing, which

are

θs + θc ≈
π

4
(4.1)

θpmns23 + θckm23 ≈
π

4
(4.2)

Where θs is the solar mixing angle (θpmns12 ) and θc is the cabibbo angle (θckm12 ).

These empirical relations qualitatively means that[5]

• Because of the relatively large 1 − 2 quark mixing, the 1 − 2 lepton mixing

deviates from the maximal mixing (
π

4
) by a significant amount.

• The 2− 3 lepton mixing deviates from the maximal mixing by a small amount

because of the corresponding mixing parameter in the quark sector is relatively

small.
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Which means, one can think of the lepton mixing as

Lepton mixing = BM mixing − quark mixing (4.3)

This is called QLC.

Now we will discuss two possible scenarios based on the origin of BM mixing.

4.1.1 BM Mixing: From the charged lepton sector

In this case

Ul = U †BM Uν = V †ckm (4.4)

So

Upmns = UBMV
†
ckm (4.5)

In this approach generating the lepton mixing using quark mixing as a correction from

the neutrino sector on the BM mixing.

Since in the case of the quark mixing, θc is relatively larger than the other two angles

in the CKM matrix, one can write quark mixing as

Vckm ≈ R12(θc) (4.6)

≈

 cos θc sin θc 0

− sin θc cos θc 0

0 0 1

 (4.7)

Then in this case

Upmns = UBMV
†
ckm (4.8)

≈ R23(
π

4
)R12(

π

4
)R12(−θc, α) (4.9)

≈ R23(
π

4
)R12(

π

4
− θc, α) (4.10)

Where α is a complex phase.

From the above equation by comparing the elements, one can write the parameters

of Upmns as a function of θc and α. Which can be written as

sin2 θpmns12 =
1

2
(1− sin 2θc cosα) (4.11)
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θpmns13 = 0 θpmns23 =
π

4
(4.12)

This approach was a viable one before 2008, because the θpmns13 was observed to be

very small at that time[6].

But from the recent neutrino oscillations experiments it is evident that θpmns13 is

nonzero, infact it is approximately equal to 8.46 degrees[2]. So from the current

data one can rule out this approach.

4.1.2 BM Mixing: From the neutrino sector

In this case

Uν = UBM Vl = Vckm (4.13)

Then

Upmns = V †ckmUBM (4.14)

In this approach, generating the lepton mixing using quark mixing as a correction

from the charged lepton sector on the BM mixing.

As we mentioned in the first scenario(sec 4.1.1), one can approximate the CKM ma-

trix as a one parameter mixing (θc)

Then in this case one can write

Upmns ≈ R12(−θc, α)R23(
π

4
)R12(

π

4
) (4.15)

From the above equation by comparing the elements, one can write the parameters

of PMNS matrix as a function of θc and α. Which can be written as

sin2 θpmns13 =
sin2 θc

2
(4.16)

sin2 θpmns23 =
cos2 θc

2− sin2 θc
(4.17)

sin2 θpmns12 =

1

2
+

1

2
cos2 θc −

1√
2

sin 2θc cosα

2− sin2 θc
(4.18)

This approach will predict a nonzero value for θpmns13 , θpmns13 ≈ θc√
2

.

In order to check the viability of this approach in generating the correct lepton mixing
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matrix, one can use χ2 test.

χ2 value can be defined as

χ2 = Σi(
Oi − Expi

SDi

)2 (4.19)

Where Expi is the expected value of the parameter i, Oi is the observed value of the

parameter i and SDi is the standard deviation in the observation of the parameter i.

The idea is that

• The independent parameters of PMNS matrix can be written as the functions of

θ and α. This relations will be equivalent to 4.16-4.18 by considering θ instead

of θc there.

• Then using these relations and the observed values of PMNS matrix parameters

and their standard deviations, one can write χ2 as a function of θ and α.

• θ can vary from 0 to 90 degrees and α can vary from 0 to 360 degrees.

• Using this, one can plot the contour diagram for χ2 with respect to θ and α.

• From this contour diagram, one can observe the allowed range of θ. If the

Cabibbo angle within this range then one can conclude that this approach is an

efficient way to generate the lepton mixing matrix.

Following the above mentioned procedure, the χ2 analysis for the PMNS matrix from

the 2014 data[6] is given below

The parameters of PMNS matrix[7] can be written as

sin2 θ12 = 0.323± 0.016 sin2 θ23 = 0.567+0.032
−0.128 sin2 θ13 = 0.0234± 0.002 (4.20)

Then using these values, one can write the χ2 as the functions of θ and α. Which is

given by

χ2(θ, α) = χ2
13 + χ2

23 + χ2
12 (4.21)

Where χ2
13,23,12 are the contribution to χ2 from the parameters θ13, θ23 and θ12 respec-

tively. Which can be written as

χ2
13 =


sin2 θ

2
− 0.0234

0.002


2

(4.22)
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χ2
23 =


cos2 θ

2− sin2 θ
− 0.567

0.08


2

(4.23)

χ2
12 =


1/2 + (1/2) cos2 θ − (1/

√
2) sin 2θ cosα

2− sin2 θ
− 0.323

0.016


2

(4.24)

Then using eq.(4.21) one can plot the χ2 contour diagram. Which is given below

From the 4.2, one can make the following obeservations that

Figure 4.1: χ2 contour diagram. The grey color scale indiacating the values of the χ2

function, here it given from 0 to 50. The horizontal axis representing the θ values in
degrees and the vertical axis representing the α in degrees.

• The range of θ, which will give the minimum valued contours of χ2 observed to

be [10:15] degrees.

• In the case of α parameter, there is a degeneracy in χ2 contours, the range ob-

served to [0:60] degrees and [300:360] degrees. This degeneracy can be explained

from the 4.24, where χ2 depents on α in terms of cosα.

The minimum value of χ2 observed to be 2.93.

χ2 value minimized for θ in the range [11.8:13.7] degrees (with a confidence of 95.4%).
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Since the value of the Cabibbo angle is within this range, this approach is an efficient

way to generate the lepton mixing matrix.

The PMNS matrix values were recently updated [2]. For the current values of PMNS

matrix parameters, the χ2 analysis is given below

The current values of the parameters are

sin2 θ12 = 0.306± 0.012 sin2 θ23 = 0.587+0.020
−0.024 sin2 θ13 = 0.02179± 0.00076 (4.25)

Similar to last case, one can construct the χ2 as a function of θ and α. The corre-

sponding contour diagram for χ2 is given below

Figure 4.2: χ2 contour diagram. The grey color scale indiacating the values of the χ2

function, here it given from 0 to 80. The horizontal axis representing the θ values in
degrees and the vertical axis representing the α in degrees.

In this case the minimum value of the χ2 is about 34.3. Which is quite high. So from

the current values of PMNS matrix, this approach is not favourable.

In literature it has already been shown that using this approach (BM mixing from

the neutrino sector) in the Grand unified theories framework, one can naturally re-

alize the QLC [8].The basic idea is that in the leading order the PMNS matrix is

assumed to be BM mixing and the CKM matrix assumed to be Identity matrix. This
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can be achieved by using some discrete groups. Then the corrections from the next

leading order terms (of O(θc)) will correct these mixing matrices. In order to have

same amount of corrections from the charged lepton and the down quark, one need

to have nearly equal mass matrices for the down quark and the charged lepton. In

this case, QLC can naturraly emerge from the quark-lepton unification at a high scale.

4.2 An Alternative Approach

In the last section we discussed the realization of QLC in the GUT frame work using

some discrete groups. In this section we will discuss an alternative approach in which

quark-lepton unification is not mandatory to realize the QLC. This approach is com-

pletely based upon group theoretical methods only.

Here we assumes that the lepton mixing is dominantly given by Bi-maximal mixing

(from the neutrino sector) and the CKM matrix like corrections from the charged

lepton sector will give QLC like relation. We also assumes that these corrections are

also constrained by the group theoretical considerations .

For a discrete group Gf , the possible correction matrices can be derived as

• For a flavour group Gf , the possible mixing matrices can be written as 3.5

Umixing = P1V
†
l VνP2 (4.26)

Where P1 and P2 are the diagonal phase matrices, Vl is the unitary matrix that

diagonalize the generator Tl of the residual group Gl and Vν is the unitary matrix

that diagonalize the generators S1 and S2 of the residual group Gν .

• In our approach since we are assuming that Bi-maximal mixing coming from

the neutrino sector,then Vν = UBM .

• Since the correction matrix is assume to be coming from the charged lepton

sector, Vl will act as the correction matrix.

• Then one can find the correction matrix Vl from the equ(4.26).

Umixing = P1V
†
l UBMP2 (4.27)
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Then

Vl = UBMP2U
†
mixingP1 ⇒ |Vl| = |UBMP2U

†
mixing| (4.28)

Where P2 (diagonal phase matrix) is the freedom that we have from the group

theoretical methods.

4.3 Analysis

In order to check the viability of this alternative approach, one can scan the discrete

subgroups of SU(3) and check for the CKM matrix like corrections.

Since ∆(6×n2) type of discrete subgroups of SU(3) can generate the possible mixing

matrices that one can get from the most of the discrete subgroups of SU(3) [3], we

will give our primary attention to this class of discrete groups in our analysis.

One can follow the following procedure to find the correction matrices correspond-

ing to ∆(6× n2) type of discrete groups

• Following the procedure mentioned in section(3.3), one can find the possible

mixing matrices for the ∆(6× n2) type of discrete groups.

• The mixing matrix Umixing which obeys the condition that |Umixing| should be

within 5σ range of Upmns experimental, would be consider for the further anal-

ysis.

• Then using eq.(4.28)4.28 one can find the possible correction matrices for ∆(6×
n2) type of discrete groups.

• The freedom in P2 matrix and permutations of the second and third column of

Vl (this is because the permutations of the 2nd and 3rd columns of Vl will be

equivalent to permutations of the 2nd and 3rd rows of Umixing matrix, which is

still allowed because the experiments are still inconclusive about the quadrant

of θpmns23 angle) can be used to bring Vl in Vckm like form.
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4.4 Results

Following the above mentioned procedure, we scanned the ∆(6× n2) type of discrete

groups (of n < 19).

We did the analysis for the case in which the neutrinos were assumed to be Majorana

type particles and the case in which the neutrinos were assumed to be Dirac type

particles. The results of the analysis are given below.

4.4.1 Neutrinos: Majorana type

In this case we assumes that neutrinos are Majorana type particles.

∆(6n2) |Vl| (θ12, θ23, θ13)
l |Umixing|

n = 16

Umixing
within
3σ

– – –

Umixing
within
5σ

 0.974 0.223 0.032
0.225 0.964 0.139
0.0 0.143 0.990

 (12.89, 7.99, 1.84)

 0.801 0.577 0.159
0.262 0.577 0.773
0.538 0.577 0.614



n = 18

Umixing
within
3σ

 0.977 0.211 0.037
0.214 0.971 0.109
0.013 0.114 0.993

 (12.18, 6.25, 2.13)

 0.804 0.577 0.142
0.279 0.577 0.767
0.525 0.577 0.625


Umixing
within
5σ

– – –

Table 4.1: Column1 of the table specifying the group that we are considering, column2
specifying whether the |Umixing| that we are considering within 3σ or 5σ of the |Upmns|
experimental, column3 specifying the absolute value of Vl that we are getting from the
corresponding groups, column4 specifying the standard parameters of Vl and column5
specifying the Umixing that we got after arranging |Vl| in |Vckm| form.
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4.4.2 Neutrinos: Dirac type

In this case we assumes that neutrinos are Dirac type particles.

∆(6n2) |Vl| (θ12, θ23, θ13)
l |Umixing|

n = 8

Umixing
within
3σ

– – –

Umixing
within
5σ

 0.974 0.223 0.032
0.225 0.964 0.139
0.0 0.143 0.990

 (12.89, 7.99, 1.84)

 0.801 0.577 0.159
0.262 0.577 0.773
0.538 0.577 0.614



n = 9

Umixing
within
3σ

 0.977 0.211 0.037
0.214 0.971 0.109
0.013 0.114 0.993

 (12.18, 6.25, 2.13)

 0.804 0.577 0.142
0.279 0.577 0.767
0.525 0.577 0.625


Umixing
within
5σ

– – –

n = 11

Umixing
within
3σ

 0.975 0.219 0.030
0.221 0.968 0.120
0.003 0.123 0.992

 (12.68, 6.88, 1.73)

 0.802 0.577 0.154
0.267 0.577 0.772
0.535 0.577 0.617


Upmns
within
5σ

– – –

n = 14

Umixing
within
3σ

 0.976 0.218 0.032
0.220 0.968 0.117
0.005 0.121 0.992

 (12.57, 6.74, 1.81)

 0.802 0.577 0.152
0.270 0.577 0.770
0.532 0.577 0.619


Umixing
within
5σ

– – –

n = 17

Umixing
within
3σ

 0.976 0.216 0.033
0.219 0.969 0.116
0.006 0.120 0.993

 (12.50, 6.56, 1.87)

 0.802 0.577 0.150
0.271 0.577 0.770
0.531 0.577 0.620


Umixing
within
5σ

– – –

Table 4.2: Column1 of the table specifying the group that we are considering, column2
specifying whether the |Umixing| that we are considering within 3σ or 5σ of the |Upmns|
experimental, column3 specifying the absolute value of Vl that we are getting from the
corresponding groups, column4 specifying the standard parameters of Vl and column5
specifying the Umixing that we got after arranging |Vl| in |Vckm| form.
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From the 4.1 and 4.2, one can observe that the correction matrices are not exactly

in CKM form. Infact the contributions from the θ23 and θ13 parameters of correction

matrices are larger than the corresponding parmeters from the CKM matrix[eq2.10].

One can relate the above observation with the χ2 analysis that we did in section4.1.

The large values of χ2 (> 1) that got from the analysis will implies that one angle

correction will not able to generate the lepton mixing matrix completely.

One can also observe that the second and third rows of |Umixing| that we got af-

ter arranging |Vl| in |Vckm| kind of form, are fixed. In other words if one interchange

the second and the third rows of the lepton mixing matrix (which is possible, because

experiments are still inconclusive about the quadrant of θpmns23 angle) then it will will

result in the interchange of second and third columns of the correction matrix, this

will completely destroy the CKM like structure of the correction matrix.

4.5 Conclusions

From the analysis, we are able to conclude that

• In order to get a viable Upmns in QLC approach, the corrections from the charged

lepton sector should be more than one parameter. And the correction matrix

|Vl| is not strictly |Vckm| like.

• If |Vl| is assumed to be approximately |Vckm| like and it is fixed by group theo-

retical methods, then it prefers θpmns23 >
π

4
. This can be confirmed or ruled from

the ongoing experiments.

4.6 Future Plans

In the conventional approach QLC means generating the lepton mixing pattern using

the quark mixing pattern as a correction on the dominant contribution of lepton mix-

ing, which is taken to be Bi-maximal mixing. From our analysis we were able to show

that, by group theoretical considerations only one cann’t get QLC completely. So we

motivated to think that, rather than taking BM mixing as a dominant lepton mixing

matrix we will choose some other dominant lepton mixing matrix such that one can

still generate the lepton mixing pattern using the quark mixing as a correction on this

dominant lepton mixing matrix. One should understand that the essence of the QLC
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is still preserved in this different approach also.

In future, we will try this different approach towards QLC by group theoretical con-

siderations only. Here we layout the method that we will implement in future

Since Umixing = P1V
†
l VνP2 (eq.2.5) and in our new approach Vl = Vckm, then one

can write

Umixing = P1V
†
ckmVνP2 (4.29)

So

Vν = VckmP
∗
1UmixingP

∗
2 ⇒ |Vν | = |VckmP ∗1Umixing| (4.30)

Just like in our earlier analysis P2 is the freedom that we have from the group the-

oretical methods and we will choose particular type of Umixing which will obey the

condition that |Umixing| lies within 5σ of Upmns experimental.

Then we will scan the DSG’s of SU(3) to check the form of dominant mixing matrix

Vν .
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Appendix A

Finite Subgroups of SU(3)

Here we will discuss about the finite subgroups of SU(3).

A.1 Classification of finite subgroups of SU(3)

The finite subgroups of SU(3) can be classified into five different classes [9]

Type A

Groups of diagonal matrices. Since diagonal matrix multiplication is abelian in nature

these groups will correponds to Abelian groups.

Type B

Groups correspoding to the linear transformations of two variables.

The elements of these groups will have the structure (upto some basis transformations)(
(detA)∗ 01×2

02×1 A

)
WhereA ∈ U(2) (A.1)

Where the (detA)∗ will ensure the determinant of the elements of the groups is 1.

Type C

The groups generated by

E =

0 1 0

0 0 1

1 0 0

 F (n, a, b) =

η
a 0 0

0 ηb 0

0 0 η−a−b

 (A.2)
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can be represented as C(n, a, b). Where η = ei2π/n and a, b are integers with

0 ≤ a, b ≤ n− 1.

Type D

The groups generated by E and F (n, a, b) (given in eq.A2) and

G =

δ
r 0 0

0 0 δs

0 −δ−r−s 0

 (A.3)

can be represented as D(n, a, b; d, r, s). Where δ = e2πi/d and r, s are integers with

0 ≤ r, s ≤ 0.

Type E

There exist six finite subgroups of SU(3) which do not fall into any of the type that

mentioned above. This exceptional groups can be denoted by Σ(60), Σ(168), Σ(36×3),

Σ(72× 3), Σ(216× 3) and Σ(360× 3).

A.2 List of Generators of SU(3)

Here we list the all the generators that one required to generate the finite subgroups

of SU(3) of order less than 512 [9].

H =
1

2

−1 µ− µ+

µ− µ+ −1

µ+ −1 µ−

 J =

1 0 0

0 ω 0

0 0 ω2

 (A.4)

K =
1√
3i

1 1 1

1 ω ω2

1 ω2 ω

 L =

1 1ω2 1

1 ω ω

ω 1 ω

 (A.5)

M =

β 0 0

0 β2 0

0 0 β4

 P =

ε 0 0

0 ε 0

0 0 εω

 (A.6)
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N =
i√
7

β
4 − β3 β2 − β5 β − β6

β2 − β5 β − β6 β4 − β3

β − β6 β4 − β3 β2 − β5

 Q =

−1 0 0

0 0 −ω
0 −ω2 0

 (A.7)

Where η = e2πi/n, δ = e2πi/d, µ± =
1

2
(−1±

√
5), ω = e2πi/n3, β = e2πi/7, ε = e4πi/9

The generators E, F (n, a, b) and G(d, r, s) are given in eq.A2 and eq.A3.

A.3 Non-abelian finite subgroups of SU(3)

Here we will list the all the non-abelian finite subgroups of SU(3) which have a faithful

three dimensional irreducibel representation [9].

Group Generators
C(n, a, b) E, F (n, a, b)
D(n, a, b; d, r, s) E, F (n, a, b), G(d, r, s)
∆(3n2) = C(n, 0, 1), n ≥ 2 E, F (n, 0, 1)
∆(6n2) = D(n, 0, 1; 2, 1, 1), n ≥ 2 E, F (n, 0, 1), G(2, 1, 1)
Tn = C(n, 1, a), (1 + a+ a2) mod n = 0 E, F (n, 1, a)
A5 = Σ(60) E, F (2, 0, 1), H
Σ(168) E, M , N
Σ(36) E, J , K
Σ(72) E, J , K, L
Σ(216) E, J , K, P
Σ(72) E, F (2, 0, 1), H, Q

Table A.1: Finite non abelian subgroups of SU(3)

29



30



Bibliography

[1] A.Ceccucci,Z.Ligeti,Y.Sakai, The ckm mixing matrix, 2016,

http://pdg.lbl.gov/2016/reviews/rpp2016-rev-ckm-matrix.pdf

[2] M.C. Gonzalez-Garcia, etal, Updated fit to three neutrino mixing, 2016,

arXiv:[hep-ph]1611.011514v1

[3] A S Joshipura,Ketan Patel, Residual Z2 symmetries and lepton mixing patterns

from finite discrete subgroups of U(3), 2016, arXiv:1610.07903v1 [hep-ph]

[4] C Lam, arXiv:0708.3665 [hep-ph], 2007

C Lam, arXiv:0804.2622 [hep-ph], 2008

C Lam, arXiv:0809.1185 [hep-ph], 2008

C Lam, arXiv:1208.5527 [hep-ph], 2013

C Lam, arXiv:1104.0055 [hep-ph], 2011

[5] H Minakata, A Yu Smirnov,Neutrino mixing and QLC,arXiv:0405088v3 [hep-ph],

2004

H Minakata,QLC; A review,arXiv:0505262v1 [hep-ph], 2005

A Smirnov,Discrete symmetries and models of flavor mixing,arXiv:1103.3461v1

[hep-ph], 2011

[6] G.L. Fogli, E. Lisi, A. Marrone, and A. Palazzo, Global analysis of three-flavor

neutrino masses and mixings,arXiv:0506083v2 [hep-ph], 2008

[7] D V Forero,J W F Valle, M Tortola Neutrino oscillations refit-

ted,arXiv:1405.7540v3 [hep-ph], 2014

[8] Ketan Patel, An SO(10)× S4 model of QLC,arXiv:1008.5061v1 [hep-ph], 2010.

[9] Patrick Otto Ludl, On the finite subgroups of U(3) of order smaller than

512,arXiv:1006.1479v2-[math-ph] 2000

31



W. Grimus,Patrick Ludl,Finite flavour groups of fermions ,arXiv:1110.6376-[hep-

ph] 2012

32


	List of Figures
	Notation
	Abstract
	Introduction
	Quark Mixing and Lepton Mixing
	Quark Mixing
	Standard Parametrization of CKM matrix

	Lepton Mixing
	Standard Parametrization of PMNS matrix


	Lepton Mixing and Discrete Symmetry Models
	General Formalism
	Bottom-Up Approach
	Examples

	Quark Lepton Complementarity and Discrete Symmetry Models
	Quark Lepton Complementarity
	BM Mixing: From the charged lepton sector
	BM Mixing: From the neutrino sector

	An Alternative Approach
	Analysis
	Results
	Neutrinos: Majorana type
	Neutrinos: Dirac type

	Conclusions
	Future Plans

	Finite Subgroups of SU(3)
	Classification of finite subgroups of SU(3)
	List of Generators of SU(3)
	Non-abelian finite subgroups of SU(3)

	Bibliography

