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Abstract

Let G be a finitely generated group with a finite generating set {s1, s2, ..., sn}.

We define the length (l(g)) of g ∈ G to be the number of generators required in

the shortest decomposition of g = y1y2...yk, where each yi is either a generator or

the inverse of generator. Then we can define a metric d on G given by d(g, h) =

l(gh−1). Now, if B(e, r) denotes the ball of radius r centred at identity, then define

a function γG(r) : N → N given by γG(r) = |B(e, r)|, which counts the size of balls.

The growth rate of group is the study of the asymptotic behaviour of this function

γG(n). Depending on the nature of this function, we can classify the growth type into

polynomial, exponential and intermediate. Here, we try to understand these growth

functions and their properties. The asymptotic nature of this function provides us

with a lot of information pertaining to the group.
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Chapter 1

Introduction

The topic of growth entered group theory, with a geometric motivation, in the middle

of the last century. The concept of growth of groups deals with the study of finitely

generated groups. This was introduced by A.S. Schwarz and then independently by

J. Milnor. The notion of growth seems to be a very natural one, it arose first not

in pure group theory, but in a geometric application; when it was noted that the

rate of volume growth of the universal cover M̃ of a compact Riemannian manifold

M coincides with the rate of growth of the fundamental group π1(M). J.Milnor and

J.A.Wolf demonstrated that the growth type of the fundamental group gives some

important information about the curvature of the manifold.

Analogously, we can associate a metric space to each finitely generated group and

then study the asymptotic behaviour of size of the balls. We define the growth of

group to be this asymptotic behaviour of size of these balls.

In 1968, the problems raised by Milnor initiated a lot of activity and opened up

new directions in group theory and other areas of its applications.

Problem 1.0.1 What are the groups of polynomial growth?

Problem 1.0.2 Is it true that the growth function of every finitely generated group

is necessarily equivalent to a polynomial or to the function 2n ?

In 1968, Milnor [3] and Wolf [9] proved that if a finitely group soluble group G
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does not have exponential growth, then G has a nilpotent subgroup of finite index.

Then in 1972, H. Bass[2] showed that finitely generated nilpotent groups have poly-

nomial growth. So Bass’s result gave a partial answer of 1.0.1. The complete answer

was given by M. Gromov in 1981, who proved that groups of polynomial growth

have a nilpotent subgroup of finite index. In the light of these results, we can say that

a group has polynomial growth if and only if it has a nilpotent subgroup of finite index.

Till 1980, each finitely generated group turned out to be of either polynomial

growth or exponential growth. In 1980, Rostislav Grigorchuk [7] constructed a finitely

generated infinite torsion group and in 1984 it was proved by Grigorchuk [8] that it

has intermediate growth. Along with the intermediate property of the Grigorchuk

group, it also gives a negative answer to the Burnside problem : whether a finitely

generated group in which every element has finite order must necessarily be a finite

group. Gigorchuck group was first constructed as an example for Burnside problem.

Only later was it noted that it has intermediate growth. Later on in 1983, Narain

Gupta and Said Sidki constructed, for each odd prime p, a finitely generated infinite

torsion group and later on they turned out to be of intermediate growth. The existence

of groups of intermediate growth made group theory and other areas of its applications

much richer. Eventually it led to the appearance of new directions in group theory:

self-similar groups, branch groups, and iterated-monodromy groups etc.

The second chapter includes the notion of growth and properties of growth func-

tion. In this chapter, we also discuss some basic results regarding nilpotent groups,

soluble and polycyclic groups. In chapter 3, we discuss the growth of finitely gen-

erated soluble groups. In the first section, we discuss the following result: a finitely

generated soluble group G, which does not have exponential growth, has a nilpotent

subgroup of finite index. The second section includes the proof of the theorem of

Hymann Bass, which says that a finitely generated nilpotent group has polynomial

growth. Chapter 4, includes the proof of Gromov’s theorem, which says that groups

of polynomial growth have a nilpotent subgroup of finite index and the last chapter

discusses the groups of intermediate growth. In the first section of this chapter, we

discuss the Grigorchuk group and show that it has intermediate growth. We also

look at its properties like, it is a finitely generated infinite 2-group, it is residually
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finite, has solvable word problem etc. The Second section of this chapter is devoted

to Gupta Sidki groups, its properties and intermediate nature of it’s growth.
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Chapter 2

Growth

2.1 Preliminaries

Definition 2.1.1 A graph is a pair Γ = (V,E) , where V consisting of a set of

vertices and E, the set of edges, together with a incidence function ψΓ that associates

with each edge of Γ an unordered pair of vertices of Γ.

Definition 2.1.2 (Cayley Graph) Let G be a finitely generated group and S ⊂ G

be a generating set for G. The Cayley graph Γ(G,S) of G with respect to the generating

set ’S’ is the graph ”Cay(G,S)” whose set of vertices are the elements of G and set

of edges are {(g, g.s) | g ∈ G, s ∈ S ∪ S−1}.

Note that, two vertices in a Cayley graph are adjacent if and only if they differ

by an element of generating set. Cayley graph of finitely generated group gives us a

means by which a finitely generated group can be viewed as a geometric object.

Remark 2.1.3 Cayley graph is not just a geometric object but we can make it into

a topological object(indeed a metric space) by defining a suitable metric.

So, now we will define a metric on Γ(G,S).
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2.1.1 Word metric on Cayley graph Γ(G,S)

First we will define, the length of a word g ∈ G with respect to some generating set

S, if we denote l(g) to be the length of g, then it is defined as follows

l(g) = min {n ∈ N | ∃ s1, s2, ..., sn ∈ S ∪ S−1 | g = s1s2...sn}

Now, let G be a finitely generated group with a finite generating set S ⊂ G. Then a

map dS : G × G → R on G with respect to S is a metric on G associated with the

Cayley graph Γ(G,S), given by

dS(g, h) = l(gh−1) ∀g, h ∈ G

1. dS(g, h) = 0⇔ l(gh−1) = 0⇔ gh−1 = e⇔ g = h.

2. dS(g, h) = l(gh−1) since gh−1 = s1s2...sn, which implies that hg−1 = s−1
n s−1

n−1...s
−1
1

and therefore l(gh−1) = l(hg−1) = dS(h, g)

3. Let g, h, k ∈ G such that n = dS(g, h), m = dS(h, k) so gh−1 = s1s2...sn and

hk−1 = s′1s
′
2...s

′
m therefore gk−1 = (gh−1)(hk−1) = s1s2...sns

′
1s
′
2...s

′
m

it follows that,

dS(g, k) ≤ n+m

Therefore, we have

dS(g, k) ≤ dS(g, h) + dS(h, k)

Hence, these three properties shows that dS gives a metric on G, called word metric

on Γ(G,S).

Observation 2.1.4 Γ(G,S) is metric space with word metric. In general, the word

metric on a given group depends on the chosen set of generators.

Example 2.1.5 The word metric on Z corresponding to the generating set {1} coin-

cide with the metric on Z induced from the standard metric on R.

Let BG,S
r (e) = {g ∈ G | l(g) ≤ r} denote the ball of radius r centred at the identity

e of G.
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2.1.2 Growth Function:

Let G be a finitely generated group and S ⊂ G be a finite generating set of G. Then

the growth function γSG of G with respect to S is defined as γSG : N → N given by

γSG(r) = |BG,S
r (e)|, where |BG,S

r (e)| is the number of elements in the ball BG,S
r (e). If

we denote aG(n) be the number of elements of group G having length r and γG(r) be

the number of elements of G of length at most r. i.e..

γG(r) =
r∑
i=0

aG(i). (2.1)

Example 2.1.6 If G = Z and S = {1}. Now we will calculate aG(n) and sG(n)

Take S = {1}. Clearly aG(0) = 1 and aG(1) = 2, as the generators have length 1.

Since every integer n can be written 1 + 1 + 1.. + 1(n copies) if n is positive and

(−1) + (−1) + ...+ (−1) ( n copies) if n is negative, n and −n are the only numbers

which can be formed by using the n copies of generator such that the length is n.

Hence aG(n) = 2 for all n except 0. By the equation (1), we have γG(0) = 1 and

γG(n) =
∑n

i=0 aG(i) = 1 + 2 + 2 + ...+ 2( n copies) = 1 + 2(n) = 2n+ 1. �

Example 2.1.7 Let G = Z, S = {2, 3}, then the growth function is given by γSG(r) =

1 if r = 0, 5 if r= 1 and 6r+1 if r > 1.

�

Proposition 2.1.8 A group G is finite if and only if aG(n) is eventually 0, equiva-

lently if and only if γG(n) is eventually constant.

Proof: If G is finite group say G = {a1, a2, ...an} then we calculate length of each ai

i.e. l(ai) and take the maximum of all such length, say k. i.e.

k = max{l(ai)|i = 1, 2.., n}

and hence aG(m) = 0 ∀ m > k. Then Certainly γG(m) is constant for all m > k. Now

conversely if γG(n) is eventually constant, then aG(n) must be eventually 0(otherwise
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sG(n) would no longer be eventually constant) as since in equation (1), at each stage

n, γG(n) be the addition of sG(n− 1) with aG(n). Now assume aG(n) is eventually 0,

i.e. ∃ k ∈ Z such that aG(n) = 0 ∀ n > k. If we show that for each integer t there

are only finitely many elements of length t, this will complete the proof. Let x be

an element of length t and write x = y1y2...yt where each yi is either sj or (sj)
−1 for

some 1 ≤ j ≤ n and 1 ≤ i ≤ t. Since choices for such sj are finite and hence number

of elements of length t are finite, So for each 1 ≤ t ≤ k we have only finite numbers

of element of length t, and since aG(n) = 0 ∀ n > k which shows that the elements

in a group G is finite. Therefore, G is finite group. �

Remark 2.1.9 In 2.1.6 and 2.1.7, we noticed that growth function of a finitely gen-

erated group depends upon the generating set. But we will prove that the growth

type of finitely generated group G does not depend upon generating set of a group

i.e. the growth type of G remains the same with respect to any finite generating set.

Let’s make this statement to be more precise. For this we will define the concept of

Quasi-isometry between two metric spaces (X, dX) and (Y, dY ).

2.1.3 Quasi-isometry

Let f : (X, dX)→ (Y, dY ) be a map between two metric spaces (X, dX) and (Y, dY ) is

said to be a ”quasi-isometric embedding” if there are constants c, b ∈ R>0 such that

1

c
dX(x, x′)− b ≤ dY (f(x), f(x′)) ≤ c.dX(x, x′) + b ∀ x, x′ ∈ X

A map f ′ : X → Y has finite distance from f if there is a constant c′ ∈ R≥0 with

dX(f(x), f(x′)) ≤ c′.

Then the map f is called a quasi-isometry, if it is a quasi-isometric embedding for

which there is a quasi-inverse i.e. a function g : Y → X such that gof : X → X has

finite distance from idX and fog has finite distance from idY .

Two metric space X and Y are said to be quasi-isometric if there exists a quasi-

isometry between X and Y . In this case, we write X ∼ Y .
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Example 2.1.10 Let X = R, dX = Euclidean metric and Y = Z, dY = Euclidean

metric, in this case the inclusion map i : Z → R is a quasi-isometric embedding

and g : R → Z be defined as g(x) = [x], the greatest integer function, then g is a

quasi-inverse of f and hence Z ∼ R.

�

Observation 2.1.11 Every non-empty metric spaces of finite diameter is quasi-isometric

. Moreover, if a space X is quasi-isometric to space of finite diameter then X must

be of finite diameter as well. Hence, Cayley graphs of any two finite groups are quasi-

isometric. In other words, if we look at the Cayley graphs of finite groups from far

away, they all looks similar in quasi-isometric sense.

If G is a finite group, then there are finitely many vertices in its Cayley graph

which implies that its Cayley graph is quasi-isomteric to a point. Hence, finite groups

are of no interest to us. Therefore, we are interested in finitely generated infinite

groups.

Now, we will define the Growth type and will prove that the Growth type is indepen-

dent of the choice of generating set.

2.2 Growth types

Definition 2.2.1 ( Quasi-equivalence of generalised growth function) A gen-

eralised growth function is an increasing function from R≥0 → R≥0. Let f, g : R≥0 →

R≥0 be generalised growth function. we say that g quasi-dominates f if there exist

c, b ∈ R≥0 such that

f(r) ≤ c.g(c.r + b) + b ∀ r ∈ R≥0.

If g quasi-dominates f , then we write f ≺ g. Two generalised growth functions

f, g : R≥0 → R≥0 are quasi-equivalent if f ≺ g and g ≺ f .

Note that a quasi-equivalence defines an equivalence relation on the set of all gen-

eralised growth functions.
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Growth function yield generalised growth function : Let G be a finitely

generated group with a finite generating set S. Then the function R≥0 → R≥0 defined

as r → γSG([r]), where ([r] is the greatest integer function) associated with the growth

function γSG : N→ N indeed is the generalised growth function.

Equivalence of Growth function: Let G and H be finitely generated groups

with finite generating sets S and T respectively. Then we say γSG and γTH are quasi-

equivalent if their associated generalised growth function are quasi-equivalent. Hence,

we have a notion of quasi-equivalence class of growth function.

Now, In the next proposition, we will prove that this class does not depend upon

the generating set.

Proposition 2.2.2 Let G and H are finitely generated groups with finite generating

sets S and T respectively.

1. If there exist a quasi-isometric embedding (G, dS)→ (H, dT ), then γSG ≺ γTH .

2. In particular, if G and H are quasi-isometric, then the growth functions γSG and

γTH are quasi equivalent.

Proof: Let f : G → H be a quasi-isometric embedding, hence there is a constant

c ∈ R≥0 such that

1

c
dS(g, g′)− c ≤ dT (f(g), f(g′)) ≤ c.dS(g, g′) + c ∀ g, g′ ∈ G

We write e′ = f(e) and let r ∈ N. Using the estimates above we obtain the following

If g ∈ BG,S
r (e) then dT (f(g), e′) ≤ c.dS(g, e) + c ≤ c.r + c and thus

f(BG,S
r (e)) ⊂ BH,T

c.r+c(e
′) ∀ g, g′ ∈ G

with f(g) = f(g′), we have

dS(g, g′) ≤ c.(dT (f(g), f(g′) + c) = c2

since the metric dT on H is invariant under left translation, it follows that

γSG(r) ≤ |BG,S
c2 (e)|.|BH,T

c.r+c(e
′)|

= γSG(c2).γTH(c.r + c)
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which shows that γSG ≺ γTH since γSG(c2) does not depend on the radius r.

Now, interchanging the role of G,S with H,T , we can have γTH ≺ γSG. Therefore,

we get γSG ∼ γTH . �

Corollary 2.2.3 Let G be a finitely generated group and let S and T be two finite

generating sets of G, and γSG, γ
T
G be their respective growth function. Then γSG ∼ γTG.

Proof: Take c = max {dT (e, s) | s ∈ S ∪ T}. Since S and T are finite so c is finite.

Let g, h ∈ G and let n = dS(g, h). Then we can write g−1h = s1s2...sn for certain

s1, s2, ...sn ∈ S ∪S−1. Using the triangle inequality and the fact that the metric dT is

left invariant by definition, we obtain

dT (g, h) = dT (g, g.s1.s2...sn)

≤ dT (g, g.s1) + dT (g.s1, g.s1.s2) + ...+ dT (g.s1..sn−1, g.s1..sn−1.sn)

= dT (e, s1) + dT (e, s2) + ...+ dT (e, sn)

= dT (e, s1) + dT (e, s2) + ...+ dT (e, sn)

≤ c.n

= c.dS(g, h)

Now, interchange the role of S and T , we will have

dS(g, h) ≤ c′.dT (g, h) for some c′ > 0 and hence we conclude that idG : (G, dS) →

(G, dT ) is a quasi-isometry. By 2.2.2 we have γSG ∼ γTG. �

Our main interest is in the questions related to the order of magnitude of growth

functions, and in that connection we are going to define some terms.

First, note that by writing a word of length m+n as a product of a word of length

m and a word of length n, we get that aG(m+ n) ≤ aG(m)aG(n).Therefore

lim
n→∞

(aG(n))1/n (2.2)

exist and it is finite, sinceG is finitely generated, and we call it w(G) = limn→∞(aG(n))1/n.

Similarly we define, s(G) = limn→∞(s(n))1/n, and since sG(n) ≥ aG(n), so we have

13



s(G) ≥ a(G). If we take G to be an infinite group G then aG(n) ≥ 1 ∀ n and therefore

w(G) ≥ 1, so given any ε > 0, we have w(G)+ε ≥ (aG(n))1/n or (w(G)+ε)n ≥ aG(n)

for large enough n. Hence sG(n) = aG(0) + aG(1) + ...+ aG(n), therefore we have

sG(n) ≤ 1 + (w(G) + ε) + (w(G) + ε)2 + ...+ (w(G) + ε)n

sG(n) ≤ n(w(G) + ε)n

So (s(n))1/n ≤ n1/n(w(G) + ε) and it follows that

s(G) = lim
n→∞

(s(n))1/n ≤ w(G) + ε ∀ ε > 0

Thus, s(G) ≤ w(G). So we get

s(G) = w(G) (2.3)

So if a finitely generated group G is generated by d elements, for every n > 0, we

have a(n) ≤ 2d(2d − 1)n−1. So we have w(G) ≤ 2d − 1. The exact value of w(G)

depends not only on G, but also on the set of generator S, and if that dependence is

important, we will use the notation wS(G).

Definition 2.2.4 A group G has exponential growth if w(G) > 1, and subexpo-

nential growth if w(G) = 1, and G is said to be of polynomial growth if there

exist numbers c and s such that sG(n) ≤ cns, for all n.

If s = 1 we say that G has linear growth and if s = 2 then we say that G has

quadratic growth. In the case of polynomial growth, its degree d(G) is defined as:

d(G) = inf{s | ∃ c | sG(n) ≤ cns} = lim sup
logs(n)

log(n)

Definition 2.2.5 We say that G has intermediate growth, if its growth is neither

exponential nor polynomial.

Proposition 2.2.6 Let G be a finitely generated group, and let H be a finitely gen-

erated subgroup of G. If T and S be finite generating sets of H and G respectively.

Then γTH ≺ γSG, where γTH and γSG are growth functions of H and G with respect to T

and S respectively.
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Proof: Let S ′ = S ∪ T , then S ′ is still a finite generating set of G. If r ∈ N, then

for all h ∈ BH,T
r (e), we have dS′(h, e) ≤ dT (h, e) ≤ r,

and so BH,T
r (e) ⊂ BG,S′

r (e).

In particular, we have

γTH(r) ≤ γS
′

G (r)

and thus γTH ≺ γSG . But we know that (G, dS) and (G, dS′) are quasi-isometric, hence

by 2.2.3, we get γS
′

G ∼ γSG.

Therefore, γTH ≺ γSG. In other words, growth of group dominates the growth of

subgroup. �

Basic Properties of growth function : Let G be a finitely generated

group and let S ⊂ G be a finite generating set.

Proposition 2.2.7 1. If G is an infinite group, then γSG is a strictly increasing

function, in particular γSG(r) ≥ r ∀ r ∈ N.

2. For all r ∈ N, we have

γSG(r) ≤ γSF (S)(r) = 1 +
|S|

(|S| − 1)
((2.|S| − 1)r − 1)

Proof: Let G be an infinite group. In order to prove (1), it is enough to show that

γSG(r + 1) > γSG(r).

Let us consider the ball of radius r + 1 around e and consider the ball

BS
G(r + 1) = {g ∈ G | lS(g) ≤ r + 1}

So, there exists g ∈ BS
G(r + 1) such that lS(g) = r + 1 (otherwise we can take BS

G(r))

and hence g 6∈ BS
G(r) so

|BS
G(r + 1)| > |BS

G(r)|

it follows that

γSG(r + 1) > γSG(r)
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So, γSG is strictly monotonically increasing function. Now, γS(1) ≥ 1 since e ∈ BS
G(1)

Assume that γSG(r) ≥ r then,

γSG(r + 1) > γSG(r) ≥ r

γSG(r + 1) > r.

Therefore, we have

γSG(r + 1) ≥ r + 1

2. Let F (S) be the free group on a generating set S of G. So we have a homomor-

phism φ : F (S) → G characterised by φ|S = idS. Moreover φ is surjective, because

any g ∈ G can be written as combination of sε11 .s
ε2
2 ...s

εk
k (say |S| = k), and then we can

pull back each sε11 , s
ε2
2 , ..., s

εk
k and we will get required word ′w′ such that φ(w) = g.

Therefore, we obtain

γSG(r) = |BG,S
r (e)|

= |φ(BF (S),S
r (e))|

= |BF (S),S
r (e)|

= γF (S),S(r)

Therefore, γSG(r) ≤ γSF (S)(r) ∀ r ∈ N but the growth function of a free group F of

finite rank k = |S|, where k ≥ 2, with respect to a free generating set S is

γSF (S)(r) = |BF (S)
r (e)| = |{g ∈ F (S)|l(g) ≤ r}

i.e. we have to count all the words of length 0, 1, 2...r.,

Since we are in a free group, there is no non-trivial relation and hence, we have

γSF (S)(r) = 1 + 2|S|+ 2|S|(2|S| − 1) + 2|S|(2|S| − 1)2 + ...+ 2|S|(2|S| − 1)r−1

= 1 + 2|S|[1 + 2|S| − 1 + (2|S| − 1)2 + ...+ (2|S| − 1)r−1

= 1 + 2|S|[ (2|S| − 1)r − 1

2|S| − 1− 1

= 1 +
2|S|

2(|S| − 1)
((2|S| − 1)r − 1))

γSF (S)(r) = 1 +
k

k − 1
[(2k − 1)r − 1
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Therefore, γSG(r) ≤ γSF (S)(r) = 1 + |S|
(|S|−1)

((2|S| − 1)r − 1))

So, γSF (S)(r) = 1 + |S|
(|S|−1)

((2|S| − 1)r − 1)) is an exponential growth function if

r ≥ 2. �

Corollary 2.2.8 The Free group of rank n has an exponential growth for n ≥ 2.

Proposition 2.2.9 (Submultiplicativity of growth functions) Prove that

γSG(r + r′) ≤ γSG(r).γSG(r′) ∀ r, r′ ∈ N

Proof: Define a map

f : BS
G(r)×BS

G(r′)→ BS
G(r + r′)

given by f(g, h) = gh. Since lS(gh) ≤ lS(g) + lS(h) ≤ r + r′, gh ∈ BS
G(r + r′),

Next we will show that f is surjective. Let g ∈ BS
G(r + r′) i.e. lS(g) ≤ r + r′.

g = s1.s2...st, t ≤ r+ r′. If either t ≥ r or t ≥ r′ in either case we can pick a subword

out of g of length less than or equal to r and r′ respectively say w1, w2.

then f(w1, w2) = w1w2 = g where lS(w1) ≤ r and lS(w2) ≤ r′. If t ≤ r and t ≤ r′

then g = s1.s2...st where lS(g) = t ≤ r so g ∈ BS
G(r) and f(g, e) = g. In either case,

f is surjective.

Hence, we have

|BS
G(r + r′)| ≤ |BS

G(r)||BS
G(r′)|

which follows that

γSG(r + r′) ≤ γSG(r).γSG(r′)

�

Observe that, we have

m ≤ γSG(m) = γSG(1 + 1 + ...+ 1) ≤ (γSG(1))m

m ≤ γSG(m) ≤ (γS(1))m

m
1
m ≤ (γSG(m))

1
m ≤ γSG(1)

lim
m→∞

m
1
m ≤ lim

m→∞
(γS(m))1/m ≤ lim

m→∞
γS(1)
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and it follows that,

1 ≤ lim
m→∞

(γS(m))1/m ≤ γS(1)

and let limm→∞(γS(m))1/m = eS(say). So, eS ≥ 1. If eS > a > 1, we have γS(m) ≥ am

for all sufficiently large m.

Lemma 2.2.10 Let S and T be finite subsets of a group G and suppose that < T >

⊆ < S >. Then there is an integer a > 0 such that γT (m) ≤ γS(am) for all m ≥ 0.

Hence eT ≤ (eS)a.

Proof: Let S and T be finite subsets of G and < T > ⊆ < S > and

γT (m) = |{g ∈ < T > | lT (g) ≤ m}|

also we have

γT (am) = |{g ∈ < S > |lS(g) ≤ am}|

Choose a = 1+ max {lS(t) | t ∈T}

Let h ∈ BT (m), write h = ta11 t
a2
2 ...t

an
n , n ≤ m, ti ∈ T

lS(h) = lS(ta11 .t
a2
2 ...t

an
n )

≤ |a1|lS(t1) + a2|lS(t2) + ...+ an|lS(tn)

≤ |a1|(a− 1) + |a2|(a− 1) + ...+ |an|(a− 1)

≤ (a− 1)(|a1|+ |a2|+ ...+ |an|)

≤ (a− 1)lT (h)

≤ (a− 1)m

≤ ma.

which follows that

BT (m) ⊂ BS(am)

γT (m) ≤ γS(am)
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Therefore, we have

γT (m)1/m ≤ γS(am)1/m ≤ (γS(am)1/am)a

Now applying limit m→∞, we get eT ≤ eaS. �

Remark 2.2.11 If G = < S > = < T > , then eS > 1 ⇔ eT > 1. In this case we

say that G has exponential growth.

As we have seen that the group G = Z has polynomial growth. Now we will see

that not only Z, but Zn also has polynomial growth.

Proposition 2.2.12 Let T = {τ1, τ2, ...τn} be a minimal generating set for a free

abelian group Zn of rank n. Then the growth function

γT (m) =
n∑
l=0

2l
(
n

l

)(
m

l

)
.

Proof: : Here, G = Zn = < τ1, τ2, ...τn >. Let γT (m) be the growth function of G.

For every integer l ≥ 0, let Pl denote the function on non-negative integers given by

P0(m) = 1 ∀m ≥ 0 and if l > 0, then each of the Pl(m) is the number of distinct

sequences (a1, a2, .., al) of positive numbers with a1 + a2 + ...+ al ≤ m. Observe that

P0(m) =
(
m
0

)
and if l > 0 then each of the Pl(m) sequences give rise to a subsets

{a1, a1 +a2, ..., a1 +a2 + ...+al} of cardinality l in {1, 2, ...,m}. Conversely if a subset

of cardinality l in {1, 2, ...,m} is put in ascending order it is seen to be of the form

{a1, a1 + a2, ..., a1 + a2 + ...+ al}.

Hence, there is a bijection between sequences (a1, a2, .., al) of positive numbers

with a1 + a2 + ...+ al ≤ m and subsets of cardinality l in {1, 2, ...,m}.

Thus, Pl(m) =
(
m
l

)
= m!

l!(m−l)! = m(m−1)(m−2)...(m−(l−1))
l!

so, Pl(m) is a polynomial function of degree l with positive leading coefficient on

the non-negative integers.
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Observe that γT (m) =
n∑
l=0

Nl(m), where Nl(m) denote the number of distinct ex-

pressions τa11 τa22 ...τann ,
∑
|ai| ≤ m, such that exactly l of the ai are non-zero.

Let U = {u1, u2, ..., ul} be any of the
(
n
l

)
subsets of T with exactly l elements.

So by the definition of Pl, there are precisely Pl(m) distinct ua11 u
a2
2 ...u

al
l , ai > 0 and∑

ai ≤ m changing the signs of the ai at each place, there will be precisely 2lPl(m)

distinct ua11 u
a2
2 ...u

al
l , ai > 0 with ai 6= 0 and

∑
|ai| ≤ m ( because for each ai, possi-

bility of choice is 2)

Thus, Nl(m) =2l
(
n
l

)
Pl(m) and we have, γT (m) =

n∑
l=0

Nl(m)

Therefore, γT (m) =
n∑
l=0

2l
(
n
l

)
Pl(m) =

n∑
l=0

2l
(
n
l

)(
m
l

)
�

Hence, we have seen that the free abelian group of rank n has polynomial growth

and we also know that finite group has eventually constant growth function.

Corollary 2.2.13 If G is a finitely generated abelian group then G has polynomial

growth.

�

We know that abelian groups are precisely the nilpotent groups of class 1. So the

natural question arises that whether the finitely generated nilpotent group have poly-

nomial growth. We will see in the next chapter that it is indeed the case. Moreover, in

1972, Hymann Bass calculated exactly the degree of that polynomial. So before going

into details of the proof, we will look at some interesting properties of nilpotent groups.

2.3 Some Group Theory

2.3.1 Nilpotent Groups

Definition 2.3.1 : The lower central series γi(G) of a group G is defined as

G = γ1(G) ⊇ γ2(G) ⊇ ... ⊇ γn(G) ⊇ ... (2.4)
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where γi+1(G) = [G, γi(G)].Then a group G is said to be nilpotent if there exist a

positive integer p such that γp+1(G) = {1}. Moreover if p is the smallest such number

then we say that G is a nilpotent group of class p and denote cl(G) = p.

Proposition 2.3.2 Let G be a finitely generated nilpotent group and H be any sub-

group of G. Then H is finitely generated.

Proof: Let H be a subgroup of finitely generated nilpotent group G. Consider the

lower central series

G = γ1(G) ⊇ γ2(G) ⊇ ... ⊇ γn(G) ⊇ ... (2.5)

Claim: γi(G)/γi+1(G) is an abelian group.

First, let’s check that γi+1(G) / γi(G). If g ∈ γi+1(G), h ∈ γi(G) and γi+1(G) =

[G, γi(G)]. Then hgh−1 = (hgh−1g−1)g ∈ γi+1(G)

so, γi+1(G) / γi(G). Hence, γi(G)/γi+1(G) is a group.

Let xγi+1(G), yγi+1(G) ∈ γi(G)/γi+1(G), where x, y ∈ γi(G)

then

xyx−1y−1 = [x, y] ∈ γi+1(G)

xγi+1(G)yγi+1 = yγi+1(G)xγi+1

Hence, γi(G)/γi+1(G) is an abelian group, which proves our claim. Since we have

lower central series G = γ1(G) ⊇ γ2(G) ⊇ ... ⊇ γn(G) ⊇ .. where, γi+1(G) = [G, γi(G)]

Now we will prove that H is finitely generated by applying induction on nilpotency

class of G.

If p = 1, G is an abelian group, hence we know that subgroup of a finitely generated

abelian is finitely generated. So assume this holds for all groups with class p or less

than p.

Let G be a group of class p+ 1, then

G = γ1(G) . γ2(G) . ... . γp(G) . γp+1(G) . γp+2 = {1}
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Given a subgroup H of G, we can obtain

H = H ∩ γ1(G) ∩H . H ∩ γ2(G) . ... . H ∩ γp(G) . H ∩ γp+1(G) . {1}

But H∩γ2(G) is finitely generated, by induction (class ≤ p), and H
H∩γ2(G)

is isomorphic

to a subgroup of G/γ2(G)

(∵
H

H ∩ γ2(G)
∼=
H.γ2(G)

γ2(G)
≤ G

γ2(G)
)

But G is finitely generated, so G/γ2(G) is a finitely generated abelian group. Hence,

H ∩ γ2(G) is finitely generated. Since we know that if we have N /G such that both

N and G/N are fintely generated, then G is finitely generated.

Therefore, H is finitely generated. �

If G is a finitely generated nilpotent group, then γi(G)/γi+1(G) is a finitely gen-

erated abelian group for each i .

Lemma 2.3.3 Let X, Y and Z be subgroups of an arbitrary group G, and suppose

that [X, Y, Z] = [[X, Y ], Z] = 1 and [Y, Z,X] = [[Y, Z], X] = 1. Then [Z,X, Y ] =

[[Z,X], Y ] = 1

Proof: We want to show that [ [Z,X], Y ] = 1 or equivalently, that every element

of the group [Z,X] commutes with every elements of Y . So we will show that the

commutators [z, x] for every z ∈ Z, x ∈ X, centralize each element y ∈ Y . This

is sufficient because CG(y) is a subgroup of G, and so it contains all the elements

generated by these commutators. It is therefore, enough to show that [z, x, y] = 1 for

all x ∈ X, y ∈ Y, z ∈ Z Equivalently, it suffices to show that [z, x−1, y] = 1 ∀ x ∈

X, y ∈ Y, z ∈ Z

Now [x, y−1] ∈ [X, Y ] and so [x, y−1, z] ∈ [X, Y, Z] = 1 and similarly we have

[y, z−1, x] = 1 so, [x, y−1, z]y = y−1[x, y−1, z]y = 1

Similarly, [y, z−1, x]z = z−1[y, z−1, x]z = 1

Since we have Hall-Witt Identity : [x, y−1, z]y [y, z−1, x]z [z, x−1, y]x =1
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[[x, y−1], z] = [x−1yxy−1, z] = yx−1y−1xz−1x−1yxy−1z

[[y, z−1], x] = [y−1zyz−1, x] = zy−1z−1yx−1y−1zyyz−1x

[[z, x−1], y] = [z−1xzx−1, y] = xz−1x−1zy−1z−1xzx−1y

Now [x, y−1, z]y [y, z−1, x]z [z, x−1, y]x =1

So, using this identity, we get [z, x−1, y] = 1. Hence [Z,X, Y ] = 1 �

Lemma 2.3.4 (Three Subgroup Lemma) Let N be a normal subgroup of a group

G and let X, Y, Z ⊆ G be arbitrary subgroups. If [X, Y, Z] ⊆ N, [Y, Z,X] ⊆ N , then

[Z,X, Y ] ⊆ N.

Proof: Let G = G/N and we know that [H,K] = [H,K] for all subgroups H and

K of G.

Then,

[X,Y , Z] = [[X,Y ], Z] = [[X, Y ], Z] = [X, Y, Z] = 1

Similarly,

[Y , Z,X] = [[Y , Z], X] = [[Y, Z], X] = [Y, Z,X] = 1

So, by the previous lemma, we have [Z,X, Y ] = 1, which follows that [Z,X, Y ] = 1

and [Z,X, Y ]N = N

[Z,X, Y ] ⊆ N

�

Theorem 2.3.5 If Gi and Gj denote the ith and jth term of the lower central series

of a group G. Then [ Gi, Gj] ⊆ Gi+j for integers i, j ≥ 1.

Proof: We proceed by induction on j, which is the superscript on the right in the

commutator [Gi, Gj]. Since G1 = G, we see that if j = 1, the formula we need is
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[Gi, G] = Gi+1 ⊆ Gi+1. We can assume that, therefore that j > 1 and so we can write

Gj = [Gj−1, G]. Then

[Gi, Gj] = [Gj, Gi] = [Gj−1, G,Gi]

and to show that this triple commutator is contained in the normal subgroup Gi+j it

suffices to prove that by 2.3.4, [G,Gi, Gj−1] ⊆ Gi+j and [Gi, Gj−1, G] ⊆ Gi+j we have

[G,Gi, Gj−1] = [Gi, G,Gj−1][Gi+1, Gj−1] ⊆ G(i+1)+(j−1) = Gi+j

where the containment is valid by the inductive hypothesis. Also, [Gi, Gj−1, G] ⊆

[Gi+j−1, G] = Gi+j

Hence, by 2.3.4, we have [Gi, [G,Gj−1]] = [Gi, Gj] ⊆ Gi+j, and it follows that

[Gi, Gj] ⊆ Gi+j.

�

Proposition 2.3.6 Let G be a finitely generated nilpotent group. Then we can choose

a finite set T of generators of G such that if s, t ∈ T then s−1 ∈ T and [s, t] ∈ T .

Proof: Let G be finitely generated nilpotent group. So we have finite generating

set S = {s1, s2, ...sn}. Take S ′ = S ∪ S−1 is finite set that generates G, where S−1 is

the set of inverse of elements of S. So S ′ = {s1, s2, ...sn, s
−1
1 , s−1

2 , ...s−1
n } . Since G is

a nilpotent group, so ∃ k ∈ N such that γk+1(G) = (1) where γk+1(G) = [G, γk(G)].

i.e. [G, [G, [G, ...[G,G]]..] = (1) where number of brackets are k. For each 1 ≤ i ≤

k, if we use i square brackets then number of all possible pairing of brackets is finite,

and for each 1 ≤ i ≤ k we have i empty places and we have 2n elements to fill these i

places which can be done in finite number of ways. Since if we use number of brackets

more than k, then the resultant element would be identity. Hence, if we include all

such elements for each 1 ≤ i ≤ k in S, we call such a set T which has the following

property that s, t ∈ T ⇒ s−1 ∈ T and [s, t] ∈ T �
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2.3.2 Soluble and Polycyclic Groups

A group G is soluble if it has a normal series

1 = Gn / Gn−1 / ... / G1 = G (2.6)

with abelian factor groups Gi/Gi+1. A group G is said to be polycyclic if each factor

Gi/Gi+1 is cyclic.

Remark: Polycyclic groups are soluble groups but not conversely. If we take

G =< a, b|ab = b2a >

then G is soluble but not polycyclic.

Now we prove some important properties of polycyclic groups and soluble groups.

Proposition 2.3.7 Let G be a finitely generated nilpotent group then G is polycyclic.

Proof: Let G be a finitely generated nilpotent group. Then G has a lower central

series of the form

G = γ1(G) . γ2(G) . ... . γp(G) . γp+1(G) = {1}

such that γi(G)/γi+1(G) is a finitely generated abelian group. So each quotient can

be refined in such a way that the quotient of the new series becomes cyclic. Hence,

G is polycyclic. �

Proposition 2.3.8 A group G is polycyclic iff G is soluble and all of its subgroups

are finitely generated.

Proof: If G is polycyclic, then certainly, it is soluble. Suppose, we have

G = G0 ≥ G1 ≥ G2 ≥ ... ≥ Gr = 1

Let H be any subgroup of G and Hi = H ∩Gi So, we have

H = H0 ≥ H1 ≥ H2 ≥ ... ≥ Hr = 1
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Using third isomorphism theorem of groups[17], we have

Hi−1

Hi

∼=
Hi−1

H ∩Gi

∼=
Hi−1

Gi ∩Hi−1

∼=
GiHi−1

Gi

is cyclic. (∵ Gi ∩ Hi−1 = Gi ∩ (Gi−1 ∩ H) = Gi ∩ H). So we can choose xi ∈ Hi−1

so that Hi−1 = < Hi, xi >. Thus T = {x1, x2, ...xr} is a finite generating set for H.

Hence, our claim is proved.

Conversely, suppose G is soluble and all its subgroups are finitely generated. So,

we have a series

G = G0 ≥ G1 ≥ G2 ≥ ... ≥ Gr = 1

with Gi / Gi−1 and Gi−1/Gi is abelian. Since each subgroup is finitely generated, so

Gi−1 is finitely generated and hence Gi−1/Gi is finitely generated abelian group. So

we can interpolate between each Gi−1 and Gi a finite number of subgroups to produce

a series with cyclic factor groups. Hence, G is polycyclic. �

Proposition 2.3.9 If G is a group with a subgroup H such that H is normal in G,

H and G/H is polycyclic group, then G is polycyclic.

Proof: Given that,H be a normal and polycyclic subgroup of G. So we have

{1} ≤ H1 / H2 / ...Hr−1 / Hr = H

with Hi+1/Hi is cyclic. Since G/H is polycyclic so, we have

H / H1/H / H2/H / H3/H / ... / Hs/H = G/H

with

H i+1/H

H i/H
∼=
H i+1

H i

is cyclic. By subgroup correspondence theorem[17]

H / H
(1)
1 / H

(2)
2 ... / H(s)

s = G

and

H
(i+1)
i+1

H
(i)
i

∼=
H

(i+1)
i+1 /H

H
(i)
i /H
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is cyclic. Hence, we have a series for G.

{1} ≤ H1 /H2 / ...Hr−1 /Hr = H /H
(1)
1 /H

(2)
2 , ... /H

(s)
s = G with successive cyclic

quotient. Therefore, G is polycyclic. �

Proposition 2.3.10 If G is polycyclic group. Then G is finitely presented.

Proof: If G is polycyclic, then we have G = G0 . G1 . G2 . ... . Gr = {1} such that

Gi/Gi+1 is cyclic. Also, Gr−1/Gr
∼== Gr−1 is cyclic. so Gr−1 = < ar−1 | Rr−1 > and

also Gr−2/Gr−1 is a cyclic group. Therefore, we have

Gr−2/Gr−1 = < ar−2Gr−1 | Rr−2Gr−1 >

Let g ∈ Gr−2/Gr−1, so we have

gGr−1 = a
αr−2

r−2 Gr−1

∴ g−1a
αr−2

r−2 ∈ Gr−1

hence, we can write g−1a
αr−2

r−2 = a
αr−1

r−1

g = a
αr−2

r−2 a
αr−1

r−1

with relations Rr−1, Rr−2. So continuing in this way, we will get

G = < a0, a1, a2, ...ar−1 | R0, R1, ...Rr−1 >

Hence, G is finitely generated and finitely related. So, G is finitely presented. �

Now we will define some terminologies which will be used in further discussion.

Definition 2.3.11 (Virtually P): A group G is said to be virtually P if G has a

subgroup H of finite index such that H has property P .

Definition 2.3.12 : A group G is said to be virtually nilpotent if G has a nilpotent

subgroup of finite index. G is said to be virtually solvable if G has solvable subgroup

of finite index.
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Since we know that nilpotent groups are solvable, so virtually nilpotent groups are

virtually solvable groups. If G is finite group. Then G is both virtually nilpotent and

virtually solvable because we can take trivial subgroup to be of finite index subgroup.

Example 2.3.13 If G is nilpotent, then certainly G is virtually nilpotent but not con-

versely. Take G = S3, the symmetric group of order 6 is not nilpotent but G is virtually

nilpotent. Similarly each solvable group is virtually solvable but not conversely. Take,

G = Z× S5 is virtually solvable but G is not solvable.

Now we will prove one interesting fact about finitely generated group that we will

use in later.

Proposition 2.3.14 If G is a finitely generated group, then G has only finitely many

subgroups of a given index.

Proof: Let G be a finitely generated group and let d(G) be the minimal cardinality

of a generating set for G. Let an(G) be the number of subgroups H ⊂ G such that

|G : H| = n. Let H be any subgroup of index n and

G/H = {H, g2H, g2H, ..., gnH}

Ω = {giH | gi ∈ G, 1 ≤ i ≤ n, g1 = 1}

set of all left cosets such that |Ω| = n. We can define a action G × Ω → Ω given by

(g, giH) → ggiH and label H by 1 and the other elements of Ω by 2, ..., n. So this

action induces a homomorphism φ : G → Sn and φ(G) is a transitive subgroup (∵

action is transitive) and stabG(1) = H. Keep the label of H to be 1, and vary the

other labelling of Ω. So there are (n−1)! such labelling, and each labelling gives a ho-

momorphism φ : G→ Sn such that φ(G) is a transitive subgroup and stabG(1) = H.

So, a subgroup H of index n leads to (n− 1)! homomorphism φ : G → Sn such that

φ(G) is transitive subgroup and stabG(1) = H.

Conversely, let φ : G → Sn be any homomorphism such that φ(G) is transitive

subgroup i.e. we have action of G on Ω(|Ω| = n), such that action G × Ω → Ω

is transitive. i.e. orbG(1) = n and |G/stabG(1)| = |orbG(1)| so H = stabG(1) is a
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subgroup of index n. Hence if we denote tn(G) = |{φ : G → Sn, φ(G) is transitive

subgroup}| then, an(G) = tn(G)
(n−1)!

. If G is finitely generated then number of all possible

homomorphisms from G → Sn is finite. Because G has d minimal generating set, a

homomorphism φ will be completely determined by the value of φ at the generators.

Hence, number of such maps will be at most (n!)d. So, tn(G) ≤ (n!)d

an(G) ≤ (n!)d

(n− 1)!

which is finite. �

Corollary 2.3.15 If |G : H| = s is finite, then H contains a finite index subgroup K

that is normal in G, and if G is finitely generated, we can take K to be characteristics

in G.

Proof: Let K be the intersection of all the conjugates of H, or, if G is finitely

generated, the intersection of all subgroup of G of index s. �

Proposition 2.3.16 If G is a finitely generated group and H is a subgroup of G of

finite index, then H is finitely generated.

Proof: Let G be a finitely generated group say by finite generating set {x1, x2, ..., xd}

and H ≤ G with |G : H| = s, and let {a1 = 1, ..., as} be a set of representatives for

right cosets of H in G. Let x = y1...yn be any element of G, where each yi is one

of the generators or their inverses. Let ai1 be the representatives of Hy1, and write

x = y1a
−1
i1
ai1y2...yn, then let ai2 be the representatives of Hai1y2, and write x =

y1a
−1
i1
.ai1y2a

−1
i2
.ai3y3...yn, etc., finally obtaining x = y1a

−1
i1
.ai1y2a

−1
i2
....ain−1yna

−1
in
.ain ..

Here the terms ajyka
−1
l lie in H, so if x ∈ H, we have ain = 1, and x is written as a

product of the finitely many triple product ajyka
−1
l

�

Corollary 2.3.17 Let H be a subgroup of G of finite index and r be the maximal

length of coset representatives, then

sG(n) ≤ |G : H|sH(n+ r) ≤ |G : H|sH((r + 1)n)
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Proof: Let H be a subgroup of G of finite index, let r be the maximal length of

the elements in a system of representatives for the cosets of H. Given an element in

G of length at most n, write it as xu, where x ∈ H and u belongs to our system of

representatives. Then k = l(x) ≤ n + r. Write x = y1...yk, where each yj is either a

generator or an inverse of a generator. Then

x = y1u
−1
1 .u1y2u

−1
2 .u2y2...yku

−1
k .

, for some uj in our system of representatives. This shows that relative to the gener-

ators of the form (by 2.3.16) of H, we have l(x) ≤ k, and therefore

sG(n) ≤ |G : H|sH(n+ r) ≤ |G : H|sH((r + 1)n)

�

Theorem 2.3.18 Let G be a finitely generated group of polynomial growth. Then the

commutator subgroup G′ of G is also finitely generated.

Proof: SupposeG be a finitely generated group, thereforeG/G′ is a finitely generated

abelian group, it is a direct product of finitely many cyclic groups and we can refine

this quotient so that quotient becomes cyclic. It will thus suffice to show that if N /G

and G/N is cyclic, then N is finitely generated.

If G/N is finite group, then by 2.3.16, N is finitely generated. So we can assume that

G/N is an infinite cyclic group.

G/N = < xN > ∼= Z

Given any generators {x1, x2, ..., xd} of G, we can write them in the form xi = xeiyi,

where yi ∈ N , and then x, y1, ..., yd generate G. If we denote the normal closure of yi

for 1 ≤ i ≤ d. Then it is clear that K ⊆ N .

Since we have a natural map η : G → G/K, So G/K is generated by the set

{η(x), η(y1), ..., η(yd)} = {1, xK}, if suppose xK has finite order and K ⊆ N , then

xN has finite order, which is contradiction. So G/K is infinite cyclic and G/N is an

infinite cyclic factor group of it, which is possible only if K = N .

LetKi be the subgroup generated by all the conjugates x−nyix
n, thenN ≥< K1, ..., Kd >,

and the latter subgroup contains y1, ..., yd and is invariant under conjugation by all
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the generators of G, hence it is equal to N . It will thus suffice to prove that each Ki

is finitely generated. If we denote y for yi, and consider the products xye1xye2x...yen ,

where each ei is 0 or 1. There are 2n such words, all of length 2n or less, and the

polynomial growth implies that if n is large enough, two of these words are equal.

Let us consider the minimal n at which equality occurs, say, the word above equals

a similar one with exponents fi. By minimality, en 6= fn. Write y(k) = xkyx−k, and

write the equality in the form

y(1)e1y(2)e2 ...y(n)enxn = y(1)f1y(2)f2 ...y(n)fnxn

Since en 6= fn, this shows that y(n) can be expressed as a product of y(1), ..., y(n −

1). Therefore y(n + 1) = xy(n)x−1 can be expressed in terms of y(2), ...y(n), and

substituting the expression of y(n) we see that y(n+ 1) also belongs to the subgroup

generated by y(1), ..., y(n− 1), and an obvious induction shows that all the y(n), for

n > 0, belongs to the same subgroup. Replacing x by its inverse, we see that the

subgroup generated by the y(n) for negative n is also finitely generated, hence so ki

and hence N is finitely generated.

�
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Chapter 3

Growth of finitely generated

Solvable groups

Now, in this chapter we will discuss the growth of finitely generated solvable groups

and finitely generated nilpotent groups and will prove the main theorem of this chap-

ter, which was given by J. Milnor[3] and J. Wolf[9]

Theorem 3.0.19 (Milnor-Wolf) If G be a finitely generated soluble group not of

exponential growth then G is virtually nilpotent.

We will prove this theorem in two steps: First, we will prove theorem 3.0.20.

Theorem 3.0.20 [3] If G is finitely generated group not of exponential growth and

if G is solvable then G must be polycyclic

and then we will prove the theorem 3.0.21

Theorem 3.0.21 [2] If G is finitely generated polycyclic group not of exponential

growth then G must be virtually nilpotent

So the proof of the theorem 3.0.19 directly follows from 3.0.20 and 3.0.21. So we will

devote this chapter in proving theorms 3.0.20 and 3.0.21. In order to prove these

results, we need several theorems and lemmas:-

Lemma 3.0.22 Let 1 → A → B
φ−→ C → 1 be a short exact sequence of groups,

where A is abelian group and B is finitely generated. If B does not have exponential
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growth, then for an each α ∈ A and β ∈ B, the set of all conjugates βkαβ−k for

k ∈ Z, spans a finitely generated subgroup of A .

Proof: For each sequence i1, i2, ...im of 0′s and 1′s. consider the expression βαi1βαi2 ...βαim ∈

B. In this way, we have 2m expressions. If these 2m expressions all represent distinct

elements of B, then the growth function gS of B with respect to any generating set

S for B which containing both β and βα, would satisfy: gS(m) ≥ 2, but this leads

to B having exponential growth, which is a contradiction to our hypothesis. Hence,

there must exist a non-trivial relation of the form βαi1βαi2 ...βαim = βαj1βαj2 ...βαjm

for some integer m. Now, we will introduce a convenient abbreviation αk = βkαβ−k,

hence using this abbreviation we have

αi11 α
i2
2 ...α

i2
2 β

m = (βαi1β−1)(β2αi1β−2)(β3αi1β−3)...(βmαi1β−m)

= βαi1βαi2 ...βαim

Therefore, we have the relations

αi11 α
i2
2 ...α

im
m β

m = αj11 α
j2
2 ...α

jm
m βm

αi11 α
i2
2 ...α

im
m = αj11 α

j2
2 ...βα

jm
m

in A. Since A is abelian, so we can put a′is together i.e.

αi1−j11 αi2−j22 ...αim−jmm = 1, ik, jk ∈ {0, 1} for 1 ≤ k ≤ m and ik−jk ∈ {0, 1,−1} and

all ik − jk are not zero. In fact we can choose a small m so that we may assume that

i1 6= j1 and im 6= jm. It follows that αm can be expressed as a word in α1, α2, ...αm−1.

Conjugating by β it follows that αm+1 can be expressed aa a word in α2, ...αm and

hence as a word in α1, α2, ...αm−1 . (∵ αm+1 = βm+1αβ−(m+1) = β(βmαβ−m)β−1 =

βαmβ
−1)

Continuing inductively we see that every αk with k ≥ m can be expressed as a

word in α1, α2, ...αm−1. Similarly, every αk with k ≤ 0 can be expressed in terms

of α1, α2, ...αm−1(∵ k = −l, l ≥ 0, αk = βkαβ−k = β−lαβl = (β−lα−1βl)−1 =

(γlα−1γ−l)−1 where β = γ−1) Hence, T = span {βkαβ−k | k ∈ Z} is finitely gen-

erated. �

Lemma 3.0.23 Let 1→ A→ B
φ−→ C → 1 be a short exact sequence of groups, where

A is abelian group and B is finitely generated. If C = B/A has a finite presentation,
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then there exists finitely many elements α1, ...αl ∈ A so that every element of A can

be expressed as a product of conjugates of the αj.

Proof: Since C = B/A has finite presentation, so C has finitely many generators

and finitely many defining relators.

C = < φ(β1), ..., φ(βk) | γ1, γ2, ...γl >. Since we chose β1, ..., βk be a generator for B

so, φ(β1), ..., φ(βk) be generator for c = B/A,C has finite number of defining relations.

γ1(φ(β1)...φ(βk)) = ... = γl(φ(β1...φ(βk)) = 1

Setting αj = γj(β1, ...βk). Let a ∈ A ⊆ B and φ(a) = 1. Since γ1, ...γl are defining re-

lators φ(a) can be written as product of conjugates γ1(φ(β1), ..., φ(βk)), ..., γl(φ(β1), ..., φ(βk)).

∴ a can be written as product of conjugates of γ1(β1, ..., βk), ..., γl(β1, ..., βk).

Hence, α1, α2, ..., αl are the required elements. �

Lemma 3.0.24 Let 1 → A → B
φ−→ C → 1 be a short exact sequence of groups,

where A is an abelian group and B is finitely generated. If C is polycyclic and B does

not have exponential growth, then B must be polycyclic.

Proof: Since C is polycyclic group so by 2.3.10 , C is finitely presented. Choose

generators γ1, γ2, ..., γp for C so that each element of C can be expressed as a prod-

uct γi11 γ
i1
1 ...γ

ip
p with i1, i2, ..., ip ∈ Z. choose elements β1, ..., βp ∈ B so that φ(β1) =

γ1, φ(β2) = γ2, ..., φ(βp) = γp.(φ is onto). Now according to 3.0.23, there exist ele-

ments α1, α2, ..., αl ∈ A so that every element of A can be expressed as a product of

conjugates of the αj. Let b ∈ B, φ(b) = γi11 γ
i1
1 ...γ

ip
p = φ(βi11 ...β

ip
p )

So, b(βγ11 ...β
γp
p )−1 ∈ kerφ = Im(A)

and it follows that

b(βγ11 ...γ
γp
p )−1 ∈ A

b = a(βγ11 ...β
γp
p )−1)

Now,

b−1αjb = (βγ11 ...β
γp
p )a−1αja(βγ11 ...β

γp
p )−1)
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, where a ∈ A and since A is abelian, therefore

= (βγ11 ...β
γp
p )−1αj(β

γ1
1 ...β

γp
p )

so clearly each conjugate of αj can be written as in the above form. Let A0 denote

the subgroup of A spanned by α1, ..., αl. Applying 3.0.23 to the elements αj and β1,

we see that there exist a finitely generated group A1 which is spanned by all conju-

gates of the form β−i11 αjβ
i1
1 with 1 ≤ j ≤ l, i1 ∈ Z. Similarly applying 3.0.23 to each

generator of A1 and β2 we see that all of β−i22 (β−i11 αjβ
i1
1 β

i2
2 ) span a finitely generated

group A2. Continuing inductively we can construct A1 ⊂ A2 ⊂ ... ⊂ Ap and it fol-

lows that A = Ap is also a finitely generated abelian group. Since we have already

prove that each conjugate of αj can be written as (βi11 ...β
ip
p )−1αj(β

i1
1 ...β

ip
p )), So A is a

finitely generated abelian group, so by 2.3.7, A is polycyclic group. Since C = B/A

is polycyclic so by 2.3.9, we conclude that B is polycyclic group. �

Now we will prove our theorem 3.0.20

Proof: Since G is a solvable group, we have derived series G = G0 ⊃ G1 ⊃ ... ⊃

Gk = {1} where G1 = [G,G], Gi+1 = [Gi, Gi]. Consider a short exact sequence

1→ G1/G2 → G/G2 → G/G1 → 1

Since quotient of the derived series G1/G2 is an abelian group and G is finitely

generated, G/G2 is finitely generated and G/G1 = G/[G,G] is finitely generated

abelian group. So G/G1 is polycyclic. Suppose we assume that G is not of exponential

growth, then G/G2 can not have exponential growth. Since we know that G/N

has exponential growth, G has exponential growth. Then by 3.0.24, G/G2 must be

polycyclic. Now take another short exact sequence:

1→ G2/G3 → G/G3 → G/G2 → 1

Again, G2/G3 is abelian (∵ successive quotient of derived series is an abelian group)

and G/G2 is a finitely generated abelian group so it is polycyclic. So by 3.0.24, either

G/G3 has exponential growth or G/G3 is polycyclic. By the same argument above, we

have G/G3 is polycyclic. Continuing in this way, we will get G/Gk
∼= G is polycyclic

but this is contradiction to our hypothesis. Hence, G must be of exponential growth,
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which is again contradiction which proves our result. �

Therefore, if G is finitely generated solvable group which is not of exponential

growth. Then G must be polycyclic. Next we will prove theorem 3.0.21.

Proof: Let G be a finitely generated polycyclic group. By 2.3.8, G is solvable and

all of its subgroups are finitely generated. So consider the derived series of a group G

G = G0 ⊇ G1 ⊇ G2 ⊇ ... ⊇ Gp+1 = {1}

Each subgroup is finitely generated and so its successive quotient is finitely generated

abelian group. Let r denote the sum of their (torsion-free) ranks and it is called rank

of group G. We will prove our result by induction on r. If r = 0, then successive

quotient is finite abelian. Hence G is finite group. Therefore G is virtually nilpotent.

Suppose r > 0, i.e. some quotient has copy of Z, if G/G1
∼= Zs⊕T , Zs is free abelian

group and T is torsion-part. Then by Subgroup-correspondence theorem [17], there

exist a subgroup H of G such that, we have

H/G1
∼= Zs−1 ⊕ T

G/H ∼=
G/G1

H/G1

∼=
Zs ⊕ T
Zs−1 ⊕ T

∼= Z

So we have found a subgroup H such that G/H ∼= Z. If G/G1
∼= T , where T is the

finite part and G1/G2
∼= Zs ⊕ T1. Then again, H1/G2

∼= Zs−1 ⊕ T1 and

G1/H1
∼=
G1/G2

H1/G2

∼=
Zs ⊕ T1

Zs−1 ⊕ T1

∼= Z

and |G : G1| <∞. So this time, we have a subgroup G1 of finite index in G such that

G1/H1
∼= Z and a subgroup H1 of G. Since r > 0, replacing G by a subgroup of finite

index, if necessary we can find an infinite cyclic quotient G/H of G i.e. G/H ∼= Z.

So we have a short exact sequence

1→ H → G
λ−→ Z→ 1

If t ∈ G maps onto a generator of G/H ∼= Z. If define µ : Z → G given by µ(1) = t,

µ is a homomorphism and also λ ◦ µ(1) = λ(t) = 1, so G ∼= Ho < t >. So G is the

semidirect product of H with the cyclic group < t > generated by t. Since rank(H)=
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r − 1, because one copy of Z is outside H. It follows by induction that H contains

a nilpotent subgroup N of finite index i.e. |G : N | < ∞. Since, we know that H is

finitely generated and by 2.3.14, we know that H has only finitely many subgroups of

index [H : N ]. So it follows that N has only finitely many conjugates in G. Because

conjugates subgroups have same index as N has, since there are only finite subgroups

of index [H : N ] sayNg1, Ng2, ...Ngt. If we take their intersectionN ′ = ∩ti=1Ngi which

is still of finite index, since each Ngi has finite index in H, because if we have N1, N2

such that |H : N1| <∞ and |H : N2| <∞, then |H : N1∩N2| = |H : N1||H1 : N1∩N2|

N1

N1 ∩N2

∼=
N1N2

N2

Since |H : N2| < ∞ so |N1N2 : N2| < ∞ it implies that |H : N1 ∩ N2| < ∞.

Similarly hold for any finite intersection. Hence N ′ is normal subgroup of G which

has finite index in H. So we may therefore assume N is normal in G which has

finite index in H. Note that N. < t > has finite index [H : N ] G, since we have

G ∼= H. < t > and therefore |G : N. < t >| = |H. < t >: N. < t >| = |H : N | < ∞

so we may assume that G = N. < t >(∵ upto finite index). Because in order to

prove G is virtually nilpotent if we are able to show that G has a subgroup H of

finite index such that H is virtually nilpotent. Then we are done since in that case

we have |G : H| < ∞ and |H : N | < ∞ which implies that |G : N | < ∞. Now our

G = N. < t >. So N has lower central series

N = γ1(N) ⊇ γ2(N) ⊇ ... ⊇ γs+1(N) = {1}

. Refine this lower central series of N to chain N = N1 ⊇ N2 ⊇ ... ⊇ .. of G-invariant

subgroups such that Nh/Nh+1 is either finite or else such that NL/L is finite for any

G-invariant subgroup L with

Nh+1 ⊆ L ⊆ Nh

Nh/Nh+1
∼= Zr⊕T , there exists a subgroup H/Nh+1 of Nh/Nh+1 such that H/Nh+1

∼=

Zr and |Nh : H| < ∞ The latter condition just means that the G-module Mh =

Nh/Nh+1 is torsion free and Q⊗Z Mh is an irreducible Q[G]-module. �

Lemma 3.0.25 Let < t > be an infinite cyclic group . Let M be a < t >-module

which is finitely generated and torsion free and such that Q ⊗Z M is irreducible.
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Suppose that the semi-direct product M with < t > does not have exponential growth.

Then some power of t acts trivially on M .

Proof: Here, we have < t > ∼= Z be an infinite cyclic group. Let M be < t > module

which is finitely generated torsion free and such that Q⊗ZM is irreducible. Let α be

an automorphism of M induced by t: < t > ×M → M so φt : M → M is given by

φt(m) = t.m. Since, Q⊗Z M is irreducible, End(Q⊗Z M) is a division Q-algebra.

Now consider the subalgebra of End(Q⊗ZM) generated by α, which is Q[α], α induces

a endomorphism at the level of Q⊗Z M namely

1⊗ φ : Q⊗Z M → Q⊗Z M

given by

1⊗ φ(
∑

αi ⊗m) =
∑

αi ⊗ α(m)

Since, we know that M be a < t >∼= Z module which is finitely generated and

torsion-free i.e. (M ∼= Zd) so

Q⊗Z M ∼= Q⊗Z Zd ∼= Qd

i.e. α ∈ End(Q⊗ZM ∼= Qd) i.e. there are scalars, not all zero, such that
∑d+1

i=0 βiα
i = 0

for βi ∈ Q, it follows that

β0 + β1α + ...+ βd+1α
d+1 = 0

We can always choose a constant βi 6= 0 such that βi+βi+1α
i+1+...+βd+1α

d+1 = 0.

So without loss of generality, choose β0 6= 0

β0 = −(β1α + ...+ βd+1α
d+1)

1 = −(β−1
0 β1α + ...+ β−1

0 βd+1α
d+1)

α−1 = −(β−1
0 β1 + ...+ β−1

0 βd+1α
d) = −

d∑
i=0

ciα
i ∈ Q[α]

So, Q[α] = Q(α). Hence, the subalgebra generated by α is a field namely Q(α).

Since, α ∈ End(Q⊗Z M), we can view α as a d× d matrices over Z. So it satisfy its

characteristic equation. Hence α, is an algebraic integer. Also, α satisfies some monic

polynomial, therefore so Q(α) is a finite extension over Q and we can embed Q(α) in
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C. Now we wish to prove that α is a root of unity. Suppose α is not a root of unity.

Then we can see α as an embedding of Q(α) in C such that |α| 6= 1. Now replacing α

by a power of α (and t by the same power of t), we can further arrange that |α| > 2

(if |α| > 1) otherwise we can consider Q(α−1)( |α−1| < 1). Now, choose x 6= 0 in

M . Since, Q(α) is the subalgebra generated by α of End(Q ⊗Z M). So Q(α).x is a

submodule of Q⊗M but Q⊗Z M is irreducible. Therefore, Q⊗Z M = Q(α).x

Now, by our given hypothesis that the semi-direct product of M with < t > does not

have exponential growth, we can apply 3.0.23 by interchange the role of t, x in the

place of β and α. Hence, we have a relation of the form

0 = e0x+ e1αx+ ...+ em−1α
m−1x+ αmx

where each ei = 0, 1 or −1. This implies that,

αmx = −(e0x+ e1αx+ ...+ em−1α
m−1x)

αm = −(e0 + e1α + ...+ em−1α
m−1)

Therefore,

|αm| = |e0 + e1α + ...+ em−1α
m−1|(∵ ei ∈ {0, 1,−1})

|αm| ≤ 1 + |α|+ ...+ (|α|)m−1

=
(|α|)m − 1

|α| − 1

,Since |α| > 2, we have |α| − 1 > 1 it follows that 1
|α|−1

< 1

(|α|)m − 1

|α| − 1
< (|α|)m − 1 < (|α|)m

So, |α|m < |e0 + e1α+ ...+ em−1α
m−1| < |α|m which is contradiction, because |α| > 2.

Hence, α is a root of unity. Since α is an automorphism of M induced by t, some

power of t acts trivially on M . Now, let’s apply the above lemma to finish our proof.

Now, note that N acts trivially on Nh because Nh is a G−invariant subgroup. Since

N is nilpotent group by 3.0.25, some power of t likewise acts trivially on Mh. Thus

there is a power tq of t which acts trivially on all the Mh. If we take G′ = N ′. < tq >,

then

[G′, Nh] = [N. < tq, Nh] ⊆ Nh+1∀h
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Since tq acts trivially on Mh = Nh/Nh+1 and N acts trivially on Mh∀h. Since

[G′, G′] = [N. < tq, N. < tq] ⊆ N = N1

and

G′(2) = [G′, [G′, G′]] ⊆ [G′, N1] ⊆ N2

G′(3) = [G′, [G′, [G′, G′]]] ⊆ [G′, N2] ⊆ N3

...

We proceed like this and since N is nilpotent group so there exist k ∈ N such that

G′(k) = {1}.

Now, |G : G′| = | N.<t>
N.<tq>

| = |<t>|
|<tq>| = q. So, G′ is a nilpotent subgroup of G of finite

index q. �

3.0.3 Growth of finitely generated nilpotent groups

In this section, we will prove our main result which says that if G is finitely gener-

ated nilpotent group then the growth type of G is polynomial, not only that we will

calculate the degree of that polynomial.

To prove this, first let’s make the definition of polynomial growth to be more pre-

cise.

Definition 3.0.26 (Polynomial growth) Let G be a group, S a finite generating

set of G. Suppose that there are polynomials P,Q with positive leading coefficients

such that P (m) ≤ γS(m) ≤ Q(m) for all m >> 0.

If d = deg(P ) and e = deg(Q), then it is clear that there exist constants A,B > 0

such that Amd ≤ γS(m) ≤ Bme for all m >> 0. Suppose that T is another finite

generating set of G. By 2.2.10, there are integers a, b > 0 such that γS(m) ≤ γT (am)

and γT (m) ≤ γS(bm) for all m. The latter condition implies that γT (m) ≤ (Bbe)me

for m >> 0 and the former condition implies that γT (m) ≥ γT (a[m
a

]) ≥ A([m
a

)d(∵

m ≥ a[m
a

] ≥ γS([m
a

]) Since, [m
a

]d = [m
a
− 1 + 1]d, where [x] is the greatest integer
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function. As we know [x]− 1 ≤ x ≤ [x] + 1

∴ A[m
a

]d ≥ A(m
a
− 1)d.

(∵ if m
a
∈ Z then [m

a
]d ≥ (m

a
− 1)d

and if m
a
6∈ Z then [m

a
]d ≥ (m

a
− 1)d)

So, we have γT (m) ≥ A
ad

(m − a)d for m >> 0. Thus γT is bounded above and

below by polynomials of the same degree with positive leading coefficients.

Let d be a positive integer. We say that G has polynomial growth of degree d if

there exists constants A,B > 0 such that Amd ≤ γS(m) ≥ Bmd for all m >> 0 and

this notion does not depend upon the choice of S.

Now, just before writing a main theorem, we fix some notations which we will use

throughout this section.

Let G be a finitely generated nilpotent group with lower central series

G = G1 ⊇ G2 ⊇ ... ⊇ Gp ⊇ Gp+1 = {1}

Let rh denote the rank of the finitely generated abelian group Gh/Gh+1 and write

d(G) =
∑

h≥1 hrh. Then the theorem says that:

Theorem 3.0.27 [H. Bass, [2]] Let G be a finitely generated nilpotent group with

lower central series

G = G1 ⊇ G2 ⊇ ... ⊇ Gp ⊇ Gp+1 = {1}.

Let rh denote the rank of finitely generated abelian group Gh/Gh+1 and write d(G) =∑
h≥1 hrh. Then G has polynomial growth of degree d(G). In other words there is

finite generating set T of G and polynomial P and Q of degree d(G) such that P (m) ≤

γT (m) ≤ Q(m).

We will prove this theorem in two steps. Our first step will be to prove P (m) ≤

γT (m) and second step will be to prove γT (m) ≤ Q(m). Let’s start with first step. In
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order to prove it, we need a small proposition.

Proposition 3.0.28 If A and B are subgroup of G whose commutator [A,B] lies in

the centre Z(G), then the commutator map A×B → [A,B] is bimultiplicative.

Proof: Let A,B ≤ G such that [A,B] ⊆ Z(G), and a map φ : A×B → [A,B] given

by φ(a, b) = a−1b−1ab.

φ(aa′, b) = (aa′)−1b−1aa′b = a′−1a−1b−1aa′b

φ(a, b)φ(a′, b) = a−1b−1aba′−1b−1a′b

Now,

φ(aa′, b) = a′−1a−1b−1aa′b

= a′−1(a−1b−1ab)b−1a′b(∵ a−1b−1ab ∈ Z(G))

= a−1b−1aba′−1b−1a′b

= φ(a, b)φ(a′, b)

Similarly, we have φ(a, bb′) = a−1b′−1b−1abb′

φ(a, b)φ(a, b′) = a−1b−1aba−1b′−1ab′

Now, φ(a, bb′) = a−1b′−1a(a−1b−1ab)b′ = a−1b−1aba−1b′−1ab′ = φ(a, b)φ(a, b′) [∵

a−1b−1ab ∈ Z(G)] . So, φ is bimultiplicative. �

Now, let’s start the proof of first step. Since we know that by 2.3.5, we have

[Gh, Gk] ⊆ Gh+k. Now, we will apply 3.0.28 to A = Gh/Gh+1 and B = Gk/Gk+1,

Now,

Z(G/Gh+k+1) = {gGh+k+1 ∈ G/Gh+k+1 : gGh+k+1hGh+k+1 = hGh+k+1gGh+k+1∀hGh+k+1 ∈ G/Gh+k+1}

= {gGh+k+1 ∈ G/Gh+k+1 : ghg−1h−1 ∈ Gh+k+1}
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Z(G/Gh+k+1) = {g ∈ G : [g, h] ∈ Gh+k+1∀h ∈ G

Claim: [Gh/Gh+1, Gk/Gk+1] ⊆ Z(G/Gh+k+1)

Now,

[Gh/Gh+1, Gk/Gk+1] =
[Gh, Gk]Gh+k+1

Gh+k+1

≤ Gh+kGh+k+1

Gh+k+1

=
Gh+k

Gh+k+1

Let gGh+k+1 ∈ G/Gh+k+1, and h ∈ G, since we have [G1, Gh+k] ⊆ Gh+k+1], [g, h] ⊆

Gh+k+1. So by 3.0.28, we have

φ : Gh/Gh+1 ×Gk/Gk+1 → [Gh/Gh+k+1, Gk/Gh+k+1]

given by

φ(gGh+k+1, hGh+k+1) = [g, h]Gh+k+1 is bimultiplicative. So by the universal property

of tensor product , we have a map:

ψ : Gh/Gh+1 ⊗Gk/Gk+1 → [Gh/Gh+k+1, Gk/Gh+k+1] ⊆ Gh+k

Gh+k+1

and therefore we have a map

ψ : Gh/Gh+1 ⊗Gk/Gk+1 → [Gh/Gh+k+1, Gk/Gh+k+1]

Since Gh
Gh+1

∼= Gh/Gh+k+1

Gk/Gh+k+1
and Gk

Gk+1

∼= Gk/Gh+k+1

Gk+1/Gh+k+1
, so we define

ψ : Gh/Gh+1 ⊗Gk/Gk+1 → [Gh/Gh+k+1, Gk/Gh+k+1]

given by ψ(gGh+1, g
′Gk+1) = [g, g′]Gh+k+1: if k = 1 , ψ : Gh/Gh+1 ⊗ G1/G2 →

Gh+1/Gh+2 .Then ψ′ is surjective, because if gGh+2 ∈ Gh+1/Gh+2, where g ∈ Gh+1 =

[G,Gh], write

g = [x1, y1]ε1 [x2, y2]ε2 ...[xr, yr]
εr

where xi ∈ G, yi ∈ Gh. Now each [xi, yi] has preimage xiGh+1 ⊗ yiG2 such that

ψ(xiGh+1 ⊗ yiG2) = [xi, yi]Gh+2

Since ψ is bimultiplicative, ψ(xε1i Gh+1 ⊗ yiG2) = [xi, yi]
ε1Gh+2
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Similarly,

ψ(
r∑
i=1

(xεii Gh+1 ⊗ yiG2)) = [x1, y1]ε1 [x2, y2]ε2 ...[xr, yr]
εrGh+2

Hence for k = 1, f is an onto homomorphism. It follows by induction that if T1

is a finite set in G, whose image generates G1/G2 and if we define Th inductively :

Th+1 = {[s, t] = sts−1t−1 | s ∈ T1, t ∈ Th}. Then Th is a finite subset of Gh whose

image generates Gh/Gh+1, Now we have Gh → Gh/Gh+1 given by Th → Gh/Gh+1

similarly G1 → G1/G2, So,

Gh/Gh+1 ⊗G1/G2
f−−→

onto
Gh+1/Gh+2.

Here,

gG2 = tα1
1 .t

α2
2 ...t

αr
r G2

therefore g−1(tα1
1 .t

α2
2 ...t

αr
r ) ∈ G2

g = tα1
1 .t

α2
2 ...t

αr
r (
∏

[ti, tj])(
∏

i,j[ti, [ti, tk]]) ∈ T1.

∴ G = < T1 >

Lemma 3.0.29 Let h,m and n be integers such that h ≥ 1,m > 0 and | n |≤ mh.

Let t ∈ Th. Then there is an element t(n) ∈ Gh such that t(n) ≡ tnmod Gh+1 and

lT1(t
(n)) ≤ 8h−1m.

Proof: We will treat only the case n ≥ 0. If n < 0, m = −n > 0, then

t(m) = t(−n) = (t(n))−1. Now if h = 1, we put t ∈ T and |n| ≤ m then t(n) = tn.

Clearly lT1(t
(n)) ≤ n and n ≤ 81−1m = 80m, by hypothesis.

Suppose by induction, the lemma holds for h ≥ 1. We wish to prove it for h+1. Given

u ∈ Th+1 and 0 ≤ n ≤ mh+1, we seek u(n) ≡ unmod Gh+2 with lT1(u
(n)) ≤ 8hm. Let

n = am+ b with 0 ≤ b < m and then 0 ≤ a < mh. (Otherwise, n ≤ mh+1 so a ≤ mh,

if a > mh ⇒ ma > mh+1 a contradiction). Now u ∈ Th+1 = {[s, t] | s ∈ T1, t ∈ Th} ,

say u = [s, t], φ : G1 × Gh → Gh+1/Gh+2, given by φ(a, b) = [a, b]Gh+2 and the map

φ is bilinear. So using the bilinearity of φ, we have φ(aa′, b) ≡ [a, b][a′, b] (≡:modGh+2)
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i.e. [a2, b] ≡ [a, b][a, b](mod Gh+2) ⇒ [a2, b] ≡ [a, b]2(mod Gh+2)

Similarly,

[a2, b2] ≡ [a, b2]2(modGh+2)

≡ [a, b]4(modGh+2)

Hence, we have un = [s, t]am+b

Now,

[sm, ta][sb, t] ≡ [sm, ta][s, t]b(modGh+2))

≡ [s, ta]m[s, t]b(modGh+2))

≡ [s, t]am[s, t]b(modGh+2))

≡ [s, t]am+b(modGh+2))

≡ un = [s, t]am+b ≡ [sm, ta][sb, t]

≡ [sm, t(a)][sb, t](modGh+2))

Since, 0 ≤ a ≤ mh, by induction, we have

≡ un ≡ [sm, ta][sb, t]

≡ un(modGh+2))

Then,

lT1(u
(m)) ≤ 2m+ 2lT1(t

(m)) + 2b+ 2lT1(t)

≤ 2m+ 2m+ 2lT1(t
(a)) + 2lT1(t)[∵ lT1(t

(a)) ≤ 8h−1m]

≤ 4m+ 2.8h−1m+ 2.8h−1m

≤ 4m+ 4.8h−1m = 4m(1 + 8h−1) ≤ 8hm

Hence, u(n) is the required element in the lemma, which completes the proof. �

Now, fix an integer m > 0, for each h ≥ 1 choose elements th1 , th2 , ..., thrh ∈ Th

which are linearly independent modulo Gh+1. Since, rh = rank of finitely generated

abelian groups Gh/Gh+1( torsion-free part), we can choose elements th1 , th2 , ..., thrh ∈

Th which are linearly independent modulo Gh+1. i.e. whenever tα1
h1
, tα2
h1
, ..., tαhh1 ∈ Gh+1
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which imply that α1 = 0, α2 = 0, ..., αrh = 0. Consider the set Sh of elements

t
(q1)
h1
, t

(q2)
h2
, ..., t

(qrh )

hrh
with |qi| ≤ mh for 1 ≤ i ≤ rh and there are (2mh + 1)rh distinct

elements in Sh. Suppose

t
(q1)
h1
, t

(q2)
h2
, ..., t

(qrh )

hrh
= t

(q∗1)
h1

, t
(q∗2)
h2

, ..., t
(q∗rh

)

hrh
(modGh+2))

t
(q1−q∗1)
h1

, t
(q2−q∗2)
h2

, ..., t
(qrh−q

∗
rh

)

hrh
≡ 1(modGh+2))

but {th1 , th2 , ..., thrh} is a linearly independent set modulo Gh+2. So, q1 = q∗1, ..., qrh =

q∗rh . So there are (2mh+1)rh distinct elements in Sh, because qi has (2mh+1)rh choices

and each of T1- length ≤ rh.8
h−1m or less 3.0.29. Now consider the sets S1, S2, ...Sp

for each h = 1, 2, ..., p and

Sh = {t(q1)
h1
, t

(q2)
h2
, ..., t

(qp)
hp
}

Claim: The product map is S1 × S2 × ...× Sp → G is injective.

Suppose

(t
q
(1)
1

11 ...t
q1r1

1r
(1)
1

)(t
q
(2)
1

21 ...t
q
(2)
r2

2r2
)...(t

q
(p)
1
p1 ...t

q
(p)
rp
prp ) = {1}

and also we have G1 ⊃ G2 ⊃ G3 ⊃ ...Gp ⊃ Gp+1 = {1} Reducing the equation over

G2, we get

(tq111...t
q1r1
1r1

)G2(t
q
(2)
1

21 ...t
q
(2)
r2

2r2
)G2...(t

q
(p)
1
p1 ...t

q
(p)
rp
prp )G2 = G2,

since, we have

(t
q
(2)
1

21 ...t
q
(2)
r2

2r2
) ⊂ G2, T3 ⊂ G3 ⊂ G2...Tp ⊂ Gp ⊂ G2

we get tq111...t
q1r1
1r1

G2 = G2, since {t11, t12, ..., t1r1} is a linearly independent set modulo

G2. So q1 = 0, q2 = 0, ..., qr1 = 0. Now we have left

(t
q
(2)
1

21 ...t
q
(2)
r2

2r2
)...(t

q
(p)
1
p1 ...t

q
(p)
rp
prp ) = {1}

Now reduce the equation over G3, we get q
(2)
1 = 0...q

(2)
2r2

= 0. Similarly, q
(ri)
i = 0 ∀ 1 ≤

i ≤ rh. Therefore, the product map
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S1 × S2 × ...× Sp → G is injective. So its image consists of

P (m) =
∏
h≥1

(2mh + 1)rh

distinct elements and each of T1-length at most

∑
h≥1

8h−1rhm = m(
∑
h≥1

8h−1rh) = cm

for some c.

Thus, P (m) ≤ γT1(cm)

Since, P (m) =
∏

h≥1(2mh + 1)rh . So P (m) is a polynomial of degree
∑

h≥1 hrh =

d(G) with leading term 2emd, e =
∑

h≥1 rh. Since the notion of growth does not

depend upon choice of generator, P (m) ≤ γT (m), where degP (m) = d(G), which

completes the proof of first step.

Now we will prove the second part of theorem 3.0.27 i.e. γT (m) ≤ Q(m), where

Q(m) is a polynomial of degree d(G).

Proof: Since G is finitely generated and a nilpotent group, so by 2.3.6, we can

choose a finite set T of generators of G such that s, t ∈ T ⇒ s−1 ∈ T and [s, t] ∈ T .

We have the lower central series G = G1 ⊇ G2 ⊇ G3.... ⊇ Gp ⊇ Gp+1 = {1}. We put

Th = T ∩Gh, for h ≥ 1, so that

T = T1 ⊇ T2 ⊇ ... ⊇ Tp ⊇ Tp+1 = {1}, and Gh =< Th > for all h ≥ 1 because

our T is the set of all possible commutators. Let’s recall 2.2.12, Pr(m) be the growth

function of a free abelian group of rank r with respect to a standard basis i.e. There-

fore, Pr(m) =
r∑
i

2i
(
r
i

)(
m
i

)
is a polynomial of degree r with positive leading coefficient.

To prove γT (m) ≤ Q(m), where Q(m) is a polynomial of degree d(G) , we need a

proposition from which it will directly follow:
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Proposition 3.0.30 There exist constants A1, A2, ..., Ap with the following property:

given integers c ≥ 1 and h with 1 ≤ h ≤ p, there exist integers cj ≥ 1, for h ≤ j ≤ p,

such that γTh(cmh) ≤ Ah.
∏

j≥h Prj(cjm
j) for all m.

Proof: Suppose h = 1, since m ≤ cm (c ≥ 1) and T = T1, (T1 = T∩G1 = T∩G = T )

we conclude from the proposition that γT (m) ≤ A1.
∏

j≥1 Prj(cjm
j) . Since we know

that

Pr(m) =
r∑
i=0

2i
(
r

i

)(
m

i

)

Prj(m) =

rj∑
i=0

2i
(
rj
i

)(
m

i

)

Prj(cjm
j) =

rj∑
i=0

2i
(
rj
i

)(
cjm

j

i

)
So, Prj(cjm

j) is polynomial of degree jrj and A1

∏
j≥ Prj(cjm

j) is polynomial of degree∑
jrj = 1.r1 + 2.r2 + ... it implies that∑

j≥1 jrj = d(G). Hence, A1.
∏

j≥h Prj(cjm
j) is a polynomial with positive leading

coefficient of degree
∑

j≥1 jrj = d(G). So it follows that γT (m) ≤ Q(m), where Q(m)

is a polynomial of degree d(G).

Now fix, 1 ≤ h ≤ p. List the elements of Th/Th+1 : t1, t2, ..., tl so that t1, t2, ..., trh

are linearly independent modulo Gh+1 because rank(Gh/Gh+1) = rh. Therefore,

Gh/Gh+1
∼= Zrh ⊕ T where Zrh is the free part and T is torsion part. So, <

t1, t2, ..., trh > ∼= Zrh and < t1, t2, ..., trh > Gh+1 has finite index, say N , in Gh.

(∵ ∃ subgroup H of Gh such that H/Gh+1
∼= Zrh , Gh/H ∼= T with |Gh : H| < ∞).

Now we will define some terminology:

By a word in Th, we mean a finite sequence w = (s1, s2, ...sn) of elements of Th.

It is said to represent |w| = s1s2...sn ∈ Gh. We say w is prenormalized if it is of the

form

w = (t1, t1, ..t1, ...tl, tl, ..tl, v) (3.1)

where first ai coordinates are of ti, for 1 ≤ i ≤ l, and v is a word in Th+1. We say w

is normalized if further aj < N for rh < j ≤ l. Now, let w = (s1, s2, ..sn) be a word in

Th. If S ⊆ Th, let degS(w) be the number of i′s for which si ∈ S. Put q = p− h + 1
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and let d = (dh, ..., dp) ∈ Zq, we write deg(w) ≤ d = (dh, ..., dp) if degTh\Th+1
(w) ≤ di

for h ≤ i ≤ p.

Let Gh(d) = Gh(dh, ..., dp), denote the set of words w such that deg(w) ≤ d, and let

G′h(d) be the set of words in Gh(d) that are normalized and elements of Gh represented

by these sets will be denoted |Gh(d)| and |G′h(d)| , respectively. If w ∈ G′h(dh, ..., dp)

is normalized word as above with aj = degtj(w), then

a1 + a2 + ...+ al = degt1(w) + degt2(w) + ...+ degtl(w)

since, t1, t2, ..., tl ∈ Th \ Th+1 and degTh\Th+1
(w) = a1 + a2 + ... + al ( ∵ degTh\Th+1

(w)

be the number of elements tj such that tj ∈ Th \ Th+1 and since aj = degtj(w) and

v 6∈ Th \ Th+1 so v would not contribute to degTh\Th+1
(w)). So, a1 + a2 + ... + al =

degTh\Th+1
(w) ≤ dh (w ∈ G′h(dh, ..., dp) also deg(w) ≤ d i.e. degTh\Th+1

(w) ≤ di, h ≤

i ≤ p, In particular, i = h and degTh\Th+1
(w) ≤ dh). Hence, we have a1 +a2 + ...+al =

degTh\Th+1
(w) ≤ dh. It follows that

Card|G′h(dh, ..., dp) |≤ A′hPrh(dh).Card | Gh+1(dh+1, ..., dp)| (3.2)

where A′h = (l − rh)N + 1. Let τ : Zq → Zq be the endomorphism defined by :

τ(dh, dh+1, ..., dp) = (0, dh, ..., dp−1)

τ((dh, ..., dp) + (d′h, d
′
h+1, ..., d

′
p)) = τ(dh + d′h, ..., dp + d′p)

= τ(0, dh + d′h, ..., dp−1 + d′p−1)

= (0, dh, ..., dp−1) + (0, d′h, ..., d
′
p−1)

= τ(dh, ..., dp) + τ(d′h, d
′
h+1, ..., d

′
p)

Hence, τ is an endomorphism.

Lemma 3.0.31 Let d = (dh, ..., dp) ∈ Zq and put d′ = (I+τh)dh(d), w ∈ Gh(d). Then

there is a word w1 ∈ Gh(d
′) such that |w1| = |w|, degtj(w1) = degtj(w) for 1 ≤ j ≤ l

and w1 is prenormalized.
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Proof: Consider an occurence of t1 in w, say (..., s, t1, ..). We have st1 = t1s[s
−1, t−1]

so we can write st1 = t1s[s
−1, t−1] and [s−1, t−1] ∈ T2h ( ∵ s ∈ Th = Gh ∩ T, s ∈ Gh

and t1 ∈ Th ⊂ Gh), since [Gh, Gh] ⊆ G2h and [s−1, t−1] ∈ G2h, T2h = T ∩ G2h. since

s, t1 ∈ Th = T ∩Gh where s, t1 ∈ T but T has the property s−1, t−1
1 ∈ T ⇒ [s−1, t−1

1 ] ∈

T , hence [s−1, t−1
1 ] ∈ T ∩G2h = T2h.

∴ [s−1, t−1
1 ] ∈ T2h.

we can replace (s, t1) in w by (t1, s, [s
−1, t−1

1 ]) so t1 occurs before s.

So we do not alter the group element represented and we move t1 one step to-

wards the left at the cost of an extra term [s−1, t−1
1 ]). Note that we have not changed

the degree in the tj1 ≤ j ≤ l. (∵ [s−1, t−1
1 ] ∈ T2h ⇒ [s−1, t−1

1 ] 6∈ Th \ Th+1). Mov-

ing t1 all the way to the left therefore yields a new word w′ such that |w′| = |w|,

degtj(w
′) = degtj(w

′) for 1 ≤ j ≤ l and such that the term of w′ are those of w plus

one extra term of the form [u−1, t−1
1 ]), for each u in w originally occurring to the left

of our t1. If u ∈ Tk then [u−1, t−1
1 ] ∈ Th+k.

∵ u ∈ Tk = T ∩ Gk, u ∈ Gk, t
−1
1 ∈ Th = T ∩ Gh[u

−1, t−1
1 ] ∈ Gh+k, u, t ∈ T [u, t] ∈

T and [u−1, t−1
1 ] ∈ T ∩ Gh+k = Th+k). It follows that deg(w′) ≤ (dh, ..., dp) +

(0, .., dh, .., dp−h), Since τ : Zd → Zd

τ(dh, ..., dp) = (0, dh, .., dp−1)

τh(dh, ..., dp) = (0, ..., 0, dh, .., dp−h), where first h coordinate are 0.

Also I(dh, ..., dp) = (dh, ..., dp), where I is the identity map.

So

deg(w′) ≤ (dh, ..., dp) + (0, ..., dh, ..., dp−h) ≤ (I + τh)(d) (3.3)

This is because Ti\Ti+1 degree of w′ is augmented over that of w by the terms [u−1, t1]

by at most di−h in number, where u ∈ Th \ Ti−h+1. Put aj = degtj(w). By the above
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procedure we first move all a1 occurrences of t1 to the left, then all a2 occurrences

of t2, and al occurrences of tl. The result will be a prenormalized word w1 such that

|w1| = |w| and deg(tj(w1) = aj for 1 ≤ j ≤ l. Moreover it follows from above that

deg

(w1) ≤ (I + τh)(a1)...(I + τh)(al)(d)

≤ (I + τh)(dh)d = d′

(∵ a1 + a2 + ...+ al ≤ dh) which proves the lemma’s proof. Hence, we have a word w1

which is prenormalized and degtj(w1) = degtj(w) and they represent the same word.

i.e. |w1rvert = |w| .

Now, in order to normalize prenormalized words, for each j = rh + 1, rh + 2, ...l,

we choose a word sj in {t1, ..., trh} ∪ Th+1 representing tNj . Choose a constant k > 0

such that that deg (sj) ≤ k = (k, k, ..., k) ∀j. Now let w and w1 be as in the previous

lemma, w1 = (t1, t1, ..., t1.....tl, ..tl, v) is prenormalized, aj = degtj(w) and |w1| = |w|

for rh < j ≤ l, we divide aj by N .

We may write aj = bjN + cj with 0 ≤ cj < N . Then replace (tj, tj, ..., tj) in w1 by

(sj, sj, ..., sj, tj, ..tj) where bj, cj are the number of sj and tj copies for rh < j ≤ l (∵

where |sjsj...sjtj...tj| = s
bj
j t

cj
j but sj represent tNj . So, |sjsj...sjtj...tj| = t

Nbj+cj
j = t

aj
j .

So the result is a new word w2 with the following properties : |w2| = |w1|, and

degtj(w2) < N for rh < j ≤ l and

deg(w2) ≤ d′ + (
∑
rh

< j ≤ lbj)k

≤ d′ + (
∑

1≤j≤l

aj)k

≤ d′ + dhk

Now if e, e′ ∈ Zq , we denote e ≤ e′, if ej ≤ e′j∀j. In this case, when dh ≤ dj for j ≥ h.

dhk = (dhk, dhk, ..., dhk)

kd = (kdh, kdh+1, ..., kdp) since dh ≤ dj for j ≥ h and kdh ≤ kdj∀j ≥ h

⇒ dhk ≤ kd. Since τh(d)(0, ..., 0, dh, .., dp−h)
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(I + τh)(d) = (dh, ..., dp) + (0, ..., dh, ..., dp−h)

= (dh, dh+1, ..., d2h−1, dh+h, ..., dp+p−h)

so, dhk ≤ kd ≤ (I + τh)dh(kd) and since d′ = (I + τh)dh(d), we have d′ + dhk =

(I + τh)dh(d) + dhk

≤ (I + τh)dh(d) + dk

≤ (I + τh)dh(d) + (I + τh)dh(kd)

≤ (1 + k)(I + τh)dh(d). We conclude therefore, if dj ≥ dh for j ≥ h, then

deg(w2) ≤ (1 + k)(I + τh)dh(d) = d”(say) (3.4)

Next we again apply 3.0.31 to w2 ,to obtain a new prenormalized word w3 with

the following properties: |w3| = |w2| = |w1| = |w|, degtj(w3) = degt(w) < N for

rh < j ≤ l. From the equation(4), deg(w3) ≤ (I + τh)d”h(d”) = d′′′. Note in partic-

ular that w3 is normalized, then d”h = (1+k)dh and so, d′′′ = (1+k)(I+τh)(2+k)dh(d).

(∵ deg(w3) ≤ (I+τh)(1+k)dh(d) ≤ (I+τh)(1+k)dh(I+k)dh ≤ (1+k)(I+τh)(2+k)dh(d)).

Then, we have shown that w ∈ Gh(d) , there exist w3 ∈ G′h(d′′′) such that | w3|=| w|,

provided that dj ≥ dh for j ≥ h.

One can say that, given d = (dh, .., dp)Zq with that dj ≥ dh for j ≥ h, we have

|Gh(d)| ⊂| G′h(e) |, wheree = (1 + k)(I + τh)(2+k)dh(d) (3.5)

Now, let c be a positive constant and assume that d = (cmh, ..., cmp) (dh = cmh).

Put M = (2 + k)dh = (2 + k)cmh

Then, e = (1 + k)(I + τh)(2+k)dh(d)

e = (1 + k)(I + τh)M(d)

e = (1 + k)(I+
(
M
1

)
τh +

(
M
2

)
τ 2h + ....)(d)
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[∵
(
M
1

)
= M !

(M−1)!
= M ,

(
M
j

)
= M !

j!(M−j)! = M(M−1)(M−2)...(M−(j−1))
j!

≤ Mj

j!
]

So, e ≤ (1 + k)(I +Mτh + M2

2!
τ 2h + ...)(d) since, τ : Zq → Zq

τ(d) = (0, dh, ..., dp−1) and therefore τh(d) = (0, 0, ...dh, ..., dp−h) and (τh(d))h = 0,

(τh(d))h+1 = dh and similarly we have (τh(d))p−h = dp−h. In general, (τh(d))i = di−h

for h ≤ i ≤ p. Then we have

e ≤ (1 + k)(I +Mτh + M2

2!
τ 2h + ...)(d)

ei ≤ (1 + k)(di +Mdi−h + M2

2!
di−2h + ...)(d)

the term Mj

j!
di−jh being understand to be zero if i− jh < h and is otherwise equal to

1
j!

[(2 + k)cmh]jcmi−jh = cmi[(2+k)c]j

j!

[ ∵ τh(d) = (0, , , 0, dh, , , dp−h)

1
j!

[(2 + k)cmh]jcmi−jh = 1
j!

[(2 + k)c]jmjhcmi−jh

= 1
j!

[(2 + k)c]jcmi

= cmi

j!
[(2 + k)c]j , and put M = (2 + k)cmh]. Then put x = (2 + k)c, we have

ei ≤ (1 + k)cmi(1 + x+ x2

2!
+ ...)

≤ (1 + k)(cex)mi. This proves that if c is a constant (c > 0) and if d = cδ,

δ = (mh, ...,mp), then

(1 + k)(I + τh)(2+k)dh(d) ≤ c′δ, wherec′ = (1 + k)ce(2+k)c (3.6)

It is just by looking at equation no.(3.5), Now from equation (3.5) and (3.6), we obtain

|Gh(cm
h, ..., cmp)| ⊂ |G′h(c′mh, ..., c′mp)| (3.7)

and from equation (3.2), we have

Card|G′h(c′mh, ..., c′mp)| ≤ A′hPrh(c′mh)Card|Gh+1(c′mh+1, ...c′mp)| (3.8)

where A′h is a positive constant. Now, we will prove our main result γT (m) ≤ Q(m),

just by using these result which mentioned in equations (3.2),(3.5),(3.6),(3.7) and in-
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duction.

Claim: There is a constant Ah > 0 such that given c > 0, there are constants

ch, ..., cp > 0 such that

Card | Gh(cm
h, ..., cmp) |≤ Ah

∏
j≥h

Prj(cjm
j) ∀m (3.9)

Since by equation (3.7), we have

Card | Gh(cm
h, ..., cmp) |⊂| G′h(c′mh, ..., c′mp) | and from equation (3.8), we have

Card | G′h(c′mh, ..., c′mp) |≤ A′hPrh(c′mh)Card | Gh+1(c′mh+1, ...c′mp |. So, we obtain

from these two equation; there are constants A′h > 0 and c′ such that

Card|Gh(cm
h, ..., cmp)| ≤ A′hPrh(cmh)Card | Gh+1(c′mh+1, ...c′mp |

if h = p, Ap = Ah = A′pcp = c′. In that case Ah
∏

j≥p Prj(cjm
j) = ApPrp(cpm

p),

Card|Gp(cm
p)| ≤ A′PPrp(c

′mp) = Ap.Prp(cpm
p)

Hence h = p proves our claim. If h < p, then we apply induction to h + 1 and c′

to obtain Ah+1 > 0 and ch+1, ..., cp > 0 such that

Card|Gh+1(c′mh+1, ..., c′mp)| ≤ Ah+1

∏
j≥h+1

Prj(cjm
j)

Therefore, the claim follows by taking Ah = A′h.Ah+1ch = c′ and

Card|Gh(cm
h, ..., cmp)| ≤ A′hPrh(c′mh)Ah+1

∏
j≥h+1

Prj(cjm
j)

≤ A′h.Ah+1

∏
j≥h

Prj(cjm
j)

Call Ah = A′hAh+1 new constant. So, our claim is proved i.e. there is a constant

Ah > 0 such that given C > 0, there are constants ch, ..., cp > 0 such that

Card|Gh(cm
h, ..., cmp)| ≤ Ah

∏
j≥h

Prj(cjm
j)∀m

To prove 3.0.30, it suffices to show that γTh(cmh) ≤ Card|(Gh(cm
h, ..., cmp)|. But

this is clear, because each element of Th length ≤ cmh is represented by a word w in

55



Th of length ≤ cmh and evidently, w ∈ Gh(cm
h, ..., cmp). ( w ∈ Ghh ≤ ... ≤ p and

cmh ≤ cmih ≤ i ≤ p so,

degTh\Th+1
(w) ≤ cmh

deg(w) ≤ cmh

w ∈ Gh(cm
h, ..., cmp)

So,

γTh(cmh) ≤ Card|Gh(cm
h, ..., cmp)|....eq(10) (3.10)

Hence from (3.9) and (3.10), we have

γTh(cmh) ≤ Card | Gh(cm
h, ..., cmp) |≤ Ah

∏
j≥h

Prj(cjm
j)

γT (cmh) ≤ Ah.
∏
j≥h

Prj(cjm
j)

which proves the proposition 3.0.30. Now, T1 = T ∩G = T

γT (m) =| {g ∈ G : lT (g) ≤ m} |

Claim: γT (m) ≤ γTh(cmh) so if h = 1,m ≤ cm, T = T1

γT (m) ≤ γT1(cm) ≤ A1.
∏
j≥h

Prj(cjm
j)

γT (m) ≤ A1.
∏
j≥1

Prj(cjm
j)

Now, let Q(m) = A1.
∏

j≥1 Prj(cjm
j) be a polynomial of degree

∑
h≥1 hrh = d(G).

Then we have γT (m) ≤ Q(m), where Q(m) is polynomial of degree d(G), which com-

pletes the proof. Now, from first step of theorem 3.0.27, we have P (m) ≤ γT (m),

where P (m) is a polynomial of degree d(G) and from second part, we have γT (m) ≤

Q(m). Hence γT (m) is polynomial function. Hence we have our main result that if

G is finitely-generated nilpotent group, then G has polynomial growth and degree of

growth is d(G), where d(G) =
∑

h≥1 hrh and rh = rank(Gh/Gh+1).
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3.0.4 Classification of Growth type of finitely generated solv-

able groups

In this section, we will completely classify the growth types of finitely generated solv-

able groups by using the results in previous section. Let G be a finitely generated

solvable group. Then G may have a exponential growth or not. Suppose G does

not have exponential growth. Then by 3.0.24, G must be polycyclic. Now , if G is

a finitely generated polycyclic group which does not have exponential growth, then

by 3.0.21, G must be virtually nilpotent i.e. G has a nilpotent subgroup(say H) of

finite index and |G : H| < ∞. We know that by Milnor-Svarc lemma [19, 91], H is

finitely generated, G and H are quasi-isometric. So, H is finitely-generated nilpotent

group. So by 3.0.27, H has polynomial growth. Now, since by 2.2.3, we know that

Quasi-isometric groups have same growth type. So G and H have same growth type.

Hence, G is of polynomial growth. i.e. if G is finitely generated solvable group and

G is not of exponential growth then G must be of polynomial growth. So, we have

classified the growth type of finitely generated solvable groups. Hence, the possible

type of growth of a finitely generated solvable is either polynomial or exponential.

Hence finitely generated solvable group can not have Intermediate growth.
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Chapter 4

Groups of Polynomial growth

So far, we have seen that finitely generated nilpotent groups have polynomial growth,

but we still don’t have the complete answer for Milnor’s question (What are the groups

with polynomial growth?). In this section, we will answer this question in more gen-

erality. In 1981, M. Gromov completely classified the groups with polynomial growth

and proved that if a finitely generated group has polynomial growth then it must have

a nilpotent subgroup of finite index. In light of the previous result and Gromov’s re-

sult, we have: A finitely generated group has polynomial growth if and only if it is

virtually nilpotent. In this section we will prove our major theorem namely Gromov’s

theorem:

Theorem 4.0.32 (Gromov’s) [4] Let G be a finitely generated group of polynomial

growth, then G has a nilpotent subgroup of finite index.

We know that we have a metric space associated with any finitely generated group.

Gromov’s idea was to construct a sequence (Xn) of metric space such that distance

between two points in Xn+1 is closer than the distance between the same points in Xn,

and then he constructed a limit space of that sequence, called the asymptotic cones(in

which two points are too close). Not only did he define that space, he also gave a very

nice action of a group G on that space X and deduced many interesting properties

of the group. In particular if the limiting space is nice (homogenous, path-connected,

locally connected, complete, finite dimensional , locally compact) and our group G has

polynomial growth then from that action we can deduce that G is virtually nilpotent.
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This proof involves techniques of non standard analysis namely filters, ultrafilters, ul-

traproduct, asymptotic cone etc. and it stimulated a lot of activity in different areas

of mathematics. His proof used the idea of the limit of a sequence of metric spaces,

as well as Montgomery and Zippin’s solution of Hilbert’s 5th problem[11] and Tits

Alternative[15].

Later on, there are various proofs given by many people namely Van den Dries and

Wilkies in 1984, who used the same approach but a slightly improved version, and

then by Bruce Kleiner in 2010, whose proof relies on harmonic analysis without using

Zippin’s solution of Hilbert 5th problem. Y. Shalom and Terrence.Tao in 2010 gave

another proof which also depends harmonic analysis. Here, I present the proof of

Gromov’s which uses the theory of Asymptotic cones.
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4.0.5 Asymptotic cone of a finitely generated group

Let’s start with the definitions of filters, ultrafilters etc,

Definition 4.0.33 Let S be any non-empty set. A filter on S is a family F of subsets

of S with the following properties:

(i) ∅ /∈ F

(ii) if A,B ∈ F then A ∩B ∈ F (closed under intersection)

(iii) if A ∈ F and A ⊆ B then B ∈ F (closed under superset inclusion).

Example 4.0.34 Let S = {1, 2, 3}. Consider F1 = {{1}, {1, 2}, {1, 2, 3}, {1, 3}} is a

filter on S but U = {{1}, {2}, {3}, {1, 2}, {2, 3}, {1, 3}, {1, 2, 3}} is not a filter on S

because {1} ∩ {2} = ∅.

Observation 4.0.35 1. Filter can not contain two disjoints subsets.

2. Filter always contains at least one element (namely set itself).

3. Union of two filters need not be a filter on S. Take F2 = {{2}, {1, 2}, {2, 3}, {1, 2, 3}}

and F3 = {{3}, {1, 3}, {2, 3}, {1, 2, 3}}, and F2∪F3 = {{2}, {3}, {1, 2}, {2, 3}, {1, 3}, {1, 2, 3}}

is not a filter on S.

4. Symmetric difference of two filters need not be a filter.

Consider F24F3 = {{2}, {3}, {1, 2}, {1, 3}} is not a filter.

Proposition 4.0.36 The Intersection of two filters on a set S is always a filter on a

set S.

Proof: Let F ′,F ′′ be two filters on S. Since, S ∈ F ′,F ′′ ⇒ S ∈ F ′ ∩ F ′′. i.e.

F ′ ∩ ′′ is a non-empty set. Also, ∅ does not belongs to both so ∅ /∈ F ′ ∩ F ′′. Let

A,B ∈ F ′ ∩ F ′′ ⇒ A,B ∈ F ′,F ′′ ⇒ A ∩ B ∈ F ′,F ′′ and hence A ∩ B ∈ F ′ ∩ F ′′.

Suppose A ∈ F ′ ∩ F ′′ and A ⊆ B, since A ∈ F ′ ⇒ B ∈ F ′ and similarly we have

A ∈ F ′′ ⇒ B ∈ F ′′ and hence we get B ∈ F ′ ∩ F ′′. Thus, F ′ ∩ F ′′ is a filter on S.

Definition 4.0.37 A maximal filter on a set S is called an ultrafilter.
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Example 4.0.38 F1,F2 and F3 are ultrafilters on S = {1, 2, 3} but S = {{1, 2, 3}}

is not an ultrafilter on S( S ⊂ F1).

We have seen in the above example that ultrafilter on a set is not unique.

Definition 4.0.39 The family of all subsets of S containing a fixed element s ∈ S,

is termed as a principal filter.

Remark 4.0.40 Our definition of principal ultrafilter demands that the set of all

subsets containing a particular element forms a filter. Infact, we can easily prove that

this set forms a filter and indeed an ultrafilter.

Example 4.0.41 Consider the all subsets of S = {1, 2, 3} which contains 1 say F1 =

{{1}, {1, 2}, {1, 2, 3}, {1, 3}}. Similarly we can define Fi for i = 1, 2, 3. and these are

all examples of principal filters on S.

It is clear that the set of all subsets containing a particular element s ∈ S forms

a filter say Fs. Now we will prove that it is indeed an ultrafilter on S.

Suppose Fs is not an ultrafilter on S i.e. there exist a filter Y which contains Fs as a

proper subset i.e. ∃ A ∈ Y such that A 6∈ Fs but by the definition of Fs, s 6∈ A and

since {s} ∈ Fs ⊂ Y ⇒ {s} ∩A = ∅, which contradicts that Y is a filter on S. Hence,

Fs is an ultrafilter on a set S.

Now, we have seen that all principal filters on a set S are ultrafilters but the

natural question arises that whether the converse holds? We will see in the next

proposition, that converse holds if S is a finite set.

Proposition 4.0.42 If S is a finite set, then all ultrafilters are of principal type.

Proof: L.et F be an ultrafilter on S = {a1, a2, .., an}, then certainly S ∈ F . Consider

a set T is the set of all those subsets of S which contains ai, where ai ∈ T =
⋂
J∈F J

since T is non-empty so we can pick some ai ∈ T and consider the filter Fai , the

set of all subsets of S which contains ai. Consider Fai ∪ T . First we will prove

that Fai ∪ T is a filter. Clearly ∅ /∈ Fai ∪ T . If A ∈ Fai ∪ T and A ⊆ B, if
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A ∈ F ⇒ B ∈ F ⇒ B ∈ Fai ∪ T and similarly if B ∈ T ⇒ B ∈ B ∈ Fai ∪ T and

if A,B ∈ Fai ∪ T . Since ai ∈ A,B ⇒ ai ∈ A ∩ B and T contains all those subsets

which contains ai ∈ T so, A ∩ B ∈ T ⊆ Fai ∪ T . So Fai ∪ T is filter on S. But since

Fai ⊆ Fai∪T and Fai is an ultrafilter on S so we have Fai ⊆ Fai∪T = Fai ⇒ T ⊆ Fai
and since Fai is principal ultrafilter and so we get T = Fai .

Now, if S = {a1, a2, ..., an}, then all ultrafilters on S are of the form Fai for

i = 1, 2, ..., n and these are the only n ultrafilters on S but if S is an infinite set then

it is possible for ultrafilter to be non-principal.

Example 4.0.43 If S is an infinite set, then the family of all cofinite sets is a filter.

Consider F = {A ∈ P (S) | A = Bc, where B is a finite set}. Clearly ∅ /∈ F because

∅c = S is not finite set. Now, if A,B ∈ F , i.e.A = Ac1, B = Bc
1, where | A1 |< ∞

and | B1 |< ∞, then A ∩ B = Ac1 ∩ Bc
1 = (A1 ∪ B1)c and since A1, B1 are finite set

so is A1 ∪ B1, therefore A ∩ B ∈ F , and if A ∈ F , A ⊆ C for some C ∈ P (S) then

since we have A = Ac1 where | A1 |<∞, so Ac1 ⊆ C ⇒ A1 ⊇ Cc since A1 is finite and

so is Cc ⇒ C ∈ F . Hence, F is a filter on S and this filter is called the cofinite filter. �

Now we will construct a non-principal ultrafilter on the infinite set S. Now con-

sider A = {U | U is a filter on S s.t. F ⊆ U , where F is the cofinite filter on S}.

Since the cofinite filter F ∈ A, A is a non-empty set. Let’s define an ordering on

A as U1 ≤ U2 if U1 ⊆ U2. It is clear that A, with this ordering becomes a partially

ordered set. Let S be a partial ordered subset of A and take X =
⋃
U∈S U , which

is a filter on S and it contains the cofinite filter F i.e. F ⊆ X. So, S satisfies the

condition of Zorn’s lemma and hence S has a maximal element say Z, which is filter

on S containing F . Since Z is a maximal filter on S, it is an ultrafilter. But Z cannot

be a principal filter, otherwise there exists s ∈ S such that {s} ∈ Z and since F ⊆ Z,

({s})c ∈ F , {s}c ∈ Z it follows that {s} ∩ ({s})c = ∅, which is a contradiction.

Hence, Z is a non-principal ultrafilter on S.

Remark 4.0.44 The above result guarantees only the existential part of such a filter,
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but we don’t have any explicit non-principal ultrafilter on infinite set, not even an

explicit construction of any non-principal ultrafilter is known.

Lemma 4.0.45 If U is a family of non-empty subsets of S which have finite inter-

section property, then U is contained in some filter on S.

Proof: Consider F = {B ⊆ P (S) | B ⊇
⋂n
i=1Ai for some n ∈ N and for some

Ai ∈ U}. Clearly, any finite intersection of members of U is non-empty. So, the sets

containing these intersection are also non-empty and therefore ∅ /∈ F . If A,B ∈ F

i.e. A ⊇
⋂n
i=1Ci for some Ci ∈ U and B ⊇

⋂m
i=1 Di for some Di ∈ U , then A ∩ B ⊇

(
⋂n
i=1Ci) ∩ (

⋂m
i=1 Di). Also, if A ∈ F and A ⊆ B then B ⊇ A ⊇

⋂n
i=1Ei for some

Ei ∈ U . Therefore, B ∈ F . Hence, F is a filter containing U . �

Roughly speaking, a filter contains all large subsets and an ultrafilter divide the

set into large and colarge sets.

Proposition 4.0.46 A filter is an ultrafilter if and only if it satisfiesthe following

whenever A ⊆ S, then either A or the complement S − A is in F .

Proof: Assume that for any A ⊆ S, either A or S − A is in F , but F is not an

ultrafilter i.e. ∃ another filter F ′ such that F ⊆ F ′, i.e. ∃ some B ∈ F ′ such that

B 6∈ F but by given condition S \ B ∈ F ⊆ F ′ which implies that B ∩ (S \ B) = ∅,

a contradiction. So F is an ultrafilter. Conversely, suppose if F is an ultrafilter. Let

A ⊆ S. If A ∈ F , then we are done. So suppose A 6∈ F . Then F ∪ A can not be

filter because F is an ultrafilter. So F ∪ A can not have finite intersection property,

because if it had, then it would be contained in some filter which would contradict

the maximality of F . So ∃ C ⊆ F such that A∩C = ∅ which implies that C ⊆ S \A

(∵ C ∈ F) it follows that S \ A ∈ F , which completes the proof. �

Proposition 4.0.47 Let F be an ultrafilter with T ∈ F and T = A1 ∪A2 ∪ ... ∪An.

Then Ai ∈ F for some i ∈ {1, 2, .., n}.

Proof: Let T ∈ F , where F is an ultrafilter and T = A1∪A2∪ ...∪An. Suppose Ai /∈

F for any 1 ≤ i ≤ n. Then (Ai)
c ∈ F (by Prop)⇒ T c = (A1)c∩(A2)c∩ ...∩(An)c ∈ F

. This implies that T, T c ∈ F , which is not possible.
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Roughly speaking, last two propositions say that every element of an ultrafilter is

either a large set or its complement is a large set, and we can not write a large set as

a union of colarge sets.

Lemma 4.0.48 Cofinite filter on an infinte set S is the intersection of all non-

principal ultrafilters on S.

Proof: Let F be a cofinite filter and let Fα be any non-principal ultrafilter on S. Let

x ∈ S such that {x} 6∈ Fα ( ∵ Fα is non-principal). Then S \{x} ∈ Fα ∀α ∈M. Let F

be any finite subset of S say F = {x1, x2, ..., xn} and we have S \F =
⋂n
i=1 S \ {xi} ∈

Fα ∀α ∈ 4 so, F ⊆ Fα ∀α ∈ 4 ⇒ F ⊆
⋂
α∈4Fα.

Converse is easy to check. �

Now, we are going to define some notions of limit in the sense of filter. We now

fix a non-principal ultrafilter F on N. Let T be any topological space and let {xn}

be a sequence in T . For each x ∈ T , and each neigbhourhood U of x, we write

O(x, U) = {n ∈ N : xn ∈ U}.

Definition 4.0.49 We say x is the F-limit of the sequence {xn}, if for each neigh-

bourhood U of x, the subset O(x, U) ∈ F . Then we write x = F limxn

Remark 4.0.50 This notion of F-limit is not arbitrary, but it has familiarity with

the notion of convergence in real analysis sense. In real analysis, a sequence yn → y

if for any small neighbourhood containing y, almost(except finite) all of xn lie in that

neighbourhood. We say yn converge to y. We have the same analogy here, i.e. for

any neighbourhood U of y, if almost (belongs to F i.e large set) all the terms of xn

belong that neighbourhood, then we say x = F lim xn.

Proposition 4.0.51 Let xn be a sequence in R. Then xn convergent to x if and only

if x = F limxn for all non-principal ultrafilter F on N.

Proof: Let F be any non-principal ultrafilter on N and suppose xn converges to x

in the real analysis sense. Then for any neighbourhood U of x, ∃m ∈ N such that
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xn ∈ U for all n ≥ m i.e. O(x, U) = {m,m + 1,m + 2, ...} = ({1, 2, ..m − 1})c is a

cofinite set and since the cofinite filter is contained in every non-principal ultrafilter

on N, O(x, U) ∈ F . Hence x = F lim xn.

Conversely, let x = Fαlim xn for all α ∈ 4. Then for any neighbourhood Uα

of x we have O(x, Uα) = {n ∈ N : xn ∈ Uα} ∈ Fα. Suppose xn does not converge

to x in the real analysis sense i.e. ∃ a neighbourhood U0 of x such that for any

n0 ∈ N, ∃m ∈ N such that xm 6∈ U0 for m > n0(similarly we can choose some integer

after m). So we will have infinitely many integers j such that xj 6∈ U0. Consider

O(x, U0) = {n ∈ N | xn ∈ U0} ∈ F ⇒ N \ S ′ ∈ F where S ′ is an infinite set of

N, but by 4.0.48, for a cofinite filter on F =
⋂
α∈4Fα, where Fα are non-principal

ultrafilters. So N \S ′ ∈ Fα ∀α ∈ 4 ⇒ N \S ′ ∈
⋂
α∈4Fα ⇒ N \S ′ ∈ F ⇒ S ′ must be

finite, which is a contradiction. Therefore xn converges to x in real analysis sense. �

Proposition 4.0.52 1).If T is a Hausdorff space, the F−limit is unique.

2). If T is compact, then each sequence F−converges.

Proof: 1). Let x, y ∈ T be two F -limit of a sequence xn. Since T is Hausdorff

space, there exist disjoint open sets Ux and Uy containing x and y respectively. Since

x = F lim xn, O(x, Ux) = {n : xn ∈ Ux} ∈ F and similarly for y, we have O(y, Uy) =

{n : xn ∈ Uy} ∈ F but O(x, Ux) and O(y, Uy) are disjoint elements of F , which gives

us a contradiction. Hence F -limit is unique.

2). Suppose there exists a sequence {xn} that does not converge to any point x ∈ T ,

i.e. for each x ∈ T there exists a neighbourhood Ux of x , such that O(x, Ux) 6∈ F .

Then O∗(x, Ux) = {n : xn 6∈ Ux} ∈ F . Since {Ux : x ∈ T} is a cover of T and since T

is compact, there exists finitely many xi ∈ T for 1 ≤ i ≤ n such that {Uxi : 1 ≤ i ≤ n}

covers T i.e. Consider Y =
⋂n
i=1 O

∗(xi, Uxi) , so Y is non-empty and hence there exist

j ∈ N such that such that xj 6∈ Uxi for 1 ≤ i ≤ n, which contradicts to the fact

{Uxi : 1 ≤ i ≤ n} is a finite cover of T . Hence, each sequence F - converges. �

Corollary 4.0.53 Any bounded sequence of real numbers F-converges and its F−limit

is unique.

Proof: Let xn be a real bounded sequence i.e. xn ∈ [m,M ] for some m,M ∈ R

. Since [m,M ] is a compact Hausdorff space and by above proposition, we get xn
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converges to a unique point. �

There are certain properties which is very easy to prove.

Proposition 4.0.54 Let xn and yn be two bounded real sequences, and c be a real

number:

a). F lim(xn + yn) = F lim(xn) + F lim(yn)

b). F lim(cxn) = cF lim(yn)

c). If xn ≤ yn for all n, then F lim(xn) ≤ F lim(yn).

We are now heading to define Asymptotic cone. So we now consider a metric space

(T, dT ) and fix some base point e ∈ T . Let F be a non-principal ultrafilter on N.

Definition 4.0.55 A sequence {xn} ∈ T is said to be moderate if it satisfies d(xn, e) ≤

A.n for some constant A.

Example 4.0.56 Let R be a Euclidean metric space with distance d and base point

e = 0. Consider xn = 1
n

, we have d(xn, 0) = | 1
n
− 0| ≤ 1 ≤ 1.n (choose A = 1). More

generally, this sequence is moderate with respect to any point e ∈ R. Take yn = n,

and d(yn, 0) = |n − 0| ≤ 1.n and hence {yn} is also a moderate sequence, But if we

take zn = n2 then d(zn, 0) = n2 and there does not exist any constant A ∈ R such that

n2 ≤ A.n holds for all n ∈ N. Hence {zn} is not a moderate sequence.

Remark 4.0.57 we observed that a moderate sequence does not mean that it cannot

go to infinity, it can but in a very controlled manner.

Let M denote the set of all moderate sequences in T . So given two moderate sequences

α = {xn} and β = {yn} we define the distance between them is as :

d(α, β) = F lim(
dT (xn, yn)

n
)

Take T = R with Euclidean metric space and e = 0 and F be a non-principal ultrafilter

on N. Let α = {xn} = {n} and β = {yn} = {n+ 1}, then

d(α, β) = F lim(
dT (xn, yn)

n
) = F lim(

dT (n, n+ 1)

n
) = F lim(

1

n
)

and since 0 is the limit of 1
n

in the real analysis sense, by 4.0.51, we have 0 = F lim( 1
n
,

it follows that d(α, β) = 0. So it is possible to have two different moderate sequences
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which are zero distance apart. Now we can define a relation on M for α, β ∈ M , we

say α ∼ β (equivalent) if d(α, β) = 0. We can easily show that ∼ is an equivalence

relation. Clearly, it is reflexive, and suppose α and β are represented by {xn} and

{yn} respectively, then

d(α, β) = F lim(
dT (xn, yn)

n
) = F lim(

dT (yn, xn)

n
) = d(β, α)

and if γ ∈M , represented by {zn}, is another moderate sequence, then if

α ∼ β ⇒ d(α, β) = F lim(
dT (xn, yn)

n
) = 0

and β ∼ γ ⇒ d(β, γ) = F lim(dT (yn,zn)
n

) = 0, then

dT (xn, zn) ≤ dT (xn, yn) + dT (yn, zn)

and we have

dT (xn, zn)

n
≤ dT (xn, yn)

n
+
dT (yn, zn)

n

⇒ F limdT (xn, zn)

n
≤ F limdT (xn, yn)

n
+ F limdT (yn, zn)

n
= 0 + 0 = 0

Hence α ∼ γ. Therefore, ∼ is an equivalence relation on M and it divides the set M

into disjoint equivalence classes. Let K denote the set of all equivalence classes of M

and now we can define a distance on the elements of K as

d([α], [β]) = F lim(
dT (xn, yn)

n
)

First, we will prove that this notion of distance does not depend upon the choice of

representatives. Let α ∼ α1 and β ∼ β1 i.e. d(α, α1) = 0 and d(β, β1) = 0. Then,

d(α, β) ≤ d(α, α1) + d(α1, β1) + d(β1, β) ≤ 0 + d(α1, β1) + 0 = d(α1, β1)

Similarly, if we change the role of α by α1 and β by β1, we will have d(α1, β1) ≤ d(α, β).

Therefore, we get d(α, β) = d(α1, β1). Since the distance d on M is metric so this is

also a metric on K.

The space K with this distance d is called an Asymptotic cone of (T, dT ) with base

point e ∈ T .
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Definition 4.0.58 Let F be a filter on S, and let A be any set. Consider the set

AS = {f : f is function from S to A }. Two functions f, g are said to be related(f ∼ g)

(or almost equal) if the set {s : f(s) = g(s)} ∈ F . Then the set of equivalence classes,

AS/ ∼ is called the reduced power of A mod F , and if F is an ultrafilter, we call it

the reduced power set to be an ultraproduct.

In particular, if S = N, and A = R, then two sequence α = {xn} and β = {yn}

represent the same element in ultraproduct if {n ∈ N : xn = yn} ∈ F . In other words,

d(α, β) = F limdT (xn, yn)

n
= 0

because if

X = {n ∈ N : xn = yn}, Y = {n ∈ N : d(xn, yn) = 0}

then X ⊆ Y and X ∈ F , therefore Y ∈ F and hence d(α, β) = 0. It says that if we

change the elements of a sequence {xn} on a set B 6∈ F , then its equivalence class

does not change in Asymptotic cone K.

Now, we will define the asymptotic cone of a finitely generated group. Let G be a

finitely generated group and S be a finite set of generators. Let (G, dS) be a metric

space, where dS is the word metric on G and take the identity e ∈ G as the base point

of the space and let F be a non-principal ultrafilter on N. Then the space K obtained

from the metric space (G, dS) is called the asymptotic cone of a finitely generated

group G.

Let xn = s be a constant sequence of in G =< S > , where S is finite set and s ∈ S.

Then

d(xn, e) = F lim(
d(xn, e

n
) = F lim(

l(s)

n
) = F lim(

1

n
) = 0

Now take G = F2, the free group of rank 2 and S = {a, b}. Consider xn = an and

yn = e (constant sequence). Then

d(xn, yn) = F lim(
d(xn, yn)

n
) = F lim(

d(an, e)

n
) = F lim(

l(an)

n
) = F lim(

n

n
) = F lim(

1

n
) = 0

So the sequence xn and yn represent the same element in the asymptotic cone.

First, we can observe that the word metric on G depends upon the chosen set of

generators and so the asymptotic cone of a finitely generated group G depends upon

the chosen generators. But we will prove in the next proposition that geometry of the

space is independent of the choice of generating set.
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Proposition 4.0.59 Let G be a finitely generated group and S1 and S2 be two finite

generating sets of G and let F be non-principal ultrafilter on N . Let K1 and K2 be

two asymptotic cones of G with respect S1 and S2 respectively. Then K1 and K2 are

quasi-isometric.

Proof: We need to define a map

f : (K1, d1)→ (K2, d2)

such that

−1

A
d1(α, β)−B ≤ d2(f(α), f(β) ≤ Ad1(α, β) +B

for some constant A,B ∈ R with A 6= 0,∀α, β ∈ K1 .

Let dS1 and dS2 be the word metrics on G corresponding to S1 and S1 respectively.

So the space (G, dS1) and (G, dS2) are quasi isometric i.e. ∃ and quasi-isometry

φ : (G, dS1) → (G, dS2) such that we have −1
A
dS1(x, y) − B ≤ dS2(φ(x), φ(y)) ≤

AdS1(x, y) + B for some constant A,B ∈ R with A 6= 0 for all x, y ∈ G. If α and β

are represented by {xn} and {yn} then we have

−1

A
dS1(xn, yn)−B ≤ dS2(φ(xn), φ(yn)) ≤ AdS1(xn, yn) +B

for some constants A,B ∈ R with A 6= 0 for all xn, yn ∈ G

⇒ −1

A

dS1(xn, yn)

n
− B

n
≤ dS2(φ(xn), φ(yn))

n
≤ A

dS1(xn, yn)

n
+
B

n
∀n ∈ N

⇒ F lim(
−1

A

dS1(xn, yn)

n
− B

n
) ≤ F lim(

dS2(φ(xn), φ(yn))

n
) ≤ F lim(A

dS1(xn, yn)

n
+
B

n
)∀n ∈ N⇒ −1

A
F lim(

dS1(xn, yn)

n
)−F lim(

B

n
) ≤ F lim(

dS2(φ(xn), φ(yn))

n
) ≤ AF lim(

dS1(xn, yn)

n
) + F lim(

B

n
)∀n ∈ N

⇒ −1

A
F lim(

dS1(xn, yn)

n
) ≤ F lim(

dS2(φ(xn), φ(yn))

n
) ≤ AF lim(

dS1(xn, yn)

n
)∀n ∈ N(∵ F lim(

1

n
) = 0)

⇒ −1

A
d1(α, β) ≤ d2(f(α), f(β) ≤ Ad1(α, β).

Definition 4.0.60 A homogeneous space for a group G is a non-empty topological

space X on which G acts transitively. Elements of G are called the symmetries of X.

Now we will see that G acts on K by isomteries.
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Define, G×K → K by (g, α) = gα where α = {xn}, gα = {gxn}. This is clearly

a group action and it induces a homomorphism

φg : K → K

by φg(α) = gα.

Now,

d1(φg(α), φg(β)) = d1(gα, gβ) = F lim(
d(gxn, gyn)

n
) = F lim(

d(xn, yn)

n
) = d(α, β) = d1(α, β)

So φg is an isometry. So this action gives a homomorphism ψ : G →Iso(K), where

Iso(K) is group of isometries of metric space K and the map ψ need not be injective

so let N denote the kernel of this map.

Proposition 4.0.61 The asymptotic cone(K) of finitely generated group G is a ho-

mogeneous space.

Proof: Let’s take α and β are two elements of K that are represented by the

sequences {xn}, {yn}. Then consider the elements γ of K represented by {ynx−1
n }.

Then φg(α) = gα = {ynx−1
n }{xn} = {ynx−1

n xn} = {yn} = β. Hence K is homogeneous

space. �

Define, for each x ∈ G, the displacement of x by

D(x; r) = max(d(a, xa)) = max{l(a−1xa) | a ∈ G, l(a) ≤ r}

Here r be any natural number. If x = e, then D(x, r) = 0. More generally if x is an

element in the center of G, then D(x, r) = 0.

Example 4.0.62 G = Z, x = 1, r = 2. Then D(0, 2) = max {l(a−1xa) | l(a) ≤ 2}

=l(1) = 1. Now consider G = F2 =< x1, x2 >, the free group of rank 2, and take

x = x1, r = 2, then D(x1, 2) =max d(a, x1a) =max {l(a−1x1a) | a ∈ G, l(a) ≤ 2} = 5.

If x ∈ H ≤ G, and we restrict a from above to lie inH, we writeDH(x, r) =max{l(a−1xa) :

l(a) ≤ r;x, a ∈ H}. Consider G = F2 =< a, b >, the free group of rank 2, and take
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x = a, r = 2, and H =< a >, then DH(x, 2) =max{l(g−1xg) : l(g) ≤ r;x, g ∈ H}. =

l(a) =1.( because b ∈ H and hence commutes with a.)

Proposition 4.0.63 If x ∈ N , then F limr→∞
D(x,r)
r

= 0.

Proof: For each r, choose an ar such that l(ar) ≤ r and l(a−1
r xar) = D(x, r). The

sequence α = {ar} is moderate. If x ∈ N , since we have a map Φ : G→ I with kernel

N given by Φ(x)(α) = xα, xα = α.

Therefore, D(x,r)
r

= l(a−1
r xar)
r

= d(ar,xar)
r

.

Now,

F limD(x, r)

r
= F lim(

d(ar, xar
r

) = d(α, xα) = d(α, α) = 0

Proposition 4.0.64 The function D(x, r) is bounded if and only if x has only finitely

many conjugates in G, and in that case x ∈ N .

Proof: If x has only finitely conjugates in G say y1, y2, ..., yl, then

D(x, r) = max{l(a−1xa) | l(a) ≤ r} ≤ max{l(y1), l(y2), ..., l(yl)}

is bounded. Conversely if f(r) = D(x, r) is bounded, i.e. ∃ M > 0 such that

D(x, r) ≤ M ∀r ∈ N i.e. max{l(a−1xa | l(a) ≤ r} ≤ M ∀ r ∈ N. Suppose x has

infinitely many conjugates say z1, z2, .... We know that a finitely generated group can

have only finitely many words of given length. So let kn denote the number of con-

jugates of length n. Then there exists a conjugate of length greater than M(because,

number of conjugates is infinite and Kn is finite for each n), which is contradiction.

Therefore, x has only finitely conjugates.

Definition 4.0.65 An element g ∈ G is said to be an FC element if g has finitely

many conjugates in G. The set of all FC elements of a finitely generated group G

forms a normal subgroup of G and this subgroup is called the FC centre of G.

It is clear that if x ∈ H ≤ G is an FC element of G then x is also a FC element

element of H but converse need not be true. We will show that if H is subgroup of
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G of finite index then any FC element of H is also an FC element of G.

Proposition 4.0.66 Suppose that | G : H |<∞ and x ∈ H. Then D(x, r) is bounded

if and only if DH(x, r) is bounded.

Proof: It is clear that, if D(x, r) is bounded then DH(x, r) is bounded. Conversely,

suppose x has finitely many conjugates in H i.e. | {h−1xh | h ∈ H} |< ∞. Since we

know that

G = a1H ∪ a2H ∪ ... ∪ akH, g ∈ G and g = aihj

| {(ga−1
i )−1x(ga−1

i ) : g ∈ G, i = 1, 2, .., k} |<∞

⇒| {ai(g−1xg)a−1
i : i = 1, 2, .., k, g ∈ G} |<∞

i.e. for each i, | {ai(g−1xg)a−1
i : g ∈ G} |<∞

Claim: | {g−1xg : g ∈ G} |<∞.

Suppose, {g−1xg} = {t1, t2, ..., tr, ...}, say

Fix i, Then {ai(g−1xg)a−1
i : g ∈ G} = {ait1a−1

i , ait2a
−1
i , ..., aitra

−1
i , ...}

⇒ i.e. aitja
−1
i = aitla

−1
i j, l > r ⇒ tj = tl

⇒| {g−1xg : g ∈ G} |<∞

⇒ x has only finitely many conjugates in G. Therefore D(x, r) is bounded.

Proposition 4.0.67 For x, y ∈ G and integer r, s, we have D(x, r+s) ≤ D(x, r)+2s

and D(y−1xy, r) ≤ D(x, r) + 2l(y).

Proof: Let l(a) ≤ r + s. Then we can write a = bc with l(b) ≤ r, l(c) ≤ s. Then

d(xa, a) = d(xbc, bc) ≤ d(xbc, xb) + d(xb, b) + d(b, bc)

≤ d(bc, b) + d(xb, b) + d(b, bc)

≤ d(xb, b) + 2d(bc, b)(∵ d(bc, b) = l(c) ≤ s)

Therefore d(xa, a) ≤ D(x, r) + 2s ≤ D(x, r) + 2s

Therefore, we have

D(x, r + s) ≤ D(x, r) + 2s
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ii). if l(a) ≤ r, then

d(y−1xya, a) = d(x(ya), (ya)) ≤ D(x, r + l(y))

≤ D(x, r) + 2l(y)

∴ D(y−1xy, r) ≤ D(x, r) + 2l(y)

Theorem 4.0.68 (B.H.Neumann) : A group G cannot be the union of finitely

many cosets of subgroups of the infinite index.

Proof: Let H1, H2, ..., Hk be the subgroups of infinite index. Let g1, g2, ..., gk ∈ G

such that {G : Hi} = ∞ and G = H1g1 ∪ H2g2 ∪ ... ∪ Hkgk. We use induction on

k. If k = 1, G = H1g1 = H1 which is contradiction since H1 is a proper subgroup.

If k > 1. Let H be one of the subgroups involved. Since {G : H} = ∞, So, some

coset Hx does not occur in the union, and since it is disjoint from the cosets of H

that do appear, it is contained in the union of the cosets of the other subgroups.i.e.

Hx ⊆ H2g2 ∪ H3g3 ∪ ... ∪ Hkgk if H1 = H, then any coset Hy can be written as

Hx.x−1y, and this shows that Hy is also contained in finite union of cosets of other

subgroups. This implies that all the cosets of H occuring in the union are contained

in the finite unions of cosets of other subgroups, and thus G is the union of finitely

many cosets of k − 1 subgroups, and this contradicts the inductive hypothesis. �

4.0.6 Gromov’s theorem

In this section, we will prove Gromov’s theorem 4.0.85. In order to prove it, we need

some results, which we are stating without proof..

Theorem 4.0.69 (Gleason-Montgomery-Zippin: solution of Hilbert’s Fifth

Problem): Let T be a finite dimensional, locally compact, connected and locally con-

nected, homogeneous metric space. Then the group of isomteries of T can be given

the structure of a Lie group with finitely many components.

�
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Theorem 4.0.70 Let G be a Lie group with finitely many components with center of

group denoted by Z.

a). G has a normal abelian subgroup Z, such that G/Z is isomorphic to a subgroup

of GL(k,C for some k.

b). For each natural number n, there exist an open neighbourhood of the identity in

G which does not contain any non-identity element of finite order less than n.

�

We also recall the definition of the topology that makes the isometry group a Lie

group. Fix some base point e ∈ T . For any two positive number A and e, let O(A, e)

be the set of all isometries σ such that d(σ(x), x) < ε, for all x such that d(x, e) ≤ A.

The sets O(A, ε) are taken to be a basis for the neighbourhood of the identity in

Isom(T ).

Theorem 4.0.71 Let G be a finitely generated infinite group, let K be an asymptotic

cone of G and I = Isom(K). Then there exists a homomorphism Φ : G → I with

kernel N such that one of the following holds:

i). G/N is infinite.

ii). N is abelian-by-finite

iii). For each neighbourhood O of the identity in I there exists a homomorphism

φO : N → I, such that Im(φO) ∩O contains non-identity elements.

Proof : Since we have an isometric action of G on K, it gives a homomorphism

Φ : G → I given by Φ(x) = σx, where σx : K → K is an isometry given by

σx(α) = xα. Let N be the kernel of this homomorphism. If | G : N | is infinite, then

we are done. So assume that | G : N | is finite.

Then by 2.3.16, N is a finitely generated group, say generated by y1, y2, ..., yd i.e.

N =< y1, y2, ..., yd >. If D(yj, r) is bounded for each j, then yj has only finitely

many conjugates for each j. Hence, the centralizer of each yj is of finite index, i.e.

| N : CG(yj) |<∞ ∀1 ≤ j ≤ r ⇒| N :
⋂r
j=1CG(yj) | is finite. Since yj are generators,⋂r

j=1CG(yj) = Z(N), where Z(N) is the center of group N , hence | N : Z(N) | <∞.

Hence N is abelian by finite. So case (ii) holds.
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So assume that D(yj, r) is not bounded for some j i.e. there exist some non FC

element say yj0 . Then we may assume that none of the generators is an FC element

( if some generator yi is an FC element , then yj0yi is a non FC element). Since

FC elements form a subgroup, we can always do that. Fix some integer r and some

ε. For each t between 1 and d, the set of elements y of N such that D(y−1yty) ≤ εr

is equal to the set of elements such that l(a−1y−1ytya) ≤ εr for all a ∈ G such that

l(a) ≤ r. It means that the conjugate of yyat of yt is one of the finitely many elements

and therefore the elements ya lies in one of the finitely many cosets of CG(yt), in

particular taking a = 1, we see that y itself lies in one of the finitley many cosets.

Since each of y1, ..., yd has infinitely many conjugates in N , i.e. its centralizer has

infinite index, the last proposition shows that N is not the union of finitely many

cosets of the centralizers of the generators and so there exists some zr ∈ N such that

D(z−1
r ytzr, r) > εr for all t.

We write zr as a word in yt, and choose the first initial subword xr of zr for which

D(x−1
r ytxr, r) > εr for some t. We choose for each r one such index t = t(r) and

for each i ≤ d, we write S(i) = {r | t(r) = i}. There finitely many sets S(i)

partition N, therefore one of them, say S(i0), lies in F . Let l be the maximum

length ofyt in the generators of G. We may take r to be large enough, and then

D(yt, r) ≤ εr, by Proposition we have xr 6= 1, and we can write xr = wry, where wr

is the initial subword of zr preceding xr and y in some generator. Then by 4.0.67, we

have D(x−1
r ytxr, r) ≤ D(w−1

r ytwr, r)+2l ≤ εr+2l. This holds for each t, but for i0 we

also have D(x−1
r yi0xr, r) > εr. It follows that F lim

D(x−1
r yi0xr,r)

r
= ε. We always have

l(x) ≤ D(x, r), for every r and thus the previous inequality shows that l(x−1
r ytxr) ≤

εr+ 2l for each t, and so if y ∈ N has length m in the yi. We have l(x−1
r yxr) ≤ mεr+

2ml. Therefore left multipication by the sequence {x−1
r yxr} preservesthe moderate

sequence and induce an isometry on K. We define φ(y) as the isometry. Then φ is a

homomorphism N → I. Then by 4.0.63 to this homomorphism shows that φ(yi0) 6= 1,

because F lim
D(x−1

r yi0xr,r)

r
6= 0. On the other hand d(φ(yi0(α).α) ≤ ε for all α ∈ K,

which shows that φ(yi0) can be made to lie in any given neighbourhood of the identity

in I, by taking a small enough ε.

Proposition 4.0.72 Let G have polynomial growth of degree d. Then there exist
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infinitely many n such that for all i < n, we have log s(2n) ≤logs(2n−1) + i(d + 1),

where logarithm are to the base 2.

Proof: By the definition of d, we have s(n) ≤ C1n
d. So for large enough n,

logsn ≤ dlog(n), logs(n)
log(n)

≤ d + 1/2. In particular if we write l(n) =logs(2n), i.e.

l(n)
log(2n

= l(n)
n
< d+ 1/2

⇒ l(n) < nd+ n/2⇒ l(n)− nd− n/2 < 0

⇒ l(n) − n(d + 1) < −n/2 and thus, limn→∞(l(n) − n(d + 1)) = −∞. For each

negative integer k, let n(k) be the first integer n such that l(n)− n(d+ 1) < k. Then

for each n = n(k) and i < n, we have l(n)− n(d+ 1) < k ≤ l(n− i)− (n− i)(d+ 1).

Therefore, we have

l(n) ≤ l(n− i) + i(d+ 1)

∴ log s(2n) ≤ log s(2n−i) + i(d+ 1)

Since the n(k) takes on infintely many value, the proposition is proved.

We write S for the set of all integers n satisfying the inequality of the log s(2n) ≤

log s(2n−i) + i(d + 1) and T = {2n | n + 1 ∈ S}. We choose our ultrafilter F to

contain T .

Lemma 4.0.73 Let G be of polynomial growth, let F be chosen as described, and

let ε be small enough and K be the asymptotic cone of G. Then the following are

equivalent

1). If a closed ball of radius 1 in K contains k distinct points, such that the closed

ball of radius ε around them are disjoint, then k ≤ (1
ε
)2(d+1).

2). If a closed ball of radius 1 in K contains k distinct points, such that the distance

between any two points are bigger than 2ε, then k ≤ (1
ε
)2(d+1).

Proof: We prove that the two properties are indeed equivalent. Suppose (1) holds.

Let k be as in (2) such that distance between any two points are bigger than 2ε So,

balls of radius ε around any two points are disjoints (because they are separated by at

least 2ε distance) So by (1), k ≤ (1
ε
)2(d+1) which proves (2). assume if (2) holds, given

any k points as in (1), suppose that two of them are at least a distance of δ ≤ 2ε.

Then by the Prop(7.4) there exist a continous path f(α) between these two points
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such that d(f(α), f(β)) ≤ (β − α)δ.

Then d(f(0), f(1/2) ≤ 1/2δ < ε and d(f(1/2), f(1)) ≤ 1/2.2ε < ε. So f(1/2) lies in

the ball of radius ε around both points, a contradiction, which proves (1).

Lemma 4.0.74 For any α, β ∈ [0, 1] with α ≤ β and any n ∈ N, we have [nα] −

[nβ] ≤ n(β − α) + 1.

Proof: Suppose α, β ∈ [0, 1] are not zero and α ≤ β. Let n be any natural number.

If suppose α < 1
n

and β < 1
n
. Then [nα] = [nβ] = 1 so L.H.S. is 0 and R.H.S. is a

positive number, and in that case we are done. Suppose if α < 1
n

and β ≥ 1
n
, then

n0 < nβ ≤ n0 + 1 , therefore [nβ] = n0 so L.H.S. = n0 + 1 − 1 = n0 and R.H.S. =

βn − αn + 1 = βn + (1 − αn) > n0 = L.H.S. Now suppose that α ≥ 1
n

and β ≥ 1
n

so n0 < nα ≤ n0 + 1 and m0 < nβ ≤ m0 + 1, so L.H.S. = m0 − n0 and R.H.S. =

nβ−nα+ 1 since nα < n0 + 1 and nβ < m0 + 1⇒ nβ−nα ≥ m0−n0− 1 > m0−n0

= L.H.S. Hence we have [nα]− [nβ] ≤ n(β − α) + 1. �

Proposition 4.0.75 The Asymptotic cone of a finitely generated group G is pathwise

connected and locally connected.

Proof: Let a represent a sequence {xn}, and for each n, length of xn is denoted by

l(xn). Let 0 ≤ α ≤ 1, and for each word w of length k in generator X, write w(α) for

the word consisting of the first kα letters in w. Now, define f : [0, 1] → K given by

f(α) = {xn(α)}, f(0) = [e] = e and f(1) = {xn} = a Moreover, if 0 ≤ α, β ≤ 1, By

the previous lemma, we have (β−α)l(xn)−1 ≤ d(w(α), w(β)) ≤ (β−α)l(xn)+1 . Since

l(xn) ≤ An, this implies that d(f(α), f(β)) ≤ A(β−α), and therefore f is continuous.

This shows that K is pathwise connected. Moreover, d(e, f(β)) ≤ βd(e, a), and thus

the path from e to a is contained in the ball of radius l(a) around e. This shows that

each ball around e is pathwise connected. By homogeneity, this holds for all balls,

hence K is locally connected. �

Proposition 4.0.76 the Asymptotic cone of a finitely generated group G complete

metric space.

Proof: The proof refers to [1] �
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Definition 4.0.77 A group G is said to be linear if G is isomorphic to a subgroup of

the general linear group GL(n, F ), for some natural number n and some field F .

Now we will state some theorems without proof.

Theorem 4.0.78 (Tit’s Alternative) [15] Let G be a finitely generated linear

group. Then either G contains a non-abelian free subgroup, or G contains a soluble

subgroup of finite index.

�

Theorem 4.0.79 (Jordan’s theorem) [20] A finite subgroup of Gl(n,F), where F

is a field of char(F) = 0 has an abelian sugroup of index bounded in terms of n only.

�

Definition 4.0.80 A topological space has dimension 0, if each point has an open

neighbourhood with empty boundary. It has dimension at most n, if each point has an

open neighbourhood with boundary of dimension at most n− 1. The dimension equals

n, if it is at most n, but it is not at most n− 1.

Theorem 4.0.81 If G is of polynomial growth, the asymptotic cone K is finite di-

mensional.

Proof: The proof refers to [1]

�

Proposition 4.0.82 If G is of polynomial growth, the asymptotic cone K is locally

compact.

Proof: In order to show that K is locally compact, it suffices to show that K is

compact. Since K is a metric space, in order to show the compactness of K, it is

enough to show that K is sequentially compact. Let xn be any sequence in B, where

B is a closed unit ball. Lets cover B, for each i, by ki balls of radius 1/2i. Take

i = 1, let’s cover by k1 balls of radius 1/2, then one of the balls contains infinitely

many points of the sequence, say a subsequence xnk of sequence xn. Now consider the

sequence xnk1 , and for i = 2, cover the ball B by k2 balls of radius 1/22, then one of
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the balls among k2 contains infinitely many points of the sequence xnk1 say xnk1,k2 and

continue like that. At the mth stage, cover the ball B by km points of radius 1/2m,

then one of the balls contains infinitely many points of the sequence xnk1,k2,...,km−1
and

so on. Now choose one point from the sequence xnk1 say y1, and second point from

xnk1 ,nk2 say y2,..., mth point from the sequence xnk1,k2,...,km say ym, then the sequence

yn is a Cauchy sequence, because tail of this sequence belongs to balls of small radius

1/2m as m→∞. Since K is a complete metric space4.0.76, so yn is convergent. Since

yn is a subsequence of xn, K is sequentially compact. Therefore, K is compact and

therefore K is locally compact. �

Theorem 4.0.83 Let G be an infinite group of polynomial growth. Then there exists

a Lie group Γ with finitely many components, and a natural number k, such that G

contains a normal subgroup C of finite index, for which one of the following holds:

i). C has an infinite abelian factor group.

ii). C has an infinite factor group in GL(k,C).

iii).There exists homomorphisms φn : C → Γ, for all natural number n, such that

| C
Ker(φn)

|≥ n.

Proof: Let G be a finitely generated infinite group. So the asymptotic cone K of G

is connected, locally connected4.0.75, homogeneous4.0.61. Since G is of polynomial

growth so K is also locally compact4.0.82 and has finite dimensional4.0.81. So, by

4.0.69, the isometry group I = Isom(K) of K has the structure of a Lie group with

finitely many components. Since we have an isometric action of G on K, it gives a

homomorphism Φ : G → I given by Φ(x) = σx where σx : K → K is an isometry

given by σx(α) = xα. Let N be the kernel of this homomorphism. So, Ψ : G/N → I

be a monomorphism defined as Ψ(gN) = Φ(g). Since I is a Lie group with finitely

many components, by 4.0.70, I has a normal abelian subgroup Z, such that I/Z

is isomorphic to a subgroup of GL(k,C) for some k. Now consider the subgroup

L = Ψ−1(Z) which contains N . We have G/N
Φ−→ I

η−→ I/Z, hence we got a map

η ◦Φ : G/N → I/Z and the kernel of this map η ◦Φ is L/N , so G/N
L/N

is isomorphic to

a subgroup of I/Z, since G/L ∼= G/N
L/N

↪→ I/Z ↪→ Gl(k,C).

1). If G/L is infinite, then take C = G, |G : C| = 1 and G/L ↪→ GL(k,C), So C

has an infinite factor in GL(k,C), which says that (ii) holds.
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2). If G/L is finite, then there are two possibility of G/N , either G/N is finite or

infinite

Case(a): If G/N is infinite, and since G/L ∼= G/N
L/N

. In this case take C = L.

So |G/N | = |G/L||L/N |, so L/N is an infinite group. Since we have a monomor-

phism Ψ : G/N → I so if we restrict to L/N , it would stil be a monomorphism

ΨL/N : L/N → I and the image of ΨL/N(lN) = φ(l)Z ∈ Z. So ΨL/N(L/N) ⊆ Z,

since Z is an abelian group and L/N is an infinite group, so C = L has an infinite

abelian factor, which proves that (i) holds.

Case(b): If G/N is finite so G/L is finite and N ⊆ L. Now apply [Them 7.5],

then (i) and (ii) can not hold, (iii) must holds, then N is virtually abelian say C i.e.

| N : C |<∞ and since |G : N | <∞ ⇒ |G : C| <∞, if we take the conjugate of C,

then it becomes the characteristics subgroup of N , So C char N and N /G ⇒ C /G

and |G : C| <∞

∴ C/(e) ∼= C is an infinite abelian group. So we are done. Now, suppose (iii) of

4.0.71 holds, i.e. for each neighbourhood O of the identity in I, ∃ a homomorphism

φO : N → I, such that Im(φO) ∩ O contains a non-identity elements. Now, take

C = N , I is a Lie group with finitely many components. so for each n ∈ N, ∃ an open

neighbourhood of the identity in I which does not contain any non-identity element

of finite order less than n. So n ∈ N, we have On( neighbourhood of id in I, so if

g ∈ On ⇒ o(g) ≥ n). So φOn : N → I such that Im(φO)∩On contains a non-identity

elements, but we know that, if suppose x be a such that x ∈ On be a non-identity

element, then O(x) ≥ n ⇒ {1, x, x2, ...., xn−1, ..} ⊆ Im(φOn) ∼= C
kerφn

and it follows that

|C : Ker(φn)| ≥ n.

�

Theorem 4.0.84 Let G be an infinite group of polynomial growth. Then G contains

a subgroup of finite index which has infinite cyclic homomorphic image.
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Proof: Let G be an infinite group of polynomial growth and the isometry group I =

Isom(K) of K has the structure of Lie group with finitely many components4.0.69.

So, by previous theorem, we have an isometric action of G on K, that gives a homo-

morphism Φ : G → I given by Φ(x) = σx where σx : K → K is an isometry given

by σx(α) = xα. Let N be the kernel of this homomorphism. So, Ψ : G/N → I be a

monomorphism defined as Ψ(gN) = Φ(g). Since I is a Lie group with finitely many

components, by 4.0.70, I has a normal abelian subgroup Z, such that I/Z is isomor-

phic to a subgroup of GL(k,C) for some k. Now consider the subgroup L = Ψ−1(Z)

which contains N . Now by the above theorem, G contains a normal subgroup C of

finite index which satisfies one of three conditions of previous theorem.

Case I: If suppose C satisfies (i) of 4.0.83, i.e. C has an infinite abelian factor

group. Let’s say that C contains a normal subgroup T , such that C/T ∼= Z ⊕ F ,

where F is an abelian group. Hence, we have a natural map η : C → C/T and an

epimorphism f : C/T → Z. Since |G : C| < ∞, we have an epimorphism from finite

index subgroup C, f ◦ η : C → Z. Hence we are done.

Case II: Suppose C satisfies (ii) of 4.0.83, C contain an infinite factor in G(k,C) for

some k ∈ N. From case(ii) of the above theorem, our C = G and C has a subgroup L

such that G/L is isomorphic to a subgroup of G(k,C). So G/L is an infinite subgroup

of Gl(k,C), Then by the Tit’s alternative, either G/L contains F2 or it is virtually

solvable. If it is the former case, then G/L has exponential growth and so G has

exponential growth, which is a contradiction. Hence, G/L must be virtually solvable

and since G/L has polynomial growth so by 3.0.19,G/L must contain a nilpotent

subgroup of finite index say H/L.

|G/L
H/L

| = |G/H| <∞.

Now, since H/L is nilpotent, H/L is solvable. Consider the derived series of H/L say

L / H(1)/L / H(2)/L / ... / H(i)/L / H(i+1)/L.. / H/L

such that H(i+1)/L

H(i)/L
is abelian. If suppose H/L is a finite group, then since |G/L :

H/L| < ∞, G/L is finite, a contradiction to the fact that G/L is infinite group. So

H/L is an infinite group and therefore some quotient in the derived series of H/L
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contains a copy of infinite cyclic group Z. Let j be the maximum natural number

such that the quotient H(j+1)/L

H(j)/L
contains a copy of Z. Since

H(j+1)

H(j)
∼=
H(j+1)/L

H(j)/L
∼= Z⊕ T.

where T is an abelian group and |H/L : H(j+1)/L| = |H : H(j+1)| <∞ and Therefore,

|G/L : H(j+1)/L = |G/L : H/L|.|H/L : H(j+1)/L| <∞.

So, H(j+1)/L is a finite index subgroup of G/L, which implies that H(j+1) is a finite

index subgroup of G and since H(j+1)

H(j)
∼= Z⊕ T , H(j+1) has Z as an epimorphic image.

Hence, we are done in this case.

Case III : If case (iii) of the previous theorem holds and take C to as of case(iii). Let

φn : C → I be a homomorphism for each n ∈ N and let Kn denote the kernel of the

map φn for each n ∈ N. Since By 4.0.70 I contains a normal abelian subgroup Z

such that I/Z is isomorphic to a subgroup of Gl(k,C) for some k. Let Ln = φ−1
n (Z),

it is clear that Ln ⊇ Kn. Since we have a homomorphism φn : C → I and kn is

the kernel of this map, it implies that, we have a monomorphism φ̃ : C/Kn → I and

φ̃n(Ln/Kn) ⊆ Z, so Ln/Kn is an abelian group. Since φ̃n(Z) ⊆ Z, which induces

another map

φ̃′n : C/Kn → I/Z

and if we restrict this map to subgroup Ln/Kn, then it becomes injective and since

I/Z is a subgroup of GL(k,C). Therefore, we get that, C/Kn
Ln/Kn

is a linear group. Since

we have

C/Kn

Ln/Kn

∼= C/Ln

it follows that C/Ln is linear. Since, in case(iii) of the previous theorem, G/Ker(φ)

is finite, it also follows that G/Kn is finite.

|G : Ln| = |G : Kn|.|Kn : Ln|

and since G/Kn is finite, |G : Ln| is finite for each n. Also, we have

|G : Ln| = |G : C|.|C : Ln|
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and since G/Ln is finite, |C : Ln| is finite for each n. Now applying theorem(6.5),

C/Ln contains a subgroup Hn/Ln such that | C/Ln
Hn/Ln

| = |C : Hn| is bounded say

|C : Hn| ≤Mk, where Mk is a real constant which depends upon on k not on n. Since

by prop, for infinitely many n, H ′ns are isomorphic, say Hn
∼= H for infinitely many

n. Then we have H/Ln is abelian for infinitely many n. Then

the order of |H : Ln| tends to infinity as n → ∞. Since, we have a natural map

η : H → H/Ln and since H/Ln is abelian, η factors through H/H ′, i.e. we have

η̃ : H/H ′ → H/Ln

and if |H/Ln| tends to infinity as n → ∞, H/H ′ must be infinite, and therefore H

has Z as an epimorphic image and since |G : C| < ∞ and |C : H| < ∞ and G has

finite index subgroup H which has Z as an epimorphic image.

If the size of H/Ln is bounded, then again by the 2.3.14, for infinitely many n, Ln

coincides with a subgroup equal to R(say). Since we have

|G : Kn| = |G : C|.|C : Kn|

and since by case(iii) of previous theorem, |G : Kn| tends to infinity as n → ∞ and

|C : R| is fixed number, |C : Kn| tends to infinity as n→∞. Now we have

|C : Kn| = |C : R||R : Kn|

and since |C : R| is a fixed number, therefore |R : Kn| tends to infinity as n → ∞.

Now we have natural map θ : R → R/Kn and since Ln/Kn = R/Kn for infinitely

many n and since Ln/Kn is abelian for all n. Therefore, the map θ factors through

R/R′, i.e. we have θ̃ : R/R′ → R/Kn and since |R : Kn| tends to infinity as n→∞,

R/R′ must be infinite group. Hence, R has Z as an epimorphic image. Since |H : R|

is bounded and |G : H| is finite, it follows that R has finite index in G and R has Z

as an epimorphic image, which completes the proof

�

Theorem 4.0.85 A group of polynomial growth is nilpotent-by-finite.

Proof: Let G be a finitely generated group of polynomial growth say of degree

d. We will use induction on d to prove that G has a nilpotent subgroup of finite
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index. If d = 0, then by2.1.8 G is a finite group and it is clear that finite groups

are virtually nilpotent. Suppose if d > 0, then G is infinite group. Therefore by the

previous theorem, G contains a finite index subgroup H such that H has Z as an

epimorphic image, i.e. there is normal subgroup N of H such that H/N ∼= Z. Since

H is of finite index in G, H is finitely generated and also H has polynomial growth

and H/N ∼= Z, so by 2.3.18 N is finitely generated and N has degree of growth d− 1

or less, so by induction N contains a nilpotent subgroup K of finite index. By2.3.15

, we may assume that K is characteristic subgroup in N and hence normal in H.

Then H/K contains the finite normal subgroup N/K, with infinite cyclic factor. Let

H/N =< xN >. Write C =< K, x >. Then H/K = C/K.N/K, hence, |H : C| is

finite. Since C/K is infinite cyclic, C is soluble. Then by 3.0.20 and 3.0.21 We get C

is virtually nilpotent. Therefore, G is virtually nilpotent group, which completes the

proof. �

Therefore, Gromov’s theorem completely characterized the groups of polynomial

growth: In the view of theorems 3.0.27 and 4.0.85, a finitely generated group has

polynomial group if and only if it has nilpotent subgroup of finite index.
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Chapter 5

Groups of Intermediate growth

So far, we have seen that virtually nilpotent groups have polynomial growth and non-

abelian free groups have exponential growth and we have only dealt with those finitely

generated groups which have either polynomial or exponential growth. In 1968, Mil-

nor asked that Is it true that the growth function of every finitely generated group is

necessarily equivalent to a polynomial or to the function 2n”?. This was answered in

the negative by R. Grigorchuk in 1983, who constructed a 3− generated group, whose

growth is neither polynomial nor exponential but lies somewhere in between polyno-

mial and exponential. This group not only gives the answer to Milnor’s question but

it also gives the answer to Burnside problem: Can we have a finitely generated infinite

group in which every element has finite order. The Grigorchuk group is 3- generated

infinite torsion group.

Apart from Grigorchuk group, we will also see another family of groups of inter-

mediate groups namely Gupta-Sidki groups. These are the finitely generated infinite

torsion p-groups for each odd prime p. This family also gives the answer to the Burn-

side problem.
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5.1 Grigorchuk Group

First, we will define the Grigorchuk group. Then we will see its various interesting

properties. This group was defined as the subset of the set of Lebesgue preserving

transformations of the collection of the open unit interval (0, 1). Consider the unit

interval I = (0, 1) and remove the set of all rational points {1
2
, 3

4
, 7

8
, ..} in (0, 1), call

this set S. So

S =
∞⋃
i=1

(1− 1

2n−1
, 1− 1

2n
) = (0, 1/2) ∪ (1/2, 3/4) ∪ (3/4, 7/8) ∪ ....

Let E denote the identity transformation on each subinterval i.e. this transformation

fixes each point of the interval and let P denote the transformation which inter-

changes the two halves (0, 1/2) and (1/2, 1) i.e. a point x is mapped either to x+ 1/2

if x ∈ (0, 1/2) or to x− 1/2 if x ∈ (1/2, 1). Let EI denote the identity transformation

on I and PI denote the interchange of two halves of I.

Now we will define four transformations a, b, c, d:

• a denotes the transformation P on S as just the interchange the two halves of S

• b denotes the transformation PPEPPEPPE... on S i.e. b acts on S like P on

first interval, P on second interval, E on third interval and P on fourth interval so

on.

• c denotes the transformation PEPPEPPEP... i.e. c acts on S like P on first

interval, E on second interval, P on third interval P on fourth interval and so on.

• d denotes the transformation EPPEPPEPP.. on S i.e. like E on first interval,

P on second interval, P on third interval, P on fourth interval and so on.

Here, the first interval means first half of S i.e. (0, 1/2), second interval means

next half of the remaining i.e. (1/2, 3/4), third interval means that next half of the

remaining i.e.(3/4, 7/8) and so on.
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In particular, suppose S = (0, 1/4) ∪ (1/4, 1/2) ∪ (1/2, 3/4) ∪ (3/4, 1). Name the

subinterval (0, 1/4) as 1, (1/4, 1/2) as 2, (1/2, 3/4) as 3 and (3/4, 1) as 4. Then the

action of a on S as P , i.e. interchange of the two halves of (0, 1) i.e. (0, 1/2)↔ (1/2, 1)

acts like the permutation (1, 3)(2, 4) b acts on S like P on first half (0, 1/2), P on

next half (1/2, 3/4) and E on (3/4, 1) i.e. b acts like permuatation (1, 2)(3)(4) c acts

on S like P on first half (0, 1/2), E on next half (1/2, 3/4) and P on (3/4, 1) c acts

like permuatation (1, 2)(3)(4), d acts on S like E on first half (0, 1/2), P on next half

(1/2, 3/4) and P on (3/4, 1) i.e. d acts like permuatation (1)(2)(3)(4).

Definition 5.1.1 Consider the group Γ generated by the transformations a, b, c, d of

S. We call this group Γ, the Grigorchuk group

Since a is the transformation that interchange the two halves, a2 is the identity

transformation E. Similarly, b acts on S like PPEPPEPPE.., so b2 acts on S like P 2

on first halves, P 2 on remaining next half, E2 on remaining half and so on, but P 2 is

the identity transformation, and so is E2 is. So b2 is the identity transformation. Sim-

ilarly c2, d2 represent identity transformation. Hence, we have a2 = b2 = c2 = d2 = 1.

Now consider the transformation bc, first take the action of c then of b, i.e. c acts on

S like PEPPEPPEP... and then apply b, which acts like PPEPPEPPE.... So the

transformation bc acts on S like P.P = P 2 = E on first half, E.P = P on remaining

next half, P.E = P on remaining next half, P.P = P 2 = E on remaining next half

and so on. Then the complete action of bc on S would be like EPPEPPEPP... which

is the same action as of d, hence bc = d, similarly if we consider the transformation

cb, cb acts on S like P.P = P 2 = E on first half, P.E = P on remaining next half,

E.P = P on the third half, P.P = P 2 = E on remaining next half and so on. So

the complete action of cb would be like EPPEPPEPP..., which is again of d. Hence

bc = cb = d. Similarly we can get dc = cd = b and bd = db = c.

Now we have a group Γ which is generated by 4 elements, say a, b, c and d, and

each generator has order 2, and we have the relations a2 = b2 = c2 = d2 = 1,

bc = cb = d,db = bd = c and cd = dc = b. Any arbitrary element of Γ can be written

in the terms of a, b, c and d, because of the relations a2 = b2 = c2 = d2 = 1, each
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generator would have exponent at most 1 in the expression of any arbitrary element.

Also, due to the relations bc = cb = d, dc = cd = b and bd = db = c, if any two of

b, c, d come together, we can replace it by new generator. So an arbitrary element of

Γ can be written as a occurring between b, c and d.

Since a interchanges the two halves of (0, 1/2) and (1/2, 1) and b, c, d fix both in-

tervals, so it follows that each element of Γ either fixes both of them or interchanges,

then so consider the set of all elements of Γ which fixes the both intervals, they form

a subgroup, say H. Also it is clear that this subgroup H has index 2 in Γ. Hence, H

is a normal subgroup of Γ.

Lemma 5.1.2 The subgroup H defined above is generated by the elements b, c, d, aba, aca, ada.

Proof: We know that b, c, d fixes the two subinterval, so b, c, d ∈ H and since a

interchanges the two halves, even occurrence of a fix the two subintervals. Therefore

the elements b, c, d, aba, aca, ada ∈ H. Now let g ∈ H, then g can be expressed in

terms of b, c, d, aba, aca, ada. �

Since (0, 1/2) and (1/2, 1) are both bijective with (0, 1), we can also define the

same kind of group using similar transformations of these subintervals. Suppose Γl

and Γr denote the Grigorchuk groups on intervals (0, 1/2) and (1/2, 1) respectively.

The elements of subgroup H fix the interval (0, 1/2) and (1/2, 1). So if we restrict

the action of H on (0, 1/2), it will give a subgroup of Γl, and similarly the action of

H on (1/2, 1) will give a subgroup of Γr.

First, we will see how this restriction is gives a subgroup of Grigorchuk group.

Lemma 5.1.3 Elements b, c, d, aba, aca, ada of H induce transformations al, al, 1l, cl, dl, bl

on (0, 1/2) respectively and the transformations cr, dr, br, ar, ar, 1r on (1/2, 1) respec-

tively(where suffix l, r just emphasising that they are the transformation of the interval

(0, 1/2) and the interval (1/2, 1)).

Proof: As we know that b acts like PPEPPEPPE... on S, i.e. acts like P on

first half (0, 1/2) and acts like PEPPEP... on remaining half and if we restrict the

90



action of b on (0, 1/2) i.e. it will induce the transformation a on (0, 1/2) i.e. we

write al, and the restriction of b on (1/2, 1) will induce the transformation c and

write cr. Now consider the transformation c, it acts like PEPPEPPEP... on S i.e.

acts like P on first half (0, 1/2) and EPPEPPEPP... on second half (1/2, 1), so the

restriction of c induce the transformation a on (0, 1/2) say al and d on (1/2, 1) say

dr. Similarly the restriction of d on (0, 1/2) and (1/2, 1) induce the transformation

1l and br respectively. Consider the transformation aba, since a acts like interchange

the two intervals and b acts like PPEPPEPPE..., so aba, first swap the two halves,

and then acts like b, and then again swap, so the resultant action would be like c

on first half (0, 1/2) and a on second half (1/2, 1). Similarly, the transformation aca

induce the transformation d on (0, 1/2) and a on (1/2, 1) write dl and ar respectively.

Also the transformation ada induce the transformation b on (0, 1/2) and a on (1/2, 1)

write bl and 1r respectively. �

Proposition 5.1.4 Γ is an infinite group.

Proof: We have noticed that H induces the transformations al, al, 1l, cl, dl, bl on

(0, 1/2). The subgroup generated by al, al, 1l, cl, dl, bl in Γl is equal to Γl, the Grig-

orchuk group on (0, 1/2), and Γ ∼= Γl (just renaming of the elements). Hence, we have

a map φ : H → Γl defined as φl(g) = gl(the restriction of g on (0, 1/2). By previous

lemma, this map is an epimorphism. Since H ≤ Γ and Γ ∼= Γl, hence we have an

epimorphism from a proper subgroup of Γ to Γ. Therefore, we conclude that Γ is an

infinite group. �

Similarly, we also have a map φr : Γ→ Γr, defined as φr(g) = gr(just the restric-

tion of g on (1/2, 1)), which is also an epimorphism.

So Now we have a map φ : H → Γl × Γr given by φ(x) = (xl, xr). Clearly, this

map is injective, if some element acts like identity on (0, 1/2) and (1/2, 1), it must

acts like identity transformation on S. So the kernel is trivial. Hence, φ is embedding

of H in Γl × Γr.

Since a2 = d2 = 1 and φ(adad) = φ(ada)φ(d) = (b, 1)(b, 1) = (b, b), so φ((ad)4) =
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1, since φ is injective, So ad has order 4. It is clear that the subgroup D = < a, d > ,

is the dihedral group of order 8

Lemma 5.1.5 Let B =< b >Γ be the normal closure of < b > in Γ. Then | Γ : B |≤

8.

Proof: Since we have bc = cb = d and Γ =< a, b, d >. Since B is normal subgroup

of Γ, so the quotient group Γ/B is generated by the images of a, d, and since by the

previous lemma, we know that the subgroup generated by < a, d > is of order 8.

Therefore, B is normal subgroup of Γ of at most index 8. �

Theorem 5.1.6 Γ is 2- group i.e. for x ∈ G, ∃n ∈ N such that x2n = 1.

Proof: We know that, Γ is generated by 4 elements a, b, c and d. Let x ∈ Γ, then

x ∈ Γ can be expressed as a product of a, b, c, d with alternate occurrences of a.

We will use induction on length l(x) of x to prove that x is an element of order 2s for

some s ∈ N. If l(x) = 1, then x ∈ {a, b, c, d}, then we have a2 = b2 = c2 = d2 = 1,

we are done. Now assume that l(x) > 1. If the first generator in the expression of x

is u(say), where u ∈ {b, c, d}, then x = uw, where w is a word in {a, b, c, d}. Then

the conjugate uxu of x is of either same length (if last letter in x is a) or has shorter

length( if last letter in x is not a). Since the conjugate elements have same order,

so if uxu has shorter length, then by induction, it has order power of 2, then x also

has order power of 2, and if uxu has same length, then the word uxu starts with an

element different from the initial one and if a is not present in the expression, then

x2 = 1, Since, < b, c, d > ∼= V4, the non-cyclic group of order 4. In that case we are

done.

So we can assume that number of occurrence of a in x is non-zero, and hence by the

above argument, we can assume that x starts with the element a. Now suppose l(x) =

2, then x ∈ {ab, ac, ad}. If x = ad, then by lemma 4.5, we know (ad)4 = 1, if x = ac,

then φ((ac)2) = (da, ad),⇒ φ(ac)8 = ((da)4, (ad)4) = (1, 1), since φ is injective, so

(ad)8 = 1 and if x = ac, then φ((ab)2) = (ca, ac),⇒ φ(ac)16 = ((ca)8, (ac)8) = (1, 1),

since φ is injective, so (ad)16 = 1. Hence if l(x) = 2, then x has order power of 2.

Now assume that l(x) ≥ 3. If x also ends with a, then x is of the form awa for some

92



word w a, b, c, d. Hence x is conjugate to a shorter word w and by induction, w has

order power of 2, so does x. Now assume that x ends with b, c, d, therefore x has even

length 2k, where k is the number of pairs av, where v ∈ {b, c, d}.

Case 1: If k is even , then x has even number of a′s. So x ∈ H. Then, we have

a embedding φ : H → Γ × Γ, φ(x) = (xl, xr), where xl and xr are have length at

most 1
2
l(x). Hence by induction hypothesis, suppose xl has order 2s and xr has order

2t, then if suppose s > t, then φ(x2s) = (x2s

l , x
2s

r ) = (1, 1) and since φ is injective.

Therefore, x2s = 1, which shows that order of x is a power of 2.

Case 2: If k is odd, i.e. x has odd number of occurrence of a, then x2 has even

number of occurrence of a i.e. x2 ∈ H, so φ(x2) = (yl, yr), each of yl, yr has length at

most l(x).

Case 2.a Suppose first that, x involves the letter d. Since x2 has length 2l(x) and

is periodic with period l(x), occurrence of d will be at least twice, at position that

differ by l(x) = 4r + 2, one in the form d, and the other in form of ada. That means

that when we write x2 as product of generators of H, i.e. b, c, d, aba, aca, ada, then

both d and ada will occur. Then in yl, the generators d becomes 1, and in yr, the

generator ada becomes 1, and so both yl and yr have shorter length than x, and by

induction hypothesis, x2 has order power of 2, and order of x2 is twice that of x, so x

has order power of 2.

Case 2.b Suppose x does not involve d but involves c. As before, c will appear

either in the form of c or in the form of aca, in any case either yl or yr involves d or d

will disappear by cancellation. Now suppose without loss of generality, yl contains d,

then either yl belongs H or not. If yl ∈ H, then by Case 1, we get yl has order power

of 2 and if yl /∈ H, then y2
l belongs H. Then again we can write φ(y2

l ) = (zl, zr) and

where l(zl), l(zr) ≤ l(yl), since y2
l involves d, so by case 1 and induction y2

l has order

power of 2 ad hence yl has order power of 2. Similarly, we will have yr of order power

of 2. Therefore x2 has order power of 2 so x has order power of 2.

Case c: If x does not involves d, c, then x = (ab)k for some k ∈ N, and since
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(ac)16 = 1, so x has order power of 2. �

Definition 5.1.7 A group G is said to be residually finite, if for any g ∈ G, there

exist a finite group H and an epimorphism φ : G→ H such that g 6∈ ker(φ).

More generally, If X is a certain family of groups, then a group G is termed as

Residually-X if for any distinct elements g, h ∈ G such that there exist a surjective

group homomorphism φ : G→ H such that φ(g) 6= φ(h) for some H ∈ X.

The above condition is equivalent to showing that for any g 6= 1 ∈ G, there ex-

ist a surjective group homomorphism φ : G→ H, such that φ(g) 6= 1 for some H ∈ X.

Proposition 5.1.8 Let X be a certain class of groups. Then the following conditions

are equivalent:

1. A group G is Residually-X

2. For any g 6= 1 ∈ G, there exist a surjective group homomorphism φ : G→ H such

that φ(g) 6= 1 for some H ∈ X.

Proof: If (1) holds, then for g 6= 1 ∈ G, we will have a surjective homomorphism φ

: G→ H such that φ(g) 6= φ(e) = e′ for some H ∈ X which proves (2). Conversely if

(2) holds and suppose g, h ∈ G are two distinct elements of G i.e. g 6= h i.e. gh−1 6= 1,

and hence by (2)‘1‘, there exist a surjective homomorphism φ : G → H such that

φ(gh−1) 6= 1 for some H ∈ X, hence φ(g) 6= φ(h) which proves (1). �

Definition 5.1.9 Let G be a Residually-X group. Then we say that

1. G is Residually finite if X is the class of finite groups.

2. G is Residually nilpotent if X is the class of nilpotent groups.

3. G is Residually solvable if X is the class of solvable groups.

4. G is Residually-p if X is the class of finite-p groups.
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Similarly, we can define any Residual class, but the above four residually proper-

ties are very important.

If X is a certain class of groups, then any group G ∈ X is Residually-X, because

in that we can take H to be G and φ to be the identity map. In particular, every

finite group is Residually finite, every nilpotent group is Residually nilpotent etc.

Proposition 5.1.10 If X and Y are two classes of groups such that X ⊆ Y , then

any group G which is Residually-X must also Residually-Y .

Proof: Suppose G is Residually-X and g ∈ G be any non identity element of G.

Then there exist a surjective group homomorphism φ : G → H such that φ(g) 6= 1

for some H ∈ X but X ⊆ Y , so H ∈ Y and hence, G is Residually-Y . �

Corollary 5.1.11 Every Residually nilpotent group is Residually solvable because ev-

ery nilpotent groups is solvable.

Corollary 5.1.12 Every Residually-p group is Residually nilpotent because every fi-

nite p group is nilpotent.

But the converse of any of the two is not true in general. We will see some exam-

ples but before that we need to prove a small proposition:

Proposition 5.1.13 The following two conditions are equivalent:

1. A group G is Residually finite

2. If C = {N |N / G and | G/N |<∞} then
⋂
N∈C N = {e}.

Proof: Assume (1) holds, Let suppose g ∈
⋂
N∈C N , if g 6= e then there exist

a homomorphism φ : G → H such that φ(g) 6= e for some finite group H. Then

g ∈ Ker(φ) and since Ker(φ)/G and Ker(φ) is of finite index. Therefore Ker(φ) ∈ C

and hence g ∈ Ker(φ) which is a contradiction. Conversely assume (2) holds, and

suppose that G is not Residually finite i.e. ∃ g 6= e such that for any surjective group

homomorphism φ : G→ H for any finite group H, we have φ(g) = e i.e. g ∈ Ker(φ).

In particular, if we take natural projection π : G→ G/N for any N ∈ C. Then g ∈ N

for all N ∈ C. Hence, g ∈
⋂
N∈C N = {1}, gives a contradiction, which proves (1). �
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Theorem 5.1.14 Let Γ be the Grigorchuk group, then Γ is a residually finite group.

Proof: Let {(0, 1/2), (1/2, 3/4), (3/4, 7/8), ..., (2k−1−1
2k−1 , 2k−1

2k
)} be a partition of the

interval (0, 1) into 2k subintervals. Elements of the group Γ permute these subinter-

vals, and so we will have a homomorphism ψ : Γ → S2k , the symmetric group on 2k

letters. Let Hk be the kernel of this homomorphism. Let g ∈ Ker(ψ), this g fixes each

2k subintervals, if suppose g ∈
⋂∞
k=1Ker(φk), i.e. g fixes each point of the interval,

because any point lies in one the subintervals, so g must be the identity.

Therefore
⋂∞
k=1Ker(φk) = 1. Thus by the above proposition, we conclude that, Γ is

a residually finite group. �

Theorem 5.1.15 Let Γ be the Grigorchuk group, then Γ has solvable word problem.

Proof: Let g be any word of Γ. If l(g) = 1, then g ∈ {a, b, c, d}, then we can decide

easily whether g is 1 or not. Suppose if l(g) > 1, then write g in terms of a, b, c, d.

Let n(a) be the number of occurrence of a in the expression of g, If n(a) is odd then

g 6∈ H. Therefore g can not be the identity. Suppose if n(a) is even, then g ∈ H,

and by the previous embedding, write φ(g) = (gl, gr), where gl and gr have shorter

length than of g. Therefore by induction , we can decide whether gl or gr represent

the identity or not, and g represent the identity if and only if gl = 1 and gr = 1. �

Proposition 5.1.16 The Grigorchuk group Γ is commensurable with Γ× Γ.

Proof: We have the embedding φ : H → Γl × Γr given by φ(x) = (xl, xr). Since the

elements of B can be generated by the conjugates of b i.e. aba, cbc, dbd, but

φ(badab) = φ(b)φ(ada)φ(b) = (a, c)(b, 1)(a, c) = (aba, cc) = (aba, 1)

φ(abadaba) = φ(aba)φ(d)φ(aba) = (c, a)(1, b)(c, a) = (cc, aba) = (1, aba)

Also, we have

φ(abaadaaba) = φ(aba)φ(ada)φ(aba) = (c, a)(b, 1)(c, a) = (cbc, 1)

φ(bdb) = φ(b)φ(d)φ(b) = (a, c)(1, b)(a, c) = (1, cbc)

Similarly,

φ(acaadaaca) = φ(ada)φ(aca)φ(ada) = (d, a)(b, 1)(d, a) = (bdb, 1) and φ(cdc) =

96



φ(c)φ(d)φ(c) = (a, d)(1, b)(a, d) = (1, dbd) and so the image of φ contains (1, B)

and (B, 1) and therefore contains all the generators of B×B. Hence, φ(H) contains

B × B. Since |Γ : B| ≤ 8, so |Γ × Γ : B × B| ≤ 8.8 = 64. So φ(H) is of finite index

in Γ× Γ and φ : H → φ(H) is an isomorphism. Therefore, Γ is commensurable with

Γ× Γ. �

Lemma 5.1.17 Let x ∈ H, and write φ(x) = (xl, xr). Then l(xl) and l(xr) are at

most 1
2
(l(x) + 1).

Proof: We know that H is generated by the transformation b, c, d, aba, aca, ada,

and also any element of Γ can be expressed in a, b, c, d with alternate occurrence of

a, So any element x ∈ H can be written as the product of the form u and ava, with

u, v ∈ {b, c, d}. Let the length of x in Γ be 4k + r, where k is the number of pairs

(u, ava), present in the expression of x ∈ H, and r ∈ {0, 1} and each pair contributes

4 to length of x (l(x)).

Now consider the map φ : H → Γl×Γr defined as φ(x) = (xl, xr). Since any generator

of H map to elements xl or xr at most length 1, so each pair, which has length 4, map

to elements xl or xr of at most length 2. If r = 0, then l(xl), l(xr) ≤ 1
2
l(x) ≤ 1

2
(l(x)+1).

If r = 1, then the remaining factor has length 1 or 3 and is mapped to single generator

a or 1 �

5.1.1 Growth of Grigorchuk group

Now, we will show that the Grigorchuk group Γ has neither polynomial growth nor

exponential growth, i.e. the growth function of Γ dominates every polynomial func-

tion and is strictly dominated by functions f(n) = an for any real number a > 1. Let’s

first prove that Γ does not have polynomial growth with the help of Gromov’s theorem.

Theorem 5.1.18 Let Γ be the Grigorchuk group, then Γ does not have polynomial

growth.

Proof: We have seen that Γ is 3-generated infinite torsion group. Suppose Γ has

polynomial growth, then by Gromov’s theorem Γ must have nilpotent subgroup of

finite index. Let N be a nilpotent subgroup of finite index in Γ. i.e. |Γ : N | < ∞.
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Then since by 2.3.16, N is finitely generated group. Since by 2.3.2, N is finitely gen-

erated nilpotent group. So consider the lower central series of N

N = γ1(N) ⊇ γ2(N) ⊇ ... ⊇ γn(N) ⊇ γn+1(N) = 1 (5.1)

where γi+1(N) = [N, γi(N)] and γi(N)/γi+1(G) is finitely generated abelian group.

Also N is torsion group as Γ is torsion group. Therefore each successive quotient of

lower central series is a finite abelian group, since the extension of finite group by

finite group is finite group, i.e. if γi(N)/γi+1(N) is finite and γi+1(N) is finite then

γi(N) is finite. Now apply this, since γn(N)/γn+1(N) is finite, and γn+1(N) is finite,

so γn(N) is finite, Repeating this argument n times, we get that N is finite group.

Using |Γ : N | < ∞, Γ is finite group, which is a contradiction. Hence, Γ does not

have polynomial growth. �

Now it remains to show that growth Γ is subexponential (less than exponential).

We have an index 2 subgroup H of Γ generated by b, c, d, aba, aca, ada and we have

an embedding φ : H → Γ × Γ given by φ(x) = (xl, xr). Since | Γ : H |= 2, so

| Γ× Γ : H ×H |= 2.2 = 4. Now consider the set K = {x ∈ H : φ(x) ∈ (H ×H)}.

Since φ is injective, then |H : K| = |φ(H) : φ(H) ∩ (H × H)| ≤ 4. Now K is a

subgroup of H of index at most 4.

Therefore, |Γ : K| = |Γ : H||H : K| ≤ 2.|H : K| = 2.4 = 8, which shows that

K is subgroup of Γ of index at most 8. Now consider a new set L = {x ∈ K :

φ(x) ∈ K × K}. Then L is a subgroup of K, hence a subgroup of H. Now

|K : L| = |φ(K) : φ(K) ∩ (K × K)| ≤ 4.4 = 16., Therefore, we have |Γ : L| =

|Γ : K||K : L| ≤ 8.16 = 128.

If x ∈ L, then φ(x) ∈ K × K, i.e. φ(x) = (x0, x1), where x0, x1 ∈ K, By the

definition of K, we have φ(x0) = (x00, x01) where x00, x01 ∈ H. Now we have a map

φ : H → Γ × Γ, then φ(x00) = (x000, x001), where x000, x001 ∈ Γ. Similarly, we can

apply φ three times on x1.

So if x ∈ L, then we have a map defined as

φ : H → Γ× Γ× ...× Γ (8times)
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given by

φ3(x) = (x000, x001, x010, x011, x100, x101, x110, x111)

where each coordinate in the octet belongs to Γ. For simplicity, we can write if x ∈ L,

φ3(x) = (x1, x2, x3, x4, x5, x6, x7, x8), where xi ∈ Γ. �

Lemma 5.1.19 If x ∈ L, and φ3(x) = (x1, ..., x8), then we have
∑8

i=1 l(xi) ≤
3
4
l(x)+

8.

Proof: If x ∈ L, then φ(x) = (xl, xr), and φ(xl) = (xl1 , xl2), and φ(xr) = (xr1 , xr2),

and again apply, we get φ(xl1) = (xl11 , xl12) , φ(xl2) = (xl21 , xl22) , φ(xr1) = (xr11 , xr12)

and φ(xr2) = (xr21 , xr22). Therefore, We have

φ(x) = (xl11 , xl12 , xl21 , xl22 , xr11 , xr12 , xr21 , xr22)

l(xl11), l(xl12) ≤
1

2
((l(xl1) + 1), l(xl21), l(xl22) ≤

1

2
((l(xl2) + 1)

l(xr11), l(xr12) ≤
1

2
((l(xr1) + 1), l(xr21), l(xr22) ≤

1

2
((l(xr2) + 1)

Let φ(x) = (xl11 , xl12 , xl21 , xl22 , xr11 , xr12 , xr21 , xr22) = (x1, x2, x3, x4, x5, x6, x7, x8)(say)

then, we have

8∑
i=1

l(xi) = l(xl11) + l(xl12) + l(xl21) + l(xl22) + l(xr11) + l(xr12) + l(xr21) + l(xr22)

≤ 1

2
(l(xl1) + 1 + l(xl2) + 1 + l(xr1) + 1 + l(xr2) + 1)

≤ l(xl1) + 1 + l(xl2) + 1 + l(xr1) + 1 + l(xr2) + 1

≤ l(xl) + 1 + 2 + l(xr) + 1 + 2

≤ l(x) + 1 + 1 + 2 + 1 + 2

≤ l(x) + 7

The number of occurrence of either b, c or d in x is between 1
2
(l(x)−1) and 1

2
(l(x)+1).

Let us write lb(x), lc(x) and ld(x) for the number of occurrence of b, c and d respectively.

We saw that on applying φ, we get

l(xl) + l(xr) ≤
1

2
(l(x) + 1) +

1

2
(l(x) + 1) = l(x) + 1

. But each occurrence of d, either as itself or in ada, becomes 1 in either xl or xr.

Therefore we have to subtract ld(x) from the sum. Next, each occurrence of c in x
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becomes d in either xl or xr (but not in both). it is possible that on reducing xl and xr

this occurrence of d disappears, but if it does not, it becomes 1 on applying φ again.

Then when applying φ2, we have to subtract also lc(x) and similarly, on applying φ3,

we subtract also lb(x). But we can not subtract both lc(x) and lb(x), because c and b

may cancel out together. Therefore we can subtract either lc(x)+ lb(x) or ld(x)+ lb(x).

Since at least one of these is at least 1
2
(lb(x) + lc(x) + ld(x)) otherwise if

ld(x) + lb(x) <
1

2
(lb(x) + lc(x) + ld(x))

lb(x) + lc(x) <
1

2
(lb(x) + lc(x) + ld(x))

∴ 2lb(x) + lc(x) + ld(x) < lb(x) + lc(x) + ld(x)

lb(x) < 0

which is not possible. So either ld(x)+ lb(x) ≥ 1
2
(lb(x)+ lc(x)+ ld(x)) or lb(x)+ lc(x) ≥

1
2
(lb(x) + lc(x) + ld(x)). Now, since we have

lb(x), lc(x), ld(x) ≥ 1

2
(l(x)− 1)

and if

ld(x) + lb(x) ≥ 1

2
(lb(x) + lc(x) + ld(x))

≥ 1

4
(l(x)− 1)

Now,

8∑
i=1

l(xi) ≤ (l(x)− 7)− (lb(x) + ld(x))

≤ (l(x) + 7)− 1

4
(l(x)− 1)

≤ 3

4
l(x) + 8

Therefore, we have
∑8

i=1 l(xi) ≤
3
4
l(x) + 8.

�

Theorem 5.1.20 Let Γ be the Grigorchuk group, then Γ has subexponential growth.

Proof: Let sΓ(n) be the growth function of Γ and w(Γ) = lim(sΓ(n))1/n.

In order to show that Γ has subexponential growth, we need to show that w(Γ) = 1.
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Let L be the subgroup defined above and we also saw that |Γ : L| < ∞. Let k be

an upper bound for the length of a set(T ) of representatives of cosets of L, by 2.3.17

we can take |Γ : L| = k. Two different elements can give rise to the same element y

only if they lie in different cosets because if x1, x2 ∈ Γ( x1 6= x2), then x1 = yz1 and

x2 = yz2 so if z1 and z2 are same that would lead that x1 and x2 are same, which is

a contradiction. We denote sΓ
L(n) for the number of elements of L of length (in Γ) at

most n. Therefore by 2.3.17 we have

sΓ(n) ≤ sΓ
L(n+ k) | Γ : L | .

Consider an embedding φ3 : L→ Γ× Γ× ...× Γ ( 8 times) given by

φ3(x) = (x1, x2, ..., x8),

, where x ∈ L. So by this embedding, x can be completely determined by the action

of xi for each 1 ≤ i ≤ 8.

Let l(xi) = ni. Then it is clear that ni ≤ n by lemma. Since the action of some of the

xi could be trivial i.e. xi could be identity. So ni = l(xi) ∈ {0, 1, 2, ..., n}. Therefore

the number of possibilities for the octet (n1, n2, ..., n8) is at most (n + 1)8. For any

such octet, the number of possibilities for (x1, ..., x8) is
∏

i sΓ(ni). Write w = w(Γ).

Since we have w = (sΓ(n))
1
n ,

wn ≤ sΓ(n) ≤ (w + ε)n

for large n enough.

Then there exists a constant A such that sΓ(n) ≤ A(w + ε)n for all n. Given an

octet (n1, n2, ..., n8) as above, this implies that number of possibilities for the octet

(x1, x2, ..., x8) is at most
∏8

i=1A(w + ε)ni .

8∏
i=1

A(w + ε)ni = A8(w + ε)n1+...+n8 ≤ A8(w + ε)
3
4
n+8 ≤ C(w + ε)

3
4
n

where C = A8(w + ε)8, Now,

wn ≤ sΓ(n) ≤ sΓ
L(n+ k)|Γ : L| ≤ |Γ : L|C(n+ k + 1)8(w + ε)

3
4
n+8

taking nth roots and letting n go to infinity and ε go to 0, we have w ≤ w
3
4 . This

implies that w = 1, which shows that the Grigorchiuk group has subexponential

growth. �
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Corollary 5.1.21 Let Γ be the Grigorchuk group, then Γ has intermediate growth.

Proof: By the theorem 5.1.18, Γ does not have polynomial growth and by 5.1.20, Γ

has subexponential growth. Therefore, Γ has intermediate growth.. �

Theorem 5.1.22 There exist number 0 < α, β < 1 and A,B > such that An
α ≤

sΓ(n) ≤ Bnβ .

Proof: The proof refers to [1] �
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5.2 Gupta-Sidki group

Now, we will define a new family of groups of intermediate growth. These groups

were first constructed by Narain Gupta and Said Sidki in 1983. Along with the in-

termediate nature of these groups, these groups also gives a answer to the Burnside

problem. For each odd prime p, Gupta - Sidki groups is a p-generated infinite torsion

group and it has intermediate growth. First, we will define it, then we will see some

interesting properties. These groups were defined as the subgroup of automorphism

group of p - regular rooted tree.

Fix p be an odd prime. A tree is a connected graph which has no circuits. A

regular p -rooted tree is a tree T (0), which has one base vertices (say 0), and from

the vertex 0 , there are p vertices say (0, 1), (0, 2), ..., (0, p) attached to the vertex

0, and from each p vertices (0, i), where 1 ≤ i ≤ p, there are again p vertices say

(0, i, 1), (0, i, 2), ..., (0, i, p) vertices attached to it, and so on. In other words, the sub-

tree hanging from any of the vertices of the tree T (0) looks similar to be as their

parental tree T (0). Let T (0) be an infinite regular p-rooted tree with initial vertex at

0 ( also called as the root of a tree).

Definition 5.2.1 An automorphism φ of a tree T is map φ : T → Twhich is a

bijection on the set of vertices, Such φ takes the vertices to vertices and if u, v be any

two vertices such that [u, v] is the direct edge between u and v, then [φ(u), φ(v)] must

be the direct edge between φ(u) and φ(v). The automorphism group of a tree T is the

set of all automorphism of tree T and is denoted by Aut(T ).

Let T (0) be an infinite regular p - rooted tree. Now we will define Gupta - Sidki

group as the subgroup generated by two particular type of automorphisms, say t(0)

and a(u) inside the group Aut(T (0)).

Suppose T (0) is a infinite regular p - tree with initial vertex 0 and if u is any

vertex of this infinite tree T (0), we denote T (u) be the tree hanging at the vertex u,

which is also a regular p - rooted tree and looks like as of parental tree T (0). So, there

are p-regular subtrees say T (0, 1), T (0, 2), ..., T (0, p) with roots (0, 1), (0, 2), ..., (0, p)
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respectively, whose initial vertices are direct connected with initial the root 0 of the

tree T (0).

In order to define an automorphism φ of tree T (0), it is sufficient to know the

image of vertices under the action of φ. Now we will define an automorphism t(u).

For each vertex u of T (0),

we define t(u) : T (u)→ T (u) by

t(u)(T (u, j)) = T (u, j + 1)forj = 1, 2, ..., p− 1, and

t(u)(T (u, p)) = T (u, 1)

The automorphism t(u) fixes the vertices u, and cyclically permutes the vertices

(u, 1), (u, 2), ..., (u, p), so after iterating p times, the action of t(u) becomes trivial so

t(u) is of order p. Now, we will define the another automorphism

a(u) : T (u)→ T (u)

a(u)(T (u, j)) = t(u, 1)t−1(u, 2)i(u, 3)...i(u, p− 1)a(u, p)

where t(u, 1) is an automorphism defined above which cyclically permutes the vertices

(u, 1, 1), (u, 1, 2), ..., (u, 1, p) and t−1(u, 2) is the inverse of t(u, 2) and a(u, p) is an

automorphism,

a(u, p) : T (u, p)→ T (u, p) defined as a(u)(T (u, p, j)) = t(u, p, 1)t−1(u, p, 2)i(u, p, 3)...i(u, p, p−

1)a(u, p, p). So the action of a(u) on T (0) acts recursively in terms of the automor-

phism t(u) and a(u).

Since we have an infinite regular p-rooted tree, and the action of a(u) like t(0, 1) on

(u, 1), t−1(u, 2) ,identity automorphism i(u, 3) on (u, 3),..., and a(u, p) acts on (u, p)

as the same way as a(u) on u.

Definition 5.2.2 Let p be an odd prime. Consider the subgroup generated by two

automorphisms t(0) and a(0) in the group Aut(T (0)) and denote it by Gp(0). Then

Gp(0) is the Gupta - Sidki group.
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Since we have fixed a prime p. So we use the notation G(0) instead of Gp(0). Now

we will see some interesting properties of G(0). More generally, for any vertex u of

T (0), let G(u) denote the group generated by the automorphism t(u) and a(u).

Theorem 5.2.3 : The group G(0) generated by t(0) and a(0) is an infinite group.

Proof: We defined a(0) as

a(u) : T (0)→ T (0)

a(0)(T (0, j)) = t(0, 1)t−1(0, 2)i(0, 3)...i(0, p− 1)a(0, p)

Since, t(0, 1) is an automorphism of tree T (0, 1) (rooted at (0, 1)), t(0, 1) ∈

G(0, 1). Similarly t−1(0, 2) is an automorphism of tree T (0, 2) (rooted at (0, 2)) and

so t−1(0, 2) ∈ G(0, 2). In the same way i(0, 3) ∈ G(0, 3), ..., i(0, p − 1) ∈ G(0, p − 1)

and a(0, p) ∈ G(0, p).

Since t(0, 1) is an automorphism of the T (0, 1). So, it fixes all other vertices

(0, 2), (0, 3), ..., (0, p). Similarly t−1(0, 2) is automorphism of the T (0, 2) and it acts as

the identity transformation on the tree T (0, 1), T (0, 3), ..., T (0, p). The identity auto-

morphisms i(0, 3), ..., i(0, p− 1) acts trivially on each subtree and the automorphism

a(0, p) acts as the identity transformation on T (0, 1), T (0, 2), ..., T (0, p− 1).

Therefore,

a(0) = t(0, 1)t−1(0, 2)i(0, 3)...i(0, p− 1)a(0, p)

∈ G(0, 1)×G(0, 2)×G(0, 3)× ...×G(0, p− 1)×G(0, p)

where, G(u) is the group generated by t(u) and a(u). Let’s denote the automor-

phism

a(0) = t(0, 1)t−1(0, 2)i(0, 3)...i(0, p− 1)a(0, p)

by a = (t, t−1, i, ..., a). Also, let’s denote t−j(0)a(0)tj(0) = aj for each j =

0, 1, ..., p− 1, then a0 = t−0a(0)t0 = a(0) = (t, t−1, i, i, ..., a)

Since, t−0(0)a(0)t0(0) = a(0) = (t, t−1, i, ..., a),
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Now consider the action of t−1a(0)t1, on the following:

on T(0,1): The automorphism t−1(0)a(0)t1(0)(T (0, 1)) = t−1(0)a(0)(T (0, 2)), since

a(0) acts like the automorphism t(0) on T (0, 2) and since t−1(0) is the inverse of t1(0),

so t−1(T (0, 2) = T (0, 1). Hence the automorphism t−1(0)a(0)t1(0) on T (0, 1) acts like

t−1(0), denote by t−1.

on T(0,2): The automorphism t−1(0)a(0)t1(0)(T (0, 2)) = t−1(0)a(0)(T (0, 3)), since

a(0) acts like the automorphism i(0) on T (0, 2) and since t−1(T (0, 3)) = T (0, 2), hence

the automorphism t−1(0)a(0)t1(0) on T (0, 2) acts like i(0), denote by i.

on T(0,3): The automorphism t−1(0)a(0)t1(0)(T (0, 3)) = t−1(0)a(0)(T (0, 4)), since

a(0) acts like the identity automorphism i(0) on T (0, 4) and since t−1(T (0, 4)) =

T (0, 3), hence the automorphism t−1(0)a(0)t1(0) on T (0, 3) acts like i(0), denote by

i.

.....

on T(0,p-1): The automorphism t−1(0)a(0)t1(0)(T (0, p−1)) = t−1(0)a(0)(T (0, p)),

since a(0) acts like the automorphism a on T (0, p) and since t−1(T (0, p)) = T (0, p−1),

hence the automorphism t−1(0)a(0)t1(0) on T (0, p− 1) acts like a0, denote by a0.

on T(0,p): The automorphism t−1(0)a(0)t1(0)(T (0, p) = t−1(0)a(0)(T (0, 1)), since

a(0) acts like the automorphism t(0) on T (0, 1) and since t−1(T (0, 1)) = T (0, p), hence

the automorphism t−1(0)a(0)t1(0) on T (0, p) acts like t(0), denote by t.

Therefore, we have

a1 = t−1(0)a(0)t1(0) = (t−1, i, i, ..., a0, t)

Similarly, we can have
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a2 = t−2(0)a(0)t2(0) = (i, i, ..., a0, t, t
−1)

a3 = t−3(0)a(0)t3(0) = (i, i, ..., a0, t, t
−1, i)

...

ap−1 = t−(p−1)(0)a(0)t(p−1)(0) = (a0, t, t
−1, ..., i, i)

Since by definition of a0, a1, ..., ap−1, these p elements of Aut(T (0)) belongs to

G(0). Consider the subgroup generated by these p elements, call it H(0), say H(0) =

< a0, a1, ..., ap−1 >. �

Proposition 5.2.4 The subgroup H(0) generated by a0, a1, ..., ap−1 forms a normal

subgroup of index p in G(0).

Proof: Clearly, the generators H(0) is closed under the conjugation action of

t(0). So, H(0) is a normal subgroup. Now we will show that |G(0) : H(0)| = p,

Since H(0) is a normal subgroup of G(0), G(0)/H(0) has natural group structure.

Therefore we have natural map η : G(0) → G(0)/H(0) given by η(a(0)) = 1 and

η(t(0)) = t(0)H(0), where 1 represent the identity element of G(0)/H(0). Since

G(0) = < a(0), t(0) >, G(0)/H(0) is generated by t(0)H(0) order p in G(0). Cer-

tainly, (t(0)H(0))p = tp(0)H(0) = H(0) and also no power less than p (say i), exist

for which ti ∈ H(0), because ti just the permutation of first level, and since elements

of H(0) permutes at least one branches at each level. So ti 6∈ H(0) ∀ 0 < i < p. Hence,

t(0)H(0) has order p. So {G(0) : H(0)} = p. Therefore, H(0) is normal subgroup of

G(0) of index p. �

Definition 5.2.5 Let G and H be two groups. A subdirect product of G and H is

a subgroup K of the external direct product G × H such that the natural projections

πG : K → G and πH : K → H is surjective homomorphisms.

Lemma 5.2.6 If H is the subdirect product of G1, G2, ..., Gp, where each Gi
∼= G for

some group G and H is a proper subgroup of G, then G is an infinite group.
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Proof: Here, G1, G2, ..., Gp be the isomorphic copies of a group G. Since H is the

subdirect product of G1, G2, ..., Gp i.e. H is a subgroup of G1×G2× ...×Gp and the

projections map πi : H → Gi given by πi(g1, g2, ..., gp) = gi is onto. Since Gi
∼= G and

H ≤ Gi
∼= G. Hence, We have an epimorphism from a proper subgroup H of G to G.

Therefore, G is infinite group. �

Proposition 5.2.7 The group H(0) is the subdirect product of G(0, 1), G(0, 2), ..., G(0, p).

Proof: We know the subgroup H(0) generated by a0, a1, ..., ap is a normal subgroup

of index p in G(0) and each aj ∈ G(0, 1)×G(0, 2)×G(0, 3)× ...×G(0, p). Therefore

H(0) is a subgroup of ∈ G(0, 1)×G(0, 2)×G(0, 3)× ...×G(0, p). We have a natural

projection π1 : H(0)→ G(0, 1) given by π1(h1, h2, ..., hp) = h1. Since

π1(a0) = π1(t, t−1, i, ..., a0) = t

π1(ap−1) = π1(a0, t, t
−1, ..., i, i) = a0

Since G(0, i) ∼= G(0) for each 1 ≤ i ≤ p, and image of π1 contains the generating

set. Hence ,π1 is surjective map. Similarly each πj is surjective. So H(0) is the

subdirect product of ∈ G(0, 1)×G(0, 2)×G(0, 3)× ...×G(0, p), each G(0, j) ∼= G(0)

and H(0) is a proper subgroup of G(0).

Hence, by previous lemma, G(0) is an infinite group.

Now we will prove that every element in G(0) is of finite order. First we will

see that any arbitrary element g ∈ G(0) must be of the form g = htj, where h =

h(a0, a1, ..., ap−1) is a word in a0, a1, ..., ap−1. Since, we have the relation

t−j(0)a(0)tj(0) = aj ⇒ tj(0)a(0) = a−jt
j(0) (5.2)

Using induction, suppose tj(0)an(0) = h(a0, a1, ..., ap)t
r(0), Now consider

tj(0)an+1(0) = tj(0).an(0).a(0) = h(a0, a1, ..., ap)t
r(0)a(0) = h(a0, a1, .., ap)a−rt

r(0)

Hence, using the equation number (9), we can write arbitrary elements g of G(0) as

g = htj, where h = h(a0, a1, ..., ap−1) is a word in a0, a1, ..., ap−1.
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Thus we may consider g ∈ G(0) as an element of (< a0 > ∗ < a1 > ∗...∗ < ap−1 >

)o < t >. �

Theorem 5.2.8 G(0) is a torsion group.

Proof: We will prove that any element g ∈ G(0) has order power of p. Let

g ∈ {t(0), a(0)}. We have seen that the automorphism t(0) has order p. Since we

know that a(0) = t(0, 1)t−1(0, 2)i(0, 3)...i(0, p − 1)a(0, p), iterating p times of a(0),

action on the subtree T (0, 1) becomes trivial, similarly on T (0, 2), ..., T (0, p− 1) and

on the last subtree on the first level i.e. T (0, p), it acts like a(0, p). Since we apply it

recursively, we get that a(0) has order p.

Let λ(k) be the length contributed by ak, and then the syllable length of word

h(a0, a1, ..., ap−1) is λ(0) + λ(1) + ...+ λ(p− 1).

Now we will use induction on the syllable length of g to prove that g has order power

of p

Suppose our claim holds for all the words upto syllable length m i.e. all the ele-

ments of syllable length at most m have elements of order power of p and suppose g

is an element of syllable length m+ 1 ≥ 2.

Case I : If g = h(a0, a1, ..., ap−1)tp−j, j ∈ {1, 2, ..., p− 1}. . Since we have

g = htp−j

gp = htp−j.htp−j...htp−j

= h.(tp−jhtp−j).htp−j...htp−j.

= h.(t−jhtj).(tp−2jhtp−j)....htp−j

= h.ht
j

.ht
2j

.(tp−3jhtp−j)...htp−j

= h.ht
j

.ht
2j

...ht
(p−2)j

(∵ tp−(p−1)j.htp−j = t−(p−1)jht(p−1)j.t−(p−1)j+p−j

= ht
(p−1)j

.t−pj+j+p−j = ht(p−1)j)
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Therefore, we have

gp = h.ht
j

.ht
2j

...ht
(p−2)j

.ht
(p−1)j

is an element of H(0) (since generator of H(0) remains in H(0) after taking the

conjugation by t). Therefore the syllable length of each the conjugate t−kjhtkj for

j ∈ {0, 1, ..., p − 1} is same as the syllable length of h i.e. the syllable length of

gp = m + m + ... + m = mp. Also, ak takes the all values ai for i ∈ {0, 1, ..., k}

after conjugating all the p − 1 powers of t and therefore has the property that the

length contribution due to each ak is λ(0) + λ(1) + ...+ λ(p− 1) = m. Since, we can

write each ht
rj

in p tuple, so expressing gp as a p-tuple, shows that for each j, the

G(0, j)-component of gp is an element of H(0, j) of syllable length at most m and if

the component has syllable length λ(p−j), then by induction hypothesis, it has order

power of p. If the component has λ(p − j) + 1 = m + 1, then m = 1. Now consider

the following cases:

Case a: If λ(p− j) + 1 ≤ m

λ(p− j) ≤ m− 1 ≤ m. So each component has order power of p

Case b: If λ(p− j) + 1 > m

∴ λ(p− j) + 1 ≥ m

but, since λ(0) + λ(1) + ...+ λ(p− j) + ...+ λ(p− 1) = m+ 1

if λ(p− j) + 1 > m+ 1, which implies that λ(p− j) > m (not possible) (at least some

λ(k) 6= 0 for k ∈ {1, 2, .., p− 1}). So, λ(p− j) + 1 = m+ 1⇒ λ(p− j) = m

Therefore, this component has length m so it has order power of p.

Case II: Let g = h(a0, ..., ap−1) ∈ H(0). Suppose h has syllable length m + 1 =

λ(0) + ...+ λ(p− 1). Now express h as in the form p tuple, which shows that G(0, j)-

component has syllable length λ(p−j), then by induction hypothesis, it is a p element

( since λ(p− j) ≤ m). if the component has length λ(p− j) + 1 and λ(p− j) + 1 ≤ m,

then again by the induction hypothesis it is a p element. If the component has length

λ(p− j) + 1 = m + 1, then m = 1 and it is a p element by Case I and the induction

hypothesis. Thus, g is a p element. Therefore, in any case g is an p element. Hence,

G(0) is a torsion group. �
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So we have seen so far, for each odd prime p, the Gupta-Sidki Group is finitely

generated infinite torsion group.

5.2.1 Growth of Gupta Sidki Group

Now we will prove that the Gupta Sidki group has intermediate growth. We will prove

it in two steps first by showing that this group does not have polynomial growth and

in the next step we will show that this group has subexponential growth.

Theorem 5.2.9 For each odd prime p. Let G(0) be the Gupta Sidki group, then G(0)

does not have polynomial growth.

Proof: We have seen that G(0) is finitely generated infinite torsion group. Suppose

G(0) has polynomial growth, then by Gromov’s theorem, G(0) must have nilpotent

subgroup of finite index. Suppose N be a nilpotent subgroup of finite index in G(0).

i.e. |G(0) : N | < ∞. Then since by 2.3.16 N is finitely generated group. Since by

2.3.2, N is finitely generated nilpotent group, also N is torsion group because G(0) is

torsion. So consider the lower central series of N

N = γ1(N) ⊇ γ2(N) ⊇ ...γn(N) ⊇ γn+1(N) = 1 (5.3)

where γi+1(N) = [N, γi(N)], since γi(N)/γi+1(G) is finitely generated abelian group.

Since N is torsion group. Therefore each successive quotient of lower central series is

finite abelian group, since the extension of finite group by finite group is finite group,

i.e. if γi(N)/γi+1(N) is finite and γi+1(N) is finite then γi(N) is finite. Now apply

this, since γn(N)/γn+1(N) is finite, and γn+1(N) is finite, so γn(N) is finite, Repeating

this argument n times, we get N is finite group. Since |G(0) : N | < ∞, ∴ G(0) is

finite group, which is a contradiction. Hence, G(0) does not have polynomial growth.

�

Here we will prove that the Gupta - Sidki group has subexponential growth. In

order to prove it, we will use some result regarding Splitter Mixer Group[14]. So Let’s

define the splitter mixer group.
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Let ω = {1, ..., d} be a finite set; the set ω∗ of finite sequences over ω is naturally

(the vertex set of) a d-regular rooted tree, rooted at the empty sequence, if one

connects for all σi ∈ ω the vertices σ1...σn and σ1...σn.σn+1. Let A be a subgroup of

the symmetric group of ω ∼= Sd; let B be a finite group, and let B̃ = B1×B2×... be the

direct product of countably many copies of B; let φ1, φ2, ..., φd−1 be homomorphism

B̃ → A, and let φd : B̃ → B be the one-sided shift (b1, b2, ...) → (1, b1, b2, ...). Write

φni for the restriction of φi to Bn. Now we define a action of A and B̃ on ω∗ as follows:

the action of a ∈ A is

(σ1σ2...σn)a = (σ1)aσ2...σn

and the action of b̃ ∈ B̃ is defined inductively by

(σ1σ2...σn)b̃ = σ1(σ1σ2...σn)φσ1 (b̃).

Let G be the subgroup of Aut(ω∗) generated by A and B1, i.e. the largest quotient

of A ∗B1 that acts faithfully on ω∗. Such a group G is called a splitter-mixer group.

Theorem 5.2.10 [14] Let G be a splitter-mixer group as defined above, then G has

subexponential growth.

�

Proof: Proof refers to [14]

Theorem 5.2.11 Let G(0) be the Gupta-Sidki group, then G(0) has subexponential

growth.

Proof: We will use the theorem 5.2.10 to prove that the Gupta-Sidki group has

subexponential growth. Since the Gupta Sidki group G(0) can be obtained in above

setting by taking ω = {1, 2, .., p} for p ≥ 3, A = < x = (1, 2, ..., p) > and B = A, and

φn1 = φn2 (x−1) = x, φn3 = ... = φnp−1, which implies that G(0) is a splitter-mixer group

and hence by 5.2.10, G(0) has subexponential growth.

Corollary 5.2.12 Let G(0) be the Gupta-Sidki group, then G(0) has intermediate

growth.

Proof: Since by 5.2.9, G(0) does not have exponential growth and by 5.2.11 G(0)

have subexponential growth. Hence, G has intermediate growth. �
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