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Abstract

The physical mass of the Higgs particle is approximately 126 GeV, which also sets
the electroweak scale.But the expected mass of the Higgs due to quantum corrections
from heavier particles should be much higher, unless there is an unnatural fine-tuning
cancellation in the parameters.Seesaw models of neutrino mass generation require extra
heavy particles beyond the standard model which interact with the Higgs and contribute
to the correction of its mass.We derive the loop amplitudes responsible for the mass
correction of the Higgs due to these particles.Then we discuss about the naturalness
criteria and find relations between the coupling constants and the mass scales of heavy
particles.Next we motivate a framework which incorporates the natural electroweak see-
saw.The naturalness of the electroweak scale in the light of type-I seesaw model with
Yukawas of order unity leads to TeV scale masses for the extra heavy fermion singlets
which play the role of right handed neutrinos.This requires the mechanism of seesaw
cancellation through special correlations among the O(1)Yukawa couplings which can be
motivated through discrete flavor symmetries.We provide a candidate model based on
the discrete group Σ(81) and illustrate on the generic perturbations that lead to viable
neutrino masses.We give phenomenological implications like flavour violating processes
and analyse their branching ratios.We then briefly discuss the scenarios of leptogenesis
and baryogenesis and elaborate on resonant leptogenesis as a viable process in the context
of our model.



Chapter 1

Introduction

Since the time of Galileo, modern science has come a long way through its evolution
in a dynamic fashion.The process of intuition, analysis and empirical tests have been
more or less the guiding framework in this journey and hopefully will continue to be so.
Over the ages, one of our incessant curiosities has been to understand the fundamental
building blocks of nature. Ironically, in its most modern scientific form, the legitimacy
of this question is not very clear but it nevertheless assisted a great deal to unravel some
of the deep aspects of nature and has been prone to aesthetically appeal to the ideol-
ogy of reductionism. We have understood till date that there exists some basic physical
laws and fundamental interactions which underlie the structure of more complicated phe-
nomena.There exists four fundamental interactions in nature,viz.electromagnetic, gravi-
tational,weak and strong interaction.It is stunning to realize that at the elementary level,
only these four basic interactions govern almost all the breathtaking complexities which
surround us. People have been involved in experimentation and theoretical research to
understand these basic interactions and their roles in our day-to-day life processes.In
the modern context, they came up with precise theoretical frameworks which enunciates
the understandings of those.While the Physics at length scales of daily life objects like
pistons and pulleys is adequately described by classical mechanics(based on Newton’s
laws), it hopelessly fails to explain the Physics of very short scales like electrons, atoms
and molecules. Quantum mechanics came into existence hence when it was realized that
several discrepancies exist in the classical framework.This realization has been a result
of numerous experiments, strategic guesses and wrong attempts. One important aspect
that this process taught us is the way science progresses and develops itself under critical
scrutiny and analysis.Quantum mechanics is a framework which governs the microscopic
dynamics of one-particle system or system of finitely multiple number of particles(finite
degrees of freedom).On the other hand, Maxwell has given the correct theoretical frame-
work to understand classical electromagnetism quite a long time ago in terms of an object
which in principle consists of infinite degrees of freedom, i.e a field.However, problems still
lasted to understand how electromagnetic waves(propagating disturbances in the field),
viz.radiation travels in space without necessarily requiring a medium. This very simple
question led to the theoretical structure of what is known as special relativity(formulated
by Einstein), which showed that there exists an upper limit to the velocity of any propa-
gating information and as a result leads to the principle of causality. Further, it produced
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other interesting results of which a significant one being energy and mass are equivalent
and as a result there can exist physical processes which allow non-conservation of par-
ticle number(i.e creation and destruction of particles).While quantum mechanics works
well for microscopic particles, one inevitably confronts a problem when the microscopic
particles have very high velocities and relativistic effects starts to take over.Firstly, the
idea of non-conservation of particle number in special relativity is inconsistent with quan-
tum mechanics and the causality principle could not be maintained in the context where
quantum mechanical laws overlap, since it can be predicted from quantum mechanics
that there is a finite probability amplitude of finding a particle in a space-like separated
region.Moreover, quantum mechanics cannot adequately describe fields and their dynam-
ics. To merge the principles of quantum mechanics with special relativity, it again needed
a humongous amount of analysis and attempts.Nevertheless, this led to the formulation
of quantum field theory, a consistent framework to describe physical processes at short
scales and high energies. The beauty of this formulation lies in the fact that it revived
the old notion of particles as fundamental objects and set a stage where more abstract
quantities called fields(with infinite degrees of freedom) are ingrained in the framework
as fundamental objects.Elementary particles are then understood as physical excitations
of their corresponding fields.

Quantum field theory as a concrete framework revolutionized our understanding of ele-
mentary particles to a significant extent.It also relates crucially to statistical physics and
condensed matter physics where the ideas of renormalization method and the renormal-
ization group finds an eloquent place.The important understanding that the Physics of
diverse phenomena differ across length scales and that many microscopic theories can pos-
sibly give rise to the same macroscopic theory as a virtue of integrating out microscopic
degrees of freedom(this is equivalent to coarse-graining in statistical physics) has its roots
in the structure of quantum field theory.Several successful results in the framework of
relativistic quantum field theories include the theory of quantum electrodynamics, where
theoretically predicted quantities, like the electron g-factor were experimentally verified
to an accuracy to the tenth place of decimal; quantum chromodynamics, which describes
the working of the strong interaction and predicted the existence of asymptotic freedom
and quark confinement and quantum flavour-dynamics, which provides the understand-
ing of the flavour structure of elementary particles like quarks and leptons.Perhaps the
most beautiful physical structure which resulted from quantum field theory is the stan-
dard model of particle physics.

The standard model of particle physics is a theoretical model which has many other
extra features inbuilt into it.Firstly, it is a special type of quantum field theory, col-
loquially known as a gauge theory.Therefore this kind of a model incorporates gauge
symmetries into it which play vital roles.Specifically, the standard model has a product
of three gauge groups,viz.SU(3), SU(2) and U(1).The lagrangian of the standard model
has a symmetry under the product of these gauge groups.It further includes all quarks,
leptons and gauge fields in the model.One essential component in it is the mechanism of
spontaneous symmetry breaking.This mechanism is possible if one includes a scalar field
in the theory.Such a field is named after its founder, Sir Peter Higgs. When this field takes
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its vacuum expectation value, the gauge group is broken to a smaller group, generating
mass for the elementary particles. The exception here is the neutrino.Neutrinos remain
massless in the standard model because they do not have a right-handed partner.On
the other hand, neutrino oscillations confirm that neutrinos must possess mass, albeit
a tiny one.This clearly is a signature of Physics beyond the standard model and hence
requires extra mechanisms and/or particles to understand the required dynamics.The
seesaw mechanisms are one of the prominent ones which propose to generate tiny left
handed neutrinos masses as observed in experiments.They are well motivated from the
perspective of Grand Unified Theories(GUTs) and hence are viable candidates. These
mechanisms introduce new heavy particles which interact with the standard model Higgs
particle and the left neutrinos.We elaborate on this in the later sections.

A puzzling issue within the standard model framework is that the Higgs vacuum is not
stable and undergoes significant perturbations from quantum fluctuations due to inter-
actions with other particles.While the physical Higgs mass is ≈ 126 GeV, its theoretical
expected mass should be far higher in scale if standard model is not the only fundamental
theory which can be extended to any arbitrary scale.The Higgs vev determines the elec-
troweak scale by generating masses for W and Z bosons.On the other hand we know that
gravitational interactions become important at the Planck scale.So it naturally bothers
us to ponder on the question as in why the electroweak scale is so far lower than the
Planck scale when the natural expectation is to have the Higgs mass to be much higher
due to new Physics.This problem is known in the literature as the hierarchy problem.

Since seesaw mechanisms, particularly the type-I seesaw predict new heavy particles(right
handed fermion singlets) and hence new Physics at a higher scale, one finds similar is-
sues with the mass correction of the Higgs due to its interaction with these particles.We
discuss this part in the later sections elaborately.This issue will lead to constraints on
the mass scale of the right handed fermion singlets on one hand and naturalness of the
Higgs mass on the other.If the right handed particles are close to the upper bound set
by electroweak naturalness(Higgs naturalness) then it requires the Yukawas couplings of
O(10−4) in order to produce viable light neutrino masses.When the mass scale of right
handed heavy particles are further lowered down, the Yukawa couplings are smaller.We
argue in this project that type-I seesaw mechanism loses its inherent naturalness when
the criteria of electroweak naturalness is imposed to it.The fundamental Yukawa cou-
plings of order unity when put together with electroweak naturalness requires the masses
of fermion singlets as light as O(TeV ).Thus seesaw mechanism can no longer naturally
account for tiny neutrino masses and it is to be replaced with some alternative mecha-
nism which ensures small neutrino masses.

We propose a suitable framework based on discrete symmetries which offers such a re-
placement.Discrete symmetries are often used in particle physics to predict flavor mixing
patterns in the lepton sector.We assume that the standard model leptons possess global
Zn×Zm×Zp symmetry with n, p,m ≥ 3.This is a residual symmetry of standard model
neutrinos and their Majorana nature implies all of them to be massless.The right handed
heavy neutrinos are assigned appropriate discrete symmetries in a way such that there
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exist three massive states and atleast one non-vanishing Dirac Yukawa coupling.As we
show in this project, this necessarily leads to two degenerate right handed neutrinos and
one massive right neutrino which completely decouples from the standard model.The
symmetries of leptons and heavy right neutrinos can be combined to a discrete group Gf

which is a symmetry of the leptons in the underlying theory.We provide a model of this
class of symmetries and discuss the generic perturbations and their phenomenology.

The thesis is organized as the following.

• In the next section we provide some experimental facts on neutrinos.

• In section 3, we discuss the seesaw models of mass generation.

• In section 4, we elaborate on the hierarchy problem and the one-loop effects on the
Higgs µ2 parameter from different seesaw models.

• In section 5, we discuss about the naturalness of type-I seesaw

• In section 6, we do a comparative study of electroweak naturalness and seesaw
naturalness and arrive at plausible symmetries.

• In section 7, we provide a description of finite discrete groups.

• In section 8, we propose a Σ(81) model to illustrate the electroweak natural seesaw.

• In section 9, we provide the phenomenological implications of our model.

• In section 10, we give a brief review of cosmology and discuss leptogenesis in the
light of our model.

• In section 11, we give numerical reports for masses and mixing angles of left neu-
trinos in accordance with our symmetry model.

• Finally in section 12, we summarise the work.
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Chapter 2

Some experimental facts about
neutrinos

2.0.1 Neutrino detectors

a)Liquid Scintillators: Collection of light released by charged particles propagating in
scintillators is amplified by the photomultiplier.The Liquid Scintillator Neutrino Detector
(LSND) was a scintillation counter at Los Alamos National Laboratory that measured
the number of neutrinos being produced by an accelerator neutrino source. The LSND
project was created to look for evidence of neutrino oscillation, and its results conflict
with the standard model expectation of only three neutrino flavors, when considered in
the context of other solar and atmospheric neutrino oscillation experiments.

b)Cherenkov Detectors: Cherenkov detectors take advantage of a phenomenon called
Cherenkov light. Cherenkov radiation is produced whenever charged particles such as
electrons or muons are moving through a given detector medium somewhat faster than
the speed of light in that medium. In a Cherenkov detector, a large volume of clear
material such as water or ice is surrounded by light-sensitive photomultiplier tubes. A
charged lepton produced with sufficient energy and moving through such a detector does
travel somewhat faster than the speed of light in the detector medium (although some-
what slower than the speed of light in a vacuum). The charged lepton generates a visible
”optical shockwave” of Cherenkov radiation. This radiation is detected by the photomul-
tiplier tubes and shows up as a characteristic ring-like pattern of activity in the array of
photomultiplier tubes. As neutrinos can interact with atomic nuclei to produce charged
leptons which emit Cherenkov radiation, this pattern can be used to infer direction, en-
ergy, and (sometimes) flavor information about incident neutrinos.

c)Tracking calorimeters:Tracking calorimeters such as the MINOS detectors use alter-
nating planes of absorber material and detector material. The absorber planes provide
detector mass while the detector planes provide the tracking information. Steel is a pop-
ular absorber choice, being relatively dense and inexpensive and having the advantage
that it can be magnetised. The NOA proposal suggests eliminating the absorber planes
in favor of using a very large active detector volume. The active detector is often liquid
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or plastic scintillator, read out with photomultiplier tubes.

d)Heavy water detection: The charged current interaction can produce reactions like
: νe+d→ p + p+e−.Resulting electron gets detected via Cherenkov radiation.This gives
the information about neutrino energy and direction.The neutral current interaction can
have the following reaction:
νµ, ντ+d→νµ, ντ+n+p.Neutral current cross sections are same irrespective of neutrino
flavour.

e)Super Kamiokande Detector: The Super-Kamiokande detector is a 50,000 ton tank
of water, located approximately 1 km underground. The water in the tank acts as both
the target for neutrinos, and the detecting medium for the by-products of neutrino inter-
actions.The inside surface of the tank is lined with 11,146 50-cm diameter light collectors
called photo-multiplier tubes. In addition to the inner detector, which is used for physics
studies, an additional layer of water called the outer detector is also instrumented light
sensors to detect any charged particles entering the central volume, and to shield it by
absorbing any neutrons produced in the nearby rock. In addition to the light collectors
and water, a forest of electronics, computers, calibration devices, and water purification
equipment is installed in or near the detector cavity.This detector essentially uses the
process of Cherenkov radiation to detect atmospheric and solar neutrinos.

2.0.2 Major sources of neutrino production

a)Solar neutrino and its anomaly: The energy of Sun comes from the nuclear fusion
in its core where a helium atom and an electron neutrino are generated by 4 protons.
These neutrinos emitted from this reaction are called solar neutrinos. Photons, created
by the nuclear fusion in the center of the Sun, take millions of years to reach the surface;
on the other hand, solar neutrinos arrive at the earth in eight minutes due to their lack
of interactions with matter. Hence, solar neutrinos make it possible for us to observe the
inner Sun in formidable amount of time.
Flux of neutrinos from Sun is approximately 6× 1010 cm−2s−1

The different cycles that lead to neutrino ejection and heavy metal formation on Sun are
as follows:
pp-I
p+p→d+e++νe
p+ e− + p→d+νe
d+ p→ γ+He3

He3 +He3→He4 + p+ p

pp− II
He3 +He3→He4 + e++ν
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He3 +He4→Be7+γ
Be7 + e−→Li7+νe
Li7 + p→ He4 +He4

b)Atmospheric neutrino and its anomaly: Cosmic rays are a radiation of high
energy particles arriving at the Earth from the Universe. In the GeV/nucleon energy
region, these cosmic-ray particles are mostly protons, about 5 percent are Helium nu-
clei and a still smaller fraction of heavier nuclei. Electrons and photons also compose
a part of the cosmic rays. However, since these components are nothing to do with the
neutrino production, these particles will not be mentioned later. The energy spectrum
of these particles extends to very high energies, although the flux of these particles de-
creases rapidly with the increasing energy. These particles, once enter into the Earth’s
atmosphere, interact with the nuclei in the high altitude atmosphere. Typically, in these
high-energy nuclear interactions, many π mesons, and less abundantly K mesons, are
produced. Since these mesons are unstable, they decay to other particles. For example,
a π+ decays to a muon (µ+) and a νµ,which is also unstable and decays to a positron
e+,ν−, µ and a νe.

A similar decay process occur for π− and K mesons. In this manner, neutrinos are
produced when a cosmic-ray particle enters an atmosphere.These neutrinos are called
atmospheric neutrinos. The primary cosmic-ray flux decreases rapidly with the energy,
approximately E2.7 in the GeV to TeV energy region. Therefore, the calculated neutrino
flux rapidly decreases with the increasing energy.

2.0.3 Neutrino Oscillations

Neutrino oscillation arises from a mixture between the flavour and mass eigenstates of
neutrinos.The three neutrino states that interact with the charged leptons in weak inter-
actions are each a different superposition of the three neutrino states of definite mass.
Neutrinos are created in weak processes in their flavour eigenstates. As a neutrino prop-
agates through space, the quantum mechanical phases of the three mass states advance
at slightly different rates due to the slight differences in the neutrino masses. This results
in a changing mixture of mass states as the neutrino travels, but a different mixture of
mass states corresponds to a different mixture of flavour states.

So if we initially start with an electron neutrino, it will be some mixture of electron,
mu, and tau neutrino after traveling some distance. Since the quantum mechanical
phase advances in a periodic fashion, after some distance the state will nearly return
to the original mixture, and the neutrino will be again mostly electron neutrino. The
electron flavour content of the neutrino will then continue to oscillate as long as the
quantum mechanical state maintains coherence. Since mass differences between neutrino
flavours are small in comparison with long coherence length for neutrino oscillations this
microscopic quantum effect becomes observable over macroscopic distances.
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Chapter 3

Neutrino Mass Generation Models

The most general SU(3)c ⊗ SU(2)L ⊗ U(1)y gauge invariant renormalizable lagrangian
with Higgs doublet H,three lepton doublets L=(νL,lL)T and three lepton singlets eR, etc
beyond minimal gauge interaction terms is:

LSM = Lminimal + (λije E
iLjH∗ + λijdD

iQjH + λijU iQjH + h.c)

+m2|H|2 − 1

4
λH |H|4

(3.1)

Baryon number and Lepton number are natural symmetries in this scenario.The Higgs
vacuum expectation value(vev) breaks the SU(2)L⊗U(1)y→ U(1)em with the vev of Higgs
being 174 GeV.
But the neutrinos remain massless in this picture because they do not have a right handed
partner in the standard model.So to generate masses for neutrino sector, one invokes
for non-renormalizable operators from which an effective lagrangian can be constructed
by integrating out the heavy degrees of freedom.One such primary operator is the 5-
dimensional operator LLHH/λ introduced first by Weinberg, where λ is the suppression
factor.

3.0.1 Different schemes of realization of 5-dimensional operators: Seesaw Mecha-
nisms

Type-I Seesaw

The five-dimensional Weinberg operator can be recovered in the limit where the external
energy is very low as compared to the BSM heavy particle and hence this extra heavy
particle is integrated out from the theory, which finally results in an effective theory with
the aforementioned operator.The seesaw models are the prominent ones which exhibit
this feature.So we now describe these models:

In Type-I Seesaw model, we add new extra singlet fermions with no gauge interactions
which play the role of right handed neutrinos.They can have Yukawa interaction and in
general, they can be Majorana particles because no standard model symmetry is going
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to be violated(except B-L symmetry which is not a necessary requirement).
So we can add a Majorana mass term for these right handed fermion singlets in the
extended Lagrangian along with Yukawa couplings with the leptonic sector.

The extended Lagrangian is given as follows

L = LSM + N̄ c
i
/∂Ni + (λijNNiLjH +

1

2
M ij

N N̄
c
iNj + h.c) (3.2)

If we consider just one generation for simplicity, then the mass is generated in the
following way: When the Higgs field takes a vacuum expectation value(vev) which is
given by v√

2
, then the Lagrangian becomes

L = λēLH
+NR +

v√
2
ν̄LNR +

1

2
M(NR)2 (3.3)

The mass matrix of the neutrinos is given by:

K =

(
0 md

md MN

)
(3.4)

where md =λv/
√

2 is the Dirac mass of the neutrinos

The mass matrix in this form is not diagonal.So to extract the mass eigenstates and
the eigen-values, we diagonalise this mass matrix. The diagonal mass matrix is given by:

K ′ =

(
m2
d/M 0
0 M

)
(3.5)

The mass basis is given by:

n1 = (md/M)νL + (M/md)NR (3.6)

n2 = νL + (md/M)NR (3.7)

If we take the right handed fermion singlet mass M to be very heavy compared to Dirac
mass md, then in this limit we obtain:

n1 ≈ NR, n2 ≈ νL (3.8)

We also obtain the respective mass of the left handed neutrino to be:

m ≈ (md)
2

M
<< 1. (3.9)

Particularly with M of the order of 103 TeV and y≈ O(10−4), m turns out to be consistent
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with experimental results.

Now considering the general framework of three generations of leptons, we would get
a Dirac mass matrix m̄d whose elements will be:

mij =
λijv√

2
(3.10)

The Majorana mass matrix M̄ for right handed fermion singlets will have elements:Mkl

So the total mass matrix will be:

J =

(
0 m̄d
¯(md)T M̄

)
(3.11)

This matrix is a 6× 6 matrix with m̄d and M̄ being each 3× 3 matrices.
We block diagonalize this matrix by a standard mathematical technique which goes as
follows:

For some general block matrix: X=

(
a b
c d

)
there would be an equivalent matrix Y

such that Y=R−1XS is block diagonal, where

R−1 =

(
I −bd−1

0 I

)
(3.12)

S =

(
I 0

−dc−1 I

)
(3.13)

And Y is given by:

Y =

(
a− bd−1c 0

0 d

)
(3.14)

This is an equivalent process of finding the Jordan Canonical form for matrices.
Using the above solution, we find that the block diagonal mass matrix for the neutrino
sector is given by:

J ′ =

(
−m̄dM̄

−1m̄d
T 0

0 M̄

)
(3.15)

Therefore the mass matrix of left handed neutrino sector in the mass basis mentioned in
equation.(8) is given by

mv = −m̄dM̄
−1m̄d

T (3.16)
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Type-II Seesaw

In Type-II Seesaw, we have scalar triplets, coined as beyond the standard model(BSM)
Higgs particles.

They have a triplet representation as  δ + +
δ+
δ0

 (3.17)

The hypercharge of the triplet is Y=2

The gauge invariant extended Lagrangian in this case is as follows:

L = LSM + gijL̄i(τ.δ)Lj + λHH̃(τ.δ)H −M2(δ†δ)

+λ(H†H)(δ†δ)− µ2H†H + λφ(H†H)2 + λδ(δ
†δ)

(3.18)

When the standard model Higgs and the BSM scalar triplet(Extra Higgs) simultane-
ously take vacuum expectation values, then this process yields the left neutrinos to be-
come massive.

The term in the lagrangian which contributes to the mass of the left handed neutri-
nos is given in the matrix form as follows:

L′ =

[
ēL
ν̄L

]T [
δ0 δ++ − iδ+

δ++ + iδ+ −δ0

] [
eL
νL

]
(3.19)

When the Standard model Higgs develop the vev v√
2

and the BSM scalar triplet develop

vev v′√
2
, the mass term for the left handed neutrinos appear as:

v′√
2
gij ν̄iLνjL (3.20)

So the mass of the neutrinos is given by v′√
2
gij

The vev of BSM scalar triplet is derived from the potential in the extended Lagrangian
which is given by:

V = λHH̃(τ.δ)H −M2(δ†δ) + λ(H†H)(δ†δ)

−µ2(HH) + λφ(H†H)2 + λδ(δ
†δ)

(3.21)

Minimizing this potential w.r.t δ0 and putting the condition that the Higgs vacuum expec-
tation value is v, we obtain that the vacuum expectation value of the neutral component
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of the scalar triplet obeys this quadratic equation:

−λHv2 − 2M2v′ + 4λδv
′3 + 2λv2v′ = 0 (3.22)

Using the approximation that the BSM scalar triplet is too heavy M� v, v′ and -λH ≈M
we obtain

v′ ≈ v2

2M
(3.23)

Type-III Seesaw

In Type-III Seesaw, we have BSM right handed fermion triplets(charged fermions).

They have the three-dimensional representation under the Lorentz group:

X =

 X+

X−
X0

 (3.24)

Hypercharge of X=0.

The electromagnetic charged states are

X+ =
(X1 + iX2)√

2

X− =
(X1 − iX2)√

2

X0 = X3

(3.25)

The extended Lagrangian is given by:

L = LSM + iX̄i /DXj −MijX̄iXj + yijL̄i(τ.Xj)H̃ (3.26)

When the Higgs takes the vacuum expectation value, the left neutrino sector acquires a
mass term similar to the seesaw-I model.

The mass acquired by the left handed neutrinos is given by:

m ≈ −v2yM−1yT (3.27)

where y is the Yukawa coupling matrix of the interaction between the fermion triplets,
the Higgs and the leptons,M is the right triplet mass matrix and v is the Higgs vev.

The simplest version of type-III seesaw does not take into account the masses of the
superheavy extra particles in the light neutrino mass formula.This is an interesting fact
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and has the consequence that it opens the possibility to predict quark and lepton masses
in a reasonable way.Recent investigations also show that such a model can be used in
understanding leptogenesis scenarios, specifically resonant leptogenesis where there can
be resonant enhancement without fine-tuning in the neutrino masses.

After having discussed the three seesaw models, we now move to the problem of hi-
erarchy and discuss the issues underlying it.We first try to motivate the puzzle from a
scaling scenario and then bridge it to the idea of naturalness.This would, in turn, lead to
the stability of the Higgs vacuum configuration and its possible relations with the mass
scale of beyond the standard model particles which are actively involved in the seesaw
mechanisms.
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Chapter 4

Hierarchy Problem

One of the interesting aspects of the physical world is that there are different scales as-
sociated to different phenomena which are observed in nature.Particle physics is too not
an exception.In the domain of high energy particle physics, by scale, one conventionally
refers to the energy scale or the length scale since these are equivalent in the natural sys-
tem of units.It turns out that the model which describes elementary particle interactions
upto a certain scale,i.e the standard model of particle physics, has several limitations and
puzzling issues ingrained in its framework.One such puzzle is the enigma of the hierarchy
of scales of different fundamental interactions.While the Planck scale≈ 1019 GeV is an
absolute scale in nature which is also thought to be the regime where gravitational effects
become equally dominant in comparison to other fundamental forces, the huge difference
it and the electroweak scale(where electromagnetism and weak forces unify) is a ques-
tion which one ponders because such a huge numerical difference in scales is expected
to have some interesting reason(s).In the standard model, the mass scales of different
fundamental particles are generally set by the Higgs vacuum configuration through a
process known as spontaneous symmetry breaking.Therefore it also naturally sets the
energy scale of the fundamental processes that occur in nature. The weak scale is around
100 GeV which in turn is the mass scale of W and Z bosons which are the mediators
of the weak force.But the non-zero vacuum configuration of the Higgs is unstable and
prone to quantum fluctuations due to interactions with other particles. In fact, since the
Planck scale is so high, one expects that the natural value for its vacuum configuration
to be of the order of ≈ 1019 GeV.The miraculously low value of the Higgs vacuum inspite
of the Planck scale sets the weak scale to be at such a small energy. This particular
puzzle of the value of the Higgs vacuum which results in the huge hierarchy of the scales
between the weak interaction and the Planck energy is traditionally referred to as the
gauge-hierarchy problem.

There have been many proposed models and extended theoretical frameworks to resolve
this puzzle.Some of them are supersymmetry, extra dimensions and composite Higgs
models.However, most of these solutions require extra particles as additional ingredients
which need to be validated from experiments.But so far, no experimental verification
has come about to test the above models.Nevertheless, it is hoped that as the particle
accelerators(like LHC) initiate running at higher energy scales, some of the predicted
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beyond the standard model particles will be observed.

4.0.1 Naturalness problem of the Higgs particle as a Hierarchy problem

The Higgs potential is parametrized by a dimensional mass-squared parameter µ2 and
a dimensionless Higgs self-coupling λ. Together they set the Higgs vacuum expecta-
tion value (vev) v =

√
µ2/λ = 246 GeV, which ultimately controls the masses of the W

and Z bosons as well as that of the standard model fermions (except the neutrinos).
These parameters also set the mass of the physical Higgs boson (the Higgs particle),
M2

h = λv2.Other than a more complicated Higgs sector, the LHC measurement of the
Higgs particle mass allows one to completely reconstruct the Higgs potential at the weak
scale.

The hierarchy, fine-tuning or naturalness problem refers to quantum corrections to the
Higgs mass-squared parameter µ2 or, equivalently, the Higgs vacuum expectation value.
Corrections to a scalar mass-squared are quadratically divergent and hence loops of Stan-
dard Model particles induce quantum corrections proportional to the unknown cuto scale.
The top quark, as the most strongly coupled SM particle to the Higgs field, will induce
the most relevant such correction.These corrections can be tackled by renormalization
procedures since the standard model is a renormalizable theory.But this would lead to
cancellation of correction terms by the parameters in the tree level contribution and if
the corrections are very high, then unnatural fine-tuning is required in the tree level pa-
rameters to arrive at the observed mass of the Higgs particle.The naturalness condition
imposes the constraint that the loop corrections would at most be of the order of 100
GeV,i.e, the mass scale of the Higgs(and hence the electroweak theory).

It is known that the Standard Model is not the complete theory of nature.It is miss-
ing descriptions of gravitation, dark matter, neutrino masses, and inflation.Also, the fact
that several of its couplings have Landau poles due to renormalization flow indicates that
the physics must change at very short distances for internal consistency.However, Landau
poles occur around or above the Planck scale, where the Standard Model must be supple-
mented by a theory of quantum gravity.Although we don’t have any consistent theory of
quantum gravity at present and standard model is not UV complete, we follow Kenneth
Wilson’s idea of effective field theory, where one deals with an effective description of
the high energy physics at low energy regimes by integrating out heavy particles.These
heavy particles can add quantum loop corrections to the standard model Higgs mass and
shift it to arbitrarily large scales.It would be unnatural if one requires an extremely large
correction and hence a fine-tuning to set the observed mass scale of the Higgs in the pro-
cess.We thus explicitly state a constraint which would avoid such unnatural fine-tuning
cancellations: the naturalness condition.As a necessary consequence of the naturalness
condition, we try to find out relations between the heavy particle masses and couplings
when they interact with the standard model Higgs.

We have earlier explained about the seesaw mechanisms that generate tiny neutrino
masses.Essentially we put forward the three different types of seesaw, each with different
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beyond the standard model(BSM) particles with heavy mass scales.Now it is time to
investigate how do they couple to the Higgs and what are their effects on the mass cor-
rection of the Higgs.We would seek to derive naturalness condition through the bounds
on the heavy mass scales of the respective BSM particles.

4.0.2 The Seesaw models and the Naturalness problem of the Higgs particle

One loop effect on Higgs mass from Seesaw-I

We once again state for brevity that the type-I seesaw mechanism is the simplest model
to realize how tiny masses are generated for left neutrinos.This particular mechanism
invokes for certain beyond the standard model fermionic particles which are gauge sin-
glets and are right-handed in nature.They interact with the Higgs and the left neutrinos
through the Yukawa coupling.This suggests that there should be corrections to the self-
interaction of Higgs through the mediating right handed fermionic particles and the left
neutrinos in higher orders of perturbation theory.There would thus be amplitudes at dif-
ferent orders which will contribute to the µ2 parameter of the Higgs corresponding to
the self interaction | H |2. Here we consider the one-loop correction to the Higgs mass
squared parameter, state the naturalness criteria and study different plausible cases.

The relevant part of the Lagrangian of Seesaw-I in this context is:

L = µ2|H|2 + λ|H|4 + yij l̄iNjRH (4.1)

If we take just one generation, then

L = µ2|H|2 + λ|H|4 + ylNRH (4.2)

where li is the left handed doublet (ei, νi) and NR is the heavy fermion singlet.

At one loop level the Higgs mass correction due to right handed neutrino goes as

δµ2 = y2

∫
d4l

(2π)4
.T r
[ (/l + /q +m)(/l +M)

((l + q)2 −m2)(l2 −M2)

]
(4.3)

where ‘m’ is the left handed neutrino mass and ‘M’ is the right fermion singlet mass, l is
the momenta flowing in one side of the loop and q is the external momenta.

Figure 4.1: One-loop Feynman diagram corresponding to Higgs µ2 correction
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By solving this integral using Feynman parametrization technique and putting the
cutoff equal to the mass scale of the right fermion singlet, we found that the dominant
term contributing is:

δµ2 ≈ 1

4π2
y2M2 (4.4)

The idea of the naturalness problem of Higgs leads us to the condition that the corrections
to its mass can be at most of the order of its vacuum expectation value, otherwise one
would require fine tuning of the parameters in order to arrive at the desired value of its
physical mass.This kind of fine-tuning has no good physical reasoning and hence we try
to avoid it.The naturalness condition thus limits any higher order correction to that of
the order of vev of the Higgs field.In this case, such a constraint is given by

δµ < 100GeV ⇒ δµ2 < 104Gev2 (4.5)

Therefore this would imply that

y2M2 < 104 × (4π2)Gev2 ⇒ yM < 440GeV ≈ 0.5TeV (4.6)

Now we consider the light neutrino masses from the Yukawa coupling which we derived
to be

(md)
2

M
(4.7)

where
md =

yv√
2

(4.8)

From neutrino experiments, we have the solar and atmospheric mass squared differences
of neutrinos and the bound on the total mass.

Cosmological data provides the bound on the total mass∑
m < 0.7eV (4.9)

whereas Kamiokande and Chooz experimental data provide their mass squared differences
as:

m2
2 −m2

1 ≈ 10−5eV 2 (4.10)

m2
3 −m2

1 ≈ 10−3eV 2 (4.11)

If we take m1 ≈ 0,then 0.05 < m3 < 0.1eV

Thus we have

0.05 <
y2v2

(2M)
< 0.1eV (4.12)

This implies that if M ≈ 1TeV , then 10−5 > y > 0.3× 10−5

From equation (4.6) we observe that if M is of the order of 0.5TeV, then y can have
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any value of order less than 1.

If we impose the constraint of equation(4.21),we find that to account for both natu-
ralness criteria of the Higgs particle and the seesaw mechanism, if M is of the order of 1
TeV, the only consistent value of y should lie in the following range:

10−5 > y > 0.3× 10−5 (4.13)

On the other hand, if y≈ O(1) coupling, then seesaw condition imposes the constrain
1013 < M < 1014GeV which contradicts the naturalness criteria of equation(4.6).

Thus we conclude from one generation calculations that y cannot be O(1) coupling in
general to accommodate both seesaw mechanism and satisfy Higgs naturalness.

Now we proceed to calculate the naturalness constraints from the full lepton sector with
all three generations:

The extended Lagrangian with the Yukawa term is given in this case by:

L = LSM + N̄ c
i
/∂Nj + (yijNiL̄jH +

1

2
MijN̄

c
iNj + h.c) (4.14)

The Lagrangian is expressed in terms of the weak eigenbasis.We write it in the mass
eigenstates to by transforming the fields to the mass basis as follows:
We transform the fermion singlets: N1

N2

N3

 = U

 Ne

Nµ

Nτ

 (4.15)

where U is the transformation matrix.

Similarly for the left handed neutrinos we perform the following: ν1

ν2

ν3

 = V −1

 νe
νµ
ντ

 (4.16)

In this mass basis, the Lagrangian is expressed as:

L = Lsm + N̄ c
i
/∂Ni + yijNj(αiν1 + βiν2 + γiν3)H +

1

2
MiN̄ c

iNi + h.c (4.17)

The Yukawa term can be expanded in the following way:

L′ = (y′11ν1N1H0 + y′21ν2N1H0 + y′31ν3N1H0)

+(y′12ν1N1H0 + y′22ν2N1H0 + y′32ν3N1H0)

+(y′13ν1N1H0 + y′23ν2N1H0 + y′33ν3N1H0)

(4.18)
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where
y′11 = y11α1 + y21α2 + y31α3 (4.19)

y′21 = y11β1 + y21β2 + y31β3 (4.20)

y′31 = y11γ1 + y21γ2 + y31γ3 (4.21)

and so on....

The one loop mass correction due to these couplings goes as follows:

For the coupling of ν1 with N1

δµ2 = −y′11
2

∫
(dl)4

(2π)4
.T r
[ (/l + /q +m1)(/l +M1)

((l + q)2 −m2
1)(l2 −M2

1 )

]
= −y′11

2M2
1/4π

2+logarithmic corrections

(4.22)

We get contributions from other couplings in a similar way.The total one loop correction
is:

δµ2 = −1/4π2

3∑
i=1

3∑
j=1

|y′ij|2M2
j (4.23)

Now we consider a particular parametrization for the Yukawa couplings of the neutrinos,
known as the Casas-Ibbara Parametrization and is the following:

y′ ≈ iV
√
MνO

√
MN (4.24)

where md is the dirac mass matrix,V is the CKM matrix which is unitary,Mν is the left
handed neutrino mass matrix,MN is the right handed fermion singlet mass matrix and
O is an arbitrary complex orthogonal matrix.

Since we know that the Dirac mass is related to the Yukawa coupling as:

md =
y′v√

2
(4.25)

where y’ is Yukawa coupling matrix.

So
md = iV v

√
2MνO

√
MN (4.26)

Now if the Yukawa couplings are real, then

3∑
i=1

3∑
j=1

|yij|2M2
j = Tr[y′y′TMN ] (4.27)
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Hence
3∑
i=1

3∑
j=1

|yij|2M2
j = −Tr[2V V TMνMN/v

2], (4.28)

which is independent of the O matrix.

But if the Yukawa couplings are complex in general,then it follows that

3∑
i=1

3∑
j=1

|yij|2M2
j = Tr[y′y′†MN ] = −Tr[OO†2MνMN/v

2] (4.29)

which depends on the O matrix.

We denote R=OO† This implies R† = R and RT = R−1. So R is a complex orthog-
onal hermitian matrix.

After using the hermiticity condition,the R matrix is as follows:

R =

 R11 R12 R13

R∗12 R22 R23

R∗13 R∗23 R33

 (4.30)

Now using the orthogonality condition, we have the following constraints with the ele-
ments of R:

R2
11 +R2

12 +R2
13 = 1 (4.31)

(R∗12)2 +R2
22 +R2

23 = 1 (4.32)

(R∗13)2 + (R∗23)2 +R2
33 = 1 (4.33)

R11R
∗
12 +R12R22 +R13R23 = 0 (4.34)

R11R
∗
13 +R12R

∗
23 +R13R33 = 0 (4.35)

R∗12R
∗
13 +R22R

∗
23 +R23R33 = 0 (4.36)

From the first three constraints,R can be parametrized by three angles and one phase as
follows:

R11 = cosα (4.37)

R12 = cos θeiφ (4.38)

R13 =
√

1− cos2 α− cos2 θe2iφ (4.39)

R22 = cos β (4.40)

R23 =
√

1− cos2 β − cos2 θe−2iφ (4.41)

R33 =
√

cos2 α + cos2 β + 2cos2θ cos 2φ− 1 (4.42)
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When we impose the other three constraints, we find that there is just one indepen-
dent constraint and all others are redundant.The independent constraint is given by:

cos2 α + cos2 β + 2cos2θ cos 2φ− 1 = cos2 α cos2 β + cos4θ

−2 cosα cos β cos2 θ
(4.43)

Thus we infer that there are three free parameters.

The R matrix in its parametrized form is given as follows:

R =

 c(α) c(θ)eif(θ,α,β)
√

1− c2(α)− c2(θ)e2if(θ,α,β)

c(θ)e−if(θ,α,β) c(β)
√

1− c2(β)− c2(θ)e−2if(θ,α,β)√
1− c2(α)− c2(θ)e−2if(θ,α,β)

√
1− c2(β)− c2(θ)e2if(θ,α,β) c2(α) + c2(β) + 2c2(θ)c(2φ)− 1


(4.44)

where c(.) denotes cos(.) and

f(θ, α, β) =
1

4 cos2 θ
× arccos (1 + cos2 α + cos2 β + cos4 θ

−2 cosα cos β cos2 θ − cos2 α− cos2 β)
(4.45)

We try to deduce the naturalness condition as follows:
From equations(4.28) and (4.29),we have:

δµ2 = 4π2Tr[y′y′†M ] = Tr[RMνMN/v
2] < 104GeV 2 (4.46)

⇒M3
1m1R11 +M3

2m2R22 +M3
3m3R33 < 5× 103v2GeV 4. (4.47)

Now we consider some specific cases where we try to relax the bound using the free pa-
rameters of the R matrix as follows:

Case 1:

From the mass squared differences of light neutrinos,
we consider a viable case where m1 = 0,m2≈ 0.003eV and m3 ≈ 0.03eV.

Then for degenerate mass of BSM fermion singlets, we obtain the condition:

M <
3.17× 106

R
1/3
33

GeV (4.48)

So if we choose R
1/3
33 = 0.0001, then M < 3.17 × 1010 GeV which is relaxed than the

previous results and satisfies the bound given in all versions of leptogenesis.
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Case 2:

Again for degenerate mass of BSM fermion singlets, we have

M <
2.1× 107

(0.003R22 + 0.03R33)1/3
GeV (4.49)

then adjusting the value of (0.003R22 + 0.03R33)1/3 ≈ 0.001

we can have the bound on M < 2.1 × 1010GeV which is again relaxed than the pre-
vious bounds and is in agreement with leptogenesis results.

Case 3:

Now we consider non-degenerate masses of BSM fermion singlets:

Then the bound condition on the sum of mass cubes is as follows:

(0.003R22M
3
2 + 0.03R33M

3
3 ) < 1.5× 108GeV 3 (4.50)

Thus one of the fermion singlet with mass M1 can be arbitrarily high value because it
will be suppressed by a very very small neutrino mass(m1)≈ 0

On the other hand, since we can choose R22 and R33 freely owing to free parameters,
we can in principal make the upper-bound on some of the masses to be very high by
choosing the matrix elements to be very small.

This would agree with the leptogenesis results regarding the bounds on their masses.

One loop effect on Higgs mass from Seesaw-II

As we have mentioned earlier, we have extra scalar triplets of hypercharge 2 in this sce-
nario which couples to the leptonic sector and the Higgs.

Their representation is given by:  δ + +
δ+
δ0

 (4.51)

The gauge invariant extended Lagrangian in this case is as follows:

L = LSM + gijL̄i(τ.δ)Lj + λHH̃(τ.δ)H −M2(δ†δ)

+λ(H†H)(δ†δ)− µ2H†H + λφ(H†H)2 + λδ(δ
†δ)

(4.52)
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The mass of the neutrinos is given by gijv
′

The vev of BSM scalar triplet is derived from the potential in the extended Lagrangian
which is given by:

V = λHH̃(τ.δ)H −M2(δ†δ) + λ(H†H)(δ†δ)

−µ2(HH) + λφ(H†H)2 + λδ(δ
†δ)

(4.53)

Minimizing this potential w.r.t δ0 and putting the condition that the Higgs vacuum
expectation value is v, we obtain that the vacuum expectation value of the neutral
component of the scalar triplet through this equation:

−λHv2 − 2M2v′ + 4λδv
′3 + 2λv2v′ = 0 (4.54)

Now the one loop correction to the Higgs mass will come from the coupling term:

λ(H†H)(δ†δ) (4.55)

The one loop integral corresponding to a total mass correction is given by

δµ2 =
λ

π4

3∑
i=1

∫
d4k

(k2 +M2
i )

(4.56)

Taking the cutoff to be the mass scale of the scalar triplet components, we have:

δµ2 =
3λ

8π2

3∑
i=1

M2
i (4.57)

Taking the naturalness constraint, δµ2 < v2 we see that:

3λ

8π2

3∑
i=1

M2
i < v2 (4.58)

If we consider one generation, mass of the neutrino is given by:

m ≈ gv′ (4.59)

From the mass squared difference, we have,

0.05eV < m < 0.1eV (4.60)

⇒ 0.05eV < gv′ < 0.1eV (4.61)

Now from equation (4.54) taking the approximations M >> v, v′ we deduce

v′ ≈ λHv
2/2M2 (4.62)

⇒ 0.05eV < gλHv
2/2M2 < 0.1eV (4.63)
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⇒ 107GeV < M <
√

2× 107GeV (4.64)

If λH and g are both O(1) couplings, this implies that the scalar triplet strongly inter-
acts with the neutrino sector. Assuming degenerate scalar triplet masses,from the mass
correction we have:

δµ2 =
9λM2

8π2
(4.65)

Imposing the naturalness constraint, we find:

⇒ λM2 < 8× 104GeV 2 ⇒ λ < 10−24 (4.66)

which indicates that the scalar triplet would interact very weakly with the Standard
Model Higgs. On the other hand, a strongly interacting Yukawa coupling would result in
a weakly coupled Higgs-scalar triplet which would shift the mass of the scalar triplet to
a high scale Therefore, naturalness constraint along with seesaw condition implies that
if Yukawa(g)≈ O(1) coupling, then the mass scale of the extra scalar triplet is around
107GeV which is far higher than the seesaw-I scale for one generation.

One loop effect on Higgs mass from Seesaw-III

As we have mentioned earlier, in Type-III Seesaw we include right handed fermion triplets
with hypercharge 0.

The extended Lagrangian is given by:

L = LSM + iX̄i /DXj −
1

2
MijX̄iXj + yijL̄i(τ.Xj)H̃ (4.67)

We calculate the one loop corrections for a single generation at first:

The Yukawa coupling terms which contribute to the loop correction are:

L′ = iy(X0e
−H0 +X+H0ν̄L +X−H0ν̄L) + h.c (4.68)

The loop integrals will give the dominant contribution to be:

δµ2 =
3y2M2

8π2
(4.69)

where M is the mass of the fermion triplet

For naturalness constraint, δµ2 < v2

⇒M < 2v
√

2π/
√

3|y| (4.70)

⇒M < 640/|y|GeV (4.71)

Now from seesaw condition,we have the mass of the left handed neutrinos to be:

m ≈ y2v2/M (4.72)
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From neutrino experiments,we have

m2
2 −m2

1 ≈ 10−5eV 2 (4.73)

m2
3 −m2

1 ≈ 10−3eV 2 (4.74)

If we take m1 ≈ 0,then 0.05 < m3 < 0.1eV

Then we have
0.05eV < y2v2/(2M) < 0.1eV (4.75)

⇒ if M≈ 1TeV then
10−5 > y > 0.3× 10−5 (4.76)

From equation (4.71) we observe that if M is of the order of 640 GeV, then y can have
any value of order less than 1.
We find that to account for both naturalness and seesaw criteria, if M is of the order of
1 TeV, the only consistent value of y should lie in the following range :

10−5 > y > 0.3× 10−5 (4.77)

On the other hand,if y ≈ O(1) coupling, then seesaw criteria imposes the constrain
0.3× 106 < M < 107GeV which contradicts the naturalness criteria of eq.(4.70).

Having discussed the effects of various beyond the standard model particles on the Higgs
naturalness, we now proceed to understand the framework of incorporating seesaw-1
model with the hierarchy problem in the most natural setting.While we have till now
devised general conditions for the naturalness of the Higgs mass as a result of its in-
teraction with extra heavy particles, the next task would be to set a framework where
the naturalness of the seesaw can also be invoked. Although an assumption of having
very small Yukawa couplings in the theory do not imply any inconsistency problem in
general,it confronts a conventional idea of the naturalness of type-1 seesaw mechanism.
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Chapter 5

Naturalness of Type-I Seesaw
Mechanism

We once again state the lagrangian for an extension of the Standard Model by n num-
ber of gauge singlet Majorana fermions Nα.We can write their complete renormalizable
interaction as

L = LSM + N̄ασµ∂µNα −
1

2
(MN)αβN̄ c

αNβ − yiαL̄iNαH̃ + h.c (5.1)

where i = 1, 2, 3 and α, β = 1, 2, 3....n are flavour indices,L = (νL, eL)T , H̃ = iτ2H
∗

where H is the Standard Model Higgs(SM Higgs)with vacuum expectation value v ≡
H = 174GeV .yiα are the Dirac Yukawa couplings and MN is the Majorana fermion mass
matrix.Without loss of generality, we consider a basis in which the 3× 3 charged lepton
Yukawa matrix Yl and n × n matrix MN are diagonal with real and positive elements.
We denote such diagonal elements in MN as MNα. When the electroweak symmetry is
broken and if MNα � v, the Standard Model neutrinos acquire masses which can be
expressed as

Mν = v2yM−1
N yT (5.2)

The symmetric matrix Mν is diagonalized by a unitary matrix such that

U †MνU
∗ = Diag.(m1,m2,m3) (5.3)

where U is the leptonic mixing matrix, known as the PMNS matrix and mi are the mass
eigenvalues of light neutrinos.

As mentioned earlier, we once again write the naturalness(of the Higgs mass) criteria
to illustrate the constraint it puts on the electroweak naturalness. The criteria is given
by

| yiα |MNα < O(TeV ) (5.4)

It requires the singlet fermions at TeV scale if the neutrino Yukawa couplings are of O(1)
or extremely small couplings if the mass scale of singlet fermion is heavier than TeV. The
latter possibility is actually constrained by the observed light neutrino masses and it can
be seen that one cannot consider arbitrarily small yiα and arbitrarily large MNα.
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In the simplest case of single generation of light neutrino and fermion singlet, the above
equation implies y2 ≈ MNmν/v

2 which then leads to a generic bound from the criteria
of naturalness:

M3
Nmν

4π2v2
≤ (TeV )2 ⇒ MN ≤ 2.9× 107 ×

(√m2
atm

mν

) 1
3
GeV. (5.5)

The above bound on the mass of the singlet neutrino do not get modified significantly if
three generations of light and heavy neutrinos are considered. In a special case when the
lightest neutrino is massless, one of the three fermion singlets can have arbitrarily large
mass unconstrained by the electroweak naturalness. This can be seen from the fact that
if we take a particular linear combination of states Nα, it completely decouples from the
Standard Model. This particular linear combination has only self-interaction giving no
contribution in the Higgs mass correction.
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Chapter 6

Electroweak naturalness vs Seesaw
naturalness

The electroweak naturalness demands the scale of fermion singlets below 107 GeV as
explained in the previous section. A generic observation from eq.(5.4) then implies that
the Dirac type Yukawa couplings are required to be small to account for light neutrino
masses. If mi ≤ 0.1eV then

| yiα |≤ O(10−4) (6.1)

Further, if MNα ≈ 1TeV then | yiα | are typically required to be ≤ 10−6. Although an
assumption of having such small Yukawa couplings in the theory do not pose any consis-
tency in general but it confronts a conventional idea of the naturalness of Type-I seesaw
mechanism itself. In the Type-I seesaw mechanism, the natural assumption is to consider
the Dirac type interactions of the neutrinos to be of the same order as other fermionic
interactions.In such a scenario, the light neutrino masses are generated by introducing a
heavy scale in the extra right neutrino sector, possibly heavier than 109 GeV. One other
instance for this kind of an assumption of the order of Dirac type interactions is in the
framework of quark-lepton unification. There, the Dirac Yukawa couplings and up-type
quark Yukawa couplings unify at some heavy scale. In this class of theories, it is typically
expected that at least one of the yiα is as large as the top quark Yukawa coupling, yt ≈
1. It is now clear from the discussion above that MN does not provide sufficient suppres-
sion to generate tiny mass for the neutrinos if the mass scale for the fermion singlets is
≤ 109. Some other source of suppression must be arranged. This can be achieved either
by taking yiα small or by arranging some cancellation within the product in the right
hand side of the seesaw formula, eq.(5.2). For the case of natural seesaw, we discuss here
about the second arrangement, which then has to be justified from a symmetry principle.
We first derive the general condition that has to be followed by yiα in order to reproduce
the correct light neutrino masses being consistent with electroweak naturalness.

We consider three generations of light neutrinos and n generations of heavy fermion
singlets. Using eq. (5.2), we find

Tr(Mν) = v2
∑
α,i

y2
iα

MNα

=
∑
i

mi ≡ msum (6.2)
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where msum is the sum of three neutrino masses.An upper bound on msum is derived from
the cosmological observation. The current limit by Planck data implies msum≤ 0.7eV .
msum is also bounded from below. In the case of lightest neutrino being massless, msum ≥√
m2
atm. Redefining MNα = rαM̃N where M̃N is mass of the heaviest singlet fermion, i.e.

rα < 1, one gets

1.7× 10−12 ×
( M̃N

TeV

)
<
∑
α,i

y2
iα

rα
≤ 2.3× 10−11 ×

( M̃N

TeV

)
(6.3)

In the case of three generations of SM neutrinos, it is possible to consider yiαare of order
unity and still to satisfy the above constraint together with electroweak naturalness
constraint,eq.(5.4). It however requires a special structure in Yukawa coupling matrix y
and fermion singlet mass matrix MN such that it leads to tiny neutrino mass despite of
having low seesaw scale. Our aim now is to check a viability of O(1) Yukawa couplings
with the constraints imposed by electroweak naturalness, eq.(5.4), and neutrino masses,
eq.(5.2). Clearly, this necessarily requires atleast some the couplings in y to be complex.
If all the singlet fermions are degenerate (rα = 1) and have mass 1 TeV then the bound
in eq.(9) simplifies to

1.7× 10−12 <<
∑
α,i

y2
iα < 2.3× 10−11 (6.4)

In the simplest example, if we consider two generations of degenerate fermion singlets
then this can be achieved with the following ansatz of the matrix y:

y =

y1 iy1(1 + ε1)
y2 iy2(1 + ε2)
y3 iy3(1 + ε3)

 (6.5)

where yis are O(1) complex parameters and εi are small parameters. Replacement of the
above y and MN = diag.(M̃N , M̃N) with M̃N = 1TeV in eq. (5.2) leads to a massless and
two massive neutrinos. By varying randomly | yi |∈ [0.2, 1] and Arg.(yi) ∈ [0, 2π], we
obtain the range in | εi | which can reproduce the solar and atmospheric mass squared
differences withing the 3σ range of their global fit values. The results are displayed in
section(10). We also show the distributions in three mixing angles in this case.
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6.0.1 Symmetry structures

We now discuss how to understand the features that come about from the contexts of
electroweak and seesaw naturalness. We have seen that in order to ensure that the see-
saw scale is low(and possibly within the current reach of LHC) and that the naturalness
criterion of the Higgs mass is satisfied, we need to resort to some special structure in
the Yukawa coupling matrix.Unless this kind of a structure is unconvincingly random, it
invokes the need to understand it from a point which captures the broader symmetry(s)
in the problem and what further connections may it have from other candidate mod-
els which resolve some of the issues of the Standard Model.In principle, this kind of a
motivation has been useful from a historical perspective and seeds the rationale behind
looking for symmetry structures in a broader and deeper way.We have understood the
importance of continuous symmetries reasonably well since the last few decades and the
structures that are explored in this context ubiquitously fall in the domain of Lie groups
and its representations.While on the other hand, the domain of discrete finite groups was
not at the forefront of modeling in the arena of particle physics but they have proved
to be quite appropriate in condensed matter systems which involve lattice structures.
But recent investigations show that they are equally proving to be useful and interest-
ing in the particle sector where one deals with flavor physics.Since the Standard Model
has three generations of fermions with each generation following a particular pattern of
masses and mixing angles(in the quark sector) and its extended versions(including lep-
ton sector) following some different patterns, the question of how and why these patterns
exist and differ from one another naturally needed to be addressed. Thus model building
with finite discrete groups was a sensible idea to be dealt with. We now briefly address
the problem of masses and mixings in the leptonic sector for the sake of completeness
and will then move to our original problem.

The observed leptonic mixing angles are known to be close to special values. The atmo-
spheric mixing angle is close to maximal with sin2 θ23 ≡ 0.44,the solar angle θ12 and the
reactor angle θ13 satisfy sin2 θ13 ≡ 0.023 ≡ 0 and sin2 θ12 ≡ 0.21.It is natural to look for
group theoretical explanations for such special values as has been extensively done earlier.
In this approach, it is assumed that the underlying theory of leptonic flavor possesses
some discrete symmetry G.The group G breaks to= smaller non-commuting subgroups
G and Gl which correspond to unbroken symmetries respectively of the neutrino and the
charged lepton mass matrices M and Ml, more precisely of MlM

†
l .While possible choices

of G are a priori unknown and numerous, one can relate G and Gl to the known structure
of the mixing matrix. Thus it becomes more profitable to start with possible choices of G
and Gl dictated from physical considerations and search for groups which contain them
as subgroups.
In all these analyses, the basic but implicit assumption is that neutrinos are Majorana
particles and all three of them are massive.The present neutrino data are however quite
consistent with one of the neutrinos being exactly massless both in the case of normal
and inverted hierarchy for neutrino masses. The underlying symmetry G and hence pos-
sible choice of G become quite different in this case. In this note, we discuss possible
symmetry groups G and embedding of G and Gl into some bigger group G assuming that
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one of the three neutrinos is massless.

A schematic mathematical outline about how mixing angles can be related to symmetry
groups G is as follows.Let Uv and Ul diagonalize Mv and MlM

†
l respectively.

UT
v MvU = Diag.(mv1 ,mv2 ,mv3), (6.6)

UT
l MlM

†
l Ul = Diag.(m2

e,m
2
µ,m

2
τ ). (6.7)

We now consider that Mv and MlM
†
l are invariant under some set of discrete group

elements Bi and Di respectively

BT
i MvBi = Mv (6.8)

and
DT
i MlM

†
l Di = MlM

†
l (6.9)

Without loss of generality, one can consider that the elements Bi and Di commute
amongst themselves and hence can be diagonalized simultaneously. Let the diagonal-
izing matrices for Bi and Di are Xv and Yl respectively. Then it can deduced that

Uv = XvPv (6.10)

and
Ul = YlPl (6.11)

where Pv and Pl are diagonal phase matrices.
Therefore we can write the leptonic mixing matrix

UPMNS = U †l Uv = P ∗l Y
†
l XvPv (6.12)

Thus it can be seen that mixing patterns in the flavor sector(here, the leptonic part) can
be related to symmetry structures from a group theoretic perspective.

In a bottom up approach, one tries to determine groups of Bi and Di and then uses
them to find the larger group G whose subgroup is generated by the elements. A com-
plete set of Bi and Di may depend on the underlying dynamics but one can define a
minimal set which can always be taken as symmetries of mass matrices.

In our problem as discussed earlier, we need to address the specific Yukawa structure
so that in the exact symmetric case, the neutrinos are massless and Higgs naturalness is
satisfied.We thus try to deduce this result by identifying the possible symmetry which
might exist in the Yukawa sector and the right handed fermion sector so that all the
light neutrinos turn out to be massless.A viable scenario which can provide us with the
requisite understanding of the Yukawa structure is the following symmetry:

S†Y S ′ = Y, S ′TMNS
′ = MN (6.13)
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where S ′ ∈ SU(3) and S ∈ U(3) with Eigenvalues of S 6= ±1. This implies that the
effective neutrino mass matrix would obey the following symmetry condition

S†MvS
∗ = Mv (6.14)

where Mv is the effective neutrino mass matrix. This symmetry condition particularly
ensures that the effective neutrino mass matrix is identically zero, rendering all left neu-
trinos to be massless.

In a suitable basis where the MN is diagonal, the Yukawas have the form described
in the earlier section and the light neutrinos are massless. We illustrate this with an
example:

Y =

y1 y2 y3

y4 y5 y6

y7 y8 y9

 , MN =

m1 m2 m3

m2 m4 m5

m3 m5 m6

 (6.15)

where MN has the Majorana structure(symmetric).

We use elements S and S ′ from SU(3) and U(3) respectively as

S =

i 0 0
0 i 0
0 0 i

 , S ′ =

i 0 0
0 −i 0
0 0 1

 (6.16)

Imposing the symmetry condition as mentioned in equation (6.13), we get the forms of
Y and MN

Y =

0 0 y3

0 0 y6

0 0 y9

 , MN =

 0 m2 0
m2 0 0
0 0 m6

 (6.17)

Transforming to the basis where MN is diagonal, we get the form of Y as

Y =

0 iy3 y3

0 iy6 y6

0 iy9 y9

 (6.18)

Thus using certain symmetry structures we arrive at the desired form of the Yukawa
matrix of equation(6.5) upto the perturbations in the parameter εs which will be used to
generate the tiny mass of light neutrinos.

6.0.2 Use of group theoretic models to motivate the residual symmetries

While the gauge interactions are flavour-blind, the flavour dependence of the Yukawa
couplings is crucial because this is, in conjunction with the vacuum expectation values
determined by the minimum of the scalar potential, the origin of fermion masses and
the mixing matrices. In the general case, the fermion masses and the parameters of the
mixing matrices are completely free. Up to now, we do not know of any fundamental
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principle, comparable to the importance of the gauge principle, which would allow us to
constrain the Yukawa sector of the Lagrangian LY and the scalar potential such that the
fermion mass spectra and the entries of the mixing matrices find a satisfactory explana-
tion.
Since symmetries in fundamental interactions have been proven to be successful, we resort
hence to flavor symmetries to put constraints on the Lagrangian and the corresponding
mixing matrices.
If we want that spontaneous symmetry breaking in the flavor sector is exhibited in a
way similar to the gauge sector, then the only way to avoid Goldstone modes in the
problem is to deal with finite groups. In finite groups, if we choose the simplest possi-
ble groups which are abelian, it turns out that they cannot satisfactorily reproduce the
correct mixing structure in the flavor sector. Therefore we resort to non-abelian finite
discrete groups to invoke model building in the flavor sector.A4, the smallest group with
an irreducible three-dimensional representation, has become very popular for its capacity
to enforce tri-bimaximal mixing, provided one finds a solution to the vacuum alignment
problem.

In the problem concerning the naturalness of the Higgs mass, it turns out that even
though we start modelling it with a group theoretic structure, i.e building a Lagrangian
which is invariant under the group concerned, we need to break this symmetry at some
specific energy scale to a smaller residual symmetry of the Yukawas and the right handed
neutrino masses. This smaller symmetry structure consisting of some of the group ele-
ments need not themselves form a subgroup of the original group since the left handed
neutrinos and the right neutrinos are in general not unified under a single representation
in viable models. But as a motivating idea to persuade such a unified representation
scheme in certain beyond the standard model theories like Grand Unified theories, this
can be a starting point. Hence, we try to propose some specific group which accounts for
the property that the residual symmetries themselves form a subgroup of it.

The residual symmetries in our problem are explicitly described by two elements of the
group, i.e, a unitary matrix S ∈ U(3) with all eigenvalues to be pure phases and another
special unitary matrix S ′ ∈ SU(3) with two eigenvalues to be pure phases and one of
them is 1. More schematically, the structure of the residual symmetries consists of the
following constraints:

S†Y S ′ = Y (6.19)

and
S ′TMS ′ = M (6.20)

where Y is the Yukawa coupling matrix and M is the right handed neutrino mass matrix.

The explicit form of S’ is as follows:

S ′ = Diag(η, η∗, 1) (6.21)
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where η is some nontrivial phase.
The form of S can have two possibilities which we list below:

S = Diag(η, η, η) (6.22)

or
S = Diag(η∗, η∗, η∗) (6.23)

If the above structures are satisfied by the elements of the symmetry group we started
with, mathematical consistency forces us to conclude that two Majorana right handed
neutrino masses must be degenerate and the third would not have any bounds and is
decoupled from the rest of the interactions. This can also be understood by a basis
transformation on the fundamental fields and end up with an interaction where one of
the right handed fermion singlets decouples from the Yukawa interactions and only has
self- interactions.The underlying mechanism governing this can be motivated from the
perspective of lepton number conservation.But here we take a different approach and
find that we can design a model based on some appropriate subgroup of U(3). The
subgroup U(3) is required to have an element in it of the form of S which would serve as
a residual symmetry in the broken sector. This would then depict a natural electroweak
seesaw with O(1) Yukawa couplings and satisfies the naturalness condition of the Higgs
simultaneously. This would give massless neutrinos even after seesaw mechanism and
thus extends the idea of seesaw and introduces additional structure. In order to generate
tiny neutrino mass, we further require breaking this residual symmetry with generic
perturbations. We do not discuss any particular model for the perturbative breaking of
symmetry but we give the plausible phenomenological implication.
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Chapter 7

Finite discrete groups and
representation theory

In this section, we present a collection of properties of finite groups that may satisfy the
basic needs of model building in particle physics. The striking feature of finite groups,
which has no counterpart in infinite groups, is that many of their properties are expressed
in terms of the integers associated with the group. Such integers are, for instance, the
order of a group, the number of conjugacy classes, the dimensions of its irreducible rep-
resentations, etc.

A set of generators or generating set of a group G is a subset S of G such that ev-
ery element of G can be written as a finite product of elements of S and their inverses.
We have earlier introduced symmetries of the Lagrangian; these symmetries can be re-
garded as representations of the set of group generators on the field multiplets. A group
is called finitely generated if there is a finite set S of generators. Since we will be dealing
with finite groups, all our groups will be finitely generated. The precise definition of a
presentation of a group G is complicated. A presentation consists of a set S of gener-
ators and a set R of relations among the generators which completely characterize the
group. This means that writing strings of the generators and by using R to shorten the
strings one obtains all group elements. A presentation of a group is by no means unique.
It is often useful to choose different presentations for different purposes. The simplest
example of a presentation is that of the cyclic group Zn. It has one generator a and one
relation an = e, which completely characterizes the group.

One of the most important group-theoretic application to physics is the theory of group
representations. Unless otherwise mentioned, we generally deal with group representa-
tions in complex spaces. In other words, a reasonable definition of a group representation
is a homomorphism of the group to the general linear group GL(n,C) of n-dimensions
which can act on n-dimensional complex vector spaces which in a physical perspective
might refer to the state-space of the system in the problem.The following theorem tells
us that for finite groups, without loss of generality, we can confine ourselves to unitary
representation matrices:
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Theorem: Every finite-dimensional representation D of a finite group G is equivalent to
a unitary representation, i.e.

∃S : S−1DS = D′, D(a)† = D(a)−1 ∀ a ∈ G (7.1)

We list (without rigorous proofs) some of the important theorems in representation theory
which will be useful in the applications to particle physics and specifically to our problem:

Theorem 1: Every finite group has faithful finite-dimensional representations.

Theorem 2: The number of irreducible representations of a finite group is equal to
the number of its conjugacy classes.

Theorem 3: The dimension of an irreducible representation of a finite group is a divisor
of the order of the group.

Theorem 4: The regular representation of a finite group G contains each of its in-
equivalent irreducible representations D(α) with the multiplicity of its dimension.

Theorem 5: No abelian subgroup of a finite group can have any non-trivial faithful
three-dimensional representation.

Schur’s Lemma: Let D(1) and D(2) be finite-dimensional irreducible representations
of a finite group G on the linear spaces V1 and V2 respectively, and let S : V1 → V2 be a
linear operator such that

D(2)(a)S = SD(1)(a) ∀ a ∈ G (7.2)

then S is either zero or invertible. If S is invertible, then the representations are equiva-
lent.

7.0.1 Discrete subgroups of U(3) and their representation

The interesting problem of lepton masses and mixings motivated the study of discrete
symmetries in the problem under which the lagrangian remains invariant.To generate
mixing matrices of the form which closely resembles experimental bounds several such
discrete groups are being considered in many contexts. On the other hand, in our prob-
lem concerning the naturalness of the Higgs mass and the naturalness of the seesaw
mechanism, discrete symmetries are seen to play a vital role in order to explain them
coherently. As mentioned earlier, the symmetry structure of the light neutrino mass
matrix as a result of the symmetry structures of Yukawa matrix and the right neutrino
mass matrix necessarily implies that there must be at least one group element whose rep-
resentation matrix must be unitary but not special unitary. This motivates us to find a
suitable discrete group which would be a subgroup of U(3) and whose three-dimensional
representations should contain elements, some of which are only unitary and some spe-
cial unitary.Earlier works have been done to classify the subgroups of U(3) till order 512.
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Using the minimal prescription in terms of smallest order group, we list here two such
possible groups which can be used to build a viable model in our problem.

[[27,4]]

The group [[27, 4]] is the smallest non-trivial subgroup of U(3).It is a group of order
twenty seven and has eleven conjugacy classes. Due to eleven conjugacy classes, it has
eleven inequivalent irreducible representations with nine one dimensional and two three
dimensional representations.The generators for three dimensional irreducible representa-
tions are given by

S =

1 0 0
0 ω2 0
0 0 ω

 , R =

 0 1 0
0 0 1
ω2 0 0

 (7.3)

We list the character table for one dimensional and three dimensional representations as
follows

Conjugacy classes h χ1(0,0) χ1(0,1) χ1(0,2) χ1(1,0) χ1(1,1) χ1(1,2) χ1(2,0) χ1(2,1) χ1(2,2) χ3

C1 1 1 1 1 1 1 1 1 1 1 3
C2 3 1 1 1 1 1 1 1 1 1 3ω
C3 3 1 1 1 1 1 1 1 1 1 3ω2

C4 9 1 1 1 ω ω ω ω2 ω2 ω2 0
C5 9 1 1 1 ω2 ω2 ω2 ω ω ω 0
C6 3 1 ω ω2 1 ω ω2 1 ω ω2 0
C7 3 1 ω2 ω 1 ω2 ω 1 ω2 ω 0
C8 9 1 ω ω2 ω ω2 1 ω2 1 ω 0
C9 9 1 ω2 ω ω 1 ω2 ω ω 1 0
C10 9 1 ω ω2 ω2 1 ω ω ω2 1 0
C11 9 1 ω2 ω ω2 ω 1 ω ω2 1 0

The generators for the defining representations are:

1(i,j) : R→ wi, S → wj (i, j = 0, 1, 2), (7.4)

3 : R→ R, S → S, (7.5)

3∗ : R→ R∗, S → S∗ (7.6)

We list the tensor product decompositions for this group in the index section.
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Σ(81)

Σ(81) is another discrete subgroup of U(3) which has eighty-one elements. It consists of
seventeen conjugacy classes. Therefore there are seventeen irreducible representations of
this group; nine one-dimensional and eight three dimensional.The nine one-dimensional
representations are represented by 1kl where k, l = 0, 1, 2 and eight three-dimensional
respresentations are represented by 3A,3B,3C ,3D,3A,
3B,3C ,3D. There are four generators,i.e, b, a, a′, a′′.

We list the character table for all one dimensional representations as follows:

Conjugacy classes h χ100
χ101

χ102
χ110

χ111
χ112

χ120
χ121

χ122

C1 1 1 1 1 1 1 1 1 1 1

C
(1)
1 1 1 1 1 1 1 1 1 1 1

C
(2)
2 1 1 1 1 1 1 1 1 1 1

C
(0)
3 3 1 1 1 1 1 1 1 1 1

C
′(0)
3 3 1 1 1 1 1 1 1 1 1

C
(1)
3 3 1 1 1 ω ω ω ω2 ω2 ω2

C
′(1)
3 3 1 1 1 ω ω ω ω2 ω2 ω2

C
”(1)
3 3 1 1 1 ω ω ω ω2 ω2 ω2

C
(2)
3 3 1 1 1 ω2 ω2 ω2 ω ω ω

C
′(2)
3 3 1 1 1 ω2 ω2 ω2 ω ω ω

C
”(2)
3 3 1 1 1 ω2 ω2 ω2 ω ω ω

C
(0)
9 3 1 ω ω2 1 ω ω2 1 ω ω2

C
(1)
9 9 1 ω ω2 ω ω2 1 ω2 ω2 ω

C
(2)
9 9 1 ω ω2 ω2 1 ω ω ω2 1

C
′(0)
9 3 1 ω2 ω 1 ω2 ω 1 ω2 ω

C
′(1)
9 9 1 ω2 ω ω2 ω 1 ω 1 ω2

C
′(2)
9 9 1 ω2 ω ω 1 ω2 ω2 ω 1

We list the set of four generators for each of the 3-dimensional representations as follows:

The generator b is common for all the triplets and is represented as

b =

0 1 0
0 0 1
1 0 0

 (7.7)

.
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The generators a, a′, a′′ are represented on each of the triplets as follows:

a =

ω 0 0
0 1 0
0 0 1

 , a′ =

1 0 0
0 ω 0
0 0 1

 , a
′′

=

1 0 0
0 1 0
0 0 ω

 (7.8)

on 3A,

a =

1 0 0
0 ω2 0
0 0 ω2

 , a′ =

ω2 0 0
0 1 0
0 0 ω2

 , a
′′

=

ω2 0 0
0 ω2 0
0 0 1

 (7.9)

on 3B,

a =

ω2 0 0
0 ω 0
0 0 ω

 , a′ =

ω 0 0
0 ω2 0
0 0 ω

 , a
′′

=

ω 0 0
0 ω 0
0 0 ω2

 (7.10)

on 3C ,

a =

ω2 0 0
0 1 0
0 0 ω

 , a′ =

ω 0 0
0 ω2 0
0 0 1

 , a
′′

=

1 0 0
0 ω 0
0 0 ω2

 (7.11)

on 3D.

The representations on 3A,3B,3C ,3D are taken to be complex conjugates of the rep-
resentations on 3A,3B,3C ,3D. These generators are represented on the singlets 1kl as
b = ωl, a = a′ = a′′ = ωk.

We list the tensor product decompositions for this group in the index.
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Chapter 8

A Σ(81) model for electroweak
natural seesaw

We propose a model for the electroweak natural seesaw by using the group Σ(81).In this
model, we assign different particles with distinct representations of the group and provide
the relevant lagrangian. The assignment of different representations to the particles are
as follows:

N :

N1

N2

N3


3D

, φ :

φ1

φ2

φ3


3D

(8.1)

l :

l1l2
l3


3C

, ψA :

ψA1

ψA2

ψA3


3A

(8.2)

ψB :

ψB1

ψB2

ψB3


3B

, ψC :

ψC1

ψC2

ψC3


3C

(8.3)

We require four flavon fields to completely account for the residual symmetry struc-
ture as explained earlier in the context of natural seesaw symmetries. The relevant part
of the Lagrangian in addition to the Standard Model part is given as:

−LN =
1

Λ
y(L̄N)3̄AψAH̃ +

1

Λ
y′(L̄N)3̄BψBH̃ +

1

Λ
y′′(L̄N)3̄CψCH̃

+
1

2
λ(N̄ cN)3̄Dφ+

1

2
λ′(N̄ cN)3̄Dφ+ h.c

(8.4)
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where (N̄ cN)3̄D represent two different invariant combinations corresponding to the ten-
sor product decomposition eq.(14.29).

In the right handed neutrino mass sector, we expand the mass terms and obtain the
following:

LRH =
1

2
λ
(
N̄1N1φ1 + N̄2N2φ2 + N̄3N3φ3

)
+

1

2
λ′
(

(N̄2N3 + N̄3N2)φ1

+(N̄3N1 + N̄1N3)φ2 + (N̄2N1 + N̄1N2)φ3

) (8.5)

Demanding invariance of φ under a′2 of 3D representation, we get the VEV alignment of
φ as:

〈φ〉 =

 0
0
vφ

 (8.6)

and the corresponding right handed neutrino mass matrix as

MN = vφ

0 λ 0
λ 0 0
0 0 λ′

 (8.7)

Now we come to the Dirac sector.Here the relevant part of the lagrangian is extended as:

LDirac = y
(
ν̄2N2ψA1 + ν̄3N3ψA2 + ν̄1N1ψA3

)
H̃

+y′
(
ν̄2N3ψB1 + ν̄3N1ψB2 + ν̄1N2ψB3

)
H̃

+y′′
(
ν̄2N1ψC1 + ν̄3N2ψC2 + ν̄1N3ψC3

)
H̃

(8.8)

Demanding invariance conditions of the flavon fields as below:

a(a′)2ψA = ψa, a
2a′′ψB = ψB, a′(a′′)2ψC = ψC (8.9)

we obtain the following VEVs

〈ψA〉 =

 0
0
vψA

 (8.10)

〈ψB〉 =

 0
vψB
0

 (8.11)

〈ψC〉 =

vψC0
0

 (8.12)
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We therefore have the Dirac Yukawa matrix as follows:

YD =
1

Λ

y′′vψC 0 0
yvψA 0 0
y′vψB 0 0

 (8.13)

The structures of YD and MN can be brought to the usual forms eq.(6.17) when the
right handed heavy neutrinos are in their mass eigenstates(MN is diagonal).This is done
by the basis transformation

MN → UTMNU, YD → YDU (8.14)

with

U =

 1√
2

−i√
2

0
1√
2

i√
2

0

0 0 1

 (8.15)

which results into

Y =

y1 iy1 0
y2 iy2 0
y3 iy3 0

 , MN =

M 0 0
0 M 0
0 0 M3

 (8.16)

with y1 = y′′√
2

vψC
Λ

,y2 = y√
2

vψA
Λ

,y3 = y′√
2

vψB
Λ

,M = λvφ and M3 = λ′vφ.

Thus we see that this particular group- theoretic model captures the essential symmetry
structure of our problem.We now briefly discuss the implications of our symmetry model
from a phenomenological perspective and give a suitable example to illustrate it.
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Chapter 9

Phenomenological implications

9.0.1 Flavour violating processes

In the lepton sector, flavour violation is a consequence of neutrino oscillations.The PMNS
matrix gives the correct mixing angles for the leptons of different flavours and the mass
eigenstates of leptons are in general a superposition of their flavour eigenstates.Therefore
there exists theoretical predictions for phenomenological interactions like decay processes
which involve violation of the flavour quantum number.But due to the GIM mechanism,
lepton flavour violating processes are strongly suppressed in general.Therefore they are
not observed till date experimentally(because of extremely small amplitudes).Here we
provide a phenomenological account on the branching ratio of µ→ eγ decay process and
illustrate on its significant enhancement in the light of our symmetry model.

9.0.2 Branching ratio for µ→ eγ

The relevant part of the interaction lagrangian is:

Lint = l̄iLγ
µW †

µνjL + l̄iRγ
µW †

µNjR + yij ν̄iLNRj

+eAµ(∂µW
−
ν − ∂νW−

µ )W+ν + h.c
(9.1)

The amplitude for the process µ→ eγ mediated by νiL and NjR is given by:

A =
g2

8M2
W

emµ

32π2
Ti (9.2)

Here

Ti = U∗µiUei cos2 θiF
( m2

i

M2
W

)
+ U∗µiUei sin

2 θiF
(M2

i

M2
W

)
(9.3)

where U is the PMNS matrix, θi are the mixing angles, mi are the left neutrino masses
and Mi are the right heavy neutrino masses. The functional F(x) is given by:

F (x) = 2(x+ 2)I(3)(x)− 2(2x− 1)I(2)(x) + 2xI(1)(x) + 1, (9.4)
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where

I(n)(x) =

∫ 1

0

zn

z + (1− z)x
dz (9.5)

The decay rate is given by

Γ(µ→ eγ) =
2m3

µ

8π
| A |2 (9.6)

Taking the approximation where the right neutrino masses are much much greater than
the masses of left neutrinos and W-bosons, we obtain the following branching ratio:

B(µ→ eγ) =
3α

8π
| U∗µiUeiθ2

i |2 (9.7)

where
θi =

yiv

2Mi

(9.8)

Using Mi ≈ 1TeV, v ≈ 174 GeV, we consider the ratio of two branching ratios corre-
sponding to Yukawa couplings of y ≈ O(1) and y′ ≈ O(10−5). We find,

B(µ→ eγ)y
B(µ→ eγ)y′

≈ 1020 (9.9)

Therefore, there is a significant increase in the branching ratio of the respective process if
one considers the natural electroweak seesaw where the Yukawa couplings are order one
numbers. Our symmetry which invokes such a Yukawa structure satisfactorily predicts
this enhancement.

We next discuss about the cosmological front and address the issue of leptogenesis.

45



Chapter 10

Cosmological perspectives

Given that our group theoretic model establishes a concrete framework of natural elec-
troweak seesaw incorporating the naturalness problem of the Higgs, the next question we
wish to ponder is how it affects the scenarios in cosmology,viz.the viable models of lepto-
genesis and baryogenesis.This question is important to address since it accounts for the
long-standing problem in cosmology, i.e matter-antimatter asymmetry in the universe.We
first give some brief review on standard cosmology and then discuss about leptogenesis
and the possible link with our model.

In the hot big bang model, the history of the universe has two quite well distinguished
stages. In a first hot phase, the early universe, matter and radiation were coupled and
the growth of baryonic matter perturbations was inhibited. In this stage matter was in
the form of a plasma and properties of elementary particles were crucial in determining
the evolution of the universe.After matter-radiation decoupling occurring during the so-
called re-combination epoch, when electrons combined with protons and Helium-4 nuclei
to form atoms, baryonic matter perturbations could grow quite quickly under the action
of dark matter inhomogeneities, forming the large-scale structure that we observe.With
the astonishing progress in observational cosmology during the last fifteen years, we have
today quite a robust minimal cosmological model, the so-called ‘Λ-Cold Dark Matter’
(ΛCDM)model sometime popularly dubbed as the ‘vanilla model’. The ΛCDM model is
very successful in explaining all current cosmological observations and its parameters are
currently measured with a precision better than ≈ 10%.
The ΛCDM model relies on general relativity, Einstein’s theory of gravity, for a descrip-
tion of the gravitational interactions on cosmic scales. It belongs to the class of Fried-
mann cosmological models based on the assumption of the homogeneity and isotropy
of the Universe.In this case the space-time geometry is conveniently described in the
comoving system by the Friedmann-Robertson-Walker metric in terms of just one time-
dependent parameter: the scale factor. The distances among objects at rest with respect
to the comoving system are just all proportional to the scale factor, as the distances
between points on the surface of an inflating balloon. The expansion of the universe is
then described in terms of the scale factor time dependence that can be worked out as a
solution of the Friedmann equations.
However, a solution of the Friedmann equations also require s the knowledge of the

46



energy- matter content of the Universe. In this respect, the ΛCDM model also belongs
to a sub-class of Friedmann models, the Lemaitre models, where the energy- matter
content is described by an admixture of three different forms of fluids: i) matter, the
non-relativistic component where energy is dominated by the mass term; ii) radiation,
the ultra-relativistic component where energy is dominated by the kinetic energy term
(in the case of photons this is exactly true); iii) vacuum energy density and/or a cosmo-
logical constant term.
The current cosmological observations are also able to determine quite precisely the val-
ues of the different contributions to the total energy density from the three different fluids
in the ΛCDM model: radiation contributes at the present time only with a tiny 0.1%,
matter gives a more significant 26.5% contribution, while the dominant remaining 73.5%
contribution is in the form of a cosmological constant and/or vacuum energy density.
This particular combination of values, a sort of cosmological recipe, reproduces very well
all cosmological observations and in particular the above-mentioned acceleration of the
Universe at the present time. A fundamental ingredient of the ΛCDM model is the exis-
tence of a very early stage in the history of the universe called inflation, characterised by
a super-luminal expansion, that was able to bring a microscopic sub-atomic portion of
space to have a macroscopic size corresponding today to our observable Universe where
a homogeneous, isotropic and a flat space-time geometry holds with very good approx-
imation. In this way homogeneity, isotropy and flatness of the Universe has not to be
postulated but are instead a natural result of the inflationary stage. However, inflation
also predicts, at the end of the inflationary stage, the presence of primordial perturbations
that acted as seeds for the formation of galaxies, clusters of galaxies and super- clusters
of galaxies: the so called large-scale structure of the universe. The same primordial per-
turbations are also responsible for the observed cosmic microwave background (CMB)
temperature anisotropies and for their properties. In particular for the explanation of
the so called acoustic peaks in the angular power spectrum of the CMB temperature
anisotropies. The acoustic peaks originate from the compression and rarefaction of the
coupled baryon-photon fluid at the time of recombination.

The existence of a first hot stage is not only fundamental to understand the existence
and the properties of the cosmic microwave background radiation (CMB) and the nuclear
composition of the Universe with big bang nucleosynthesis (BBN) but it also seems to
enclose the secrets for the solution of those cosmological puzzles of the ΛCDM model that
strongly hint at new Physics. These include: i) the existence of Dark Matter, that has a
crucial role in making possible the quick formation of galaxies after the matter-radiation
decoupling; ii) the observed matter-antimatter asymmetry of the Universe; iii) the ne-
cessity of an inflationary stage and iv) the presence of the mysterious form of energy,
currently indistinguishable from a cosmological constant, that is driving the acceleration
of the universe at the present time.

In the present context, we are going to discuss the problem of matter-antimatter asym-
metry of the universe.The first insightful idea to understand the asymmetry was given
by Sakharov, a Russian physicist.Sakharov identified, three necessary conditions, bearing
now his name, for a successful model of baryogenesis, which can explain the observed
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asymmetry between matter and anti-matter: (i) the existence of an elementary process
that violates the baryon number, (ii) violation of charge conjugation C and of CP, where P
indicates parity transformation, (iii) a departure from thermal equilibrium during baryo-
genesis. This departure from thermal equilibrium has to be permanent, since otherwise,
the baryon asymmetry would be subsequently washed-out.
It became apparent that the Sakharov conditions can be fulfilled within the standard
Model.The most efficient model was realised by electroweak baryogenesis.The departure
from thermal equilibrium is strong if there occurs a strong first order phase transition at
the electroweak symmetry breaking phase. But to its disadvantage, this requires a strin-
gent bound on the mass of the standard model Higgs mH ≤ 40 GeV which is at odds with
the experimental results and also the LEP lower bound mH ≥ 114 GeV. No other plau-
sible arrangement is found within the Standard Model to infer this particular asymmetry.

Therefore, the asymmetry in matter-antimatter compels us to look for new physics one of
which is evidently that of extra right handed fermions which exhibit the seesaw mecha-
nism to generate tiny neutrino masses.We now elaborate on the possibility of leptogenesis
as a viable model to explain baryogenesis(hence, baryon asymmetry).

10.0.1 Thermal leptogenesis

Leptogenesis belongs to a class of models of baryogenesis where the asymmetry is gen-
erated from the out-of-equilibrium decays of very heavy particles, quite interestingly the
same class as the first model proposed by Sakharov belongs. These class of models be-
came very popular with the advent of grand-unified theories (GUTs) that provided a
specific well definite and motivated framework.In GUT baryogenesis models the very
heavy particles are the same new gauge bosons predicted by GUTs. However, the fi-
nal asymmetry depends on too many untestable parameters, so that imposing successful
baryogenesis does not lead to compelling experimental predictions. This lack of pre-
dictability is made even stronger considering that the decaying particles are too heavy to
be produced thermally and one has therefore to invoke a non-thermal production mecha-
nism of the gauge bosons. This is because while the mass of the gauge bosons is about the
grand-unification scale,≈ 1015−16 GeV,the reheating temperature at the end of inflation
TRH cannot be higher than≈ 1015 GeV from CMB observations.The reheating tempera-
ture is the initial value of the temperature at the beginning of the radiation dominated
regime after inflation.Below this temperature, the inflationary stage can, therefore, be
considered concluded. The minimal (and original) version of leptogenesis is based on
the type I see-saw mechanism and the asymmetry is produced by the three heavy right
handed neutrinos.

We call ‘minimal leptogenesis scenarios’ those scenarios where we have a type I see-saw
mechanism and a thermal production of the right handed neutrinos (thermal leptogene-
sis), implying that TRH is comparable at least to the lightest RH neutrino mass M1, are
assumed. At these high temperatures, the right handed neutrinos can be produced by
the Yukawa interactions of leptons and Higgs bosons in the thermal bath.
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When the right handed neutrinos are produced, they decay either into leptons,Ni →
li + φ† or antileptons,Ni → l̄i + φ with decay rates Γi and Γ̄i respectively, where φ
is the standard model Higgs. Since both the Higgs particle and RH neutrinos do not
have lepton number, both these inverse processes and decays violate lepton number
conservation(∆L = 1) and also charge-parity(CP) symmetry.They as well violate B-L
symmetry(∆(B−L)=1).At temperatures T�100 GeV there exists some non-perturbative
processes called sphalerons(static saddle-point solutions of the electroweak field equa-
tions) which are in equilibrium. They violate both lepton and baryon number while
they still conserve the BL symmetry.In this way, the lepton asymmetry produced in the
elementary processes is reprocessed in a way that at the end approximate 1/3 of B-L
asymmetry is in the form of baryon asymmetry and 2/3 of it is in the form of lepton
number asymmetry. This immediately implies that two out of three of the Sakharov
conditions are satisfied. The condition of departure from thermal equilibrium is also
satisfied since some of the decays occur out-of-equilibrium and hence show the depar-
ture.The asymmetry survives and does not get washed out from inverse processes.

10.0.2 Resonant leptogenesis

In resonant leptogenesis, the usual process of generating asymmetry in the leptonic sector
gets enhanced due to the mixings of nearly degenerate heavy neutrinos that have their
difference of masses comparable to their decay widths.The motivation to incorporate de-
generate heavy neutrinos as candidates for leptogenesis comes from the understanding
of mass scales in grand unified theories(GUTs).For a consistent seesaw model within
GUTs, the mass scale of the heavy neutrinos has to be of the order of the GUT scale≈
1016GeV.But certain inflationary models predict a reheating temperature(TRH) of the
order of 109GeV.This low re-heating temperature gives rise to the constraint on the or-
der of mass scale in thermal leptogenesis. The Majorana neutrinos which are responsible
for predicting the baryon asymmetry need to have a mass scale lower than the reheat-
ing temperature for the abundant production in the early universe.Such a mass scale is
deemed to be unnaturally low in regard to the GUT scale.

In order to avoid this problem, one looks for low scale thermal leptogenesis which relies
on a dynamical mechanism, in which heavy-neutrino self- energy effects on the leptonic
asymmetry become dominant and get resonantly enhanced, when a pair of heavy Majo-
rana neutrinos have a mass difference comparable to their decay widths.In this case, the
masses of heavy neutrinos can be as low as 1 TeV without any further problems.

In the particular symmetry model which we have dealt with, corresponds to degener-
ate Majorana neutrino masses as a result of the symmetry structure.We, therefore, can
link our viable model of electroweak natural seesaw with resonant leptogenesis in order
to explain the observed baryonic asymmetry.
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Chapter 11

Numerical results

We present here the numerically obtained distributions for the perturbation parameters
to generate the mass squared differences of the light neutrinos to 3σ accuracy accord-
ing to the latest experimental data. We also plot the distribution of the corresponding
mixing angles by producing the results numerically with the obtained perturbation pa-
rameters.In the plots of the mixing angles, the shaded regions indicate the 3σ accuracy
corresponding to the latest experimental data. In the numerical computation, we took
our residual symmetry structure for two generations of neutrinos,used degenerate right
handed neutrino masses each of 1TeV and varied the complex Yukawa couplings ran-
domly in the range | yi |∈ [0.2, 1] and Arg.(yi) ∈ [0, 2π] to generate the perturbation
parameters which reproduces the solar and atmospheric mass squared differences. We
then use these parameters to produce the distribution of mixing angles in the leptonic
sector.In the simplest example, we consider two generations of degenerate fermion sin-
glets and this can be achieved with the following ansatz of the matrix y:

y =

y1 iy1(1 + ε1)
y2 iy2(1 + ε2)
y3 iy3(1 + ε3)

 (11.1)
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11.0.1 Masses and mixing angles for neutrinos

Figure 11.1: Distribution of parameter | ε1 |

Figure 11.2: Distribution of parameter | ε2 |
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Figure 11.3: Distribution of parameter | ε3 |

Figure 11.4: Distribution of mixing angle sin2 θ12

Figure 11.5: Distribution of mixing angle sin2 θ13
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Figure 11.6: Distribution of mixing angle sin2 θ23
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Chapter 12

Summary and outlook

Seesaw mechanisms are promising candidates for neutrino mass generation.They are well
motivated from some specific Grand Unified Theories(GUTs).There have been different
types of seesaw depending on the property of beyond the standard model particles.We
have elaborated on the three basic types which have been our focus throughout this
work.The hierarchy problem is one of the long-standing issues in particle physics and is
yet unresolved. Several models indicating new Physics at high energy scales are proposed
but almost none of them have passed adequate experimental tests.There has not been
any noteworthy signature of beyond the standard model physics at the energies where
LHC is running currently. But the hope still remains as it reaches higher energies in the
future runs.We have discussed how the hierarchy problem in particle physics is related to
the problem of the naturalness of Higgs boson’s vacuum configuration.The naturalness
criteria imposes that corrections to the Higgs µ2 parameter should be at most of the order
of its vacuum expectation value in order to preserve the electroweak naturalness.In the
type-I seesaw model of neutrino masses, the naturalness of the electroweak scale restricts
the masses of heavy right neutrinos to be ≤ 107 GeV and their Yukawa couplings to be
of O(10−4).If the couplings are taken to be of order unity then the right neutrinos turn
out to be as light as few TeV.In this case the seesaw mechanism cannot be considered
as the correct framework to generate small neutrino masses.To produce viable neutrino
mass spectrum which is consistent with solar and atmospheric mass squared differences,
one needs to arrange for finely tuned correlations among the Yukawa couplings and right
neutrino masses.Unless these correlations are random, they must be motivated by specific
symmetry considerations.We, therefore, motivate such fine-tuning through finite discrete
flavour symmetry under which all the standard model leptons and fermion singlets trans-
form non-trivially.

We discussed the basics of finite discrete groups and their representations.Some use-
ful theorems from representation theory are studied for the sake of completeness of the
analysis.Two interesting groups and their representations, viz.[[27, 4]] and Σ(81) are stud-
ied vividly which are fruitful in modelling the current problem.The group Σ(81) has been
chosen to build the corresponding model of flavor symmetry because it is found to be
the smallest group where one can assign 3-dimensional irreducible representations to
the three generations of right neutrinos and the leptons.Such an assignment is neces-
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sary in order to account for the residual symmetries in the leptonic sector and the right
neutrino sector.This underlying symmetry yields the notion of seesaw cancellation and
leads to massless neutrinos at the leading order.Generic perturbations to the symmetry
then produce tiny neutrino masses. We then study the phenomenology of flavour violat-
ing processes in the light of our proposed symmetry model.We explicitly calculated the
branching ratio concerning one such process(µ → eγ) and compared it with the earlier
results in the literature.There is a significant enhancement observed in the branching
ratio based on our framework.Finally, we discussed the mechanisms of leptogenesis and
baryogenesis in the context of cosmology and elaborated on two viable ways of leptogen-
esis.We find that in our model, small deviations from degeneracy in the masses of right
heavy fermions are compatible with the data and resonant leptogenesis mechanism hence
may naturally emerge in such class of models.Such a framework can then successfully
account for baryon asymmetry of the universe.
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Chapter 14

Index

[[27, 4]]

The tensor product decompositions of the group [[27, 4]] and the invariant subspaces
are given as follows:

x1

x2

x3


3

⊗

y1

y2

y3


3

=

x1y1

x2y2

x3y3


3̄∗

⊕

 x3y2

ωx1y3

ω2x2y1


3̄∗

⊕

 x2y3

ωx3y1

ω2x1y2


3̄∗

(14.1)

x1

x2

x3


3

⊗

y1

y2

y3


3∗

=
(
x1y1 + x2y2 + x3y3

)
1(0,0)

(14.2)

x1

x2

x3


3

⊗

y1

y2

y3


3∗

=
(
x1y2 + x2y3 + ω2x3y1

)
1(0,1)

(14.3)

x1

x2

x3


3

⊗

y1

y2

y3


3∗

=
(
x1y3 + ω2x2y1 + x3y2

)
1(0,2)

(14.4)

x1

x2

x3


3

⊗

y1

y2

y3


3∗

=
(
x1y1 + ωx2y2 + ω2x3y3

)
1(1,0)

(14.5)
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x1

x2

x3
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(14.10)

Σ(81)

The tensor product decompositions of the triplets in the group Σ(81) are as follows:

x1

x2

x3
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,
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3A

⊕

x2y2

x3y3

x1y1


3B

⊕

x2y3

x3y1

x1y2


3C

(14.18)

,
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x1

x2

x3


3B

⊗

y1

y2

y3


3B

=

x1y1

x2y2

x3y3


3B

⊕

x3y2

x2y1

x1y2


3C

⊕

x2y3

x1y2

x2y1


3C

(14.19)

,

x1

x2

x3


3B

⊗

y1

y2

y3


3B

=
( ∑
l=0,1,2

(x1y1 + ω2lx2y2 + ωlx3y3)10
l

)

⊕

x2y1

x3y2

x1y3


3D

⊕

x1y2

x2y3

x3y1


3D

(14.20)

,

x1

x2

x3


3B

⊗

y1

y2

y3


3C

=

x1y1

x2y2

x3y3


3A

⊕

x2y3

x3y1

x1y2


3B

⊕

x3y2

x1y3

x2y1


3B

(14.21)

,

x1

x2

x3


3B

⊗

y1

y2

y3


3C

=
( ∑
l=0,1,2

(x1y1 + ω2lx2y2 + ωlx3y3)11
l

)

⊕

x2y3

x3y1

x1y2


3D

⊕

x1y3

x2y1

x3y2


3D

(14.22)

,

x1

x2

x3


3B

⊗

y1

y2

y3


3D

=

x3y1

x1y2

x2y3


3A

⊕

x3y3

x1y1

x2y2


3B

⊕

x3y2

x1y3

x2y1


3C

(14.23)

,

x1

x2

x3


3B

⊗

y1

y2

y3


3D

=

x2y3

x3y1

x1y2


3A

⊕

x2y1

x3y2

x1y3


3B

⊕

x2y2

x3y3

x1y1


3B

(14.24)
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,

x1

x2

x3


3C

⊗

y1

y2

y3


3C

=

x1y1

x2y2

x3y3


3C

⊕

x2y3

x3y1

x1y2


3A

⊕

x3y2

x1y3

x2y1


3A

(14.25)

,

x1

x2

x3


3C

⊗

y1

y2

y3


3C

=
( ∑
l=0,1,2

(x1y1 + ω2lx2y2 + ωlx3y3)10
l

)

⊕

x2y1

x3y2

x1y3


3D

⊕

x1y2

x2y3

x3y1


3D

(14.26)

,

x1

x2

x3


3C

⊗

y1

y2

y3


3D

=

x3y2

x1y3

x2y1


3A

⊕

x3y1

x1y2

x2y3


3B

⊕

x3y3

x1y1

x2y2


3C

(14.27)

,

x1

x2

x3


3C

⊗

y1

y2

y3


3D

=

x2y2

x3y3

x1y1


3A

⊕

x2y3

x3y1

x1y2


3B

⊕

x2y1

x3y2

x1y3


3C

(14.28)

,

x1

x2

x3


3D

⊗

y1

y2

y3


3D

=

x1y1

x2y2

x3y3


3D

⊕

x2y3

x3y1

x1y2


3D

⊕

x3y2

x1y3

x2y1


3D

(14.29)

,

x1

x2

x3


3D

⊗

y1

y2

y3


3D

=
( ∑
l=0,1,2

(x1y1 + ω2lx2y2 + ωlx3y3)10
l

)
⊕
( ∑
l=0,1,2

(x1y1 + ω2lx2y2 + ωlx3y3)11
l

)
⊕
( ∑
l=0,1,2

(x1y1 + ω2lx2y2 + ωlx3y3)12
l

)
(14.30)
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.

The tensor products of singlets are given by

1kl ⊗ 1k
′

l′ = 1
k+k′(mod3)
l+l′(mod3) (14.31)

.
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