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Abstract 

 

Bis-(dialkylamino)-cyclopropenylidene (BAC) has been utilized as a BrØnsted base for the 

conjugate addition of C-nucleophiles to para-quinone methides and chalcones. This 

transformation occurs at mild conditions and is tolerant to a variety of functional groups. This 

protocol provides an easy and straightforward access to a set of diaryl and triarylmethanes in 

good to excellent yields. 
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Chapter 1 

 

1.1 General introduction to para-Quinone methides 

The ortho-quinone methides (o-QMs) and para-quinone methides (p-QMs) are structural 

isomers. In these compounds, structurally, carbonyl and olefinic moieties are in conjugation, 

and chemically these are neutral and zwitterionic entities (scheme 1.1). p-QM units widely 

exist in variety of natural products such as metabolites, terpenes and plant pigments.
1
 Due to 

the intrinsic electrophilicity of benzylic carbon centre, these compound act as Michael 

acceptors in organic synthesis to generate new C-C and C-hetero bonds through 1,6-

conjugate addition reactions.
2
 The driving force for this reactivity is the aromatization of 

cyclohexadiene ring . 

 

Scheme 1.1
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1.2 General Introduction on   

bis(dialkylamino)cyclopropenylidene (BAC) 

In recent years, NHCs are dominating in organocatalysis due to their unmatched 

nucleophilicity
3
 as well as high stability.

4
 The unique reactivity of heterocyclic based 

carbenes for the umpolung type activation of carbonyl compound is very well known and this 

concept has applied in many organic transformations, especially in carbon-carbon and 

carbon-heteroatom bond forming reactions. Apart from umpolung activity, NHCs have been 

utilized as a Brønsted base in some transformations. Bis(amino)cyclopropenylidenes (BACs), 

are another type of nucleophilic carbenes derived from cyclopropenium salts, are found to be 

a non-heterocyclic based candidates in terms of reactivity towards metals as well as carbonyl 

compounds. The stability of these cyclopropenyidenes could be attributed to push-pull effect 

of the two amino subsituents that are attached to the ring and also the σ-aromaticity of the 

cyclopropene ring.
6
 Although the synthesis and structural properties of 

bis(amino)cyclopropenylidene salts have been exploited a way back in 1970s by weiss and 

yoshida groups
7
 independently, their application have been realized very recently, 

particularly in organometallic chemistry.
 8

 Fig. 1.1 illustrates the general structures of N-

heterocyclic carbene (1a) and bis(amino)cyclopropenylidene (1b). 

 

 

Figure 1.1 
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1.3 Literature reports on BAC 

Bertrand and co-workers demonstrated the first isolation of 

bis(diisopropylamino)cyclopropenylidene (2a).
9
 This particular BAC (2a) was found to be 

highly air-senstive. BAC 2a was thoroughly characterized by NMR techniques and X-ray 

analysis. The structral comparison between BAC (2a) and NHC (2b) is shown in Fig. 1.2 

 

Figure 1.2 

Bis(diisopropylamino)cyclopropenylidenecarbene (3b) was isolated in 20% yield when 

bis(diisopropylamino)cyclopropnylidenetetraphenylborate salt (3a) was treated with same 

equivalent of  KN(SiMe3)2  in dry diethyl ether at -78 °C (Scheme 1.2) . 

  

Scheme 1.2 

After the successful isolation of BAC, several reports appeared in the literature on the 

application of BAC as a ligand in organometallic chemistry. Wass and co-wokers reported 

the synthesis of 2,3-diphenylcyclopropenylidene supported palladium complex (4b), and its 

application in Heck and Suzuki coupling reactions.
10 

This Pd complex was easily prepared by 

the reaction of 1,1-dichloro-2,3-diphenylcyclopropene (4a) and [Pd(PPh3)4] in toluene at 

room temperature  (Scheme 1.3) . 
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Scheme 1.3 

The catalytic activity of Pd-BAC complex (4b) was evaluated in Heck coupling reaction of  

n-butyl acrylate (5a) with various aryl halides (5b) in the presence of NaOAc at high 

temperature (145 °C), and desired Heck products (5c) were obtained in good yields (scheme 

1.4) . 

 

Scheme 1.4 

The catalytic activity of  Pd-BAC complex (4b) was also observed in Suzuki coupling 

reaction of phenyl boronic acid (6a) with aryl halides (6b) in the presence base K2CO3 at 

high temperature (130 °C) (scheme 1.5) . 

 

Scheme 1.5 
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Recently, Alcarazo and co-workers reported the synthesis and structural  characterization of 

cyclopropenylidene stabilized S(II), Se (II), Te(II) mono (7c-7e) and dications (7f-7k), by 

gentle heating of suspension containing 1-chloro-2,3-bis(diisopropylamino)cyclopropenium 

salts (7a or 7b) with PhYMe3 and Y(SiMe3)2 (Y = S, Se, Te) respectively (Scheme 1.6) .
11

 

 

Scheme 1.6 

Cazin and co-workers reported the first example of CuCl(BAC) (8b) complex.
12 

The BAC-

Cu
I
 complex (8b)  was obtained by the reaction of cyclopropenium chloride (8a) with Cu2O 

in MeCN under microwave heating (80 °C) (Scheme 1.7) . 

 

Scheme 1.7 

This complex (8b) has been used as a catalyst in the formation of 1,2,3-triazole (9c) via 

 

Scheme 1.8 
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[3+2]-cycloaddition of azides with alkynes. A variety of 1,2,3-triazole derivatives were 

prepared from various azides (9a) and alkynes (9b) using catalytic amount of BAC-Cu
I
 

complex under solvent free condition (Scheme 1.8) . 

This complex has also been used for the synthesis of other metal-cyclopropenylidene 

complexes such as Au, Pd, Ir, and Rh-BAC complexes (10a-10d) via transmetallation 

reaction (scheme 1.9) . 

 

 

Scheme 1.9 

Tamm and co-workers reported the synthesis and isolation of chiral bis[bis(R-1- 

phenyl)amino]cyclopropenylidene and its dicarbene complex with Ag (11b). This complex 

was synthesized by the reaction of chiral cyclopropenylium salt (11a) with Ag2O in the 

presence of catalytic amount of Me4BF4 in DCM (Scheme 1.10)
13

. 
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Scheme 1.10 

.This chiral catalyst (11a) has also been used as an organocatalyst in an enantioselective 

benzoin reaction. However, the product was obtained only in 18% ee (Scheme 1.11). It was 

speculated that the low enantioselectivity of product was due to rapid rotation of chiral amino 

groups. 

 

Scheme 1.11 

Gravel and co-workers described a highly chemo-selective intermolecular Stetter reaction 

with bis(amino)cyclopropenylidene salt (12d) as a precatalyst.
14

 In this reaction, benzoin 

product was not observed during the course of reaction, which was contradictory to the 

reactions using thiazolium and triazolium salts as precatalyst (Scheme 1.12) . 

 

Scheme 1.12 
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Same group also reported an enantioselective Stetter reaction between furfural (13a) and 

chalcone (13b) using a chiral BAC precursor (13d). Although the yield of the Stetter reaction 

was excellent, the enatioselectivity of the product was low (36%) (Scheme 1.13) . 

 

Scheme 1.13 

Gravel and co-workers also demonstrated a highly chemoselective aza-benzoin reaction 

between aldehydes and imines using bis(amino)cyclopropenylidene as a catalyst.
15

 In this 

method, a variety of aldehydes (14a) and phosphinoyl imines (14b) were treated using 12d as 

a precatalyst. No homobenzoin product was observed during the reaction (Scheme 1.14) . 

 

Scheme 1.14 

Very recently, our research group described the synthesis of α,α'-diarylated ketones(15c) 

using bis(amino)cyclopropenylidene salt  (12d) as a precatalyst.
16

 A variety of aromatic as 

well as hetero-aromatic aldehydes (15a) were treated with various para-quinone methides 

(15b) using a catalytic amount of BAC (12d) under mild conditions, and the corresponding 

products (15c) obtained in moderate to excellent yield (Scheme 1.15) . 
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Scheme 1.15 

Recently, Schneider and co-workers reported BAC catalyzed Aza-Mortia-Baylis-Hillman 

reactions between aromatic, heteroaromatic or aliphatic imines (16a) and acyclic or cyclic 

α,β-unsaturated ketones and carboxyclic acid derivatives (16b).
17  

Interestingly, the important 

functionalities such as unprotected amino and hydroxy groups were tolerated under the 

reaction conditions (Scheme 1.16 ). 

 

Scheme 1.16 
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Chapter 2 

 

Results and discussion 

Recently, Coquerel and co-wokers described the N-heterocyclic carbene catalyzed carba-, 

sulfa, and phospha- Micheal additions.
5 

This NHC-catalyzed Michael additions are among 

the most effective methods to synthesize organo-sulfur (17d) and organo-phosphorus 

compounds (17e). In this type of reactions, NHC is actually acting as a Brønsted base 

(Scheme 2.17) . 

 

 

 

Scheme 2.17 

 

The same group also reported the synthesis of tetrahydrothiophenes (18d) by NHC-catalyzed 

sulfa-Michael-initiated organocascade reaction (Scheme 2.18) . 
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Scheme 2.18 

Recently, our research group described the synthesis of unsymmetrical diaryl- and 

triarylmethylphosphonates using NHC as a Brønsted base catalyst.
18

 The synthesis of diaryl 

and triarylmethylphosphonates were achieved by the reaction of dialkylphosphites to p-QMs 

(19a) and fuchsones (19b) through a 1,6-conjugate addition of dialkylphosphites (19c) 

(Scheme 2.19) . 

 

 

 

Scheme 2.19 

Our group also reported the synthesis of unsymmetrical triarylmethanes (20b) by activating 

the 2-naphthol (20a) using NHC as a Brønsted base catalyst (20c).
19

 Triarylmethanes (20b) 

were obtained in good to excellent yields through 1,6-conjugate addition of 2-naphthol to p-

QMs (19a) (Scheme 2.20). 

 

Scheme 2.20 
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Although there are many reports available in the literature for the application of NHC as a 

Brønsted base, BAC has not been utilized as a Brønsted base so far. Here in, we disclose a 

BAC catalyzed conjugate addition of malonate to p-QMs and chalcones. To the best of our 

knowledge, this conjugate addition catalyzed by BAC is not reported in the literature, which 

prompted to investigate this reaction.  

Diaryl and triarylmethanes are very important not only in the dye industries but also in 

medicinal chemistry and drug discovery. These have emerged as one of the essential 

architectural motifs, often found in many pharmaceuticals and biologically active natural 

molecules (Fig. 2.1). Some of their analogues exhibit interesting therapeutic activities such as 

anti-TB, anti-malarial and anti-tumour activities.
20

  

 

Figure 2.1 Biologically active compounds  

 

 

  

Optimization studies were carried out using para-quinone methide (15d) and diethyl 

malonate (21) using a wide range of bis(dialkylamino)cyclopropenylidene (BAC) and N-

heterocycle (NHC) salts as  pre-catalysts under  various conditions. A base is required for 

this reaction to generate active carbene catalyst. 

 

Optimization Studiesa
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Table 2.1 Catalyst screen and optimization
a
. 

 

 

 

 

 

 

Entry Catalyst Base Solvent Time [ h ] Yield [ % ] 

1 22 Cs2CO3 THF 5 50 

2 23 Cs2CO3 THF 5 54 

3 24 Cs2CO3 THF 5 57 

4 25 Cs2CO3 THF 5 61 

5 26 Cs2CO3 THF 4 63 

6 27 Cs2CO3 THF 4 65 

7 28 Cs2CO3 THF 1 75 

8 12d Cs2CO3 THF 1 94 

9 30 Cs2CO3 THF 1 77 

10 29 K2CO3 THF 1 81 

11 29 Cs2CO3 DCM 2 79 

12 29 Cs2CO3 Et2O 2 72 

13 29 Cs2CO3 DCE 2 75 

14 29 Cs2CO3 DMSO 1.5 77 

15 - Cs2CO3 THF 8 7 

a
 Reaction Conditions: All reactions were carried out with 15b (0.062 mmol ), 17 (0.074 mmol) in solvent (1 ml 

). Isolated yield is reported. 
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The results of optimization studies are shown in Table 2.1.  Surprisingly, our initial attempt 

itself using the triazolium (22) based NHC pre-catalyst and Cs2CO3 as a base in THF, gave 

positive result within 5 h, however, the yield of the isolated product 31a was very low (entry 

1). Changing the NHC based pre-catalysts (23-27) improved the yield of product up to 65% 

(entries 2-6). Interestingly, when 28 was used as a precatalyst in THF, product (31a) was 

obtained in 75% yield in 1h (entry 7). Encouraged by this result, further optimization studies 

were carried out using other BAC pre-catalyst (12d) in THF. In this case, the expected 

product 31a was isolated in 94% yield within 1 h (entry 8). Further screening was performed 

in variety of solvents (entries 11-14), but yield of product was found to be inferior.  

In the absence of BAC pre-catalyst, only 7% of expected product 31a was isolated (entry 15), 

which clearly indicates that BAC is actually acting as a catalyst for this transformation.  

With the optimized conditions in hand, the scope of reaction was investigated with a variety 

of p-QMs and active methylene compounds. The results are summarized in Table 2.2 and 

2.3. It is evident from Table 2.2 that irrespective of the electronic nature of the aryl group 

present in p-QMs, the required products were obtained in excellent yield within a short 

reaction time. This methodology worked very well in the cases of p-QMs (15e-h) derived 

from electron rich aldehydes and in all those cases the desired product (31b-e) was obtained 

in excellent yields (90-92%). In the cases of p-QMs derived from a simple benzaldehyde 

(15i) and 4-tert-butyl substituted benzaldehyde (15j), the corresponding products (31f & 

31g) were obtained in 94% and 93% yield respectively. Surprisingly, the p-QMs derived 

from aryl-fused benzaldehydes 15k, gave less yield (77%), but the p-QM derived from 

pyrenecarboxaldehyde 15l gave excellent yield of the desired product 31i (91%). The p-QMs 

(15m–q) derived from halo-substituted benzaldehydes also underwent smooth conversion to 

their respective products (31j–n) in very high yields (91-95%). 
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Table 2.2 Substrate scope with different para-quinone methides
a
. 

 

a
Reactions conditions: All reactions were carried out with 20 mg scale of 15e-q in 1ml of THF. Yields reported 

are isolated yields. 

 

Then, we turned our attention to the scope of different carbon nucleophiles under same 

reaction conditions and the results are summarized in Table 2.3. This methodology worked 

very well with different carbon nucleophiles and the desired products (33a-d) were obtained 
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within short reaction time. Reaction of 15d with malononitrile provided the desired product 

33c in 98% yield in 40 min.  

 

Table 2.3 Substrate scope with different carbon nucleophiles
a
 

 

a
Reactions conditions: All reactions were carried out with 20 mg scale of 15d in 1ml of THF. Yields reported 

are isolated yields. 

 

This methodology was also extended for the 1,4-conjugate addition of malonates to enone 

systems (8). The reaction was carried out with a variety of substituted chalcones (Table 2.4) 

and in all these, the yield of the isolated products were good to excellent. It is evident from 

Table 2.4 that the chalcone derived from a simple benzaldehyde (34a) and 4-substituted  

benzaldehydes (34b-d), the corresponding products (35a)  and (35b-d) were obtained in 81-

91% isolated yields. In the case of chalcones derived from substituted halo-benzaldehydes 

(34e-i) also underwent smooth conversion to their respective products (35e-i) in very good 

yield (85-98%). The generality of this method was also examined with chalcone derived 

from electron-poor aromatic aldehydes such as 3-triflouromethyl benzaldehyde (34j) and in 
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this case, the corresponding product 34j was obtained in 81% yield. The chalcones (34k-m) 

derived from different substituted acetophenone also giving good yield of isolated products 

(35k-m). The chalcone (34n) derived from heterocycle benzaldehyde was gave very good 

yield (94%) under the same reaction conditions. 

 

Table 2.4 Substrate scope of BAC-catalyzed malonate-Micheal adducts
a

 

a
Reactions conditions: All reactions were carried out with 20 mg scale of 34a-n  in 1ml of THF. Yields reported 

are isolated yields. 

We also elaborated this methodology for 1,6-conjugate addition of 2-naphthol to p-QMs. 

From Table 2.5, it was evident that, steric effects of the aryl substituents in p-QMs were 

found to have minimal influence in the reaction. All the p-QMs underwent smooth 

conversion to their corresponding triarylmethanes (37a-e) in good yields. 
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Table 2.5  Substrate scope of BAC-catalyzed 2-Naphthol addition to para-quinone 

methides
a
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Based on the outcome of the reaction, we proposed a plausible mechanism for this 

transformation (Scheme 2.21). Initially, the base abstracts the proton of BAC salt (I) to 

generate free BAC (II), which abstracts the acidic proton of the malonate and generates an 

enolate anion and BAC salt (III). The enolate anion then immediately reacts with enone or 

dienone (IV) to generate intermediate (V), which then abstracts the acidic proton of the BAC 

salt (I) to produce the enol (VI) with regeneration of  free BAC (II). Then the enol (VI) 

immediately tautomerise to the product (VII). 

 

 

 

a
Reaction conditions: All reactions were carried out with 20 mg scale of 35a-e in 1ml of THF. Yields reported are 

isolated yield. 
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Plausible Mechanism: 

 

 

 

Scheme 2.21
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Chapter 3 

 

Experimental Section 

3.1 General methods 

All reactions were carried out under an argon atmosphere in an oven dried vial. Solvents 

were dried over calcium hydride and was used without further distillation. Melting points 

were recorded on SMP20 melting point apparatus and are uncorrected. 
1
H, 

13
C and 

19
F 

spectra were recorded in CDCl3 (400, 100 and 376 MHz respectively) on Bruker FT - NMR  

spectrometer. Chemical shift ( δ ) values are reported in parts per million relative to TMS (for 
 

1
H and 

13
C) and coupling constant (J) are reported in Hz . FT-IR spectra were recorded on a 

Perkin-Elmer FTIR spectrometer. Most of the reagents and starting materials were purchased 

from commercial sources and used as such. All p-quinone methides were prepared by 

following a literature procedure
21

 and also chalcones by following the literature procedure.
22

 

BAC precursors were prepared according to the literature procedure.
9
 Thin layer 

chromatography was performed on Merck silica gel 60 F254 TLC pellets and visualized by 

UV irradiation, KMnO4 stain. Column chromatography was carried out through silica gel 

(100–200 mesh) using EtOAc/hexane as an eluent. 

 

3.2 General procedure for the conjugate addition of nucleophiles to 

p–quinone methides and chalcones : 

Anhydrous THF (1.0 mL) was added to the mixture of p-quinone methide or chalcones (20 

mg), catalyst 12d (10 mol%) and Cs2CO3 (10 mol%) under argon atmosphere, and the 

resulting  suspension was stirred at room temperature until  p-quinone methide or chalcone 
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was completely consumed. The reaction mixture was concentrated under reduced pressure 

and purified through silica gel column without further workup, using EtOAc/Hexane mixture 

as an eluent to get the pure product.  

 

3.3 Supporting Information 

Diethyl 2-((3,5-di-tert-butyl-4-hydroxyphenyl)(4-methoxyphenyl)methyl)malonate (31a) 

The reaction was performed at 0.062mmol scale of p-quinone 

methide(15d); Rf = 0.5 (10% EtOAc in hexane); pale yellow gummy 

solid (28.1 mg, 94% yield);
1
H NMR (400 MHz, CDCl3) δ 7.23 (d, J = 

8.6 Hz, 2H), 7.05 (s, 2H), 6.80 (d, J = 8.6 Hz, 2H), 5.03 (s, 1H), 4.59 

(d, J = 12.2 Hz, 1H), 4.22 (d, J = 12.2 Hz, 1H), 4.04 – 3.92 (m, 4H), 

3.75 (s, 3H), 1.38 (s, 18H), 1.04 (t, J = 7.1 Hz, 3H), 0.95 (t, J = 7.1 Hz, 3H); 
13

C NMR (100 

MHz, CDCl3) δ 168.1, 158.3, 152.6, 135.7, 132.1, 134.3, 128.9, 124.4, 114.0, 61.5, 61.4, 

58.5, 55.3, 50.8, 34.4, 30.4, 14.0, 13.9; FT-IR (thin film, neat):  3442, 2958, 1758, 1732, 

1612, 1513, 1436, 1303, 1250, 1179, 1036, 838, 637 cm
-1

 . 

Diethyl 2-((3,5-di-tert-butyl-4-hydroxyphenyl)(2,3-dimethoxyphenyl)methyl)malonate 

(31b) 

The reaction was performed at 0.0565 mmol scale of p-quinone 

methide(15e); Rf = 0.5 (20% EtOAc in hexane); brown solid  (26.7 

mg, 92% yield); m. p. = 100 – 104 ºC; 
1
H NMR (400 MHz, CDCl3) δ 

7.10 (s, 2H), 7.01 – 6.94 (m, 2H), 6.75 (d, J = 7.8 Hz, 1H), 5.07 (d, J = 

12.5 Hz, 1H), 4.99 (s, 1H), 4.35 (d, J = 12.5 Hz, 1H), 3.98 (dq, J = 

18.4, 7.1 Hz, 4H), 3.80 (s, 3H), 3.74 (s, 3H), 1.37 (s, 18H), 1.03 (t, J = 7.1 Hz, 3H), 0.94 (t, J 

= 7.1 Hz, 3H); 
13

C NMR (100 MHz, CDCl3) δ 168.3, 168.0, 153.1, 152.4, 147.0, 136.2, 

135.4, 131.6, 125.0, 123.8, 119.0, 110.9, 61.4, 61.3, 60.4, 57.4, 55.7, 44.6, 34.4, 30.4, 13.93, 

13.90; FT-IR (thin film, neat): 3417, 2959, 1758, 1732, 1586, 1479, 1435, 1368, 1274, 1155, 

1094, 1037, 862, 746 cm
-1

 .  
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Diethyl 2-((3,5-di-tert-butyl-4-hydroxyphenyl)(3,5-dimethoxyphenyl)methyl)malonate 

(31c) 

The reaction was performed at 0.0564 mmol scale of p-quinone methide 

(15f);     Rf = 0.5 (20% EtOAc in hexane);  pale yellow solid (26.4 mg, 

91% yield); m. p. = 110-114 ºC;
 1

H NMR (400 MHz, CDCl3) δ 7.26 (s, 

2H), 6.66 (s, 2H), 6.45 (s, 1H), 5.23 (s, 1H), 4.74 (d, J = 12.2 Hz, 1H), 

4.41 (d, J = 12.2 Hz, 1H), 4.22 (q, J = 7.1 Hz, 2H), 4.13 (q, J = 7.0 Hz, 

2H), 3.93 (s, 6H), 1.57 (s, 18H), 1.25 (t, J = 7.1 Hz, 3H), 1.12 (t, J = 7.1 Hz, 3H); 
13

C NMR 

(100 MHz, CDCl3) δ 167.96, 167.92, 160.8, 152.8, 144.4, 135.8, 131.4, 124.5, 125.0, 106.1, 

98.7, 61.6, 61.4, 58.2, 55.4, 51.7, 34.5, 30.4, 14.00, 13.9; FT-IR (thin film, neat): 3616, 3443, 

2959, 1758, 1732, 1597, 1463, 1435, 1368, 1204, 1156, 1065, 1036, 847, 698 cm
-1

 . 

 

Diethyl 2-((3,5-di-tert-butyl-4-hydroxyphenyl)(3,4-dimethoxyphenyl)methyl)malonate 

(31d) 

The reaction was performed at 0.0564 mmol scale of p-quinone 

methide  (15g); Rf = 0.5 (20% EtOAc in hexane); orange gummy solid 

(26.1 mg, 90% yield);
1
H NMR (400 MHz, CDCl3) δ 7.08 (s, 2H), 6.86 

(d, J = 12.5 Hz, 2H), 6.77 (d, J = 8.1 Hz, 1H), 5.04 (s, 1H), 4.58 (d, J = 

12.1 Hz, 1H), 4.21 (d, J = 12.1 Hz, 1H), 4.04 – 3.93 (m, 4H), 3.85 (s, 

3H), 3.82 (s, 3H), 1.39 (s, 18H), 1.05 (t, J = 7.1 Hz, 3H), 0.95 (t, J = 7.1 Hz, 3H); 
13

C NMR 

(100 MHz, CDCl3) δ 168.01, 168.03, 152.7, 148.8, 147.8, 135.8, 134.7, 131.9, 124.5, 119.8, 

111.4, 111.3,  61.5, 61.4, 58.7, 56.0, 55.9, 51.2, 34.5, 30.4, 14.0, 13.9;  FT-IR (thin film, 

neat): 3458, 2959, 1758, 1732, 1592, 1515, 1464, 1436, 1367, 1262, 1143, 1030, 858, 663 

cm
-1

 .  

 

Diethyl 2-((3-(allyloxy)phenyl)(3,5-di-tert-butyl-4-hydroxyphenyl)methyl)malonate 

(31e) 

The reaction was performed at 0.0571 mmol scale of p-quinone methide 

(15h); Rf = 0.5 (20% EtOAc in hexane); pale yellow gummy solid (26.8 

mg, 92% yield);
1
H NMR (400 MHz, CDCl3) δ 7.32 (d, J = 7.4 Hz, 1H), 

7.13 (s, 2H), 7.10 (d, J = 7.8 Hz, 1H), 6.89 (t, J = 7.4 Hz, 1H), 6.77 (d, J = 
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8.2 Hz, 1H), 6.08-5.99 (m, 1H), 5.37 (d, J = 17.3 Hz, 1H), 5.25 (d, J = 10.5 Hz, 1H), 5.06 (d, 

J = 12.5 Hz, 1H), 4.99 (s, 1H), 4.56 (dd, J = 12.9, 4.7 Hz, 1H), 4.51 (d, J = 4.4 Hz, 1H), 4.48 

(s, 1H), 4.05 – 3.93 (m, 4H), 1.37 (s, 18H), 1.00 (t, J = 7.1 Hz, 3H), 0.94 (t, J = 7.1 Hz, 3H); 

13
C NMR (100 MHz, CDCl3) δ 168.5, 168.1, 156.0, 152.4, 135.3, 133.6, 131.5, 130.9, 

127.67, 127.60, 125.1, 120.7, 117.3, 112.3, 69.0, 61.31, 61.27, 56.9, 45.4, 34.4, 30.4, 13.9; 

FT-IR (thin film, neat):  3638, 3446, 2959, 1758, 1732, 1599, 1492, 1436, 1368, 1242, 1120, 

1035, 929, 868, 752, 645 cm
-1

 . 

 

Diethyl 2-((3,5-di-tert-butyl-4-hydroxyphenyl)(phenyl)methyl)malonate (31f) 

The reaction was performed at 0.0679 mmol scale of p-quinone 

methide(15i); Rf = 0.5 (10% EtOAc in hexane); white solid (29.02 mg, 

94% yield); m. p. = 110-113 ºC; 
1
H NMR (400 MHz, CDCl3) δ 7.35 – 

7.33 (m, 2H), 7.28 (s, 2H), 7.18 (dd, J = 10.1, 4.3 Hz, 1H), 7.09 (s, 2H), 

5.06 (s, 1H), 4.66 (d, J = 12.2 Hz, 1H), 4.29 (d, J = 12.2 Hz, 1H), 4.05 – 

3.95 (m, 4H), 1.40 (s, 18H), 1.03 (t, J = 7.1 Hz, 3H), 0.97 (t, J = 7.1 Hz, 3H); 
13

C NMR (100 

MHz, CDCl3) δ 168.05, 167.99, 152.7, 142.1, 135.8, 131.7, 128.6, 127.9, 126.8, 124.5, 61.5, 

61.4, 58.3, 51.6, 34.5, 30.4, 13.92, 13.90; FT-IR (thin film, neat): 3638, 3440, 2959, 1759, 

1732, 1601, 1436, 1368, 1316, 1259, 1177, 1156,1036, 865, 700, 645 cm
-1

 .  

 

Diethyl 2-((4-(tert-butyl)phenyl)(3,5-di-tert-butyl-4-hydroxyphenyl)methyl)malonate 

(31g) 

The reaction was performed at 0.0571 mmol scale of p-quinone 

methide (15j); Rf = 0.5 (10% EtOAc in hexane); pale yellow gummy 

solid (27.1 mg, 93% yield);
1
H NMR (400 MHz, CDCl3) δ 7.28 – 7.09 

(m, 4H), 7.09 (s, 2H), 5.03 (s, 1H), 4.59 (d, J = 12.2 Hz, 1H), 4.25 (d, J 

= 12.2 Hz, 1H), 4.01 – 3.93 (m, 4H), 1.39 (s, 18H), 1.26 (s, 9H), 0.98 – 

0.91 (m, 6H); 
13

C NMR (100 MHz, CDCl3) δ 168.11, 168.07, 152.6, 149.5, 138.9, 135.7, 

131.9, 127.5, 125.5, 124.6, 61.42, 61.35, 58.5, 51.4, 34.48, 34.45, 31.5, 30.4, 13.88, 13.84; 

FT-IR (thin film, neat): 3443, 2961, 1760, 1732, 1596, 1436, 1367, 1314, 1257, 1176, 1156, 

1037, 842, 630 cm
-1

 . 
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Diethyl 2-((3,5-di-tert-butyl-4-hydroxyphenyl)(naphthalen-2-yl)methyl)malonate (31h) 

The reaction was performed at 0.0581 mmol scale of p-quinone methide 

(15k); Rf = 0.5 (20% EtOAc in hexane); pale yellow gummy solid (23.2 

mg, 79% yield);
1
H NMR (400 MHz, CDCl3) δ 8.38 (d, J = 8.6 Hz, 1H), 

7.80 (d, J = 8.0 Hz, 1H), 7.71 (d, J = 8.1 Hz, 1H), 7.53 (dd, J = 13.5, 7.1 

Hz, 2H), 7.45 (dd, J = 10.6, 4.8 Hz, 2H), 7.17 (s, 2H), 5.54 (d, J = 12.1 

Hz, 1H), 5.02 (s, 1H), 4.45 (d, J = 12.1 Hz, 1H), 4.04 – 3.94 (m, 2H), 3.93 – 3.82 (m, 2H), 

1.36 (s, 18H), 0.97 (t, J = 7.1 Hz, 3H), 0.83 (t, J = 7.1 Hz, 3H)   ; 
13

C NMR (100 MHz, 

CDCl3) δ 168.5, 167.8, 152.7, 138.1, 135.6, 134.3, 131.9, 131.1, 128.8, 127.5, 126.2, 125.6, 

125.3, 124.9, 124.0, 123.1, 61.48, 61.46, 58.9, 46.0, 34.4, 30.4, 13.9, 13.8. FT-IR (thin film, 

neat): 3441, 2959, 1758, 1732, 1599, 1435, 1368, 1254, 1155, 1036, 872, 777, 733 cm
-1

 . 

 

Diethyl 2-((3,5-di-tert-butyl-4-hydroxyphenyl)(4,6-dihydropyren-1-yl)methyl)malonate 

(31i) 

The reaction was performed at 0.0478 mmol scale of p-quinone 

methide(15l); Rf = 0.4 (20% EtOAc in hexane); orange gummy solid (25.2 

mg, 91% yield); 
1
H NMR (400 MHz, CDCl3) δ 8.72 (d, J= 9.5 Hz, 1H), 8.19 

– 8.16 (m, 3H), 8.09 (d, J = 8.1 Hz, 1H), 8.03 – 7.98 (m, 3H), 7.27 (d, J = 

7.9 Hz, 3H), 5.90 (d, J = 12.0 Hz, 1H), 5.02 (s, 1H), 4.68 (d, J = 12.1 Hz, 

1H), 4.08 (q, J = 7.1 Hz, 2H), 3.79 (q, J = 7.1 Hz, 2H), 1.37 (s, 18H), 1.06 (t, J = 7.1 Hz, 

3H), 0.74 (t, J = 7.0 Hz, 3H); 
13

C NMR (100 MHz, CDCl3) δ 168.4, 167.8, 152.6, 136.0, 

135.8, 131.7, 131.5, 130.9,130.1, 128.9, 127.7, 127.5, 127.2, 126.0, 125.4, 125.2, 125.04, 

124.96 , 124.7, 123.9, 123.4, 61.6, 61.5, 58.9, 46.1, 34.4, 30.4, 14.0, 13.7; FT-IR (thin film, 

neat): 3388, 2961, 2924, 1760, 1731, 1598, 1436, 1120, 848, 799, 723 cm
-1

 . 

 

Diethyl 2-((2-chlorophenyl)(3,5-di-tert-butyl-4-hydroxyphenyl)methyl)malonate (31j) 

The reaction was performed at 0.061 mmol scale of p-quinone  

methide(15m); Rf = 0.5 (10% EtOAc in hexane); pale yellow gummy 

solid (28.0 mg, 94% yield);
1
H NMR (400 MHz, CDCl3) δ 7.41 (d, J = 

7.8 Hz, 1H), 7.32 (d, J = 7.9 Hz, 1H), 7.22 (t, J = 7.2 Hz, 1H), 7.13 – 

7.08 (m, 3H), 5.24 (d, J = 12.4 Hz, 1H), 5.06 (s, 1H), 4.34 (d, J = 12.4 

Hz, 1H), 4.00 (dq, J = 21.5, 7.1 Hz, 4H), 1.38 (s, 18H), 1.02 (t, J = 7.1 Hz, 3H), 0.94 (t, J = 
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7.1 Hz, 3H); 
13

C NMR (100 MHz, CDCl3) δ 167.8, 167.6, 152.8, 139.8, 135.7, 134.4, 130.2, 

130.1, 127.8, 127.4, 127.0, 125.0, 61.7, 61.5, 57.9, 46.7, 34.4, 30.4, 13.89, 13.86; FT-IR (thin 

film, neat): 3638, 3451, 2960, 2927, 1758, 1732, 1592, 1436, 1368, 1257, 1157, 1037, 867, 

753, 730, 643, 600 cm
-1

 . 

 

Diethyl 2-((2-bromophenyl)(3,5-di-tert-butyl-4-hydroxyphenyl)methyl)malonate (31k) 

The reaction was performed at 0.0537 mmol scale of p-quinone  methide(15n); Rf = 0.5 

(10% EtOAc in hexane); white solid (26.6 mg, 93% yield); m. p. = 143-146 ºC; 
1
H NMR 

(400 MHz, CDCl3) δ 7.54 (d, J = 7.9 Hz, 1H), 7.42 (d, J = 7.7 Hz, 1H), 

7.28 (t, J = 7.5 Hz, 1H), 7.18 (s, 2H), 7.03 (t, J = 7.6 Hz, 1H), 5.25 (d, J 

= 12.3 Hz, 1H), 5.07 (s, 1H), 4.35 (d, J = 12.3 Hz, 1H), 4.06 – 3.96 (m, 

4H), 1.40 (s, 18H), 1.04 (t, J = 7.1 Hz, 3H), 0.96 (t, J = 7.1 Hz, 3H); 
13

C 

NMR (100 MHz, CDCl3) δ 167.8, 167.6, 152.8, 141.4, 135.7, 133.6, 

130.1, 128.1, 127.7, 127.5, 125.4, 125.0, 61.7, 61.5, 58.1, 49.1, 34.4, 30.4, 13.9; FT-IR (thin 

film, neat): 3635, 2959, 1758, 1732, 1590, 1468, 1436, 1368, 1255, 1156, 1035, 808, 753, 

725, 642 cm
-1

 . In this case, Methyl peaks of malonate merges.  

 

Diethyl 2-((4-bromophenyl)(3,5-di-tert-butyl-4-hydroxyphenyl)methyl)malonate (31l) 

The reaction was performed at 0.0537 mmol scale of p-quinone 

methide(150); Rf = 0.5 (10% EtOAc in hexane); pale yellow gummy 

solid (26.3 mg, 92% yield);
1
H NMR (400 MHz, CDCl3) δ 7.39 (d, J = 

8.4 Hz, 2H), 7.19 (d, J = 8.4 Hz, 2H), 7.02 (s, 2H), 5.07 (s, 1H), 4.61 

(d, J = 12.2 Hz, 1H), 4.22 (d, J = 12.1 Hz, 1H), 4.04 – 3.93 (m, 4H), 

1.38 (s, 18H), 1.06 (t, J = 7.1 Hz, 3H), 0.95 (t, J = 7.1 Hz, 3H;
13

C NMR (100 MHz, CDCl3) δ 

167.80, 167.78, 152.8, 141.3, 136.0, 131.7, 131.2, 129.6, 124.4, 120.6, 61.7, 61.5, 58.0, 50.9, 

34.5, 30.4, 14.0,13.9; FT-IR (thin film, neat): 3407, 2959, 1758, 1732, 1592, 1489, 1436, 

1468, 1239, 1155, 1036, 1011, 811 cm
-1

 . 

Diethyl 2-((3,5-di-tert-butyl-4-hydroxyphenyl)(2,4-dichlorophenyl)methyl)malonate 

(31m) 

The reaction was performed at 0.055 mmol scale of p-quinone 

methide(15p); Rf = 0.4 (10% EtOAc in hexane); pale yellow gummy 



26 
 

solid (27.4 mg, 95% yield);
1
H NMR (400 MHz, CDCl3) δ 7.34 (dd, J = 8.3, 5.2 Hz, 2H), 

7.21 (dd, J = 8.4, 1.9 Hz, 1H), 7.09 (s, 2H), 5.18 (d, J = 12.4 Hz, 1H), 5.09 (s, 1H), 4.30 (d, J 

= 12.4 Hz, 1H), 4.08 – 3.94 (m, 4H), 1.38 (s, 18H), 1.07 (t, J = 7.1 Hz, 3H), 0.95 (t, J = 7.1 

Hz, 3H); 
13

C NMR (100 MHz, CDCl3) δ 167.6, 167.4, 152.9, 138.6, 135.8, 135.1, 132.8, 

130.0, 129.6, 128.2, 127.3, 124.8, 61.8, 61.6, 57.6, 46.2, 34.4, 30.4, 13.94, 13.88; FT-IR (thin 

film, neat): 3385, 2960, 2922, 1756, 1732, 1588, 1471, 1436, 1368, 1239, 1155, 1106, 1036, 

867, 771 cm
-1

 . 

 

Diethyl 2-((3,5-di-tert-butyl-4-hydroxyphenyl)(2,4-difluorophenyl)methyl)malonate 

(31n) 

The reaction was performed at 0.0606 mmol scale of p-quinone 

methide(15q); Rf = 0.6 (10% EtOAc in hexane); white solid (27.0 mg, 

91% yield); m. p. = 110-114 ºC; 
1
H NMR (400 MHz, CDCl3) δ 7.35 (t, 

J = 7.5 Hz, 1H), 7.13 (s, 2H), 7.06 (t, J = 7.4 Hz, 1H), 6.98 (t, 1H), 5.07 

(s, 1H), 4.95 (d, J = 12.6 Hz, 1H), 4.41 (d, J = 12.4 Hz, 1H), 4.05 – 

3.96 (m, 4H), 1.39 (s, 18H), 1.02 (t, J = 7.1 Hz, 3H), 0.96 (t, J = 7.1 Hz, 3H);
13

C NMR (100 

MHz, CDCl3) δ 167.9, 167.8, 160.6 (d, JC-F = 244.7 Hz), 152.8, 135.7, 130.6, 129.4 (d, JC-F = 

14.0 Hz ), 128.7 (d, JC-F = 4.3 Hz ), 128.3 (d, JC-F = 8.3 Hz), 124.8 (d, JC-F = 1 Hz), 124.3 (d, 

JC-F = 1.7 Hz), 116.0 (d, JC-F = 22.7 Hz), 61.6, 61.5, 56.9 (d, JC-F =1.9 Hz), 45.1 (d, JC-F = 0.6 

Hz), 34.4, 30.4, 13.90, 13.87 ; 
19

F NMR (376 MHz, CDCl3) δ –116.05; 3387, 2960, 1760, 

1732, 1595, 1436, 1371, 1236, 1121, 871, 757 cm
-1

 .  

 

Ethyl 2-((3,5-di-tert-butyl-4-hydroxyphenyl)(4-methoxyphenyl)methyl)-3-

oxobutanoate(33a) 

The reaction was performed at 0.062 mmol scale of p-quinone 

methide(15d); Rf = 0.5 (10% EtOAc in hexane); orange gummy solid 

(26.6 mg, 95% yield); The product was obtained as 1:1.2 diasteromeric 

ratio. 
1
H NMR (400 MHz, CDCl3) δ 7.21 (t, J = 8.6 Hz, 2H), 7.03 (d, J 

= 9.0 Hz, 2H), 6.80 (d, J = 8.6 Hz, 2H), 5.05 (d, J = 9.6 Hz, 1H), 4.60 

(d, J = 12.2 Hz, 1H), 4.41 (dd, J = 12.1, 7.8 Hz, 1H), 4.00 – 3.90 (m, 2H), 3.75 (s, 3H), 2.06 

(d, J = 19.8 Hz, 3H), 1.38 (d, J = 1.0 Hz, 18H), 0.98 (dt, J = 35.3, 7.1 Hz, 3H)v; 
13

C NMR 

(100 MHz, CDCl3) δ 202.7, 202.5, 168.09, 168.06, 158.4, 158.3, 152.6, 152.5,136.1, 135.8, 
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134.5, 134.1, 132.3,132, 128.9, 128.8, 124.4, 124.3, 114.2, 114.0, 66.4, 66.1, 61.5, 61.4, 

55.32, 55.30, 50.7, 34.5, 34.5, 30.4, 30.2, 30.0, 14.0, 13.9; FT-IR (thin film, neat): 3626, 

2959, 1747, 1715, 1612, 1513, 1436, 1303, 1250, 1180, 1036, 889, 837, 737, 640 cm
-1

 . 

 

3-((3,5-di-tert-butyl-4-hydroxyphenyl)(4-methoxyphenyl)methyl)pentane-2,4-dione 

(33b) 

The reaction was performed at 0.062 mmol scale of p-quinone 

methide(15d); Rf = 0.5 (10% EtOAc in hexane); brown solid (24.6 

mg, 95% yield); m. p. = 114-117 ºC; 
1
H NMR (400 MHz, CDCl3) δ 

7.18 (d, J = 8.5 Hz, 2H), 7.00 (s, 2H), 6.80 (d, J = 8.5 Hz, 2H), 5.07 

(s, 1H), 4.64 (s, 2H), 3.75 (s, 3H), 1.99 (s, 3H), 1.94 (s, 3H), 1.38 (s, 

18H); 
13

C NMR (100 MHz, CDCl3) δ 203.8, 203.7, 158.4, 152.6, 136.2, 134.2, 132.1, 128.8, 

124.2, 114.3, 75.4, 55.3, 51.0, 34.5, 30.4, 30.0, 29.9; FT-IR (thin film, neat): 3636, 2958, 

1698, 1611, 1513, 1436, 1357, 1252, 1180, 1154, 1120, 1035, 889, 835, 770, 738, 642, 539 

cm
-1

 .  

 

2-((3,5-di-tert-butyl-4-hydroxyphenyl)(4-methoxyphenyl)methyl)malononitrile (33c) 

The reaction was performed at 0.062 mmol scale of p-quinone 

methide(15d); Rf = 0.4 (10% EtOAc in hexane); yellow solid (23.6 mg, 

98% yield); m. p. = 130-134 ºC; 
1
H NMR (400 MHz, CDCl3)δ 7.29 (d, 

J = 8.6 Hz, 2H), 7.11 (s, 2H), 6.92 (d, J = 8.6 Hz, 2H), 5.27 (s, 1H), 

4.50 (d, J = 7.5 Hz, 1H), 4.30 (d, J = 7.5 Hz, 1H), 3.81 (s, 3H), 1.42 (s, 

18H); 
13

C NMR (100 MHz, CDCl3) δ 159.6, 153.9, 136.5, 129.8, 129.2, 128.1, 124.7, 114.6, 

112.5,55.4, 51.2, 34.6, 30.3, 30.1; FT-IR (thin film, neat): 3626, 2961, 2255, 2203, 1710, 

1612, 1515, 1437, 1363, 1307, 1254, 1182, 1157, 1121, 1034, 836, 773, 738, 635 cm
-1

 .  

 

Ethyl 2-cyano-3-(3,5-di-tert-butyl-4-hydroxyphenyl)-3-(4-methoxyphenyl)propanoate 

(33d) 

The reaction was performed at 0.062 mmol scale of p-quinone 

methide(15d); Rf = 0.4 (10% EtOAc in hexane); orange gummy 

solid(24.5 mg, 91% yield); The product was obtained as 1:1.02 
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diasteromeric ratio.
1
H NMR (400 MHz, CDCl3)δ7.33 (d, J = 8.5 Hz, 1H), 7.26 (t, 1H), 7.16 

(s, 1H), 7.10 (s, 1H), 6.89 (t, J = 8.3 Hz, 2H), 5.19 (d, J = 3.8 Hz, 1H), 4.61 (dd, J = 8.2, 3.1 

Hz, 1H), 4.16 – 4.07 (m, 3H), 3.81 (d, J = 3.2 Hz, 3H), 1.43 (d, J= 4.5 Hz, 18H), 1.09 (dd, J 

= 11.9, 7.0 Hz, 3H); 
13

C NMR (100 MHz, CDCl3) δ 165.5, 165.4, 159.0, 158.9, 153.3, 153.2, 

136.1, 136.0, 132.1, 131.6, 130.2, 129.43, 129.37, 129.1, 125.0, 124.5, 116.33, 116.29, 

114.22, 114.17, 62.8,55.36, 55.34, 50.8, 50.7, 44.8, 44.7, 34.5, 30.4, 30.3, 13.89, 13.87; FT-

IR (thin film, neat): 3627, 3458, 2960, 2249, 1745, 1612, 1514, 1437, 1368, 1305, 1251, 

1181, 1034, 836, 738, 771, 636 cm
-1

 . 

 

Diethyl 2-(3-oxo-1,3-diphenylpropyl)malonate (35a) 

The reaction was performed at 0.096 mmol scale of chalcones 

(34a); Rf = 0.5 (20% EtOAc in hexane); pale yellow solid (31.5 

mg, 89% yield); 
1
H NMR (400 MHz, CDCl3) δ 7.90 (d, 1H), 7.88 

(t, 1H), 7.55 – 7.50 (m, 1H), 7.44 – 7.40 (m, 2H), 7.28 – 7.21 (m, 

4H), 7.18 – 7.14 (m, 1H), 4.25 – 4.14 (m, 3H), 3.95 (q, J = 7.1 

Hz, 2H), 3.82 (d, J = 9.7 Hz, 1H), 3.50 (qd, J = 16.7, 6.9 Hz, 2H), 1.24 (t, J = 7.1 Hz, 3H), 

1.00 (t, J = 7.1 Hz, 3H); 
13

C NMR (100 MHz, CDCl3) δ 197.7, 168.5, 167.9, 140.5, 136.9, 

133.2, 128.7, 128.5, 128.4, 128.2, 127.3, 61.8, 61.5, 547.7, 42.8, 40.9, 14.2, 13.9; FT-IR (thin 

film, neat): 2981, 1752, 1732, 1688, 1598, 1496, 1449, 1369, 1258, 1154, 1033, 861, 751, 

700, 559 cm
-1

 .  

 

Diethyl 2-(1-(4-methoxyphenyl)-3-oxo-3-phenylpropyl)malonate (35b) 

The reaction was performed at 0.084 mmol scale of chalcones (34b); 

Rf = 0.5 (20% EtOAc in hexane);  yellow gummy solid (27.01 mg, 

81% yield); 
1
H NMR (400 MHz, CDCl3) δ 7.90 – 7.81 (m, 2H), 7.52 

(t, J = 7.4 Hz, 1H), 7.42 (t, J = 7.6 Hz, 2H), 7.17 (d, J = 8.7 Hz, 2H), 

6.77 (d, J = 8.7 Hz, 2H), 4.26 – 4.10 (m, 3H), 3.96 (q, J = 7.1 Hz, 2H), 

3.77 (d, J = 9.8 Hz, 1H), 3.73 (s, 3H), 3.46 (ddd, J = 26.0, 16.5, 7.0 Hz, 2H), 1.24 (t, J = 7.1 

Hz, 3H), 1.03 (t, J = 7.1 Hz, 3H); 
13

C NMR (100 MHz, CDCl3) δ 197.8, 168.5, 167.9, 158.0, 

136.9, 133.1, 132.4, 129.4, 128.7, 128.2, 113.8, 61.8, 61.5, 57.9, 55.3, 42.9, 40.3, 14.2, 13.9; 

FT-IR (thin film, neat): 2961, 2929, 2839, 1751, 1732, 1688, 1612, 1598, 1583, 1515, 1449, 

1369, 1251, 1180, 1154, 1114, 1035, 832, 737, 692, 560 cm
-1

 .  
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Diethyl 2-(1-(4-ethylphenyl)-3-oxo-3-phenylpropyl)malonate (35c) 

The reaction was performed at 0.085 mmol scale of chalcones (34c); 

Rf = 0.5 (20% EtOAc in hexane); orange gummy solid (30.5 mg, 91% 

yield); 
1
H NMR (400 MHz, CDCl3) δ 7.90 (d, J = 7.5 Hz, 2H), 7.52 (t, 

J = 7.3 Hz, 1H), 7.41 (t, J = 7.6 Hz, 2H), 7.16 (d, J = 8.0 Hz, 2H), 

7.06 (d, J = 8.0 Hz, 2H), 4.25 – 4.12 (m, 3H), 3.95 (q, J = 7.1 Hz, 2H), 

3.80 (d, J = 9.6 Hz, 1H), 3.48 (qd, J = 16.7, 6.9 Hz, 2H), 2.56 (q, J = 7.6 Hz, 2H), 1.23 (t, J = 

7.1 Hz, 3H), 1.16 (t, J = 7.6 Hz, 3H), 0.99 (t, J = 7.1 Hz, 3H); 
13

C NMR (100 MHz, CDCl3) δ 

197.8, 168.6, 168.0, 143.1, 137.7, 137.0, 133.1, 128.6, 128.23, 128.22, 128.0,  61.7, 61.4, 

57.8, 42.8, 40.6, 28.5, 15.5, 14.1, 13.9; FT-IR (thin film, neat): 2965, 2929, 1748, 1732, 

1688, 1598, 1515, 1449, 1368, 1258, 1154, 1097, 1034, 831, 756, 691, 572 cm
-1

 . 

 

Diethyl 2-(1-(4-(tert-butyl)phenyl)-3-oxo-3-phenylpropyl)malonate (35d)  

The reaction was performed at 0.076 mmol scale of chalcones (34d); 

Rf = 0.6(20% EtOAc in hexane); yellow solid (26.3 mg, 82% yield); 

m. p. = 102-105 ºC ;
 1

H NMR (400 MHz, CDCl3)
 
 δ 7.90 (d, J = 7.8 

Hz, 2H), 7.52 (t, J = 7.3 Hz, 1H), 7.41 (t, J = 7.5 Hz, 2H), 7.26 – 7.23 

(m, 2H), 7.18 (d, J = 7.9 Hz, 2H), 4.18 (dd, J = 14.2, 7.3 Hz, 3H), 3.94 

(q, J = 6.8 Hz, 2H), 3.80 (d, J = 9.5 Hz, 1H), 3.55 – 3.42 (m, 2H), 1.24 – 1.21 (m, 12H), 0.95 

(t, J = 7.1 Hz, 3H); 
13

C NMR (100 MHz, CDCl3) δ 197.8, 168.6, 168.0, 149.9, 137.5, 137.0, 

133.1, 128.6, 128.2, 127.9, 125.4, 61.7, 61.4, 57.7, 42.8, 40.4, 34.5, 31.4, 14.1, 13.8; FT-IR 

(thin film, neat): 2964, 2929, 2871, 1748, 1732, 1689, 1598, 1582, 1513, 1464, 1449, 1368, 

1257, 1154, 1097, 837, 755, 691, 586 cm
-1

 . 

 

Diethyl 2-(1-(4-chlorophenyl)-3-oxo-3-phenylpropyl)malonate (35e) 

The reaction was performed at 0.082 mmol scale of chalcones (34e); 

Rf = 0.5 (20% EtOAc in hexane); orange solid (31.2 mg, 94% yield); 

1
H NMR (400 MHz, CDCl3) δ 7.89 (d, J = 7.8 Hz, 2H), 7.54 (t, J = 

7.3 Hz, 1H), 7.43 (t, J = 7.6 Hz, 2H), 7.26 (s, 1H), 7.21 (s, 3H), 4.26 

– 4.13 (m, 3H), 3.98 (q, J = 7.1 Hz, 2H), 3.78 (d, J = 9.6 Hz, 1H), 

3.48 (ddd, J = 26.3, 16.9, 6.9 Hz, 2H), 1.25 (t, J = 7.1 Hz, 3H), 1.05 (t, J = 7.1 Hz, 3H); 
13

C 

NMR (100 MHz, CDCl3) δ 197.4, 168.2, 167.7, 139.1, 136.7, 133.3, 133.0, 129.8, 128.8, 
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128.6, 128.2, 61.9, 61.6, 57.4, 42.5, 40.2, 14.1, 13.9; FT-IR (thin film, neat): 2982, 2937, 

1750, 1732, 1688, 1598, 1581, 1492, 1449, 1369, 1256, 1155, 1094, 1032, 1015, 861, 829, 

754, 691, 552 cm
-1

 .  

 

Diethyl 2-(1-(2-bromophenyl)-3-oxo-3-phenylpropyl)malonate (35f) 

The reaction was performed at 0.070 mmol scale of chalcones 

(34f); Rf = 0.5 (20% EtOAc in hexane); orange solid (28.7 mg, 

92% yield); 
1
H NMR (400 MHz, CDCl3) δ 7.94 (d, J = 7.6 Hz, 

2H), 7.54 (dd, J = 7.6, 4.9 Hz, 2H), 7.43 (t, J = 7.6 Hz, 2H), 7.30 

(d, J = 7.7 Hz, 1H), 7.20 (t, J = 7.5 Hz, 1H), 7.04 (t, J = 7.6 Hz, 

1H), 4.65 (dd, J = 13.7, 8.0 Hz, 1H), 4.20 – 4.10 (m, 2H), 4.06 (q, J = 7.1 Hz, 3H), 3.72 – 

3.60 (m, 2H), 1.19 (t, J = 7.1 Hz, 3H), 1.10 (t, J = 7.1 Hz, 3H); 
13

C NMR (100 MHz, CDCl3) 

δ 197.6, 168.4, 167.9, 139.6, 136.8, 133.5, 133.2, 128.68, 128.66, 128.3, 127.6, 127.5, 125.1, 

61.7, 55.4, 40.6, 39.6, 14.1, 14.0; FT-IR (thin film, neat): 2981, 1751, 1732, 1688, 1598, 

1473, 1448, 1369, 1229, 1154, 1096, 1025, 861, 752, 691 cm
-1

 .  

 

Diethyl 2-(1-(2-chlorophenyl)-3-oxo-3-phenylpropyl)malonate (35g) 

The reaction was performed at 0.082 mmol scale of chalcones 

(34g); Rf = 0.5 (20% EtOAc in hexane); orange gummy solid 

(32.5 mg, 98% yield); 
1
H NMR (400 MHz, CDCl3) δ 7.92 (d, J 

= 7.9 Hz, 2H), 7.53 (t, J = 7.2 Hz, 1H), 7.42 (t, J = 7.5 Hz, 2H), 

7.32 (t, J = 7.5 Hz, 2H), 7.13 (p, J = 7.2 Hz, 2H), 4.65 (td, J = 

8.6, 5.0 Hz, 1H), 4.22 – 4.11 (m, 2H), 4.08 – 4.00 (m, 3H), 3.65 (qd, J = 17.1, 6.7 Hz, 2H), 

1.20 (t, J = 7.0 Hz, 3H), 1.08 (t, J = 7.1 Hz, 3H).; 
13

C NMR (100 MHz, CDCl3) δ 197.6, 

168.4, 167.9, 137.9, 136.8, 134.2, 133.2, 130.2, 129.5, 128.7, 128.4, 128.2, 126.9, 61.7, 61.6, 

55.3, 40.6, 37.5, 14.1, 13.9; FT-IR (thin film, neat): 2982, 2930, 1750, 1732, 1689, 1598, 

1582, 1477, 1448, 1369, 1229, 1155, 1036, 861, 692, 566 cm
-1

 .   

 

Diethyl 2-(1-(2-fluorophenyl)-3-oxo-3-phenylpropyl)malonate (35h) 

The reaction was performed at 0.088 mmol scale of chalcones 

(34f); Rf = 0.6 (20% EtOAc in hexane); orange gummy solid 
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(29.7 mg, 87% yield); 
1
H NMR (400 MHz, CDCl3) δ 7.91 – 7.89 (m, 2H), 7.53 (t, J = 7.4 Hz, 

1H), 7.42 (t, J = 7.6 Hz, 2H), 7.28 (dd, J = 7.8, 6.4 Hz, 1H), 7.20 – 7.12 (m, 1H), 6.98 (dt, J 

= 10.2, 8.0 Hz, 2H), 4.34 (td, J = 9.8, 4.3 Hz, 1H), 4.26 – 4.14 (m, 2H), 3.97 (dt, J = 14.2, 8.7 

Hz, 3H), 3.55 (qd, J = 17.0, 6.9 Hz, 2H), 1.24 (t, J = 7.1 Hz, 3H), 1.00 (t, J = 7.1 Hz, 3H); 

13
C NMR (100 MHz, CDCl3) δ 197.5, 168.3, 167.8, 161.3 (d, JC-F = 244.8 Hz), 136.8, 133.2, 

131.3 (d, JC-F = 4.9 Hz ), 129.04 (d, JC-F = 8.5 Hz ), 128.7, 128.2, 127.2 (d, JC-F = 13 Hz ), 

124.1 (d, JC-F = 3.3 Hz ), 115.8 (d, JC-F = 22.2 Hz ), 61.9, 61.5, 55.8 (d, JC-F = 2.2 Hz ), 41.2 

(d, JC-F = 1.9 Hz ), 36.7, 14.1, 13.9 ; 
19

F NMR (376 MHz, CDCl3) δ  –115.6; FT-IR (thin 

film, neat):  2925, 1751, 1732, 1688, 1598, 1493, 1449, 1369, 1255, 1155, 1105, 1033, 758, 

691 cm
-1

 .   

 

Diethyl 2-(1-(2,4-dichlorophenyl)-3-oxo-3-phenylpropyl)malonate (35i) 

The reaction was performed at 0.072 mmol scale of chalcones (34i); 

Rf = 0.5 (20% EtOAc in hexane); orange gummy solid (29.0 mg, 

92% yield); 
1
H NMR (400 MHz, CDCl3) δ 7.93 (d, J = 7.7 Hz, 2H), 

7.55 (t, J = 7.3 Hz, 1H), 7.44 (t, J = 7.5 Hz, 2H), 7.36 (s, 1H), 7.27 

(d, J = 8.4 Hz, 1H), 7.14 (d, J = 8.4 Hz, 1H), 4.62 – 4.57 (m, 1H), 

4.24 – 4.12 (m, 2H), 4.07 (td, J = 12.5, 7.0 Hz, 3H), 3.65 (qd, J = 17.3, 6.8 Hz, 2H), 1.22 (t, J 

= 7.1 Hz, 3H), 1.13 (t, J = 7.1 Hz, 3H); 
13

C NMR (100 MHz, CDCl3) δ 197.3, 168.2, 167.7, 

136.7, 136.6, 135.0, 133.44, 133.38, 130.4, 129.9, 128.7, 128.2, 127.2,  61.84, 61.80, 55.1, 

40.4, 37.0, 14.1, 14.0; FT-IR (thin film, neat): 3066, 2982, 2929, 1751, 1732, 1689, 1560, 

1475, 1449, 1369, 1302, 1230, 1155, 1106, 1033, 864, 823, 734, 691, 579 cm
-1

 . 

 

Diethyl 2-(3-oxo-3-phenyl-1-(3-(trifluoromethyl)phenyl)propyl)malonate (35j) 

The reaction was performed at 0.072 mmol scale of chalcones (34l); 

Rf = 0.6 (20% EtOAc in hexane); pale yellow gummy solid (25.9 

mg, 82% yield); 
1
H NMR (400 MHz, CDCl3) δ 7.89 (d, J = 7.7 Hz, 

2H), 7.56 – 7.52 (m, 3H), 7.40 (dt, J = 22.5, 7.7 Hz, 4H), 4.28 – 

4.16 (m, 3H), 3.96 (q, J = 7.1 Hz, 2H), 3.83 (d, J = 9.4 Hz, 1H), 

3.54 (ddd, J = 26.3, 17.1, 6.7 Hz, 2H), 1.24 (t, J = 7.0 Hz, 3H), 1.01 (t, J = 7.1 Hz, 3H) ; 
13

C 

NMR (100 MHz, CDCl3) δ 197.2, 168.2, 167.6, 141.8, 136.7, 133.4, 132.2, 130.6 (q, JC-F = 

32 Hz ), 129.0, 128.8, 128.2, 125.1 (q, JC-F = 3.7 Hz ), 124.2 (q, JC-F = 37 Hz ), 124.1 (q, JC-F 
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= 271 Hz ),   62.0, 61.7, 57.2, 42.4, 40.5, 14.1, 13.8; 
19

F NMR (376 MHz, CDCl3) δ -62.6; 

FT-IR (thin film, neat): 2924, 1751, 1732, 1598, 1449, 1329, 1260, 1123, 1031, 868, 803, 

745, 691 cm
-1

 . 

 

Diethyl 2-(1,3-bis(4-chlorophenyl)-3-oxopropyl)malonate (35k) 

The reaction was performed at 0.070 mmol scale of chalcones 

(34m); Rf = 0.5 (20% EtOAc in hexane); pale yellow gummy 

solid (23.9 mg, 77% yield); 
1
H NMR (400 MHz, CDCl3) δ 7.83 

(d, J = 8.5 Hz, 2H), 7.40 (d, J = 8.4 Hz, 2H), 7.26 – 7.18 (m, 4H), 

4.26 – 4.09 (m, 3H), 3.97 (q, J = 7.1 Hz, 2H), 3.76 (d, J = 9.6 Hz, 

1H), 3.51 (dd, J = 16.7, 4.2 Hz, 1H), 3.37 (dd, J = 16.8, 9.6 Hz, 1H), 1.24 (t, J = 7.1 Hz, 3H), 

1.04 (t, J = 7.1 Hz, 3H); 
13

C NMR (100 MHz, CDCl3) δ 196.2, 168.2, 167.6, 139.8, 138.9, 

135.0, 133.1, 129.7, 129.6, 129.1, 128.7, 61.9, 61.7, 57.4, 42.5, 40.3, 14.1, 13.9; FT-IR (thin 

film, neat): 2983, 2937, 1751, 1732, 1689, 1590, 1491, 1446, 1401, 1369, 1256, 1155, 1093, 

1032, 1014, 832, 724, 650, 530 cm
-1

 . 

 

Diethyl 2-(3-(2-bromophenyl)-1-(4-chlorophenyl)-3-oxopropyl)malonate (35l) 

The reaction was performed at 0.062 mmol scale of chalcones (34n); 

Rf = 0.5 (20% EtOAc in hexane); white solid (23.7 mg, 79% yield); 

m. p. = 77-81 ºC; 
1
H NMR (400 MHz, CDCl3) δ 7.53 (d, J = 7.8 Hz, 

1H), 7.31 – 7.18 (m, 6H), 7.13 (dd, J = 7.2, 1.4 Hz, 1H), 4.26 – 4.15 

(m, 2H), 4.06 (td, J = 9.7, 4.3 Hz, 1H), 3.97 (q, J = 7.1 Hz, 2H), 3.73 

(d, J = 9.7 Hz, 1H), 3.50 (dd, J = 17.3, 4.3 Hz, 1H), 3.39 (dd, J = 17.2, 9.8 Hz, 1H), 1.26 (t, J 

= 7.1 Hz, 3H), 1.05 (t, J = 7.1 Hz, 3H); 
13

C NMR (100 MHz, CDCl3) δ 201.3, 168.1, 167.6, 

141.2, 138.6, 133.8, 133.2, 131.8, 130.0, 128.7, 128.6, 127.5, 118.7, 62.0, 61.7, 57.3, 46.4, 

40.2, 14.2, 13.9; FT-IR (thin film, neat): 2982, 2927, 1751, 1732, 1588, 1492, 1466, 1429, 

1369, 1254, 1156, 1094, 1030, 860, 829, 759, 573 cm
-1

 . 

 

Diethyl 2-(1-(4-chlorophenyl)-3-oxo-3-(m-tolyl)propyl)malonate (35m) 

The reaction was performed at 0.078 mmol scale of chalcones 

(34o); Rf = 0.5 (20% EtOAc in hexane); white solid (24.1 mg, 74% 
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yield); m. p. = 80-83 ºC; 
1
H NMR (400 MHz, CDCl3) δ 7.69 (d, J = 7.9 Hz, 2H), 7.35 – 7.29 

(m, 2H), 7.26 – 7.21 (m, 4H), 4.24 – 4.13 (m, 3H), 3.98 (q, J = 7.1 Hz, 2H), 3.78 (d, J = 9.6 

Hz, 1H), 3.46 (qd, J = 16.9, 6.8 Hz, 2H), 2.37 (s, 3H), 1.25 (t, J = 

7.1 Hz, 3H), 1.05 (t, J = 7.1 Hz, 3H); 
13

C NMR (100 MHz, CDCl3) 

δ 197.5, 168.2, 167.7, 139.2, 138.5, 136.7, 134.1, 132.9, 129.8, 

128.7, 128.63, 128.59, 125.4, 61.9, 61.6, 57.4, 42.5, 40.2, 21.5, 14.2, 

13.9; FT-IR (thin film, neat): 2983, 2928, 1751, 1732, 1683, 1604, 

1587, 1492, 1369, 1260, 1155, 1094, 1036, 1015, 859, 827, 783, 558 cm
-1

 . 

 

Diethyl 2-(1-(3-bromothiophen-2-yl)-3-oxo-3-phenylpropyl)malonate (35n) 

The reaction was performed at 0.068 mmol scale of chalcones 

(34p); Rf = 0.5 (10% EtOAc in hexane); pale yellow gummy solid 

(29.1 mg, 94% yield); 
1
H NMR (400 MHz, CDCl3) δ 7.94 (d, J = 

7.8 Hz, 2H), 7.54 (t, J = 7.2 Hz, 1H), 7.44 (t, J = 7.5 Hz, 2H), 

7.13 (d, J = 5.3 Hz, 1H), 6.86 (d, J = 5.3 Hz, 1H), 4.64 (td, J = 

8.5, 4.7 Hz, 1H), 4.25 – 4.03 (m, 5H), 3.62 (qd, J = 17.3, 6.6 Hz, 2H), 1.23 (t, J = 7.1 Hz, 

3H), 1.15 (t, J = 7.1 Hz, 3H); 
13

C NMR (100 MHz, CDCl3) δ 197.0, 168.0, 167.5, 138.1, 

136.7, 133.4, 130.1, 128.7, 128.3, 124.8, 110.3, 61.9, 61.8, 56.0, 42.0, 35.5, 14.1, 14.0; FT-

IR (thin film, neat): 3111, 2982, 2937, 1751, 1732, 1689, 1516, 1449, 1369, 1256, 1156, 

1096, 1031, 861, 757, 691, 539 cm
-1

 . 

 

1-[(3,5-di-tert-butyl-4-hydroxyphenyl)(4-methoxyphenyl)methyl]naphthalen-2-ol (37a) 

The reaction was performed at 0.062 mmol scale of p-quinone methide (15d); pale yellow 

solid; yield 78% (22.53 mg); Rf = 0.5 (20%EtOAc in hexane); 
1
H NMR (400 MHz, CDCl3), 

δ 8.02 (d, J = 8.6 Hz, 1H), 7.78 (dd, J = 7.9, 1.0 Hz, 1H), 7.71 (d, J = 8.8 Hz, 1H), 7.43 (ddd, 

J = 8.4, 6.8, 1.4 Hz, 1H), 7.34–7.30 (m, 1H), 7.16 (d, J = 8.6 Hz, 2H), 7.06 (d, J = 8.8 Hz, 

1H), 7.02 (s, 2H), 6.84 (d, J = 8.8 Hz, 2H), 6.23 (s, 1H), 5.44 (s, 1H), 5.20 (s, 1H), 3.78 (s, 

3H), 1.33 (s, 18H);
13

C NMR (100 MHz, CDCl3) δ 158.5, 153.14, 153.13, 136.8, 134.1, 

133.5, 132.2, 130.1, 129.6, 129.5, 128.8, 126.8, 125.7, 123.1, 123.0, 120.6, 120.1, 114.4, 

55.4, 47.9, 34.5, 30.3 . 
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1-{[4-(tert-butyl)phenyl](3,5-di-tert-butyl-4-hydroxyphenyl)methyl}naphthalen-2-ol 

(37b) 

The reaction was performed at 0.057 mmol scale of p-quinone 

methide (15j); pale yellow solid; yield 74% (20.9 mg);Rf = 0.7 (20% 

EtOAc in hexane); 
1
H NMR (400 MHz, CDCl3), δ 8.08 (d, J = 8.6 

Hz, 1H), 7.80 (dd, J = 8.0, 1.0 Hz, 1H), 7.73 (d, J = 8.8 Hz, 1H), 7.46 

(ddd, J = 8.3, 6.8, 1.4 Hz, 1H), 7.36–7.32 (m, 3H), 7.18 (d, J = 8.3 

Hz, 2H), 7.09 (d, J = 8.8 Hz, 1H), 7.03 (s, 2H), 6.28 (s, 1H), 5.42 (s, 1H), 5.20 (s, 1H), 1.35 

(s, 18H), 1.31 (s, 9H);
13

C NMR (100 MHz, CDCl3) δ 153.1, 153.0, 150.0, 139.1, 136.6, 

133.6, 131.9, 129.7, 129.4, 128.8, 128.6, 126.8, 126.0, 125.8, 123.1, 123.0, 120.7, 120.1, 

48.1, 34.6, 34.5, 31.5, 30.3 . 

 

1-[(3,5-di-tert-butyl-4-hydroxyphenyl)(3,5-dimethoxyphenyl)methyl]naphthalen-2-ol 

(37c) 

The reaction was performed at 0.056 mmol scale of p-quinone 

methide(15f) ; pale yellow solid; yield 73% (20.5 mg); Rf = 0.5  

(20%EtOAc in hexane); 
1
H NMR (400 MHz, CDCl3), δ 8.04 (d, J = 

8.6 Hz, 1H), 7.79 (dd, J = 8.0, 1.0 Hz, 1H), 7.72 (d, J = 8.9 Hz, 

1H), 7.45 (ddd, J = 8.5, 6.9, 1.5 Hz, 1H), 7.35–7.31 (m, 1H), 7.08 

(d, J = 8.8 Hz, 1H), 7.07 (s, 2H), 6.41 (d, J = 2.2 Hz, 2H), 6.36 (t, J = 2.2 Hz, 1H), 6.21 (s, 

1H), 5.50 (s, 1H), 5.20 (s, 1H), 3.70 (s, 6H), 1.35 (s, 18H); 
13

C NMR (100 MHz, CDCl3) δ 

161.3, 153.3, 153.1, 145.2, 136.7, 133.6, 131.2, 129.63, 129.56, 128.8, 126.8, 125.7, 123.1, 

123.0, 120.3, 120.1, 107.3, 98.9, 55.4, 48.9, 34.5, 30.4 . 

1-[(3,5-di-tert-butyl-4-hydroxyphenyl)(2,3-dimethoxyphenyl)methyl]naphthalen-2-

ol(37d)   

The reaction was performed at 0.28mmol scale of p-quinone methide 

(15e); yellow solid; yield 71% (20 mg); Rf = 0.6 (20%EtOAc in 

hexane); 
1
H NMR (400 MHz, CDCl3), δ 8.08 δ 8.08 (d, J = 8.6 Hz, 

1H), 7.75 (dd, J  = 8.1, 1.0 Hz, 1H), 7.70 (d, J = 8.9 Hz, 1H), 7.42 

(ddd, J = 8.3, 6.8, 1.3 Hz, 1H), 7.32–7.28 (m, 1H), 7.06 (d, J, = 8.9 Hz, 
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1H), 7.03 (s, 2H), 6.99–6.95 (m, 1H), 6.84 (dd, J = 8.2, 1.4 Hz, 1H), 6.76 (dd, J = 7.8, 1.4 

Hz, 1H), 6.67 (s, 1H), 5.78 (s, 1H), 5.20 (s, 1H), 3.88 (s, 3H), 3.49 (s, 3H), 1.33 (s, 18H); 
13

C 

NMR (100 MHz, CDCl3) δ 153.5, 153.1, 152.9, 146.8, 136.8, 136.6, 133.7, 131.8, 129.6, 

129.3, 128.6, 126.8, 125.6, 124.5, 123.3, 123.1, 121.7, 120.4, 120.0, 111.4, 60.6, 55.9, 42.7, 

34.6, 30.4 . 

6-bromo-1-[(3,5-di-tert-butyl-4-hydroxyphenyl)(4-methoxyphenyl)methyl]naphthalen-2-

ol (37e) 

The reaction was performed at 0.062 mmol scale of p-quinone 

methide (15d); pale yellow solid; yield 75% (25.3 mg); Rf = 0.4 

(20%EtOAc in hexane);
 1

H NMR (400 MHz, CDCl3), δ 7.92 (d, J = 

2.1 Hz, 1H), 7.87 (d, J = 9.2 Hz, 1H), 7.63 (d, J = 8.9 Hz, 1H), 7.47 

(dd, J  = 9.2,2.1Hz, 1H), 7.13 (d, J = 8.7 Hz, 2H), 7.08 (d, J = 8.9 Hz, 

1H), 6.99 (s, 2H), 6.85 (d, J = 8.7 Hz, 2H), 6.16 (s, 1H), 5.47 (s, 1H), 5.22 (s, 1H), 3.78 (s, 

3H), 1.33 (s, 18H);
13

C NMR (100 MHz, CDCl3) δ 158.6, 153.4, 153.2, 136.9, 133.7, 132.1, 

131.7, 130.9, 130.6, 130.1, 129.9, 128.6, 125.6, 124.9, 121.2, 120.9, 116.9, 114.5, 55.4, 47.9, 

34.6, 30.3 . 
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Conclusion 

We have demonstrated BAC as a Brønsted Base in conjugate addition reactions of a variety 

of nucleophiles to enone and dienone systems. To the best of our knowledge, this is the first 

report of BAC acting as a BrØnsted base. This transformation occurs at mild conditions and 

is tolerant to a variety of functional groups. Further, this protocol provides an easy and 

straight forward access to a set of triarylmethanes and micheal adducts in good to excellent 

yields.  
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