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Abstract

The present work deals with the study of change in dynamics observed for a double

well potential (HCN-HNC isomerization) in the Kramers-Henneberger frame under

the influence of periodic driving. This change in dynamics gives us an insight into

the chemistry of barriers in reaction pathways, namely the transition state. Along

with the nuclear dynamics, preliminary investigations has also been performed on the

electronic structure of HCN under the influence of oscillating fields.





Chapter 1

Introduction

Over the past few years, studies on chemistry in the presence of high-intensity high-

frequency oscillating fields have gained momentum because of many interesting phe-

nomena that occur under these conditions. Back when laser development was in its

initial stages, people carried out plenty of theoretical studies on systems in the presence

of oscillating fields. With the development of strong-field lasers, it has been possible

for researchers to now investigate several effects exhibited by atoms and molecules in

the presence of super-intense fields in the laboratory. The strength of such fields dealt

with is usually of the order of 1012 W cm−2 or more. Exposing atomic or molecular

systems to such high fields gives rise to much non-linear effects which can not be

understood in the framework of perturbation theory. As a result, laser physics saw

the development of various methods in order to accomodate the observations from

numerical/experimental studies.

1.1 Historical background

One of the phenomena that have been investigated extensively over the past two or

three decades is atomic stabilization,i.e., the atom tends to stabilize in high-intensity

fields instead of getting ionized completely. Gersten and Mittleman[1] in 1976 pro-

posed that beyond a critical value of laser intensity, the electron tends to stabilize

1
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due to its quiver motion in the presence of high-intensity high-frequency oscillating

fields. Stabilization could not be explained in the traditional perturbative framework

because the strength of the external electric field is almost equal to that of the in-

ternal electric field of the atom/molecule[5]. The phenomena of atomic stabilization

were studied extensively by Gavrila and co-workers with the Hydrogen atom as their

system of interest[3].

1.2 Adiabatic stabilization

Stabilization has been known to be of mainly two types - Adiabatic Stabilization(or

Kramers-Henneberger Stabilization) and dynamic stabilzation. According to this

mechanism, in the high-intensity high-frequency regime, there is a significant recon-

struction of the energy structure and the eigenstates. Kramers-Henneberger stabi-

lization is primarily attributed to the formation of a ‘dressed potential’ at high laser

strengths. To understand this stabilization mechanism, one has to delve into the

KH framework which will be discussed in the upcoming section. The ‘Adiabatic

theorem’[6] in quantum mechanics states that “For a slowly varying Hamiltonian,

the instantaneous eigenstates of the Hamiltonian will continuously evolve into the

corresponding eigenstates at a later time”. If the laser envelope is allowed to change

adiabatically, the population in the initial bound state can be adiabatically transferred

to the corresponding KH bound state. Stabilization achieved under these conditions

is known as adiabatic stabilization.

1.3 Hamiltonian for a particle in an electromag-

netic field

The Lagrangian for a particle in an electromagnetic field is given by the following

equation (neglecting the magnetic field contributions)[7]:

L =
p2

2m
+
e

c
(~̇q. ~A)− eφ (1.1)
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where ‘ ~A’ is the vector potential and ‘φ’ is the scalar potential.

From Lagrangian’s equations of motion, the canonical momentum is defined as:

∂L

∂q̇
= m~v +

e

c
~A = ~p (1.2)

The classical Hamiltonian is given by

H = mv2 − L (1.3)

Substituting for the values of ‘L’ from equation (1.1) and ‘v’ from equation (1.2)

results in the following expression for the classical Hamiltonian,

H =
1

2m
(~p− e

c
~A)2 + eφ (1.4)

1.4 Kramers-Henneberger transformation

As mentioned earlier, to understand the dynamics of an atom in the super-intense

laser field, one has to switch to KH frame. This transformation was first introduced by

Henneberger[2] and its use was advanced by Gavrila and co-workers[3] to understand

the dynamics of the Hydrogen atom in high-frequency fields. The transformation in-

volves a change of frame of reference and introduces a time-dependent shift in the

argument of the potential. The new potential thus formed has a characteristic double

well shape which results in the dichotomous nature of the time-dependent wavefunc-

tion.

The Schrödinger equation for a Hydrogen atom, ignoring relativistic effects, in the

presence of an electromagnetic field in the semi-classical dipole approximation is:

1

2m

[
~
i
~∇− e

c
~A(t)

]2
ψ(~r, t) + V (~r)ψ(~r, t) = i~

∂

∂t
ψ(~r, t) (1.5)

Perturbative approaches have not been successful in elucidating the process underlying

adiabatic stabilization. As a result, methods have had to resort to non-perturbative
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treatments. The quiver motion exhibited by the electron in the presence of an electro-

magnetic field can be best represented in an accelerated frame of reference, popularly

known as the Kramers-Henneberger(KH) frame. The change of frame of reference

can be brought forth by performing a simple unitary transformation on the electronic

wavefunction:

Ψ(~r, t) = Ω̂ψ(~r, t) (1.6)

where ‘Ω̂’ is defined as

Ω̂ = exp

[
i

~

∫ t

−∞

{
i~e
mc

~A(t′).~∇+
e2

2mc2
( ~A(t′))2

}
dt′
]

= exp

[
i

~

∫ t

−∞
Ĥ t
int(t

′)dt′
]

(1.7)

With the dipole approximation, ‘Ω̂’ can be written as a product of two operators as

shown below:

Ω̂ = Ω̂1Ω̂2 (1.8)

where

Ω̂1 = exp

[
i

~

∫ t

−∞

i~e
mc

~A(t′).~∇dt′
]

Ω̂2 = exp

[
i

~

∫ t

−∞

e2

2mc2
( ~A(t′))2dt′

]

The new Schrödinger equation is given by

i~
∂

∂t
|Ψ〉 = Ĥ|Ψ〉 (1.9)

Substituting for ‘Ψ’ and upon further simplification yields the following expression,

i~
∂|Ψ〉
∂t

=

[
i~
∂Ω

∂t
Ω† + ΩĤΩ†

]
|Ψ〉 (1.10)

Expanding the first term on the right hand side, we get

i~
∂Ω

∂t
Ω† = i~

[
∂Ω1

∂t
Ω2Ω

†
2Ω
†
1 + Ω1

∂Ω2

∂t
Ω†2Ω

†
1

]
(1.11)
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On applying Leibniz integral rule and the identity above to the first term of the right

hand side in equation 1.11 results in the following reduced expression:

i~
∂Ω

∂t
Ω† = −i~e

mc
~A(t).~∇− e2

mc2
( ~A(t)2) + Ω1Ω2ĤΩ†2Ω

†
1 (1.12)

Simplification of the above expression leads to the following,

i~
∂Ω

∂t
=
−~2

2m
~∇2 + Ω1V̂ Ω†1 (1.13)

Since, Ω1 has an exponential form, Baker-Haussdorf-Campbell[8] formula is applied

on the second term in the above equation to finally yield the Schrödinger equation in

the accelerated frame of reference,

i~
∂Ψ

∂t
= − ~2

2m
~∇2Ψ + V̂ (~r + ~α)Ψ (1.14)

1.5 Kramers-Henneberger Approximation and case

of potentials under KHA

The potential part is space-translated by a factor of ‘ ~α(t)’ after the Kramers-Henneberger

transformation. This potential can now be expanded by a Fourier series which can be

interpreted as a combination of time-independent and time dependent terms.

V (~r + ~α(t)) = V0 +
n=∞∑
n=0

Vn cos(nτ) (1.15)

where ‘V KH
0 ’(n=0,1,2,. . . ) is given by

V KH
n =

1

2π

∫ 2π

0

V (~r + ~α(t)) cos(nτ)dτ (1.16)

At very high frequencies, under the Kramers-Henneberger Approximation(KHA), the

sum of non-zero harmonics from the Fourier series expansion can be considered as a

small perturbation. Therefore, the significant contribution comes from the zero-order

harmonic part which is time independent and is responsible for the formation of stable
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states at high frequencies. So, the Schrödinger equation under the KHA is given by:

− 1

2
~∇2Ψ + V KH

0 Ψ = EKHΨ (1.17)

1.5.1 Coulomb potential

The 1-D coulombic potential is given by the following expression and is shown by the

red curve in Figure 1.1.

V (x) = − 1

|x|
(1.18)

The zeroeth order KH transformed potential (blue curve in Figure 1.1) is therefore

given by:

V KH
0 = − 1

2π

∫ 2π

0

dφ

|x+ ~αo cosφ|
(1.19)

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

-15 -10 -5  0  5  10  15

V

2αo

V

V0

KH

Figure 1.1: Coulomb potential and KH transformed potential

The splitting shown in Figure 1.1 is proportional to the value of αo with the distance

between two minimas being 2αo.
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1.5.2 Polynomial potentials - Symmetric double well

For a polynomial potential of the form:

V (x) = ax4 − bx2 (1.20)

which is characterized by the presence of two minima at ‘±
√

b
2a

’, there is a significant

difference in the dynamics in the presence of an oscillating field.

-0.3

-0.2

-0.1

 0

 0.1

 0.2

-1.5 -1 -0.5  0  0.5  1  1.5

V

V

V0

KH

Figure 1.2: S-double well potential and KH transformed potential

As shown in Figure 1.2, there is an apparent change in dynamics from tunneling to

that of a coherent one for which the wavefunction is centered on the origin [5].

1.6 Plan of thesis

Mostly, all the studies till now have only looked at atoms and the behaviour of elec-

tronic potentials in the presence of oscillating fields. The change in dynamics for a

vibrational potential (discussed in the last section) can have new implications in the

study of barriers in chemical reactions. As given in the previous section, the KH

transformed potential has its minimum on top of the barrier indicating barrier stabi-

lization. The goal of this work is to look at this interesting phenomenon and provide
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a proper numerical framework for localizing molecular wavefunctions on top of the

barrier. The plan of the work is therefore given as follows:

• Obtain parameters for a vibrational potential (in this case an asymmetric double

well).

• Periodic driving of the asymmetric double well in the KH framework.

• Localizing the molecular wave packet on top of the barrier.

• Analysis of the system (like calculating ionization rates) in the presence of os-

cillating field.
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Chapter 2

Model one-dimensional potential

for HCN-HNC isomerization

This isomerization reaction has been the subject of numerous theoretical as well as

experimental studies. The reaction entails a linear more stable HCN isomerizing to

a less stable linear HNC. The reaction proceeds through a triangular transition state

structure. The asymmetric double well is formed as a result of migration of the Hy-

drogen atom from Carbon to Nitrogen which follows a semi-circular pathway with the

Hydrogen tethered to the center-of-mass of CN moiety. Recently, several theoretical

studies have been reported on the isomerization reaction in the presence of the laser.

Sun et.al. have reported the laser-driven isomerization of HCN-HNC in the presence

of an intense picosecond infrared laser with a particular emphasis on the importance

of rotational excitation[1]. Dion et. al. numerically studied the isomerization re-

action using two perpendicular IR pulses to show that it mainly proceeds through

the bending mode of the molecule[2]. Recently, Mellau et. al. discussed localization

of molecular wavefunctions on the saddle point of the HCN-HNC minimum energy

path[11]. In the next chapter, analysis has been done to arrive at a similar result by

localizing the wavepacket on top of the barrier in the presence of oscillating fields.

11
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2.1 Asymmetric double well potential

In order to create the asymmetric double well, ab initio calculations were done to

generate points along the intrinsic reaction coordinate at Hartree-Fock and corre-

lated level of theories with different basis sets using standard electronic structure

packages[3]. The step size used in the IRC calculation was 0.05 bohr a.m.u1/2. The

energies of critical geometries at different basis sets has been tabulated in Table 2.1.

Table 2.1: HF Energy of HCN, HNC and the TS at various basis sets

Basis set HCN HNC TS

6-31G* -92.87519 -92.85532 -92.79195
aug-cc-pvdz -92.88843 -92.87196 -92.81264
aug-cc-pvtz -92.91131 -92.89488 -92.83348
aug-cc-pvqz -92.91691 -92.90063 -92.83908
aug-cc-pv5z -92.91808 -92.90179 -92.84023
aug-cc-pv6z -92.91823 -92.90019 -92.84038

coemd-3 -92.90739 -92.89259 -92.82869
coemd-ref -92.91761 -92.90138 -92.83963
ano-rcc -92.91838 -92.89753 -92.83593

Figure 2.1 depicts the IRC pathway at different basis sets. Going down the list of

basis sets used, there is an increase in the number of basis functions used per atom.

Despite, having lesser number of basis fucntions per atom with respect to augmented

-92.92

-92.9

-92.88

-92.86

-92.84

-92.82

-92.8

-92.78

-4 -3 -2 -1  0  1  2  3  4  5

T
o
ta

l 
E

n
e
rg

y
 (

H
F

)

bohr√a.m.u

6-31G(d)
aug-cc-pvdz
aug-cc-pvtz

aug-cc-pvqz
aug-cc-pv5z
aug-cc-pv6z

coemd3
coemdref

Figure 2.1: IRC plot at different basis sets
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V5Z/V6Z[12], coemd-ref[13] proves to be an acceptable basis set.

A correlated single point calculation was later performed at CCSD(T) level of the-

ory with coemd-ref as the basis set and the values of isomerization energy has been

tabulated below in comparison to other works.

Table 2.2: Selected theoretical and experimental values for HCN-HNC isomeriza-
tion energy

∆Eo(cm
−1) Method ref

5100 ± 700 Ion-cyclotron resonance Pau and Hehre[4] (1982)
5200 ± 300 Ion-molecule reaction Hansel et al.[5] (1998)
5040 ± 350 CCSD(T)/ANO Lee and Rendell[6] (1991)

5050 PES based on CCSD(T)/ANO Bentley et al.[7] (1992)
5186 ± 50 CCSD(T) based PES van Mourik et al.[8] (2001)

5140 CCSD(T)/cc-pVTZ DePrince[9]
and Mazziotti (2008)

5240 CCSDT(Q)/CBS with INT-MP2-F12 Vogiatzis et al.[10] (2014)
5081 CCSD(T)/coemd-ref present work

A similar calculation was later done at a correlated level of theory(MP2) with coemd-

ref as the basis set. The step size used was 0.05 bohr a.m.u1/2. The points thus

obtained were fitted using a curve fitting tool in MATLAB[14]. The fitting was a

Gaussian type fit which was a combination of 8 terms.

Figure 2.2: Fitted HCN-HNC asymmetric double well
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The functional form of the potential is as follows:

V (x) =
n=8∑
n=1

ai exp

[(
x− bi
ci

)2
]

(2.1)

The constants in the above expression has been tabulated below:

Table 2.3: Values of constants from the fit

a1 −0.1147 b1 −1.623 c1 1.855
a2 −0.01209 b2 −1.359 c2 0.7359
a3 −85.74 b3 8.892 c3 16.2
a4 −0.04037 b4 0.6291 c4 0.9549
a5 −0.04029 b5 −0.4389 c5 0.8727
a6 −66.93 b6 −11.24 c6 12.46
a7 0.0005792 b7 1.371 c7 0.4781
a8 −0.07134 b8 1.532 c8 1.429

Details of the fit are given below:

Table 2.4: Goodness of fit

SSE(Summed square of Residuals) 2.076e-06
R-square 1

Adjusted R-square 1
RMSE(Root Mean Square Error) 0.0001478

In the next chapter, the numerical results from the periodic driving of the asymmetric

double well are presented.
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Chapter 3

Numerical results

The final one-dimensional asymmetric double well potential obtained from the last

section is subjected to KH transformation for a characteristic value of laser inten-

sity and frequency. Further analysis on the dynamics of stability in the presence of

oscillating fields is presented.

3.1 Time averaged zeroeth-order KH potential

In the space-translated frame, the term describing the oscillating field is incorporated

into the potential which can be written as V (~r+ ~α(t)) where the quiver motion ‘ ~α(t)’

can be represented by

~α(t) =
1

c

∫ t

0

~A(t′)dt′ (3.1)

The KH potential, as explained earlier, can be expanded in a Fourier basis to give

a sum of time-independent and time-dependent terms. Within the framework of KH

approximation, the contribution of zeroeth-order harmonic is considered. Given below

is a simple result obtained by integrating the space translated potential over a full

cycle for various values of the quiver distance.

As shown in the Figure 3.1, for increasing value of the quiver distance, the dynamics

goes from less tunneling type to a more tunneling one and finally to an stabilizing

17
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Figure 3.1: Variation of V KH
0 with increasing αo.

type similar to that of a harmonic oscillator.
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Figure 3.3: Non-zero harmonics at
αo = 5.635 in a.u.

Figure 3.2 represents barrier stabilization which is clearly illustrated by the position

of the minimum of the KH transformed potential right on top of the barrier of the

asymmetric double well. The value of ‘αo’ at which the minimum sits on top of the

barrier is 5.635 a.u.. Figure 3.3 on the right side represents the non-zero harmonics

in the Fourier series expansion upto seven terms for the same value of ‘αo’.
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3.2 Higher-order corrections

The potential in the KH frame of reference for continuous wave laser field can be

written as:

V KH(x, t) = V (x− αo cosωt) (3.2)

In the limit of KH approximation, the transformed Hamiltonian depends only on ‘ ~αo’.

To get a frequency dependence on field parameters, Ido gilary et. al.[1] came up with

an alternate representation of the time-dependent Hamiltonian for strong-field driven

systems using perturbation theory. In their work, the sum of non-zero harmonics

is treated as a perturbation and the KH transformed Hamiltonian is subjected to

another transformation.

Vpert = V KH(x, t)− V KH
0 =

∑
n6=0

Vn exp (inωt) (3.3)

The Hamiltonian in the accelerated frame of reference is given by:

HKH = −i~ ∂
∂t

+
~p2

2µ
+ V (x− αo cosωt) (3.4)

The transformation is done by introducing an alternate representaion of the wave-

function which has the form:

ψnewi = exp

[
i

~

∫ t [
V KH(x, t′)− V KH

0

]
dt′
]
ψKHi (x, t) (3.5)

The new Hamiltonian obtained after the above transformation thus is given by:

Ĥnew(x, t) = ĤKH
0 − i~ ∂

∂t
+ V new(x, t) (3.6)

where the new potential is

V new(x, t) = − 1

2µω2

(∑
n6=0

fn
n

exp (inωt)

)2

− ~
2µω

∑
n6=0

1

n

∂fn
x

exp (inωt)

− ~
µω

∑
n6=0

fn
n

exp (inωt)
∂

∂x

(3.7)
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In the above equation, the nth Fourier component of the force is defined by ‘fn(x) =

−∂Vn(x)
∂x

’.

Application of perturbation theory to the newly transformed Hamiltonian provides a

zero-order potential with direct dependence on field parameters:

V new
0 (x) = V KH

0 +
1

2µω2

∑
n6=0

fn(x)f−n(x)

n2
. (3.8)

The higher-order corrections to the zero-order KH energies has been obtained in the

case of asymmetric double well and is depicted by the Figure 3.4 given below: This
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Figure 3.4: Zero-order and higher-order quasienergies obtained in the KH repre-
sentation at maximum field amplitude of αo = 5.635a.u.

result gives a frequency estimate of ω = 0.1 a.u. at which barrier stabilization can be

realized. For further investigations, frequency ω = 0.05 a.u. has been selected which

is proven to be a decent estimate with convergence of the order of 10−5 a.u..

3.3 Time propagation - Nuclear dynamics

Describing the nuclear dynamics of the system in th oscillating frame involves solving

the following Time-dependent Schrödinger equation (TDSE):

− i ∂
∂t
ψ(x, t) =

[
−1

2

∂2

∂x2
+ V (x− αo cosωt)

]
ψ(x, t) (3.9)
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where

αo =
ε

µω2
. (3.10)

There is a considerable amount of mathematical complexity involved when it comes

to obtaining exact analytical solutions of the TDSE. Since it’s hard to integrate and

find the solutions to the above equation directly, certain approximations have to be

made which paves the way for numerical solution of the TDSE. One such method is

to look at the evolution of the wavefunction using a time propagator. The propagator

which has to satisfy certain properties is defined as:

U(t, 0) = exp

[
−iĤt

~

]
. (3.11)

3.3.1 Split-operator method

The goal is to evaluate the action of this unitary operator on the wavefunction at

a given time. There are plenty of methods available for the evaluation of the above

unitary time propagator. One such method which has been employed in the current

work is called the ‘Split-operator’ method given by Feit et. al.[2] (1982) where the

operator is approximated as a product of kinetic and potential energy terms:

exp

[
−iĤδt

~

]
≈ exp

[
−i(T̂ + V̂ )δt

~

]
≈ exp

[
−iT̂ δt

~

]
exp

[
−iV̂ δt

~

]
(3.12)

The above relation, as shown above, is highly approximate as both the kinetic energy

and the potential energy operators do not commute with each other and therefore can-

not be written as a product of their respective exponential terms. This approximate

is accompanied by an error of order ‘δt2’. A symmetrized product as defined below

can reduce the order of error to ‘δt3’and therefore is a much better approximation to

the earlier result.

exp

[
−iĤδt

~

]
= exp

[
−iV̂ δt

2~

]
exp

[
−iT̂ δt

~

]
exp

[
−iV̂ δt

2~

]
+O(δt3) (3.13)
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The numerical implementation of this technique involves representing the approxi-

mated unitary operator over a time interval [0, t] and evaluating the action of the

propagator in short discrete time intervals. Assessing the effect of the last term in the

approximation is pretty straightforward as it just only involves multiplication of the

potential operator on the wavefunction. After that, the resultant product is subject to

a Fourier transform from coordinate representation to the momentum representation

which in turn can be directly multiplied by the kinetic energy term. Later, an inverse

Fourier transform is performed on this new product to be again multiplied by the

potential operator. A schematic of the numerical implementation is given below:

ψ(x, t+ δt) = exp

[
−iV̂ δt

2~

]
I.F.T←−−− exp

[
−iT̂ δt

~

]
F.T←−− exp

[
−iV̂ δt

2~

]
ψ(x, t) (3.14)

3.3.2 Imaginary Time Propagation(ITP)

To find the bound state in the presence of an oscillating field, ITP was implemented in

the split-operator mechanism. ITP is a standard technique employed in determining

bound states for any arbitrary given scalar potentials. The main crux is to replace the

real time ‘t’ by an imaginary time ‘t = −iτ ’. This transformation results in following

form of the TDSE:[3]
∂

∂τ
ψ(x, τ) = Ĥψ(x, τ) (3.15)

The wavefunction at any imaginary time ‘τ ’ can be defined as:

ψ(x, τ) = exp
[
−τĤ

]
ψ(x, 0) =

∑
n

exp [−τEn] cnφn(x) (3.16)

During the propagation, with increasing time, states with higher energies will die out

and states with ‘En < 0’ will tend to diverge. Re-normalization is carried out at

every time step and subsequent iterations converge to give the ground state. For the

propagation, following pulse sequence with an adiabtic smooth rise[4] was used:

~α(t) =

αo sin2
[
π
2

t
ton

]
sinωt, 0 ≤ t ≤ ton

αo sinωt, t ≥ ton
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The parameters given in Table 3.1 were implemented in the pulse profile as described

earlier for the propagation. The result of the ITP has been given in Figure 3.5. The

Table 3.1: Parameters for the pulse profile

Parameter Values (in a.u.)

αo 5.635
ton 8000
εo 0.0140875
ω 0.05
n 1000000
tmax 10000

wavelength of the field used in this study comes out to be 911.6 nm which falls in the

near-infrared (NIR) region. The initial wavepacket for this type of propagation can be
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Figure 3.5: Evolution of the initial state with pulse progression at I = 6.95 ×
1012Wcm−2 and ω = 1.36eV (911.6 nm).

selected arbitrarily. Here, the wavepacket chosen was localized on the barrier. In the

beginning, as the pulse is rising gradually, the wavepacket splits into two peaks which

is tantamount to both wells of the asymmetric double well getting populated. In time,

a stable wavepacket is localized in the HCN well. When the laser attains a continuous

wave form, the wavepacket slowly starts shifting to the right with the result being it

getting localized on the barrier which is characteristic of the KH transformed potential

obtained for the HCN-HNC potential.
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3.4 Ionization yield

The ionization of the system in the presence of oscillating fields was looked at the

intensity and frequency for which stabilization has been described in the last section.

Two methods in particulcar were employed in finding the yield which will be described

in the follwing sections.

3.4.1 Frequency Corrected - Ammosov-Delone-Krainov model

This model of calculating tunneling rates was given as an improvement over the stan-

dard Ammosov-Delone-Krainov (ADK)[5]. The tunneling rate calculcated from FC-

ADK[6] model is integrated over the whole pulse duration to obtain the ionization

yield along the intrinsic reaction coordinate. The tunneling rate according to FC-

ADK is given by:

ΓFC−ADK = Ne

√
3Fe
πκ3

(
2

κ
− 1

)
Fe
8π

(
4eκ3(

2
κ
− 1
)
Fe

) 2
κ

exp

(
−2κ3

3Fe
g(γ)

)
(3.17)

where ‘Fe’ is the envelope fucntion of the electric field, ‘κ =
√

2Ip(x)’(Ip(x) is the

ionization potential), ‘γ = κω
Fe

’ and ‘Ne’ is the number of active electrons.The function

‘g(γ)’ given in the above equation has the following form:

g(γ) =
3

2γ

[(
1 +

1

2γ2

)
arcsinhγ −

√
1 + γ2

2γ

]
(3.18)

As the function ‘g(γ) ≈ 1’ in the limit ‘γ << 1’, FC-ADK gets reduced to the standard

ADK model. The ionization rate is calculated as:

Y (x) = 1− exp

[
−
∫

Γ [Fe(t), Ip(x)] dt

]
. (3.19)

In case of the HCN-HNC asymmetric double well system, the envelope function used

was the one defined in the last section and ‘Ne’ is taken to be two (as there are 2

electrons in the HOMO orbital for HCN). Koopmans’ ionization potential was used as
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‘Ip(x)’ in the above calculation. The following result was obtained for the ionization

yield for different frequencies: From Figure 3.6, it is clear that no ionization is observed
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Figure 3.6: Ionization yield along the minimum energy path as calculated from
FC-ADK model.

at I = 6.95 × 1012 Wcm−2 at which the barrier stabilization has been decribed for

the asymmetric double well. As the intensity is slightly increased to I = 4.55 ×

1013 Wcm−2, around 10% ionization is observed for HCN.

3.4.2 Ionization rates in strong field using Time-dependent

Configuration Interaction and Complex Absorbing Po-

tential

The second approach to calculating ionization rates is done using TDCIS-CAP[7]

where the loss of electron density has been simulated using a Complex Absorbing

Potenial(CAP). The form of the CAP used has been discussed by Santra et. al.[8].

The dynamics in the presence of electric field has been described by the following

TDSE:

i
∂

∂t
ψel(t) = Ĥ(t)ψel(t) (3.20)
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where ‘Ĥ(t)’, assuming the interaction between light and the system to be within the

semi-classical dipole approximation and with CAP is:

Ĥ(t) = Ĥel − ~µ ~E(t)− iV̂ absorb (3.21)

where ‘µ’ is the dipole operator, ‘E(t)’ is the electric field term and ‘V̂ absorb’ is the

complex absorbing potential. The time dependent wavefunction given in the TDSE

above can be written as a linear combination of ground and excited field-free states

with time dependent coefficients.

ψ(t) =
∑
i

Ci(t)|ψ(t)〉 (3.22)

The TDSE can be re-written as:

i
∂

∂t
Ci(t) =

∑
j

HijCj(t) (3.23)

where ‘Hij = 〈ψi|Ĥ(t)|ψj〉’. The time evolution of the coefficients of expansion is

implemented numerically in the follwowing manner:

C(t+ δt) = exp

[
−iH

(
t+

δt

2

)
δt

]
C(t). (3.24)

The field-free wavefunctions for the HCN, HNC and the transition state was ob-

tained using a time-dependent Configuration Interaction Singles calculation using the

GAMESS[9] package. The pulse parameters given in the last section has been used

in this study. The normalization of the wavefunction was plotted against the pulse

duration. From Figure 3.7, it is depicted clearly that at the end of the pulse, of the TS

survives and of HCN and HNC survives the duration of the pulse. There is a signifi-

cant amount of population which survives the better part of the pulse for stabilization

to occur.
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3.5 Electronic potential

A sample calculation for predicting the electronic structure of HCN in the presence

of oscillating fields under the KHA. The black curve in Figure 3.8 shows the Coulomb
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Figure 3.8: Electronic potential for increasing values of αo.

plot of HCN with each peak representing the position of the respective atoms. The

charge density is expressed with the depth of each of these peaks. With the application

of KHA, each peak splits into two as shown earlier in the case of Coulomb potential

and the individual contributions will add up to give a final potential as demonstrated
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by the red curve at a particular value of αo. The magnitude of splitting increases as

the value of αo is increased, and this is faithfully represented in Figure 3.8. In the

case of the KH transformed potential, Carbon atom becomes more negative owing

to the splitting of peaks. This effect results in a change of hybridization of the cen-

tral atom from ‘sp3’ to ‘sp2’. Using valence bond theory, since the central atom is

‘sp2’ hybridised, the stable structure it can have will be bent which is essentially the

transition state in the HCN-HNC isomerization pathway.
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Appendix A

Discrete Variable Representation

DVR is a powerful method mostly employed in solving the time-independent Schrödinger

equation for a given potential. It is one of the grid-based methods used for obtaining

eigenvalues and eigenvectors for a Hamiltonian. In this representation, the associated

basis functions are localized about the discrete values of the variables and also the

coordinate operators are assumed to be diagonal. DVR has become a versatile tool

owing to its simplicity in evaluating kinetic energy matrix elements and the poten-

tial operator which requires no integral evaluations and its applications in molecular

ro-vibrational spectroscopy and quantum dynamics. Following form of a simple one-

dimensional DVR was given by Colbert and Miller1.

The Kinetic energy operator in one-dimension is given by:

T̂ = − ~2

2m

d

dx2
(A.1)

The coordinate ‘x’ is restricted on the interval (a, b) and the wavefunctions should

vanish at the endpoints of the given interval. The grid points {xi} is calculated as:

xi = a+ i
(b− a)

N
i = 0, 1, 2...., N − 1 (A.2)

where ‘N ’ is the number of grid points.

The functions associated with a uniform grid as given above are particle-in-a-box

1D.T. Colbert and W.H. Miller, J. Chem. Phys. 96, 1982 (1991).
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eigenfunctions:

φn(x) =

√
2

b− a
sin

[
nπ(x− a)

b− a

]
(A.3)

where n = 1, 2, ...., N − 1. There are only N − 1 points in the interval and N − 1

functions as it goes to ‘0’ at the endpoints.

The kinetic energy thus can be represented in its DVR form as given below:

Tij =
~2

2m
δx

N−1∑
n=1

φn(xi)φ
′′
n(xj) (A.4)

=
~2

2m

(
π

b− a

)2
2

N

N−1∑
n=1

n2 sin

(
nπi

N

)
sin

(
nπj

N

)
(A.5)

By summing over all the terms, the reduced form of the kinetic energy term can be

written as:

Tij =
~2

2m

(−1)i−j

(b− a)2
π2

2

{
1

sin2 [π(i− j)/2N ]
− 1

sin2 [π(i+ j)/2N ]

}
, i 6= j (A.6)

Tij =
~2

2m

1

(b− a)2
π2

2

{
(2N2 + 1)

3
− 1

sin2 (πi/N)

}
, i = j (A.7)

In the interval (−∞,∞), the grid spacing ‘δx’ requires that N −→ ∞. The final

matrix representation in this interval is:

Tij =
~2

2mδx2
(−1)i−j

π
2/3 , i = j

2/(i− j)2, i 6= j

where i = 0,±1,±2,±3, . . ..

A sample calculation was done on a model potential of the form:

V (x) = e−0.1x
2

(
x2

2
− 0.8

)
(A.8)

This potential holds only one bound state with E = −0.2979596 Hartrees. Given

in Figure A.1 is a plot of the potential with the bound state.
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Figure A.1: Model Potential [Blue] and the bound state [Red]
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