Studies on the Stereo- and Regioselective Synthesis of New Sets of Functionalized Pyrrolidine, Spiro- Pyrrolidine / Pyrrolizidine, Furfurylamine and 2-/3-(Aminoalkyl)Thiophene Scaffolds via the Azomethine Ylide Cycloaddition and C-H Functionalization Methods

A thesis submitted for the partial fulfilment of the degree of Doctor of Philosophy

By
 Vadla Rajkumar

Department of Chemical Sciences,
Indian Institute of Science Education and Research (IISER) Mohali,
Sector 81, Knowledge City, S. A. S. Nagar, Manauli PO, Mohali, 140306. Punjab, India.

May 2016

DEDICATED to MY BELOVED PARENTS BROTHER AND SISTER

Declaration

I hereby declare that the matter embodied in this thesis entitled "Studies on the Stereo- and Regioselective Synthesis of New Sets of Functionalized Pyrrolidine, Spiro- Pyrrolidine / Pyrrolizidine, Furfurylamine and 2-/3-(Aminoalkyl)-Thiophene Scaffolds via the Azomethine Ylide Cycloaddition and C-H Functionalization Methods" is the result of investigations carried out by me under the supervision of Dr. S. Arulananda Babu at the Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar Mohali, India. This work has not been submitted in part or full for the award of any degree, a diploma or a fellowship to any other university or institute. Whenever contributions of others are involved, every effort is made to indicate it clearly with due acknowledgements. In keeping with the general practice in reporting scientific observations, acknowledgements has been made whenever the work was described based on the findings of other investigators. Any omission that might have occurred due to oversight or error in judgment is regretted. A complete bibliography of the books and journals referred to is given at the end of the thesis.

Vadla Rajkumar

Date:
Place:
In my capacity as the supervisor of the candidate's thesis work, I certify that the above statements by the candidate are true to the best of my knowledge.

Dr. S. Arulananda Babu
Associate Professor
Department of Chemical Sciences

Indian Institute of Science Education and Research Mohali
Date:
Place:

Acknowledgments

It is my pleasure to express my appreciation to all those who contributed in various ways to make this thesis possible.

It is my privilege to express my sincere thanks to my supervisor Dr. S. Arulananda Babu for constant support throughout the work. Without his guidance, this work would never have been possible to complete.

I acknowledge IISER Mohali for providing the funding to the Dr. S. A. Babu lab, that enabled me to complete my Ph.D. research work. NMR, X-ray, HRMS, Library and Computing facilities of IISER Mohali are highly acknowledged. I also thank the Department of Chemical Sciences for providing access to the single crystal X-ray facility. I also wish to thank IISER Mohali and CSIR-SRF for fellowship. I am highly thankful to Prof. N. Sathyamurthy, Director, IISER Mohali for providing the infrastructure and facilities for my research. I acknowledge Prof. K. S. Viswanathan, Head of the Department of Chemical Sciences, IISER Mohali, for granting me to use various departmental facilities.
I also thank Dr. Sripada S. V. Ramasastry and Dr. R. Vijaya Anand, members of my doctoral committee for productive discussions during the yearly assessment of my work.
I am highly thankful to my current and former lab members Dr. Chennakesava Reddy, Dr. Nayyar (for useful discussions), Naveen, Ramarao (helpful in C-H activation), Gopalakrishnan, Narendra, Sankar, Padmavathi, Amit, Jagmohan, Arya, Soniya, Akshey and Sruthi for their cooperation and for creating a wonderful working environment as well as Summer Project fellows Satish, Subbu, Aman, Gabbar singh, Taruna for their support.
I am thankful to all the faculty members of the Department of Chemical Sciences, IISER Mohali for their cooperation.
I also want to thank IICT-Hyderabad, CDRI-Lucknow and NIPER-Mohali for providing HRMS and LCMS data. I acknowledge Dr. A. R. Choudhury, Mr. M. Karanam, Dr. G. Kaur, Mr. H. R. Yadav and Dr. B. Prasanth for their help in solving the X-ray structures.
I also wish to thank Mr. Mangat, Mr. Bahadur, Mr. Satinder, Mr. Prahlad and Mr. Ganesh, lab assistants of chemistry teaching lab for their help.
I am grateful to Mr. Ankit Kumar Agrawal and Dr. P. Balanarayan for performing the preliminary level theoretical calculations. I am thankful to Prof. Sudeshna Sinha for her help.

I wish to thank my friends Bhisham (motivated me every day), Billa, KKR, Sai, Subbarao, Mayank, Kuldeep, B.T. Raman, Sudhakar, Sivaranjan, Hare Ram, Vinesh, Ramana, Don, Pantulu, Deepu, Ravi and Konda Shiva for their support and inspiration during my Phd carrier.

List of publications from the thesis work

1) Rajkumar, V.; Aslam, N. A.; Reddy, C.; Babu, S. A.* Synlett 2012, 549.

Title: Unactivated norbornenes in [3+2] cycloadditions: Remarkably stereocontrolled entry into norbornane-fused spirooxindolopyrrolidines, spiro-1,3-indandionolylpyrrolidines and spirooxindolopyrrolizidines.
2) Rajkumar, V.; Babu, S. A.* Indian Journal of Chemistry 2013, 52A, 1113 (Invited article). Title: Diastereoselective construction of new class of nicotine analogues having contiguous stereocenters via 1,3- dipolar cycloaddition of azomethine ylides.
3) Rajkumar, V.; Babu, S. A.* Synlett 2014, 2629.

Title: Regio- and diastereoselective cycloaddition of azomethine ylides with benzylidenemalononitrile: Assembly of a new set of multisubstituted 4,4-dicyanopyrrolidine-2carboxylate and nornicotine scaffolds.
4) Rajkumar, V.; Naveen.; Babu, S. A.* ChemistrySelect 2016, 1207.

Title: $\mathrm{Pd}(\mathrm{II})$-Promoted directing group-enabled regioselective $\mathrm{C}-\mathrm{H}$ arylations of the $\mathrm{C}-3$ position of furfurylamine and 2- or 3-(aminoalkyl)-thiophene derivatives.
5) Rajkumar, V.; Babu, S. A.;* Padmavathi, R. Tetrahedron 2016, 72, 5578.

Title: Regio- and diastereoselective construction of a new set of functionalized pyrrolidine, spiropyrrolidine and spiropyrrolizidine scaffolds appended with aryl- and heteroaryl moieties via the azomethine ylide cycloadditions.
6) Rajkumar, V.; Naveen.; Babu, S. A.* Manuscript under preparation.

Title: Pd(II)-catalyzed acetoxylation of the ortho C-H bond of benzyl amines, γ and remote δ $\mathrm{C}(3)-\mathrm{H}$ bond of 2-/3-(aminoalkyl)-thiophenes using pyrazine- or quinoline-2-carboxamide as the directing groups.

List of publications as a co-author

1) Aslam, N. A.; Rajkumar, V.; Reddy, C.; Yasuda, M.; Baba, A.; Babu, S. A.* Eur. J. Org. Chem. 2012, 4395.

Title: Indium-mediated addition of γ-substituted allylic halides to N-aryl α-imino esters: Diastereoselective production of β, β^{\prime}-disubstituted α-amino acid derivatives with two contiguous stereocenters.
2) Reddy, C.; Babu, S. A.;* Aslam, N. A.; Rajkumar, V. Eur. J. Org. Chem. 2013, 2362.

Title: Construction of functionalized carbocycles having contiguous tertiary carbinol and allcarbon stereogenic centers.
3) Babu, S. A.;* Padmavathi, R.; Aslam, N. A.; Rajkumar, V. Studies in Natural Products Chemistry 2015, 46, 227 (Book chapter).

Title: Recent developments on the synthesis and applications of natural products-inspired spirooxindole frameworks.

Patent application filed

Inventors: Srinivasarao Arulananda Babu and Vadla Rajkumar, Patent Application No. 1102/DEL/2013, Date: $12^{\text {th }}$ April, 2013 entitled "Novel nicotine analogues/2-pyridylpyrrolidine derivatives and the process of preparation thereof".

Conferences/Symposia

Oral presentation entitled "Approach towards natural product -like bioactive molecules: Remarkably stereocontrolled entry into norbornane-fused spiro-1,3-indandionolylpyrrolidines, spirooxindolopyrrolidines and pyrrolizidines" V. Rajkumar, N. A. Aslam, C. K. Reddy, S. A. Babu at the $7^{\text {th }}$ Junior National Organic Symposium (J-NOST) held at the Indian Institute of Science Education and Research (IISER) Mohali, S. A. S. Nagar Mohali, India (14-17 December, 2011).

Presented poster entitled "Palladium-catalyzed regiocontrolled $\mathrm{C}\left(\mathrm{sp}^{2}\right)$-H arylation of $\mathrm{C}-3$ position of 2-thiophenemethylamine and furfurylamine" V. Rajkumar, Naveen and S. A. Babu at the $18^{\text {th }}$ CRSI National Symposium in Chemistry held at the Institute of Nano Science and Technology and Panjab University, India (5-7 February, 2016).

S. No.	Contents	Page No.
1	Preamble.	1
2	Objectives of the Thesis.	3
3	Chapter 1: Regio- and diastereoselective cycloaddition of azomethine ylides with dipolarophiles to give a new set of pyrrolidine-2-carboxylic acid and nicotine analogues. Introduction. Results and discussion. Chapter 1a: C-3,C-5-Aryl- / heteroaryl substituted 4,4-dicyano-pyrrolidine-2carboxylate and nornicotine scaffolds (proline derivatives). Chapter 1b: Synthesis of new class of nicotine analogues via the azomethine ylide cycloaddition. Conclusions. Experimental section. References.	6 6 18 18 28 40 41 66
4	Chapter 2: Highly Regio- and diastereoselective construction densely functionalized spirooxindolo-pyrrolidine / pyrrolizidine, spiro-1,3indandionolylpyrrolidine and spiroacenaphthylenolyl- pyrrolidine / pyrrolizidine derivatives. Introduction. Results and discussion. Chapter 2a: Stereocontrolled entry into norbornane-fusedspirooxindolopyrrolidines, spiro-1,3-indandionolylpyrrolidines and spirooxindolopyrrolizidines. Chapter 2b: Diastereoselective construction of spiro-pyrrolidine / pyrrolizidine oxindole, spiroacenaphthylenolyl- pyrrolidine / pyrrolizidine and spiro-1,3-indandionolyl- pyrrolidine scaffolds appended with indole and pyrrole moieties. Conclusions. Experimental section. References.	72 72 91 92 104 115 116 144
5	Chapter 3: Regioselective construction of C-3 arylated furfurylamine and 2- or 3 -(aminoalkyl)-thiophene derivatives via the $\operatorname{Pd}($ II $)$-catalyzed directing groupaided C-H arylation/acetoxylation reactions. Introduction. Results and discussion. Chapter 3a: Pd(II)-based bidentate directing group-aided regioselective C-H arylations of the C-3 position of 2- or 3-(aminoalkyl)-thiophene and furfurylamine derivatives. Chapter 3b: Pd(II)-catalyzed acetoxylation of the ortho $\mathrm{C}-\mathrm{H}$ bond of benzyl amines, γ and remote $\delta \mathrm{C}(3)-\mathrm{H}$ bond of 2-/3-(aminoalkyl)-thiophenes. Conclusions. Experimental section. References.	$\begin{aligned} & 150 \\ & \\ & 150 \\ & 166 \\ & 166 \\ & \\ & 184 \\ & \\ & 195 \\ & 196 \\ & 231 \end{aligned}$
6	Appendix section	239

Preamble.

Heterocyclic chemistry is one of the fascinating sub-fields in organic chemistry dealing on the synthesis, properties and applications of heterocycles and recognized as disciplines of general importance that covers several aspects other branches of science, such as, biochemistry and medicinal chemistry.

In general, heterocyclic compounds are very important class of organic molecules with high degree of structural diversity and approximately two thirds of organic compounds are heterocycles. Heterocyclic compounds are cyclic molecules with at least one atom of carbon and one element other than carbon, such as, oxygen, nitrogen or sulfur within a ring structure. Heterocyclic skeleton present in a wide range of vital molecules, such as, alkaloids, vitamins, drugs, many natural products, agrochemicals, biomolecules etc. Numerous heterocyclic derivatives are useful as therapeutic agents like antibacterial, antifungal, antidiabetic, antiviral, antitumor, antibiotic, antimalarial, antimicrobial, antidepressant, anti-inflammatory, anti-HIV, fungicidal, herbicidal and insecticidal agents. Furthermore, most of the heterocyclic compounds exhibit vital applications in materials science (e.g. heterocyclic framework forms the central unit of various sensors, plastics, dyestuff, semiconductors, liquid crystalline compounds), polymer chemistry and supra molecular chemistry. Notably, many heterocyclic compounds were used as organocatalysts, chiral auxiliaries, protecting groups and synthetic intermediates in organic chemistry.

Given the importance of heterocyclic compounds, chemists have special interest for the synthesis of heterocyclic compounds because of their numerous applications across various branches of science. Hence, a special attention is always taken to build up efficient new methods to synthesize new heterocyclic molecules that are expected to play an important role in human life. For example, pyrrolidine-, pyrrolizidine- and spirooxindole alkaloids have significantly attracted the attention of organic and medicinal chemists due to their promising biological activities and candidature as drugs. Similarly, multisubstituted furans and thiophenes considered as important heterocyclic building blocks in organic synthesis, materials chemistry and medicinal chemistry.

Thus, this thesis work envisages to enrich the library of (a) pyrrolidines, spiropyrrolidines/pyrrolizidines viathe stereo- and regioselective azomethine ylide cycloaddition reactions, and (b) C3-arylated/heteroarylated/acetoxylated furfurylamine and 2-/3-(aminoalkyl)thiophene scaffolds via C-H activation/functionalization routes.

Accordingly, this thesis entitled "Studies on the Stereo- and Regioselective Synthesis of New Sets of Functionalized Pyrrolidine, Spiro- Pyrrolidine / Pyrrolizidine, Furfurylamine and 2-/3-(Aminoalkyl)-Thiophene Scaffolds via the Azomethine Ylide Cycloaddition and C-H Functionalization Methods"consists of the following three chapters along with objectives of the thesis work. Individual chapters contain the sub-sections, such as, introduction, results and discussion and conclusions, experimental section and references.

Chapter 1: Regio- and diastereoselective cycloaddition of azomethine ylides with dipolarophiles to give a new set of pyrrolidine-2-carboxylic acid and nicotine analogues.

Chapter 2: Highly Regio- and diastereoselective construction of densely functionalized spirooxindolo-pyrrolidine / pyrrolizidine, spiro-1,3-indandionolylpyrrolidine and spiroacenaphthylenolyl- pyrrolidine / pyrrolizidine derivatives.

Chapter 3: Regioselective construction of C-3 arylated furfurylamine and 2- or 3-(aminoalkyl)thiophene derivatives via the Pd(II)-catalyzed directing group-aided C-H arylation/acetoxylation reactions.

Objectives.

The research work carried out is mainly focused on accomplishing the stereo- and regioselective synthesis of new sets of functionalized heterocyclic compounds, such as, arylated pyrrolidines, spirooxindolopyrrolidines/pyrrolizidines and spiro-pyrrolidines/pyrrolizidines, arylated/acetoxylated furfurylamines and 2-/3-(aminoalkyl)-thiophenes.

Objective 1a (Chapter 1a): Multisubstituted pyrrolidines exhibit a range of biological activities, in particular, pyrrolidine carboxylic acid (proline) derivatives having aryl/heteroaryl groups show promising biological activities. In the context of enriching the library of functionalized pyrrolidines, a part of this thesis envisages to investigate the Ag-catalyzed cycloaddition of azomethine ylides with arylidene / heteroarylidenemalononitriles for the construction of new sets of C2,C5-arylated 4,4-dicyanopyrrolidine-2-carboxylates and nornicotine derivatives.

Objective 1b (Chapter 1b): Nicotine and nicotine analogues found to be important drug molecules for treating central nervous system (CNS) disorders as well as other ailments. However, nicotine molecule reported to offer no selectivity or a lack of high degree of selective coordination with the nAChRs. In the context of finding new nicotine analogues that are efficient and selective in their biological activities, nicotine analogues were prepared by various research groups. A part of this thesis envisages the synthesis of new class of nicotine derivatives having contiguous stereocenters via the cycloaddition of azomethine ylides derived from the decarboxylative reactions of nicotinaldehyde and α-amino acids with various symmetrical dipolarophiles.

Objective 2a (Chapter 2a): Due to the bountiful biological activities exhibited by the spirooxindolopyrrolidine alkaloids, synthetic chemists synthesized several spirooxindolopyrrolidines/pyrrolizidines and some of them found to exhibit promising biological activities. In the context of enriching the library of functionalized spirooxindolopyrrolidines/pyrrolizidines and spiro-pyrrolidines/pyrrolizidines, a part of this thesis envisaged to investigate the cycloaddition of azomethine ylides with unactivated norbornene-type dipolarophiles and synthesize norbornane-fused- spirooxindolopyrrolidines/pyrrolizidines and spiropyrrolidines/pyrrolizidines.

Objective 2b (Chapter 2b): Various research groups are interested in preparing new libraries of spirooxindolopyrrolidine and spiro-pyrrolidines/pyrrolizidine appended with medicinally important functional groups and sub-units. Given the importance of indole moieties containing pyrrolidines and spiro-pyrrolidines/pyrrolizidines; a part of this thesis work envisages to assemble spirooxindolopyrrolidine and spiro-pyrrolidines/pyrrolizidine scaffolds directly connected with the indolyl or pyrrolyl moieties via the azomethine ylide cycloaddition route.

azomethine ylide

Objectives 3a and 3b(Chapters 3a and 3b): Substituted furan/thiophene derivatives are important class of aromatic compounds and several furan/thiophene-based biaryl derivatives were reported to be biologically active compounds. In the broad family of furan/thiophene-based biaryl derivatives, the C3- or C5-arylated furfurylamine and 2- or 3-(aminoalkyl)-thiophene derivatives were found to show promising biological activities.A part of this thesis work envisioned to apply the bidentate
ligand directed, Pd -catalyzed, regioselective orthoC-H functionalization strategy for assembling the C3 arylated furfurylamine and 2- or 3-(aminoalkyl)-thiophene scaffolds. Along this line, the final part of this thesis work envisioned to investigate the bidentate ligand directed, Pd-catalyzed, C-H oxidation/acetoxylation strategy for assembling the C 3 acetoxylated thiophene scaffolds.

Chapter 1: Regio- and diastereoselective cycloaddition of azomethine ylides with dipolarophiles to give a new set of pyrrolidine-2-carboxylic acid and nicotine analogues.

Introduction.

Pyrrolidine framework is a privileged structural unit frequently found in a variety of natural products (e.g. alkaloids) and synthetically derived biologically active compounds. ${ }^{1}$ Several substituted pyrrolidine derivatives reveal a wide range of biological activites ${ }^{2}$ and act as robust organocatalysts in organic chemistry. ${ }^{3}$ In particular,the construction of pyrrolidine carboxylic acid (proline) derivatives remains an active research field because of their numerous applications in synthetic organic, medicinal chemistry and biochemistry etc. ${ }^{1 \mathrm{lb}, 1 \mathrm{c}, 2 \mathrm{~b}, 3,4}$ Amongst the α-amino acids (α-AAs), proline is one of the very useful molecules for designing biologically active peptides ${ }^{5}$ and its derivatives. Further, proline is an efficient organocatalyst for many asymmetric transformations ${ }^{3}$ and important building block for synthesizing drug molecules. ${ }^{1 \mathrm{~b}}$ There exist various methods to synthesize proline derivatives, ${ }^{4 \mathrm{~d}, 5,6,10 \mathrm{i}}$ including (a) functionalization of Lproline itself or other related derivatives, (b) intramolecular cyclizations of chiral amino acids and (c) synthesis of pyrrolidine rings (proline derivatives) via the 1,3-dipolar cycloaddition of azomethine ylides. Specifically, the azomethine ylidecycloaddition reaction considered as one of most simple routes for assembling substituted prolines.
The 1,3-dipolar cycloaddition ${ }^{7}$ reaction is an extremely powerful method to construct fivemembered heterocyclic compounds with high degree of stereocontrol. Amongst, the 1,3-dipoles used for carrying out 1,3 -dipolar cycloaddition reaction, the azomethine ylides ${ }^{8}$ found to be highly important 1,3 -dipole systems and their reaction with 2π components considered as a straightforward method to assemble pyrrolidine-based natural products and synthetic molecules. Even thoughmany methods are known for the generation of azomethine ylides, two methods are popularly used; (a) the construction of metallo-dipoles (azomethine ylides) from N benzylideneiminoglycinates (b) generation of azomethine ylides from the decarboxylative reactions of 1,2 -dicarbonyl compounds and α-amino acids. With a perspective of finding new drug molecules, several pyrrolidine carboxylic acids or proline molecules were constructed through the 1,3-dipolar cycloaddition of azomethine ylides with various electron-deficient 2π components with high degree of regio-, diastereo- and enantiocontrol. ${ }^{4,8,9,10}$

While there are several substituted pyrrolidine derivatives ${ }^{11-17}$ exhibit a wide range of biological activities, in particular, pyrrolidine carboxylic acid (proline) frameworks having aryl or heteroaryl groups show promising biological activities (Figure 1). ${ }^{11-15}$ For example, Abbott Laboratories ${ }^{11 a}$ discovered a drug molecule ABT-627 (2,4-diarylpyrrolidine-3-carboxylic acid derivative) as a potent and selective molecule for the ET_{A} receptor subtype. Wang et al. ${ }^{12 \mathrm{a}}$ discovered the 3,4-disubstituted pyrrolidines as a novel class of monoamine transporter inhibitors. Some of the pyrrolidine carboxylic acid natural products, ${ }^{13 \mathrm{a}, \mathrm{b}}$ e.g., (-) kainic acid ${ }^{13 \mathrm{a}}$ possess neuro-excitatory action (Figure 1). Further, functionalized pyrrolidine scaffolds obtained from the azomethine ylide cycloaddition reaction found to show potential activity against the hepatitis C virus. ${ }^{14}$ In addition, functionalized pyrrolidine scaffolds were also found to exhibit promising glucosidase inhibitory activity, potent antiviral, antidiabetic, antibacterial and anticancer activities. ${ }^{15}$

inhibitor of HCV RNAdependent RNA polymerase
Pyrrolidine based natural products

Figure 1.Biologically active pyrrolidine molecules.
Along this line, the pyrrolidine alkaloid, (S)-nicotine is the most abundant alkaloid (tobacco products) and it was isolated from genus Nicotiana plant. ${ }^{20-24}$ Nicotine was first isolated by Posselt and Reimann in $1828 .{ }^{20}$ In 1843 Melsens proposed its first chemical empirical formula. The correct structure of nicotine is suggested by Pinner in $1893 .{ }^{21}$ In 1904, the first synthesis of nicotine was reported by Pictet and Rotshy. ${ }^{22}$ Pitner recognized the spatial orientation of (S)-
nicotine in 1978. The fresh N. tabacum contains ${ }^{23} 93 \%$ of (S)-nicotine 2a, 3.9\% of (S) -anatabine $\mathbf{2 b}, 2.4 \%$ of (S)-nornicotine 2c, 0.5% (S)-anabasine 2d (Figure 2). Annually 2800 tons of (S) nicotine used as a crop protectant and it is used as an insecticide in a bulk manner. ${ }^{25,26}$ Nicotine molecule has significantly attracted the attention of the medicinal chemists, because of its potential role as a drug molecule for treating central nervous system (CNS) disorders. Nicotine mainly binds with the neuronal nicotinic receptors (nAChRs) in the body ${ }^{27}$ and principally, (S)nicotine plays a key role in the treatment of Parkinson's disease (PD), Alzheimer's disease (AD), Tourette's syndrome, attention-deficit hyperactivity disorder (ADHD), smoking cessation, depression, and other CNS disorders. ${ }^{28}$ Nicotine is used as a therapeutic agent in smaller doses, if it is used in higher doses, it can cause the seizures, neuromuscular effects and sleep disturbance etc. ${ }^{29}$ These side effects due to a subtype selectivity or a lack of coordination among the nAChRs. ${ }^{30}$

(S)-nicotine

2a

(S)-SIB-1508Y

2e

(S)-anatabine

2b

SIB-1663
$2 f$

(S)-nornicotine

2c

$\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{Me}, \mathrm{OMe}$
$2 g$

(S)-anabasine

2d

2h

Figure 2. Pyrrolidine/piperidine natural products and synthetically derived nicotine molecules.
The medicinal chemists are aiming to synthesize nicotine derivatives that are only selective in binding to ACh sites to reduce the side effects (Figure 2).For instance, the synthetic molecule, SIB-1508Y ((S)-(-)-5-ethynyl-3-(1-methyl-2-pyrrolidinyl)pyridine maleate 2e, was discovered as a potential nicotine-based drug by SIBIA Neurosciences Inc. ${ }^{32}$ This molecule acts as an agonist of human neuronal nAChRs. Preclinical studies showed that 2e is used for treatment of Parkinson's disease. Likewise, the synthetic molecule SIB-1663 ([(+) and (-)]-7-methoxy-2,3,3a,4,5,6,9b-hexahydro- $1 H$-pyrrolo-[3,2h]-isoquinoline $\mathbf{2 f}$, produces ipsilateral turning in unilaterally 6-hydroxydopamine-lesioned rats, an animal model of Parkinson's disease. ${ }^{33}$

Synthesis of pyrrolidine and nicotine skeletons (arylated pyrrolidine frameworks).

Given that the pyrrolidine framework is a privileged structural unit frequently found in a variety of natural products, synthetically derived biologically active compounds and drugs; several arylated pyrrolidine derivatives including nicotine derivatives were prepared in view of enriching the library of pyrrolidine and nicotine skeletons.

Accordingly, in the following sections some of the literature papers dealing on the azomethine cycloaddition-based synthesis of arylated pyrrolidine derivatives including nicotine derivatives prepared in view of enriching the library of pyrrolidine and nicotine skeletons are presented.
Huisgenet al. ${ }^{36}$ first reported the generation of azomethine ylide $\mathbf{3 b}$ from N-(p-nitrobenzyl)-3,4dihydroisoquinoliniumbromide 3a with triethylamine in hot pyridine and it was further reacted with dimethyl fumarate 3c to give the pyrrolidine-fused tricyclic skeleton 3d in 69% yield. Hamelin et al. ${ }^{37}$ reported the first synthesis of pyrrolidines $\mathbf{3 g}$ and $\mathbf{3 h}$ by using Knöevenagel adducts $\mathbf{3 f}$ as the dipolarophiles in the 1,3-dipolar cycloaddition with the azomethine ylides derived from the imine ester $\mathbf{3 e}$ (Scheme 1).
Grigg et al. ${ }^{38}$ reported the first synthesis of substituted pyrrolidine 2-carboxylic acids $\mathbf{4 d}$ and $\mathbf{4 e}$ through the 1,3-dipolar cycloaddition of azomethine ylides with N-phenyl maleimide $\mathbf{4 b}$ and methyl propiolate $\mathbf{4 c}$ with arylidene imines $\mathbf{4 a}$ in the presence of the Bronsted and Lewis acids (Scheme 2). After the first report published by Grigg et al. several reports appeared in the literature, which revealed the Lewis acid-catalyzed synthesis of proline molecules (or) pyrrolidine-2-carboxylic acid derivatives. Padwa et al. ${ }^{39}$ first reported the diastereoselective synthesis of chiral pyrrolidines $\mathbf{4 i}, \mathbf{4} \mathbf{j}$ and $\mathbf{4 k}$ from optically active α-cyanoaminosilanes $\mathbf{4 f}$ with β-nitrostyrenes $\mathbf{4 h}$ or aldehyde $\mathbf{4 g}$ in presence of AgF (Scheme 2).
Grigg et al. ${ }^{40}$ reported the first asymmetric synthesis of chiral prolines $\mathbf{5 d}$ by using stoichiometric amounts of chiral bases or chiral metal complexes. In 2002, Zhang and co-workers ${ }^{41}$ reported the first substoichiometric catalytic enantioselective synthesis of chiral prolines 6cvia the asymmetric azomethine ylide cycloaddition in the presence of chiral diphosphane / silver (I) complex (Scheme 3). After this report, various research groups revealed the enantioselective synthesis of proline molecules.

Scheme 1. Synthesis of pyrrolidine derivatives $\mathbf{3 d}, \mathbf{3 g}$ and $\mathbf{3 h}$.

Scheme 2. Construction of pyrrolidines $\mathbf{4 d}, \mathbf{4 i}, \mathbf{4 j}$ and $\mathbf{4 k}$ and 3-pyrrolines $\mathbf{4 e}$.
Wang et al. ${ }^{42 \mathrm{a}}$ reported the asymmetric azomethine ylide cycloaddition with alkylidene malonates 7b in presence of chiral ligand TF-BiphamPhos 7c gave polysubstituted pyrrolidine derivatives 7d with high enantioselectivity (Scheme 4). Deng and co-workers ${ }^{42 b}$ reported the enantioselective azomethine ylide cycloaddition for the preparation of highly functionalized pyrrolidines $\mathbf{8 d}$ in presence of the chiral ligand $\mathbf{8 c}$ and $\mathrm{Cu}(\mathrm{OAc})_{2}$ (Scheme 4).
Fukuzawa et al. ${ }^{43 \mathrm{a}}$ revealed enantioselective synthesis of proline ester derivatives 9d through the catalytic asymmetric azomethine ylide cycloaddition with alkylidene malonates $9 \mathbf{9 b}$ in presence of the bifunctional $\mathrm{AgOAc} /$ thioclickferrophos complex (Scheme 5). Subsequently, Zhou and coworkers ${ }^{43 b}$ described an efficient enantioselective of synthesis pyrrolidine-2,4,4-tricarboxylate
derivatives 10 d by azomethine ylide cycloaddition in presence of $\mathrm{Cu}^{\text {II }}-\mathrm{N}, \mathrm{P}$ oxazolinylferrocene ligand complex (Scheme 5).

Scheme 3. Enantioselective synthesis of pyrrolidines $\mathbf{5 d}$ and $\mathbf{6 c}$.

7a
$\mathrm{R}^{1}=\mathrm{C}_{6} \mathrm{H}_{5}, 4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}, 3-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$,
4- $\mathrm{MeOC}_{6} \mathrm{H}_{4}, 4-\mathrm{FC}_{6} \mathrm{H}_{4}, 2-\mathrm{CIC}_{6} \mathrm{H}_{4}$,
3- $\mathrm{ClC}_{6} \mathrm{H}_{4}$, 1-naphthyl, 2-naphthyl, Cy

$\mathrm{R}=\mathrm{Ph}, 4-\mathrm{MeOC}_{6} \mathrm{H}_{4}, 4-\mathrm{BrC}_{6} \mathrm{H}_{4}$
$\mathrm{Et}, \mathrm{Bu}, i-\mathrm{Bu}$
$\mathrm{R}^{2}=\mathrm{H}, \mathrm{Me}$

7d up to 99% ee

8d
up to 99% yield up to 99% ee

Scheme 4. Enantioselective construction of proline molecules 7d and 8d.
Representative methods dealing on the synthesis of cyano group containing spiropyrrolidines and spiropyrrolizidines.
El-Ahl ${ }^{44}$ first reported the synthesis of spirooxindoles 11d involving the 1,3-dipolar cycloaddition of azomethine ylide generated via the decarboxylative reaction of isatin 11a and secondary amino acid 11b with arylidenemalonitrile 11c as a 2π system (Scheme 6). After this
report, various groups worked on the synthesis of spiro-pyrrolidines and pyrrolizidinesvia theazomethine cycloaddition reaction by using arylidenemalonitriles as a dipolarophile.

Scheme 5. Enantioselective synthesis of proline derivatives 9d and 10d.
Ghandi et al. ${ }^{45}$ reported the synthesis of cyano group containing spiropyrrolizidines 12e and spiropyrrolidines $\mathbf{1 2 f}$ involving the 1,3-dipolar cycloaddition of the azomethine ylides generated via the decarboxylative reaction of aldehydes 12a and amino acids 12c and 12d with the Knöevenagel adduct of 9-fluorenone-malononitrile 12b (Scheme 6). The same group ${ }^{46}$ reported the synthesis of cyano group containing spiropyrrolidine oxindoles and spiropyrrolizidines oxindoles 13b-e, respectively, involving the 1,3-dipolar cycloaddition of azomethine ylides generated via a one pot reaction of sarcosine / proline with aromatic aldehydes 12a and 13a (Scheme 6).

Perumal and coworkers ${ }^{47}$ reported the synthesis of a series of cyano group containing dispiropyrrolidine bisoxindoles $\mathbf{1 4 f}$ and dispiropyrrolidine oxindoles $\mathbf{1 4 e}$ (Scheme 7) involving the 1,3-dipolar cycloaddition of azomethine ylide with isatylidene malononitrile $\mathbf{1 4 d}$ and 2-(1,3-dioxo-indan-2-ylidene)-malononitrile 14c, respectively. Shi et al. ${ }^{48}$ reported the synthesis of cyano group containing dispiropyrrolidine bisoxindoles $\mathbf{1 5 b}$ and 16bvia the 1,3-dipolar cycloaddition of azomethine ylides through a muticomponent reaction method (Scheme 7).
Nabid et al. ${ }^{49}$ reported the synthesis of dicyano functionalized spiropyrrolidines and spiropyrrolizidines $\mathbf{1 7 g}$ from the 1,3-dipolar cycloaddition of arylidenemalononitrile Knöevenagel adducts $\mathbf{1 7 f}$ with non-stabilized azomethine ylides generated from isatin 17a / acenaphthenequinone 17b and sarcosine or N-phenylglycine or proline. Dandia et al. ${ }^{50}$ reported
the synthesis of cyano group containing dispiro pyrrolidines $\mathbf{1 7 k}$ and 171 from 2-oxo-($2 H$)-acenaphthylen-1-ylidene-malononitrile and 2-fluoren-9-ylidene-malononitriles $\mathbf{1 7} \mathbf{j}$ and $\mathbf{1 7 i}$ (Scheme 8).

up to 78% yield

$\mathrm{R}=4-\mathrm{Me}, 4-\mathrm{OMe}, 4-\mathrm{CI}, 4-\mathrm{Br}$, $4-\mathrm{H}, 3,4-\mathrm{OMe}, 3,4,5-\mathrm{OMe}, 4-\mathrm{NO}_{2}$

up to 76% yield

up to 35% yield

up to 32% yield

Scheme 6. Construction of cyano group containing spiropyrrolidines 11d, 12f and 13b,c and 12e 13d,e.

Representative methods dealing on the synthesis of nicotine derivatives (α-heteroarylated pyrrolidine derivatives).

Ishar et al. ${ }^{51}$ reported the regio- and stereoselective synthesis of mono- and bicyclic-isoxazolidine-based nicotine analogues 18f-j from the reaction of α-(3-pyridyl)- N-phenylnitrone 18c with variety of dipolarophiles 18d and 18e (Scheme 9). Ishar et al. ${ }^{52}$ achieved the regio
selective synthesis of norbornane fused bis-isoxazolidine-based nicotine analogues 19b-d from the reaction of α-(3-pyridyl)- N-phenylnitrone (18c) with norbornadiene 19a (Scheme 10).

Scheme 7. Construction of cyano group containing dispiropyrrolidine bisoxindoles $\mathbf{1 4 f}, \mathbf{1 5 b}$ and $\mathbf{1 6 b}$ and dispiropyrrolidine oxindoles $\mathbf{1 4 e}$.

Zhai et al. ${ }^{53 a, b, c}$ reported the synthesis of conformationally locked nicotine analogue 20i from 3bromopyridine (20a) via the intramolecular azomethine ylide cycloaddition as a key step, which afforded the compounds $\mathbf{2 0 g}$ and $\mathbf{2 0 h}$ with dr ratio 58:42 (Scheme 11). Zhai et al. also ${ }^{53 \mathrm{a}}$ reported the synthesis of conformationally locked nicotine analogues $\mathbf{2 0 m}$ and $\mathbf{2 0 q}$ involving the azomethine ylide cycloaddition as a key strategy (Schemes 12 and 13) and further, they also ${ }^{54}$ revealed the synthesis of fluorinated tricyclic nicotine analogue 20uvia theintramolecular azomethine ylide cycloaddition as a key step (Scheme 14).
Bashiardes et al. ${ }^{55}$ reported the synthesis of nicotine analogues $\mathbf{2 3}$ via the intramolecular cycloaddition of azomethine ylide generated from nicotinaldehyde $\mathbf{2 2}$ and secondary amino acids 22 (Scheme 15). Ghandi et al. ${ }^{56}$ also reported the synthesis of some nicotine derivatives from the

1,3-dipolar cycloaddition of azomethine ylide generated from pyridine-3-carbaldehyde and sarcosine with Knöevenagel adducts as the dipolarophiles.

Scheme 8. Regioselective synthesis of cyano group containing spiro- dispiro-based pyrrolidines and pyrrolizidines ($\mathbf{1 7 g}, \mathbf{1 7 k}$ and $\mathbf{1 7 1})$.

Scheme9. Synthesis of isoxazolidine-based nicotine analogues 18f-j.

Scheme10. Synthesis of isoxazolidine-based nicotine analogues 19b-d.
Padwa et al. ${ }^{57}$ reported the synthesis of nicotine analogue 26 through the cycloaddition of azomethine ylide with vinyl sulfone as a dipolarophile (Scheme 16).

Scheme 11. Synthesis of conformationally locked nicotine analogue 20i.

Scheme 12. Synthesis of conformationally locked nicotine analogue 20m.

Scheme 13. Construction of conformationally locked nicotine analogue 20q.

Scheme 14. Synthesis of conformationally locked nicotine analogue 20u.

Scheme 15. Construction of silicon based restricted nicotine 23.

Scheme 16. Synthesis of heteroarylated-pyrrolidine molecule 26.

Scheme 17. Synthesis of chiral heteroarylated-pyrrolidine molecule 29.
Carretero et al. ${ }^{58 \mathrm{a}}$ revealed the synthesis of α-heteroarylpyrrolidines $\mathbf{2 9}$ via theazomethine ylide cycloaddition between silylimines 27 and activated olefins 28 in presence of $\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}_{4}\right)_{4} \mathrm{PF}_{6}$ /

Walphos $\mathbf{3 0}$ (Scheme 17). Nelson and co-workers ${ }^{58 b}$ reported the synthesis of nornicotine scaffold 33 via the Pd-catalyzed aminoarylation (Scheme 18).

Scheme 18. Construction of heteroarylated-pyrrolidine molecule 33.

Results and discussion.

Chapter 1a: C-3,C-5-Aryl- / heteroaryl substituted 4,4-dicyano-pyrrolidine-2-carboxylate and nornicotine scaffolds (proline derivatives).

Given the pyrrolidine framework is a privileged structural unit frequently found in a variety of natural products, synthetically derived biologically active compounds and drugs, ${ }^{1-16}$ categorically, in the context of finding new lead bio-active molecules exhibiting promising biological activities and for finding potential drug candidates, there have been bestowed interests and continuous efforts for preparing new libraries of multi substituted pyrrolidines. In particular, pyrrolidine carboxylic acid (proline) frameworks having aryl or heteroaryl groups show promising biological activity.

There exist various reports dealing on the synthesis of substituted pyrrolidine scaffolds via the azomethine cycloaddition method as discussed above. ${ }^{4,8,10}$ The key to assemble new class of a library of diversely functionalized pyrrolidines has been to use different 2π components (dipolarophiles) in the azomethine ylide cycloaddition reaction. It was envisaged to use the arylidene / heteroarylidenemalononitriles $\mathbf{3 5}$ as the 2π components in the Ag-catalyzed azomethine ylide cycloaddition reactions. A literature survey revealed that the Ag-catalyzed generation of azomethine ylides from N-benzylideneiminoglycinates ${ }^{17-19}$ and their 1,3-dipolar cycloaddition reaction with benzylidenemalononitriles (Knöevenagel adducts) ${ }^{59}$ has not been well explored. ${ }^{4,8,10}$ In the context of enriching the library of functionalized pyrrolidines,
especially, pyrrolidine carboxylic acid (proline) frameworks having aryl or heteroaryl groups and as a part of this thesis, it was envisaged to investigate the regio- and diastereoselective cycloaddition of azomethine ylides with arylidene / heteroarylidenemalononitriles $\mathbf{3 5}$ for the construction of a new set of substituted pyrrolidine scaffolds, mainly, pyrrolidines-appended with different aryl- / heteroaryl moieties. Accordingly, the synthesis of several C-3,C-5-aryl- / heteroaryl substituted 4,4-dicyano-pyrrolidine-2-carboxylate and nornicotine scaffolds (proline derivatives) was accomplished and the results obtained are discussed here (Scheme 19).

Scheme 19. Regio- and diastereoselective cycloaddition of azomethine ylides with benzylidenemalononitriles: Synthesis of a new set of 4,4-dicyanopyrrolidine-2-carboxylate derivatives.

At the outset, we investigated the 1,3-dipolar cycloaddition reaction of azomethine ylides derived from N-benzylideneiminoglycinates in the presence of a silver salt with benzylidenemalononitriles (Knöevenagel adducts) to obtain multisubstituted 4,4-dicyanopyrrolidine-2-carboxylate and nornicotine derivatives and we performed several reactions to find out the best reaction conditions and solvents. Table 1 comprises of the silvercatalyzed 1,3-dipolar cycloaddition reaction of azomethine ylide derived from N benzylideneiminoglycinate (36a) with benzylidenemalononitrile (35a). The reaction of N benzylideneiminoglycinate (36a) with benzylidenemalononitrile (35a) in the presence of catalytic amount of $\mathrm{AgClO}_{4}(5-20 \mathrm{~mol} \%)$ and $\mathrm{Et}_{3} \mathrm{~N}(10 \mathrm{~mol} \%)$ in a nonpolar solvent, such as, toluene at rt gave the product 38a (3,5-aryl-substituted 4,4-dicyanopyrrolidine-2-carboxylate)as the major regio- and diastereomer in 71-74\% yields with good diastereoselectivity (entries 1-3, Table 1).

Table 1. Optimization reactions: 1,3-Dipolar cycloaddition of azomethine ylide with benzylidenemalononitrile 35a.

entry	Ag catalyst (mol\%)	$\begin{aligned} & \mathrm{Et}_{3} \mathrm{~N} \\ & \text { (mol\%) } \end{aligned}$	solvent (mL)	$T\left({ }^{\circ} \mathrm{C}\right)$	time (h)	yield (\%)	dr
1	$\mathrm{AgClO}_{4}(5)$	10	toluene (5)	r.t.	48	71	>90:10
2	$\mathrm{AgClO}_{4}(10)$	10	toluene (5)	r.t.	48	74	>90:10
3	$\mathrm{AgClO}_{4}(20)$	10	toluene (5)	r.t.	48	74	>75:25
4	$\mathrm{AgClO}_{4}(10)$	40	toluene (5)	0	12	83	>90:10
5	$\mathrm{AgClO}_{4}(10)$	40	THF (5)	r.t.	12	93	>90:10
6	AgClO_{4} (10)	40	DCM (5)	r.t.	12	87	>90:10
7	$\mathrm{AgClO}_{4}(10)$	40	DCM (5)	r.t.	24	93	>90:10
8	AgOAc (10)	10	toluene (5)	r.t.	48	69	>90:10
9	AgOAc (10)	40	toluene (5)	r.t.	48	77	>90:10
10	AgOAc (10)	40	THF (5)	0	12	83	>90:10
11	AgOAc (10)	10	DCM (5)	r.t.	24	79	>90:10
12	AgOAc (10)	40	DCM (5)	r.t.	12	96	>90:10
13	$\mathrm{AgOAc}(10)$	40	DCM (5)	0	12	87	>85:15

${ }^{\text {a }}$ The diastereomeric ratio dr 90:10 refers to the major isomer 38a is 90% (isolated in pure form in all cases) and the remaining 10% could be any other minor isomers which were not isolated pure form as the quantity was very less.

The reaction of N-benzylideneiminoglycinate (36a) with benzylidenemalononitrile 35a in the presence of catalytic amount of AgClO_{4} at $0{ }^{\circ} \mathrm{C}$ afforded the product 38a possessing three stereocenters as the major isomer in 83% yield with very good diastereoselectivity (entry 4, Table 1). Next, we tried the AgClO_{4}-catalyzed cycloaddition of azomethine ylide derived from N -benzylideneiminoglycinate (36a) with benzylidenemalononitrile 35a inpolar solvents, such as, tetrahydrofuran anddichloromethane, which furnished the cycloadduct 38a as the major isomer in improved yields (87-93\%) with very high diastereoselectivity (entries 5-7, Table 1).

The yields and diastereoselectivity in the 1,3-dipolar cycloaddition reaction azomethine ylide generated from N-benzylideneiminoglycinate (36a) with benzylidenemalononitrile 35a in the presence of catalytic amount of $\mathrm{AgOAc}(10 \mathrm{~mol} \%)$ in toluene or tetrahydrofuran were comparable with the yields obtained when AgClO_{4} was used as the catalyst (entries 2,5 and 8,10 Table 1). The 1,3-dipolar cycloaddition reaction azomethine ylide generated from N benzylideneiminoglycinate (36a) with benzylidenemalononitrile 35a in the presence of catalytic amount of $\mathrm{AgOAc}(10 \mathrm{~mol} \%)$ and $\mathrm{Et}_{3} \mathrm{~N}$ (10 or $40 \mathrm{~mol} \%$) in dichloromethane furnished the cycloadduct 38a as the major isomer in 79-96\% yields with very high diastereoselectivity (entries 11-13, Table 1).In all these reactions (entries 1-13, Table 1), we obtained the diastereomer having the core structure of the cycloadduct 38a the major regio-and diastereomerpossessing three stereocenters. Further, in all of the above reactions (entries 1-13, Table 1), the regioselectivity and diastereoselectivity of the 1,3-dipolar cycloaddition and structure of the cycloadduct 38a were ascertained based on the similarity in the ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$ NMR spectral pattern of 38a obtained in all these reactions. Further the stereochemistry of the major diastereomer 38a was assigned based on an analogous cycloadduct 40b that was characterized bythe single crystal X-ray structure analysis and similarity in their NMR spectral pattern.

Having done the optimization reactions, to reveal the generality of this Ag-catalyzed 1,3-dipolar cycloaddition of azomethine ylide with benzylidenemalononitrile, several N benzylideneiminoglycinates $\mathbf{3 6 b} \mathbf{- m}$ were prepared from a variety of aromatic aldehydes or ethyl glycinate or methyl glycinate and then, the compounds $\mathbf{3 6 b}-\mathbf{m}$ were used to assemble various 3,5-aryl-substituted 4,4-dicyanopyrrolidine-2-carboxylates 38b-m (Scheme 20). Consequently, the 1,3-dipolar cycloaddition reactions of azomethine ylides derived from the respective N benzylideneiminoglycinates $\mathbf{3 6 b}-\mathbf{m}$ with the benzylidenemalononitrile $\mathbf{3 5}$ in the presence of catalytic amount of $\mathrm{AgOAc}(10 \mathrm{~mol} \%)$ and $\mathrm{Et}_{3} \mathrm{~N}$ ($40 \mathrm{~mol} \%$) in dichloromethane furnished various 3,5-aryl-substituted 4,4-dicyanopyrrolidine-2-carboxylate derivatives 38b-m possessing three stereocenters as the major regio- and diastereomers in 77-98\% yields with very high regioand diastereoselectivity (Scheme 20).

Along this line, to further extend the substrate scope, it was planned to synthesize thiophene- or furan- or pyridine substituted 4,4-dicyanopyrrolidine-2-carboxylates(proline) scaffolds possessing three stereocenters (Scheme 21 and 22). Accordingly, various substituted 4,4-dicyanopyrrolidine-2-carboxylates(proline) scaffolds 39a-e and 39f-i possessing three
stereocenters were synthesized from the 1,3-dipolar cycloaddition reaction of azomethine ylides derived from the respective N-arylideneiminoglycinates with the corresponding arylidenemalononitriles in the presence of catalytic amount of $\mathrm{AgOAc}(10 \mathrm{~mol} \%)$ and $\mathrm{Et}_{3} \mathrm{~N}$ (40 $\mathrm{mol} \%$) in dichloromethane at rt .

Scheme 20. Stereo and regioselective synthesis of 3,5-aryl-substituted 4,4-dicyanopyrrolidine-2carboxylates possessing three stereocenters.

Next, it was planned to assemble nornicotine analogues 40a-c possessing three stereocenters. Accordingly, by using the optimized reaction condition the nornicotine analogues possessing three stereocenters 40a-c (Scheme 23) were synthesized via the Ag-catalyzed 1,3-dipolar cycloaddition reaction of azomethine ylides derived from the corresponding N -
arylideneiminoglycinates with arylidene-malononitriles. In all these reactions, the thiophene- or furan- or pyridine substituted 4,4-dicyanopyrrolidine-2-carboxylates(proline) scaffolds 39a-e (Scheme 21), 39f-i (Scheme 22) and nornicotine derivatives 40a-c (Scheme 23) were obtained in good yields with high regio- and diastereoselectivity.

Scheme 21. Diastereoselective synthesis of 3,5-aryl-substituted 4,4-dicyanopyrrolidine-2carboxylates consisting of three stereocenters.

Then, to further increase the scope and synthetic utility of this method, it was planned to assemble the N-acrylated pyrrolidine derivatives 42a,b by reacting acryloyl chloride with the pyrrolidine derivatives 38a,b which were obtained from the Ag-catalyzed azomethine cycloaddition reaction. Then, it was planned to use the N-acrylated pyrrolidine derivatives 42a,b as the 2π component in the $[3+2]$ cycloaddition reaction of the azomethine ylides to assemble the 3,5-aryl-substituted 4,4-dicyanopyrrolidine-2-carboxylate (proline) scaffolds 45a,b and 46a,b.

Accordingly, the three component [3+2] cycloaddition reactions of the azomethine ylides derived from the decarboxylative reactions of formaldehyde with sarcosine or N-benzyl glycine hydrochloride with the N-acrylated pyrrolidine derivatives 42a,b as the 2π components (dipolarophile) have led to the synthesis of 3,5-aryl-substituted 4,4-dicyanopyrrolidine-2carboxylate (proline) scaffolds 45a,b and 46a,b (Scheme 24). The cycloaddition reaction of azomethine ylides with the compounds $\mathbf{4 2 a}, \mathbf{b}$ gave the respective single isomers $\mathbf{4 5 a}, \mathbf{b}$ and 46a,b. At this stage, we could not assign the stereochemistry of the newly formed C3-center in the compounds $\mathbf{4 5 a}, \mathbf{b}$ and $\mathbf{4 6 a}, \mathbf{b}$. The diastereomeric ratios given for the compounds $\mathbf{4 5 a}, \mathbf{b}$ and 46a,b are based on their respective starting materials 42a,b obtained from the respective compounds 38a,b.

(dr 65:35)

(dr 70:30)

(dr 82:18)

Scheme 22. Diastereoselective construction of 3,5-aryl-substituted 4,4-dicyanopyrrolidine-2carboxylates having three stereocenters.

 major regio- and diastereomer

nornicotine analogues

Scheme 23. Construction of nornicotine analogues.

39c

39d

Figure 3. X-ray structures of 39c and 39d.

Generally, in all the above described 1,3-dipolar cycloaddition reactions of azomethine ylides derived from N-benzylideneiminoglycinates with benzylidenemalononitriles (Knöevenagel adducts), the respective diastereomers having the core structure of the regioisomers 38a-m (Table 1 and Scheme 20), 39a-e (Scheme 21), 39f-i (Scheme 22) and 40a-c (Scheme 23) were
obtained. The regioselectivity and diastereoselectivity of the products 38a-m (Table 1 and Scheme 20), 39a-e (Scheme 21), 39f-i (Scheme 22) and 40a-c (Scheme 23) discussed in this work were ascertained based on the similarity in their NMR spectral pattern. Furthermore, the structure and stereochemistry of the aryl substituted 4,4-dicyanopyrrolidine-2-carboxylate (proline) and nicotine scaffolds (major regio- and diastereomers) were unequivocally assigned from the single crystal X-ray structure analyses of the compounds 39c,d and 40b,c (Figures 3 and 4).

38a or 38b (1 equiv)

42a (or) 42b (0.14 mmol)

42a (or) 42b
(0.16 mmol)

42a; $\mathrm{R}=\mathrm{Cl} ; 91 \%$ (dr 98:2)
42b; $\mathrm{R}=\mathrm{CH}_{3} ; 92 \%$ (dr 98:2)

45a; $\mathrm{R}=\mathrm{Cl} ; 46 \%$ (dr 98:2)
45b; $\mathrm{R}=\mathrm{CH}_{3} ; 77 \%$ (dr 98:2)

46a: R=Cl; 73\% (dr 98:2)
46b; $\mathrm{R}=\mathrm{CH}_{3} ; 77 \%$ ($\mathrm{dr} 98: 2$)

Scheme 24. Construction of 3,5-aryl-substituted 4,4-dicyanopyrrolidine-2-carboxylate (proline) scaffolds connected to another pyrrolidine unit.

40b

40c

Figure 4. X-ray structures of the products $\mathbf{4 0 b}$ and 40 c .

Finally, a preliminary level density functional calculations for geometry optimizations were performed to have an idea regarding the observed regiochemisty in the [3+2] cycloaddition reaction of azomethine ylide derived from the N-benzylideneiminoglycinate 36a with benzylidenemalononitrile 35a (Figure 5). Density functional calculations for geometry optimizations were done at the $6-311++g(2 d, 2 p)$ basis set using Becke-3 parameter exchange and the Lee-Yang-Parr correlation (B3LYP) functional in the G'09 suite of programs. The calculations indicate that the experimentally observed major regioisomer $\mathbf{3 8}$ comes through a reaction pathway that has a barrier of $28.88 \mathrm{kcal} / \mathrm{mol}$. In comparison with this, the minor regioisomer $\mathbf{3 8}^{\prime}$ comes through a reaction pathway that involves a higher barrier of magnitude $35.99 \mathrm{kcal} / \mathrm{mol}$. The barriers have been calculated from the identified transition states (TS), and the imaginary frequency corresponding to the transition state was examined to make sure that the TS's are indeed the ones that connect reactants with the products. The sum of energies of reactants was taken to $0 \mathrm{kcal} / \mathrm{mol}$ in the barrier calculation. Further from the optimized geometries of the products, it was seen that the major product 38 is also thermodynamically favored with an electronic energy stabilization of $-5.92 \mathrm{kcal} / \mathrm{mol}$ relative to the reactants $\mathbf{3 5 a}$ and 36a. The minimal nature of the reactants and products and the saddle point character of the TS have been confirmed with Hessian evaluations at the optimized geometry. Nevertheless, we have done only preliminary level density functional calculations for geometry optimizations to support
the observed regiochemisty. However, a completely detailed theoretical study on the observed diastereoseltivity and regioselectivity in the [3+2] cycloaddition reaction of azomethine ylide derived from N-benzylideneiminoglycinates with benzylidenemalononitriles needs to be done and further work is in progress in this regard.

Figure 5. Preliminary level density functional calculations for geometry optimizations for the [3+2] cycloaddition reaction of azomethine ylide derived from the N benzylideneiminoglycinate 36a with benzylidenemalononitrile 35a.

Chapter 1b: Synthesis of new class of nicotine analoguesvia theazomethine ylide cycloaddition.

Nicotine and various nicotine analogues found to function as drug molecule for treating central nervous system (CNS) disorders. (S)-nicotine plays a key role in the treatment of Parkinson's disease, Alzheimer's disease, Tourette's syndrome, attention-deficit hyperactivity disorder, smoking cessation, depression, and other CNS disorders. ${ }^{28}$ While nicotine molecule has been proven to be an important drug molecule, however, there are some limitations. In general, nicotine is used as a therapeutic agent in smaller doses, if it is used in higher doses, it can cause the seizures, neuromuscular effects and sleep disturbance etc. ${ }^{29}$ These side effects are due to a
poor selectivity or a lack of high degree of selective coordination with the nAChRs. ${ }^{30}$ Hence, the medicinal chemists are aiming to synthesize nicotine derivatives that are only selective in binding to nACh sites to reduce the side effects. Accordingly, different nicotine analogues (Figure 2) were prepared by various research groups. Among various methods, the 1,3-dipolar azomethine ylide cycloaddition reaction ${ }^{51-58}$ is one of the methods used to construct nicotine analogues (C-2 heteroarylated pyrrolidine skeletons) with high stereoselectivity.

Various conformationally locked nicotine analogues and annulated nicotine analogues have been prepared via the intramolecular cycloaddition and annulation reactions. However, a literature survey revealed ${ }^{51-58}$ that there exist only limited reports dealing on the synthesis of nicotine derivatives via the intermolecular cycloaddition of azomethine ylides with electron-deficient olefins as dipolarophiles. Considering the importance of nicotine and nicotine analogues as nAChR modulators ${ }^{28-33}$ and drug molecules and insecticides; as a part of the objective of the thesis it was envisaged to further investigate the 1,3-dipolar azomethine ylide cycloaddition reaction with readily available symmetrical dipolarophiles such as, maleimides to construct a new class of nicotine analogues ($\mathrm{C}-2$ heteroarylated pyrrolidine skeletons) appended with succinamide unit. It is worth to mention that maleimide derivatives were found to exhibit a range of biological activities, such as antifungal, cytotoxic and evaluation as $5-\mathrm{HT}_{6}$ receptor. ${ }^{34}$

Hence, it was envisaged that the preparation of nicotine analogues (C-2 heteroarylated pyrrolidine skeletons) appended with succinamide unit will be helpful to enrich the library of bio-active nicotine analogues. Accordingly, a part of this thesis report the synthesis of various nicotine derivatives having contiguous stereocenters via the intermolecular 1,3-dipolar cycloaddition of azomethine ylides derived from the decarboxylative/condensation reactions of nicotinaldehyde and α-amino acids with symmetrical dipolarophiles, e.g. maleimides, dialkyl fumarates, dialkyl maleates and fumaronitrile (Scheme 25).

To start with the synthesis of various nicotine derivatives appended with succinamide moiety and having contiguous stereocenters. Initially, we carried out the intermolecular 1,3-dipolar cycloaddition of azomethine ylides derived from the decarboxylative/condensation reaction of nicotinaldehyde 47a and sarcosine 48 with N-phenylmaleimide 49aunder various reaction conditions to get the cycloadducts 51a and 52a in good yields(Table 2).

This work

new class of nicotine derivatives

Scheme 25. Synthesis of new class of nicotine analogues.

The one pot reaction ofnicotinaldehyde 47a and sarcosine 48 with N-phenylmaleimide 49a in 1,4-dioxane at $100{ }^{\circ} \mathrm{C}$ for 3 h gave the nicotine analogues 51a and 52a having three stereocentersin 57% yield $(\mathrm{dr}=65: 35$, Table 2 , entry 1$)$. The reaction of nicotinaldehyde 47a and sarcosine 48 with N-phenylmaleimide 49a in 1,4-dioxane at $100^{\circ} \mathrm{C}$ for 6 h or 12 h afforded the nicotine analogues 51a and 52a in very good yields ($86 \%, \mathrm{dr}=65: 35$, Table 2, entries 2 and 3). Further, the multicomponent reaction ofnicotinaldehyde $47 \mathbf{a}$ and sarcosine 48 with N phenylmaleimide 49a in 1,4-dioxane at $80^{\circ} \mathrm{C}$ or $60^{\circ} \mathrm{C}$ for 6 h , which furnished the nicotine analogues 51a and 52a in30\% ($\mathrm{dr}=65: 35$) and<10\%yields, respectively (Table 2, entries 4 and 5). These results indicated that lowering the reaction temperatures gave relatively low yields of the nicotine analogues 51a and 52a but the diastereoselectivity was unaffected (Table 2, entry 4). The multicomponent reaction ofnicotinaldehyde 47a and sarcosine 48 with N -phenylmaleimide 49a in acetonitrile gave the nicotine analogues 51a and 52a in good yields (75% yield, $\mathrm{dr}=$ 65:35, Table 2, entry 6).The azomethine ylide generated from nicotinaldehyde 47a and sarcosine 48 with N-phenylmaleimide 49a in a nonpolar solvent, e.g. toluene, gave the nicotine analogues 51a and 52a in only 35% yields ($\mathrm{dr}=66: 34$, Table 2 , entry 7). The low yields in these reactions are perhaps due to the low solubility of the starting materials in toluene. Further, we also performed the reaction of nicotinaldehyde 47a and sarcosine 48 with N-phenylmaleimide 49a in EtOH at $78{ }^{\circ} \mathrm{C}$ and MeOH at $64^{\circ} \mathrm{C}$, which gave nicotine analogues 51a and 52a in 55\% ($\mathrm{dr}=$ $60: 40)$ and $20 \%(\mathrm{dr}=60: 40)$ yields, respectively (Table 2 , entries 8 and 9$)$. The low yields in these cases may be due to the effect of temperature as the decarboxylative reactions of nicotinaldehyde 47a and sarcosine 48 with N-phenylmaleimide 49a were carried out at the refluxing temperatures of the corresponding solvents, such as, EtOH and MeOH .

Table 2.Optimization reactions: Multicomponent cycloaddition reaction of 47 aand 48 with49a. ${ }^{\text {a }}$

entry	solvent	$\mathrm{t}\left({ }^{\circ} \mathrm{C}\right)$	t (h)	yield ${ }^{\text {b }}$ (\%)	$\mathrm{dr}=51 \mathrm{a}: 52 \mathrm{a}$
1	1,4-dioxane (5 mL)	100	3	57	65:35
2	1,4-dioxane (5 mL)	100	6	86	65:35
3	1,4-dioxane (5 mL)	100	12	86	65:35
4	1,4-dioxane (5 mL)	80	6	30	65:35
5	1,4-dioxane (5 mL)	60	6	<10	N.D. ${ }^{\text {c }}$
6	MeCN (5 mL)	82	6	75	65:35
7	toluene (5 mL)	100	6	35	66:34
8	$\mathrm{EtOH}(5 \mathrm{~mL})$	78	6	55	60:40
9	$\mathrm{MeOH}(5 \mathrm{~mL})$	64	6	20	60:40

${ }^{\text {a }}$ All the reactions were carried out using $47 \mathrm{a}(0.5 \mathrm{mmol}), 48(0.6 \mathrm{mmol})$ and $49 \mathrm{a}(0.5 \mathrm{mmol})$. ${ }^{\mathrm{b}}$ Isolated yields. ${ }^{\mathrm{c}}$ N.D. $=$ Not Determined.

These results are comparable with the results obtained when the reactions of nicotinaldehyde 47a and sarcosine 48 with N-phenylmaleimide 49a were performed in 1,4-dioxane at $80^{\circ} \mathrm{C}$ or $60^{\circ} \mathrm{C}$ for 6 h instead of $100^{\circ} \mathrm{C}$ (Table 2, entries 4 and 5). Hence, we found that the decarboxylative reaction ofnicotinaldehyde 47a and sarcosine 48 with N-phenylmaleimide 49a in 1,4-dioxane at $100^{\circ} \mathrm{C}$ for 6 h as the best reaction condition, which gave the nicotine analogues 51aand 52ain good yields (Table 2, entry 2). Since the core structure of nicotine analogue 51a/52a contain three stereocenters, the one pot azomethine cycloaddition reaction ofnicotinaldehyde 47a and sarcosine 48 with N-phenylmaleimide 49a is expected to afford only two diastereomers as the stereochemistry of N-phenylmaleimide 49a (dipolarophile)iscis andthe maximum diastereomeric ratio obtained is 65:35 (51aand 52a).

Subsequently, it was envisaged to examine the substrate scope and generality of this approach comprising the synthesis of nicotine analogues having contiguous stereocenters via the
intermolecular 1,3-dipolar cycloaddition of azomethine ylides derived from decarboxylative/condensation reactions of nicotinaldehyde and α-amino acids with various symmetrical dipolarophiles. The intermolecular cycloaddition reactions of azomethine ylide derived from the condensation reaction of nicotinaldehyde $47 \mathbf{a}$ and N-methyl glycine 48 with several symmetrical dipolarophiles 49b-i were carried outin 1,4 dioxane at $100{ }^{\circ} \mathrm{C}$, which afforded several new nicotine derivatives 51 and 52 in very good yields (Table 3). Representatively, the stereochemistry of the nicotine analogue (51b) was unambiguously assigned from the X-ray structure analysis (Figure 6). The compound 51b was found to be major compound and in this compound 51b the stereochemistry of pyridyl ring and amide carbonyls was found to be trans. Based on the X-ray structure of the compound 51b (major isomer) and coupled with the similarity in ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$ NMR spectral patterns of the compounds 51a-i, the stereochemistry of other products 51a/51c-i (major isomers) was assigned. Subsequently, after assigning the stereochemistry of the compounds 51a-i (major isomers), the stereochemistry of other diastereomers 52a-i (minor isomers) was assigned based on the similarity in their ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$ NMR spectral patterns.
Then, we also carried out the intermolecular cycloaddition of azomethine ylide derived from the decarboxylative/condensation reaction of picolinaldehyde 47b or isonicotinaldehyde 47c and N methyl glycine 48 with N-phenylmaleimide 49a to get the pyrrolidine derivatives 53-56 (Scheme 26), which are structurally similar to the nicotine derivatives $\mathbf{5 1 / 5 2}$. The reaction of picolinaldehyde 47b or isonicotinaldehyde 47c and N-methyl glycine with N-phenylmaleimide in 1,4-dioxane at $100{ }^{\circ} \mathrm{C}$ gave the corresponding functionalized pyrrolidine derivatives 53/54 and $\mathbf{5 5} / 56$, which are analogous to the compounds $\mathbf{5 1 / 5 2}$. The compound 53 was characterized by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy/mass analysis and the stereochemistry of pyrrolidine derivative $\mathbf{5 3}$ (major diastereomer) was clearly established from the X-ray structure analysis (Figure 6). Notably, like in major diastereomer 51b, the stereochemistry of pyridyl ring and amide carbonyls was found to be trans in the major diastereomer 53. After assigning the stereochemistry of the compound 53, the stereochemistry of minor diastereomer 54 was assigned. The compounds 55/56 were found to have same R_{f} values and hence, our trials to separate the compounds 55/56 by the column chromatographic purification were failed and the compounds 55/56 wereisolated as a mixture of isomers.

Further, we carried out the cycloadditions of azomethine ylide with diethyl fumarate 57a or dimethyl fumarate 57b in 1,4-dioxane at $100{ }^{\circ} \mathrm{C}$ to synthesize the functionalized nicotine derivatives having three contiguous stereocenters in the pyrrolidine ring. The intermolecular cycloaddition reaction of the corresponding azomethine ylide generated from nicotinaldehyde 47a with diethyl fumarate 57 a or dimethyl fumarate 57b gave the corresponding nicotine analogues 58a,b and 59a,b in good yields (Scheme 27). The nicotine analogues 58a,b and 59a,b were characterized by ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$ NMR spectroscopy/mass analysis. ${ }^{60}$
Afterwards, we carried out the reactions of picolinaldehyde (47b) or isonicotinaldehyde (47c) and N -methyl glycine with diethyl fumarate (57a) and dimethyl fumarate (57b) in 1,4-dioxane at $100{ }^{\circ} \mathrm{C}$, which gave the corresponding functionalized 2-pyridylpyrrolidine derivatives $\mathbf{6 0 - 6 5}$ analogous to the compounds $\mathbf{5 8 / 5 9}$ (Scheme 28). The compounds $\mathbf{6 0 - 6 2}$ were isolated in pure form, however, the compounds $\mathbf{6 4 / 6 5}$ could not be separated by column chromatographic purification and isolated as a mixture isomers. Then, we performed the one pot cycloaddition reaction of the azomethine ylide generated from nicotinaldehyde 47 a and sarcosine 48 with diethyl maleate 57c, which furnished the nicotine derivatives 58a (37\%) and 59a (46\%) instead of the expected nicotine analogues 66 and 67 (Scheme 29). The ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$ NMR spectra of the nicotine derivatives 58a and 59a obtained in this reaction were same as the products obtained in the azomethine ylide cycloaddition reaction of azomethine ylide generated from nicotinaldehyde 47a and sarcosine 48 with diethyl fumarate 57a (Scheme 27).

Similarly, we also observed the same reactivity pattern as the multicomponent azomethine ylide cycloaddition reaction of the azomethine ylide generated from nicotinaldehyde 47a and sarcosine 48 with dimethyl maleate 57d gave the corresponding products 58b and 59b (Scheme 27) instead of the compounds 66b/67b (Scheme 29). This is because, at higher temperatures, the dipolarophiles 57c,d (cis geometry) underwent cis to trans isomerization, generating the corresponding dipolarophiles $\mathbf{5 7 a} \mathbf{a}$ (trans geometry), which further reacted with the azomethine ylide to give the respective products 58a,b and 59a,b (Scheme 29).

Table 3: Synthesis of nicotine analogues 51/52 ${ }^{\text {a }}$
(
${ }^{\text {a }}$ All the reactions were doneby using $47 \mathrm{a}(0.75 \mathrm{mmol}), 48(1 \mathrm{mmol})$ and $49(0.5 \mathrm{mmol})$. Isolated yields are given. ${ }^{\mathrm{b}}$ The reactions were carried out for $12 \mathrm{~h} .{ }^{\mathrm{c}}$ The reaction was carried out using 47a (0.5 mmol), 48 (0.6 mmol) and 49 (0.5 mmol).

${ }^{\text {a }}$ The reactions were carried out using $47(0.75 \mathrm{mmol}), 48(1 \mathrm{mmol})$ and $49 \mathrm{a}(0.5 \mathrm{mmol})$. Isolated yields are given. ${ }^{\text {b }}$ The compounds 55/56 could not be separated and were isolated as a mixture of isomers.

Scheme 26. Synthesis of pyrrolidine derivatives 53-56 analogous to nicotine derivatives.

${ }^{\text {a }}$ All the reactions were doneby using $\mathbf{4 7 a}(1 \mathrm{mmol}), 48(1.2 \mathrm{mmol})$ and $\mathbf{5 7 a - b}(1 \mathrm{mmol})$. Isolated yields are given.

Scheme 27. Synthesis of nicotine analogues 58a,b and 59a, ${ }^{\text {a }}$.

${ }^{\text {a }}$ The reactions were carried out using $47(1 \mathrm{mmol}), 48(1.2 \mathrm{mmol})$ as well as57 (1 mmol). Isolated yields are given. ${ }^{\mathrm{b}}$ In this case, the compound 62 was isolated in pure form. However, the compound 63 could not be separated from the other isomer 62 . ${ }^{\text {c }}$ Compounds $\mathbf{6 4 / 6 5}$ could not be separated and isolated as a mixture of isomers.
Scheme 28. Synthesis of pyrrolidine derivatives 60-65. ${ }^{\text {a }}$

${ }^{\text {a }}$ All the reactions were carried out using $\mathbf{4 7 a}(1 \mathrm{mmol}), \mathbf{4 8}(1.2 \mathrm{mmol})$ and $57(1 \mathrm{mmol})$. Isolated yields are given.
Scheme 29. Azomethine ylide cycloaddition of nicotinaldehyde with dialkyl maleates 57c,d. ${ }^{\text {a }}$

Furthermore, the cycloaddition reaction of azomethine ylide derived from the condensation of nicotinaldehyde 47a and N-benzyl glycine hydrochloride 68 with N-phenylmaleimide 49a and dialkyl fumarates $\mathbf{5 7}$ a,b was investigated (Scheme 30). The multicomponent azomethine ylide cycloaddition reaction of azomethine ylide with dipolarophile N-phenylmaleimide 49a in toluene at $100{ }^{\circ} \mathrm{C}$ gave the new nicotine analogues $\mathbf{6 9 / 7 0}$ in 83% yield. Similarly, the multicomponent cycloaddition reaction of azomethine ylide generated from 47a and N-benzyl glycine hydrochloride with dialkyl fumarates $\mathbf{5 7 a}, \mathrm{b}$ furnished the corresponding nicotine analogues 7174 in very good yields (Scheme 30). The compounds 71 and 72 were isolated in pure form, however, the nicotine analogues 70, 73 and $\mathbf{7 4}$ could not be separated from their corresponding isomers by column chromatographic purification and isolated as a mixture isomers (Scheme 30). The nicotine derivative 71 was characterized by ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$ NMR spectroscopy/mass analysis and the stereochemistry of nicotine analogue 71 was unequivocally assigned from the X-ray structure analysis (Figure 7). After assigning the stereochemistry of the nicotine analogue 71, the stereochemistry of its corresponding diastereomer $\mathbf{7 2}$ was assigned.

Finally, we carried out the one pot cycloaddition reaction of azomethine ylide generated from nicotinaldehyde 47a and N-benzyl glycine hydrochloride 68 with fumaronitrile 75 in toluene at $100{ }^{\circ} \mathrm{C}$, which gave the new class of nicotine analogues 76/77 possessing cyano groups in the pyrrolidine ringin 90% yield (Scheme 31). Similarly, the nicotine analogues 78 (31% yield) and 79 (59% yield) possessing cyano groups in the pyrrolidine ringwere obtained from the multicomponent azomethine ylide cycloaddition reaction of azomethine ylide generated from nicotinaldehyde 47a and sarcosine 48 with fumaronitrile 75 (Scheme 31). The nicotine derivatives 76, 78 and 79 were characterized by ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$ NMR spectroscopy/mas analysis and the stereochemistry of nicotine analogues 77 and 79 was unequivocally assigned from the X-ray structure analysis (Figure 7). After assigning the stereochemistry of nicotine analogues 77/79, the stereochemistry of nicotine analogue $\mathbf{7 8}$ was assigned.

${ }^{\text {a }}$ In this case, the compound 69 was isolated in pure form. However, the compound $\mathbf{7 0}$ could not be separated from the other isomer $69 .{ }^{\text {b }}$ Compounds $\mathbf{7 3 / 7 4}$ could not be separated and isolated as a mixture of isomers.

Scheme 30. Generation ofazomethine ylide from nicotinaldehyde and N-benzyl glycine and construction of nicotine analogues.

${ }^{\mathrm{a}}$ Isolated yields are given. ${ }^{\mathrm{b}}$ In this case, the compound 77 was isolated in pure form. However, the compound 76 could not be separated from the other isomer 77.

Scheme 31.Construction of nicotine analogues 76-79. ${ }^{\text {a }}$

51b

53

Figure 6. X-ray structure (ORTEP) of nicotine derivatives 51b and 53.

71

77
79

Figure 7. X-ray structures (ORTEP diagrams) of the compounds 71, 77 and 79.

Conclusions.

In summary, the Chapter 1a revealed the regio- and diastereoselective cycloaddition of azomethine ylides with arylidene / heteroarylidenemalononitriles for the construction of a new set of pyrrolidines-appended with different aryl- / heteroaryl moieties. Diastereoselective synthesis of several C-3,C-5-aryl- / heteroaryl substituted 4,4-dicyano-pyrrolidine-2-carboxylate and nornicotine scaffolds (proline derivatives) was accomplished. Given that in the literature, several substituted pyrrolidine derivatives are bio-active molecules and in particular, pyrrolidine carboxylic acid (proline) frameworks having aryl or heteroaryl groups were reported to be promising biological activities; this work contributed for enriching the library of pyrrolidine carboxylic acid derivatives.

Diastereo- and regioselective synthesis of C3,C5 arylated 4,4-dicyanopyrrolidine-2-carboxylates

Further, the Chapter 1b revealed the diastereoselective construction of several new nicotine analogues (C-2 heteroarylated pyrrolidine skeletons) via the multicomponent1,3-dipolar cycloaddition of azomethine ylides derived from the decarboxylative reactions of nicotinaldehyde and α-amino acids with symmetrical dipolarophiles. Given the importance of nicotine and nicotine analogues as nAChR modulators, drug molecules and insecticides; this work contributed in enriching the library of nicotine analogues.

All the cycloaddition reactions were stereoselective and all the compounds included in the chapter 1 of this thesis are characterized by various characterization techniques including ${ }^{1} \mathrm{H}$ and ${ }^{13}$ C NMR, IR, X-ray diffraction and HRMS. The stereochemistry of representative products was established from the single crystal X-ray structure analyses. The relevant characterization data of all the compounds and complete experimental details are given in the experimental section. The synthesized molecules will be screened for their biological activities in collaboration with a medicinal chemistry lab and further work is in progress in this direction as well as synthesizing the optically pure C-3,C-5-aryl- / heteroaryl substituted 4,4-dicyano-pyrrolidine-2-carboxylate, nornicotine and nicotine scaffolds.

Experimental section.

General: Melting points are uncorrected. IR spectra were recorded as neat or thin films or KBr pellets. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded with 400 and 100 MHz spectrometers, respectively, (using TMS as an internal standard). Column chromatography was carried out on silica gel (100-200 mesh) or neutral $\mathrm{Al}_{2} \mathrm{O}_{3}$. Reactions were conducted in anhydrous solvent under nitrogen atmosphere where required. Solutions were dried using anhydrous sodium sulfate. Reagents were added to the reaction flask by using a syringe. Thin layer chromatography (TLC) was performed on silica plates or neutral $\mathrm{Al}_{2} \mathrm{O}_{3}$ and components were visualized by observation under iodine. Isolated yields of all the products are reported (yields were not optimized). Ratios of diastereomers were determined from the ${ }^{1} \mathrm{H}$ (or) ${ }^{13} \mathrm{C}$ spectra of crude reaction mixture. The stereochemistry of the products were assigned based on the X-ray structure analysis of representative compounds. Good quality single crystals were grown by using a combination of dichloromethane or hexanes or methanol or acetone by slow solvent evaporation technique at 25 ${ }^{\circ} \mathrm{C}$ and the single crystal X-ray diffraction data for all the compounds was collected using four circle CCD diffractometer (monochromatic $\mathrm{Mo} \mathrm{K} \alpha$ radiation). Data collection and unit cell refinement for the data sets were done using APEX-II suit. The crystal structures were solved using Olex2 or WinGx packages using SHELXS97, and the structures were refined using SHELXL97. All the hydrogen atoms have been fixed at their geometrically ideal positions and refined using the riding model available within SHELXS97. All figures have been generated using Mercury.

Procedure A for catalytic 1, 3-dipolar cycloaddition of azomethine ylides with benzylidenemalononitrile: Under a nitrogen atmosphere AgOAc (10 mol\%) in anhydrous DCM $(1 \mathrm{~mL})$ was stirred for 30 min ; to this mixture were sequentially added a solution of N benzylideneiminoglycinates $(0.5 \mathrm{mmol})$ and benzylidenemalononitrile (0.5 mmol) in 4 mL DCM and $\mathrm{Et}_{3} \mathrm{~N}(40 \mathrm{~mol} \%)$ and stirred for 12 h in the absence of light at $\mathrm{r} . \mathrm{t}$. The reaction mixture was filtered through a celite pad. The filtrate was directly evaporated and the residue was purified by column chromatography.

Procedure B for the preparation of 42a and 42b:Cycloadducts 38a or 38b (1 mmol) in DCM (5 mL) was stirred for 5 min , and then triethyl amine (2 mmol) was added followed by acryloyl chloride (2 mmol) drop wise with cooling. Further, the reaction mixture was stirred for overnight under nitrogen atmosphere. After this period, the reaction mixture was quenched with water and extracted using DCM, combined the organic layers evaporated and the resulting crude mixture was subjected to column chromatography which gave the compounds 42a and 42b.

Procedure C for the preparation of 45a,b or 46a,b:A mixture of pyrrolidine derivative 42a or 42b $(0.14 \mathrm{mmol})$, glycine $\mathbf{4 4 a}(0.28 \mathrm{mmol})$ or 44b N-benzyl glycine hydrochloride (0.21 mmol) and paraformaldehyde $43(0.70 \mathrm{mmol})$ in toluene $(1 \mathrm{~mL})$ was heated at $110{ }^{\circ} \mathrm{C}$ for 12 h under nitrogen atmosphere. After this period, the reaction mixture was evaporated and the resulting crude reaction mixture was purified through chromatography which afforded the corresponding products 45a,b or 46a,b.

Procedure D for the preparation of nicotine analogues 51a-i and 52a-i: A dry flask containing nicotinaldehyde 47a, sarcosine 48 and N-phenyl malemide derivatives 49a-i in 1,4dioxane (5 mL) was heated to the appropriate temperature and time as shown in the respective Tables/Schemes. Then the reaction mixture was cooled to rt and subjected to the rotary evaporation, which afforded a crude mixture. Purification of the curde reaction mixture through alumina column choromatography $(\mathrm{EtOAc} / \mathrm{Hexane}=75: 25)$ afforded the nicotine derivatives 51a-i and 52a-i (see the respective Tables/Schemes for appropriate or exact amount of solvent/reagents).

Procedure E for the synthesis of nicotine analogues 53-56: A dry flask containing picolinaldehyde or isonicotinaldehyde $47 \mathrm{~b} / \mathbf{c}(0.75 \mathrm{mmol})$, sarcosine $48(1 \mathrm{mmol})$ and N -phenyl
malemide 49a (0.5 mmol) in 1,4-dioxane (5 mL) was heated to the appropriate temperature and time as shown in the respective Tables/Schemes. Then the reaction mixture was cooled to rt and subjected to the rotary evaporation, which afforded a crude mixture. Purification of the curde reaction mixture through alumina column choromatography $(\mathrm{EtOAc} / \mathrm{Hexane}=75: 25)$ afforded the nicotine derivatives 53-56 (see the coressponding Tables/Schemes for appropriate or exact amount of solvent/reagents).

Procedure F for the synthesis of nicotine derivatives 58/59 and 78/79: A dry flask containing nicotinaldehyde 47a (1 mmol), sarcosine $48(1.2 \mathrm{mmol})$ and diethyl fumarate 57 a or dimethyl fumarate $\mathbf{5 7 b}$ or fumaronitrile $\mathbf{7 5}(1 \mathrm{mmol})$ in 1,4-dioxane $(10 \mathrm{~mL})$ was heated to the appropriate temperature and time as shown in the respective Tables/Schemes. Then the reaction mixture was cooled to rt and subjected to rotary evaporation which afforded a crude mixture. Purification of the curde reaction mixture through silica column choromatography (EtOAc) afforded nicotine derivatives 58/59 and 78/79 (see the coressponding Tables/Schemes for appropriate or exact amount of solvent/reagents).

Procedure G for the synthesis of pyrrolidines 60-65: A dry flask containing picolinaldehyde 47b or isonicotinaldehyde $47 \mathrm{c}(1 \mathrm{mmol})$, sarcosine $48(1.2 \mathrm{mmol})$ and diethyl fumarate 57a or dimethyl fumarate $\mathbf{5 7 b}(1 \mathrm{mmol})$ in 1,4-dioxane (10 mL) was heated to the appropriate temperature and time as shown in the respective Tables/Schemes. Then the reaction mixture was cooled to rt and subjected to the rotary evaporation, which afforded a crude mixture. Purification of the curde reaction mixture through silica column choromatography $(\mathrm{EtOAc} / \mathrm{Hexane}=75: 25)$ afforded pyrrolidines 60-65

Procedure \mathbf{H} for the synthesis of nicotine derivatives 69-77: A dry flask containing N-benzyl glycine hydrochloride 68, triethyl amine and $\mathrm{Na}_{2} \mathrm{SO}_{4}$ in toluene ($7-10 \mathrm{~mL}$) was stirred for 1 h , then to the falsk add nicotinaldehyde 47a and N-phenyl malemide 49a or diethyl fumarate 57a or dimethyl fumarate $\mathbf{5 7 b}$ or fumaronitrile 75 was heated to an appropriate temperature and time as shown in the respective Tables/Schemes. Then the reaction mixture was cooled to rt and subjected to the rotary evaporation, which afforded a crude mixture. Purification of the curde reaction mixture through silica column choromatography $(\mathrm{EtOAc} / \mathrm{Hexane}=70: 30)$ afforded
nicotine derivatives 69-77 (see coressponding Tables/Schemes for appropriate or exact amount of solvent/reagents).
$\left(2 R^{*}, 3 R^{*}, 5 S^{*}\right)$-Methyl 5-(4-chlorophenyl)-4,4-dicyano-3-(p-tolyl)pyrrolidine-2-carboxylate

(38a): Following the general procedure described above 38a was obtained after purification by silica column chromatography (EtOAc:Hexane $=$ 30:70); as a colorless solid ($182 \mathrm{mg}, 96 \%$), mp: $156-158{ }^{\circ} \mathrm{C}$; FT-IR (KBr): 3341, 2954, 1737 and $1221 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta$ $7.64(\mathrm{~d}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}), 7.46(\mathrm{~d}, 4 \mathrm{H}, J=8.1 \mathrm{~Hz}), 7.30(\mathrm{~d}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}), 4.94(\mathrm{~s}, 1 \mathrm{H}), 4.51(\mathrm{~d}$, $1 \mathrm{H}, J=8.1 \mathrm{~Hz}), 4.14(\mathrm{~d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 2.99(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 173.3,139.8,136.0,132.3,130.0,129.4,129.2,128.7,128.2,113.5,111.4$, 69.7, 60.9, 58.0, 53.2, 50.8, 21.3; HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{ClN}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 380.1166$ found $[\mathrm{M}+\mathrm{H}]^{+} 380.1171$.
$\left(2 R^{*}, 3 R^{*}, 5 S^{*}\right)-$ Methyl
4,4-dicyano-3,5-di-p-tolylpyrrolidine-2-

carboxylate (38b): Following the general procedure described above 38b was obtained after purification by silica column chromatography (EtOAc:Hexane $=30: 70$); as a colorless solid ($163 \mathrm{mg}, 91 \%$), mp:170-172 ${ }^{\circ} \mathrm{C}$; FT-IR (KBr): 3343, 2902, 1737 and $1247 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ MHz): $\delta 7.57(\mathrm{~d}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}), 7.46(\mathrm{~d}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}), 7.31-7.27(\mathrm{~m}, 4 \mathrm{H}), 4.92(\mathrm{~s}, 1 \mathrm{H}), 4.51$ $(\mathrm{d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}), 4.15(\mathrm{~d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.97(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 6 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 173.4,140.1,139.6,130.6,130.0,129.7,129.6,128.3 .127 .2,113.8,111.7$, $70.4,61.0,58.1,53.1,50.9,21.3,21.2$; HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 360.1712$ found $[\mathrm{M}+\mathrm{H}]^{+} 360.1716$.
$\left(2 R^{*}, 3 R^{*}, 5 S^{*}\right)$-Ethyl 4,4-dicyano-3,5-di-p-tolylpyrrolidine-2-carboxylate (38c): Following the
 general procedure described above 38c was obtained after purification by silica column chromatography (EtOAc:Hexane $=30: 70$); as a colorless solid ($177 \mathrm{mg}, 95 \%$), mp: $99-101{ }^{\circ} \mathrm{C}$; FT-IR (KBr): 3345, 2983, 1731 and $1218 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.58(\mathrm{~d}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}), 7.46$ (d, $2 \mathrm{H}, J=8.1 \mathrm{~Hz}$), 7.30-7.27 (m, 4H), $4.93(\mathrm{~s}, 1 \mathrm{H}), 4.47(\mathrm{~d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}), 4.26-4.16(\mathrm{~m}, 2 \mathrm{H})$, $4.13(\mathrm{~d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}), 2.96$ (br. s, 1 H), $2.41(\mathrm{~s}, 6 \mathrm{H}), 1.21(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR
$\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 172.8,140.0,139.5,130.7,129.9,129.8,129.6,128.3,127.2,113.9,111.7$, $70.4,62.2,61.2,58.2,50.9,21.3,21.3,14.1$; HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ 374.1869 found $[\mathrm{M}+\mathrm{H}]^{+} 374.1873$.
$\left(2 R^{*}, 3 R^{*}, 5 S^{*}\right)$-Methyl 4,4-dicyano-5-(o-tolyl)-3-(p-tolyl)pyrrolidine-2-carboxylate (38d):

Following the general procedure described above 38d was obtained after purification by silica column chromatography (EtOAc:Hexane $=30: 70$); as a colorless solid ($179 \mathrm{mg}, 90 \%$), mp:146-148 ${ }^{\circ} \mathrm{C}$; FT-IR (KBr): 3339, 2954, 1736 and $1221 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.99-7.97(\mathrm{~m}, 1 \mathrm{H})$, $7.48(\mathrm{~d}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}), 7.35-7.27(\mathrm{~m}, 5 \mathrm{H}), 5.33(\mathrm{~s}, 1 \mathrm{H}), 4.51(\mathrm{~d}, 1 \mathrm{H}, J=7.9 \mathrm{~Hz}), 4.20(\mathrm{~d}, 1 \mathrm{H}, J$ $=7.9 \mathrm{~Hz}$), $3.77(\mathrm{~s}, 3 \mathrm{H}), 2.86($ br. s, 1 H$), 2.58(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$: $\delta 173.4,139.7,136.9,131.7,131.1,130.0,129.7,129.6,128.4,127.5,126.5,114.2,111.8,65.5$, $60.8,58.7,53.1,49.5,21.3,19.8$; HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 360.1712$ found $[\mathrm{M}+\mathrm{H}]^{+} 360.1711$.
(2R*, 3R*, $5 R^{*}$)-Methyl 5-(2-chlorophenyl)-4,4-dicyano-3-(p-tolyl)pyrrolidine-2-carboxylate
 (38e): Following the general procedure described above 38e was obtained after purification by silica column chromatography (EtOAc:Hexane $=$ $30: 70$); as a colorless solid ($174 \mathrm{mg}, 92 \%$), mp:153-155 ${ }^{\circ} \mathrm{C}$; FT-IR (KBr): 3346, 2954, 1737 and $1220 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$): $\delta 8.05$ (dd, $\left.1 \mathrm{H}, J_{1}=7.9, J_{2}=2.0 \mathrm{~Hz}\right), 7.49-7.46(\mathrm{~m}, 3 \mathrm{H}), 7.44-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.30(\mathrm{~d}, 2 \mathrm{H}, J=7.9 \mathrm{~Hz}), 5.61$ $(\mathrm{s}, 1 \mathrm{H}), 4.51(\mathrm{~d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}), 4.20(\mathrm{~d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.93(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 2.41(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 173.1,139.7,134.2,131.6,130.9,130.0,130.0,129.5$, $129.5,128.4,127.3,113.4,111.6,64.9,60.7,58.7,53.2,49.2,21.3$; HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{ClN}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 380.1166$ found $[\mathrm{M}+\mathrm{H}]^{+} 380.1167$.
($2 R^{*}, 3 R^{*}, 5 S^{*}$)-Methyl 4,4-dicyano-5-(4-methoxyphenyl)-3-(p-tolyl)pyrrolidine-2-carboxylate
 ($\mathbf{3 8 f}$): Following the general procedure described above $\mathbf{3 8 f}$ was obtained after purification by silica column chromatography (EtOAc:Hexane $=$ 35:65); as a colorless solid ($152 \mathrm{mg}, 81 \%$), mp:140-142 ${ }^{\circ} \mathrm{C}$; FT-IR (KBr): 3345, 2955, 1737 and $1249 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta$ $7.61(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}), 7.46(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.28(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 6.99(\mathrm{~d}, 2 \mathrm{H}, J=8.7$
$\mathrm{Hz}), 4.90(\mathrm{~d}, 1 \mathrm{H}, J=3.8 \mathrm{~Hz}), 4.50(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 4.14(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 3.85(\mathrm{~s}, 3 \mathrm{H})$, 3.75 (s, 3H), 2.95 (br. s, 1H), 2.41 (s, 3H); ${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(} \mathrm{CDCl}_{3}, 100 \mathrm{MHz}$): $\delta 173.4,160.9,139.6$, $130.0,130.0,128.6,128.3,125.4,114.3,113.8,111.7,70.2,60.9,57.9,55.4,53.1,51.0,21.3$; HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 376.1661$ found $[\mathrm{M}+\mathrm{H}]^{+} 376.1668$.

Methyl 4,4-dicyano-5-(3-methoxyphenyl)-3-(p-tolyl)pyrrolidine-2-carboxylate (38g): Following
 the general procedure described above 38g (mixture of isomers) was obtained after purification by silica column chromatography (EtOAc:Hexane $=30: 70$); as a colorless semi solid ($169 \mathrm{mg}, 90 \%$), FT-IR (DCM): 3343, 2955, 1738 and $1244 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta$ 7.49-6.99 (m, 8H), $4.95(\mathrm{~s}, 1 \mathrm{H}), 4.53(\mathrm{~d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}), 4.18(\mathrm{~d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}), 3.86(\mathrm{~s}, 3 \mathrm{H})$, $3.74(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H})$. (The ${ }^{1} \mathrm{H}$ NMR given here for major isomer); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100\right.$ $\mathrm{MHz}): \delta 173.3,171.4,160.0,159.9,139.7,139.6,135.3,130.9,130.1,130.0,129.7,129.6$, $128.6,128.3,119.6,119.4,115.9,115.7,113.8,113.8,112.8,112.5,111.7,70.5,70.2,60.9,60.5$, $58.1,57.7,55.4,55.3,53.1,53.0,50.8,48.9,21.3,21.1$ (The ${ }^{13} \mathrm{C}$ NMR given here for mixture of isomers); HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 376.1661$ found $[\mathrm{M}+\mathrm{H}]^{+} 376.3090$.

Methyl 4,4-dicyano-5-(2-methoxyphenyl)-3-(p-tolyl)pyrrolidine-2-carboxylate (38h): Following (, the general procedure described above 38h (mixture of isomers) was obtained after purification by silica column chromatography (EtOAc:Hexane = 30:70); as a colorless solid ($146 \mathrm{mg}, 78 \%$), mp:138-140 ${ }^{\circ} \mathrm{C}$; FT-IR (KBr): 3340, 2955, 1737 and $1247 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}): \delta 7.85\left(\mathrm{dd}, 1 \mathrm{H}, J_{l}=7.7, J_{2}=1.4 \mathrm{~Hz}\right), 7.47-6.95(\mathrm{~m}, 7 \mathrm{H}), 5.46(\mathrm{~s}, 1 \mathrm{H}), 4.46(\mathrm{~d}, 1 \mathrm{H}, J=8.0$ $\mathrm{Hz}), 4.18(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}) .\left(\right.$ The ${ }^{1} \mathrm{H}$ NMR given here for major isomer); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 173.1,171.0,157.3,157.0,139.5,139.4$, $130.8,130.6,130.0,129.9,128.8,128.6,128.4,128.0,127.8,123.9,122.6,121.0,120.8,114.5$, $114.2,114.0,112.2,110.8,110.5,67.1,63.7,63.1,61.3,59.1,58.4,55.1,55.1,53.0,52.9,49.4$, 48.8, 21.3 (The ${ }^{13} \mathrm{C}$ NMR given here for mixture of isomers); HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{3}$ $[\mathrm{M}+\mathrm{H}]^{+} 376.1661$ found $[\mathrm{M}+\mathrm{H}]^{+} 376.1667$.

Methyl 4,4-dicyano-5-(3-nitrophenyl)-3-(p-tolyl)pyrrolidine-2-carboxylate (38i): Following the general procedure described above $\mathbf{3 8 i}$ (mixture of isomers) was obtained after purification by
silica column chromatography ($\mathrm{EtOAc}:$ Hexane $=35: 65$); as a colorless solid ($191 \mathrm{mg}, 98 \%$), mp :
 compound decomposes after $128^{\circ} \mathrm{C}$; FT-IR (KBr): 3340, 2956, 1738 and $1223 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.63-8.62(\mathrm{~m}, 1 \mathrm{H})$, $8.33(\mathrm{~d}, 1 \mathrm{H}, J=7.9 \mathrm{~Hz}), 8.03(\mathrm{~d}, 1 \mathrm{H}, J=7.9 \mathrm{~Hz}), 7.68(\mathrm{t}, 1 \mathrm{H}, J=8.1$ Hz), 7.47 (d, 2H, $J=8.1 \mathrm{~Hz}$), 7.34-7.28 (m, 2H), 5.09 (s, 1H), 4.57 $(\mathrm{d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}), 4.16(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.13(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 173.1,148.6,140.0,136.4,133.5,130.2,130.1,129.1,128.5,128.2,125.0$, $122.5,113.2,111.1,69.2,60.9,57.9,53.3,50.6,21.3$ (The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR given here for major isomer); HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 391.1406$ found $[\mathrm{M}+\mathrm{H}]^{+} 391.1416$.

Methyl 4,4-dicyano-5-(3,4-dimethoxyphenyl)-3-(p-tolyl)pyrrolidine-2-carboxylate
(38j):

Following the general procedure described above 38j (mixture of isomers) was obtained after purification by silica column chromatography (EtOAc:Hexane $=50: 50$); as a colorless semi solid ($182 \mathrm{mg}, 90 \%$), FT-IR (DCM): 3345, 2960, 1736 and $1266 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.45(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}), 7.30-7.27(\mathrm{~m}, 3 \mathrm{H})$, $7.20\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=8.4, J_{2}=2.1 \mathrm{~Hz}\right), 6.93(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 4.90(\mathrm{~s}, 1 \mathrm{H}), 4.50(\mathrm{~d}, 1 \mathrm{H}, J=8.4$ $\mathrm{Hz}), 4.13(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 173.4,150.3,149.2,139.6,129.9,129.7,128.3,125.9,120.0,113.9,111.9$, 111.1, 109.9, 70.4, 60.8, 57.9, 56.0, 53.1,50.9, 21.2 ($\mathrm{The}^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR given here for major isomer); HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 406.1767$ found $[\mathrm{M}+\mathrm{H}]^{+}$406.1772.
$\left(2 R^{*}, 3 R^{*}, 5 S^{*}\right)$-Methyl 4,4-dicyano-3-(p-tolyl)-5-(4-(trifluoromethyl)phenyl)pyrrolidine-2-
 carboxylate ($\mathbf{3 8 k}$): Following the general procedure described above $\mathbf{3 8 k}$ was obtained after purification by silica column chromatography (EtOAc:Hexane $=35: 65$); as a colorless solid ($196 \mathrm{mg}, 95 \%$), mp:144$146{ }^{\circ} \mathrm{C}$; FT-IR (KBr): 3346, 2958, 1738 and $1213 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}): \delta 7.84(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}), 7.75(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}), 7.46(\mathrm{~d}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}), 7.32-$ $7.28(\mathrm{~m}, 2 \mathrm{H}), 5.02(\mathrm{~s}, 1 \mathrm{H}), 4.54(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}), 4.15(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.02$ (br. s, 1H), $2.42(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 173.2,139.9,137.8,132.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=33\right.$ $\mathrm{Hz}), 130.1,129.2,128.2,127.9,126.0(\mathrm{q}, 2 \mathrm{H}, J=14.6 \mathrm{~Hz}), 113.4,111.2,69.6,60.9,58.1,53.2$, 50.6, 21.3; HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 414.1429$ found $[\mathrm{M}+\mathrm{H}]^{+} 414.1432$. carboxylate (381): Following the general procedure described above $\mathbf{3 8 1}$ (mixture of isomers) was
 obtained after purification by silica column chromatography (EtOAc:Hexane = 55:45); as a colorless semi solid ($162 \mathrm{mg}, 77 \%$), FT-IR (DCM): 3336, 2956, 1738 and $1255 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta$ $7.49(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}), 7.27(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}), 7.20\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=8.7\right.$, $\left.J_{2}=2.0 \mathrm{~Hz}\right), 7.00(\mathrm{~d}, 2 \mathrm{H}, J=8.3 \mathrm{~Hz}), 6.93(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}), 4.89(\mathrm{~s}$, $1 \mathrm{H}), 4.47$ (d, 1H, $J=8.2 \mathrm{~Hz}$), 4.12 (d, 1H, $J=8.2 \mathrm{~Hz}$), 3.95 (s, 3H), 3.92 (s, 3H), 3.85 (s, 3H), $3.75(\mathrm{~s}, 3 \mathrm{H}), 2.95(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 173.4,160.5,150.3,149.2,129.9$, $129.6,125.9,124.5,119.9,114.6,113.9,111.9,111.1,110.0,70.3,61.0,57.7,56.0,55.9,55.3$, 53.1, 51.1 (The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR given here for major isomer); HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+} 422.1716$ found $[\mathrm{M}+\mathrm{H}]^{+} 422.1721$.
$\left(2 R^{*}, 3 R^{*}, 5 S^{*}\right)$-Methyl 3-(4-chlorophenyl)-4,4-dicyano-5-(p-tolyl)pyrrolidine-2-carboxylate

(38m): Following the general procedure described above 38m was obtained after purification by silica column chromatography (EtOAc:Hexane $=30: 70$); as a colorless solid ($166 \mathrm{mg}, 88 \%$), mp: 148$150{ }^{\circ} \mathrm{C}$; FT-IR (KBr): 3345, 2955, 1738 and $1221 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}, $400 \mathrm{MHz}): \delta 7.57-7.46(\mathrm{~m}, 6 \mathrm{H}), 7.29-7.27(\mathrm{~m}, 2 \mathrm{H}), 4.92(\mathrm{~s}, 1 \mathrm{H}), 4.46(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 4.16$ (d, $1 \mathrm{H}, J=8.0 \mathrm{~Hz}$), 3.71 (s, 3H), 2.98 (br. s, 1 H), 2.41 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$): δ $172.9,140.2,135.8,131.3,130.3,129.8,129.7,129.6,127.1,113.5,111.5,70.4,61.0,57.6,53.2$, 50.7, 21.3; HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{ClN}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 380.1166$ found $[\mathrm{M}+\mathrm{H}]^{+} 380.1167$.

Methyl 4,4-dicyano-5-(furan-2-yl)-3-(p-tolyl)pyrrolidine-2-carboxylate (39a): Following the
 general procedure described above 39a (mixture of isomers) was obtained after purification by silica column chromatography (EtOAc:Hexane = 30:70); as a colorless semi solid ($139 \mathrm{mg}, 83 \%$), FT-IR (DCM): 3338, 2955, 1737 and $1219 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$): $\delta 7.53$ (dd, $1 \mathrm{H}, J_{I}=1.8$, $\left.J_{2}=0.7 \mathrm{~Hz}\right), 7.44(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}), 7.29(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}), 6.70(\mathrm{~d}, 1 \mathrm{H}, J=3.4 \mathrm{~Hz}), 6.48-$ $6.47(\mathrm{~m}, 1 \mathrm{H}), 5.04(\mathrm{~s}, 1 \mathrm{H}), 4.51(\mathrm{~d}, 1 \mathrm{H}, J=8.7 \mathrm{~Hz}), 4.18(\mathrm{~d}, 1 \mathrm{H}, J=8.7 \mathrm{~Hz}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 2.41$ (s, 3H) (The ${ }^{1} \mathrm{H}$ NMR given here for major isomer); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 172.6$, $171.4,148.1,147.0,144.1,144.0,139.8,139.7,130.0,129.6,129.2,128.8,128.5,128.3,113.3$,
$113.1,113.0,111.6,111.0,110.9,110.5,110.0,65.5,65.1,63.3,61.0,58.2,57.6,53.2,53.1,49.4$, 48.0, 21.3 (The ${ }^{13} \mathrm{C}$ NMR values given here for mixture of isomers); HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 336.1348$ found $[\mathrm{M}+\mathrm{H}]^{+} 336.1359$.

Methyl 4,4-dicyano-5-(pyridin-2-yl)-3-(p-tolyl)pyrrolidine-2-carboxylate (39b): Following the
 general procedure described above 39b (mixture of isomers) was obtained after purification by silica column chromatography (EtOAc:Hexane = 90:10); as a colorless semi solid ($138 \mathrm{mg}, 80 \%$), FT-IR (DCM): 3321, 2954, 1738 and $1219 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.70(\mathrm{~d}, 1 \mathrm{H}, J=4.8$ $\mathrm{Hz}), 7.84-7.80(\mathrm{~m}, 1 \mathrm{H}), 7.60(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.45(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.41-7.36(\mathrm{~m}, 1 \mathrm{H})$, $7.30-7.27(\mathrm{~m}, 2 \mathrm{H}), 5.11(\mathrm{~s}, 1 \mathrm{H}), 4.65(\mathrm{~d}, 1 \mathrm{H}, J=9.4 \mathrm{~Hz}), 4.40(\mathrm{~d}, 1 \mathrm{H}, J=9.4 \mathrm{~Hz}), 3.74(\mathrm{~s}, 3 \mathrm{H})$, $2.39(\mathrm{~s}, 3 \mathrm{H})$ (The ${ }^{1} \mathrm{H}$ NMR given here for major isomer); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 172.5$, $171.1,153.1,151.9,149.9,149.6,139.7,139.5,137.4,130.0,129.2,128.7,128.5,128.4,124.7$, $124.7,122.9,122.5,113.8,113.7,113.3,111.3,71.7,71.3,64.6,61.8,59.6,59.2,53.1,53.0$, 50.4, 48.6, 21.2 (The ${ }^{13} \mathrm{C}$ NMR values given here for mixture of isomers); HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 347.1508$ found $[\mathrm{M}+\mathrm{H}]^{+} 347.1518$.
($\left.2 R^{*}, 3 R^{*}, 5 R^{*}\right)-$ Methyl

3-(4-chlorophenyl)-4,4-dicyano-5-(thiophen-2-yl)pyrrolidine-2-

 carboxylate (39c): Following the general procedure described above 39c was obtained after purification by silica column chromatography (EtOAc:Hexane $=35: 65$); as a colorless solid ($169 \mathrm{mg}, 91 \%$), mp:154-156 ${ }^{\circ} \mathrm{C}$; FT-IR (KBr): 3338, 2955, 1738 and $1124 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ MHz): $\delta 7.53-7.39(\mathrm{~m}, 6 \mathrm{H}), 7.13\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=4.9, J_{2}=3.7 \mathrm{~Hz}\right), 5.26(\mathrm{~d}, 1 \mathrm{H}, J=4.9 \mathrm{~Hz}), 4.47$ $\left(\mathrm{dd}, 1 \mathrm{H}, J_{l}=8.4, J_{2}=1.4 \mathrm{~Hz}\right), 4.12(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.26(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 172.6,136.5,135.9,130.8,130.0,129.6,127.5,126.9,126.8,113.2,111.3$, 66.9, 60.8, 57.4, 53.3, 51.0; HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 372.0573$ found $[\mathrm{M}+\mathrm{H}]^{+} 372.0578$.
$\left(2 R^{*}, 3 R^{*}, 5 R^{*}\right)$-Ethyl 4,4-dicyano-5-(thiophen-2-yl)-3-(p-tolyl)pyrrolidine-2-carboxylate (39d): Following the general procedure described above 39d was obtained after purification by silica column chromatography (EtOAc:Hexane $=30: 70$); as a colorless solid ($166 \mathrm{mg}, 91 \%$), mp: 153$155{ }^{\circ} \mathrm{C}$; FT-IR (KBr): 3346, 2984, 1731 and $1218 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$): $\delta 7.45(\mathrm{~d}$,

$2 \mathrm{H}, J=8.1 \mathrm{~Hz}), 7.42\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=5.1, J_{2}=1.2 \mathrm{~Hz}\right), 7.40\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=\right.$ $\left.3.7, J_{2}=0.7 \mathrm{~Hz}\right), 7.29(\mathrm{~d}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}), 7.13\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=5.1, J_{2}=3.6\right.$ $\mathrm{Hz}), 5.26(\mathrm{~d}, 1 \mathrm{H}, J=2.9 \mathrm{~Hz}), 4.47(\mathrm{~d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}), 4.21(\mathrm{q}, 2 \mathrm{H}, J=7.2$ $\mathrm{Hz}), 4.09(\mathrm{~d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}), 3.23(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.19(\mathrm{t}, 3 \mathrm{H}, J=$ $7.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 172.5,139.7,136.9,130.0,129.3,128.2,127.5,126.8$, $126.6,113.5,111.5,66.9,62.3,60.9,58.1,51.2,21.3,14.1$; HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+} 366.1276$ found $[\mathrm{M}+\mathrm{H}]^{+} 366.1281$.

Methyl 4,4-dicyano-3-(4-hydroxyphenyl)-5-(thiophen-2-yl)pyrrolidine-2-carboxylate (39e):

Following the general procedure described above 39e (mixture of isomers) was obtained after purification by silica column chromatography (EtOAc:Hexane $=35: 65$); as a colorless semi solid ($159 \mathrm{mg}, 90 \%$), FT-IR (DCM): 3351, 2971, 1736 and $1219 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta$ $7.83(\mathrm{~d}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}), 7.41-7.36(\mathrm{~m}, 4 \mathrm{H}), 7.11\left(\mathrm{dd}, 1 \mathrm{H}, J_{l}=5.0, J_{2}=3.6\right.$ $\mathrm{Hz}), 6.92(\mathrm{~d}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}), 5.24(\mathrm{~s}, 1 \mathrm{H}), 4.45(\mathrm{~d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}), 4.10(\mathrm{~d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}), 3.72$ (s, 3H) (The ${ }^{1} \mathrm{H}$ NMR values given here for major isomer); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}+\mathrm{DMSO}, 100\right.$ $\mathrm{MHz}): \delta 173.1,171.2,159.4,158.4,137.0,135.3,133.9,132.3,129.9,129.6,128.4,127.4$, $126.7,126.6,126.5,122.7,117.0,116.4,116.3,116.1,113.6,111.7,66.7,66.2,63.6,60.9,57.7$, 55.7, 53.1, 51.4, 49.5 (The ${ }^{13} \mathrm{CNMR}$ values given here for mixture of isomers); HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 354.0912$ found $[\mathrm{M}+\mathrm{H}]^{+} 354.0916$.
$\left(2 R^{*}, 3 R^{*}, 5 R^{*}\right)-$ Methyl
5-(2-chlorophenyl)-4,4-dicyano-3-(furan-2-yl)pyrrolidine-2-

carboxylate (39f): Following the general procedure described above $\mathbf{3 9 f}$ was obtained after purification by silica column chromatography (EtOAc:Hexane $=30: 70$); as a colorless solid ($167 \mathrm{mg}, 94 \%$), mp:120-122 ${ }^{\circ} \mathrm{C}$; FT-IR (KBr): 3345, 2960, 1738 and $1219 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.00(\mathrm{dd}, 1 \mathrm{H}$, $\left.J_{1}=9.5, J_{2}=2.2 \mathrm{~Hz}\right), 7.56\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=1.8, J_{2}=0.6 \mathrm{~Hz}\right), 7.49-7.36(\mathrm{~m}, 3 \mathrm{H}), 6.63(\mathrm{~d}, 1 \mathrm{H}, J=3.4$ $\mathrm{Hz}), 6.49\left(\mathrm{dd}, 1 \mathrm{H}, J_{l}=3.4, J_{2}=1.8 \mathrm{~Hz}\right), 5.56(\mathrm{~d}, 1 \mathrm{H}, J=5.0 \mathrm{~Hz}), 4.56\left(\mathrm{dd}, 1 \mathrm{H}, J_{l}=8.1, J_{2}=2.2\right.$ $\mathrm{Hz}), 4.40(\mathrm{~d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 2.91(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta$ $172.6,146.4,144.2,134.2,131.1,131.0,130.0,129.4,127.4,113.0,111.2,111.0,110.3,64.5$, 59.3, 53.4, 52.5, 47.3; HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{ClN}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 356.0802$ found $[\mathrm{M}+\mathrm{H}]^{+}$ 356.0802.

Methyl 4,4-dicyano-3-(thiophen-2-yl)-5-(p-tolyl)pyrrolidine-2-carboxylate (39g): Following the
 general procedure described above $\mathbf{3 9 g}$ (mixture of isomers) was obtained after purification by silica column chromatography (EtOAc:Hexane $=$ 30:70); as a colorless semi solid ($132 \mathrm{mg}, 75 \%$), FT-IR (DCM): 3344, 2953, 1741 and $1243 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.55(\mathrm{~d}, 2 \mathrm{H}, J=8.1$ $\mathrm{Hz}), 7.42\left(\mathrm{dd}, 1 \mathrm{H}, J_{I}=5.2, J_{2}=1.1 \mathrm{~Hz}\right), 7.36(\mathrm{dd}, 1 \mathrm{H}, J=3.6 \mathrm{~Hz}), 7.28(\mathrm{~d}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.15-$ $7.13(\mathrm{~m}, 1 \mathrm{H}), 4.92(\mathrm{~s}, 1 \mathrm{H}), 4.51(\mathrm{~s}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right):$ $\delta 172.7,140.2,134.8,130.3,129.7,127.8,127.1,127.6,126.6,113.5,114.4,70.1,62.5,53.7$, 53.3, 51.3, 21.3 (The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{CNMR}$ values given here for major isomers); HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 352.1120$ found $[\mathrm{M}+\mathrm{H}]^{+} 352.1130$.
$\left(2 R^{*}, 3 R^{*}, 5 S^{*}\right)$-Methyl 4,4-dicyano-3-(1-methyl-1H-pyrrol-2-yl)-5-(p-tolyl)pyrrolidine-2carboxylate (39h): Following the general procedure described above 39h was obtained after
 purification by silica column chromatography (EtOAc:Hexane $=35: 65$); as a colorless solid ($155 \mathrm{mg}, 89 \%$), mp:144-146 ${ }^{\circ} \mathrm{C}$; FT-IR (KBr): 3345, 2953, 1737 and $1238 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.53(\mathrm{~d}, 2 \mathrm{H}, J=$ $8.1 \mathrm{~Hz}), 7.28(\mathrm{~d}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}), 6.71\left(\mathrm{dd}, 1 \mathrm{H}, J_{l}=2.5, J_{2}=1.8 \mathrm{~Hz}\right), 6.55$ $\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=3.8, J_{2}=1.8 \mathrm{~Hz}\right), 6.21\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=3.8, J_{2}=2.5 \mathrm{~Hz}\right), 4.90(\mathrm{~d}, 1 \mathrm{H}, J=5.0 \mathrm{~Hz}), 4.49$ $(\mathrm{d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 4.39(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 3.79(\mathrm{~s}, 6 \mathrm{H}), 2.93(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 172.9,140.2,130.3,129.7,127.0,124.7,124.3,114.3,115.6,109.9,108.0$, $70.7,63.1,53.2,50.4,49.7,34.2,21.3$; HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 349.1665$ found $[\mathrm{M}+\mathrm{H}]^{+} 349.1674$.

$\left(2 S^{*}, 4 R^{*}, 5 S^{*}\right)$-5-Methyl-4-(pyridin-3-yl)-2-(p-tolyl)pyrrolidine-3,3dicarbonitrile (39i): Following the general procedure described above 39i was obtained after purification by silica column chromatography $($ EtOAc:Hexane $=100: 0)$; as a colorless solid ($133 \mathrm{mg}, 77 \%$), mp:138-140 ${ }^{\circ} \mathrm{C}$; FT-IR (KBr): 3338, 2954, 1738 and $1182 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.79(\mathrm{~d}, 1 \mathrm{H}$, $J=1.9 \mathrm{~Hz}), 8.73\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=4.8, J_{2}=1.3 \mathrm{~Hz}\right), 7.99-7.28(\mathrm{~m}, 6 \mathrm{H}), 4.94(\mathrm{~s}, 1 \mathrm{H}), 4.48(\mathrm{~d}, 1 \mathrm{H}, J=$ $7.9 \mathrm{~Hz}), 4.21(\mathrm{~d}, 1 \mathrm{H}, J=7.9 \mathrm{~Hz}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.03(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}+\mathrm{DMSO}, 100 \mathrm{MHz}\right): \delta 172.6,150.8,149.9,140.1,135.7$, 130.2, 129.6, 129.1, 127.1,
$124.0,113.3,111.5,70.4,60.9,55.5,53.2,50.5,21.3$; HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{O}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+} 347.1508$ found $[\mathrm{M}+\mathrm{H}]^{+} 347.1508$.
$\left(2 R^{*}, 3 R^{*}, 5 S^{*}\right)$-Methyl 4,4-dicyano-3-(4-methoxyphenyl)-5-(pyridin-3-yl)pyrrolidine-2-
 carboxylate (40a): Following the general procedure described above 40a was obtained after purification by silica column chromatography (EtOAc:Hexane $=100: 0)$; as a colorless solid ($162 \mathrm{mg}, 89 \%$), mp:132-134 ${ }^{\circ}$ C; FT-IR (KBr): 3338, 2955, 1738 and $1253 \mathrm{~cm}^{-1 ; 1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}): \delta 8.89(\mathrm{~d}, 1 \mathrm{H}, J=2.1 \mathrm{~Hz}), 8.73\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=4.8, J_{2}=1.4 \mathrm{~Hz}\right)$, 8.11-8.08 (m, 1H), $7.50(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}), 7.44\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=7.9, J_{2}=4.8 \mathrm{~Hz}\right), 7.01(\mathrm{~d}, 2 \mathrm{H}, J=$ $8.8 \mathrm{~Hz}), 4.99(\mathrm{~s}, 1 \mathrm{H}), 4.50(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}), 4.14(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~s}$, 3H), 3.03 (br. s, 1H); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$): $\delta 173.2,160.6,151.4,148.9,135.2,130.0$, $129.6,124.0,123.9,114.7,113.2,111.3,68.1,61.0,57.8,55.4,53.3,50.8$; HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 363.1457$ found $[\mathrm{M}+\mathrm{H}]^{+} 363.1460$.
$\left(2 R^{*}, 3 R^{*}, 5 S^{*}\right)$-Methyl 4,4-dicyano-5-(pyridin-3-yl)-3-(p-tolyl)pyrrolidine-2-carboxylate (40b):

Following the general procedure described above 40b was obtained after purification by silica column chromatography (EtOAc:Hexane $=90: 10$); as a colorless solid ($156 \mathrm{mg}, 90 \%$), mp: 157-159 ${ }^{\circ} \mathrm{C}$; FT-IR (KBr): 3348, 2955, 2210, 1734 and $1220 \mathrm{~cm}^{-1 ;} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.89(\mathrm{~d}$, $1 \mathrm{H}, J=1.9 \mathrm{~Hz}), 8.73\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=4.8, J_{2}=1.3 \mathrm{~Hz}\right), 8.09(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.47-7.42(\mathrm{~m}$, $3 \mathrm{H}), 7.29(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 5.00(\mathrm{~s}, 1 \mathrm{H}), 4.54(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}), 4.15(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz})$, $3.76(\mathrm{~s}, 3 \mathrm{H}), 3.06($ br. s, 1 H$), 2.41(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 173.2,151.3,148.8$, $139.9,135.3,130.1,129.9,129.2,128.2,123.9,113.2,111.2,68.2,60.9,58.0,53.3,50.7,21.3$; HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 347.1508$ found $[\mathrm{M}+\mathrm{H}]^{+} 347.1501$.

($2 R^{*}, 3 R^{*}, 5 S^{*}$)-Methyl 4,4-dicyano-5-(pyridin-3-yl)-3-(thiophen-2$\boldsymbol{y l})$ pyrrolidine-2-carboxylate (40c): Following the general procedure described above 40c was obtained after purification by silica column chromatography (EtOAc:Hexane $=100: 0)$; as a colorless solid (158 mg , 93%), mp:152-154 ${ }^{\circ} \mathrm{C}$; FT-IR (KBr): 3337, 2957, 1738 and $1218 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400$ $\mathrm{MHz}): \delta 8.89(\mathrm{~d}, 1 \mathrm{H}, J=2.2 \mathrm{~Hz}), 8.74\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=4.9, J_{2}=1.7 \mathrm{~Hz}\right), 8.09-8.07(\mathrm{~m}, 1 \mathrm{H}), 7.45-$
$7.36(\mathrm{~m}, 3 \mathrm{H}), 7.15\left(\mathrm{dd}, 1 \mathrm{H}, J_{I}=5.1, J_{2}=3.7 \mathrm{~Hz}\right), 5.00(\mathrm{~d}, 1 \mathrm{H}, J=3.9 \mathrm{~Hz}), 4.54-4.49(\mathrm{~m}, 2 \mathrm{H})$, $3.81(\mathrm{~s}, 3 \mathrm{H}), 3.03$ (br. s, 1H); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 172.5,151.6,149.0,135.1,134.3$, $129.5,127.9,127.8,126.9,123.9,112.9,110.9,67.9,62.3,53.7,53.4,51.0$; HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 339.0916$ found $[\mathrm{M}+\mathrm{H}]^{+} 339.0911$.
$\left(2 R^{*}, 3 R^{*}, 5 S^{*}\right)$-Methyl 1-acryloyl-5-(4-chlorophenyl)-4,4-dicyano-3-(p-tolyl)pyrrolidine-2-
 carboxylate (42a): Following the general procedure described above 42a was obtained after purification by silica column chromatography $(E t O A c: H e x a n e=25: 75) ;$ as a colorless solid ($395 \mathrm{mg}, 91 \%$), mp:222-224 ${ }^{\circ} \mathrm{C}$; FT-IR (KBr):, 2958, 1738, 1675, 1416 and $1218 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.51-7.44(\mathrm{~m}, 6 \mathrm{H}), 7.30(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 6.30(\mathrm{~d}$, $1 \mathrm{H}, J=16.4 \mathrm{~Hz}), 5.78-5.70(\mathrm{~m}, 2 \mathrm{H}), 5.48(\mathrm{~d}, 1 \mathrm{H}, J=10.5 \mathrm{~Hz}), 5.28(\mathrm{~d}, 1 \mathrm{H}, J=10.5 \mathrm{~Hz}), 4.15-$ $4.10(\mathrm{~m}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 169.7,165.3,140.7$, $137.0,132.0,130.0,128.5,127.4,125.3,112.0,110.4,69.2,62.9,54.3,53.3,52.0,21.3$; HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{ClN}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 434.1271$ found $[\mathrm{M}+\mathrm{H}]^{+} 434.1247$.
$\left(2 R^{*}, 3 R^{*}, 5 S^{*}\right)$-Methyl 1-acryloyl-4,4-dicyano-3,5-di-p-tolylpyrrolidine-2-carboxylate (42b):

Following the general procedure described above 42b was obtained after purification by silica column chromatography (EtOAc:Hexane $=25: 75$); as a colorless solid ($380 \mathrm{mg}, 92 \%$), mp:198-200 ${ }^{\circ} \mathrm{C}$; FT-IR (KBr): 2954, 1738, 1655, 1416 and $1218 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.46(\mathrm{~d}$, $2 \mathrm{H}, J=8.1 \mathrm{~Hz}), 7.39(\mathrm{~d}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}), 7.31-7.28(\mathrm{~m}, 4 \mathrm{H}), 6.28(\mathrm{dd}$, $\left.1 \mathrm{H}, J_{l}=16.6, J_{2}=1.3 \mathrm{~Hz}\right), 5.78\left(\mathrm{dd}, 1 \mathrm{H}, J_{l}=16.6, J_{2}=10.4 \mathrm{~Hz}\right), 5.68(\mathrm{~s}, 1 \mathrm{H}), 5.43\left(\mathrm{dd}, 1 \mathrm{H}, J_{I}\right.$ $\left.=10.4, J_{2}=1.3 \mathrm{~Hz}\right), 5.30(\mathrm{~d}, 1 \mathrm{H}, J=11.2 \mathrm{~Hz}), 4.10(\mathrm{~d}, 1 \mathrm{H}, J=11.2 \mathrm{~Hz}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~s}$, $3 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 169.9,165.5,141.0,140.5,130.4,130.3$, $130.2,129.4,128.3,127.6,127.0,125.6,112.2,110.6,69.8,62.9,54.3,53.2,52.3,21.4,21.3 ;$ HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+} 436.1637$ found [M+Na] ${ }^{+} 436.1624$.
$\left(2 R^{*}, 3 R^{*}, 5 S^{*}\right)$-Methyl 5-(4-chlorophenyl)-4,4-dicyano-1-(1-methylpyrrolidine-3-carbonyl)-3-(p-tolyl)pyrrolidine-2-carboxylate (45a): Following the general procedure described above 45a was obtained after purification by alumina column chromatography (EtOAc:Hexane $=45: 55$); as a colorless solid ($33 \mathrm{mg}, 46 \%$), mp:218- $220^{\circ} \mathrm{C}$; FT-IR (KBr): 2952, 1750, 1662, 1411 and 1218

$\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.53-7.28(\mathrm{~m}, 8 \mathrm{H}), 5.61(\mathrm{~s}, 1 \mathrm{H})$, $5.24(\mathrm{~d}, 1 \mathrm{H}, J=11.2 \mathrm{~Hz}), 4.06(\mathrm{~d}, 1 \mathrm{H}, J=11.2 \mathrm{~Hz}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 2.89(\mathrm{t}$, $1 \mathrm{H}, J=8.1 \mathrm{~Hz}), 2.64-2.58(\mathrm{~m}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.36-2.32(\mathrm{~m}, 3 \mathrm{H}), 2.30$ $(\mathrm{s}, 3 \mathrm{H}), 1.93-1.89(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 175.8,169.6$, $140.6,137.0,132.1,130.2,130.1,128.2,125.3,112.0,110.4,69.4,63.1$, 60.1, 55.9, 54.3, 53.2, 52.0, 42.7, 41.5, 28.5, 21.3; HRMS (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{ClN}_{4} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 491.1850$ found $[\mathrm{M}+\mathrm{H}]^{+} 491.1852$.
$\left(2 R^{*}, 3 R^{*}, 5 S^{*}\right)$-Methyl
4,4-dicyano-1-(1-methylpyrrolidine-3-carbonyl)-3,5-di-p-
tolylpyrrolidine-2-carboxylate(45b): Following the general procedure described above 45b was
 obtained after purification by alumina column chromatography $($ EtOAc:Hexane $=45: 55)$; as a colorless solid ($51 \mathrm{mg}, 77 \%$), mp:190-192 ${ }^{\circ} \mathrm{C}$; FT-IR (KBr): 2954, 1753, 1649, 1449 and $1218 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.44-7.27(\mathrm{~m}, 8 \mathrm{H}), 5.59(\mathrm{~s}, 1 \mathrm{H}), 5.24(\mathrm{~d}, 1 \mathrm{H}, J=$ $11.2 \mathrm{~Hz}), 4.04(\mathrm{~d}, 1 \mathrm{H}, J=11.2 \mathrm{~Hz}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 2.87(\mathrm{t}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz})$, 2.73-2.55 (m, 3H), $2.40(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.37-2.32(\mathrm{~m}, 2 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 1.93-1.88(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 176.0,169.8,141.0,140.4,130.5,130.4,130.1,128.3,126.9$, $125.6,112.3,110.6,69.9,63.0,60.1,56.0,54.2,53.1,52.2,42.6,41.5,28.5,21.3,21.3$; HRMS (ESI) calcd for $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{~N}_{4} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 471.2396$ found $[\mathrm{M}+\mathrm{H}]^{+} 471.2411$.

($2 R^{*}, 3 R^{*}, 5 S^{*}$)-Methyl
 1-(1-benzylpyrrolidine-3-carbonyl)-5-(4-chlorophenyl)-4,4-dicyano-3-(p-tolyl)pyrrolidine-2-carboxylate (46a):

Following the general procedure described above 46a was obtained after purification by silica column chromatography (EtOAc:Hexane $=65: 35$); as a colorless semi solid ($58 \mathrm{mg}, 73 \%$), FT-IR (DCM): 2953, 1749, 1661, 1409 and $1218 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.53-7.28(\mathrm{~m}, 13 \mathrm{H})$, $5.59(\mathrm{~s}, 1 \mathrm{H}), 5.22(\mathrm{~d}, 1 \mathrm{H}, J=11.2 \mathrm{~Hz}), 4.03(\mathrm{~d}, 1 \mathrm{H}, J=11.2 \mathrm{~Hz}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{~s}, 2 \mathrm{H}), 3.02$ $(\mathrm{t}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 2.77-2.62(\mathrm{~m}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.39-2.34(\mathrm{~m}, 3 \mathrm{H}), 1.94-1.91(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 175.7,169.5,140.6,138.2,130.2,130.2,130.1,128.9,128.4,128.2$, $127.3,125.3,112.0,110.4,69.3,63.1,59.8,57.9,54.2,53.8,53.2,52.0,42.2,27.8,21.3$; HRMS (ESI) calcd for $\mathrm{C}_{33} \mathrm{H}_{32} \mathrm{ClN}_{4} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 567.2163$ found $[\mathrm{M}+\mathrm{H}]^{+} 567.2175$.
tolylpyrrolidine-2-carboxylate (46b): Following the general procedure described above 46b was

obtained after purification by silica column chromatography (EtOAc:Hexane $=65: 35$); as a colorless semi solid ($59 \mathrm{mg}, 77 \%$), FT-IR (DCM): 2952, 1749, 1660, 1411 and $1218 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}): \delta 7.44-7.26(\mathrm{~m}, 13 \mathrm{H}), 5.56(\mathrm{~s}, 1 \mathrm{H}), 5.23(\mathrm{~d}, 1 \mathrm{H}, J=11.2 \mathrm{~Hz}), 4.03$ $(\mathrm{d}, 1 \mathrm{H}, J=11.2 \mathrm{~Hz}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{~s}, 2 \mathrm{H}), 2.99(\mathrm{t}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz})$, 2.72-2.67 (m, 2H), 2.40 (s, 3H), $2.40(\mathrm{~s}, 3 \mathrm{H}), 2.37-2.31(\mathrm{~m}, 3 \mathrm{H}), 1.95-1.90$ $(\mathrm{m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 176.0,169.7,141.0,140.4,138.6,130.5,130.4,130.1$, $128.9,128.3,128.3,127.1,127.0,125.6,112.3,110.6,69.8,63.1,60.0,58.0,54.2,53.9,53.1$, 52.3, 42.1, 27.9, 21.3, 21.3; HRMS (ESI) calcd for $\mathrm{C}_{34} \mathrm{H}_{35} \mathrm{~N}_{4} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 547.2709$ found $[\mathrm{M}+\mathrm{H}]^{+}$ 547.2719 .
(3aR*, 4R*, $6 a S^{*}$)-5-Methyl-2-phenyl-4-(pyridin-3-yl)tetrahydropyrrolo[3,4-c]pyrrole$\mathbf{1 , 3 (2 H}, \mathbf{3 a H})$-dione (51a): Following the general procedure described above 51a was obtained
 after purification by neutral alumina column chromatography (EtOAc:Hexane $=$ 75:25); as a colorless solid ($100 \mathrm{mg}, 60 \%$), mp:124-126 ${ }^{\circ} \mathrm{C}$; FT-IR (KBr): 2974, 2777, 1702, 1494, 1167, $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.65(\mathrm{~d}, 1 \mathrm{H}, J=$ $1.5 \mathrm{~Hz}), 8.59\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=4.7, J_{2}=1.5 \mathrm{~Hz}\right), 7.71(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.50-7.30$ $(\mathrm{m}, 6 \mathrm{H}), 3.66(\mathrm{t}, 2 \mathrm{H}, J=6.4 \mathrm{~Hz}), 3.60(\mathrm{t}, 1 \mathrm{H}, J=6.4 \mathrm{~Hz}), 3.41\left(\mathrm{dd}, 1 \mathrm{H}, J_{I}=8.8\right.$, $\left.J_{2}=6.3 \mathrm{~Hz}\right), 2.74\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=9.5, J_{2}=6.3 \mathrm{~Hz}\right), 2.18(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $176.6,176.0,149.6,149.4,135.6,134.5,131.6,129.2,128.8,126.4,123.8,70.5,57.5,53.5,44.1$, 38.8; HRMS (ESI): calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 308.1399$ found 308.1393.

(3aR*,4S*, $6 a S^{*}$)-5-Methyl-2-phenyl-4-(pyridin-3-yl)tetrahydropyrrolo[3,4-clpyrrole-1,3(2H,3aH)-dione (52a): Following the general procedure described above 52a was obtained after purification by neutral alumina column chromatography (EtOAc:Hexane $=75: 25$); as a colorless solid ($54 \mathrm{mg}, 33 \%$), mp: 168-170 ${ }^{\circ} \mathrm{C}$; FT-IR (KBr): 2923, 2848, 1707, 1387, $1197 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.57(\mathrm{~s}, 1 \mathrm{H}), 8.53(\mathrm{~d}, 1 \mathrm{H}, J=3.6 \mathrm{~Hz}), 7.59(\mathrm{~d}, 1 \mathrm{H}, J=7.8$ $\mathrm{Hz}), 7.43-7.18(\mathrm{~m}, 6 \mathrm{H}), 3.72(\mathrm{~d}, 1 \mathrm{H}, J=9.7 \mathrm{~Hz}), 3.63(\mathrm{~d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}), 3.54(\mathrm{t}, 1 \mathrm{H}, J=8.5$ $\mathrm{Hz}), 3.40(\mathrm{t}, 1 \mathrm{H}, J=7.1 \mathrm{~Hz}), 2.67\left(\mathrm{dd}, 1 \mathrm{H}, J_{l}=9.7, J_{2}=7.1 \mathrm{~Hz}\right), 2.19(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(100$
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 178.0,174.6,149.6,135.7,132.4,131.8,129.2,128.6,126.2,123.5,71.0,58.5$, 50.5, 44.4, 39.7; HRMS (ESI): calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 308.1399$ found 308.1403.

(3aR*,4R*, $6 a S^{*}$)-5-Methyl-4-(pyridin-3-yl)-2-(p-tolyl)tetrahydropyrrolo[3,4-c]pyrrole-

 1,3(2H,3aH)-dione(51b): Following the general procedure described above 51b was obtained after purification by neutral alumina column chromatography (EtOAc:Hexane $=75: 25$); as a colorless solid ($96 \mathrm{mg}, 47 \%$), mp: 174-176 ${ }^{\circ} \mathrm{C}$; FT-IR (KBr): 2923, 2835, 1708, 1512, $1169 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.66(\mathrm{~d}, 1 \mathrm{H}, J=1.7 \mathrm{~Hz}), 8.60\left(\mathrm{dd}, 1 \mathrm{H}, J_{I}=4.8, J_{2}\right.$ $=1.3 \mathrm{~Hz}), 7.73-7.70(\mathrm{~m}, 1 \mathrm{H}), 7.35-7.18(\mathrm{~m}, 5 \mathrm{H}), 3.66(\mathrm{t}, 2 \mathrm{H}, J=6.1 \mathrm{~Hz}), 3.60(\mathrm{t}$, $1 \mathrm{H}, J=8.8 \mathrm{~Hz}), 3.40\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=8.8, J_{2}=6.3 \mathrm{~Hz}\right), 2.74\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=9.4, J_{2}\right.$ $=6.3 \mathrm{~Hz}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 176.8,176.1$, $149.6,149.4,138.9,135.5,134.6,129.9,128.9,126.2,123.7,70.5,57.5,53.5$, 44.1, 38.8, 21.3; HRMS (ESI): calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 322.1551$ found 322.1550. The corresponding isomer (52b) could not be separated in pure form as both isomers have similar R_{f} values.
(3aR*, 4R*, $6 a S^{*}$)-2-(4-Methoxyphenyl)-5-methyl-4-(pyridin-3-yl)tetrahydropyrrolo[3,4-

c]pyrrole-1,3(2H,3aH)-dione(51c): Following the general procedure described above51c was obtained after purification by neutral alumina column chromatography (EtOAc:Hexane $=75: 25)$; as a colorless solid ($95 \mathrm{mg}, 48 \%$), mp: 174-176 ${ }^{\circ} \mathrm{C}$; FT-IR (KBr): 2941, 2786, 1708, 1515, $1187 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.65-8.59(\mathrm{~m}, 2 \mathrm{H}), 7.72(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}$), 7.34 (dd, 1 H , $\left.J_{1}=7.8, J_{2}=4.9 \mathrm{~Hz}\right), 7.23(\mathrm{~d}, 2 \mathrm{H}, J=8.9 \mathrm{~Hz}), 6.99(\mathrm{~d}, 2 \mathrm{H}, J=8.9 \mathrm{~Hz}), 3.83(\mathrm{~s}$, $3 \mathrm{H}), 3.59(\mathrm{t}, 1 \mathrm{H}, J=8.7 \mathrm{~Hz}), 3.64(\mathrm{t}, 2 \mathrm{H}, J=6.5 \mathrm{~Hz}), 3.39\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=8.7, J_{2}=\right.$ $6.5 \mathrm{~Hz}), 2.73\left(\mathrm{dd}, 1 \mathrm{H}, J_{l}=9.4, J_{2}=6.6 \mathrm{~Hz}\right), 2.19(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 176.9$, $176.3,159.6,149.6,149.4,135.5,134.6,127.7,124.2,123.7,114.5,70.4,57.5,55.5,53.5,44.0$, 38.8; HRMS (ESI): calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 338.1504$ found 338.1510. The corresponding isomer (52c) could not be separated in pure form as both isomers have similar R_{f} values.

(3aR*,4S*, $6 a S^{*}$ *)-2-(4-Chlorophenyl)-5-methyl-4-(pyridin-3-yl)tetrahydropyrrolo[3,4-

c]pyrrole-1,3(2H,3aH)-dione (52d): Following the general procedure described above52d was obtained after purification by neutral alumina column chromatography (EtOAc :Hexane $=75: 25$); as a colorless solid ($77 \mathrm{mg}, 38 \%$), mp: 198-200 ${ }^{\circ} \mathrm{C}$; FT-IR (KBr): 2949, 2821, 1706, 1492, 1196,

$\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 8.56-8.53 (m, 2H), 7.58-7.55 (m, 1H), 7.40-7.16 (m, 5H), $3.72(\mathrm{~d}, 1 \mathrm{H}, J=9.8 \mathrm{~Hz}), 3.63(\mathrm{~d}, 1 \mathrm{H}, J=8.7 \mathrm{~Hz}), 3.54(\mathrm{t}$, $1 \mathrm{H}, J=8.7 \mathrm{~Hz}), 3.40(\mathrm{t}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 2.68\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=9.8, J_{2}=7.2 \mathrm{~Hz}\right)$, 2.19 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 177.6,174.3,149.7,149.6,135.7$, 134.3, 132.3, 130.2, 129.4, 127.4, 123.5, 71.0, 58.4, 50.5, 44.3, 39.7; HRMS (ESI): calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Cl}[\mathrm{M}+\mathrm{H}]^{+} 342.1009$ found 342.1024. The corresponding isomer (51d) could not be separated in pure form as both isomers have similar R_{f} values.
(3aR*, 4S*, $6 a S^{*}$)-2-(3,4-Dichlorophenyl)-5-methyl-4-(pyridin-3-yl)tetrahydropyrrolo[3,4-
 c]pyrrole-1,3(2H,3aH)-dione (52e): Following the general procedure described above52e was obtained after purification by neutral alumina column chromatography (EtOAc:Hexane $=75: 25$); as a colorless solid ($75 \mathrm{mg}, 34 \%$) , mp: 190-192 ${ }^{\circ} \mathrm{C}$; FT-IR (KBr): 2920, 2824, 1711, 1474, $1192 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.55(\mathrm{~s}, 2 \mathrm{H}), 7.56(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.49(\mathrm{~d}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz})$, $7.38(\mathrm{~d}, 1 \mathrm{H}, J=2.3 \mathrm{~Hz}), 7.29\left(\mathrm{dd}, 1 \mathrm{H}, J_{l}=7.8, J_{2}=7.0 \mathrm{~Hz}\right), 7.12\left(\mathrm{dd}, 1 \mathrm{H}, J_{l}=\right.$ $\left.8.6, J_{2}=2.3 \mathrm{~Hz}\right), 3.72(\mathrm{~d}, 1 \mathrm{H}, J=9.8 \mathrm{~Hz}), 3.64(\mathrm{~d}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}), 3.55(\mathrm{t}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz})$, $3.40(\mathrm{t}, 1 \mathrm{H}, J=7.3 \mathrm{~Hz}), 2.69\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=9.8, J_{2}=7.3 \mathrm{~Hz}\right), 2.20(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 177.2,174.0,149.7,149.5,135.6,133.0,132.7,132.2,130.9,130.8,128.0,125.4$, 123.5, 70.9, 58.5, 50.5, 44.3, 39.6; HRMS (ESI): calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Cl}_{2}[\mathrm{M}+\mathrm{H}]^{+} 376.0619$ found 376.0634. The corresponding isomer (51e) could not be separated in pure form as both isomers have similar R_{f} values.

(3aR*,4S*, $6 a S^{*}$)-2-(4-Bromophenyl)-5-methyl-4-(pyridin-3-
yl)tetrahydropyrrolo[3,4-c]pyrrole-1,3(2H,3aH)-dione(52f): Following the general procedure described above $\mathbf{5 2 f}$ was obtained after purification by neutral alumina column chromatography (EtOAc :Hexane $=75: 25$); as a colorless solid ($85 \mathrm{mg}, 38 \%$), mp: 184-186 ${ }^{\circ} \mathrm{C}$; FT-IR (KBr): 2927, 2821, 1705, 1489, $1192 \mathrm{~cm}^{-}$
${ }^{1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.57-8.55(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.11(\mathrm{~m}, 6 \mathrm{H}), 3.72(\mathrm{~d}, 1 \mathrm{H}, J=9.7 \mathrm{~Hz})$, $3.64(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}), 3.54(\mathrm{t}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}), 3.40(\mathrm{t}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 2.69\left(\mathrm{dd}, 1 \mathrm{H}, J_{l}=9.7\right.$, $\left.J_{2}=7.2 \mathrm{~Hz}\right), 2.21(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 177.6,174.3,149.7,149.6,135.6$, $132.3,132.2,130.7,127.7,123.5,122.4,71.0,58.4,50.5,44.3,39.7$; HRMS (ESI): calcd for
$\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Br}[\mathrm{M}+\mathrm{H}]^{+} 386.0504$ found 386.0489. The corresponding isomer (51f) could not be separated in pure form as both isomers have similar R_{f} values.
(3aR*,4R*,6aS*)-2-(3,4-Dimethylphenyl)-5-methyl-4-(pyridin-3-yl)tetrahydropyrrolo[3,4-
 c]pyrrole-1,3(2H,3aH)-dione (51g): Following the general procedure described above51g was obtained after purification by neutral alumina column chromatography (EtOAc:Hexane $=75: 25$); as a colorless viscous liquid $(95 \mathrm{mg}$, 51%), FT-IR (DCM): 2924, 2791, 1712, 1504, $1184 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 8.64(\mathrm{~s}, 1 \mathrm{H}), 8.59(\mathrm{~d}, 1 \mathrm{H}, J=3.7 \mathrm{~Hz}), 7.71(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.32$ (dd, 1H, $\left.J_{1}=7.8, J_{2}=4.7 \mathrm{~Hz}\right), 7.23(\mathrm{~d}, 1 \mathrm{H}, J=7.9 \mathrm{~Hz}), 7.04(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz})$, $7.01\left(\mathrm{dd}, 1 \mathrm{H}, J_{l}=7.9, J_{2}=2.0 \mathrm{~Hz}\right), 3.66-3.62(\mathrm{~m}, 2 \mathrm{H}), 3.59(\mathrm{t}, 1 \mathrm{H}, J=8.9 \mathrm{~Hz}), 3.38\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}\right.$ $\left.=8.9, J_{2}=6.4 \mathrm{~Hz}\right), 2.73\left(\mathrm{dd}, 1 \mathrm{H}, J_{l}=9.3, J_{2}=6.4 \mathrm{~Hz}\right), 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 176.8,176.2,149.6,149.4,137.9,137.7,135.6,134.6,130.4$, 129.1, 127.4, 123.9, 123.7, 70.5, 57.6, 53.6, 44.1, 38.8, 19.9, 19.6; HRMS (ESI): Calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$336.1712, found 336.1727. The corresponding isomer (52g) could not be separated in pure form as both isomers have similar R_{f} values.

2-(2-Hydroxyethyl)-5-methyl-4-(pyridin-3-yl)tetrahydropyrrolo[3,4-c]pyrrole-1,3(2H,3aH)-

dione (51h/52h):Following the general procedure described above51h/52h (mixture of isomers) was obtained after purification by neutral alumina column chromatography (EtOAc:Hexane $=90: 10$); as a yellow colored viscous liquid ($114 \mathrm{mg}, 83 \%$), FT-IR (DCM): 3405, 2953, 1698, 1401, $1181 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.64-8.57(\mathrm{~m}, 2 \mathrm{H}), 7.69-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.24(\mathrm{~m}, 1 \mathrm{H})$, 3.79-3.37 (m, 8H), 3.25-3.22 (m, 1H), 2.61-2.57 (m, 1H), $2.10(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 179.3,178.2,177.6,176.2,149.5,149.3,149.2,149.1,136.1,135.8,134.7,132.7$, $123.8,123.5,70.6,70.0,59.4,58.1,57.1,53.4,50.4,44.1,44.0,41.7,41.6,39.6,38.7$ (The ${ }^{13} \mathrm{C}$ NMR given here for mixture of isomers); HRMS (ESI): calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 276.1348$ found 276.1467. The compounds (51h) and (52h) could not be separated in pure form as both isomers have similar R_{f} values.

(3aR*,4R*, $6 a S^{*}$)-5-Methyl-2-propyl-4-(pyridin-3-yl)tetrahydropyrrolo[3,4-c]pyrrole-

$\mathbf{1 , 3 (2 H}, \mathbf{3 a H})$-dione(51i): Following the general procedure described above 51 i was obtained after purification by neutral alumina column chromatography (EtOAc:Hexane $=75: 25$); as a colorless

viscous liquid ($74 \mathrm{mg}, 47 \%$), FT-IR (DCM): 2965, 1712, 1401, 1139, $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.64(\mathrm{~d}, 1 \mathrm{H}, J=1.9 \mathrm{~Hz}), 8.50\left(\mathrm{dd}, 1 \mathrm{H}, J_{I}=4.8, J_{2}=\right.$ $1.9 \mathrm{~Hz}), 7.62-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 1 \mathrm{H}), 3.44-3.37(\mathrm{~m}, 5 \mathrm{H}), 3.15\left(\mathrm{dd}, 1 \mathrm{H}, J_{l}\right.$ $\left.=8.7, J_{2}=6.3 \mathrm{~Hz}\right), 2.48\left(\mathrm{dd}, 1 \mathrm{H}, J_{l}=8.7, J_{2}=5.6 \mathrm{~Hz}\right), 2.05(\mathrm{~s}, 3 \mathrm{H}), 1.54(\mathrm{dd}, 2 \mathrm{H}$, $\left.J_{1}=14.9, J_{2}=7.4 \mathrm{~Hz}\right), 0.83(\mathrm{t}, 3 \mathrm{H}, J=7.4 \mathrm{~Hz}),{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $177.6,177.0,149.4,149.3,135.6,134.7,123.7,70.3,57.4,53.5,44.0,40.4,38.8,21.0,11.2$; HRMS (ESI): calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 274.1556$ found 274.1592.
$\left(3 a R^{*}, 4 S^{*}, 6 a S^{*}\right)$-5-Methyl-2-propyl-4-(pyridin-3-yl)tetrahydropyrrolo[3,4-c]pyrrole-

$\mathbf{1 , 3 (2 H}, \mathbf{3 a H})$-dione (52i): Following the general procedure described above 52i was obtained after purification by neutral alumina column chromatography (EtOAc:Hexane $=75: 25$); as a colorless viscous liquid ($63 \mathrm{mg}, 40 \%$), FT-IR (DCM): 2965, 1699, 1403, $1124 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.48$ (dd, $\left.1 \mathrm{H}, J_{1}=4.8, J_{2}=1.9 \mathrm{~Hz}\right), 8.41(\mathrm{~d}, 1 \mathrm{H}, J=1.9 \mathrm{~Hz}), 7.44-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.17$ $(\mathrm{m}, 1 \mathrm{H}), 3.55(\mathrm{~d}, 1 \mathrm{H}, J=9.6 \mathrm{~Hz}), 3.45(\mathrm{~d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}), 3.32-3.29(\mathrm{~m}, 2 \mathrm{H})$, $3.28(\mathrm{~d}, 1 \mathrm{H}, J=1.3 \mathrm{~Hz}), 3.14(\mathrm{t}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}), 2.51\left(\mathrm{dd}, 1 \mathrm{H}, J_{l}=9.6, J_{2}=7.4 \mathrm{~Hz}\right), 2.07(\mathrm{~s}$, $3 \mathrm{H}), 1.48\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=7.4, J_{2}=1.8 \mathrm{~Hz}\right), 1.45\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=7.4, J_{2}=2.0 \mathrm{~Hz}\right), 0.81(\mathrm{t}, 3 \mathrm{H}, J=7.4$ Hz) ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 178.9,175.6,149.6,149.5,135.7,132.4,123.3,70.7,58.3$, 50.4, 44.0, 40.6, 39.7, 21.1, 11.3; HRMS (ESI): calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 274.1556$ found 274.1550.

($3 a R^{*}, 4 R^{*}, 6 a S^{*}$)-5-Methyl-2-phenyl-4-(pyridin-2-yl)tetrahydropyrrolo[3,4-c]pyrrole-1,3(2H,3aH)-dione(53): Following the general procedure described above53 was obtained after purification by neutral alumina column chromatography (EtOAc:Hexane $=75: 25$); as a colorless solid ($95 \mathrm{mg}, 62 \%$), mp: 159-161 ${ }^{\circ} \mathrm{C}$; FT-IR (KBr): 2918, 2793, 1702, 1381, $1198 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.66\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=4.8, J_{2}=0.8 \mathrm{~Hz}\right), 7.72-7.68(\mathrm{~m}, 1 \mathrm{H}), 7.51-7.23(\mathrm{~m}, 7 \mathrm{H}), 4.13(\mathrm{~d}, 1 \mathrm{H}, J=3.6$ $\mathrm{Hz}), 3.84\left(\mathrm{dd}, 1 \mathrm{H}, J_{l}=8.7, J_{2}=3.6 \mathrm{~Hz}\right), 3.79-3.74(\mathrm{~m}, 1 \mathrm{H}), 3.50-3.45(\mathrm{~m}, 1 \mathrm{H}), 3.01\left(\mathrm{dd}, 1 \mathrm{H}, J_{l}=\right.$ 9.6, $J_{2}=4.2 \mathrm{~Hz}$), $2.17(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 178.2,177.6,157.2,149.9,136.3$, 132.0, 129.1, 128.6, 126.5, 123.9, 122.9, 72.1, 56.7, 51.5, 45.1, 37.9; HRMS (ESI): calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 308.1399$ found 308.1407.

(3aR*,4S*, $6 a S^{*}$)-5-Methyl-2-phenyl-4-(pyridin-2-yl)tetrahydropyrrolo[3,4-c]pyrrole-

1,3(2H,3aH)-dione(54):Following the general procedure described above54 was obtained after
 purification by neutral alumina column chromatography (EtOAc:Hexane $=$ 75:25); as a colorless solid ($42 \mathrm{mg}, 27 \%$), mp: $146-148{ }^{\circ} \mathrm{C}$; FT-IR (KBr): 2925, 2852, 1709, 1384, $1192 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.62-8.60(\mathrm{~m}, 1 \mathrm{H})$, 7.69-7.65 (m, 1H), 7.41-7.19 (m, 7H), 3.82 (d, 1H, $J=8.8 \mathrm{~Hz}), 3.74-3.68(\mathrm{~m}$, $2 \mathrm{H}), 3.42(\mathrm{t}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 2.72\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=9.6, J_{2}=7.2 \mathrm{~Hz}\right), 2.25(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 178.1,174.9,157.1,149.4,136.7,131.9,129.1,128.5,126.3,123.1,122.1$, 74.6, 58.5, 50.1, 44.5, 39.9; HRMS (ESI): calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 308.1399$ found 308.1393.

5-Methyl-2-phenyl-4-(pyridin-4-yl)tetrahydropyrrolo[3,4-c]pyrrole-1,3(2H,3aH)-dione

(55\&56):Following the general procedure described above55/56 (mixture of isomers) was obtained after purification by neutral alumina column chromatography (EtOAc:Hexane $=75: 25$); as a colorless solid ($138 \mathrm{mg}, 90 \%$), mp : compound decomposes after $170{ }^{\circ} \mathrm{C}$; FT-IR (KBr): 2945, 2779, 1703, 1496, $1185 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.64-8.59(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.19(\mathrm{~m}$, $7 \mathrm{H}), 3.75-3.56(\mathrm{~m}, 3 \mathrm{H}), 3.41-3.34(\mathrm{~m}, 1 \mathrm{H}), 2.75-2.68(\mathrm{~m}, 1 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 177.7,176.4,175.9,174.2,150.3,150.0,148.3,146.2,131.8,131.6,129.2$, $129.1,128.8,128.6,126.4,126.1,123.1,122.7,72.1,71.4,58.4,57.6,53.4,50.4,44.5,44.1$, 39.7, 39.0 (The ${ }^{13} \mathrm{C}$ NMR given here for mixture of isomers); HRMS (ESI): calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 308.1399$ found 308.1413 . The compounds (55/56) could not be separated in pure form as the isomers have similar R_{f} values.
$\left(2 S^{*}, 3 R^{*}, 4 R^{*}\right)$-Diethyl 1-methyl-2-(pyridin-3-yl)pyrrolidine-3,4-dicarboxylate (58a):
Following the general procedure described above58a was obtained after purification by silica
 column chromatography (EtOAc:Hexane $=100: 0$); as a yellow colored viscous liquid ($110 \mathrm{mg}, 36 \%$), FT-IR (DCM): 2981, 2936, 1731, 1320, 1187 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.54-8.51(\mathrm{~m}, 2 \mathrm{H}), 7.67(\mathrm{~d}, 1 \mathrm{H}, J=7.9$ $\mathrm{Hz}), 7.28-7.24(\mathrm{~m}, 1 \mathrm{H}), 4.19(\mathrm{q}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}), 3.77-3.56(\mathrm{~m}, 5 \mathrm{H}), 3.48(\mathrm{dd}$, $\left.1 \mathrm{H}, J_{1}=10.8, J_{2}=7.1 \mathrm{~Hz}\right), 2.54(\mathrm{t}, 1 \mathrm{H}, J=9.8 \mathrm{~Hz}), 2.19(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}), 0.76(\mathrm{t}$, $3 \mathrm{H}, J=7.1 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.7,171.5,150.2,149.1,135.8,134.3,123.3$,
$70.2,61.1,60.8,58.5,52.4,44.6,39.9,14.2,13.5 ; \mathrm{MS}(\mathrm{CI}): \mathrm{m} / \mathrm{z}(\%) 308$ ($\left.[\mathrm{M}+2]^{+}, 20\right), 307$ ($\left.[\mathrm{M}+1]^{+}, 100\right), 293$ (10) and 261 (10).
$\left(2 R^{*}, 3 R^{*}, 4 R^{*}\right)$-Diethyl 1-methyl-2-(pyridin-3-yl)pyrrolidine-3,4-dicarboxylate (59a):Following
 the general procedure described above59a was obtained after purification by silica column chromatography (EtOAc:Hexane $=100: 0$); as a yellow colored viscous liquid ($162 \mathrm{mg}, 53 \%$), FT-IR (DCM): 2984, 2931, 1734, 1458, 1183, $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.53(\mathrm{~d}, 2 \mathrm{H}, J=2.6 \mathrm{~Hz}), 7.80-7.77(\mathrm{~m}$, $1 \mathrm{H}), 7.29\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=7.8, J_{2}=4.8 \mathrm{~Hz}\right), 4.24-4.04(\mathrm{~m}, 4 \mathrm{H}), 3.52\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=9.7, J_{2}=1.6 \mathrm{~Hz}\right)$, $3.43\left(\mathrm{dd}, 1 \mathrm{H}, J_{l}=8.6, J_{2}=5.2 \mathrm{~Hz}\right), 3.39-3.36(\mathrm{~m}, 1 \mathrm{H}), 3.29(\mathrm{~d}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}), 2.69\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}\right.$ $\left.=9.7, J_{2}=8.6 \mathrm{~Hz}\right), 2.09(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}), 1.15(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}),{ }^{13} \mathrm{C}$ NMR $(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 173.4,172.6,150.0,149.4,136.2,135.5,123.8,72.0,61.4,61.2,58.9,54.8$, $44.9,39.6,14.2,14.1 ; \mathrm{MS}(\mathrm{CI}): \mathrm{m} / \mathrm{z}(\%) 307\left([\mathrm{M}+1]^{+}, 100\right), 304$ (10) and 259 (5).
($2 S^{*}, 3 R^{*}, 4 R^{*}$)-Dimethyl 1-methyl-2-(pyridin-3-yl)pyrrolidine-3,4-dicarboxylate

Following the general procedure described above58b was obtained after purification by silica column chromatography (EtOAc:Hexane $=100: 0$); as a yellow colored viscous liquid ($117 \mathrm{mg}, 42 \%$), FT-IR (DCM): 2981, 2789, 1736, 1435, $1173 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.40(\mathrm{~d}, 2 \mathrm{H}, J=0.8$ $\mathrm{Hz}), 7.54\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=7.9, J_{2}=1.4 \mathrm{~Hz}\right), 7.15\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=7.9, J_{2}=4.8 \mathrm{~Hz}\right), 3.67-3.64(\mathrm{~m}, 1 \mathrm{H})$, $3.60(\mathrm{~s}, 3 \mathrm{H}), 3.57-3.49(\mathrm{~m}, 2 \mathrm{H}), 3.46(\mathrm{t}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}), 3.00(\mathrm{~s}, 3 \mathrm{H}), 2.44(\mathrm{t}, 1 \mathrm{H}, J=9.2 \mathrm{~Hz})$, 2.07 ($\mathrm{s}, 3 \mathrm{H}$), ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 173.1,171.8,150.0,149.1,135.7,134.1,123.2$, $70.2,58.5,52.5,52.2,51.6,44.3,39.9 ; \mathrm{MS}(\mathrm{CI}): \mathrm{m} / \mathrm{z}(\%) 280\left([\mathrm{M}+2]^{+}, 20\right), 279\left([\mathrm{M}+1]^{+}, 100\right)$, 247 (12) and 217 (8).
$\left(2 R^{*}, 3 R^{*}, 4 R^{*}\right)$-Dimethyl 1-methyl-2-(pyridin-3-yl)pyrrolidine-3,4-dicarboxylate
(59b):
Following the general procedure described above59b was obtained after
 purification by silica column chromatography (EtOAc:Hexane $=100: 0$); as a yellow colored viscous liquid ($78 \mathrm{mg}, 28 \%$), FT-IR (DCM): 2923, 2800, 1734, 1456, $1180 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.53$ (d, 2H, $J=1.7$ $\mathrm{Hz}), 7.78\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=7.9, J_{2}=1.7 \mathrm{~Hz}\right), 7.30\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=7.9, J_{2}=4.8 \mathrm{~Hz}\right), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.64$ $(\mathrm{s}, 3 \mathrm{H}), 3.52\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=9.7, J_{2}=1.2 \mathrm{~Hz}\right), 3.48\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=8.6, J_{2}=5.1 \mathrm{~Hz}\right), 3.40-3.36(\mathrm{~m}$, $1 \mathrm{H}), 3.31(\mathrm{~d}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}), 2.69(\mathrm{t}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}), 2.09(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 MHz ,
$\left.\mathrm{CDCl}_{3}\right): \delta 173.9,173.1,149.8,149.4,136.1,135.5,123.9,71.8,58.9,54.6,52.6,52.3,44.9$, 39.5; MS (CI): m/z (\%) 279 ([M+1] ${ }^{+}$15), 277 (50), 267 (14) and 262 (50).
$\left(2 S^{*}, 3 R^{*}, 4 R^{*}\right)$-Diethyl 1-methyl-2-(pyridin-2-yl)pyrrolidine-3,4-dicarboxylate (60): Following
 the general procedure described above 60 was obtained after purification by silica column chromatography (EtOAc:Hexane $=100: 0$); as a yellow colored viscous liquid ($107 \mathrm{mg}, 35 \%$), FT-IR (DCM): 2980, 2778, 1733, $1589,1178, \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.53-8.51(\mathrm{~m}, 1 \mathrm{H}), 7.65-$ $7.60(\mathrm{~m}, 1 \mathrm{H}), 7.35(\mathrm{~d}, 1 \mathrm{H}, J=7.9 \mathrm{~Hz}), 7.17-7.13(\mathrm{~m}, 1 \mathrm{H}), 4.15\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=7.1, J_{2}=0.9 \mathrm{~Hz}\right)$, $4.12\left(\mathrm{dd}, 1 \mathrm{H}, J_{l}=7.1, J_{2}=0.9 \mathrm{~Hz}\right), 3.88(\mathrm{~d}, 1 \mathrm{H}, J=9.6 \mathrm{~Hz}), 3.79-3.66(\mathrm{~m}, 3 \mathrm{H}), 3.53\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}\right.$ $\left.=8.9, J_{2}=7.9 \mathrm{~Hz}\right), 3.46\left(\mathrm{dd}, 1 \mathrm{H}, J_{l}=10.8, J_{2}=7.2 \mathrm{~Hz}\right), 2.58(\mathrm{t}, 1 \mathrm{H}, J=9.6 \mathrm{~Hz}), 2.18(\mathrm{~s}, 3 \mathrm{H})$, $1.23(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 0.73(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.9,171.7$, $158.8,148.9,136.5,122.6,122.5,73.7,61.0,60.6,58.3,51.7,44.7,40.0,14.2,13.6$; HRMS (ESI): calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 307.1658$ found 307.1699.
$\left(2 R^{*}, 3 R^{*}, 4 R^{*}\right)$-Diethyl 1-methyl-2-(pyridin-2-yl)pyrrolidine-3,4-dicarboxylate (61): Following
 the general procedure described above 61 was obtained after purification by silica column chromatography (EtOAc:Hexane $=100: 0$); as a yellow colored viscous liquid ($138 \mathrm{mg}, 45 \%$), FT-IR (DCM): 2975, 2782, 1734, 1585, 1182 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.56-8.54(\mathrm{~m}, 1 \mathrm{H}), 7.67-7.63(\mathrm{~m}, 1 \mathrm{H})$, $7.41(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.19-7.15(\mathrm{~m}, 1 \mathrm{H}), 4.19\left(\mathrm{dd}, 1 \mathrm{H}, J_{l}=7.2, J_{2}=1.9 \mathrm{~Hz}\right), 4.16\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}\right.$ $\left.=7.2, J_{2}=1.9 \mathrm{~Hz}\right), 4.10-3.99(\mathrm{~m}, 2 \mathrm{H}), 3.64\left(\mathrm{dd}, 1 \mathrm{H}, J_{l}=8.9, J_{2}=5.9 \mathrm{~Hz}\right), 3.54\left(\mathrm{dd}, 1 \mathrm{H}, J_{l}=9.4\right.$, $\left.J_{2}=2.3 \mathrm{~Hz}\right), 3.47(\mathrm{~d}, 1 \mathrm{H}, J=8.9 \mathrm{~Hz}), 3.42-3.37(\mathrm{~m}, 1 \mathrm{H}), 2.74(\mathrm{t}, 1 \mathrm{H}, J=9.4 \mathrm{~Hz}), 2.13(\mathrm{~s}, 3 \mathrm{H})$, $1.24(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}), 1.08(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 173.4,172.8$, 159.7, 149.3, 136.7, 122.8, 122.5, 75.7, 61.3, 61.0, 58.6, 53.7, 44.9, 39.8, 14.2, 14.0; HRMS (ESI): calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 307.1658$ found 307.1652.
$\left(2 S^{*}, 3 R^{*}, 4 R^{*}\right)$-Diethyl 1-methyl-2-(pyridin-4-yl)pyrrolidine-3,4-dicarboxylate (62): Following the general procedure described above 62 was obtained after purification by silica column
 chromatography (EtOAc:Hexane $=100: 0)$; as a yellow colored viscous liquid ($122 \mathrm{mg}, 34 \%$), FT-IR (DCM): 2980, 2927, 1733, 1603, 1192, $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.52\left(\mathrm{dd}, 2 \mathrm{H}, J_{l}=4.6, J_{2}=1.4 \mathrm{~Hz}\right.$), $7.25\left(\mathrm{dd}, 2 \mathrm{H}, J_{l}=\right.$ $\left.4.6, J_{2}=1.4 \mathrm{~Hz}\right), 4.15(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.75-3.63(\mathrm{~m}, 2 \mathrm{H}), 3.61-3.53(\mathrm{~m}$,
$3 \mathrm{H}), 3.47-3.41(\mathrm{~m}, 1 \mathrm{H}), 2.50\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=10.2, J_{2}=9.1 \mathrm{~Hz}\right), 2.16(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{t}, 3 \mathrm{H}, J=7.1$ $\mathrm{Hz}), 0.74(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.7,171.3,149.5,148.0,123.6$, $71.7,61.1,60.8,58.5,52.3,44.6,40.0,14.2,13.5$; HRMS (ESI): calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$ 307.1658 found 307.1670 .

Dimethyl 1-methyl-2-(pyridin-4-yl)pyrrolidine-3,4-dicarboxylate (64\&65): Following the
 general procedure described above64\&65 (mixture of isomers) was obtained after purification by silica column chromatography (EtOAc:Hexane $=100: 0$); as a yellow colored viscous liquid ($195 \mathrm{mg}, 70 \%$), FT-IR (DCM):2952, 2792, 1736, 1600, 1204, $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.56-8.51(\mathrm{~m}, 4 \mathrm{H})$, 7.32-7.21 (m, 4H), $3.75(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 4 \mathrm{H}), 3.64-3.62(\mathrm{~m}, 5 \mathrm{H}), 3.55-3.49(\mathrm{~m}, 2 \mathrm{H}), 3.44(\mathrm{dd}$, $\left.1 \mathrm{H}, J_{1}=8.5, J_{2}=5.1 \mathrm{~Hz}\right), 3.32(\mathrm{~s}, 1 \mathrm{H}), 3.10(\mathrm{~s}, 4 \mathrm{H}), 2.69\left(\mathrm{dd}, 1 \mathrm{H}, J_{l}=9.1, J_{2}=8.5 \mathrm{~Hz}\right), 2.53(\mathrm{dd}$, $\left.1 \mathrm{H}, J_{l}=10.4, J_{2}=9.1 \mathrm{~Hz}\right), 2.17(\mathrm{~s}, 4 \mathrm{H}), 2.10(\mathrm{~s}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 173.6$, $173.0,172.9,171.5,150.0,149.9,149.6,147.8,123.3,123.0,73.0,71.6,58.8,58.5,54.5,52.5$, $52.2,51.5,45.1,44.4,39.9,39.6$ (The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR is given here for mixture of isomers); HRMS (ESI): calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 279.1345$ found 279.1377.
(3aR*, $\left.4 R^{*}, 6 a S^{*}\right)$-5-Benzyl-2-phenyl-4-(pyridin-3-yl)tetrahydropyrrolo[3,4-c]pyrrole-

1,3(2H,3aH)-dione (69): Following the general procedure described above69 was obtained after purification by silica column chromatography (EtOAc:Hexane $=70: 30$); as a colorless solid ($134 \mathrm{mg}, 70 \%$), $\mathrm{mp}: 70-72{ }^{\circ} \mathrm{C}$; FT-IR (KBr): 2981, 2811, 1713, 1496, 1183, $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.69$ (d, 1H, $J=$ $1.9 \mathrm{~Hz}), 8.59\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=4.8, J_{2}=1.5 \mathrm{~Hz}\right), 7.73-7.70(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.19(\mathrm{~m}$, $11 \mathrm{H}), 3.98(\mathrm{~d}, 1 \mathrm{H}, J=5.5 \mathrm{~Hz}), 3.66(\mathrm{~d}, 1 \mathrm{H}, J=13.3 \mathrm{~Hz}), 3.61-3.55(\mathrm{~m}, 1 \mathrm{H}), 3.45-3.39(\mathrm{~m}, 2 \mathrm{H})$, $3.22(\mathrm{~d}, 1 \mathrm{H}, J=13.3 \mathrm{~Hz}), 2.74\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=10.0, J_{2}=6.2 \mathrm{~Hz}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 176.7, 176.2, 149.7, 149.5, 137.2, 135.7, 134.5, 131.6, 129.3, 128.8, 128.6, 128.4, 127.6, 126.4, 123.8, 68.2, 55.9, 54.4, 53.0, 43.8; HRMS (ESI): calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+} 384.1706$ found 384.1698.

$\left(2 S^{*}, 3 R^{*}, 4 R^{*}\right)$-Dimethyl

1-benzyl-2-(pyridin-3-yl)pyrrolidine-3,4dicarboxylate (71): Following the general procedure described above71 was obtained after purification by silica column chromatography (EtOAc:Hexane $=70: 30)$; as a colorless solid ($138 \mathrm{mg}, 39 \%$), $\mathrm{mp}: 67-6{ }^{\circ} \mathrm{C}$; FT-IR (KBr) :

2924, 1735, 1435, $1168 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.59(\mathrm{~d}, 1 \mathrm{H}, J=1.8 \mathrm{~Hz}$), 8.52 (dd, $\left.1 \mathrm{H}, J_{1}=4.8, J_{2}=1.8 \mathrm{~Hz}\right), 7.80-7.77(\mathrm{~m}, 1 \mathrm{H}), 7.29-7.22(\mathrm{~m}, 6 \mathrm{H}), 4.00(\mathrm{~d}, 1 \mathrm{H}, J=10.0 \mathrm{~Hz}), 3.77$ $(\mathrm{d}, 1 \mathrm{H}, J=13.2 \mathrm{~Hz}), 3.73\left(\mathrm{dd}, 1 \mathrm{H}, J_{l}=7.7, J_{2}=2.5 \mathrm{~Hz}\right), 3.68(\mathrm{~d}, 1 \mathrm{H}, J=6.2 \mathrm{~Hz}), 3.66(\mathrm{~s}, 3 \mathrm{H})$, $3.43\left(\mathrm{dd}, 1 \mathrm{H}, J_{l}=9.0, J_{2}=7.3 \mathrm{~Hz}\right), 3.16(\mathrm{~d}, 1 \mathrm{H}, J=13.2 \mathrm{~Hz}), 3.12(\mathrm{~s}, 3 \mathrm{H}), 2.45\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=\right.$ $10.0, J_{2}=9.0 \mathrm{~Hz}$) ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 173.0,171.7,150.4,149.4,137.6,135.8$, $134.5,128.6,128.4,127.3,123.3,67.8,57.3,55.0,52.2,51.9,51.6,44.2$; HRMS (ESI): calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{O}_{4} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+} 355.1658$ found 355.1646 .
$\left(2 R^{*}, 3 R^{*}, 4 R^{*}\right)$-Dimethyl 1-benzyl-2-(pyridin-3-yl)pyrrolidine-3,4-dicarboxylate (72):

Following the general procedure described above72 was obtained after purification by silica column chromatography (EtOAc:Hexane $=70: 30)$; as a colorless viscous liquid ($92 \mathrm{mg}, 26 \%$), FT-IR (DCM): 2953, 1735, 1435, $1173 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.64(\mathrm{~d}, 1 \mathrm{H}, J=1.6 \mathrm{~Hz}$), $8.55(\mathrm{dd}$, $\left.1 \mathrm{H}, J_{I}=4.7, J_{2}=1.4 \mathrm{~Hz}\right), 7.92-7.89(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.19(\mathrm{~m}, 6 \mathrm{H}), 3.72-3.64(\mathrm{~m}, 2 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H})$, $3.65(\mathrm{~s}, 3 \mathrm{H}), 3.48\left(\mathrm{dd}, 1 \mathrm{H}, J_{l}=8.5, J_{2}=5.4 \mathrm{~Hz}\right), 3.39(\mathrm{t}, 1 \mathrm{H}, J=2.1 \mathrm{~Hz}), 3.37(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 3.10$ $(\mathrm{d}, 1 \mathrm{H}, J=13.4 \mathrm{~Hz}), 2.63\left(\mathrm{dd}, 1 \mathrm{H}, J_{l}=9.9, J_{2}=9.4 \mathrm{~Hz}\right),{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 173.7$, $173.0,150.0,149.5,137.9,136.4,135.5,128.3,127.2,123.9,69.6,56.7,55.3,54.5,52.5,52.3$, 44.7; HRMS (ESI): calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 355.1658$ found 355.1652 .

Diethyl 1-benzyl-2-(pyridin-3-yl)pyrrolidine-3,4-dicarboxylate (73/74): Following the general
 procedure described above 73/74 (mixture of isomers) was obtained after purification by silica column chromatography (EtOAc:Hexane $=70: 30$); as a colorless viscous liquid ($344 \mathrm{mg}, 90 \%$), FT-IR (DCM):2981, 1731, 1372, 1028 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.64(\mathrm{~d}, 1 \mathrm{H}, J=1.8 \mathrm{~Hz}), 8.53\left(\mathrm{dd}, 1 \mathrm{H}, J_{l}\right.$ $\left.=4.8, J_{2}=1.6 \mathrm{~Hz}\right), 7.95-7.81(\mathrm{~m}, 1 \mathrm{H}), 7.39-7.24(\mathrm{~m}, 6 \mathrm{H}), 4.26-4.02(\mathrm{~m}, 3 \mathrm{H}), 3.84-3.64(\mathrm{~m}, 3 \mathrm{H})$, $3.52-3.36(\mathrm{~m}, 2 \mathrm{H}), 3.18(\mathrm{~d}, 1 \mathrm{H}, J=13.4 \mathrm{~Hz}), 2.46\left(\mathrm{dd}, 1 \mathrm{H}, J_{l}=10.1, J_{2}=9.2 \mathrm{~Hz}\right), 1.27-1.18(\mathrm{~m}$, $4 \mathrm{H}), 0.79\left(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}\right.$) (The ${ }^{1} \mathrm{H}$ NMR is given here for major isomer); ${ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 173.3,172.6,172.5,171.3,150.5,150.1,149.4,149.3,138.1,137.8,136.5$, $136.0,135.5,134.8,128.6,128.4,128.3,128.2,127.3,127.1,123.8,123.3,69.8,67.8,61.2,61.1$, $61.0,60.8,57.3,56.6,55.3,55.1,54.6,51.8,44.8,44.4,14.2,14.1,13.6$ (The ${ }^{13} \mathrm{C}$ NMR is given here for mixture of isomers); HRMS (ESI): calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 383.1965$ found 383.1969 .
($2 R^{*}, 3 R^{*}, 4 R^{*}$)-1-Benzyl-2-(pyridin-3-yl)pyrrolidine-3,4-dicarbonitrile (77): Following the
 general procedure described above77 was obtained after purification by silica column chromatography (EtOAc:Hexane $=70: 30$); as a colorless solid (173 $\mathrm{mg}, 54 \%$) mp: 130-132 ${ }^{\circ} \mathrm{C}$; FT-IR (KBr): 2929, 2820, 2364, 2247, 1430, 1027 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.79(\mathrm{~d}, 1 \mathrm{H}, J=1.5 \mathrm{~Hz}), 8.70-8.69(\mathrm{~m}$, $1 \mathrm{H}), 7.95-7.92(\mathrm{~m}, 1 \mathrm{H}), 7.45\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=7.8, J_{2}=4.8 \mathrm{~Hz}\right), 7.37-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.24-7.22(\mathrm{~m}$, $2 \mathrm{H}), 3.85(\mathrm{~d}, 1 \mathrm{H}, J=13.6 \mathrm{~Hz}), 3.74(\mathrm{~d}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}), 3.46\left(\mathrm{dd}, 1 \mathrm{H}, J_{l}=10.2, J_{2}=2.0 \mathrm{~Hz}\right)$, $3.42-3.38(\mathrm{~m}, 1 \mathrm{H}), 3.25(\mathrm{~d}, 1 \mathrm{H}, J=13.6 \mathrm{~Hz}), 3.22\left(\mathrm{dd}, 1 \mathrm{H}, J_{l}=8.6, J_{2}=5.6 \mathrm{~Hz}\right), 2.82(\mathrm{dd}, 1 \mathrm{H}$, $\left.J_{1}=10.2, J_{2}=7.9 \mathrm{~Hz}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 151.0,149.4,135.8,135.1,132.4,128.8$, $128.4,127.9,124.5,119.2,117.2,69.8,55.8,55.1,42.0,30.9$; HRMS (ESI): calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{4}$ $[\mathrm{M}+\mathrm{H}]^{+} 289.1447$ found 289.1445.
$\left(2 S^{*}, 3 R^{*}, 4 R^{*}\right)$-1-Methyl-2-(pyridin-3-yl)pyrrolidine-3,4-dicarbonitrile (78): Following the
 general procedure described above78 was obtained after purification by silica column chromatography (EtOAc:Hexane $=100: 0$); as a colorless solid (66 mg , 31%), mp: 122-124 ${ }^{\circ} \mathrm{C}$; FT-IR (KBr): 2925, 2853, 2364, 2245, 1443, $1182 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.64\left(\mathrm{dd}, 1 \mathrm{H}, J_{l}=4.8, J_{2}=2.0 \mathrm{~Hz}\right), 8.59(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz})$, $7.81-7.78(\mathrm{~m}, 1 \mathrm{H}), 7.38\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=7.8, J_{2}=4.8 \mathrm{~Hz}\right), 3.71-3.67(\mathrm{~m}, 2 \mathrm{H}), 3.62\left(\mathrm{dd}, 1 \mathrm{H}, J_{l}=7.6\right.$, $\left.J_{2}=5.4 \mathrm{~Hz}\right), 3.50-3.45(\mathrm{~m}, 1 \mathrm{H}), 2.66(\mathrm{t}, 1 \mathrm{H}, J=9.3 \mathrm{~Hz}), 2.22(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 150.8,149.9,136.0,131.0,123.9,118.1,117.1,68.5,58.2,40.7,39.1,31.1$; HRMS (ESI): calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{4}[\mathrm{M}+\mathrm{H}]^{+} 213.1140$ found 213.1134.

$\left(2 R^{*}, 3 R^{*}, 4 R^{*}\right)$-1-Methyl-2-(pyridin-3-yl)pyrrolidine-3,4-dicarbonitrile (79):Following the general procedure described above79 was obtained after purification by silica column chromatography (EtOAc:Hexane $=100: 0)$; as a colorless solid ($125 \mathrm{mg}, 59 \%$), mp: 124-126 ${ }^{\circ} \mathrm{C}$; FT-IR (KBr): 2954, 2850, 2247, 1432, $1159 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.57-8.56(\mathrm{~m}, 2 \mathrm{H}), 7.71-7.68(\mathrm{~m}, 1 \mathrm{H})$, $7.30\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=7.8, J_{2}=4.8 \mathrm{~Hz}\right), 3.50\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=10.0, J_{2}=1.7 \mathrm{~Hz}\right), 3.36-3.31(\mathrm{~m}, 2 \mathrm{H}), 3.06$ $\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=8.7, J_{2}=5.4 \mathrm{~Hz}\right), 2.78\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=10.0, J_{2}=8.7 \mathrm{~Hz}\right), 2.14(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 150.9,149.3,135.0,132.2,124.3,119.4,117.3,71.9,58.4,42.2,38.8$, 31.0; HRMS (ESI): calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{4}[\mathrm{M}+\mathrm{H}]^{+} 213.1140$ found 213.1133.

References.

(1) a) Pearson, W. H.; Stoy, P. Synlett2003, 903-921. b) Hanessian, S. ChemMedChem 2006, 1, 1300-1330.c) Sardina, F. J.; Rapoport, H. Chem. Rev.1996, 96, 1825-1872. d) Michael, J. P. Nat. Prod. Rep.2008, 25, 139-165. e) Nair, V.; Suja, T. D. Tetrahedron2007, 63, 12247-12275.
(2) a) Trost, B. M.; Horne, D. B.; Woltering, M. J. Chem. Eur. J. 2006, 12, 6607-6620. b) O'Hagan, D. Nat. Prod. Rep. 2000, 17, 435-446; Nat. Prod. Rep. 1997, 14, 637-651.
(3) a) Mukherjee, S.; Yang, J, W.; Hoffmann, S.; List, B. Chem. Rev. 2007, 107, 5471-5569. b) List, B. Acc. Chem. Res. 2004, 37, 548-557. c) Bhat, C.; Tilve, S. G. RSC Adv. 2014, 4, 54055452.
(4) a) Han, M.-Y.; Jia, J.-Y.; Wang, W. Tetrahedron Lett.2014, 55, 784-794. b) Ouchi, H.; Asahina, A.; Asakawa, T.; Inai, M.; Hamashima, Y.; Kan, T. Org. Lett.2014, 16, 1980-1983. c) Kang, Y.-B.; Tang, Y.; Sun, X.-L. Org. Biomol. Chem.2006, 4, 299-301. d) Nájera, C.; Sansano. J. M. Monatsh Chem2011, 142, 659-680. e) Nájera, C.; Sansano. J. M.; Yus, M. J. Braz. Chem. Soc. 2010, 21, 377-412.
(5) Karoyan, P.; Sagan, S.; Lequin, O.; Quancard, J.; Lavielle, S.; Chassaing, G. 2004; Substituted prolines: syntheses and applications in structure-activity relationship studies of biologically active peptides. In: Attanasi OA, Spinelli D (eds) Targets in heterocyclic systems, vol 8. RSC, Cambridge, p 216.
(6) Nájera, C.; Sansano. J. M. Chem. Rev.2007,107, 4584-4671.
(7) a) Synthetic Applications of Dipolar Cycloaddition Chemistry towards Heterocyclic and Natural Products; Padwa, A., Pearson, W., Eds.; Wiley-VCH: Weinheim, 2002; b) Wade, P. A. In Comprehensive Organic Synthesis; Trost, B. M.; Fleming, I., Semmelhack, M. F., Eds.; Pergamon: Oxford, 1991; Vol 4; p 1111; c)Torssell, K. B. G. Nitrile Oxides, Nitrones and Nitronates in Organic Synthesis; VCH:Weinheim, 1988. d) Padwa, A. In 1,3-Dipolar Cycloaddition Chemistry; Wiley: New York, 1984. e) Huisgen, R.Angew. Chem. Int. Ed.1963, 2, 565-598. f) Gothelf, K. V; Jørgensen, K. A. Chem. Rev. 1998,98,863-909.
(8) a) Adrio, J.; Carretero, J. C. Chem. Commun. 2011, 47, 6784-6794. b) Coldham, I.; Hufton, R. Chem. Rev. 2005, 105, 2765-2809. c) Pandey, G.; Banerjee, P.; Gadre, S. R. Chem. Rev. 2006, 106, 4484-4517. d) Chen, Q.-A.; Wang, D.-S.; Zhou, Y.-G. Chem. Commun.2010, 46, 40434051. e) Bonin, M.; Chauveau, A.; Micounin, L. Synlett2006, 2349-2363. f) Grigg, R.; Kemp, J. Tetrahedron Lett. 1980, 21, 2461-2464.
(9) a) Kanemasa. S. Synlett2002, 1371-1387. b) Pellissier, H. Tetrahedron2007, 63, 3235-3285. c) Kobayashi, S.; Jørgensen, K. A. in Cycloaddition Reactions in Organic Synthesis, Wiley-VCH, Weinheim, 2002.
(10) a) Liu, Y.-K.; Liu, H.; Du, W.; Yue, L.; Chen, Y.-C. Chem. Eur. J. 2008, 14, 9873-9777. b) Gothelf, A. S.; Gothelf, K. V.; Hazell, R. G.; Jørgensen, K. A. Angew. Chem. Int. Ed. 2002, 41, 4236-4238. c) Kumar, A.; Gupta, G.; Srivastava, S. J. Comb.Chem. 2010, 12, 458-462. d) Wang, C.-J.; Liang, G.; Xue, Z.-Y.; Gao, F.J. Am. Chem. Soc. 2008, 130, 17250-17251. e) Zeng, W.; Chen, G.-Y.; Zhou, Y.-G.; Li, Y.-X. J. Am. Chem. Soc. 2007, 129, 750-751. f) Nájera, C.; de Gracia Retamosa, M.; Martín-Rodríguez, M.; Sansano, J. M.; de Cózar, A.; Cossío, F. P. Eur. J. Org. Chem.2009, 5622-5634. g) Garner, P.; Ümit Kaniskan, H. J. Org. Chem.2005, 70, 1086810871. h) Narayan, R.; Potowski, M.; Jia, Z.-J.; Antonchick, A. P.; Waldmann, H. Acc. Chem. Res.2014, 47, 1296-1310. i) Calaza, M. I.; Cativiela, C. Eur. J. Org. Chem.2008, 3427-3448. j) Karthikeyan, K.; Kumar, R. S.; Muralidharan, D.; Perumal, P. T. Tetrahedron Lett.2009, 50, 7175-7179.
(11) a) For the synthesis of arylated pyrrolidines and their biological activity, see: (a) Buchholz, M.; Reißig, H.-U. Eur. J. Org.Chem. 2003, 3524-3533. b) Jae, H.-S.; Winn, M.; von Geldern, T. W.; Sorensen, B. K.; Chiou, W. J.; Nguyen, B.; Marsh, K. C.; Opgenorth, T. J. J. Med. Chem. 2001, 44, 3978-3984. c) Winn, M.; von Geldern, T. W.; Opgenorth, T. J.; Jae, H.-S.; Tasker, A. S.; Boyd, S. A.; Kester, J. A.; Mantei, R. A.; Bal, R.; Sorensen, B. K.; Wu-Wong, J. R.; Chiou, W. J.; Dixon, D. B.; Novosad, E. I.; Hernandez, L.; Marsh, K. C. J. Med. Chem. 1996, 39, 10391048. d) Shih, N.-Y.; Lupo, Jr., A. T.; Aslanian, R.; Orlando, S.; Piwinski, J. J.; Green, M. J.; Ganguly, A. K.; Clark, M. A.; Tozzi, S.; Kreutner, W.; Hey, J. A. J. Med. Chem.1995, 38, 15931599.e) Baldwin, J. E.; Fryer, A. M.; Pritchard, G. J. J. Org. Chem. 2001, 66, 2588-2596.
(12) For selected papers on the synthesis of arylated pyrrolidines and their biological activity, see: a) Enyedy, I. J.; Zaman, W. A.; Sakamuri, S.; Kozikowski, A. P.; Johnson, K. M.; Wang, S. Bioorg. Med. Chem. Lett. 2001, 11, 1113-1118. b) Burton, G.; Ku, T. W.; Carr, T. J.; Kiesow, T.; Sarisky, R. T.; Lin-Goerke, J.; Baker, A.; Earnshaw, D. L.; Hofmann, G. A.; Keenan, R. M.; Dhanak, D. Bioorg. Med. Chem. Lett. 2005, 15, 1553-1556. c) Jean, A.; Blanchet, J.; Rouden, J.; Maddaluno, J.; De Paolis, M. Chem. Commun. 2013, 49, 1651-1653. d) Raikar, S.; Pal, B. K.; Malinakova, H. C. Synthesis 2012, 44, 1983-1992. e) Barker, G.; McGrath, J. L.; Klapars, A.; Stead, D.; Zhou, G.; Campos, K. R.; O’Brien, P. J. Org. Chem.2011, 76, 5936-5953.
(13) a) Parsons. A. F. Tetrahedron 1996, 52, 4149-4174. b) Takano, S.; Iwabuchi, Y.; Ogasawara, K. J. Am. Chem. Soc.1987, 109, 5523-5524.
(14) a) Slater, M. J.; Amphlett, E. M.; Andrews, D. M.; Bravi, G.; Burton, G.; Cheasty, A. G.; Corfield, J. A.; Ellis, M. R.; Fenwick, R. H.; Fernandes, S.; Guidetti, R.; Haigh, D.; Hartley, D.; Howes, P. D.; Jackson, D. L.; Jarvest, R. L.; Lovegrove, V. L. H.; Medhurst, K. J.; Parry, N. R.; Price, H.; Shah, P.; Singh, O. M. P.; Stocker, R.; Thommes, P.; Wilkinson, C.; Wonacott, A. J. Med. Chem.2007, 50, 897-900. b) Mayhoub, A. S. Bioorg. Med. Chem.2012, 20, 3150-3161. c) Martín-Rodríguez, M.; Nájera, C.; Sansano, J. M.; de Cózar, A.; Cossío, F. P. Beilstein J. Org. Chem.2011, 7, 988-996.
(15) a) Stocker, B. L.; Dangerfield, E. M.; Win-Mason, A. L.; Haslett, G. W.; Timmer, M. S. M. Eur.J. Org. Chem. 2010, 1615-1637. b) Coldham, I.; Robinson, S. P.; Baxter, C. A. Synlett2012, 23, 2405-2407.
(16) a) Rajkumar, V.; Aslam, N. A.; Reddy, C.; Babu, S. A. Synlett 2012, 23, 549-556 (and references cited therein). b) Rajkumar, V.;Babu, S. A. Indian Journal of Chemistry 2013, 52A, 1113-1127 (and references cited therein).
(17) Zeng, W.; Zhou, Y.-G. Org. Lett.2005, 7, 5055-5058.
(18) Shi, M.; Shi, J.-W. Tetrahedron: Asymmetry2007, 18, 645-650.
(19) Shi, J.-W.; Zhao, M.-X.; Lei, Z.-Y.; Shi, M. J. Org. Chem. 2008, 73, 305-308.
(20) Rondahl, L. Ph.D. dissertation, Royal Institute of Technology, Stockholm, 1980.
(21) Pinner, A. Ber. Dtsch. Chem. Ges. 1893. 26, 292-305.
(22) Pictet, A.; Rotschy, A. Ber. Dtsch. Chem. Ges. 1904, 37, 1225-1235.
(23) Leete, E.; E. Mueller, M. J. Am. Chem. Soc.1982, 104, 6440-6444.
(24) a) Leete, E. In Alkaloids, Chemical and Biological Perspectives, Pelletier S W, Ed. (John Wiley \& Sons, New York) 1983, Vol. 1, p. 85. b) Gorrod, J. W.; Jacob, P. In Analytical Determination of Nicotine and Related Compounds and Their Metabolites, (Elsevier, New York) 1999, p. 1. c) Strunz, G. M.; Findlay, J, A. In The Alkaloids, Chemistry and Pharmacology, Brossi (Academic Press, Orlando) 1985, Vol. 26, p. 89. d) Pailer, M. In Tobacco Alkaloids and Related Compounds, U S von Euler (Pergamon, New York) 1965, p.15.
(25) Shepard, H. H. in The Chemistry and Action of Insecticides, (McGraw-Hill, New York) 1951.
(26) Gorrod, J. W.; Jacob, P. III. Analytical Determination of Nicotine and Related Compounds and their Metabolites; (Elsevier: New York, NY, 1999) Chapter 1, pp 1-9.
(27) Arneric, S. P.; Brioni, J. D. Neuronal Nicotinic Receptors: Pharmacology and Therapeutic Opportunities. Wiley-Liss, 1999.
(28) a) Levin E D. J Neurobiol.2002, 53, 633-640. b) Lloyd, G. K.; Williams, M. J. Pharmacol. Exp. Ther.2000, 292, 461-467. c) Romanelli, M. N.; Gualtieri, F. Med. Res. Rev. 2003, 23, 393426. d) Newhouse, P. A.; Kelton, M. Pharm. Acta. Helv.2000, 74, 91-101. e) Jensen, A. A.; Frølund, B.; Liljefors, T.; Krogsgaard-Larsen, P. J. Med. Chem. 2005, 48, 4705-4745. f) Holladay, M. W.; Dart, M. J.; Lynch, J. K. J. Med. Chem. 1997, 40, 4169-4194.
(29) a) McDonald, I. A.; Vernier, J.-M.; Cosford, N.; Corey-Naeve, J. Curr. Pharm. Des.1996, 2, 357-366. b) Cosford, N. D. P.; Bleicher, L.; Herbaut, A.; McCallum, J. S.;Vernier, J.-M.; Dawson, H.; Whitten, J. P.; Adams, P.; Chavez-Noriega, L.; Correa, L. D.; Crona, J. H.; Mahaffy, L. S.; Menzaghi, F.; Rao, T. S.; Reid, R.; Sacaan, A. I.; Santori, E.; Stauderman, K. A.;Whelan, K.; Lloyd, G. K.; McDonald, I. A. J. Med. Chem.1996, 39, 3235-3237.
(30) a) Ondachi, P. W.; Comins, D. L. Tetrahedron. Lett.2008, 49, 569-572. b) Wagner, F. F.; Comins, D. L. Tetrahedron2007, 63, 8065-8082.
(31) Smith, E. D.; Février, F. C.; Comins, D. L. Org. Lett.2006, 8, 179-182.
(32) a) Bleicher, L. S.; Cosford, N. D. P. J. Org. Chem. 1999, 64, 5299-5300. b) Bleicher, L. S.; Cosford, N. D. P.; Herbaut, A.; McCallum, J. S.; McDonald, I. A. J. Org. Chem.1998,63, 11091118.
(33) Whitten, J. P.; McDonald, I. A.; Vernier, J.-M. Polycyclic Fused Ring Modulators of Acetylcholine Receptors. WO 96/11931, 1996.
(34) a) Sortino, M.; Garibotto, F.; Filho, V. C.; Gupta, M.; Enriz, R.; Zacchino, S. Bioorg. Med. Chem. 2011, 19, 2823-2834. b) Nirogi, R.; Dwarampudi, A.; Kambhampati, R.; Bhatta, V.; Kota, L.; Shinde, A.; Badange, R.; Jayarajan, P.; Bhyrapuneni, G.; Dubey, P. K. Bioorg. Med. Chem. 2011, 21, 4577-4580.
(35) a) Cava, M. P.; Deana, A. A., Muth, K.; Mitchell, M. J. Org. Synth. 1973, 5, 944; b) Org. Synth. 1961, 41, 93.
(36)Huisgen, R., Grashey, R.; Steingruber, E.Tetrahedron Lett. In the press; Steingruber, E. Diploma Thesis.; Universitat Munchen, 1960.
(37) Joucla, M.; Hamelin, J. Tetrahedron Lett.1978, 19, 2885-2888.
(38) Grigg, R.; Gunaratne, H. Q. N. J. Chem. Soc., Chem. Commun.1982, 384-386.
(39) Padwa, A.; Chen, Y.-Y.; Chiacchio, U.; Dent, W.; Tetrahedron 1985, 41, 3529-3535.
(40) Allway, P.; Grigg, R. Tetrahedron Lett.1991, 32, 5817-5820.
(41) Longmire, J. M.; Wang, B.; Zhang, X. J. Am. Chem. Soc.2002, 124, 13400-13401.
(42) a) Xue, Z.-Y.; Liu, T.-L.; Lu, Z.; Huang, H.; Tao, H.-Y.; Wang, C.-J. Chem. Commun.

2010, 46, 1727-1729. b) Wang, M.; Wang, Z.; Shi, Y.-H.; Shi, X.-X.; Fossey, J. S. Deng, W.-P. Angew. Chem. Int. Ed. 2011, 50, 4897-4900.
(43) a) Watanabe, S.; Tada, A.; Tokoro, Y.; Fukuzawa.; S.-I. Tetrahedron Lett.2014, 55, 1306-
1309. b) Dai, L.; Xu, D.; Tang, L.-W.; Zhou, Z.-M. ChemCatChem 2015, 7, 1078-1082.
(44) El.-Ahl, A.-A. S. Heteroatom Chemistry 2002, 13, 324-329.
(45) Ghandi, M.; Rezaei, S. J. T.; Yari, A.; Taheri, A.Tetrahedron Lett. 2008, 49, 5899-5901.
(46) Ghandi, M.; Yari, A.; Rezaei, S. J. T.; Taheri, A. Tetrahedron Lett. 2009, 50, 4724-4726.
(47) Lakshmi, N. V.; Thirumurugan, P.; Perumal, P. T. Tetrahedron Lett. 2010, 51, 1064-1068.
(48) Liu, H.; Dou, G.; Shi, D. J. Comb. Chem.2010, 12, 292-294.
(49) Rezaei, S. J. T.; Nabid, M. R.; Yari, A.; Ng, S. W. Ultrasonics Sonochemistry 2011, 18, 4953.
(50) Dandia, A.; Jain, A. K.; Bhati, D. S. Tetrahedron Lett. 2011, 52, 5333-5337.
(51) Singh, G.; Ishar, M. P. S.; Girdhar, N. K.; Singh, L. J. Heterocyclic Chem. 2005, 42, 10471054.
(52) Singh, G.; Elango, M.; Subramaniam, V.; Ishar, M. P. S. Heterocycles 2006, 68, 1409-1419. (53) a) Yang, X.; Luo, S.; Fang, F.; Liu, P.; Lu, Y.; He, M.; Zhai, H. Tetrahedron 2006, 62, 22402246. b) Luo, S.; Fang, F.; Zhao, M.; Zhai, H. Tetrahedron 2004, 60, 5353-5355. c) Zhai, H.; Liu, P.; Luo, S.; Fang, F.; Zhao, M. Org. Lett. 2002, 4, 4385-4386.
(54) Cheng, B.; Zhai, H. Synlett2009, 1955-1958.
(55) Bashiardes, G.; Picard, S.; Pornet, J. Synlett 2009, 2497-2499.
(56) Ghandi, M.; Taheri, A.; Abbasi, A. J. Heterocyclic Chem. 2010, 47, 611-615.
(57) Padwa, A.; Chen, Y.-Y.; Dent, W.; Nimmesgern, H. J. Org. Chem. 1985, 50, 4006-4014.
(58) a) Pascual-Escudero, A.; Gonzalez-Esguevillas, M.; Padilla, S.; Adrio, J.; Carretero, J. C. Org. Lett. 2014, 16, 2228-2231. b) Craven, P.; Aimon, A.; Dow, M.; Fleury-Bregeot, N.; Guilleux, R.; Morgentin, R.; Roche, D.; Kalliokoski, T.; Foster, R.; Marsden, S. P.; Nelson, A. Bioorg. Med. Chem. 2015, 23, 2629-2635.
(59) a) Fatiadi, A. J. Synthesis 1978, 165-204. b) Fatiadi, A. J. Synthesis1978, 241-282. c)

Freeman, F. Chem. Rev. 1980. 80, 329-350. d) Campaigne, E.; Schneller, S. W., Synthesis1976, 70-716. e) Bigi, F.; Conforti, M. L.; Maggi, R.; Piccinno, A.; Sartori, G.Green Chemistry2000, 2, 101-103.
(60) The ${ }^{1} \mathrm{H} \quad{ }^{13} \mathrm{C}$ NMR spectral patterns of the compounds $\mathbf{5 8}$ a and $\mathbf{5 8 b}$ were similar.Likewise, the ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$ NMR spectral patterns of the compounds $\mathbf{5 9}$ a and $\mathbf{5 9 b}$ were similar. On the basis of the X-ray structure of the nicotine analogue 71 (Figure 7) and the similarity in the ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$ NMR spectral patterns of the respective compounds $\mathbf{5 8} \mathbf{a}$ and $\mathbf{5 8 b}$, with the compounds 71 and 73, the stereochemistry of the products $\mathbf{5 8 a}, \mathbf{b}$ and $\mathbf{5 9}, \mathbf{b}$ was assigned.
(61) Generally, in the major compounds 59a, 61 and 63, it has been noticed that the stereochemistry is trans with respect to the aryl and ethyl ester moieties (1,2-positions) which may be due to steric interactions. Contrary to this observation, we obtained the compounds 59b and 72 as the minor isomers having trans stereochemistry with respect to the aryl and methyl ester moieties (while using dimethyl fumarate) and at this stage, an exact reason is not clear to us for this.

Chapter 2: Highly Regio- and diastereoselective construction of densely functionalized spirooxindolo-pyrrolidine / pyrrolizidine, spiro-1,3-indandionolylpyrrolidine and spiroacenaphthylenolyl- pyrrolidine / pyrrolizidine derivatives.

Introduction.

Multicomponent reactions (MCRs) provides an easy access to combinatorial libraries of compounds having interesting physical, chemical or biological properties. ${ }^{1}$ The stereoselective construction of multiple stereocenters containing molecule in a single step reaction would be an interesting and step-economical method.
The regio- and stereoselective 1,3-dipolar cycloaddition ${ }^{1 \mathrm{c}, 2}$ reaction is one of the powerful methods for the construction of naturally occurring and synthetic five-membered heterocyclic compounds. Among the diverse 1,3-dipoles engaged for the synthesis of five-membered heterocyclic compounds via the 1,3-dipolar cycloaddition reactions, the azomethine ylides (as a 1,3-dipoles) ${ }^{2 b, 3}$ received special attention due to the following reasons; (a) the cycloaddition reaction of azomethine ylides with electron-deficient olefins is an stupendous method for the regio- and stereoselective preparation of pyrrolidine-based nitrogen heterocycles, which are often found in natural alkaloids and subunits of bioactive alkaloids, and (b) the construction of up to four new stereocenters in a pyrrolidine ring can be accomplished with high degree of regio- and stereocontrol. Although numerous methods are known for the generation of azomethine ylides, two of the azomethine cycloaddition methods are very popularly studied; (a) the construction of metallo-1,3-dipoles (azomethine ylides) from N-benzylideneiminoglycinates and their cycloaddition with electron-deficient olefins (b) the generation of azomethine ylides in multicomponent reactions via the decarboxylative reactions of 1,2-dicarbonyl compounds and α amino acids with electron-deficient olefins.

Spiro compounds have significantly attracted the attention of organic- and medicinal chemists due to their potential biological properties. Further, the stereoselective construction of the spiro unity of a given molecule considered as interesting and challenging task. Some of the important natural products possessing spiro linkage are shown in Figure 1. ${ }^{4}$ Amongst the spiro compounds, naturally occurring spirooxindole alkaloids and synthetically derived spirooxindoles have attracted the attention towards synthetic, medicinal chemists and chemical biologists. ${ }^{5,6}$ The
spirooxindole alkaloids were first isolated from plants of the Apocynaceae and Rubiacae families. ${ }^{5}$ The oxindole and spirooxindole skeleton having a tetra-substituted carbon stereocenter at the 3-position found to be the core structural unit of a large family of bio-active natural / unnatural spirooxindole molecules (Figure 2). ${ }^{6-10}$
some of the natural products having spiro linkage

1 a
(+)- β-vetivone

1b racemic-hinesol

spirolaurenone

racemic-pronuciferine

spirotryprostatin A (antimitotic agent)

spirotryprostatin B (antimitotic agent)

strychnofoline (antimitotic agent)

rhynchophylline (NMDA antagonist / Ca-channel blocker)

(+)-gelsemine (toxic alkaloid)

marcfortine B

Figure 1. Spiro compounds and biologically active naturally occurring spirooxindole molecules.

For example, spirooxindoles spirotryprostatins A and B^{7} isolated from fermentation broth of Aspergillus fumigatus were found to completely inhibit the G2/M progression of mammalian tsFT210 cells at concentrations in excess of 12.5 mgmL . Spirooxindole rhynchophylline found in certain uncaria species, especially uncaria rhynchophylla and uncaria tomentosa. Spirooxindole rhynchophylline was useful in the treatment of cardiovascular and central nervous system diseases. ${ }^{8}$ Spirooxindole coerulescine was isolated from the phalaris coerulescens species, such as blue canary grass, found to show analgesic effect. Spirooxindole strychnofoline isolated from
the leaves of strychnos usambarensis found to exhibit antimitotic activity against cultures of mouse melanoma and Ehrlich tumor cells. ${ }^{10}$

Some of the biologically active synthetically derived spiropyrrolidines

11
MI-43
MDM2 antagonist

MI-63
MDM2-p53 inhibitor
(Sanofi-Aventis /
Ascanta Pharm.)

Figure 2. Synthetically derived biologically active spirooxindole molecules.

Due to their bountiful applications of naturally occurring spirooxindole alkaloids in chemical biology, organic synthesis and medicinal chemistry research, synthetic and medicinal chemists are inspired to design and synthesize libraries of new classes spirooxindole scaffolds, which are analogues to naturally occurring spirooxindole molecules (Figure 2). ${ }^{5,6 d, 11,12}$ Several synthetic spirooxindoles display a wide range of biological activities. For example, Wang et al. ${ }^{13}$ revealed MI-43 as inhibitor of the MDM2-p53 interaction and their study suggested that p53 activation by a potent and specific spirooxindole MDM2 antagonist and this result found to be a potential therapeutic approach for the treatment of colon cancer. Gal et al. ${ }^{14}$ reported spirooxindole SR 121463 A as a highly potent and selective nonpeptide vasopressin V_{2} receptor antagonist. Waldmann et al. ${ }^{15}$ achieved the synthesis of indolin-2-on-3-spirothiazolidinones and they act as
potent and selective inhibitors of the mycobacterium tuberculosis protein tyrosine phosphatase B. Yeung et al. ${ }^{16}$ reported the synthesis of spiroindolones and these compounds were found to be effective in the treatment of malaria.

Furthermore, several synthetically derived spirooxindolo-pyrrolidine / pyrrolizidine scaffolds were found to act as poliovirus, aldose reductase, rhinovirus 3C-proteinase inhibitors. ${ }^{17}$ Apart from the potential biological activities exhibited by the synthetically derived spirooxindole scaffolds, various spirooxindole scaffolds act as potential synthetic intermediates to synthesize spirooxindole natural products. ${ }^{5,6 d, 11-16}$

The promising biological activities showed by natural and unnatural spirooxindole scaffolds have raised the interests of synthetic and medicinal chemists. Notably, in the past few years, there have been rapid developments in the research area pertaining to the stereoselective synthesis and application of spirooxindole-based molecules. Accordingly, a wide range of synthetic strategies were developed for assembling architecturally complex spirooxindole molecules. ${ }^{6 \mathrm{~d}}$ Predominantly, the cycloaddition method has served as one of the important methods for the stereoselective construction of spirooxindole frameworks. Amongst the cycloaddition routes, the multicomponent azomethine ylide 1,3-dipolar cycloaddition reactions ${ }^{6 \mathrm{~d}, 11 e, 18,19}$ represent the most attractive strategy to generate spirooxindole moieties. ${ }^{6 \mathrm{~d}}$ Accordingly, in the context of finding new lead molecules with biological activities and for finding potential drug candidates there have been continuous efforts for preparing new libraries of multi substituted spiro-oxindoles / pyrrolizidines / pyrrolidines appended with various medicinally important functional groups and sub-units, such as,cyano, aryl- / heteroaryl moieties via the multicomponent reaction-based 1,3-dipolar cycloadditions of azomethine ylides with suitable dipolarophiles and other methods. ${ }^{6 \mathrm{~d}, 11 \mathrm{e}, 18-21}$ Especially, some of the C-3-indole moiety substituted pyrrolidines (e.g., eletriptan) and spiro-oxindoles / pyrrolizidines / pyrrolidines appended with medicinally important and sub-units, such as,indole moieties were found to be important class of molecules with promising biological activities (Figure 3). It was apparent that a literature survey revealed that there exist few reports dealing on the cycloadditions of azomethine ylides with nitroolefin-based dipolarophiles as the route for synthesis of C-3-indole moiety substituted pyrrolidines, ${ }^{20}$ apart from cycloaddition, other mehods also provide an access to synthesize C-3-indole moiety substituted pyrrolidines. ${ }^{21}$ However, there exist only some rare reports dealing on the azomethine ylide cycloaddition-based construction of spiro-oxindoles /
pyrrolizidines / pyrrolidines connected with an indolecarbonyl unit. ${ }^{41}$ Further a literature survey revealed that, there exist no reports on the azomethine ylide cycloaddition-based synthesis of spiro-oxindole- / pyrrolizidine- / pyrrolidine scaffolds directly appended with the indolyl or pyrrolyl moieties. ${ }^{5,6,21}$

In analogy to the importance of synthetically derived spirooxindole scaffolds, ${ }^{5,6,21}$ several spiroacenaphthylenolyl-pyrrolidines / pyrrolizidines ${ }^{22 a, b}$ and spiro-1,3-indandionolyl-pyrrolidines / pyrrolizidines ${ }^{22 c-f}$ are also considered as distinguished heterocyclic compounds with potential biological activities ${ }^{6}$ (Figure 3).

Bio-active C-3 indole moiety appended pyrrolidines

2a
NXN274

2b
serotonin/norepinephrine/ dopamine reuptake inhibitors

2c
eletriptan (Relpax of Pfizer)

Bio-active C-3 indolecarbonyl moiety appended spiropyrrolidine oxindoles

2d

Figure 3. Bio-active indole moieties containing pyrrolidines, spiropyrrolidines, spiroacenaphthylenolylpyrrolidines as well as spiro-1,3-indandionolylpyrrolidines.

Representative papers dealing on the spirooxindole natural product-inspired synthesis of complex spiro-oxindole and spiro-pyrrolidine/pyrrolizidine scaffolds and biologically activities.

Given that the spiro-oxindole / pyrrolizidine / pyrrolidine frameworks considered as privileged frameworks found in a variety of natural products, synthetically derived biologically active compounds and drug molecules; several functionalized spiro-oxindole / pyrrolizidine / pyrrolidine frameworks and spiroacenaphthylenolyl-pyrrolidines / pyrrolizidines and spiro-1,3-indandionolyl-pyrrolidines / pyrrolizidines were prepared in view of enriching the library of spiro-oxindole and spiropyrrolidine frameworks. Accordingly, several methods were also developed for preparing spiro-oxindole / pyrrolizidine / pyrrolidine frameworks, which includes; cycloaddition reactions, organocatalyzed transformations, metal-catalyzed cyclization reaction, multicomponent reactions, etc. Particularly, the cycloaddition protocol considered as one of the important methods for stereoselective construction of spirooxindole frameworks. Amongst the cycloaddition routes, the multicomponent azomethine ylide cycloaddition reactions ${ }^{6 \mathrm{~d}, 11 \mathrm{e}, 18,19}$ found to be the robust method to generate spirooxindole moieties. ${ }^{5,6}$

Multicomponent azomethine ylide cycloaddition
Figure 4.Preparation of spirooxindole skeleton via azomethine ylide cycloaddition.

In the following section some of the literature reports dealing on the synthesis of functionalized spiro-oxindole and spiropyrrolidine frameworks involving the multicomponent 1,3-dipolar cycloadditions of azomethine ylides are represented.

Grigg's group ${ }^{23 a}$ was one of the first groups successfully synthesize spiro[pyrrolidine-3,3oxindole] framework via the generation of azomethine ylide from the decarboxylative reactions of 1,2-dicarbonyl compound and α-amino acid followed by the cycloaddition with electrondeficient olefin. The reaction of ninhydrin $\mathbf{3 a}$ and proline $\mathbf{3 b}$ with oxindole $\mathbf{3 c}$ in 50% aqueous methanol at $25{ }^{\circ} \mathrm{C}$ for 14 h yielded the spiro[pyrrolidine-3,3-oxindole] framework 3d in 88% yield with high degree of stereocontrol (Scheme 1). Similarly, the reaction of isatin 3e and pipecolic acid $\mathbf{3 f}$ with fumaronitrile $\mathbf{3 g}$ in refluxing methanol gave the spiro[pyrrolidine-3,3oxindole] framework $\mathbf{3 h}$ in 76% yield (Scheme 1). After the report by Grigg et al. various other research groups achieved the synthesis of spiro[pyrrolidine-3,3-oxindole] skeletons with interesting medicinal properties via the 1,3-dipolar cycloaddition of azomethine ylide with different olefin dipolarophiles.

Scheme 1. Synthesis of spirooxindoles 3d and 3h via the azomethine cycloaddition reaction.
Bergman and co-workers ${ }^{23 b}$ reported the efficient synthesis of spiro[pyrrolidine-3,3'-oxindole] $\mathbf{4} \mathbf{e}$ from the cycloaddition reaction of azomethine ylide $\mathbf{4 c}$ generated from isatin $\mathbf{4 a}$ and variety of amino acids $\mathbf{4 b}$ with activated dipolarophiles $\mathbf{4 d}$ (Scheme 2). Kang et al. ${ }^{24}$ reported the one-pot stereoselective synthesis of spiropyrrolizidine oxindoles $\mathbf{4 f}$ from the cycloaddition reaction of azomethine ylide generated from the decarboxylative reaction of 1,2-dicarbonyl compound and α-amino acid with maleates and maleimides $\mathbf{4 d}$ as dipolarophiles (Scheme 2).

Girgis and Stawinski ${ }^{25 a}$ reported the generation of azomethine ylide in one pot involving the decarboxylative reaction of 1,2-dicarbonyl compound and α-amino acid 5b followed by cycloaddition of azomethine ylide with 1 -aryl- 1 H -pyrrole-2,5-diones (maleimides) 5c, which gave various spirooxindole molecules 5d (Scheme 3). Girgis and Stawinski ${ }^{25 a}$ revealed that one of the compound from the series of spirooxindole molecules $\mathbf{5 d}$ exhibited anti-tumor activity against liver cancer HepG2 cell line. Lipsonet al. ${ }^{25 \mathrm{~b}}$ alsoreported the synthesis of spirooxindoles $\mathbf{5 d}$ (Scheme 3) via the generation of azomethine ylide from the decarboxylative reaction of 1,2dicarbonyl compound and various α-amino acids followed by cycloaddition of azomethine ylide with maleimide 5c. Azizian et al. ${ }^{25 c}$ reported the synthesis of spirooxindolopyrrolizidines $\mathbf{5 f}$ (Scheme 3) involving the generation of azomethine ylide from decarboxylative reaction of 1,2dicarbonyl compound and α-amino acid followed by cycloaddition with $\mathbf{5 c}$ under thermal and microwave conditions.
Grigg et al. ${ }^{25 \mathrm{~d}}$ reported the synthesis of spirooxindole derivatives $\mathbf{5 h}$ and $\mathbf{5 i}$ (Scheme 3) involving the generation of azomethine ylide in one pot manner via the decarboxylative reaction of 1,2dicarbonyl compound and α-amino acid followed by cycloaddition with 5c. Grigg et al. also achieved $^{25 e}$ the synthesis of spiro-1,3-indandionolylpyrrolidines $\mathbf{5 I}$ involving the generation of azomethine ylide in the multicomponent reactionof 1,2-dicarbonyl compound and α-amino acid followed by cycloaddition with 5c (Scheme 3).

Scheme 2. Synthesis of spirooxindoles $\mathbf{4 e} \mathbf{e} \mathbf{f}$ via the azomethine cycloaddition reaction.

$\mathrm{R}=\mathrm{H}, \mathrm{Cl}, \mathrm{OMe}$
$\mathrm{Ar}=\mathrm{C}_{6} \mathrm{H}_{5}, 4-\mathrm{ClC}_{6} \mathrm{H}_{4}, 4-\mathrm{FC}_{6} \mathrm{H}_{4}, 4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}, 4-\mathrm{OCH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$
up to 90% yield

microwave condition; $4-6 \mathrm{~h}$, up to 94% yield
reflux condition; $2.5-3.5 \mathrm{~h}$, up to 86% yield

Scheme 3. Synthesis of spirooxindoles $\mathbf{5 d}, \mathbf{5 f}, \mathbf{5 h}$ and $\mathbf{5 i}$ and spiro-1,3-indandionolylpyrrolidines 51.

Sarrafi and co-workers ${ }^{26 a}$ reported the regio- and stereoselective synthesis of spirooxindoles $\mathbf{6 e - h}$ involving the generation of azomethine ylide from the decarboxylative reaction of 1,2-dicarbonyl compound $\mathbf{6 a}$ and α-amino acid $\mathbf{6 b}$ followed by cycloaddition with (E)- β-nitrostyrene $\mathbf{6 c}$ and (E) -1-phenyl-2-nitropropene $\mathbf{6 d}$ (Scheme 4). While the cycloaddition of azomethine ylide with β nitrostyrene 6c gave the spirooxindoles $\mathbf{6 e}$ (major regioisomer) and $\mathbf{6 f}$ (minor regioisomer); in the cycloaddition of azomethine ylide with β-nitrostyrene $\mathbf{6 d}$ reversal of the regioselectivity was observed and the reaction gave the spirooxindoles $\mathbf{6 g}$ (minor regioisomer) and $\mathbf{6 h}$ (major
regioisomer). In a related study, Chen et al. ${ }^{26 \mathrm{~b}}$ achieved the regioselective synthesis of spirooxindoles $\mathbf{6 k}$ (minor regioisomer) and $\mathbf{6 l}$ (major regioisomer) involving the generation of azomethine ylides in multicomponent reactions via the decarboxylative reaction of 1,2dicarbonyl compound $\mathbf{6 a}$ and various α-amino acids $\mathbf{6 i}$ followed by cycloaddition with $\mathbf{6 j}$ (Scheme 4).

Scheme 4. Regioselective synthesis of spirooxindolo-pyrrolidine, pyrrolizine and pyrrolothiazole scaffolds $\mathbf{6 e - h}, \mathbf{6 k}-\mathbf{l}, \mathbf{6 n - 0}$ and $\mathbf{6 q}$ containing nitro moiety via the azomethine cycloaddition reaction.

Perumal et al. ${ }^{26 c}$ reported the synthesis of a series of spirooxindolo-pyrrolidine, pyrrolizine and pyrrolothiazole scaffolds $\mathbf{6 n}$ and $\mathbf{6 0}$ involving the generation of azomethine ylides in one pot reactions via the decarboxylative reaction of 1,2-dicarbonyl compound and various α-amino acids followed by cycloaddition with $\mathbf{6 j}$.(Scheme 4). The compounds spirooxindolo-pyrrolidine, pyrrolizine and pyrrolothiazole scaffolds $\mathbf{6 n}$ and $\mathbf{6 0}$ showed in vitro activity against Mycobacterium tuberculosis H37Rv (MTB). Raghunathan et al. ${ }^{26 \mathrm{~d}}$ also reported the synthesis of a series of spirooxindolo-pyrrolidines $\mathbf{6 q}$ involving the generation of azomethine ylide via the decarboxylative reaction of 1,2-dicarbonyl compound and α-amino acid followed by cycloaddition with $\mathbf{6 j}$ (Scheme 4).

Scheme 5. Synthesis of spirooxindoles 7d-e, 7h and 7i-j via the azomethine cycloaddition reaction.

Ghandi and co-workers ${ }^{27 a}$ reported the synthesis of spirooxindoles 7d by using 3acetylcoumarins 7c as dipolarophiles in azomethine ylide cycloaddition reaction. Notably, the azomethine cycloaddition reaction in MeOH gave the deacetylated product 7e (Scheme 5). Ji et $a l .{ }^{27 \mathrm{~b}}$ reported the synthesis of 3-spiro[pyrrolidino-oxindoles] 7h involving generation of
azomethine ylide via the decarboxylative reaction of 1,2-dicarbonyl compound and various α amino acid followed by cycloaddition with $\mathbf{7 g}$ in methanol at $40^{\circ} \mathrm{C}$ under ultrasonic irradiation (Scheme 5). In a related study, Perumal et al. ${ }^{27 \mathrm{c}}$ achieved the synthesis of a series of spirooxindoles $\mathbf{7 i}$ and $\mathbf{7 j}$ by using $\mathbf{7 g}$ as a dipolarophile. The synthesized spirooxindoles $\mathbf{7 i}$ and $\mathbf{7 j}$ were tested for their antimicrobial activity (Scheme 5).

Scheme 6. Construction of spirooxindoles $\mathbf{8 e}, \mathbf{8 f}, \mathbf{8 i}$ and $\mathbf{8 k}$ via the azomethine ylide 1,3 dipolar cycloaddition reaction.

Scheme 7. Synthesis of spirooxindoles 9d via the azomethine cycloaddition reaction.

Scheme 8. Synthesis of spirooxindoles $\mathbf{9 f}$ and $\mathbf{9 g}$ via the [3+2] dipolar cycloaddition reaction.
Pardasani and co-workers ${ }^{28 \mathrm{a}}$ revealed the synthesis of spirooxindoles $\mathbf{8 e}$ and $\mathbf{8 f}$ involving the generation of azomethine ylides from 1,2-dicarbonyl compounds and various α-amino acids followed by cycloaddition reactions with dipolarophiles 8c and 8d (Scheme 6). Furthermore, Shi et al. ${ }^{28 \mathrm{~b}}$ reported the cycloaddition of isatin derived azomethine ylide with electron deficient alkynes $\mathbf{8 h}$ to give spirooxindole derivatives $\mathbf{8 i}$. The synthesized spirooxindole derivatives $\mathbf{8 i}$ were found to exhibit promising cytotoxicity to MCF-7 cells. Maiti et al. ${ }^{28 \mathrm{c}}$ reported the SbCl_{3-} catalyzed one-pot synthesis of benzoquinolinespirooxindoles $\mathbf{8 k}$ (Scheme 6).

Raghunathan et.al ${ }^{29}$ reported the synthesis of spiropyrrolidines 9d by using Baylis-Hillman adducts $\mathbf{9 c}$ as a dipolarophiles in the multicomponent azomethine ylide cycloaddition reaction (Scheme 7). Shi and co-workers ${ }^{30}$ reported the one pot synthesis of dispirooxindolothiazolidine derivatives $\mathbf{9 f}$ and $\mathbf{9 g}$ by using $\mathbf{9 e}$ as a dipolarophile in the azomethine ylide cycloaddition reaction under ultrasonic irradiation without any catalyst (Scheme 8).
Fokas et al. ${ }^{32 \mathrm{a}}$ prepared combinatorial library of spiro[pyrrolidine-2,3'-oxindoles) 11d by using chalcones ${ }^{31} \mathbf{1 1 c}$ as dipolarophiles in the multicomponent 1,3-dipolar azomethine ylide cycloaddition reaction (Scheme 9). Moreover, Hao et al. ${ }^{32 \mathrm{~b}}$ prepared a series of spiro[pyrrolidine-2,3'-oxindoles) 11f (Scheme 9) and these compounds were found to exhibit antitumor activities on A549 and P388 cell lines.

Thangamani ${ }^{33 a}$ prepared spirooxindolopyrrolizidines 12d by using (E)-3-aryl-1-(thiophen-2-yl)prop-2-en-1-ones 12c as a dipolarophile in the multicomponent azomethine ylide cycloaddition reaction (Scheme 10). The spirooxindolopyrrolizidines 12d were screened for their antibacterial and antifungal activities against a range of microbial organisms.

Ouyang and He et al. ${ }^{33 \mathrm{~b}}$ prepared a series of functionalized spirooxindolo-pyrrolidines, pyrrolizidines, and pyrrolothiazoles $\mathbf{1 2 g}$ and $\mathbf{1 2 h}$ via the multicomponent reactions (Scheme 10). Notably, the compounds $\mathbf{1 2 g}$ and $\mathbf{1 2 h}$ contain heteroaryl rings as substituents in the pyrrolizidine
ring (connected via a carbonyl linkage) and these compounds were tested for their antimicrobial activities and one of the compounds from the series $\mathbf{1 2 g}$ and $\mathbf{1 2 h}$ showed potential antimicrobial activity against drug-resistant bacteria.

Scheme 9. Synthesis of 11d and 11f via the azomethine cycloaddition reaction.

Scheme 10. Synthesis of spirooxindoles 12d 12g and 12h containing heteroaryl moieties in the pyrrolizidine ring.

Zhu et al. ${ }^{34 \mathrm{a}}$ reported a series of functionalized spirooxindole-pyrrolidine / pyrrolizidine / pyrrolothiazole molecules 13d containing heteroaryl moieties in the pyrrolidine/pyrrolizidine ring through the 1,3-dipolar cycloaddition of azomethine ylides generated from isatin or acenaphthenequinone 13a and α-amino acids with 3-aryl-1-(pyridin-2-yl)-prop-2-en-1-one 13c as a dipolarophile (Scheme 11).

Shi et al. ${ }^{34 \mathrm{~b}}$ reported the regioselective synthesis of functionalized dispiropyrrolizidine molecules 13f by using (Z)-4-benzylidene-2-phenyloxazol- $5(4 \mathrm{H}$)-ones $\mathbf{1 3 e}$ as a dipolarophiles in the 1,3dipolar cycloaddition reactions and the compounds $\mathbf{1 3 f}$ were tested for their antiproliferative properties against cancer cells (Scheme 11).

Raghunathan et al. ${ }^{35 \mathrm{a}}$ achieved the regioselective synthesis of novel dispiroheterocyclic frameworks $\mathbf{1 4 a}$ and $\mathbf{1 4 b}$ via the TiO_{2}-silica-catalyzed azomethine ylide cycloaddition. Das and co-workers ${ }^{35 \mathrm{~b}}$ revealed the synthesis of sugar based spirooxindole-pyrrolidine and pyrrolizidines 14c by using $\alpha-\beta$ - unsaturated β-C-glycosidic ketone as a dipolarophile in the azomethine ylide cycloaddition reaction (Scheme 12).

Scheme 11. Synthesis of spirooxindoles and spiro-pyrrolidines/pyrrolizidines 13d and $\mathbf{1 3 f}$ containing aryl/heteroaryl moieties in the pyrrolidine and pyrrolizidine rings via the azomethine ylide 1,3-dipolar cycloaddition reaction.

Scheme 12. Spiro- and dispiro- pyrrolidine/pyrrolizidines 14a-c synthesized via the azomethine cycloaddition reaction.

Narayanan et al. ${ }^{36 a}$ reported the regioselective synthesis of spiroheterocycles $\mathbf{1 5 d}$ by using tris benzylidene acetylacetone $\mathbf{1 5 c}$ as an unusual dipolarophile in the azomethine ylide cycloaddition reaction (Scheme 13). Stawinski and Girgis et al. ${ }^{36 \mathrm{~b}}$ reported the synthesis of dispiroindoles $\mathbf{1 5 g}$ (Scheme 13) by using $2 E, 6 E$-bis (arylidene)-1-cyclohexanones $\mathbf{1 5 f}$ as a dipolarophiles and these compounds were screened for their antitumor properties against HEPG2 (liver), HELA (cervical) and PC3 (prostate) human tumor cell lines.

Scheme 13. Spiro-pyrrolidine/pyrrolizidines $\mathbf{1 5 d}$ and $\mathbf{1 5 g}$ synthesized via the azomethine cycloaddition reaction.

Raghunathan et al. ${ }^{37}$ described an efficient synthesis of spiropyrrolo-bicyclo [2.2.1]heptanes $\mathbf{1 6 d}$ and 16evia theazomethine ylide cycloaddition reaction (Scheme 14). Osman and Kumar ${ }^{38 \mathrm{a}, \mathrm{b}}$ reported the synthesis of mono and bis spiroheterocyclic frameworks 16i and 16j (Scheme 14) and these spiro compounds were found to act as potent cholinesterase inhibitors.

Scheme 14. Construction of spiro-pyrrolidine/pyrrolizidines 16d, 16e, 16i and 16j via the azomethine cycloaddition reaction.

Scheme 15. Construction of bis-spirooxindoles 17a-f and 18a, as well as 18b.

Ali et al. ${ }^{39 a}$ reported series of spiropyrrolothiazolyloxindoles $\mathbf{1 7 a}$ (Scheme 15) from the cycloaddition of corresponding azomethine yilde with 5,6-dimethoxy-2-[(E)-1-arylmethylidene]-1-indanones as a dipolarophiles and the synthesized compounds 17a were tested for their cholinesterase inhibition activity. Perumal et al. ${ }^{39 b}$ reported synthesis of dispirooxindoles 17b-f (Scheme 15) from the cycloaddition of corresponding azomethine yilde with cyclic ketones andthese compounds evaluated for their Mycobacterium tuberculosis H37Rv inhibition activity.

Yu et al. ${ }^{40 \mathrm{a}}$ reported the regioselective synthesis of steroidal pyrrolidine spirooxindoles $\mathbf{1 8 a}$ (Scheme 15) from the cycloaddition of corresponding azomethine yilde with (E)-3ß-hydroxy-5-ene-16-arylidene-17-ketosteroids as a dipolarophiles and the synthesized compounds 18a (Scheme 15) were tested for their anticancer activities.Perumal et al. ${ }^{40 \mathrm{~b}}$ reported the synthesis of dispiropyrrolidines 18b (Scheme 15) from the cycloaddition of corresponding azomethine yilde with 3-benzylidene-1-methyl-pyrrolidine-2,5-dione andthese compounds evaluated for their antibacterial activity.

Perumal and co-workers ${ }^{41 a}$ reported the synthesis of dispirooxindolopyrrolidines 19e and 19 f (Scheme 16) from the multicomponent cycloaddition of azomethine yilde with indole-based dipolarophiles. The compounds 19e and $\mathbf{1 9 f}$ were evaluated for their anticancer activity on A549 human lung adenocarcinoma cancer cell lines.

Scheme 16. Construction of dispirooxindolopyrrolidines 19e and 19f.

Scheme 17. Synthesis of spirooxindolo-pyrrolidines / pyrrolizidines 19i and 19k appended with the indolecarbonyl moiety.

Ji et al. ${ }^{41 \mathrm{c}}$ reported the synthesis of spirooxindolo-pyrrolidines / pyrrolizidines $\mathbf{1 9 i}$ appended with the indolecarbonyl moiety(Scheme 17) from the one pot cycloaddition of corresponding azomethine yilde generated from isatin / acenaphthenequinone and amino acids with the corresponding indole-based dipolarophiles. In addition, Reddy et al. ${ }^{41 \mathrm{~d}}$ reported the diastereoselective synthesis of spirooxindolo-pyrrolidines / pyrrolizidines 19k (Scheme 17) and the compounds 19 k were evaluated for their antimicrobial activity.

Raghunathan et al. ${ }^{42 a, b}$ reported the synthesis of ferrocenyl moiety attached spirooxindolopyrrolidines and pyrrolizidines 20d (Scheme 18) from the one pot cycloaddition of corresponding azomethine yilde generated from isatin / acenaphthenequinone and amino acids with the corresponding ferrocene-based dipolarophiles.

Scheme 18. Synthesis of ferrocenyl moiety attached spirooxindolo-pyrrolidines and pyrrolizidines 20d.

Scheme 19. Synthesis of spiroacenaphthylenolyl-pyrrolidines / pyrrolizidines appended with heteroaryl moieties.

Ignacimuthu et al. ${ }^{43 \mathrm{a}}$ reported the synthesis of spiroacenaphthylenolyl-pyrrolidines / pyrrolizidines21d(Scheme 19) appended with heteroaryl moieties from the multicomponent
cycloaddition of azomethine yilde generated from acenaphthenequinone and amino acids withdipolarophile 21c. Thangamani et al. ${ }^{43 \mathrm{~b}}$ reported synthesis of spiroacenaphthylenolylpyrrolidines 21fappended with heteroaryl moieties (Scheme 19). Sarrafi et $a l .{ }^{44 \mathrm{a}}$ reported the regioselective synthesis of spiro-1,3-indandionolylpyrrolizidines 22d (Scheme 20) from the multicomponent cycloaddition of corresponding azomethine yilde generated from ninhydrin and 1,2,3,4-tetrahydroisoquinoline 22b with the corresponding chalcones as a dipolarophiles. Finally, Thangamani et al. ${ }^{44 \mathrm{~b}}$ reported the synthesis of spiro-1,3indandionolylpyrrolizidines 22g (Scheme 20) from the multicomponent cycloaddition of azomethine yilde generated from ninhydrin and L-proline with chalcones as dipolarophiles.

22a

22b

22a

22e

22c

up to 94% yield

Scheme 20. Synthesis of spiro-1,3-indandionolylpyrrolizidines 22d and 22g.

Results and discussion.

Due to the importance of spiro-pyrrolidine- / pyrrolizidine derivatives in organic synthesis and medicinal chemistry and drug discovery research, several research labs including our lab are interested in enriching the library of medicinally important spirooxindole, spiro-pyrrolidine- / pyrrolizidine scaffolds. ${ }^{1-6}$ Categorically, in the context of finding new lead compounds with promising biological activities and for finding potential drug candidates there have been vested interests and continuous efforts for preparing new libraries of multi substituted or highly functionalized spiro-oxindoles / pyrrolizidines / pyrrolidines appended with medicinally important functional groups and sub-units, such as,aryl- / heteroaryl moieties via the azomethine ylide 1,3-dipolar cycloaddition route. ${ }^{6}$ There exist various reports dealing on the synthesis of
biologically active spirooxindole, spiro-pyrrolidine- / pyrrolizidine scaffolds via the azomethine cycloaddition method. The key to assemble new class of a library of diversely functionalized spiro-oxindoles / pyrrolizidines / pyrrolidines appended with medicinally important functional groups and sub-units has been to use different 2π components (dipolarophiles) in the azomethine ylide cycloaddition.

Chapter 2a: Stereocontrolled entry into norbornane-fused- spirooxindolopyrrolidines, spiro-1,3-indandionolylpyrrolidines and spirooxindolopyrrolizidines.

Although there exist various reports dealing on the synthesis of biologically active spirooxindole, spiro-pyrrolidine- / pyrrolizidine scaffolds via the azomethine cycloaddition method; generally, electron-deficient dipolarophiles have been used in the intermolecular [3+2] cycloaddition reactions of azomethine ylides for the synthesis of spiro-oxindoles / pyrrolizidines / pyrrolidines derivatives. ${ }^{6}$

A part of this thesis work envisaged that an azomethine ylide (which can be derived from the condensation of isatin and L-proline) could serve as one partner as, while an unactivated norbornene could serve as the other partner (dipolarophile) to effect the stereoselective synthesis of a new class of norbornane-fused spirooxindolopyrrolizidines. It is worth to mention that unactivated norbornenes have been used as dipolarophiles in the block coupling methodology. ${ }^{45 a}$ Further, the reaction of carbonyl ylides with unactivated oxanorbornene dipolarophiles was found to afford syn-facially bridged norbornane scaffolds. ${ }^{45 \mathrm{~b}}$ Additionally, Deloisy and coworkers ${ }^{45 \mathrm{c}, \mathrm{d}}$ reported the synthesis of norbornane-fused pyrrolidines via the cycloaddition of azomethine ylides generated from imine esters with norbornenes.

This work

spirooxindolopyrrolizidines with up to 8 stereocenters

Scheme 21. 1,3-Dipolar cycloaddition of azomethine ylide with unactivated π bond and stereoselective synthesis of complex norbornane-fused spirooxindolopyrrolizidines.

At the outset, various reactions were performed to arrive at the best reaction conditions and solvents to synthesize complex norbornane-fused spirooxindolopyrrolidine via the 1,3-dipolar cycloaddition of azomethine ylides with unactivated norbornene dipolarophiles. Scheme 22 and Table 1 demonstrate the investigation of the multicomponent reaction of a mixture of N methylisatin 27a and sarcosine 28 with dimethyl-7-oxabicyclo[2.2.1]hept-5-ene-2,3dicarboxylate 29a. The 1,3-dipolar cycloaddition of azomethine ylide generated from N methylisatin 27a and sarcosine 28 with dimethyl-7-oxabicyclo[2.2.1]hept-5-ene-2,3dicarboxylate 29a is expected to afford the norbornane-fused spirooxindolopyrrolidine $\mathbf{3 3}$ (Table 1 and Scheme 22). The multicomponent reaction of a mixture of N-methylisatin 27a and sarcosine 28 with dimethyl-7-oxabicyclo[2.2.1]hept-5-ene-2,3-dicarboxylate 29a was carried out in different solvents at various reaction temperatures. Of the reaction conditions investigated (entries 1-12, Table 1), it was observed that the 1,3-dipolar cycloaddition reaction of the azomethine ylide 32c generated from 27a and 28 with 29a in EtOH at $80^{\circ} \mathrm{C}$ furnished the norbornane-fused spirooxindolopyrrolidine $\mathbf{3 3}$ as a single isomer in a maximum yield of 55\% (entry 11, Table 1). The structure and stereochemistry of the norbornane-fused spirooxindolopyrrolidine $\mathbf{3 3}$ was unambiguously assigned on the basis of the X-ray structure analysis (Figure 5).

The reactivity pattern and limitations of the usage of norbornene dipolarophile in the 1,3dipoloar cycloaddition was further investigated, because only a moderate yield for the norbornane-fused spirooxindolopyrrolidine 33 was obtained. The multicomponent reaction of 27a and sarcosine 28 with 29a in 1,4-dioxane at $101^{\circ} \mathrm{C}$ gave the spirooxindolopyrrolidine $\mathbf{3 4}$
(65\%) instead of the norbornane-fused spirooxindolopyrrolidine 33. This is because, at higher temperatures, the dipolarophile 29a underwent the retro Diels-Alder reaction, generating furan 31 and the dipolarophile 30 and the dipolarophile $\mathbf{3 0}$ reacted with the azomethine ylide 32c to furnish the spirooxindolopyrrolidine 34 (entry 12, Table 1). The structure and stereochemistry of spirooxindolopyrrolidine $\mathbf{3 4}$ was unambiguously assigned on the basis of the X-ray structure analysis (Figure 5). However, heating the norbornane-fused spirooxindolopyrrolidine 33 in 1,4dioxane at $101{ }^{\circ} \mathrm{C}$ for 2 h confirmed that the norbornane-fused spirooxindolopyrrolidine 33 is stable under the present experimental condition (eq 1, Scheme 23). Next, in an another trial involving the reaction of $\mathbf{2 9 b}$ (which contains both the unactivated as well as activated 2π components) with the azomethine ylide generated from isatin 27b and sarcosine 28 gave the spirooxindolopyrrolidine 35c instead of the expected norbornane-fused spirooxindolopyrrolidines $\mathbf{3 5 a}$ or $\mathbf{3 5 b}$ (Scheme 23, eq 2). ${ }^{45 \mathrm{~d}}$ This reaction clearly indicated that the norbornene dipolarophile $\mathbf{2 9 b}{ }^{45 d}$ is sensitive to heat and underwent the retro Diels-Alder reaction to produce DMAD 29b' that trapped the azomethine ylide resulting from isatin 27b and sarcosine 28. Finally, to understand the reactivity pattern of norbornene 29a at rt ,. The silvercatalyzed 1,3-dipoloar cycloaddition of iminoester 36 with norbornene dipolarophile 29a was performed, which did not give the expected product 37 (eq 3, Scheme 23).

Scheme 22. Multicomponent reaction of a mixture of N -methylisatin 27a and sarcosine 28 with dimethyl-7-oxabicyclo[2.2.1]hept-5-ene-2,3-dicarboxylate 29a.

Table 1. Optimization of the reaction condition.

entry	solvent (mL)	$T\left({ }^{\circ} \mathrm{C}\right)$	$t(\mathrm{~h})$	29a (\%)	yield 33 (\%) ${ }^{\text {a }}$
1	EtOH (3)	60	24	78	18
2	MeOH (3)	70	6	68	24
3	MeCN (3)	90	6	51	27
4	MeOH (1.5)/MeCN (1.5)	80	15	79	21
5	MeOH (1.5)/1,4-dioxane (1.5)	90	6	64	35
6	EtOH (1.5)/MeCN (1.5)	90	6	59	32
7	EtOH (1.5)/1,4-dioxane (1.5)	80	6	33	43
8	EtOH (1.5)/1,4-dioxane (1.5)	80	12	20	43
9	$\mathrm{EtOH}(1.5) / \mathrm{H}_{2} \mathrm{O}$ (1.5)	95	6	50	<5
10	EtOH (3)	80	6	50	$29^{\text {b }}$
11	EtOH (3)	80	20	16	$55^{\text {b }}$
12	1,4-dioxane (3)	101	17	<5	<5 (34 ${ }^{\text {c }}$: 65)

${ }^{\mathrm{a}}$ The reactions were done on a 0.5 mmol scale. ${ }^{\mathrm{b}}$ The reactions were done on a 1 mmol scale.
${ }^{\text {c }}$ A mixture of diastereomers (34:34', dr 90:10) was obtained.

33
34
Figure 5. X-ray structures of the compounds $\mathbf{3 3}$ and 34.

(eq 3)

Scheme 23. Investigation on the reactivity pattern of norbornene dipolarophiles.

Then, it was envisaged to demonstrate the generality of this methodology for assembling a variety of norbornane-fused spirooxindolopyrrolidines (Table 2). The norbornane-fused spirooxindolopyrrolidines 38 was obtained in 47% yield as a single stereoisomer from the multicomponent azomethine ylide cycloaddition of the corresponding isatin27b, sarcosine 28and norbornene dipolarophile 29a (entry 1, Table 2). The diastereoselective one pot cycloaddition reactions of 5-fluoroisatin 27c and 5-fluoro-1-methylisatin 27d and sarcosine 28 with 29a also yielded the respective norbornane-fused spirooxindolopyrrolidines $\mathbf{3 9}$ and 40 (entry 2 and 3, Table 2). Similarly, the cycloaddition reactions of 5-chloroisatin 27e, 5-chloro-1-methylisatin $\mathbf{2 7 f}$, 5-bromoisatin $\mathbf{2 7 g}$, 5-bromo-1-methylisatin $\mathbf{2 7 h}$ and sarcosine 28 with 29a furnished the respective norbornane-fused spirooxindolopyrrolidines 41-44 (entries 4-7, Table 2). The multicomponent cycloaddition reaction of azomethine ylide generated from ethyl (2,3-dioxo-2,3-dihydroindol-1-yl)-acetate $27 \mathbf{i}$ and N-benzylisatin $27 \mathbf{j}$ and sarcosine 28 with norbornene dipolarophile 29a gave the corresponding norbornane-fused spirooxindolopyrrolidines 45 and 46
(entries 8 and 9, Table 2). The structure and stereochemistry of the norbornane-fused spirooxindolopyrrolidines $\mathbf{3 3}$ and $\mathbf{3 9}$ wereassignedbased on their X-ray structures; then, the stereochemistry of other norbornane-fused spirooxindolopyrrolidines shown in Table 2 was assigned (Figures 5 and 6).

Table 2.Scope and generality: Diastereoslective synthesis of norbornane-fused spirooxindolopyrrolidines 38-46.

entry	solvent (mL)	$T\left({ }^{\circ} \mathrm{C}\right)$	$t(\mathrm{~h})$	recovery of 29a $(\%)$	yield $(\%)$
1	EtOH (6)	80	12	32	$\mathbf{3 8}: \mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{H} ; 47^{\mathrm{a}}$ 2
EtOH (2) / 1,4-dioxane (2)	82	6	26	$39: \mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{F} ; 45^{\mathrm{b}}(\mathrm{x}$-ray)	
3	EtOH (2) / 1,4-dioxane (2)	82	6	25	$40: \mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{F} ; 44$
4	EtOH (3)	80	3	40	$41: \mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{Cl} ; 45^{\mathrm{c}}$
5	EtOH (3)	80	5	26	$42: \mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{Cl} ; 40^{\mathrm{c}}$
6	EtOH (1.5)/ 1,4-dioxane (1.5)	82	12	21	$43: \mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{Br} ; 50^{\mathrm{c}}$
7	EtOH (6)	82	10	10	$44: \mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{Br} ; 45^{\mathrm{b}}$
8	EtOH (3) / 1,4-dioxane (3)	82	6	25	$45: 49^{\mathrm{a}}$
9	EtOH (3) / 1,4-dioxane (3)	82	6	35	$46: 50^{\mathrm{b}}$

${ }^{a}$ The reactions were done on a 1 mmol scale. ${ }^{\mathrm{b}}$ The reactions were done on a 2 mmol scale.
${ }^{c}$ The reactions were done on a 0.5 mmol scale.
Furthermore, the cycloaddition reaction of azomethine ylide generated from isatin 27a and sarcosine 28 was investigated by using the norbornene dipolarophile 29c.Accordingly, the reaction of isatin 27 and sarcosine 28 with 29 c gave the norbornane-fused spirooxindolopyrrolidine 47a (42%, Table 3). Along this line, various norbornane-fused spirooxindolopyrrolidines 47b-d were synthesized from the corresponding cycloaddition reactions by using 29c. The structure and stereochemistry of norbornane-fused
spirooxindolopyrrolidine 47a wereassignedbased on its X-ray structure; then, the stereochemistry of other norbornane-fused spirooxindolopyrrolidines 47b-d shown in Table 3 was assigned (Figure 6). Trials were carried out to improve the yield of 47a by varying the solvents or increasing the reaction temperature, however, the attempts were not fruitful. Notably, the reaction of 27 and sarcosine 28 with 29 c in 1,4-dioxane at higher temperature $\left(101{ }^{\circ} \mathrm{C}\right)$ furnished the spirooxindolopyrrolidine48a (dr 70:30) instead of the norbornane-fused spirooxindolopyrrolidine47avia the retro Diels-Alder reaction similar to the case that was shown in Scheme 22 and Table 1.

Table 3:Scope and generality: Stereoslective synthesis of norbornane-fused spirooxindolopyrrolidines 47a-d.

27 (1mmol)

29c (1 mmol)

$\mathrm{EtOH}(6 \mathrm{~mL})$ $80^{\circ} \mathrm{C}, 6 \mathrm{~h}$

47b: $\mathrm{R}^{2}=\mathrm{Cl}$; (39\%)
47c: $R^{2}=F$; (35\%)
47d: $\mathrm{R}^{2}=\mathrm{Br} ;(35 \%)$

(70\%, 48a:48a', $d r 70: 30)^{b, c}$
${ }^{\text {a }}$ The reactions were done on a 1 mmol scale. In all the reactions recovery of $\mathbf{2 9} \mathbf{c}$ (23-28\%) was observed.
${ }^{\mathrm{b}}$ The reaction was done on a 0.5 mmol scale. ${ }^{\mathrm{c}}$ Diastereomers were obtained.

39
47a

48a
Figure 6. X-ray structures of the representative compounds 39,47 a and 48a.
Successively, it was envisaged to investigate the multicomponent cycloaddition reaction of azomethine ylide generated from acenaphthenequinone 49 and sarcosine 28 with 29a and 29c to obtain norbornane-fused spiroacenaphthylenolylpyrrolidines. Accordingly, the multicomponent cycloaddition reaction of azomethine ylide generated from acenaphthenequinone 49 and sarcosine 28 with 29a afforded the norbornane-fused spiroacenaphthylenolylpyrrolidine $\mathbf{5 0}$ as a single diastereomer (Scheme 24). Similarly, the cycloaddition reaction of azomethine ylide generated from acenaphthenequinone 49 and sarcosine 28 with 29c afforded the norbornanefused spiroacenaphthylenolylpyrrolidine $\mathbf{5 1}$ with very high diastereoselectivity (Scheme 24). The structure and stereochemistry of norbornane-fused spiroacenaphthylenolylpyrrolidines $\mathbf{5 0}$ and $\mathbf{5 1}$ were assigned based on their X-ray structures (Figure 7).

Scheme 24.Diastereoslective synthesis of norbornane-fused spiroacenaphthylenolyl-pyrrolidines.

Figure 7. X-ray structures of the compounds $\mathbf{5 0}$ and 51.

Next, it was envisaged to explore the multicomponent cycloaddition reaction of azomethine ylide generated from ninhydrin 52 and sarcosine 28 with dipolarophiles 29 to obtain norbornane-fused spiro-1,3-indandionolylpyrrolidines.In this regard,Scheme 25 illustrates the construction of a variety of norbornane-fused spiro-1,3-indandionolylpyrrolidine derivatives 54-61. The multicomponent cycloaddition reactions of ninhydrin 52 and sarcosine 28 with oxanorbornene dipolarophiles 29a or 29c gave the respective spiro-1,3-indandionolylpyrrolidines $\mathbf{5 4}$, $\mathbf{5 5}$ and $\mathbf{5 6}$
as single diastereomers with high degree of stereocontrol. The one pot cycloaddition reaction of azomethine ylide generated from ninhydrin 52 and sarcosine 28 withoxanorbornene dipolarophile 29d and various other norbornene dipolarophiles 29e-g furnished the corresponding norbornane-fused spiro-1,3-indandionolylpyrrolidines 57-61 as single isomers with high degree of stereocontrol (Scheme 25). The structure and stereochemistry of the norbornane-fused spiro-1,3-indandionolylpyrrolidines 54, 55 and $\mathbf{6 0}$ wereassignedbased on their X-ray structures (Figure 8).

Finally, it was envisaged to expand the substrate scope and generality of this methodology for assembling a variety of norbornane-fused spirooxindolopyrrolizidines by using L-proline 62a and L-thiaproline 62b to generate and trap the corresponding azomethine ylides with norbornene dipolarophile. Accordingly, the multicomponent cycloaddition reaction of azomethine ylides derived from the condensation of isatins 27 and L-proline 62a or L-thiaproline 62b with norbornene dipolarophile 29a proceeded with a very high degree of stereocontrol and gave the respective norbornane-fused spirooxindolopyrrolizidines 63a-g as single diastereomers (Table 4). It is worth to mention here that these three component reactions gave a variety of novel and complex norbornane-fused spirooxindolopyrrolizidines 63a-g possessing eight stereocenters.

In the multicomponent cycloaddition reaction involving norbornene dipolarophiles, some of the norbornane-fused spirooxindoles and spiropyrrolidines/pyrrolizidines were obtained in moderate yields. The moderate to good yields of norbornane-fused spirooxindoles and spiropyrrolidines/pyrrolizidines in all the above reactions could be explained based on the optimization reactions shown in (Table $1 \&$ Scheme 23), which indicated the tricky nature of the methodology and sensitivity of norbornene dipolarophiles at high reaction temperatures. Consequently, the reaction temperature was controlled to suppress the retro-Diels-Alder reaction ${ }^{45 \mathrm{~d}}$ of norbornene dipolarophiles and to carefully preserve the norbornane fusion intact in all the spirocompounds shown in this work, so that the synthesis of novel and complex norbornane-fused spirooxindoles and spiropyrrolidines could be successfully accomplished.

52 (0.5 mmol)

52 (0.6 mmol) $\quad 28$ (0.55 mmol)
28; $\mathrm{R}^{1}=\mathrm{Me}$; (0.5 mmol)
53; $\mathrm{R}^{1}=\mathrm{Bn}$; (0.5 mmol)

28 (0.5 mmol)
52 (0.5 mmol)

Scheme 25. Synthesis of spiro-1,3-indandionolylpyrrolidines 54-61.

Table 4. Norbornane-fused spirooxindolopyrrolizidines.

54

60

55

63b

Figure 8. X-ray structures of the compounds 54, 55, 60 and 63b.

Chapter 2b: Diastereoselective construction ofspiro-pyrrolidine / pyrrolizidine oxindole, spiroacenaphthylenolyl- pyrrolidine / pyrrolizidine and spiro-1,3-indandionolylpyrrolidine scaffolds appended with indole and pyrrole moieties.

While several types of multi substituted spiro-oxindoles / pyrrolizidines / pyrrolidines appended with medicinally important functional groups and sub-units, such as,cyano-, aryl- / heteroaryl moieties considered as lead compounds with potential biological activities; ${ }^{6 d, 11 e, 18-22}$ pyrrolidines containing an indole moiety at the C-3 position (e.g., eletriptan) and spiro-oxindoles / pyrrolizidines / pyrrolidines appended with indole moieties were found to be important class of bio-active molecules (Figure 9). While there exist few reports dealing on the synthesis of pyrrolidines containing an indole moiety at the $\mathrm{C}-3$ position; ${ }^{20}$ however, there exist only rare reports dealing on the construction of spiro-oxindoles / pyrrolizidines / pyrrolidines connected with an indole-carbonyl unit. ${ }^{21}$ Further a literature survey revealed that there exist no reports dealing on synthesis of spiro-oxindole- / pyrrolizidine- / pyrrolidine scaffolds directly connected with the indolyl or pyrrolyl moieties. ${ }^{5,6,41}$

Bio-active C-3 indole moiety appended pyrrolidines

2a
NXN274

2b
serotonin/norepinephrine/ dopamine reuptake inhibitors

2c eletripta (Relpax of Pfizer)

Bio-active C-3 indolecarbonyl moiety appended spiropyrrolidine oxindoles

Figure 9. Biologically active indole moieties containing pyrrolidines and spiropyrrolidines.

Given that several research groups are interested in finding new lead compounds with promising biological activities by preparing new libraries of spiro-oxindoles / pyrrolizidines / pyrrolidines appended with medicinally important functional groups and sub-units, such as,aryl- / heteroaryl moieties via the azomethine ylide cycloaddition route; ${ }^{6}$ and given the importance of indole moieties containing pyrrolidines and spiro-pyrrolidines/pyrrolizidines found to be with promising biological activities (Figure 9), a part of this thesis work envisaged to assemble spiro-oxindole- / pyrrolizidine- / pyrrolidine scaffolds directly connected with the indolyl or pyrrolyl moieties. Accordingly it was envisaged to use the azomethine ylide cycloaddition route for the
construction of a new set of spiro-pyrrolidine- / pyrrolizidine oxindole, spiroacenaphthylenolylpyrrolidine / pyrrolizidine and spiro-1,3-indandionolyl- pyrrolizidine scaffolds appended with the indolyl or pyrrolyl moieties (Scheme 26).

This work

azomethine ylide

Scheme 26. Regio-and stereoselective synthesis of a new set ofC-3,C4- aryl- / heteroaryl spiropyrrolidines / pyrrolizidines.

The key to assemble new class of diversely functionalized spiro-oxindoles / pyrrolizidines / pyrrolidines appended with medicinally important functional groups and sub-units has been to use diverse 2π components (dipolarophiles) in the azomethine ylide cycloaddition. Accordingly, to prepare to assemble the spiro-pyrrolidine / pyrrolizidine oxindole, spiroacenaphthylenolylpyrrolidine / pyrrolizidine and spiro-1,3-indandionolyl- pyrrolidine scaffolds directly appended with the indolyl- or pyrrolyl moieties at the pyrrolidine / pyrrolizidine rings; initially, various indole- and pyrrole-based dipolarophiles 64a-n were assembled (Figure 10). Then, the indoleand pyrrole-based compounds 64a-n were used as dipolarophiles for the 1,3-dipolar cycloadditions with the azomethine ylides than can be generated from the decarboxylative reactions of dicarbonyl compounds (e.g., isatin, acenaphthoquinone and ninhydrin) and α-amino acids (e.g., sarcosine and proline). Initially, the optimization reactions comprising the multicomponent cycloaddition reaction of azomethine ylide derived from the decarboxylative reaction of isatin $65 a$ and proline 66 a with the indole-based dipolarophile $\mathbf{6 4 a}$ (Table 5) were carried out. The multicomponent cycloaddition of azomethine ylide derived from isatin 65a and proline 66a with the indole-based dipolarophile 64a in toluene at $80{ }^{\circ} \mathrm{C}$ gave the spirooxindolopyrrolizidine scaffold 67a appended with an indolyl moiety as the single diastereomer in 36% yield (dr $>95: 5$, entry 1 , Table 5). The multicomponent cycloaddition of
azomethine ylide derived from isatin 65 a and proline 66 a with the indole-based dipolarophile 64a in MeCN or 1,4-dioxane provided the spirooxindolopyrrolizidine scaffold 67 a with an improved yields (59% and 75%, dr $>95: 5$, entries 2 and 3, Table 5). Similarly, the three component 1,3-dipolar cycloaddition of azomethine ylide derived from isatin $\mathbf{6 5 a}$ and proline 66a with 64a in EtOH at $80^{\circ} \mathrm{C}$ furnished the spirooxindolopyrrolizidine scaffold 67a in 80% yield ($\mathrm{dr}>95: 5$, entry 4 , Table 5). The yield of the spirooxindolopyrrolizidine scaffold $\mathbf{6 7 a}$ slightly decreased to 69% when the multicomponent cycloaddition reaction of isatin $\mathbf{6 5 a}$ and proline 66a with the dipolarophile 64a was performed in $\mathrm{EtOH} / 1,4$-dioxane mixture (entry 5, Table 5).

Figure 10. Indole / pyrrole -based dipolarophiles used for the construction of spiro-pyrrolidines / spiro-pyrrolizidines appended with the indole or pyrrole moieties.

Table 5. Optimization reactions: Diastereoselective synthesis of spiropyrrolizidine oxindole scaffold 67a appended with an indolyl moiety.

Then, by using the optimized reaction conditions of Table 5, the multicomponent 1,3-dipolar cycloaddition reaction of azomethine ylide derived from the decarboxylative reaction N -methyl isatin 65a and sarcosine 66b with indole-based dipolarophile 64a was carried out. This reaction afforded the spirooxindolopyrrolidine scaffold 67b appended with an indolyl moiety in 35% yield as a single diastereomer with very high diastereoselectivity (Scheme 27). Next we carried out the cycloaddition reaction of decarboxylative reaction of acenaphthoquinone $\mathbf{6 5 b}$, sarcosine 66b with the indole-based dipolarophile 64a gave the spiroacenaphthylenolylpyrrolidine scaffold 68a appended with an indolyl moiety in 40% yield as a single diastereomer with high diastereoselectivity (Scheme 27).

Subsequently, to increase substrate scope and enrich the library of spiro-pyrrolizidine appended with the indolyl-, pyrrolyl moieties at the spiropyrrolizidine ring, the multicomponent cycloaddition reactions of azomethine ylide derived from the decarboxylative reaction of acenaphthoquinone $\mathbf{6 5 b}$ and proline $\mathbf{6 6 a}$ with the corresponding indole-based dipolarophiles 64a, $\mathbf{6 4 f} \mathbf{- h}$ and $\mathbf{6 4 f ^ { \prime }}$ were performed. These reactions afforded the spiroacenaphthylenolylpyrrolizidine
scaffolds $\mathbf{6 8 b}$-e and $\mathbf{6 8 h}$ containing an indolyl moiety at the pyrrolizidine ring in $63-93 \%$ yields, respectively (Table 6). Likewise, the one pot cycloaddition reactions of azomethine ylide derived from the decarboxylative reaction of acenaphthoquinone $\mathbf{6 5 b}$ and proline 66a with the pyrrolebased dipolarophiles $\mathbf{6 4 1 , k}$ successfully afforded thecorrespondingspiroacenaphthylenolylpyrrolizidine derivatives $68 f$ and 68 g possessing a pyrrole moiety at the pyrrolizidine ring in 80 and 60% yields (Table 6). All these cycloaddition reactions shown in Table 6 afforded the spiroacenaphthylenolylpyrrolizidine derivatives $\mathbf{6 8 b} \mathbf{- h}$ as the major regio- and diastereomers with very good selectivity. Afterwards, the reactions of azomethine ylide derived from the decarboxylative reaction of acenaphthoquinone $\mathbf{6 5 b}$ and proline 66a with dipolarophiles $\mathbf{6 4 n}$ and 640 containing two 2π units were carried out. These reactions furnished thecorrespondingspiroacenaphthylenolylpyrrolizidine derivatives $\mathbf{6 8 i}$ and $\mathbf{6 8 j}$ in 80 and 64% yields (Scheme 28). Notably, in these reactions, the azomethine ylide cycloaddition underwent selectively with one of the 2π units of the respective dipolarophiles $\mathbf{6 4 n}$ and 640 to give the corresponding spiroacenaphthylenolylpyrrolizidine scaffolds $\mathbf{6 8 i}$ and $\mathbf{6 8 j}$ containing the pyrrole / thienyl and the α, β-unsaturated unit with high regioselectivity (Scheme 28).

Scheme 27. Diastereoselective synthesis of spiropyrrolidine scaffolds 67b and 68a appended with an indolyl moiety.

Table 6. Synthesis of spiroacenaphthylenolylpyrrolizidine scaffolds 68a-h appended with the indolyl and pyrrolyl moieties.

67a

67b

67c

Figure 11. X-ray (ORTEP diagram) structures of the compounds 67a, 67b and 67c.

Additionally, to enrich the library of spiropyrrolidines appended with indolyl-, pyrrolyl moieties at the spiro-pyrrolidine ring, the one pot 1,3-dipolar cycloaddition reaction of azomethine ylide derived from the decarboxylative reaction of ninhydrin $\mathbf{6 5 c}$ and sarcosine $\mathbf{6 6 b}$ with the indolebased dipolarophiles 64a-c were also performed. These reactions afforded the corresponding spiro-1,3-indandionolylpyrrolidines 69a-c appended with an indolyl moiety in 40-60\% yields with very high diastereoselectivity (Scheme 29). Further, the [3+2] cycloaddition of azomethine
generated from 65c and 66b with 64k gave the spiro-1,3-indandionolylpyrrolidine 69d appended with a pyrrole moiety in 55% yield with high diastereoselectivity (Scheme 29).

640

Scheme 28. Stereoselective synthesis of spiroacenaphthylenolylpyrrolizidine derivatives $\mathbf{6 8 i}$ and 68j appended with the pyrrolyl and thienyl moieties.

Finally, to further extend the substrate scope and enrich the library of spiropyrrolizidine oxindoles with new examples of spiropyrrolizidine oxindole scaffolds appended with the indolyl, pyrrolyl moieties at the pyrrolizidine ring, the three component 1,3-dipolar cycloaddition reactions of azomethine ylides derived from the decarboxylative reaction of various isatin derivatives $65 d$-f and proline 66 with the indole-based dipolarophile 64a were carried out. These reactions furnished the corresponding spiropyrrolizidine oxindole scaffolds $67 \mathrm{c}-\mathrm{e}$ appended with an indole moiety in $73-75 \%$ yields with very high diastereoselectivity (Table 7). Then, several other indole-based dipolarophiles 64b-e and 64h-j were used in the three component 1,3-dipolar cycloaddition reaction of azomethine ylide derived from the decarboxylative reactions of various isatin derivatives 65a and 65d-i and proline 66a to give a variety of spiropyrrolizidine oxindole
scaffolds 67f-n appended with an indole moiety in 45-80\% yields with very high diastereoselectivity (Table 7).

69b; R = Br, 40\%
69c; R = Cl, 45\%

Scheme 29. Stereoselective construction of spiro-1,3-indandionolylpyrrolidines (69a-d) appended with the indolyl moieties.

All the above described multicomponent cycloaddition reactions of azomethine ylides derived from the decarboxylative reactions of the corresponding dicarbonyl compounds (e.g., isatin, acenaphthoquinone and ninhydrin) and α-amino acids (e.g., sarcosine and proline) with indole / pyrrole-based dipolarophiles afforded the corresponding spiro-pyrrolidines / pyrrolizidines 67an, 68a-j and 69a-d (major isomers) containing indole / pyrrole units with high regio- and diastereoselectivity. The structure and stereochemistry of representative spiro-pyrrolidines / pyrrolizidines $67 a, 67 b, 67 c, 68 a, 68 e$ and 69 (major isomers) were unambiguously assigned from their respective X-ray structures (Figures 11 and 12). After assigning the stereochemistry of
representative spiro-pyrrolidines / pyrrolizidines 67a, 67b, 67c, 68a, 68e and 69a (major isomers), the regio- and diastereoselectivity and the stereochemistry of the other major isomers of the respective series of the compounds 67a-n, 68a-j , and 69a-d (major isomers) were assigned based on the similarity in their NMR spectral pattern in conjunction with the X-ray structures of the corresponding spiro-pyrrolidines / pyrrolizidines 67a, 67b, 67c, 68a, 68e, and 69a (major isomers).

68a
68e

69a
Figure 12. X-ray (ORTEP diagram) structures of the compounds 68a, 68e and 69a.

Table 7: Stereoselective synthesis of oxindole scaffolds $\mathbf{6 7 c} \mathbf{c}$ n appended with an indolyl moiety. ${ }^{\text {a }}$

${ }^{\text {a }} 65 \mathrm{a}$: N-methyl isatin, 65d: isatin, 65e: 5-bromoisatin, 65f: 5-chloroisatin, 65g: N-methyl 5 chloroisatin, 65h: N-methyl 5-bromoisatin, 65i: N-benzyl isatin. ${ }^{\mathrm{b}}$ EtOH (3 mL) at $80{ }^{\circ} \mathrm{C}, 6 \mathrm{~h}$. ${ }^{\mathrm{c}}$ 1,4-Dioxane (4 mL) at $80^{\circ} \mathrm{C}, 14 \mathrm{~h} .{ }^{\mathrm{d}}$ 1,4-Dioxane (4 mL) at $100^{\circ} \mathrm{C}, 18 \mathrm{~h} .{ }^{\mathrm{e}}$ 1,4-Dioxane (4 mL) at $100{ }^{\circ} \mathrm{C}, 6 \mathrm{~h} .{ }^{\mathrm{f}}$ 1,4-Dioxane (4 mL) at $80^{\circ} \mathrm{C}, 24 \mathrm{~h} .{ }^{\mathrm{g}} \mathrm{EtOH}(3 \mathrm{~mL})$ at $80^{\circ} \mathrm{C}, 9 \mathrm{~h} .{ }^{\mathrm{h}}$ 1,4-Dioxane (5 mL) at $100^{\circ} \mathrm{C}, 12 \mathrm{~h}$.

Conclusions.

In summary, the chapter 2 a revealed; (a) the highly diastereoselective one pot 1,3-dipolar cycloaddition reaction of azomethine ylides generated from the decarboxylative reactions of 1,2dicarbonyl compounds and α-amino acids with various unactivated norbornene-type dipolarophiles, (b) the scope and generality of the diastereoselective 1,3-dipolar cycloaddition reaction of azomethine ylides with various unactivated norbornene-type dipolarophiles by synthesizing several novel norbornane-fused- spirooxindolopyrrolidines, spiroacenaphthylenolylpyrrolidines, spiro-1,3-indandionolylpyrrolidines and spirooxindolopyrrolizidines having a fascinating architecture consisting of an array of stereocenters with an excellent degree of stereocontrol, (c) the 1,3-dipolar cycloaddition reaction of azomethine ylides generated from isatin and proline with norbornene dipolarophiles led to construction of spirooxindolopyrrolizidines containing eight stereocenters in a single step reaction.

with up to 8 stereocenters

Further, the chapter 2 b revealed the highly regio- and diastereoselective 1,3-dipolar cycloaddition reaction of azomethine ylides with various indole and pyrrole-based dipolarophiles, which has led to construction of a new set of spirooxindolopyrrolidine/pyrrolizidine, spiroacenaphthylenolyl- pyrrolidine / pyrrolizidine and spiro-1,3-indandionolyl- pyrrolidine / pyrrolizidine scaffolds appended with indolyl or pyrrolyl moieties.

All the cycloaddition reactions were stereoselective and all the compounds included in the chapter 2 of this thesis are characterized by various characterization techniques including ${ }^{1} \mathrm{H}$ and ${ }^{13}$ C NMR, IR, X-ray diffraction and HRMS. The stereochemistry of representative products was established from the single crystal X-ray structure analyses. The relevant characterization data of all the compounds and complete experimental details are given in the experimental section. The norbornane-fused and indole/pyrrole containing spirooxindolo-pyrrolidine / pyrrolizidine, spiro-1,3-indandionolylpyrrolidine and spiroacenaphthylenolyl- pyrrolidine / pyrrolizidine derivatives will be screened for their biological activities in collaboration with a medicinal chemistry lab and further work is in progress in this direction.

Experimental section.

General: Melting points are uncorrected. IR spectra were recorded as neat or thin films or KBr pellets. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded with 400 and 100 MHz spectrometers, respectively, (using TMS as an internal standard). Column chromatography was carried out on silica gel (100-200 mesh) or neutral $\mathrm{Al}_{2} \mathrm{O}_{3}$. Reactions were conducted in anhydrous solvent under nitrogen atmosphere where required. Solutions were dried using anhydrous sodium sulfate. Reagents were added to the reaction flask by using a syringe. Thin layer chromatography (TLC) was performed on silica plates or neutral $\mathrm{Al}_{2} \mathrm{O}_{3}$ and components were visualized by observation under iodine. Isolated yields of all the products are reported (yields were not optimized). Ratios of diastereomers were determined from the ${ }^{1} \mathrm{H}$ (or) ${ }^{13} \mathrm{C}$ spectra of crude reaction mixture. The stereochemistry of the products were assigned based on the X-ray structure analysis of representative compounds. Good quality single crystals were grown by using a combination of dichloromethane or hexanes or methanol or acetone by slow solvent evaporation technique at 25 ${ }^{\circ} \mathrm{C}$ and the single crystal X-ray diffraction data for all the compounds was collected using four circle CCD diffractometer (monochromatic Mo $\mathrm{K} \alpha$ radiation). Data collection and unit cell refinement for the data sets were done using APEX-II suit. The crystal structures were solved using Olex2 or WinGx packages using SHELXS97, and the structures were refined using SHELXL97. All the hydrogen atoms have been fixed at their geometrically ideal positions and refined using the riding model available within SHELXS97. All figures have been generated using Mercury.

Procedure A for synthesis of spiropyrrolidines and pyrrolizidines by using norbornene dipolarophile: A dry flask containing isatin or acenaphthenequinone or ninhydrin (2, 1, 0.5 mmol), sarcosine or N-benzylglycine hydrochloride or L-proline or L-thiaproline (1.0-1.1 equiv) and norbornene dipolarophile (1 equiv) in dry solvent ($3-12 \mathrm{~mL}$) was heated to the appropriate temperature and time as shown in the respective Tables/Schemes. After the completion of reaction (monitored by TLC), the reaction mixture was cooled to rt and subjected to rotary evaporation which afforded a crude mixture. Purification of the crude reaction mixture through neutral alumina or silica gel column choromatography afforded the respective norbornane-fusedspirooxindolopyrrolidines or spiroacenaphthylenolylpyrrolidines or spiro-1,3indandionolylpyrrolidines or spiro-oxindolopyrrolizidines (see the coressponding Tables/Schemes for the appropriate or exact amount of solvent/reagents).

Procedure B for the preparation of the spiro-pyrrolidine/pyrrolizidines containing heteroaryl moieties 67/68/69: A oven dried flask containing an appropriate dicarbonyl compound 65 (isatin or acenaphthoquinone or ninhydrin, 0.5 mmol), an appropriate α-amino acid 66 (sarcosine or L-proline, 0.6 mmol) and an appropriate dipolarophile $\mathbf{6 4}(0.5 \mathrm{mmol}$) in an appropriate dry solvent ($3-5 \mathrm{~mL}$) was heated (see the respective Tables/Schemes for time/temperature). Then, the reaction mixture was cooled to rt and solvent was evaporated, which afforded a crude reaction mixture. Then, the crude mixture was subjected to the column chromatography purification, which gave the corresponding spiro-pyrrolidine/pyrrolizidines containing heteroaryl moieties 67/68/69 (see the corresponding Tables/Schemes for specific entries).
 $\left(1 S^{*}, 3 a S^{*}, 5 R^{*}, 6 S^{*}\right)$-Dimethyl 1',2-dimethyl-2'-oxo-2,3,3a,4,5,6,7,7a-octahydrospiro[4,7-epoxyisoindole-1,3'-indoline]-5,6-dicarboxylate (33): Following the general procedure described above 33 was obtained after purification by neutral alumina column chromatography (EtOAc:Hexane $=60: 40)$; as a colorless solid ($220 \mathrm{mg}, 55 \%$), mp: 223-225 ${ }^{\circ} \mathrm{C}$ (MeOH:hexane $=1: 1$); FT-IR (KBR): 2948, 2906, 1750, 1717, 1606, 1467, 1437, $1279 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta$ $7.56(\mathrm{~d}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.34(\mathrm{t}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.11(\mathrm{t}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 6.85(\mathrm{~d}, 1 \mathrm{H}, J=7.6$ $\mathrm{Hz}), 4.88(\mathrm{~s}, 1 \mathrm{H}), 4.56(\mathrm{~s}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 3.47(\mathrm{t}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}), 3.20(\mathrm{~s}, 3 \mathrm{H})$, $3.08(\mathrm{~d}, 1 \mathrm{H}, J=9.6 \mathrm{~Hz}), 3.01-2.98(\mathrm{~m}, 1 \mathrm{H}), 2.87(\mathrm{~d}, 1 \mathrm{H}, J=9.6 \mathrm{~Hz}), 2.89-2.85(\mathrm{~m}, 1 \mathrm{H}), 2.65(\mathrm{~d}$, $1 \mathrm{H}, J=8.2 \mathrm{~Hz}), 1.96(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 178.2,171.1,144.0,129.4,127.8$,
126.1, 122.7, 108.3, 82.1, 80.4, 74.2, 58.4, 55.8, 52.2, 52.1, 51.5, 50.7, 47.5, 35.1, 26.3; MS (CI): m/z (\%) $402\left([\mathrm{M}+2]^{+}, 401\left([\mathrm{M}+1]^{+}, 100\right), 30\right) 195$ (8), 175 (7), 111 (30), 79 (15); HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 423.1532$ found 423.1532 .
($2^{\prime} S^{*}, 3^{\prime} R^{*}, 4^{\prime} S^{*}$)-Dimethyl $1,1^{\prime}$-dimethyl-2-oxospiro[indoline-3,2'-pyrrolidine]-3',4'dicarboxylate(34): Following the general procedure described above $\mathbf{3 4}$ was obtained after
 purification by neutral alumina column chromatography (EtOAc:Hexane $=40: 60$); as a colorless solid (216mg, 65\%); mp: 149-151 ${ }^{\circ} \mathrm{C}$ (MeOH:hexane = 1:1); FT-IR (KBR): 2954, 2864, 1732, 1699, 1613, $1474,1262 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.33-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.04$ $(\mathrm{t}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 6.82(\mathrm{~d}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 4.02-3.99(\mathrm{~m}, 1 \mathrm{H}), 3.78-3.74(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H})$, $3.55(\mathrm{~d}, 1 \mathrm{H}, J=8.9 \mathrm{~Hz}), 3.42(\mathrm{~s}, 3 \mathrm{H}), 3.38(\mathrm{~d}, 1 \mathrm{H}, J=8.9 \mathrm{~Hz}), 3.19(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 176.8,172.6,170.4,144.0,129.6,125.4,125.4,122.8,108.1,73.7$, $54.4,53.6,52.0,51.6,43.0,35.3,26.1 ; \mathrm{MS}(\mathrm{CI}): \mathrm{m} / \mathrm{z}(\%) 334\left([\mathrm{M}+2]^{+}, 20\right), 333\left([\mathrm{M}+1]^{+}, 100\right)$, 305 (13), 270 (14), 258 (17), 241 (9), 212 (7); HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}$ 333.1450 found 333.1450 .

Dimethyl 1'-methyl-2-oxo-1',5'-dihydrospiro[indoline-3,2'-pyrrole]-3',4'-dicarboxylate (35c):

Following the general procedure described above $\mathbf{3 5 c}$ was obtained after purification by neutral
 alumina column chromatography (EtOAc:Hexane $=60: 40$); as a semisolid (174 $\mathrm{mg}, 55 \%$); FT-IR (DCM): 3443, 1722, 1620, 1470, $1276 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.86(\mathrm{~s}, 1 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.02(\mathrm{t}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz})$, $6.87(\mathrm{~d}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 4.23(\mathrm{~d}, 1 \mathrm{H}, J=15.0 \mathrm{~Hz}), 4.14(\mathrm{~d}, 1 \mathrm{H}, J=15.0 \mathrm{~Hz}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.52$ (s, 3H), $2.25(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 176.3,163.3,162.4,141.7,141.3,138.5$, $130.0,127.1,125.4,122.9,110.4,79.5,60.5,52.4,52.2,34.5$; MS (CI): m/z (\%) 317 ([M+1] ${ }^{+}$, 11), 289 (5), 271 (15), 258 (16), 257 (100), 243 (18), 239 (4); HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{5}$ $[\mathrm{M}+\mathrm{H}]^{+} 317.1137$ found 317.1137.
 $\left(1 S^{*}, 3 a S^{*}, 6 S^{*}\right)$-Dimethyl 2-methyl-2'-oxo-2,3,3a,4,5,6,7,7a-octahydrospiro[4,7-epoxyisoindole-1,3'-indoline]-5,6dicarboxylate(38): Following the general procedure described above 38 was obtained after purification by neutral alumina column chromatography (EtOAc:Hexane $=65: 35)$; as a colorless solid (181 mg ,
47%); mp: 234-236 ${ }^{\circ} \mathrm{C}$; FT-IR (KBR): 3202, 2949, 1740, 1712, 1619, 1468, $1266 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.56(\mathrm{~s}, 1 \mathrm{H}), 7.53(\mathrm{~d}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.22(\mathrm{t}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.05(\mathrm{t}, 1 \mathrm{H}$, $J=7.6 \mathrm{~Hz}), 6.89(\mathrm{~d}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 4.88(\mathrm{~s}, 1 \mathrm{H}), 4.55(\mathrm{~s}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}), 3.45$ $(\mathrm{t}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}), 3.07(\mathrm{~d}, 1 \mathrm{H}, J=9.6 \mathrm{~Hz}), 2.98-2.95(\mathrm{~m}, 1 \mathrm{H}), 2.89(\mathrm{~d}, 1 \mathrm{H}, J=9.6 \mathrm{~Hz}), 2.88-$ $2.84(\mathrm{~m}, 1 \mathrm{H}), 2.71(\mathrm{~d}, 1 \mathrm{H}, J=8.24 \mathrm{~Hz}), 2.00(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 180.5$, $171.2,171.1,141.1,129.1,128.2,126.4,122.8,110.1,81.7,80.0,74.6,58.5,55.8,52.2,52.1$, 51.4, 50.6, 47.6, 35.1; MS (CI): m/z (\%) 388 ([M+2] ${ }^{+}, 20$), 387 ([M+1] ${ }^{+}, 100$), 355 (13), 327 (4), 284 (2), 252 (3); HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 409.1376$ found 409.1375.
($1 S^{*}, 3 a S^{*}, 5 R^{*}, 6 S^{*}$)-Dimethyl 5'-fluoro-2-methyl-2'-oxo-2,3,3a,4,5,6,7,7a-octahydrospiro[4,7-epoxyisoindole-1,3'-indoline]-5,6-dicarboxylate (39): Following the general procedure
 described above 39 was obtained after purification by neutral alumina column chromatography (EtOAc:Hexane $=65: 35$); as a colorless solid (364 mg, 45\%); mp: 207-209 ${ }^{\circ} \mathrm{C}$ (MeOH:hexane = 1:1); FT-IR (KBR): 3223, 2856, 1746, 1719, 1489, 1473, $1287 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400$
$\mathrm{MHz}): \delta 8.97(\mathrm{~s}, 1 \mathrm{H}), 7.30\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=8.4, J_{2}=2.6 \mathrm{~Hz}\right), 6.95\left(\mathrm{dt}, 1 \mathrm{H}, J_{1}=8.4, J_{2}=2.6 \mathrm{~Hz}\right)$, $6.84\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=8.5, J_{2}=4.1 \mathrm{~Hz}\right), 4.85(\mathrm{~s}, 1 \mathrm{H}), 4.52(\mathrm{~s}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 3.43(\mathrm{t}$, $1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 3.07(\mathrm{~d}, 1 \mathrm{H}, J=9.6 \mathrm{~Hz}), 2.93-2.85(\mathrm{~m}, 2 \mathrm{H}), 2.90(\mathrm{~d}, 1 \mathrm{H}, J=9.6), 2.73(\mathrm{~d}, 1 \mathrm{H}, J$ $=8.0 \mathrm{~Hz}), 2.00(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 180.9,171.2,171.1,158.9\left(\mathrm{~d}, J_{C-F}=\right.$ $240.0 \mathrm{~Hz}), 137.2\left(\mathrm{~d}, J_{C-F}=2.0 \mathrm{~Hz}\right), 128.0\left(\mathrm{~d}, J_{C-F}=8.0 \mathrm{~Hz}\right), 116.0\left(\mathrm{~d}, J_{C-F}=27.0 \mathrm{~Hz}\right), 115.8(\mathrm{~d}$, $\left.J_{C-F}=26.0 \mathrm{~Hz}\right), 110.7\left(\mathrm{~d}, J_{C-F}=8.0 \mathrm{~Hz}\right), 81.5,79.9,75.1,58.5,56.0,52.3,52.3,51.3,50.6,47.8$, 35.1; MS (CI): m/z (\%) 405 ([M+1] ${ }^{+}, 2$), 404 ([M] ${ }^{+}, 20$), 403 (100); HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~F}[\mathrm{M}+\mathrm{H}]^{+} 405.1462$ found 405.1461 .

$\left(1 S^{*}, 3 a S^{*}, 5 R^{*}, 6 S^{*}\right)$-Dimethyl

5'-fluoro-1',2-dimethyl-2'-oxo-2,3,3a,4,5,6,7,7a-octahydrospiro[4,7-epoxyisoindole-1,3'-indoline]-5,6-

dicarboxylate(40): Following the general procedure described above 40 was obtained after purification by neutral alumina column chromatography (EtOAc:Hexane $=60: 40$); as a colorless solid (184 $\mathrm{mg}, 44 \%$) $\mathrm{mp}: 177-179{ }^{\circ} \mathrm{C}$; FT-IR (KBR): 2956, 1749, 1699, 1619, $14961202 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.34\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=8.4, J_{2}=2.6 \mathrm{~Hz}\right), 7.03(\mathrm{dt}$, $\left.1 \mathrm{H}, J_{1}=8.4, J_{2}=2.6 \mathrm{~Hz}\right), 6.77\left(\mathrm{dd}, 1 \mathrm{H}, J_{l}=8.5, J_{2}=4.1 \mathrm{~Hz}\right), 4.86(\mathrm{~s}, 1 \mathrm{H}), 4.54(\mathrm{~s}, 1 \mathrm{H}), 3.68(\mathrm{~s}$,
$3 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 3.45(\mathrm{t}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 3.18(\mathrm{~s}, 3 \mathrm{H}), 3.08(\mathrm{~d}, 1 \mathrm{H}, J=9.5 \mathrm{~Hz}), 2.96-2.93(\mathrm{~m}$, $1 \mathrm{H}), 2.88(\mathrm{~d}, 1 \mathrm{H}, J=9.5 \mathrm{~Hz}), 2.86-2.85(\mathrm{~m}, 1 \mathrm{H}), 2.68(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 1.94(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 177.9,171.1,171.0,159.2\left(\mathrm{~d}, J_{C-F}=241.0 \mathrm{~Hz}\right), 140.0\left(\mathrm{~d}, J_{C-F}=2.0\right.$ $\mathrm{Hz}), 127.8\left(\mathrm{~d}, J_{C-F}=8.0 \mathrm{~Hz}\right), 115.8\left(\mathrm{~d}, J_{C-F}=36.0 \mathrm{~Hz}\right), 115.6\left(\mathrm{~d}, J_{C-F}=36.0 \mathrm{~Hz}\right), 108.5\left(\mathrm{~d}, J_{C-F}=\right.$ $8.0 \mathrm{~Hz}), 81.9,79.9,74.5,58.5,55.9,52.2,52.2,51.4,50.6,47.6,35.0,26.2 ; \mathrm{MS}(\mathrm{CI}): \mathrm{m} / \mathrm{z}(\%)$ $421\left([\mathrm{M}+3]^{+}, 4\right), 420\left([\mathrm{M}+2]^{+}, 40\right), 419\left([\mathrm{M}+1]^{+}, 100\right), 341(2), 195$ (2), 163 (2), 97 (12), 79 (5), 65(5); HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~F}[\mathrm{M}+\mathrm{H}]^{+} 419.1618$ found 419.1620 .
($1 S^{*}, 3 a S^{*}, 6 S^{*}$)-Dimethyl 5^{\prime}-chloro-2-methyl-2'-oxo-2,3,3a,4,5,6,7,7a-octahydrospiro[4,7-epoxyisoindole-1,3'-indoline]-5,6-dicarboxylate (41): Following the general procedure
 described above 41 was obtained after purification by neutral alumina column chromatography (EtOAc:Hexane $=65: 35$); as a colorless solid ($95 \mathrm{mg}, 45 \%$); mp: 240-242 ${ }^{\circ} \mathrm{C}$; FT-IR (KBR): 3448, 2957, 2867, 1736, 1724, 1467, $1283 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}+\mathrm{DMSO}-d_{6}, 400 \mathrm{MHz}\right): \delta 10.24$ $(\mathrm{s}, 1 \mathrm{H}), 7.39(\mathrm{~s}, 1 \mathrm{H}), 7.20(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}), 6.82(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}), 4.79(\mathrm{~s}, 1 \mathrm{H}), 4.52(\mathrm{~s}, 1 \mathrm{H})$, $3.64(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}), 3.41(\mathrm{t}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}), 3.14(\mathrm{~d}, 1 \mathrm{H}, J=9.5 \mathrm{~Hz}), 2.94(\mathrm{~d}, 1 \mathrm{H}, J=9.5$ $\mathrm{Hz}), 2.94-2.92(\mathrm{~m}, 1 \mathrm{H}), 2.82-2.80(\mathrm{~m}, 1 \mathrm{H}), 2.66(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}), 1.98(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}+\mathrm{DMSO}-d_{6}, 100 \mathrm{MHz}\right): \delta 184.4,175.9,146.3,133.7,133.5,132.1,131.5,115.9,87.1$, 84.6, 79.3, 63.2, 60.0, 56.7, 56.6, 55.9, 54.9, 51.9, 39.9; MS (CI): m/z (\%) 421 ([M+1] ${ }^{+}, 25$), 420 ([M] ${ }^{+}, 20$), 419 (100); HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{NaCl}[\mathrm{M}+\mathrm{Na}]^{+} 443.0986$ found 443.0985.
($1 S^{*}, 3 a S^{*}, 6 S^{*}$)-Dimethyl 5^{\prime}-chloro-1',2-dimethyl-2'-oxo-2,3,3a,4,5,6,7,7a-octahydrospiro[4,7-
 epoxyisoindole-1,3'-indoline]-5,6-dicarboxylate (42): Following the general procedure described above 42 was obtained after purification by neutral alumina column chromatography (EtOAc:Hexane $=60: 40$); as a colorless solid ($87 \mathrm{mg}, 40 \%$); mp: 112-114 ${ }^{\circ} \mathrm{C}$; FT-IR (KBR): 2948, 1741, 1715, 1607, 1437, $1241 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.54(\mathrm{~d}, 1 \mathrm{H}, J=2.1 \mathrm{~Hz})$, $7.30\left(\mathrm{dd}, 1 \mathrm{H}, J_{l}=8.3, J_{2}=2.1 \mathrm{~Hz}\right), 6.77(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}), 4.87(\mathrm{~s}, 1 \mathrm{H}), 4.56(\mathrm{~s}, 1 \mathrm{H}), 3.65(\mathrm{~s}$, $3 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 3.45(\mathrm{t}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}), 3.18(\mathrm{~s}, 3 \mathrm{H}), 3.08(\mathrm{~d}, 1 \mathrm{H}, J=9.5 \mathrm{~Hz}), 3.00-2.96(\mathrm{~m}$, $1 \mathrm{H}), 2.87(\mathrm{~d}, 1 \mathrm{H}, J=9.5 \mathrm{~Hz}), 2.86-2.84(\mathrm{~m}, 1 \mathrm{H}), 2.65(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}), 1.94(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 177.8,171.1,171.0,142.6,129.2,128.5,127.9,127.7,109.0,82.1$,
$79.9,74.3,58.4,55.9,52.2,51.4,50.6,47.5,35.1,26.1 ; \mathrm{MS}(\mathrm{CI}): \mathrm{m} / \mathrm{z}(\%) 437\left([\mathrm{M}+3]^{+}, 50\right), 436$ $\left([\mathrm{M}+2]^{+}, 40\right), 435\left([\mathrm{M}+1]^{+}, 100\right), 357$ (2), 209 (3), 195 (5), 163 (2\%); HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Cl}[\mathrm{M}+\mathrm{H}]^{+} 435.1323$ found 435.1322 .
($1 S^{*}, 3 a S^{*}, 6 S^{*}$)-Dimethyl 5^{\prime}-bromo-2-methyl-2'-oxo-2,3,3a,4,5,6,7,7a-octahydrospiro[4,7-epoxyisoindole-1,3'-indoline]-5,6-dicarboxylate (43): Following the general procedure
 described above 43 was obtained after purification by neutral alumina column chromatography (EtOAc:Hexane $=65: 35$); as a colorless solid ($116 \mathrm{mg}, 50 \%$); mp: $250-252{ }^{\circ} \mathrm{C}$; FT-IR (KBR): 3426, 2956, 2866, $1722,1615,1437,1279 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}+$ DMSO- $\left.d_{6}, 400 \mathrm{MHz}\right)$: $\delta 10.11(\mathrm{~s}, 1 \mathrm{H}), 7.53(\mathrm{~s}, 1 \mathrm{H}), 7.32(\mathrm{~d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}), 6.76(\mathrm{~d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}), 4.79(\mathrm{~s}, 1 \mathrm{H}), 4.53$ (s, 1H), $3.63(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}), 3.40(\mathrm{t}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}), 3.08(\mathrm{~d}, 1 \mathrm{H}, J=9.4 \mathrm{~Hz}), 3.00-2.79$ $(\mathrm{m}, 3 \mathrm{H}), 2.63(\mathrm{~d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}), 1.96(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}+\mathrm{DMSO}-d_{6}, 100 \mathrm{MHz}\right): \delta$ $184.4,175.9,175.8,146.5,136.6,134.8,133.7,119.3,116.4,87.0,84.5,79.3,63.1,60.2,56.8$, 56.7, 56.0, 55.1, 52.0 39.9; MS (CI): m/z (\%) 467 ([M+3] ${ }^{+}$, 100), 466 ([M+2] ${ }^{+}, 40$), 465 ([M+1] $\left.{ }^{+}, 100\right), 387$ (20), 359 (5), 195 (15); HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{NaBr}[\mathrm{M}+\mathrm{Na}]^{+}$ 487.0481 found 487.0480 .
(1S*,3aS*, $6 S^{*}$)-Dimethyl 5'-bromo-1',2-dimethyl-2'-oxo-2,3,3a,4,5,6,7,7a-octahydrospiro[4,7-epoxyisoindole-1,3'-indoline]-5,6-dicarboxylate (44): Following the general procedure described above 44 was obtained after purification by neutral alumina column chromatography

(EtOAc:Hexane $=60: 40$); as a colorless solid ($430 \mathrm{mg}, 45 \%$); mp: 103$105{ }^{\circ} \mathrm{C}$; FT-IR (KBR): 2946, 2829, 1741, 1606, 1486, $1200 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.64(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}), 7.45\left(\mathrm{dd}, 1 \mathrm{H}, J_{l}=\right.$ $\left.8.2, J_{2}=2.0 \mathrm{~Hz}\right), 6.71(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}), 4.85(\mathrm{~s}, 1 \mathrm{H}), 4.56(\mathrm{~s}, 1 \mathrm{H}), 3.67$ $(\mathrm{s}, 3 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 3.43(\mathrm{t}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 3.15(\mathrm{~s}, 3 \mathrm{H}), 3.06(\mathrm{~d}, 1 \mathrm{H}, J=9.5 \mathrm{~Hz}), 2.98-2.94$ $(\mathrm{m}, 1 \mathrm{H}), 2.85(\mathrm{~d}, 1 \mathrm{H}, J=9.5 \mathrm{~Hz}), 2.84-2.82(\mathrm{~m}, 1 \mathrm{H}), 2.62(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 1.93(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 177.7,171.1,171.0,143.1,132.2,130.3,128.3,115.9,109.5,82.2$, $79.9,74.3,58.4,55.9,52.2,52.2,51.4,50.6,47.5,35.1,26.1$; MS (CI): m/z (\%) $481\left([\mathrm{M}+3]^{+}\right.$, 100), 479 ($[\mathrm{M}+1]^{+}, 100$), 401 (30), 195(10), 163 (5); HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Br}$ $[\mathrm{M}+\mathrm{H}]^{+} 479.0818$ found 479.0817 .
$\left(1 S^{*}, 3 a S^{*}, 5 R^{*}, 6 S^{*}\right)$-Dimethyl $\quad 1$ '-(2-ethoxy-2-oxoethyl)-2-methyl-2'-oxo-2,3,3a,4,5,6,7,7a-octahydrospiro[4,7-epoxyisoindole-1,3'-indoline]-5,6-dicarboxylate (45): Following the general procedure described above 45 was obtained after purification by neutral alumina column chromatography(EtOAc:Hexane $=65: 35$); as a colorless solid ($231 \mathrm{mg}, 49 \%$); mp: 120-122 ${ }^{\circ} \mathrm{C}$; FT-IR (KBR): 2948, 2823, 1745, 1701, 1610, 1466, $1208 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta$
 $7.57(\mathrm{~d}, 1 \mathrm{H}, J=6.7 \mathrm{~Hz}), 7.28(\mathrm{t}, 1 \mathrm{H}, J=6.7 \mathrm{~Hz}), 7.10(\mathrm{t}, 1 \mathrm{H}, J=6.7$ $\mathrm{Hz}), 6.70(\mathrm{~d}, 1 \mathrm{H}, J=6.7 \mathrm{~Hz}), 4.86(\mathrm{~s}, 1 \mathrm{H}), 4.59(\mathrm{~s}, 1 \mathrm{H}), 4.52(\mathrm{~d}, 1 \mathrm{H}, J$ $=17.5 \mathrm{~Hz}), 4.30(\mathrm{~d}, 1 \mathrm{H}, J=17.5 \mathrm{~Hz}), 4.15(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.66(\mathrm{~s}$, $3 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}), 3.45(\mathrm{t}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}), 3.06(\mathrm{~d}, 1 \mathrm{H}, J=9.5 \mathrm{~Hz})$, $3.01-2.98(\mathrm{~m}, 1 \mathrm{H}), 2.86(\mathrm{~d}, 1 \mathrm{H}, J=9.5 \mathrm{~Hz}), 2.85-2.83(\mathrm{~m}, 1 \mathrm{H}), 2.64$ $(\mathrm{d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}), 1.99(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 178.1$, $171.2,171.1,167.4,142.8,129.3,128.0,125.8,123.1,108.0,82.2,80.1,74.0,61.7,58.5,55.8$, $52.1,52.0,51.4,50.6,47.4,41.0,35.1,14.0 ; \mathrm{MS}(\mathrm{CI}): \mathrm{m} / \mathrm{z}(\%) 474\left([\mathrm{M}+2]^{+}, 30\right), 473\left([\mathrm{M}+1]^{+}\right.$, 100), 463 (10), 369 (2), 94 (2); HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 495.1743$ found 495.1745.

($1 S^{*}, 3 a S^{*}, 5 R^{*}, 6 S^{*}$)-Dimethyl

1'-benzyl-2-methyl-2'-oxo-2,3,3a,4,5,6,7,7a-octahydrospiro[4,7-epoxyisoindole-1,3'-indoline]-5,6-dicarboxylate (46): Following the general procedure described above 46 was obtained after purification by neutral alumina column chromatography (EtOAc:Hexane $=60: 40$); as a colorless solid (476 $\mathrm{mg}, 50 \%$); mp: 178-180 ${ }^{\circ} \mathrm{C}$; FT-IR (KBR): 2948, 2842, 1743, 1704, 1609, 1462, 1362, $1174 \mathrm{~cm}^{-}$ ${ }^{1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.54(\mathrm{~d}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.31-7.17(\mathrm{~m}, 5 \mathrm{H}), 7.19(\mathrm{t}, 1 \mathrm{H}, J=7.5$ $\mathrm{Hz}), 7.06(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 6.72(\mathrm{~d}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 4.98(\mathrm{~d}, 1 \mathrm{H}, J=15.5 \mathrm{~Hz}), 4.88(\mathrm{~s}, 1 \mathrm{H}), 4.73$ $(\mathrm{d}, 1 \mathrm{H}, J=15.5 \mathrm{~Hz}), 4.64(\mathrm{~s}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}), 3.49(\mathrm{t}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}), 3.08(\mathrm{~d}$, $1 \mathrm{H}, J=9.5 \mathrm{~Hz}), 3.04-3.01(\mathrm{~m}, 1 \mathrm{H}), 2.87(\mathrm{~d}, 1 \mathrm{H}, J=9.5 \mathrm{~Hz}), 2.86-2.85(\mathrm{~m}, 1 \mathrm{H}), 2.65(\mathrm{~d}, 1 \mathrm{H}, J=$ $8.1 \mathrm{~Hz}), 1.98(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 178.3,171.2,171.1,143.2,135.8,129.0$, $128.8,127.7,127.3,126.2,123.0,109.1,82.5,80.0,74.2,58.5,55.6,52.2,52.1,51.5,50.7,47.3$, 43.6, 35.3; MS (CI): m/z (\%) 477 ([M+1] ${ }^{+}, 4$), 476 ([M] $\left.{ }^{+}, 30\right), 475$ (100), 461 (50), 457 (10), 414 (10), 237 (15); HRMS (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+} 477.2026$ found 477.2025. $\left(1 S^{*}, 3 a S^{*}, 4 a R^{*}, 7 a S^{*}\right)-1^{\prime}, 2-D i m e t h y l-6-p h e n y l-3,3 a, 4,4 a, 8,8 a-h e x a h y d r o-2 H-s p i r o[4,8-$ epoxypyrrolo[3,4-flisoindole-1,3'-indoline]-2',5,7(6H,7aH)-trione (47a): Following the general
procedure described above 47awas obtained after purification by neutral alumina column chromatography (EtOAc:Hexane $=70: 30$); as a colorless solid ($90 \mathrm{mg}, 42 \%$); mp: 221-223 ${ }^{\circ} \mathrm{C}$ (acetone:hexane $=1: 1$); FT-IR (KBR): 2937, 1710, 1612, 1494, $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$
 $\mathrm{MHz}): \delta 7.40(\mathrm{~m}, 5 \mathrm{H}), 7.22(\mathrm{~d}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.12(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz})$, $6.85(\mathrm{~d}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 4.97(\mathrm{~s}, 1 \mathrm{H}), 4.77(\mathrm{~s}, 1 \mathrm{H}), 3.56(\mathrm{t}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz})$, $3.19(\mathrm{~s}, 3 \mathrm{H}), 3.14(\mathrm{~d}, 1 \mathrm{H}, J=7.0 \mathrm{~Hz}), 3.10-3.07(\mathrm{~m}, 1 \mathrm{H}), 3.00-2.92(\mathrm{~m}$, $2 \mathrm{H}), 2.69(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.1 \mathrm{~Hz}), 1.99(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta$ $178.0,175.9,175.8,144.2,131.6,129.5,129.2,128.9,127.0,126.5,125.9$, $123.0,108.3,83.9,81.1,74.2,58.2,55.1,49.6,48.9,47.0,35.3,25.9 ; \mathrm{MS}(\mathrm{CI}): \mathrm{m} / \mathrm{z}(\%) 431$ $\left([\mathrm{M}+2]^{+}, 30\right), 430\left([\mathrm{M}+1]^{+}, 70\right), 429\left([\mathrm{M}]^{+}, 100\right), 415(20), 401$ (70); HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 430.1767$ found 430.1766 .
($\left.1 S^{*}, 3 a S^{*}, 4 a R^{*}, 7 a S^{*}\right)-5^{\prime}-$ Chloro-1',2-dimethyl-6-phenyl-3,3a,4,4a,8,8a-hexahydro-2H-

spiro[4,8-epoxypyrrolo[3,4-f]isoindole-1,3'-indoline]-2',5,7(6H,7aH)trione (47b): Following the general procedure described above 47bwas obtained after purification by neutral alumina column chromatography (EtOAc:Hexane $=70: 30$); as a colorless solid ($181 \mathrm{mg}, 39 \%$); mp: 229$231{ }^{\circ} \mathrm{C}$; FT-IR (KBR): 2920, 1708, 1609, 1389, $1051 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.49-$ $7.34(\mathrm{~m}, 4 \mathrm{H}), 7.33(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}), 7.25(\mathrm{~d}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz}), 6.79(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}), 4.98(\mathrm{~s}$, $1 \mathrm{H}), 4.69(\mathrm{~s}, 1 \mathrm{H}), 3.54(\mathrm{t}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}), 3.19(\mathrm{~s}, 3 \mathrm{H}), 3.15(\mathrm{~d}, 1 \mathrm{H}, J=7.1 \mathrm{~Hz}), 3.06-2.95(\mathrm{~m}$, $3 \mathrm{H}), 2.74(\mathrm{~d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}), 1.99(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 177.6,175.8,175.6$, $142.7,131.5,129.5,129.2,128.9,128.5,127.6,127.3,126.5,109.3,83.4,80.0,74.2,58.2,55.4$, 49.5, 48.8, 47.2, 35.2, 26.2; MS (CI): m/z (\%) 466 ([M+3] ${ }^{+}, 50$), 465 ([M+2] ${ }^{+}, 40$), 464 ($[\mathrm{M}+1]^{+}$, 100), 195 (4); HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{Cl}[\mathrm{M}+\mathrm{H}]^{+} 464.1377$ found 464.1379.
($\left.1 S^{*}, 3 a S^{*}, 4 a R^{*}, 7 a S^{*}\right)$-5'-Fluoro-1',2-dimethyl-6-phenyl-3,3a,4,4a,8,8a-hexahydro-2H-
 spiro[4,8-epoxypyrrolo[3,4-ffisoindole-1,3'-indoline]-2',5,7(6H,7aH)trione (47c): Following the general procedure described above 47cwas obtained after purification by neutral alumina column chromatography (EtOAc:Hexane $=70: 30$); as a colorless solid ($157 \mathrm{mg}, 35 \%$); mp: 268$270{ }^{\circ} \mathrm{C}$; FT-IR (KBR): 2928, 1703, 1622, 1389, $1196 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.42(\mathrm{~m}, 3 \mathrm{H}), 7.23(\mathrm{~m}, 3 \mathrm{H}), 7.05(\mathrm{~m}, 1 \mathrm{H}), 6.78(\mathrm{~m}, 1 \mathrm{H}), 4.97(\mathrm{~s}, 1 \mathrm{H}), 4.69$
$(\mathrm{s}, 1 \mathrm{H}), 3.54(\mathrm{t}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}), 3.19(\mathrm{~s}, 3 \mathrm{H}), 3.15(\mathrm{~d}, 1 \mathrm{H}, J=7.0 \mathrm{~Hz}), 3.05-2.95(\mathrm{~m}, 3 \mathrm{H}), 2.75$ $(\mathrm{d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}), 1.99(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 177.8,175.8,175.6,159.3(\mathrm{~d}$, $\left.J_{C-F}=240.0 \mathrm{~Hz}\right), 140.1\left(\mathrm{~d}, J_{C-F}=2.0 \mathrm{~Hz}\right), 131.6,129.2,128.9,127.7\left(\mathrm{~d}, J_{C-F}=8.0 \mathrm{~Hz}\right), 126.5$, $115.8\left(\mathrm{~d}, J_{C-F}=24.0 \mathrm{~Hz}\right), 115.3\left(\mathrm{~d}, J_{C-F}=24.0 \mathrm{~Hz}\right), 108.8\left(\mathrm{~d}, J_{C-F}=8.0 \mathrm{~Hz}\right), 83.4,81.0,74.4$, 58.3, 55.4, 49.6, 48.8, 47.2, 35.2, 26.2; MS (CI): m/z (\%) $450\left([\mathrm{M}+3]^{+}, 5\right), 449$ ([M+2] $\left.{ }^{+}, 30\right), 448$ ([M+1] $\left.{ }^{+}, 100\right), 278$ (4), 179 (5); HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~F}[\mathrm{M}+\mathrm{H}]^{+} 448.1673$ found 448.1672.
(1S*,3aS*,4aR*,7aS*)-5'-Bromo-1',2-dimethyl-6-phenyl-3,3a,4,4a,8,8a-hexahydro-2H-spiro[4,8-epoxypyrrolo[3,4-f]isoindole-1,3'-indoline]-2',5,7(6H,7aH)-trione (47d): Following
 the general procedure described above 47dwas obtained after purification by neutral alumina column chromatography (EtOAc:Hexane $=70: 30$); as a colorless solid ($178 \mathrm{mg}, 35 \%$); mp 240-242 ${ }^{\circ} \mathrm{C}$; FT-IR (KBR): 2931, 1714, 1606, 1190, $1107 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.54(\mathrm{~s}, 1 \mathrm{H}), 7.50-$ $7.46(\mathrm{~m}, 4 \mathrm{H}), 7.27-7.26(\mathrm{~m}, 2 \mathrm{H}), 6.75(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}), 5.00(\mathrm{~s}, 1 \mathrm{H})$, $4.71(\mathrm{~s}, 1 \mathrm{H}), 3.55(\mathrm{t}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}), 3.19(\mathrm{~s}, 3 \mathrm{H}), 3.16(\mathrm{~d}, 1 \mathrm{H}, J=7.1 \mathrm{~Hz}), 3.10-3.00(\mathrm{~m}, 2 \mathrm{H})$, $2.96(\mathrm{~d}, 1 \mathrm{H}, J=7.1 \mathrm{~Hz}), 2.74(\mathrm{~d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}), 2.00(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta$ $177.5,175.8,175.6,143.3,132.5,130.0,129.2,128.9,128.0,126.5,115.9,109.8,83.5,80.9$, $74.3,58.3,55.5,49.6,48.9,47.2,35.3,26.2 ; \mathrm{MS}(\mathrm{CI}): \mathrm{m} / \mathrm{z}(\%) 510\left([\mathrm{M}+3]^{+}, 100\right), 509\left([\mathrm{M}+2]^{+}\right.$, 30), $508\left([\mathrm{M}+1]^{+}, 100\right), 430$ (40), 241 (10), 194 (5); HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{Br}$ $[\mathrm{M}+\mathrm{H}]^{+} 508.0872$, found 508.0871.

($1^{\prime} S^{*}, 3 a^{\prime} S^{*}, 6 a^{\prime} R^{*}$)-1,2'-Dimethyl-5'-phenyl-3',3a'-dihydro-2'H-spiro[indoline-3,1'-pyrrolo[3,4-c]pyrrole]-2,4', $6^{\prime}\left(5^{\prime} H, 6 a^{\prime} H\right)$-trione (48a): Following the general procedure described above 48awas obtained after purification by neutral alumina column chromatography (EtOAc:Hexane $=$ 40:60); as a colorless solid ($127 \mathrm{mg}, 70 \%$); mp: 202-204 ${ }^{\circ} \mathrm{C}$ ($\mathrm{MeOH}: h e x a n e=1: 1$); FT-IR (KBR): 2942, 1700, 1606, 1461, $1083 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.49(\mathrm{t}, 2 \mathrm{H}, J=7.2$ $\mathrm{Hz}), 7.42-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.05(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 6.99(\mathrm{~d}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 6.83(\mathrm{~d}, 1 \mathrm{H}, J=7.80$ $\mathrm{Hz}), 3.85\left(\mathrm{dd}, 1 \mathrm{H}, J_{l}=9.2, J_{2}=7.6 \mathrm{~Hz}\right), 3.70(\mathrm{t}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 3.58(\mathrm{~d}, 1 \mathrm{H}, J=9.2 \mathrm{~Hz}), 3.57$ $(\mathrm{d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}), 3.19(\mathrm{~s}, 3 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 178.0,176.6$, $174.1,144.2,131.9,130.0,129.2,128.7,126.3,126.1,124.3,122.9,108.4,72.8,54.9,52.0,44.6$,
34.6, 25.8; MS (CI): m/z (\%) 363 ([M+2] ${ }^{+}, 5$), 362 ([M+1] $\left.{ }^{+}, 30\right), 361$ ([M] $\left.{ }^{+}, 30\right), 330(10), 241$ (74), 207 (59), 159 (22); HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 362.1505$ found 362.1504. ($1 S^{*}, 3 a S^{*}, 5 R^{*}, 6 S^{*}$)-Dimethyl 2-methyl-2'-oxo-2,3,3a,4,5,6,7,7a-octahydro-2'H-spiro[4,7-epoxyisoindole-1,1'-acenaphthylene]-5,6-dicarboxylate(50): Following the general procedure described above $\mathbf{5 0}$ was obtained after purification by neutral alumina column chromatography

(EtOAc:Hexane $=60: 40$); as a yellow colored solid ($232 \mathrm{mg}, 55 \%$); mp: 236-238 ${ }^{\circ} \mathrm{C}$ (acetone:hexane $=1: 1$); FT-IR (KBR): 2950, 1749, 1724, 1437, $1178 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.14$ (d, $1 \mathrm{H}, J=8.1$ $\mathrm{Hz}), 7.93-7.84(\mathrm{~m}, 3 \mathrm{H}), 7.74-7.67(\mathrm{~m}, 2 \mathrm{H}), 4.90(\mathrm{~s}, 1 \mathrm{H}), 4.41(\mathrm{~s}, 1 \mathrm{H})$, $3.67(\mathrm{~s}, 3 \mathrm{H}), 3.53(\mathrm{~s}, 3 \mathrm{H}), 3.53(\mathrm{t}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}), 3.09(\mathrm{~d}, 1 \mathrm{H}, J=9.5$ $\mathrm{Hz}), 3.05-3.02(\mathrm{~m}, 1 \mathrm{H}), 2.93-2.91(\mathrm{~m}, 1 \mathrm{H}), 2.84(\mathrm{~d}, 1 \mathrm{H}, J=9.5 \mathrm{~Hz}), 2.71(\mathrm{~d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz})$, 1.92 (s, 3H); ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 208.4,171.2,171.1,142.6,135.6,132.2,131.4$, $130.8,128.8,127.9,125.0,124.9,121.2,81.5,80.3,78.2,59.2,56.1,52.2,52.0,51.4,50.6,48.0$, 35.5; MS (CI): m/z (\%) 424 ([M+3] $\left.{ }^{+}, 5\right), 423$ ([M+2] $\left.{ }^{+}, 30\right), 422$ ([M+1] $\left.{ }^{+}, 100\right), 390(2), 196$ (2); HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{NO}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 444.1423$ found 444.1425 .
($1 S^{*}, 3 a S^{*}, 4 a R^{*}, 7 a S^{*}$)-2-Methyl-6-phenyl-3,3a,4,4a,8,8a-hexahydro-2H,2'H-spiro[4,8-epoxypyrrolo[3,4-ffisoindole-1,1'-acenaphthylene]-2',5,7(6H,7aH)-trione (51): Following the general procedure described above 51was obtained after purification by silica column chromatography (EtOAc:Hexane $=65: 35$); as a yellow colored solid ($211 \mathrm{mg}, 47 \%$); mp: 236-
 $238{ }^{\circ} \mathrm{C}$ (MeOH:hexane = 1:1); FT-IR (KBR): 2927, 2852, 1710, 1595, $1207 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.16(\mathrm{~d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz})$, 7.93-7.90 (m, 2H), 7.77-7.71 (m, 3H), $7.44(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 7.37(\mathrm{t}$, $1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 7.21(\mathrm{~d}, 2 \mathrm{H}, J=7.4 \mathrm{~Hz}), 5.03(\mathrm{~s}, 1 \mathrm{H}), 4.70(\mathrm{~s}, 1 \mathrm{H}), 3.64$ (t, 1H, $J=8.1 \mathrm{~Hz}$), $3.17(\mathrm{~d}, 1 \mathrm{H}, J=7.0 \mathrm{~Hz}), 3.17-3.14(\mathrm{~m}, 1 \mathrm{H}), 3.08-$ $3.03(\mathrm{~m}, 1 \mathrm{H}), 2.90(\mathrm{~d}, 1 \mathrm{H}, J=7.0 \mathrm{~Hz}), 2.75(\mathrm{~d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}), 2.0(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $100 \mathrm{MHz}): \delta 208.5,175.9,175.8,142.6,135.9,132.3,131.6,131.1,130.8,129.2,128.8,128.7$, $128.2,126.5,125.3,124.0,121.3,83.6,81.4,78.2,58.9,55.4,49.6,48.9,47.5,35.3$; MS (CI): $\mathrm{m} / \mathrm{z}(\%) 453\left([\mathrm{M}+3]^{+}, 10\right), 452\left([\mathrm{M}+2]^{+}, 50\right), 451\left([\mathrm{M}+1]^{+}, 100\right), 196$ (2); HRMS (ESI) calcd for $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 451.1658$ found 451.1657 .

(3aS*,5R*,6S*)-Dimethyl 2-methyl-1',3'-dioxo-1',2,3,3a,3',4,5,6,7,7a-decahydrospiro[4,7-epoxyisoindole-1,2'-indene]-5,6-dicarboxylate (54): Following the general procedure described above 54was obtained after purification by silica column chromatography (EtOAc:Hexane $=85: 15$); as a yellow colored solid (168 mg, 84\%); mp: 188-190 ${ }^{\circ} \mathrm{C}$ (MeOH:hexane = 1:1); FT-IR (KBR): 2945, 1739, 1704, 1592, $1268 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ MHz): $\delta 8.01(\mathrm{~d}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 7.97(\mathrm{~d}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 7.92-7.88(\mathrm{~m}, 2 \mathrm{H}), 4.84(\mathrm{~s}, 1 \mathrm{H}), 4.66$ $(\mathrm{s}, 1 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}), 3.41(\mathrm{t}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}), 3.24\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=9.1, J_{2}=5.4 \mathrm{~Hz}\right)$, $2.96(\mathrm{~d}, 1 \mathrm{H}, J=9.1 \mathrm{~Hz}), 2.83-2.79(\mathrm{~m}, 1 \mathrm{H}), 2.76(\mathrm{~d}, 1 \mathrm{H}, J=9.1 \mathrm{~Hz}), 2.48(\mathrm{~d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz})$, 2.25 (s, 3H); ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 202.9,199.4,170.8,170.7,141.8,140.1,136.6$, $136.2,123.4,123.2,81.6,78.7,59.2,56.7,52.1,51.2,51.0,48.4,35.3$, MS (CI): m/z (\%) 402 $\left([\mathrm{M}+3]^{+}, 10\right), 401\left([\mathrm{M}+2]^{+}, 40\right), 400\left([\mathrm{M}+1]^{+}, 100\right), 195(2)$; HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{NO}_{7}$ $[\mathrm{M}+\mathrm{H}]^{+} 400.1396$ found 400.1396 .
(3aS*,4aR*,7aS*)-2-Methyl-6-phenyl-3,3a,4,4a,8,8a-hexahydro-2H-spiro[4,8-epoxypyrrolo[3,4-flisoindole-1,2'-indene]-1',3',5,7(6H,7aH)-tetraone (55): Following the general procedure described above 55 was obtained after purification by silica column
 chromatography (EtOAc:Hexane $=90: 10$); as an orange colored solid (321 mg, 75\%); mp: 264-266 ${ }^{\circ} \mathrm{C}$ (MeOH:hexane = 1:1); FT-IR (KBR): 2933, 1741, 1714, 1592, 1392, $1198 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$: $\delta 8.05-8.02(\mathrm{~m}, 1 \mathrm{H}), 7.99-7.97(\mathrm{~m}, 1 \mathrm{H}), 7.94-7.92(\mathrm{~m}, 2 \mathrm{H}), 7.44(\mathrm{t}, 2 \mathrm{H}$, $J=7.1 \mathrm{~Hz}), 7.40-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.20-7.14(\mathrm{~m}, 2 \mathrm{H}), 4.94(\mathrm{~s}, 1 \mathrm{H}), 4.84(\mathrm{~s}$, $1 \mathrm{H}), 3.51(\mathrm{t}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}), 3.27\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=9.3, J_{2}=4.7 \mathrm{~Hz}\right), 3.09(\mathrm{~d}, 1 \mathrm{H}, J=7.0 \mathrm{~Hz}), 2.98-$ $2.94(\mathrm{~m}, 1 \mathrm{H}), 2.87(\mathrm{~d}, 1 \mathrm{H}, J=7.0 \mathrm{~Hz}), 2.62(\mathrm{~d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}), 2.26(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $100 \mathrm{MHz}): \delta 202.9,199.7,175.5,175.5,141.7,140.0,136.8,136.6,131.5,129.2,128.9,126.5$, $123.5,123.3,83.1,79.9,76.3,59.1,55.8,49.2,49.1,47.9,35.6$; MS (CI): m/z (\%) $431\left([\mathrm{M}+3]^{+}\right.$, 5), $430\left([\mathrm{M}+2]^{+}, 25\right), 429\left([\mathrm{M}+1]^{+}, 100\right), 414$ (15), 257 (15); HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{5}$ $[\mathrm{M}+\mathrm{H}]^{+} 429.1450$ found 429.1450.
($3 a S^{*}, 5 R^{*}, 6 S^{*}$)-Dimethyl 2-benzyl-1', 3'-dioxo-1',2,3,3a,3',4,5,6,7,7a-decahydrospiro[4,7-epoxyisoindole-1,2'-indene]-5,6-dicarboxylate (56): Following the general procedure described above 56was obtained after purification by silica column chromatography(EtOAc:Hexane $=$

85:15); as a brown colored solid ($309 \mathrm{mg}, 65 \%$); mp: 188-190 ${ }^{\circ} \mathrm{C}$; FT-IR (KBR): 2998, 1726, 1704, 1595, $1214 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.97(\mathrm{~d}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 7.90-7.84(\mathrm{~m}, 3 \mathrm{H})$, 7.20-7.13 (m, 5H), $4.77(\mathrm{~s}, 1 \mathrm{H}), 4.66(\mathrm{~s}, 1 \mathrm{H}), 3.66(\mathrm{~d}, 1 \mathrm{H}, J=12.9$ $\mathrm{Hz}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}), 3.47(\mathrm{~d}, 1 \mathrm{H}, J=12.9 \mathrm{~Hz}), 3.34(\mathrm{t}$, $1 \mathrm{H}, J=8.2 \mathrm{~Hz}), 3.13\left(\mathrm{dd}, 1 \mathrm{H}, J_{l}=9.0, J_{2}=6.1 \mathrm{~Hz}\right), 2.96(\mathrm{~d}, 1 \mathrm{H}, J=9.0 \mathrm{~Hz}), 2.79-2.77(\mathrm{~m}, 2 \mathrm{H})$, $2.52(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 202.6,199.4,170.9,170.7,141.6$, $140.1,137.7,136.5,136.0,129.1,128.0,127.3,123.3,123.2,81.2,78.6,76.2,56.6,56.5,54.0$, 52.2, 51.3, 50.9, 48.1; MS (CI): m/z (\%) $478\left([\mathrm{M}+3]^{+}, 5\right), 477\left([\mathrm{M}+2]^{+}, 25\right), 476\left([\mathrm{M}+1]^{+}, 100\right)$, 444 (7), 385 (15), 264 (7), 210 (4), 91 (15); HRMS (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{NO}_{7}[\mathrm{M}+\mathrm{H}]^{+} 476.1709$ found 476.1709.
($3 a S^{*}, 5 S^{*}, 6 R^{*}$)-5,6-Bis(methoxymethyl)-2-methyl-2,3,3a,4,5,6,7,7a-octahydrospiro[4,7-epoxyisoindole-1,2'-indene]-1',3'-dione (57): Following the general procedure described above 57was obtained after purification by silica column chromatography(EtOAc:Hexane $=85: 15$); as
 a semi solid ($143 \mathrm{mg}, 77 \%$); FT-IR (DCM): 2927, 1702, 1592, 1456 and $1259 \mathrm{~cm}^{-1},{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.99-7.97(\mathrm{~m}, 1 \mathrm{H}), 7.93-$ $7.91(\mathrm{~m}, 1 \mathrm{H}), 7.88-7.84(\mathrm{~m}, 2 \mathrm{H}), 4.32(\mathrm{~s}, 1 \mathrm{H}), 4.17(\mathrm{~s}, 1 \mathrm{H}), 3.38(\mathrm{t}, 1 \mathrm{H}$, $J=8.5 \mathrm{~Hz}), 3.29(\mathrm{~s}, 3 \mathrm{H}), 3.28-3.16(\mathrm{~m}, 4 \mathrm{H}), 3.17(\mathrm{~s}, 3 \mathrm{H}), 3.10(\mathrm{t}, 1 \mathrm{H}, J$ $=8.5 \mathrm{~Hz}), 2.78-2.72(\mathrm{~m}, 1 \mathrm{H}), 2.47(\mathrm{~d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}), 2.21(\mathrm{~s}, 3 \mathrm{H})$, 2.10-2.01 (m, 1H), 1.89-1.86 (m, 1H); ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 203.5,200.3,141.8$, $140.1,136.3,136.1,123.2,123.1,82.6,79.3,70.7,70.4,59.7,58.8,58.7,56.9,48.6,45.0,44.7$, 35.7; MS (CI): m/z (\%) 374 ([M+3] $\left.{ }^{+}, 5\right), 373\left([\mathrm{M}+2]^{+}, 25\right), 372\left([\mathrm{M}+1]^{+}, 100\right), 340(5), 240(15)$, 188 (5); HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+} 372.1811$ found 372.1810.

(3aS*)-2-Methyl-2,3,3a,4,5,6,7,7a-octahydrospiro[4,7-methanoisoindole-1,2'-indene]-1',3'-dione (58): Following the general procedure described above 58was obtained after purification by silica column chromatography (EtOAc:Hexane = 25:75); as a yellow colored solid ($93 \mathrm{mg}, 66 \%$); mp: 169$171{ }^{\circ} \mathrm{C}$; FT-IR (KBR): 2868, 1681, 1503 and $1297 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$): $\delta 7.99-$ $7.96(\mathrm{~m}, 1 \mathrm{H}), 7.95-7.92(\mathrm{~m}, 1 \mathrm{H}), 7.86-7.84(\mathrm{~m}, 2 \mathrm{H}), 3.45(\mathrm{t}, 1 \mathrm{H}, J=9.2 \mathrm{~Hz}), 2.96\left(\mathrm{dd}, 1 \mathrm{H}, J_{l}=\right.$ $\left.9.2, J_{2}=4.4 \mathrm{~Hz}\right), 2.50-2.41(\mathrm{~m}, 1 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 2.20-2.16(\mathrm{~m}, 2 \mathrm{H}), 2.11(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz})$,
$1.92(\mathrm{~d}, 1 \mathrm{H}, J=4.4 \mathrm{~Hz}), 1.47-1.37(\mathrm{~m}, 2 \mathrm{H}), 1.11-1.08(\mathrm{~m}, 2 \mathrm{H}), 0.92-0.89(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 203.9,200.9,141.9,139.9,136.0,123.0,79.7,61.0,57.5,48.2,41.1,38.7$, 35.8, 34.4, 28.8, 28.3; MS (CI): m/z (\%) 283 ($[\mathrm{M}+2]^{+}, 24$), 282 ($[\mathrm{M}+1]^{+}, 90$), 281 ($[\mathrm{M}]^{+}, 100$), 280 (34), 252(10), 224(20), HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 282.1494$ found 282.1502.
(3aS*)-2-Benzyl-2,3,3a,4,5,6,7,7a-octahydrospiro[4,7-methanoisoindole-1,2'-indene]-1',3'-
dione (59): Following the general procedure described above 59was obtained after purification
 by silica column chromatography (EtOAc:Hexane $=35: 65$); as an orange red colored solid ($99 \mathrm{mg}, 55 \%$); mp: 150-152 ${ }^{\circ} \mathrm{C}$; FT-IR (KBR): 2919, 1742, 1597 and $1244 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.98-7.91(\mathrm{~m}, 2 \mathrm{H}), 7.88-7.85$ $(\mathrm{m}, 2 \mathrm{H}), 7.32(\mathrm{~d}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}), 7.26-7.18(\mathrm{~m}, 3 \mathrm{H}), 3.65(\mathrm{~d}, 1 \mathrm{H}, J=12.9 \mathrm{~Hz})$, $3.52(\mathrm{~d}, 1 \mathrm{H}, J=12.9 \mathrm{~Hz}), 3.38(\mathrm{t}, 1 \mathrm{H}, J=8.9 \mathrm{~Hz}), 2.84\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=9.2, J_{2}=3.6 \mathrm{~Hz}\right), 2.49-2.44$ $(\mathrm{m}, 1 \mathrm{H}), 2.34(\mathrm{~d}, 1 \mathrm{H}, J=9.8 \mathrm{~Hz}), 2.16-2.13(\mathrm{~m}, 2 \mathrm{H}), 2.01(\mathrm{~d}, 1 \mathrm{H}, J=3.6 \mathrm{~Hz}), 1.47-1.35(\mathrm{~m}$, $2 \mathrm{H}), 1.16-1.09(\mathrm{~m}, 2 \mathrm{H}), 0.95-0.90(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 204.0,200.6,142.0$, $139.7,139.0,135.8,128.7,128.0,127.0,123.0,79.6,58.1,56.7,54.7,47.7,41.5,38.9,34.5$, 28.7, 28.3; HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 358.1807$ found 358.1794 .
($3 a S^{*}, 5 R^{*}, 6 S^{*}$)-Dimethyl 2-methyl-1', 3'-dioxo-1',2,3,3a,3',4,5,6,7,7a-decahydrospiro[4,7-methanoisoindole-1,2'-indene]-5,6-dicarboxylate (60): Following the general procedure described above 60was obtained after purification by silica column
 chromatography(EtOAc:Hexane $=35: 65$); as a yellow colored solid (100 $\mathrm{mg}, 50 \%$); mp: 172-174 ${ }^{\circ} \mathrm{C}$; FT-IR (KBR): 2951, 1732, 1699, 1435 and $1205 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.99-7.92(\mathrm{~m}, 2 \mathrm{H}), 7.87-7.84$ $(\mathrm{m}, 2 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.52(\mathrm{t}, 1 \mathrm{H}, J=9.1 \mathrm{~Hz}), 3.44(\mathrm{~s}, 3 \mathrm{H}), 3.10(\mathrm{dd}, 1 \mathrm{H}$, $\left.J_{1}=11.1, J_{2}=4.4 \mathrm{~Hz}\right), 2.98(\mathrm{~d}, 1 \mathrm{H}, J=7.7 \mathrm{~Hz}), 2.90\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=9.3, J_{2}=\right.$ $2.8 \mathrm{~Hz}), 2.78-2.73(\mathrm{~m}, 2 \mathrm{H}), 2.59-2.55(\mathrm{~m}, 2 \mathrm{H}), 2.37(\mathrm{~d}, 1 \mathrm{H}, J=2.8 \mathrm{~Hz}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{~d}$, $1 \mathrm{H}, \quad J=11.1 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 203.2,200.9,172.3,141.8,139.7,136.1$, $135.8,123.1,79.0,60.8,51.6,51.1,49.8,46.0,42.2,41.9,35.8 ; \mathrm{MS}(\mathrm{CI}): \mathrm{m} / \mathrm{z}(\%) 399$ ($[\mathrm{M}+2]^{+}$, 24), 398 ($[\mathrm{M}+1]^{+}, 90$), 397 ($[\mathrm{M}]^{+}, 100$), 396 (34), 340 (19); HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{NO}_{6}$ $[\mathrm{M}+\mathrm{H}]^{+} 398.1603$ found 398.1591.

(3aS*,4aR*, $7 a S^{*}$)-6-(2-hydroxyethyl)-2-methyl-3,3a,4,4a,8,8a-hexahydro-2H-spiro[4,8-epoxypyrrolo[3,4-f]isoindole-1,2'-indene]$1^{\prime}, 3^{\prime}, 5,7(6 H, 7 a H)$-tetraone (61): Following the general procedure described above 61was obtained after purification by silica column chromatography (EtOAc:Hexane $=80: 20$); as a yellow colored solid ($129 \mathrm{mg}, 65 \%$); mp: 223-225 ${ }^{\circ} \mathrm{C}$; FT-IR (KBR): 3486, 2846, 1704, 1424 and $1176 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}+\mathrm{DMSO}-d_{6}, 400 \mathrm{MHz}\right): \delta 8.0-7.92(\mathrm{~m}, 4 \mathrm{H}), 4.78(\mathrm{~s}, 1 \mathrm{H}), 4.68(\mathrm{~s}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 1 \mathrm{H}), 3.70-$ $3.57(\mathrm{~m}, 4 \mathrm{H}), 3.46(\mathrm{t}, 1 \mathrm{H}, J=8.7 \mathrm{~Hz}), 3.22-3.19(\mathrm{~m}, 1 \mathrm{H}), 2.97(\mathrm{~d}, 1 \mathrm{H}, J=6.7 \mathrm{~Hz}), 2.94-2.87(\mathrm{~m}$, $1 \mathrm{H}), 2.80-2.70(\mathrm{~m}, 1 \mathrm{H}), 2.59(\mathrm{~d}, 1 \mathrm{H}, J=7.9 \mathrm{~Hz}), 2.22(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}+\mathrm{DMSO}-d_{6}, 100\right.$ $\mathrm{MHz}): \delta 207.5,204.6,181.5,146.4,144.6,141.5,128.0,127.9,87.5,84.1,81.0,63.9,63.1,60.1$, 53.7, 52.8, 46.2, 40.4, 34.3; MS (CI): m/z (\%) 398([M+2] $\left.{ }^{+}, 10\right), 397\left([\mathrm{M}+1]^{+}, 35\right), 396\left([\mathrm{M}]^{+}\right.$, 90), 86 (55), 85 (100); HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+} 397.1399$ found 397.1390.
(3'S*, $\left.{ }^{*} a S^{*}, 7 S^{*}, 8 R^{*}, 9 a S^{*}, 9 b S^{*}\right)$-dimethyl $\quad 1^{\prime}$-methyl-2'-oxo-1,2,3,5a,6,7,8,9,9a,9b-decahydrospiro[6,9-epoxypyrrolo[2,1-a]isoindole-5,3'-indoline]-7,8-dicarboxylate (63a):

Following the general procedure described above 63awas obtained after purification by neutral alumina column chromatography (EtOAc:Hexane $=60: 40$); as a colorless solid (213 mg , 50%); mp: 195-197 ${ }^{\circ} \mathrm{C}$; FT-IR (KBR): 2925, 1749, 1610, 1473 and $1250 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.53(\mathrm{~d}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz})$, $7.32(\mathrm{t}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.09(\mathrm{t}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 6.83(\mathrm{~d}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 5.01(\mathrm{~s}, 1 \mathrm{H}), 4.71(\mathrm{~s}$, $1 \mathrm{H}), 4.22(\mathrm{q}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 3.16(\mathrm{~s}, 3 \mathrm{H}), 3.06(\mathrm{~d}, 1 \mathrm{H}, J=9.6 \mathrm{~Hz})$, $2.92(\mathrm{~d}, 1 \mathrm{H}, J=9.6 \mathrm{~Hz}), 2.86-2.72(\mathrm{~m}, 3 \mathrm{H}), 2.38(\mathrm{t}, 1 \mathrm{H}, J=9.0 \mathrm{~Hz}), 1.94-1.72(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 179.5,171.4,144.5,129.3,128.4,125.9 .122 .5,108.2,79.5,71.9$, $66.8,58.3,52.2,51.8,50.8,49.8,46.8,26.5,26.1,25.4$; MS (CI): m/z (\%) 429 ([M+3] ${ }^{+}$, 65), 428([M+2] $\left.{ }^{+}, 45\right), 427\left([\mathrm{M}+1]^{+}, 100\right), 425(55), 397$ (45), 396 (40), 215 (26); HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 449.1688$ found 449.1676.

$\left(3^{\prime} S^{*}, 5 a S^{*}, 7 S^{*}, 8 R^{*}, 9 a S^{*}, 9 b S^{*}\right)$-Dimethyl 5'-chloro-1'-methyl-2'-oxo-
1,2,3,5a,6,7,8,9,9a,9b-decahydrospiro[6,9-epoxypyrrolo[2,1-ajisoindole-5,3'-indoline]-7,8-dicarboxylate (63b): Following the general procedure described above 63bwas obtained after purification
by neutral alumina column chromatograph (EtOAc:Hexane $=60: 40$); as a colorless solid (230 $\mathrm{mg}, 50 \%$); mp 210-212 ${ }^{\circ} \mathrm{C}$; FT-IR (KBR): 2951, 1741, 1608, 1488 and $1199 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.53(\mathrm{~s}, 1 \mathrm{H}), 7.33(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}), 6.76(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}), 5.03(\mathrm{~s}$, $1 \mathrm{H}), 4.72(\mathrm{~s}, 1 \mathrm{H}), 4.21(\mathrm{q}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 3.15(\mathrm{~s}, 3 \mathrm{H}), 3.07(\mathrm{~d}, 1 \mathrm{H}, J$ $=9.6 \mathrm{~Hz}), 2.94(\mathrm{~d}, 1 \mathrm{H}, J=9.6 \mathrm{~Hz}), 2.82-2.70(\mathrm{~m}, 3 \mathrm{H}), 2.39-2.36(\mathrm{~m}, 1 \mathrm{H}), 1.97-1.70(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 179.0,171.3,143.1,129.4,128.3,128.1,127.7,109.0,79.4,71.6$, $66.8,58.7,52.3,51.7,50.8,49.5,46.3,26.5,26.1,25.1$; MS (CI): m/z (\%) 463 ([M+3] $\left.{ }^{+}, 28\right), 462$ $\left([\mathrm{M}+2]^{+}, 30\right), 461\left([\mathrm{M}+1]^{+}, 80\right), 398$ (100), 397 (45), 396 (40), 358 (20); HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{NaCl}[\mathrm{M}+\mathrm{Na}]^{+} 483.1298$ found 483.1277 .
$\left(3^{\prime} S^{*}, 5 a S^{*}, 7 S^{*}, 8 R^{*}, 9 a S^{*}, 9 b S^{*}\right)$-Dimethyl
1'-benzyl-2'-oxo-1,2,3,5a,6,7,8,9,9a,9b-decahydrospiro[6,9-epoxypyrrolo[2,1-a]isoindole-5,3'-indoline]-7,8-dicarboxylate (63c):

Following the general procedure described above 63cwas obtained after purification by neutral alumina column chromatograph (EtOAc:Hexane $=60: 40$); as a colorless solid ($352 \mathrm{mg}, 70 \%$); mp: 174-176 ${ }^{\circ} \mathrm{C}$; FT-IR (KBR): 2950, 1738, 1610, 1467 and $1181 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}): \delta 7.53(\mathrm{~d}, 1 \mathrm{H}, J=7.0 \mathrm{~Hz}), 7.33-7.17(\mathrm{~m}, 6 \mathrm{H}), 7.03(\mathrm{t}, 1 \mathrm{H}, J=7.6$ $\mathrm{Hz}), 6.71(\mathrm{~d}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 5.02(\mathrm{~s}, 1 \mathrm{H}), 4.87(\mathrm{~d}, 1 \mathrm{H}, J=15.7 \mathrm{~Hz}), 4.81(\mathrm{~d}, 1 \mathrm{H}, J=15.7 \mathrm{~Hz})$, $4.74(\mathrm{~s}, 1 \mathrm{H}), 4.23(\mathrm{~d}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 3.07(\mathrm{~d}, 1 \mathrm{H}, J=9.5 \mathrm{~Hz}), 2.94$ $(\mathrm{d}, 1 \mathrm{H}, J=9.5 \mathrm{~Hz}), 2.84(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 2.83-2.73(\mathrm{~m}, 2 \mathrm{H}), 2.45-2.35(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.70$ $(\mathrm{m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 179.6,171.3,143.6,135.8,129.2,128.8,128.5,127.6$, $127.2,126.0,122.6,109.2,79.6,79.3,71.6,66.9,58.6,52.2,51.8,50.8,49.5,46.3,43.6,26.6$, 25.2; MS (CI): m/z (\%) 504 ([M+2] $\left.{ }^{+}, 20\right), 502\left([\mathrm{M}]^{+}, 70\right), 501$ (55), 399 (90), 288 (62), 220 (78), 91 (100); HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+} 503.2182$ found 503.2159.

$\left(3^{\prime} S^{*}, 5 a S^{*}, 7 S^{*}, 8 R^{*}, 9 a S^{*}, 9 b S^{*}\right)$-Dimethyl 2'-oxo-
1,2,3,5a,6,7,8,9,9a,9b-decahydrospiro[6,9-epoxypyrrolo[2,1-adisoindole-5,3'-indoline]-7,8-dicarboxylate (63d): Following the general procedure described above 63dwas obtained after purification by neutral alumina column chromatograph (EtOAc:Hexane $=60: 40$); as a colorless solid (268 $\mathrm{mg}, 65 \%$); mp: 239-241 ${ }^{\circ} \mathrm{C}$; FT-IR (KBR): 2956, 1731, 1619, 1438 and $1199 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.28(\mathrm{~s}, 1 \mathrm{H}), 7.49(\mathrm{~d}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 7.25(\mathrm{t}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.03(\mathrm{t}, 1 \mathrm{H}$,
$J=7.6 \mathrm{~Hz}), 6.87(\mathrm{~d}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 5.00(\mathrm{~s}, 1 \mathrm{H}), 4.66(\mathrm{~s}, 1 \mathrm{H}), 4.16(\mathrm{q}, 1 \mathrm{H}, J=7.7 \mathrm{~Hz}), 3.68(\mathrm{~s}$, $3 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 3.05(\mathrm{~d}, 1 \mathrm{H}, J=9.6 \mathrm{~Hz}), 2.93(\mathrm{~d}, 1 \mathrm{H}, J=9.6 \mathrm{~Hz}), 2.85(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz})$, $2.76(\mathrm{q}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}), 2.46-2.41(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.70(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta$ $182.1,171.3,141.7,129.2,128.8,126.4,122.5,110.2,79.4,72.7,67.3,58.4,52.2,51.7,50.8$, 49.5, 46.6, 29.7, 26.5, 25.5; MS (CI): m/z (\%) 413 ([M+1] ${ }^{+}, 20$), 412 ([M] ${ }^{+}, 75$), 309 (55), 211 (70), 209 (100); HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 435.1532$ found 435.1525.
$\left(3^{\prime} S^{*}, 5 a S^{*}, 7 S^{*}, 8 R^{*}, 9 a S^{*}, 9 b S^{*}\right)$-Dimethyl 5^{\prime}-bromo-2'-oxo-1,2,3,5a,6,7,8,9,9a,9b-decahydrospiro[6,9-epoxypyrrolo[2,1-a]isoindole-5,3'-indoline]-7,8-dicarboxylate (63e):

Following the general procedure described above 63ewas obtained after purification by neutral alumina column chromatograph (EtOAc:Hexane $=60: 40$); as a colorless solid ($319 \mathrm{mg}, 65 \%$); $\mathrm{mp}: 164{ }^{\circ} \mathrm{C}$ (decomposed); FT-IR (KBR): 3434, 2955, 1729, 1615, 1471 and $1199 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.89(\mathrm{~s}, 1 \mathrm{H}), 7.62(\mathrm{~s}, 1 \mathrm{H}), 7.41(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 6.80(\mathrm{~d}, 1 \mathrm{H}, J=8.0$ $\mathrm{Hz}), 5.02(\mathrm{~s}, 1 \mathrm{H}), 4.69(\mathrm{~s}, 1 \mathrm{H}), 4.15(\mathrm{q}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.07(\mathrm{~d}, 1 \mathrm{H}, J$ $=9.5 \mathrm{~Hz}), 2.96(\mathrm{~d}, 1 \mathrm{H}, J=9.5 \mathrm{~Hz}), 2.86(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 2.74(\mathrm{~m}, 2 \mathrm{H}), 2.45-2.42(\mathrm{~m}, 1 \mathrm{H})$, 2.00-1.70 (m, 4H); ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 181.5,171.3,140.8,132.3,131.2,128.6$, $115.4,111.6,79.3,72.4,67.1,58.7,52.3,51.7,50.8,49.2,46.1,26.5,25.2$, MS (CI): m/z (\%) $493\left([\mathrm{M}+3]^{+}, 20\right), 491\left([\mathrm{M}+1]^{+}, 65\right), 490\left([\mathrm{M}]^{+}, 85\right), 291(55), 288$ (100), 287 (60); HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{NaBr}[\mathrm{M}+\mathrm{Na}]^{+} 513.0637$ found 513.0627.
(3'S*, $\left.\mathbf{S}^{*} a^{*}, 7 S^{*}, 8 R^{*}, 9 a S^{*}, 9 b R^{*}\right)$-Dimethyl 1^{\prime}-methyl-2'-oxo-3,5a,6,7,8,9,9a,9b-octahydro-1H-spiro[6,9-epoxythiazolo[4,3-a]isoindole-5,3'-indoline]-7,8-dicarboxylate (63f): Following the
 general procedure described above 63fwas obtained after purification by neutral alumina column chromatograph (EtOAc:Hexane $=80: 20$); as a colorless solid ($254 \mathrm{mg}, 57 \%$); mp: 87-89 ${ }^{\circ} \mathrm{C}$; FT-IR (KBR): 2950, 1740, 1609,1380 and $1196 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.47(\mathrm{~d}, 1 \mathrm{H}, J$ $=7.5 \mathrm{~Hz}), 7.35(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.10(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 6.85(\mathrm{~d}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 4.97(\mathrm{~s}, 1 \mathrm{H})$, $4.31(\mathrm{~s}, 1 \mathrm{H}), 4.18(\mathrm{q}, 1 \mathrm{H}, J=9.2 \mathrm{~Hz}), 3.87(\mathrm{~d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}), 3.21(\mathrm{~s}$, 3H), 3.21-2.88 (m, 7H); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 178.7,170.9,144.1,129.8,128.8$, $123.5,123.1,108.1,79.1,73.2,71.9,58.4,52.3,51.5,50.6,50.3,48.5,31.7,29.7,26.5$; MS (CI): $\mathrm{m} / \mathrm{z}(\%) 446\left([\mathrm{M}+2]^{+}, 15\right), 445\left([\mathrm{M}+1]^{+}, 25\right), 444\left([\mathrm{M}]^{+}, 100\right), 443(35), 264$ (95).

$\left(3^{\prime} S^{*}, 5 a S^{*}, 7 S^{*}, 8 R^{*}, 9 a S^{*}, 9 b R^{*}\right)$-Dimethyl 5^{\prime}-chloro-1'-methyl-2'-oxo-3,5a,6,7,8,9,9a,9b-octahydro-1H-spiro[6,9-epoxythiazolo[4,3-ajisoindole-5,3'-indoline]-7,8-dicarboxylate (63g): Following the general procedure described above 63gwas obtained after purification by neutral alumina column chromatograph (EtOAc:Hexane $=80: 20$); as a colorless solid (287 mg , 60%); mp: 248-250 ${ }^{\circ} \mathrm{C}$; FT-IR (KBR): 2952, 1732, 1606, 1485 and $1207 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}, $400 \mathrm{MHz}): \delta 7.42(\mathrm{~s}, 1 \mathrm{H}), 7.33(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}), 6.79(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}), 4.98(\mathrm{~s}, 1 \mathrm{H}), 4.36$ (s, 1H), 4.21-4.14 (m, 1H), $3.81(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 3.19(\mathrm{~s}, 3 \mathrm{H})$, 3.19-2.89 (m, 7H); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}+\mathrm{DMSO}-d_{6}, 100 \mathrm{MHz}\right): \delta 178.1,170.9,142.7,129.9,128.8$, $128.5,125.3,109.0,79.1,78.9,72.9,71.6,58.7,52.3,51.4,50.5,49.8,48.2,31.5,26.6$; MS (CI): m/z (\%) 479 ([M+1] $\left.{ }^{+}, 28\right), 478$ ([M] $\left.{ }^{+}, 25\right), 461$ (50), 460 (70), 360 (90), 329 (88) 316 (100); HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{NaSCl}[\mathrm{M}+\mathrm{Na}]^{+} 501.0863$ found 501.0841.
($\left.1^{\prime} S^{*}, 2^{\prime} R^{*}, 3 S^{*}, 7 a^{\prime} S^{*}\right)-2^{\prime}-$ Benzoyl-1'-(1H-indol-3-yl)-1-methyl-1', $2^{\prime}, 5^{\prime}, 6^{\prime}, 7^{\prime}, 7 a^{\prime}-$
hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one (67a): Following the general procedure described above 67a was obtained after purification by silica gel column chromatography
 (EtOAc:Hexane $=70: 30$); as a colorless solid ($184 \mathrm{mg}, 80 \%$); mp: 192-194 ${ }^{\circ} \mathrm{C}$; FT-IR (KBR): 3314, 2972, 1683, 1613 and $747 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}): \delta 8.64(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.18-8.15(\mathrm{~m}, 1 \mathrm{H}), 7.35-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.26-$ $7.10(\mathrm{~m}, 10 \mathrm{H}), 7.06-7.02(\mathrm{~m}, 1 \mathrm{H}), 6.39(\mathrm{~d}, 1 \mathrm{H}, J=7.7 \mathrm{~Hz}), 5.17(\mathrm{~d}, 1 \mathrm{H}, J=$ $11.5 \mathrm{~Hz}), 4.56-4.51(\mathrm{~m}, 1 \mathrm{H}), 4.15\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=11.4, J_{2}=9.9 \mathrm{~Hz}\right), 2.77(\mathrm{~s}$, $3 \mathrm{H}), 2.72-2.68(\mathrm{~m}, 1 \mathrm{H}), 2.64-2.58(\mathrm{~m}, 1 \mathrm{H}), 2.06-2.01(\mathrm{~m}, 2 \mathrm{H}), 1.95-1.85(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 197.7,179.0,143.4,137.4,136.7,132.4,129.3,127.8,127.7,127.1,126.4$, $125.0,122.4,122.2,122.0,120.0,119.6,114.3,111.4,108.0,73.7,70.7,64.0,48.5,45.0,31.4$, 27.3, 26.0; HRMS (ESI) calcd for $\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 462.2182$ found 462.2182 .

(2'S*, $\left.3^{\prime} R^{*}, 4^{\prime} S^{*}\right)$-3'-Benzoyl-4'-(1H-indol-3-yl)-1,1'-dimethylspiro[indoline-3,2'-pyrrolidin]-2-one (67b): Following the general procedure described above 67b was obtained after purification by silica gel column chromatography (EtOAc:Hexane $=35: 65$); as a colorless solid ($76 \mathrm{mg}, 35 \%$); mp: 226-228 ${ }^{\circ} \mathrm{C}$; FT-IR (KBR): 3317, 2929, 1682, 1612 and $467 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.23-8.21(\mathrm{~m}, 1 \mathrm{H}), 8.13(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.37-7.35$
$(\mathrm{m}, 1 \mathrm{H}), 7.29-7.25(\mathrm{~m}, 4 \mathrm{H}), 7.23-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.12-7.04(\mathrm{~m}, 3 \mathrm{H}), 7.01-6.97(\mathrm{~m}, 1 \mathrm{H}), 6.34(\mathrm{~d}$, $1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 4.83-4.80(\mathrm{~m}, 2 \mathrm{H}), 3.92-3.87(\mathrm{~m}, 1 \mathrm{H}), 3.52-3.48(\mathrm{~m}, 1 \mathrm{H}), 3.01(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 198.0,178.1,143.2,137.4,136.6,132.4,129.0,127.8$, $127.6,127.0,126.6,126.3,123.0,122.2,122.0,120.1,119.6,115.7,111.2,107.3,73.5,61.9$, 59.6, 36.6, 35.2, 25.9; HRMS (ESI) calcd for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 436.2025$ found 436.2008.
($\left.1^{\prime} S^{*}, 2^{\prime} R^{*}, 3 S^{*}, 7 a^{\prime} S^{*}\right)-22^{\prime}-$ Benzoyl-1'-(1H-indol-3-yl)-1',2', $5^{\prime}, 6^{\prime}, 7^{\prime}, 7 a^{\prime}-$
hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one (67c): Following the general procedure
 described above 67c was obtained after purification by silica gel column chromatography (EtOAc:Hexane $=85: 15$); as a colorless solid (168 mg , 75%); mp: 212-214 ${ }^{\circ} \mathrm{C}$; FT-IR (KBR): 3283, 2985, 1723, 1663, 1471 and $1184 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 400 \mathrm{MHz}$): $\delta 10.80(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 10.17$ (br s, $1 \mathrm{H}), 7.86(\mathrm{~d}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 7.35-7.15(\mathrm{~m}, 8 \mathrm{H}), 7.01-6.93(\mathrm{~m}, 3 \mathrm{H}), 6.86-$ $6.85(\mathrm{~m}, 1 \mathrm{H}), 6.44(\mathrm{~d}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 5.01(\mathrm{~d}, 1 \mathrm{H}, J=10.5 \mathrm{~Hz}), 4.05-4.02(\mathrm{~m}, 2 \mathrm{H}), 2.56-2.50$ $(\mathrm{m}, 1 \mathrm{H}), 2.29-2.25(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.60(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}, 100 \mathrm{MHz}\right): \delta 197.5,180.2$, $142.3,137.3,137.0,133.5,129.6,128.8,128.0,127.8,126.8,125.5,123.0,121.5,121.5,119.5$, $118.9,113.3,112.2,110.0,73.1,70.7,62.2,48.0,45.3,30.7,27.2$; HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 448.2025$ found 448.2014.
(1'S', 2'R*,3S*, 7a'S*)-2'-Benzoyl-5-bromo-1'-(1H-indol-3-yl)-1', 2', 5', $\mathbf{6}^{\prime}, 7^{\prime}, 7 a^{\prime}-$
hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one (67d):Following the general procedure
 described above 67d was obtained after purification by silica gel column chromatography (EtOAc:Hexane $=85: 15$); as a colorless solid (191 mg , 73%); mp: compound decomposes after $110{ }^{\circ} \mathrm{C}$; FT-IR (KBR): 3308, 2956, 1719, 1683 and $1223 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}+$ DMSO- $d_{6}, 400 \mathrm{MHz}$): $\delta 9.25$ (br s, 1H), 9.07 (br s, 1H), $8.11(\mathrm{~d}, 1 \mathrm{H}, J=2.8 \mathrm{~Hz}), 7.44-7.31(\mathrm{~m}$, $5 \mathrm{H}), ~ 7.25-7.14(\mathrm{~m}, 6 \mathrm{H}), ~ 6.44-6.41(\mathrm{~m}, 1 \mathrm{H}), 5.22-5.18(\mathrm{~m}, 1 \mathrm{H}), 4.52-4.49(\mathrm{~m}, 1 \mathrm{H}), 4.17-4.10(\mathrm{~m}$, $1 \mathrm{H}), 2.73-2.61(\mathrm{~m}, 2 \mathrm{H}), 2.05-1.86(\mathrm{~m}, 3 \mathrm{H}), 1.78-1.73(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}+\mathrm{DMSO}-d_{6}, 100\right.$ $\mathrm{MHz}): \delta 197.3,180.4,140.5,137.2,136.7,132.7,132.0,130.4,128.1,127.9,127.7,126.3$, $122.6,121.7,119.8,119.3,114.3,113.5,111.5,111.4,73.6,70.3,62.8,48.2,45.5,31.0,27.3$; HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{BrN}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 526.1130$ found 526.1114.

(1'S*, $\left.2^{\prime} R^{*}, 3 S^{*}, 7 a^{\prime} S^{*}\right)-2$ '-Benzoyl-5-chloro-1'-(1H-indol-3-yl)-1',2',5',6',7',7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one (67e):Following the general procedure described above 67e was obtained after purification by silica gel column chromatography (EtOAc:Hexane $=$ 85:15); as a colorless solid ($178 \mathrm{mg}, 74 \%$); mp: $160-162{ }^{\circ} \mathrm{C}$; FT-IR (KBR): 3406, 2960, 1718, 1702, $1247 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}+\mathrm{DMSO}-d_{6}, 400 \mathrm{MHz}$): $\delta 9.48$ (br $\mathrm{s}, 1 \mathrm{H}), 9.37(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.10-8.08(\mathrm{~m}, 1 \mathrm{H}), 7.43-7.23(\mathrm{~m}, 6 \mathrm{H}), 7.17-7.12(\mathrm{~m}, 4 \mathrm{H}), 7.05-7.03(\mathrm{~m}$, $1 \mathrm{H}), 6.47(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}), 5.19(\mathrm{~d}, 1 \mathrm{H}, J=11.4 \mathrm{~Hz}), 4.51-4.47(\mathrm{~m}, 1 \mathrm{H}), 4.16-4.11(\mathrm{~m}, 1 \mathrm{H})$, 2.74-2.62 (m, 2H), 2.04-1.86 (m, 3H), 1.79-1.73 (m, 1H); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}+$ DMSO- $d_{6}, 100$ $\mathrm{MHz}): \delta 197.3,180.5,140.2,137.2,136.8,132.7,129.1,128.1,127.9,127.5,127.2,126.8$, $126.3,122.6,121.5,119.7,119.1,113.3,111.6,111.0,73.7,70.4,62.7,48.2,45.5,31.1,27.2$; HRMS (ESI) calcd for $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{ClO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 482.1635$ found 482.1636.
(1'S', 2'R*,3S*, $\left.7 a^{\prime} S^{*}\right)$-2'-(4-Bromobenzoyl)-1'-(1H-indol-3-yl)-1-methyl-1', 2', 5', $6^{\prime}, 7^{\prime}, 7 a^{\prime}-$ hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one(67f): Following the general procedure described above 67f was obtained after purification by silica gel column chromatography
 $($ EtOAc: Hexane $=70: 30)$; as a colorless solid $(148 \mathrm{mg}, 55 \%) ; \mathrm{mp}: 212-214$ ${ }^{\circ} \mathrm{C}$; FT-IR(KBr): 3307, 2867, 1716, 1610 and $1254 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, $400 \mathrm{MHz}): \delta 8.56$ (br s, 1H), $8.11(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.14(\mathrm{~m}, 8 \mathrm{H}), 7.05-7.01(\mathrm{~m}$, $3 \mathrm{H}), 6.43(\mathrm{~d}, 1 \mathrm{H}, J=7.7 \mathrm{~Hz}), 5.08(\mathrm{~d}, 1 \mathrm{H}, J=11.5 \mathrm{~Hz}), 4.52-4.46(\mathrm{~m}, 1 \mathrm{H})$, $4.12(\mathrm{t}, 1 \mathrm{H}, J=10.5 \mathrm{~Hz}), 2.81(\mathrm{~s}, 3 \mathrm{H}), 2.71-2.57(\mathrm{~m}, 2 \mathrm{H}) 2.02-1.71(\mathrm{~m}, 4 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 196.8,179.0,143.2,136.7,136.0,131.1,129.5,129.3,127.5$, $127.2,126.4,124.8,122.4,122.4,122.0,119.8,119.6,114.0,111.5,108.2,73.7,70.7,64.1,48.5$, 45.0, 31.4, 27.3, 26.2; HRMS (ESI) calcd for $\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{BrN}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 540.1287$ found 540.1276 .

(1'S*,2'R*,3S*,7a'S*)-5-Chloro-2'-(4-chlorobenzoyl)-1'-(1H-indol-3-yl)-
1-methyl-1', 2',5', $6^{\prime}, 7^{\prime}, 7 a^{\prime}-$ hexahydrospiro[indoline-3,3'-pyrrolizin]-2one $(\mathbf{6 7 g})$:Following the general procedure described above 67 g was obtained after purification by silica gel column chromatography (EtOAc:Hexane $=65: 35$); as a colorless solid ($127 \mathrm{mg}, 48 \%$); mp: 116-118 ${ }^{\circ} \mathrm{C}$; FT-IR (KBR): 3398, 2924, 1718, 1607 and $1249 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$): $\delta 8.24$ (br s, 1H), 8.14-8.12 (m, 1H), 7.35-7.33 (m, 1H), 7.25-7.17 (m, 7H), $7.10(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}$),
$6.38(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}), 5.12(\mathrm{~d}, 1 \mathrm{H}, J=11.4 \mathrm{~Hz}), 4.56-4.51(\mathrm{~m}, 1 \mathrm{H}), 4.09(\mathrm{t}, 1 \mathrm{H}, J=10.6 \mathrm{~Hz})$, $2.83(\mathrm{~s}, 3 \mathrm{H}), 2.68-2.61(\mathrm{~m}, 2 \mathrm{H}) ; 2.05-1.88(\mathrm{~m}, 3 \mathrm{H}), 1.77-1.69(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100\right.$ $\mathrm{MHz}): \delta 196.1,178.6,141.8,139.1,136.7,135.5,129.4,129.2,128.3,127.9,127.4,126.7$, $126.2,122.5,122.1,119.9,119.7,113.7,111.5,109.0,73.5,70.5,63.9,48.4,45.1,31.3,27.5$, 26.3; HRMS (ESI) calcd for $\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 530.1402$ found 530.1402.
$\left(1^{\prime} S^{*}, 2^{\prime} R^{*}, 3 S^{*}, 7 a^{\prime} S^{*}\right)-1^{\prime}-(1 H-I n d o l-3-y l)-1-m e t h y l-2^{\prime}-(4-n i t r o b e n z o y l)-1^{\prime}, 2^{\prime}, 5^{\prime}, 6^{\prime}, 7^{\prime}, 7 a^{\prime}-$
 hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one (67h):Following the general procedure described above $\mathbf{6 7 h}$ was obtained after purification by silica gel column chromatography (EtOAc:Hexane $=70: 30$); as a brownish blue colored solid ($164 \mathrm{mg}, 65 \%$); mp: $154-156{ }^{\circ} \mathrm{C}$; FT-IR (KBR): 3292, 1715,1609 , and $1343 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.27(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, 8.14-8.12 (m, 1H), 7.92 (d, 2H, $J=8.6 \mathrm{~Hz}$), 7.35-7.15 (m, 8H), 7.06-7.03 $(\mathrm{m}, 1 \mathrm{H}), 6.40(\mathrm{~d}, 1 \mathrm{H}, J=7.7 \mathrm{~Hz}), 5.13(\mathrm{~d}, 1 \mathrm{H}, J=11.3 \mathrm{~Hz}), 4.56-4.51(\mathrm{~m}, 1 \mathrm{H}), 4.11\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}\right.$ $\left.=11.3, J_{2}=10.1 \mathrm{~Hz}\right), 2.79(\mathrm{~s}, 3 \mathrm{H}), 2.70-2.56(\mathrm{~m}, 2 \mathrm{H}), 2.04-1.82(\mathrm{~m}, 4 \mathrm{H}),{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100\right.$ $\mathrm{MHz}): \delta 196.5,178.8,149.6,143.2,141.8,136.6,129.8,128.7,127.2,126.3,124.5,123.0$, $122.6,122.5,122.2,119.8,119.7,113.8,111.5,108.3,73.4,70.6,64.5,48.5,45.1,31.2,27.2$, 26.2; HRMS (ESI) calcd for $\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{~N}_{4} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 507.2032$ found 507.2026.
($\left.1^{\prime} S^{*}, 2^{\prime} R^{*}, 3 S^{*}, 7 a^{\prime} S^{*}\right)$-5-Bromo-1'-(1H-indol-3-yl)-1-methyl-2'-(3-nitrobenzoyl)$1^{\prime}, 2^{\prime}, 5^{\prime}, 6^{\prime}, 7^{\prime}, 7 a^{\prime}$-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one (67i):Following the general
 procedure described above 67 i was obtained after purification by silica gel column chromatography (EtOAc:Hexane = 70:30); as a colorless solid ($158 \mathrm{mg}, 54 \%$); mp: compound decomposes after $90{ }^{\circ} \mathrm{C}$; FT-IR (KBR): 3400, 2924, 1717, 1606 and $1248 \mathrm{~cm}^{-1},{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta$ 8.41 (br s, 1H), 8.11 (d, 2H, $J=6.2 \mathrm{~Hz}$), 7.95 (br s, 1H), 7.66 (d, 1H, $J=$ $7.4 \mathrm{~Hz}), 7.34-7.17(\mathrm{~m}, 7 \mathrm{H}), 6.32(\mathrm{~d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}), 5.08(\mathrm{~d}, 1 \mathrm{H}, J=11.0 \mathrm{~Hz}), 4.59-4.57(\mathrm{~m}$, $1 \mathrm{H}), 4.14(\mathrm{t}, 1 \mathrm{H}, J=10.5 \mathrm{~Hz}), 2.87(\mathrm{~s}, 3 \mathrm{H}), 2.75-2.63(\mathrm{~m}, 2 \mathrm{H}), 2.05-1.75(\mathrm{~m}, 4 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 195.6,178.3,147.9,142.3,138.4,136.6,133.3,132.6,130.2,129.2,126.9$, 126.7, 126.2, 122.7, 122.5, 122.2, 119.8, 115.4, 113.5, 111.5, 109.5, 73.0, 70.1, 64.3, 48.5, 45.1, 30.6, 27.1, 26.3; HRMS (ESI) calcd for $\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{BrN}_{4} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 585.1137$ found 585.1137.

(1'S*,2'R*,3S*, $\left.7 a^{\prime} S^{*}\right)-2$ '-Benzoyl-1-benzyl-1'-(1H-indol-3-yl)-1',2',5',6',7',7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one (67j):Following the general procedure described above 67j was obtained after purification by silica gel column chromatography(EtOAc:Hexane $=75: 25$); as a colorless solid ($214 \mathrm{mg}, 80 \%$); mp: 188-190 ${ }^{\circ} \mathrm{C}$; FT-IR (KBR): 3377, 2922, 1695, 1605 and $1242 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.18$ (br s, 2H), 7.34-7.10 (m, 13H), 7.03-7.00 (m, 4H), $6.31(\mathrm{~d}, 1 \mathrm{H}, J=7.0 \mathrm{~Hz}), 5.29(\mathrm{~d}, 1 \mathrm{H}, J=11.4 \mathrm{~Hz}), 4.87$ $(\mathrm{d}, 1 \mathrm{H}, J=15.7 \mathrm{~Hz}), 4.61-4.56(\mathrm{~m}, 1 \mathrm{H}), 4.22(\mathrm{t}, 1 \mathrm{H}, J=11.4 \mathrm{~Hz}), 4.14(\mathrm{~d}, 1 \mathrm{H}, J=15.7 \mathrm{~Hz})$, 2.70-2.61 (m, 2H), 2.06-1.73 (m, 4H); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 197.7,179.2,142.6$, $137.3,136.7,135.5,132.6,129.2,128.7,128.1,128.0,127.5,127.4,127.0,126.4,125.0,122.4$, $122.3,122.0,120.0,119.6,114.3,111.4,109.2,73.5,70.6,63.1,48.4,45.5,43.8,31.4,27.3$; HRMS (ESI) calcd for $\mathrm{C}_{36} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 538.2495$ found 538.2494.
(1'S $\left.{ }^{*}, 2^{\prime} R^{*}, 3 S^{*}, 7 a^{\prime} S^{*}\right)-2^{\prime}-(1-N a p h t h o y l)-1^{\prime}-(1 H-i n d o l-3-y l)-1-m e t h y l-1^{\prime}, 2^{\prime}, 5^{\prime}, 6^{\prime}, 7^{\prime}, 7 a^{\prime}-$ hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one (67k): Following the general procedure
 described above 67 k was obtained after purification by silica gel column chromatography (EtOAc:Hexane = 70:30); as a colorless solid (115 mg , 45%); mp 206-208 ${ }^{\circ} \mathrm{C}$; FT-IR (KBR): 3338, 2926, 1708, 1609 and $1247 \mathrm{~cm}^{-}$ ${ }^{1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.38(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.19(\mathrm{~d}, 1 \mathrm{H}, J=7.1 \mathrm{~Hz})$, $7.73(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.62(\mathrm{~d}, 1 \mathrm{H}, J=7.9 \mathrm{~Hz}), 7.49(\mathrm{~d}, 1 \mathrm{H}, J=6.9 \mathrm{~Hz})$, $7.43(\mathrm{~d}, 1 \mathrm{H}, J=7.1 \mathrm{~Hz}), 7.29-7.17(\mathrm{~m}, 7 \mathrm{H}), 7.12-7.06(\mathrm{~m}, 2 \mathrm{H}), 7.00-6.96(\mathrm{~m}, 1 \mathrm{H}), 5.98(\mathrm{~d}, 1 \mathrm{H}, J$ $=7.6 \mathrm{~Hz}), 5.34(\mathrm{~d}, 1 \mathrm{H}, J=11.6 \mathrm{~Hz}), 4.50\left(\mathrm{dd}, 1 \mathrm{H}, J_{l}=14.9, J_{2}=6.6 \mathrm{~Hz}\right), 4.21(\mathrm{t}, 1 \mathrm{H}, J=10.8$ $\mathrm{Hz}), 2.58-2.53(\mathrm{~m}, 2 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.08-1.72(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 199.3$, $178.4,143.3,136.7,134.8,132.9,132.4,129.6,129.5,128.2,127.5,127.1,126.8,126.4,125.9$, $125.1,124.8,124.0,122.4,122.3,121.9,119.8,119.6,114.4,111.5,108.4,73.9,71.2,66.0,47.9$, 44.6, 32.2, 28.0, 25.7; HRMS (ESI) calcd for $\mathrm{C}_{34} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 512.2338$ found 512.2338.

($\left.1^{\prime} S^{*}, 2^{\prime} R^{*}, 3 S^{*}, 7 a^{\prime} S^{*}\right)-1^{\prime}-(1 H-I n d o l-3-y l)-1-m e t h y l-2^{\prime}-(t h i o p h e n e-2-$ carbonyl)-1',2',5',6',7',7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one (671): Following the general procedure described above 671 was obtained after purification by silica gel column chromatography (EtOAc:Hexane $=$ 85:15); as a colorless solid ($175 \mathrm{mg}, 75 \%$); mp: 210-212 ${ }^{\circ} \mathrm{C}$; FT-IR (KBR):

3304, 2963, 1713, 1657 and $1260 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}+\mathrm{DMSO}-d_{6}, 400 \mathrm{MHz}\right): \delta 8.82(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 8.09-8.07(\mathrm{~m}, 1 \mathrm{H}), 7.39-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.20-7.03(\mathrm{~m}, 5 \mathrm{H}), 6.86-6.83(\mathrm{~m}$, $1 \mathrm{H}), 6.54-6.52(\mathrm{~m}, 1 \mathrm{H}), 4.99\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=11.6, J_{2}=3.2 \mathrm{~Hz}\right), 4.51-4.49(\mathrm{~m}, 1 \mathrm{H}), 4.15(\mathrm{t}, 1 \mathrm{H}, J=$ $10.0 \mathrm{~Hz}), 2.96(\mathrm{~s}, 3 \mathrm{H}), 2.80-2.55(\mathrm{~m}, 2 \mathrm{H}), 2.06-1.73(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}+\mathrm{DMSO}-d_{6}, 100\right.$ $\mathrm{MHz}): \delta 189.1,179.2,144.5,143.2,136.7,134.0$, 131.9, 129.4, 127.5, 127.4, 126.4, 124.8, $122.5,122.4,121.7,119.9,119.3,113.6,111.4,108.0,74.2,70.6,64.5,48.5,44.9,31.2,27.3$, 26.2; HRMS (ESI) calcd for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 468.1746$ found 468.1730 .
(1'S*,2'R*,3S*, 7a'S*)-1-Benzyl-1'-(1H-indol-3-yl)-2'-(thiophene-2-carbonyl)-1',2',5',6',7',7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one (67m): Following the general procedure
 described above $\mathbf{6 7 m}$ was obtained after purification by silica gel column chromatography (EtOAc:Hexane $=85: 15$); as a colorless solid (209 mg, 77%); mp: 188-190 ${ }^{\circ} \mathrm{C}$; FT-IR(KBr): 3308, 2960, 1713, 1656 and $1358 \mathrm{~cm}^{-}$ ${ }^{1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}+\mathrm{DMSO}-d_{6}, 400 \mathrm{MHz}\right): \delta 8.73(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.12-8.09(\mathrm{~m}$, $1 \mathrm{H}), 7.50-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.43-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.38\left(\mathrm{dd}, 1 \mathrm{H}, J_{l}=4.9, J_{2}=3.2\right.$ $\mathrm{Hz}), 7.34-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.14(\mathrm{~m}, 6 \mathrm{H}), 7.11-7.02(\mathrm{~m}, 4 \mathrm{H}), 6.78(\mathrm{dd}, 1 \mathrm{H}$, $\left.J_{1}=4.8, J_{2}=4.0 \mathrm{~Hz}\right), 6.48(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 5.17(\mathrm{~d}, 1 \mathrm{H}, J=11.7 \mathrm{~Hz}), 4.86(\mathrm{~d}, 1 \mathrm{H}, J=15.8$ $\mathrm{Hz}), 4.64(\mathrm{~d}, 1 \mathrm{H}, J=15.8 \mathrm{~Hz}), 4.57-4.51(\mathrm{~m}, 1 \mathrm{H}), 4.25\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=11.6, J_{2}=10.0 \mathrm{~Hz}\right), 2.74-$ $2.62(\mathrm{~m}, 2 \mathrm{H}), 2.07-1.76(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}+\mathrm{DMSO}-d_{6}, 100 \mathrm{MHz}\right): \delta 189.1,179.3$, $144.7,142.5,136.7,135.4,134.3,132.6,129.3,128.7,128.0,127.7,127.5,127.0,126.5,124.9$, $122.4,121.8,119.8,119.4,113.6,111.5,109.3,74.1,70.6,63.7,48.3,45.5,44.0,31.3,27.4 ;$ HRMS (ESI) calcd for $\mathrm{C}_{34} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 544.2059$ found 544.2042.
(1'S*, $\left.2^{\prime} R^{*}, 3 S^{*}, 7 a^{\prime} S^{*}\right)-2^{\prime}-\left(\right.$ Furan-2-carbonyl)-1'-(1H-indol-3-yl)-1-methyl-1', $2^{\prime}, 5^{\prime}, 6^{\prime}, 7^{\prime}, 7 a^{\prime}-$ hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one (67n): Following the general procedure
 described above 67n was obtained after purification by silica gel column chromatography (EtOAc:Hexane $=85: 15$); as a colorless solid ($176 \mathrm{mg}, 78 \%$); mp: 196-198 ${ }^{\circ} \mathrm{C}$; FT-IR (KBR): 3333, 2928, 1713, 1668 and $1026 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}+$ DMSO- $\left.d_{6}, 400 \mathrm{MHz}\right): \delta 9.00(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.07-8.05(\mathrm{~m}, 1 \mathrm{H})$, 7.31-7.23 (m, 3H), 7.18-7.07 (m, 4H), 7.01-6.99 (m, 1H), 6.83 (d, 1H, $J=3.5$ $\mathrm{Hz}), 6.59(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 6.20-6.19(\mathrm{~m}, 1 \mathrm{H}), 4.86(\mathrm{~d}, 1 \mathrm{H}, J=11.6 \mathrm{~Hz}), 4.50-4.46(\mathrm{~m}, 1 \mathrm{H})$, $4.13(\mathrm{t}, 1 \mathrm{H}, J=11.3 \mathrm{~Hz}), 3.06(\mathrm{~s}, 3 \mathrm{H}), 2.77-2.71(\mathrm{~m}, 1 \mathrm{H}), 2.59-2.53(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.71(\mathrm{~m}, 4 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}+\mathrm{DMSO}_{6}, 100 \mathrm{MHz}\right): \delta 184.7,179.2,152.4,146.4,143.3,136.7,129.4$, $127.3,126.4,124.8,122.6,122.3,121.6,119.9,119.2,117.7,113.4,111.9,111.4,108.0,73.7$, $70.2,63.3,48.5,44.5,30.8,27.0,26.3$; HRMS (ESI) calcd for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 452.1974$ found 452.1960.
(1S*, $\left.3^{\prime} \mathbf{R}^{*}, 4^{\prime} S^{*}\right)-3^{\prime}$-Benzoyl-4'-(1H-indol-3-yl)-1'-methyl-2H-spiro[acenaphthylene-1,2'-
pyrrolidin]-2-one (68a):Following the general procedure described above 68a was obtained after
 purification by silica gel column chromatography (EtOAc:Hexane $=40: 60$); as a yellow colored solid ($91 \mathrm{mg}, 40 \%$); mp: 194-196 ${ }^{\circ} \mathrm{C} ; \mathrm{FT}-\mathrm{IR}(\mathrm{KBr}): 3375$, 2923, 1708, 1673 and $1232 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.22$ (dd, $\left.1 \mathrm{H}, J_{l}=6.3, J_{2}=2.1 \mathrm{~Hz}\right), 8.15(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.86(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.81(\mathrm{~d}, 1 \mathrm{H}$, $J=6.8 \mathrm{~Hz}), 7.61\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=7.0, J_{2}=2.3 \mathrm{~Hz}\right), 7.56(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.57-$ $7.51(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.05-7.02(\mathrm{~m}, 2 \mathrm{H}), 6.94-$ $6.90(\mathrm{~m}, 1 \mathrm{H}), 6.72(\mathrm{t}, 2 \mathrm{H}, J=7.9 \mathrm{~Hz}), 4.98-4.91(\mathrm{~m}, 1 \mathrm{H}), 4.85(\mathrm{~d}, 1 \mathrm{H}, J=9.4 \mathrm{~Hz}), 3.98(\mathrm{t}, 1 \mathrm{H}, J$ $=9.4 \mathrm{~Hz}), 3.57\left(\mathrm{dd}, 1 \mathrm{H}, J=8.8, J_{2}=7.4 \mathrm{~Hz}\right), 2.17(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta$ 209.0, 198.6, 142.2, 137.1, 137.0, 136.6, 132.0, 131.8, 129.9, 128.6, 127.7, 127.5, 127.3, 126.6, 124.7, 123.7, 122.3, 122.0, 120.7, 120.1, 119.7, 116.0, 111.2, 61.7, 60.1, 37.0, 35.3; HRMS (ESI) calcd for $\mathrm{C}_{31} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 457.1916$ found 457.1897.
($\left.1 S^{*}, 1^{\prime} S^{*}, 2^{\prime} R^{*}, 7 a^{\prime} S^{*}\right)-2^{\prime}-$ Benzoyl-1'-(1H-indol-3-yl)-1', $2^{\prime}, 5^{\prime}, 6^{\prime}, 7^{\prime}, 7 a^{\prime}-h e x a h y d r o-2 H-$
spiro[acenaphthylene-1,3'-pyrrolizin]-2-one (68b):Following the general procedure described
 above 68b was obtained after purification by silica gel column chromatography (EtOAc:Hexane $=45: 55$); as a yellow colored solid (151 $\mathrm{mg}, 63 \%$); mp: $154-156{ }^{\circ} \mathrm{C}$; FT-IR (KBR): 3360, 2921, 1716, 1653 and $1233 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.28-8.27(\mathrm{~m}, 1 \mathrm{H}), 8.18(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 7.91(\mathrm{~d}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}), 7.77-7.52(\mathrm{~m}, 5 \mathrm{H}), 7.35-7.21(\mathrm{~m}, 4 \mathrm{H}), 7.07-$ $7.00(\mathrm{~m}, 3 \mathrm{H}), 6.84(\mathrm{~d}, 2 \mathrm{H}, J=6.3 \mathrm{~Hz}), 5.34-5.30(\mathrm{~m}, 1 \mathrm{H}), 4.62-4.61(\mathrm{~m}$, $1 \mathrm{H}), 4.37-4.32(\mathrm{~m}, 1 \mathrm{H}), 2.81-2.79(\mathrm{~m}, 1 \mathrm{H}), 2.51-2.49(\mathrm{~m}, 1 \mathrm{H}), 2.08-1.86(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 206.7,198.8,141.9,137.2,136.7,135.0,132.2,131.6,131.5,130.4,127.9$, $127.8,127.7,127.4,126.6,125.1,124.5,122.4,122.0,121.8,120.1,119.6,114.4,111.4,70.5$, 62.9, 48.9, 45.9, 30.8, 26.9; HRMS (ESI) calcd for $\mathrm{C}_{33} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 483.2073$ found 483.2076.
(1S*, $\left.1^{\prime} S^{*}, 2^{\prime} R^{*}, 7 a^{\prime} S^{*}\right)$-2'-Benzoyl-1'-(1-benzyl-1H-indol-3-yl)-1',2',5', $6^{\prime}, 7^{\prime}, 7 a^{\prime}-h e x a h y d r o-2 H-$ spiro[acenaphthylene-1,3'-pyrrolizin]-2-one (68c):Following the general procedure described
 above 68c was obtained after purification by silica gel column chromatography ($\mathrm{EtOAc}:$ Hexane $=30: 70$); as a yellow colored solid (190 mg, 66\%); mp: 170-172 ${ }^{\circ} \mathrm{C}$; FT-IR (KBR): 2944, 1721, 1678, 1597 and $1264 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.31(\mathrm{~d}, 1 \mathrm{H}, J=$ $7.5 \mathrm{~Hz}), 7.93(\mathrm{~d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}), 7.79(\mathrm{~d}, 1 \mathrm{H}, J=7.0 \mathrm{~Hz}), 7.76(\mathrm{dd}$, $\left.1 \mathrm{H}, J_{1}=7.2 \mathrm{~Hz}, J_{2}=1.8 \mathrm{~Hz}\right), 7.64-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.29-7.19(\mathrm{~m}, 7 \mathrm{H}), 7.14-7.08$ $(\mathrm{m}, 4 \mathrm{H}), 7.04(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 6.86(\mathrm{t}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}), 5.34(\mathrm{~d}, 1 \mathrm{H}, J=11.2 \mathrm{~Hz}), 5.28(\mathrm{br} \mathrm{s}$, $2 \mathrm{H}), 4.68-4.62(\mathrm{~m}, 1 \mathrm{H}), 4.37(\mathrm{t}, 1 \mathrm{H}, J=10.5 \mathrm{~Hz}), 2.85-2.79(\mathrm{~m}, 1 \mathrm{H}), 2.54-2.49(\mathrm{~m}, 1 \mathrm{H}), 2.14-$ $1.84(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 206.6,198.7,141.9,137.4,137.3,137.1,135.1$, $132.1,131.6,131.5,130.4,128.8,127.9,127.8,127.7,127.6,127.4,127.3,126.9,126.6,125.1$, $124.5,121.8,121.7,120.3,119.4,113.6,109.9,70.6,62.9,50.1,48.9,46.0,30.7,26.8$; HRMS (ESI) calcd for $\mathrm{C}_{40} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 573.2542$ found 573.2526.
($1 S^{*}, 1^{\prime} S^{*}, 2^{\prime} R^{*}, 7 a^{\prime} S^{*}$)-1'-(1-Allyl-1H-indol-3-yl)-2'-benzoyl-1', $2^{\prime}, 5^{\prime}, 6^{\prime}, 7^{\prime}, 7 a^{\prime}-h e x a h y d r o-2 H-$ spiro[acenaphthylene-1,3'-pyrrolizin]-2-one (68d): Following the general procedure described
 above 68d was obtained after purification by silica gel column chromatography (EtOAc:Hexane $=30: 70$); as a yellow colored solid (225 $\mathrm{mg}, 86 \%$); mp: $162-164{ }^{\circ} \mathrm{C}$; FT-IR (KBR): 2971, 1721, 1678, 1597 and $1265 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.33-8.31(\mathrm{~m}, 1 \mathrm{H}), 7.92(\mathrm{~d}, 1 \mathrm{H}$, $J=8.1 \mathrm{~Hz}), 7.81(\mathrm{~d}, 1 \mathrm{H}, J=7.0 \mathrm{~Hz}), 7.75\left(\mathrm{dd}, 1 \mathrm{H}, J_{I}=5.7, J_{2}=3.4 \mathrm{~Hz}\right)$, 7.63-7.61 (m, 2H), $7.54\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=8.0, J_{2}=7.2 \mathrm{~Hz}\right), 7.33-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 3 \mathrm{H})$, $7.11(\mathrm{~s}, 1 \mathrm{H}), 7.09(\mathrm{~s}, 1 \mathrm{H}), 7.02(\mathrm{t}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}), 6.85(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 6.04-5.94(\mathrm{~m}, 1 \mathrm{H})$, $5.35(\mathrm{~d}, 1 \mathrm{H}, J=11.2 \mathrm{~Hz}), 5.20\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=10.0, J_{2}=1.2 \mathrm{~Hz}\right), 5.13\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=17.0, J_{2}=1.3\right.$ $\mathrm{Hz}), 4.69-4.64(\mathrm{~m}, 3 \mathrm{H}), 4.37(\mathrm{t}, 1 \mathrm{H}, J=10.8 \mathrm{~Hz}), 2.88-2.81(\mathrm{~m}, 1 \mathrm{H}), 2.56-2.51(\mathrm{~m}, 1 \mathrm{H}), 2.14-$ $1.87(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 206.6,198.8,141.9,137.3,136.8,135.0,133.5$, $132.2,131.6,131.5,130.4,127.9,127.8,127.7,127.4,127.2,126.1,125.1,124.5,121.8,121.6$, $120.3,119.3,117.5,113.3,109.8,77.3,70.5,62.9,49.0,48.8,45.9,30.7,26.8$; HRMS (ESI) calcd for $\mathrm{C}_{36} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 523.2386$ found 523.2370.
(1S** $\left.1^{\prime} S^{*}, 2^{\prime} R^{*}, 7 a^{\prime} S^{*}\right)-1^{\prime}-(1 H-I n d o l-3-y l)-2^{\prime}-(t h i o p h e n e-2-c a r b o n y l)-1^{\prime}, 2^{\prime}, 5^{\prime}, 6^{\prime}, 7^{\prime}, 7 a^{\prime}-$ hexahydro-2H-spiro[acenaphthylene-1,3'-pyrrolizin]-2-one (68e): Following the general
 procedure described above 68e was obtained after purification by silica gel column chromatography (EtOAc:Hexane = 30:70); as a yellow colored solid ($227 \mathrm{mg}, 93 \%$); mp: 173-175 ${ }^{\circ} \mathrm{C}$; FT-IR (KBR): 2965, 1720, 1650, 1412 and $1246 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.23(\mathrm{~d}, 1 \mathrm{H}, J=6.7$ $\mathrm{Hz}), 7.99(\mathrm{~d}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 7.91(\mathrm{~d}, 1 \mathrm{H}, J=5.9 \mathrm{~Hz}), 7.78(\mathrm{~d}, 1 \mathrm{H}, J=7.2$ $\mathrm{Hz}), 7.69-7.60(\mathrm{~m}, 3 \mathrm{H}), 7.36-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.28-7.11(\mathrm{~m}, 5 \mathrm{H}), 6.58-6.56(\mathrm{~m}, 1 \mathrm{H}), 5.19(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}$ $=11.3 \mathrm{~Hz}), 4.60-4.58(\mathrm{~m}, 1 \mathrm{H}), 4.40-4.35(\mathrm{~m}, 1 \mathrm{H}), 2.86-2.82(\mathrm{~m}, 1 \mathrm{H}), 2.50-2.49(\mathrm{~m}, 1 \mathrm{H}), 2.07-$ $1.85(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 206.4,190.4,144.5,142.0,136.7,134.8,133.8$, $131.9,131.8,131.4,130.5,128.1,127.9,127.6,126.6,125.2,124.8,122.5,121.9,120.0,119.5$,
 $\mathrm{C}_{31} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 489.1637$ found 489.1623 .

(1S*', $\left.1^{\prime} R^{*}, 2^{\prime} R^{*}, 7 a^{\prime} S^{*}\right)-2^{\prime}-$ Benzoyl-1'-(1H-pyrrol-2-yl)-1',2',5', $\mathbf{6}^{\prime}, 7^{\prime}, 7 a^{\prime}-h e x a h y d r o-2 H-$

 spiro[acenaphthylene-1,3'-pyrrolizin]-2-one (68f): Following the general procedure described above $68 f$ was obtained after purification by silica gel column chromatography (EtOAc:Hexane $=50: 50)$; as a yellow colored solid $(172 \mathrm{mg}$, 80%); mp: compound decomposes after $160^{\circ} \mathrm{C}$; FT-IR (KBR): 3437, 1724, 1664 and $1030 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.79$ (br s, 1H), 7.89 (d, $1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.75(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}), 7.66(\mathrm{~d}, 1 \mathrm{H}, J=6.9 \mathrm{~Hz}), 7.58(\mathrm{t}, 1 \mathrm{H}$, $J=7.9 \mathrm{~Hz}), 7.50-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.02(\mathrm{t}, 1 \mathrm{H}, J=7.1 \mathrm{~Hz}), 6.96(\mathrm{~d}, 2 \mathrm{H}, J=7.4 \mathrm{~Hz}), 6.83(\mathrm{~d}, 2 \mathrm{H}, J=$ $7.7 \mathrm{~Hz}), 6.71$ (br s, 1H), $6.20(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.17(\mathrm{~d}, 1 \mathrm{H}, J=2.4 \mathrm{~Hz}), 4.78(\mathrm{~d}, 1 \mathrm{H}, J=10.4 \mathrm{~Hz}), 4.56-$ $4.50(\mathrm{~m}, 1 \mathrm{H}), 4.06(\mathrm{t}, 1 \mathrm{H}, J=10.4 \mathrm{~Hz}), 2.67-2.61(\mathrm{~m}, 1 \mathrm{H}), 2.48-2.43(\mathrm{~m}, 1 \mathrm{H}), 2.25-2.19(\mathrm{~m}$, $1 \mathrm{H}), 1.94-1.80(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 206.5,201.5,141.7,137.1,134.7$, $132.4,131.5,131.5,130.6,130.3,127.8,127.7,127.3,125.3,123.9,121.8,117.5,107.9,104.9$, 68.5, 65.3, 48.5, 45.8, 30.9, 27.2; HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 433.1916$ found 433.1916.
(1S', $\left.1^{\prime} R^{*}, 2^{\prime} R^{*}, 7 a^{\prime} S^{*}\right)$-2'-Benzoyl-1'-(1-methyl-1H-pyrrol-2-yl)-1',2',5', $6^{\prime}, 7^{\prime}, 7 a^{\prime}-h e x a h y d r o-$ 2H-spiro[acenaphthylene-1,3'-pyrrolizin]-2-one (68g): Following the general procedure described above 68 g was obtained after purification by silica gel column chromatography
(EtOAc:Hexane $=35: 65$); as a yellow colored solid ($134 \mathrm{mg}, 60 \%$); mp: $138-140{ }^{\circ} \mathrm{C}$; FT-IR (KBR): 2955, 1727, 1676 and $1230 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.88(\mathrm{~d}, 1 \mathrm{H}, J=7.1$ $\mathrm{Hz}), 7.73-7.48(\mathrm{~m}, 5 \mathrm{H}), 7.03-6.85(\mathrm{~m}, 5 \mathrm{H}), 6.49(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.35(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$,
 6.09 (br s, 1H), $5.01(\mathrm{~d}, 1 \mathrm{H}, J=10.4 \mathrm{~Hz}), 4.30-4.29(\mathrm{~m}, 1 \mathrm{H}), 4.11(\mathrm{t}, 1 \mathrm{H}, J=$ $9.4 \mathrm{~Hz}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 2.69-2.67(\mathrm{~m}, 1 \mathrm{H}), 2.45-2.45(\mathrm{~m}, 1 \mathrm{H}), 2.14-2.13(\mathrm{~m}$, $1 \mathrm{H}), 1.93-1.76(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 206.2,198.7$, 141.7, $137.0,134.9,132.3,132.3,131.5,131.4,130.3,127.8,1278,127.4,125.2$, 124.1, 121.7, 121.7, 107.1, 105.3, 72.4, 65.6, 48.4, 44.3, 34.2, 30.8, 27.2; HRMS (ESI) calcd for $\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 447.2073$ found 447.2080.
(1S*, $\left.1^{\prime} S^{*}, 2^{\prime} R^{*}\right)-2^{\prime}-$ Benzoyl-1'-(1-methyl-1H-indol-3-yl)-1', $2^{\prime}, 5^{\prime}, 6^{\prime}, 7^{\prime}, 7 a^{\prime}-h e x a h y d r o-2 H-$ spiro[acenaphthylene-1,3'-pyrrolizin]-2-one (68h): Following the general procedure described

68hwas obtained after purification by silica gel column chromatography (EtOAc:Hexane $=30: 70$); as a yellow colored solid ($149 \mathrm{mg}, 66 \%$); mp: $174-176{ }^{\circ} \mathrm{C}$; FT-IR (KBR): 2964, 1722, 1675, 1597 and $1235 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.29-8.27(\mathrm{~m}, 1 \mathrm{H}), 7.93(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}), 7.80(\mathrm{~d}$, $1 \mathrm{H}, J=7.1 \mathrm{~Hz}), 7.76\left(\mathrm{dd}, 1 \mathrm{H}, J_{l}=7.4, J_{2}=1.6 \mathrm{~Hz}\right), 7.64-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.57-$ $7.54(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.26-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.20(\mathrm{~s}, 1 \mathrm{H}), 7.10-7.08(\mathrm{~m}, 2 \mathrm{H}), 7.04-7.00$ $(\mathrm{m}, 1 \mathrm{H}), 6.87-6.83(\mathrm{~m}, 2 \mathrm{H}), 5.32(\mathrm{~d}, 1 \mathrm{H}, J=11.2 \mathrm{~Hz}), 4.67-4.62(\mathrm{~m}, 1 \mathrm{H}), 4.37(\mathrm{t}, 1 \mathrm{H}, J=10.9$ $\mathrm{Hz}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.86-2.80(\mathrm{~m}, 1 \mathrm{H}), 2.54-2.49(\mathrm{~m}, 1 \mathrm{H}), 2.12-2.06(\mathrm{~m}, 1 \mathrm{H}), 2.02-1.96(\mathrm{~m}, 1 \mathrm{H})$, 1.91-1.80 (m, 2H); ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 206.5,198.8,141.9,137.4,137.3,135.0$, $132.2,131.6,131.5,130.4,127.9,127.8,127.7,127.4,127.1,127.0,125.2,124.6,121.8,121.6$, $120.2,119.1,112.9,109.5,77.2,70.5,62.9,49.0,46.0,32.7,30.6,26.8$. HRMS (ESI) calcd for $\mathrm{C}_{34} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 497.2290$ found 497.2209.
(1S*, $\left.1^{\prime} R^{*}, 2^{\prime} R^{*}, 7 a^{\prime} S^{*}\right)-1^{\prime}-(1-M e t h y l-1 H-p y r r o l-2-y l)-2^{\prime}-((E)-3-(1-m e t h y l-1 H-p y r r o l-2-$

yl)acryloyl)-1',2',5',6',7',7a'-hexahydro-2H-spiro[acenaphthylene-1,3'-pyrrolizin]-2-one (68i): Following the general procedure described above 68i was obtained after purification by silica gel column chromatography (EtOAc:Hexane $=40: 60$); as a yellow colored solid ($187 \mathrm{mg}, 80 \%$); mp: compound decomposes after $65{ }^{\circ} \mathrm{C}$; FT-IR (KBR): 2925, 1716, 1585 and $1266 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.02(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.95(\mathrm{~d}, 1 \mathrm{H}, J=7.0 \mathrm{~Hz})$,
$7.80(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.63(\mathrm{t}, 2 \mathrm{H}, J=6.5 \mathrm{~Hz}), 7.57(\mathrm{~d}, 1 \mathrm{H}, J=7.0 \mathrm{~Hz}), 6.87(\mathrm{~d}, 1 \mathrm{H}, J=15.7$ Hz), 6.58 (br s, 1H), 6.49 (br s, 1H), 6.26 (br s, 1H), 6.14 (d, 1H, J = 2.7 Hz), 6.08 (br s, 1H), $5.95(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.70(\mathrm{~d}, 1 \mathrm{H}, J=15.7 \mathrm{~Hz}), 4.56(\mathrm{~d}, 1 \mathrm{H}, J=11.2 \mathrm{~Hz}), 4.23-4.21(\mathrm{~m}, 1 \mathrm{H}), 4.03(\mathrm{t}$, $1 \mathrm{H}, J=11.2 \mathrm{~Hz}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.39(\mathrm{~s}, 3 \mathrm{H}), 2.53-2.46(\mathrm{~m}, 2 \mathrm{H}), 1.92-1.69(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 206.8,195.4,142.0,135.4,132.4,132.1,131.7,130.7,129.1,128.1,128.0$, $127.8,125.2,124.0,121.7,121.6,120.5,112.8,109.5,107.1,105.1,72.6,67.1,48.0,44.1,34.2$, 34.1, 31.2, 27.6; HRMS (ESI) calcd for $\mathrm{C}_{31} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 476.2338$ found 476.2333.
($\left.1 S^{*}, 1^{\prime} R^{*}, 2^{\prime} R^{*}, 7 a^{\prime} S^{*}\right)-1^{\prime}-\left(\right.$ Thiophen-2-yl)-2'-((E)-3-(thiophen-2-yl)acryloyl)-1', $2^{\prime}, 5^{\prime}, 6^{\prime}, 7^{\prime}, 7 a^{\prime}-$ hexahydro-2H-spiro[acenaphthylene-1,3'-pyrrolizin]-2-one (68j):Following the general procedure described above $\mathbf{6 8 j}$ was obtained after purification by silica gel column
 chromatography (EtOAc:Hexane $=30: 70$); as a yellow colored solid (154 mg , 64%); mp: 126-128 ${ }^{\circ} \mathrm{C}$; FT-IR (KBR): 2963, 1718, 1706, 1590 and $1018 \mathrm{~cm}^{-}$ ${ }^{1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.99(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.97(\mathrm{~d}, 1 \mathrm{H}, J=$ $8.0 \mathrm{~Hz}), 7.79(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}), 7.63-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.52(\mathrm{~d}, 1 \mathrm{H}, J=6.9 \mathrm{~Hz})$, $7.18(\mathrm{~d}, 1 \mathrm{H}, J=5.0 \mathrm{~Hz}), 7.15\left(\mathrm{dd}, 1 \mathrm{H}, J_{l}=5.0, J_{2}=1.0 \mathrm{~Hz}\right), 7.04-7.00(\mathrm{~m}$, $2 \mathrm{H}), 6.93\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=5.0, J_{2}=3.5 \mathrm{~Hz}\right), 6.88(\mathrm{~d}, 1 \mathrm{H}, J=3.5 \mathrm{~Hz}), 6.83(\mathrm{dd}$, $\left.1 \mathrm{H}, J_{1}=4.9, J_{2}=3.7 \mathrm{~Hz}\right), 5.77(\mathrm{~d}, 1 \mathrm{H}, J=15.6 \mathrm{~Hz}), 4.48(\mathrm{~d}, 1 \mathrm{H}, J=11.8 \mathrm{~Hz}), 4.31-4.26(\mathrm{~m}$, $1 \mathrm{H}), 4.22(\mathrm{t}, 1 \mathrm{H}, J=11.8 \mathrm{~Hz}), 2.61-2.55(\mathrm{~m}, 1 \mathrm{H}), 2.49-2.44(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.77(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 206.6,195.1,143.2,142.0,139.3,135.4,134.7,132.2,131.8,131.5$, 130.7, 129.0, 128.1, 128.0, 127.0, 125.4, 124.7, 124.1, 124.0, 123.7, 122.1, 72.5, 67.5, 48.4, 48.0, 30.7, 27.3; HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{NO}_{2} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+} 482.1248$ found 482.1243.
(3'R*,4'S*)-3'-Benzoyl-4'-(1H-indol-3-yl)-1'-methylspiro[indene-2,2'-pyrrolidine]-1,3-

dione(69a):Following the general procedure described above 69a was obtained after purification by silica gel column chromatography (EtOAc:Hexane $=50: 50$); as a yellow colored solid ($130 \mathrm{mg}, 60 \%$); mp: 207$209{ }^{\circ} \mathrm{C}$; FT-IR (KBR): 3168, 2853, 1738, 1703 and $1675 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}+\mathrm{DMSO}-d_{6}, 400 \mathrm{MHz}\right): \delta 8.65(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.96(\mathrm{~d}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz})$, 7.74-7.72 (m, 1H), 7.56-7.43 (m, 7H), 7.04-7.02 (m, 1H), 6.96-6.91 (m, 3H), $4.99(\mathrm{~d}, 1 \mathrm{H}, J=$ $10.5 \mathrm{~Hz}), 4.91-4.84(\mathrm{~m}, 1 \mathrm{H}), 3.92(\mathrm{t}, 1 \mathrm{H}, J=9.0 \mathrm{~Hz}), 3.52\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=9.0, J_{2}=6.6 \mathrm{~Hz}\right), 2.38$ $(\mathrm{s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}+\mathrm{DMSO}-d_{6}, 100 \mathrm{MHz}\right): \delta 204.9,201.9,197.7,142.1,140.8,136.6$,
$135.8,135.6,135.5,133.2,128.7,128.5,126.8,122.9,122.6,122.1,121.8,119.7,119.5,110.8$, 110.5, 79.7, 57.7, 50.4, 47.0, 36.7, 29.7; HRMS (ESI) calcd for $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 435.1709$ found 435.1693.
(3'R*, $\left.\mathbf{4}^{\prime} \mathrm{S}^{*}\right)$-3'-(4-Bromobenzoyl)-4'-(1H-indol-3-yl)-1'-methylspiro[indene-2,2'-pyrrolidine]-1,3-dione (69b): Following the general procedure described above 69b was obtained after
 purification by silica gel column chromatography (EtOAc:Hexane $=$ 50:50); as a yellow colored solid ($103 \mathrm{mg}, 40 \%$); mp: 210-212 ${ }^{\circ} \mathrm{C}$; FT-IR (KBR): 3749, 2863, 1736, 1702 and $1580 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}): \delta 8.10(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.87(\mathrm{~d}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}), 7.77-7.74(\mathrm{~m}, 1 \mathrm{H}), 7.55-$ $7.49(\mathrm{~m}, 4 \mathrm{H}), 7.38(\mathrm{~d}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}), 7.07-7.05(\mathrm{~m}, 1 \mathrm{H}), 7.01-6.93(\mathrm{~m}$, $3 \mathrm{H}), 4.98(\mathrm{~d}, 1 \mathrm{H}, J=10.5 \mathrm{~Hz}), 4.83-4.76(\mathrm{~m}, 1 \mathrm{H}), 3.90\left(\mathrm{dd}, 1 \mathrm{H}, J_{l}=10.5\right.$, $\left.J_{2}=9.1 \mathrm{~Hz}\right), 3.53\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=9.1, J_{2}=6.6 \mathrm{~Hz}\right), 2.40(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta$ 204.9, 201.8, 196.7, 142.0, 140.7, 139.7, 135.9, 135.6, 134.8, 129.9, 129.0, 126.7, 122.9, 122.6, $122.2,121.8,119.7,119.4,110.6,79.5,57.6,50.6,47.0,36.7$; HRMS (ESI) calcd for $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{BrN}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 513.0814$ found 513.0795.
(3'R*,4'S*)-3'-(4-Chlorobenzoyl)-4'-(1H-indol-3-yl)-1'-methylspiro[indene-2,2'-pyrrolidine]-1,3-dione (69c): Following the general procedure described above 69c was obtained after
 purification by silica gel column chromatography (EtOAc:Hexane $=50: 50$); as a pale yellow colored solid ($105 \mathrm{mg}, 45 \%$); mp: 203-205 ${ }^{\circ} \mathrm{C}$; FT-IR (KBR): 3668, 2927, 1705, 1587 and $1455 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ MHz): $\delta 7.93$ (br s, 1 H), 7.82 (d, $2 \mathrm{H}, J=8.6 \mathrm{~Hz}$), 7.78-7.75 (m, 1H), 7.59$7.50(\mathrm{~m}, 6 \mathrm{H}), 7.06-6.93(\mathrm{~m}, 4 \mathrm{H}), 4.97(\mathrm{~d}, 1 \mathrm{H}, J=10.5 \mathrm{~Hz}), 4.84-4.77(\mathrm{~m}$, $1 \mathrm{H}), 3.91\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=10.5, J_{2}=9.1 \mathrm{~Hz}\right), 3.54\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=9.1, J_{2}=6.6 \mathrm{~Hz}\right), 2.40(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 204.9,201.7,196.8,142.0,140.7,137.5,135.8,135.5,135.3,132.0$, $130.0,128.5,126.7,122.9,122.5,122.2,121.8,119.8,119.4,110.7,110.6,79.5,57.5,50.6,47.0$, 36.7; HRMS (ESI) calcd for $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{ClN}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 469.1319$ found 469.1303.

(3'R*,4'R*)-3'-Benzoyl-1'-methyl-4'-(1-methyl-1H-pyrrol-2-yl)spiro[indene-2,2'-pyrrolidine]-1,3-dione (69d):Following the general procedure described above 69d was obtained after purification by silica gel column chromatography (EtOAc : Hexane $=45: 55$); as a yellow colored solid $(109 \mathrm{mg}$,
55%); mp: 184-186 ${ }^{\circ} \mathrm{C}$; FT-IR (KBR): 2857,1735, 1704, 1608 and $1260 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}): \delta 7.94-7.73(\mathrm{~m}, 7 \mathrm{H}), 7.55(\mathrm{t}, 1 \mathrm{H}, J=7.3 \mathrm{~Hz}), 7.45(\mathrm{t}, 2 \mathrm{H}, J=7.4 \mathrm{~Hz}), 6.11(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $5.90(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}), 5.70(\mathrm{t}, 1 \mathrm{H}, J=3.0 \mathrm{~Hz}), 4.70-4.68(\mathrm{~m}, 2 \mathrm{H}), 3.92-3.88(\mathrm{~m}, 1 \mathrm{H}), 3.42(\mathrm{~s}$, $3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 204.0,201.7,197.7,141.6,141.2,136.5$, $136.3,135.7,133.4,128.7,128.5,126.5,122.6,122.5,122.3,108.1,106.9,79.3,57.0,52.0,46.1$, 36.5, 33.5; HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 399.1709$ found 399.1711.

References:

(1) a) Multicomponent Reactions, Zhu, J.; Bienayme, H., Eds.; Wiley-VCH, Weinheim, 2005. b) Zhu, J. Eur. J. Org. Chem. 2003, 1133-1144. c) Bonin, M.; Chauveau, A.; Micouin, L. Synlett2006, 2349-2363.
(2) a) Padwa, A. In 1,3-Dipolar Cycloaddition Chemistry; Wiley: New York, 1984.b) Adrio, J.; Carretero, J. C. Chem. Commun.2011, 47, 6784-6794. c) Gothelf, K. V; Jørgensen, K. A. Chem. Rev. 1998,98,863-909. d) Broggini, G.; Zecchi, G. Synthesis 1999, 905-917. e) Huisgen, R.Angew. Chem. Int. Ed.1963, 2, 565-598. f) Kanemasa. S. Synlett2002, 1371-1387. g) Nájera, C.; Sansano. J. M.; Yus, M. J. Braz. Chem. Soc. 2010, 21, 377-412.
(3) a) Coldham, I.; Hufton, R. Chem. Rev.2005, 105, 2765-2809. b) Pandey, G.; Banerjee, P.; Gadre, S. R. Chem. Rev.2006, 106, 4484-4517. c) Nájera, C.; Sansano, J. M. Org. Biomol. Chem.2009, 7, 4567-4581. d) Nájera, C.; Sansano. J. M. Monatsh Chem2011, 142, 659-680. e) Narayan, R.; Potowski, M.; Jia, Z.-J.; Antonchick, A. P.; Waldmann, H. Acc. Chem. Res.2014, 47, 1296-1310. f) Nájera, C.; Sansano, J. M.; Yus, M. Org. Biomol. Chem.2015, 13, 8596-8636. g) Adrio, J.; Carretero, J. C. Chem. Commun.2014, 50, 12434-12446. h) Li, J.; Zhao, H.; Zhang, Y. Synlett2015, 26, 2745-2750, i) Chen, Q.-A.; Wang, D.-S.; Zhou, Y.-G. Chem. Commun.2010, 46, 4043-4051.
(4) a) Marshall, J. A.; Johnson, P. C. J. Org. Chem. 1970, 35, 192-196. b) Marshall, J. A.; Brady, S. F. J. Org. Chem. 1970, 35, 4068-4077. c) Suzuki, M.; Kurosawa, E.; Irie, T. Tetrahedron Lett.1970, 57, 4995-4998. d) Stuart, K. L.; Cava, M. P. Chem. Rev.1968, 68, 321-339.
(5) Bindra, J. S. In the Alkaloids, Vol. 14 (Ed.: Manske, R. H. F.), Academic Press, New York, 1973, pp.84-121.
(6) a) Galliford, C. V.; Scheidt, K. A. Angew. Chem.2007, 46, 8748-8758. b) Lin, H.; Danishefsky, S. J. Angew. Chem.2003, 42, 36-51. c) Santos M. M. M. Tetrahedron 2014, 70,

9735-9757. d) Babu, S. A.; Padmavathi, R.; Aslam, N. A.; Rajkumar, V. Studies in Natural Products Chemistry2015, 46, 227-339. e) Antonchick, A. P.; Gerding-Reimers, C.; Catarinella, M.; Schürmann, M.; Preut, H.; Ziegler, S.; Rauh, D.; Waldmann, H. Nature Chem.2010, 2, 735740. f) Zhou, F.; Liu, Y.-L.; Zhou, J.Adv. Synth. Catal. 2010, 352, 1381-1407. g) Hong, L.; Wang, R. Adv. Synth. Catal. 2013, 355, 1023-1052. h) Marti, C.; Carreira, E. M. Eur. J. Org. Chem. 2003, 2209-2219.
(7) a) Cui, C.-B.; Kakeya, H.; Osada, H. Tetrahedron1996, 52, 12651-12666. b) Cui, C.-B.; Kakeya, H.; Osada, H. J. Antibiot. 1996, 49, 832-835.
(8) a) Zhou, J.; Zhou, S. J. Ethnopharmacol. 2010, 132, 15-27. b) Zhou, J.-Y.; Mo, Z.-X.; Zhou, S.-W.Fitoterapia2010, 81, 844-848
(9) Jossang, A.; Jossang, P.; Hadi, H. A.; Sevenet, T.; Bodo, B. J. Org. Chem.1991, 56, 65276530.
(10) a) Bassleer, R.; Depauw-Gillet, M. C.; Massart, B.; Marnette, J.-M.; Wiliquet, P.; Caprasse, M.; Angenot, L. Planta Med.1982, 45, 123-126. b) Dideberg, P. O.; Lamotte-Brasseur, J.; Dupont, L.; Campsteyn, H.; Vermeire, M.; Angenot, L. Acta Crystallogr. Sect. B1977, 33, 17961801. c) Lerchner, A.; Carreira, E. M. J. Am. Chem. Soc. 2002, 124, 14826-14827.
(11) a) Alper, P. B.; Meyers, C.; Lerchner, A.; Siegel, D. R.; Carreira, E. M. Angew. Chem. Int. Ed. 1999, 38, 3186-3189. b) Peterson, A, C.; Cook, J. M. J. Org. Chem. 1995, 60, 120-129. c) Ashimori, A.; Bachand, B.; Overman, L. E.; Poon, D, J. J. Am. Chem. Soc. 1998, 120, 64776487. d) Matsuura, T.; Overman, L. E,; Poon, D. J. J. Am. Chem. Soc. 1998, 120, 6500-6503. (12) a) Trost, B. M.; Brennan, M. K. Synthesis2009, 3003-3025. b) Singh, G. S.; Desta, Z. Y. Chem. Rev. 2012, 112. 6104-6155. c) Huters, A. D.; Styduhar, E. D.; Garg, N. K. Angew. Chem. Int. Ed.2012, 51, 3758-3765. d) Klein, J.-M. M. N.; Taylor, R.-J. K. Eur. J. Org. Chem. 2011, 6821-6841. e) Liu, Y.; Wang, H.; Wan, J. Asian J. Org. Chem.2013, 2, 374-386. f) Badillo, J. J.; Hanhan, N. V.; Franz A. K. Curr. Opin. Drug Discovery Dev.2010, 13, 758-776. g) Babu, K. N.; Kinthada, L. K.; Ghosh, S.; Bisai, A. Org. Biomol. Chem. 2015, 13, 10641-10655.h) Dalpozzo, R.; Bartoli, G.; Bencivenni, G. Chem. Soc. Rev. 2012, 41, 7247-7290. i) Ball-Jones, N. R.; Badillo, J. J.; Franz, A. K. Org. Biomol. Chem. 2012, 10, 5165-5181. j) Franz, A. K.; Hanhan, N. V.; Ball-Jones, N. R. ACS Catal.2013, 3, 540-553. k) Chauhan, P.; Chimni, S. P. Tetrahedron: Asymmetry2013, 24, 343-356. 1) Cao, Z.-Y.; Wang, Y.-H.; Zeng, X.-P.; Zhou, J. Tetrahedron Lett. 2014, 55, 2571-2584. m) Cheng, D.; Ishihara, Y.; Tan, B.; Barbas III, C. F. ACS Catal.

2014, 4, 743-762. n) Moyano, A.; Companyo, X. Stud. Nat. Prod. Chem. 2013, 40, 71-132. o) Tang, B.-Q.; Wang, W.-J.; Huang, X.-J.; Li, G.-Q.; Wang, L.; Jiang, R.-W.; Yang, T.-T.; Shi, L.; Zhang, X.-Q.; Ye, W.-C. J. Nat. Prod. 2014, 77, 1839-1846.
(13) Shangary, S.; Ding, K.; Qiu, S.; Nikolovska-Coleska, Z.; Bauer, J. A.; Liu, M.; Wang, G.; Lu, Y.; McEachern, D.; Bernard, D.; Bradford, C. R.; Carey, T. E.; Wang, S. Mol Cancer Ther. 2008, 7, 1533-1542.
(14) Gal, C. S-L.; Lacour, C.; Valette, G.; Garica, G.; Foulon, L.; Galindo, G.; Bankir, L.; Pouzet, B.; Guillon, G.; Barberis, C.; Chicot, D.; Jard, S.; Vilain, P.; Garcia, C.; Marty, E.; Raufaste, D.; Brossard, G.; Nisato, D.; Maffrand, J .P.; Fur, G. L. J. Clin. Invest. 1996, 98, 27292738.
(15) Vintonyak, V. V.; Warburg, K.; Kruse, H.; Grimme, S.; Hubel, K.; Rauh, D.; Waldmann, H. Angew. Chem. Int. Ed.2010, 49, 5902-5905.
(16) Yeung, B. K. S.; Zou, B.; Rottmann, M.; Lakshminarayana, S. B.; Ang, S. H.; Leong, S. Y.; Tan, J.; Wong, J.; Keller-Maerki, S.; Fischli, C.; Goh, A.; Schmitt, E. K.; Krastel, P.; Francotte, E.; Kuhen, K.; Plouffe, D.; Henson, K.; Wagner, T.; Winzeler, E. A.; Peterson, F.; Brun, R.; Dartois, V.; Diagana, T. T.; Keller, T. H. J. Med. Chem.2010, 53, 5155-5164.
(17) a) Rajeswaran, W. G.; Labroo, R. B.; Cohen, L. A.; King, M. M. J. Org. Chem.1999, 64, 1369-1371. b) Skiles, J. W.; McNeil, D. Tetrahedron Lett. 1990, 31, 7277-7280.
(18) Da Silva, J. F. M.; Garden, S. J.; Pinto, A. C. J. Braz. Chem. Soc. 2001, 12, 273-324.
(19) Lashgari, N.; Ziarani, G. M. Arkivoc 2012, i, 277-320.
(20) a) Grigg, R.; Kilner, C.; Sarker, M. A. B.; de la Cierva, C. O.; Dondas, H. A. Tetrahedron 2008, 64, 8974-8991. b) Arai, T.; Tokumitsu, C.; Miyazaki, T.; Kuwano, S.; Awata, A. Org. Biomol. Chem, 2016, 14, 1831-1839.
(21) For selected papers dealing on the synthesis of bio-active C-3-indole moiety substituted pyrrolidines, see: a) Hanessian, S.; Stoffman, E.; Mi, X.; Renton, P. Org. Lett.2011, 13, 840-843. b) Hanessian, S.; Stoffman, E. J. L. Can. J. Chem.2013, 91, 13-20. c) Bannwart, L. M.; Carter, D. S.; Cai, H.-Y.; Choy, J. C.; Greenhouse, R.; Jaime-Figueroa, S.; Iyer, P. S.; Lin, C. J.; Lee, E. K.; Lucas, M. C.; Lynch, S. M.; Madera, A. M.; Moore, A.; Ozboya, K.; Raptova, L.; Roetz, R.; Schoenfeld, R. C.; Stein, K. A.; Steiner, S.; Villa, M.; Weikert, R. J.; Zhai, Y. Bioorg. Med. Chem. Lett.2008, 18, 6062-6066. d) Macor, J. E.; Blank, D. H.; Ryan, K.; Post, R. J. Synthesis 1997, 443-449.
(22) For selected papers dealing on the biologically active spiroacenaphthylenolylpyrrolidines, see: a) Chakraborty, D.; Maity, A.; Jain, C. K.; Hazra, A.; Bharitkar, Y. P.; Jha, T.; Majumder, H. K.; Roychoudhury, S.; Mondal, N. B. Med. Chem. Commun.2015, 6, 702-707. b) Periyasami, G.; Raghunathan, R.; Surendiran, G.; Mathivanan, N. Eur. J. Med. Chem.2009, 44, 959-966. For selected papers dealing on the biologically active spiro-1,3-indandionolylpyrrolidines, see: c) Cheng, X.; Liang, F.; Shi, F.; Zhang, L.; Liu, Q. Org. Lett.2009, 11, 93-96. d) Wei, A. C.; Ali, M. A.; Yoon, Y. K.; Ismail, R.; Choon, T. S.; Kumar, R. S.; Arumugam, N.; Almansour, A. I.; Osman, H. Bioorg. Med. Chem. Lett.2012, 22, 4930-4933. e) Girgis, A. S. Eur. J. Med. Chem.2009, 44, 91-100. f) Katritzky, A. R.; Girgis, A. S.; Slavov, S.; Tala, S. R.; StoyanovaSlavova, I. Eur. J. Med. Chem.2010, 45, 5183-5199.
(23) a) Grigg, R.; Aly, M. F.; Sridharan, V.; Thianpatanagul, S. J. Chem. Soc., Chem. Commun. I984, 182-183. b) Rehn, S.; Bergman, J.; Stensland, B. Eur. J. Org. Chem. 2004, 413-418.
(24) Xie, Y.-M.; Yao, Y.- Q.; Sun, H.-B.; Yan, T.-T.; Liu, J.; Kang, T.-R. Molecules 2011, 16, 8745-8757.
(25) a) Girgis, A. S.; Stawinski, J.; Ismail, N. S. M.; Farag, H. Eur. J. Med. Chem. 2012, 47, 312322. b) Pavlovskaya, T. L.; Red'kin, R. G.; Yaremenko, F. G.; Shishkina, S. V.; Shishkin, O. V.; Musatov, V. I.; Lipson, V. V. Chemistry of Heterocyclic Compounds 2013, 49, 882-896. c) Azizian, J.; Asadi, A.; Jadidi, K. Synth. Commun. 2001, 31, 2727-2733. d) Dondas, H. A.; Fishwick, C. W. G.; Grigg, R.; Kilner, C. Tetrahedron2004, 60, 3473-3485. e) Grigg, R.; Thianpatanagul, S. J. Chem. Soc., Chem. Commun. 1984,180-181.
(26) a) Alimohammadi, K.; Sarrafi, Y.; Tajbakhsh, M.; Yeganegi, S.; Hamzehloueian, M. Tetrahedron 2011, 67, 1589-1597. b) Chen, G.; Yang, J.; Gao, S.; He, H.; Li, S.; Di, Y.; Chang, Y.; Lu, Y.; Hao, X. Mol. Divers. 2012, 16, 151-156. c) Rajesh, S. M.; Perumal, S.; Menéndez, J. C.; Yogeeswari, P.; Sriram, D. Med. Chem.Commun. 2011, 2, 626-630. d) Poornachandran, M.; Muruganantham, R.; Raghunathan, R. Synth. Commun.2006, 36, 141-150.
(27) a) Ghandi, M.; Taheri, A.; Abbasi, A. Tetrahedron 2010, 66, 6744-6748. b) Chen, H.; Wang, S.-Y.; Xu, X.-P.; Ji, S.-J. Synth. Commun. 2011, 41, 3280-3288. c) Bhaskar, G.; Arun, Y.; Balachandran, C.; Saikumar, C.; Perumal, P. T. Eur. J. Med. Chem. 2012, 51, 79-91.
(28) a) Pardasani, P.; Pardasani, R. T.; Sherry, D.; Chaturvedi, V. Synth. Commun. 2002, 32, 435-441. b) Tan, W.; Zhu, X.-T. Zhang, S.; Xing, G.-J.; Zhu, R.-Y.; Shi, F. RSC Adv.2013, 3,

10875-10886. c) Karmakar, R.; Kayal, U.; Bhattacharya, B.; Maiti, G. Tetrahedron Lett. 2014, 55, 1370-1372.
(29) Jayashankaran, J.; Manian, R. D. R. S.; Sivagaru, M.; Raghunathan, R. Tetrahedron Lett. 2006, 47, 5535-5538.
(30) Hu, Y.; Zou, Y.; Wu, H.; Shi, D. Ultrasonics Sonochemistry2012, 19, 264-269.
(31) a) Cheng, J.-H.; Hung, C.-F.; Yang, S.-C.; Wang, J.-P.; Won, S.-J.; Lin, C.-N. Bioorg. Med. Chem.2008, 16, 7270-7276. b) Avila, H. P.; Smania, E. D. F. A.; Monache, F. D.; Junior, A. S. Bioorg. Med. Chem. 2008, 16, 9790-9794. c) Sortino, M.; Delgado, P.; Juarez, S.; Quiroga, J.; Abonia, R.; Insuasty, B.; Nogueras, M.; Rodero, L.; Garibotto, F. M.; Enriz, R. D.; Zacchino, S. A. Bioorg. Med. Chem. 2007, 15, 484-494. d) Modzelewska, A.; Pettit, C.; Achanta, G.; Davidson, N. E.; Huang, P.; Khan, S. R. Bioorg. Med. Chem. 2006,14, 3491-3495.
(32) a) Fokas, D.; Ryan, W. J.; Casebier, D. S.; Coffen, D. L. Tetrahedron. Lett. 1998, 39, 22352238. b) Chen, G.; He, H.-P.; Ding, J.; Hao, X.-J. Heterocyclic Commun. 2009, 15, 355-360.
(33) a) Thangamani, A. Eur. J. Med. Chem. 2010,45, 6120-6126. b) Wu, G.; Ouyang, L.; Liu, J.; Zeng, S.; Huang, W.; Han, B.; Wu, F.; He, G.; Xiang, M. Mol Divers 2013, 17, 271-283.
(34) a) Li, J.; Wang, J.; Xu, Z.; Zhu, S.ACS Comb. Sci. 2014, 16, 506-512. b) Yang, J.-M.; Hu, Y.; Li, Q.; Yu, F.; Cao, J.; Fang, D.; Huang, Z.-B.; Shi, D.-Q. ACS Comb. Sci.2014, 16, 139-145. (35) a) Babu, A. R. S.; Raghunathan, R. Tetrahedron2007, 63, 8010-8016. b) Hemamalini, A.; Nagarajan, S.; Ravinder, P.; Subramanian, V.; Das, T. M. Synthesis2011, 2495-2504.
(36) a) Murugan, R.; Raghunathan, R.; Narayanan, S. S. Synth. Commun. 2010, 40, 3135-3151. b) George, R. F.; Ismail, N. S. M.; Stawinski, J.; Girgis, A. S. Eur. J. Med. Chem. 2013, 68, 339351.
(37) Manian, R. D. R. S.; Jayashankaran, J.; Selva Kumar, S.; Raghunathan, R. Tetrahedron Lett. 2006, 47, 829-832.
(38) a) Kia, Y.; Osman, H.; Kumar, R. S.; Murugaiyah, V.; Basiri, A.; Perumal, S.; Wahab, H. A.; Bing, C. S. Bioorg. Med. Chem. 2013, 21, 1696-1707. b) Kia, Y.; Osman, H.; Kumar, R. S.; Murugaiyah, V.; Basiri, A.; Perumal, S.; Razak, I. A. Bioorg. Med. Chem. Lett. 2013, 23, 29792383.
(39) a) Ali, M. A.; Ismail, R.; Choon, T .S.; Kumar, R. S.; Osman, H.; Arumugam, N.; Almansour, A. I.; Elumalai, K.; Singh, A. Bioorg. Med. Chem. Lett. 2012, 22, 508-511. b)

Kumar, R. S.; Rajesh, S. M.; Perumal, S.; Banerjee, D.; Yogeeswari, P.; Sriram, D. Eur. J. Med. Chem. 2010, 45, 411-422.
(40) a) Yu, B.; Shi, X.-J.; Qi, P.-P.; Yu, D.-Q.; Liu, H.-M. J. Steroid Biochem. Mol. Biol. 2014, 141, 121-134. b) Karthikeyan, K.; Sivakumar, P. M.; Doble, M.; Perumal, P. T. Eur.J. Med. Chem. 2010, 45, 3446-3452.
(41) a) Arun, Y.; Bhaskar, G.; Balachandran, C.; Ignacimuthu, S.; Perumal, P. T. Bioorg. Med. Chem. Lett. 2013, 23, 1839-1845. b) Arun, Y.; Saranraj, K.; Balachandran, C.; Perumal, P. T. Eur. J. Med. Chem. 2014, 74, 50-64. c) Zhao, K.; Zhu, S.-L.; Shi, D.-Q.; Xu, X.-P.; Ji, S.-J. Synthesis2010, 1793-1803. d) Kathirvelan, D.; Haribabu, J.; Reddy, B. S. R.; Balachandran, C.;
Duraipandiyan, V.; Bioorg. Med. Chem. Lett. 2015, 25, 389-399.
(42) a) Babu, A. R. S.; Raghunathan, R. Tetrahedron Lett. 2008, 49, 4487-4490. b) Babu, A. R. S.; Raghunathan, R; Baskaran, S. Tetrahedron 2009, 65, 2239-2243. c) Rajesh, R.; Raghunathan, R. Tetrahedron. Lett.2010, 51, 5845-5848.
(43) a) Prasad, T. A. A.; Vithiya, B. S. M.; Ignacimuthu, S. Der Pharma Chemica2011, 3, 293299. b) Kanagaraju, G.; Thangamani, A. Res. J. Chem. Sci. 2014, 4, 23-31.
(44) a) Sarrafi, Y.; Hamzehlouian, M.; Alimohammadi, K.; Khavasi, H, R. Tetrahedron Lett. 2010, 51, 4734-4737. b) Chandralekha, E.; Thangamani, A.; Valliappan, R. Res Chem Intermed.2013, 39, 961-972.
(45) a) Warrener, R. N.; Butler, D. N. Aldrichimica Acta 1997,30, 119-130. b) Muthusamy, S.; Babu, S. A; Gunanathan, C. Tetrahedron Lett. 2002, 43, 5981-5984. c) Soret, A.; Guillot, R.; Rousseau, G.; Blanco, L.; Deloisy, S. Synlett2007, 8, 1284-1288. d) Soret, A.; Müller, C.; Guillot, R.; Blanco, L.; Deloisy, S. Tetrahedron2011, 67, 698-705.

Chapter 3:Regioselective construction of C-3 arylated furfurylamine and 2- or 3-(aminoalkyl)thiophene derivatives via the Pd(II)-catalyzed directing group-aided C-H arylation/acetoxylation reactions.

General introduction. $\mathbf{P d}(\mathrm{II})$-catalyzed direct $\mathbf{C}\left(\mathbf{s p}^{2}\right)-\mathrm{H}$ arylation of heteroarenes and synthesis of functionalized heteroarenes.

Arylated heteroarenes (heterobiaryls) belong to an important class of aromatic compounds and there exist numerous arylated heteroarenes-based natural products, synthetically derived biologically active moleculesand organic materials. ${ }^{1,2}$ Particularly, several furan/thiophene-based biaryl derivatives were reported to show a range of biological activities and considered as medicinally important compounds. Further, furan/thiophene-based biaryl derivatives are used as building blocks in organic materials and organic synthesis. ${ }^{1,2}$ In the broad family of furan/thiophene-based biaryl derivatives, the C3-arylated furan/thiophene-2-carboxamides, ${ }^{1,2}$ and the C3- or C5-arylated furfurylamine and 2- or 3-(aminoalkyl)-thiophene derivatives ${ }^{3}$ were found to show promising various biological activities (Figure 1).

Figure 1. Biologically active and organic material molecules-based on thiophene and furan.

Given the importance of heterobiaryl compounds, the introduction of aryl/heteroaryl groups onto furan and thiophene rings is an essential task. In general, the well-known transition-metalcatalyzed cross-coupling reactions (e.g. Heck, Negishi, Suzuki, Kumada coupling and Stille reactions) were efficiently employed for the construction of functionalized furan/thiophene heterobiaryl molecules. ${ }^{4-\mathrm{d}}$

Nevertheless, the traditional cross-coupling reactions (e.g. Heck, Negishi, Suzuki, Kumada coupling and Stille reactions) are associated with some unavoidable limitations, e.g.; (a) there is a need for assembling of organometallic reagents prior to the traditional cross-coupling reactions, (b) there is a need for expensive and bulky ligands to accomplish the cross-coupling reactions, and (c) production of stoichiometric quantity of hazardous acidic or basic or metallic waste in the traditional cross-coupling reactions. Therefore, development of a method that avoids the above said limitations is always attractive. Accordingly, alternative methods involving the preparation of heterobiaryl molecules via the direct functionalization C-H bonds were developed.

Over the past few years, the transition metal-catalyzed C-H activation/functionalization reactions have received special attention because it allows a facile construction of carbon-carbon and carbon-heteroatom bonds. ${ }^{4-p, 5}$ Many research groups are successful in achieving the transition metal-catalyzed direct coupling of C-H bonds of heteroaromatics with arenes (heteroarenes) or aryl (heteroaryl) halides by using the C-H activation/functionalization strategy, without any preactivation of one or both coupling partners. ${ }^{4 e-p, 5,6}$ The Pd based catalysts and a variety of other transition metal catalysts (e.g. $\mathrm{Ru}^{5 \mathrm{~d}, 5 \mathrm{n}, 7}, \mathrm{Rh}^{8}, \mathrm{Cu}^{9}$ and Ir^{10}) were used for achieving the coupling of C-H bonds of heteroaromatics with arenes/heteroarenes or aryl-/heteroaryl halides.

Accordingly, the transition metal-catalyzed direct C-H arylation of furans and thiophenes with aryl halides by using the C-H activation/functionalization strategy has been well explored and there exists only rare reports dealing on the C-H arylation at the $\mathrm{C}-3$ or $\mathrm{C}-4$ position of thiophenes and furans. ${ }^{6,11,12}$ There are some shortcomings by using this strategy for selectively synthesizing the arylated furans and thiophene and a literature survey revealed the following shortcomings; (a) in most of the cases, the C-H arylation of thiophenes and furans selectively occurs at the more reactive C-2 and C-5 positions under the Pd catalysis, ${ }^{6,11-14}$ (b) the arylation of less reactive C-3 and C-4 positions of thiophene or furan can be achieved by using preassembled aryl boron or aryl triflate as one of the coupling partners, (c) arylation of the C-3 or C4 position of thiophene or furan systems done if $\mathrm{C}-2$ and $\mathrm{C}-5$ positions are already
substituted, ${ }^{14,15 a, b}$ and (d) under certain conditions, the arylation of thiophene or furan system occurs at multiple positions. ${ }^{15 \mathrm{c}-\mathrm{e}}$

Recently, the directing group-assisted regioselective functionalization (arylation/alkylation) of the ortho $\mathrm{C}-\mathrm{H}$ bonds of aromatic carboxylic acid derivatives found to be efficient approach for functionalizing aromatic carboxamides and the construction of C-C bonds. ${ }^{4 e-p, 5}$ A range of functional groups such as, amides, esters, ketones, oxazoline and pyridines were found to function as the directing groups to selectively functionalize the C-H bonds of organic molecules. Accordingly, the transition metal catalyzed C-C bond construction via the arylation and alkylation of the ortho $\mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$ bonds of aromatic carboxylic acid derivatives have been well studied.

General introduction. Pd-catalyzed direct $\mathbf{C}\left(\mathbf{s p}^{2}\right)$-H oxidation/acetoxylation of arenes and synthesis of functionalized arenes.

Similar to the concept pertaining to the transition metal catalyzed C-C bond construction via the arylation and alkylation of the ortho $\mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$ bonds of aromatic carboxylic acid derivatives, the directing group-assisted regioselective acetoxylation/alkoxylation of sp^{2} ortho $\mathrm{C}-\mathrm{H}$ bonds of aromatic carboxylic acid derivatives found to be an efficient approach for functionalizing the aromatic carboxamides and construction of C-O bonds. ${ }^{4 e-\mathrm{p}, 5,16,17 \mathrm{e}-\mathrm{h}}$ While the construction of C-C, C-N and C-O bonds are equally important, in particular, the directing-group-aided, transition-metal-catalyzed $\mathrm{C}-\mathrm{H}$ oxidation of the $\mathrm{C}\left(\mathrm{sp}^{2}\right)$ - H bonds of arenes involving the $\mathrm{C}-\mathrm{O}$ bond forming reactions is a straightforward approach for the synthesis of phenol derivatives. It is well known and also a survey revealed phenolic compounds are very important class of organic molecules exhibiting a wide range of biological activities (Figure 2). ${ }^{17 \mathrm{a}-\mathrm{d}}$ Sanford's group first reported the Pd-catalyzed pyridine-directed acetoxylation of the $\mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$ bond. Subsequently, Yu et al., Chen et al. and Sahoo et al. and other research groups reported the directing group-aided acetoxylation/alkoxylation of $\mathrm{C}-\mathrm{H}$ bond bonds of organic molecules. ${ }^{4 e-\mathrm{p}, 5,16,17 e-\mathrm{h}}$

General introduction. $\mathrm{Pd}(\mathrm{II})$-catalyzed $\mathrm{C}\left(\mathrm{sp}^{2}\right)-\mathrm{H}$ arylation and cyclization route to heterocycles.

While the concept pertaining to the directing group-assisted transition metal-catalyzed $\mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$ activation followed by $\mathrm{C}-\mathrm{C}, \mathrm{C}-\mathrm{N}$ and $\mathrm{C}-\mathrm{O}$ bonds has been well explored, there have been efforts to assemble N-heterocycles via the directing group-assisted C-H activation followed by intramolecular C-C or C-N bond formation route. Needless to mention that N-heterocycles are backbone of various branches of science, including organic chemistry, medicinal chemistry and biochemistry. Among the various important classes of N-heterocycles, phenanthridine derivatives are a class of structures found in a variety of natural products and a wide range of pharmacologically active compounds. ${ }^{18}$ Apart from the biological properties, phenanthridine derivatives are reported to exhibit luminescence properties (Figure 2).

2a (asacol)

2b (aspidinol)

2c (L-dopa)

2d (hormone)

2e (metoclopramide)

$2 f$ (lycobetaine) natural product

$\mathbf{2 g}$ (ethidium) DNA intercalator/ stain reagent

2h (phenanthriplatin) anticancer

2i (Fagaronine) cytotoxic activity

$\mathbf{2 j}$ (protection against DNase I cleavage)

2k (coumarin/phenanthridine fused) photochemical and thermochromic properties

Figure 2. Representative bio-active phenolic compounds and phenanthridines.

Given the importance of the heterobiaryl compounds, ${ }^{1-3}$ especially, arylated or heteroarylated furans and thiophenes in various branches of chemical science, the preparation of arylated or heteroarylated furans and thiophenes via the introduction of aryl/heteroaryl groups onto furan and thiophene rings is an essential task. While this can be achieved via the transition metalcatalyzed functionalization of C-H bonds can be achieved without any directing group as well as by using a suitable directing group; however, a literature survey indicated that there exist only limited reports dealing on the direct and regioselective C3 arylations of furan and thiophene systems with high regiocontrol.

While the transition-metal catalyzed C-H arylations of various thiophene/furan substrates were investigated in the literature, especially a literature survey indicated that there exists no report dealing on the direct and regioselective C 3 arylations of furfurylamine and 2- or 3-(aminoalkyl)thiophene derivatives with aryl halides as coupling partners (Figure 3). ${ }^{1-3}$

To give a glimpse on the existing literature papers dealing on the preparation of arylated or heteroarylated furans and thiophenes involving various thiophene/furan substrates and arylating agents via the transition-metal catalyzed $\mathrm{C}-\mathrm{H}$ activation ${ }^{4 e-p, 5,16}$ based introduction of aryl/heteroaryl groups onto the furan and thiophene rings involving are presented below.

Representative papers dealing on the transition metal-catalyzed, directing group-free, direct arylation of the $\mathbf{C - 3}$ and $\mathrm{C}-4$ positions of thiophene and furan systems involving different arylating agents.

Itami et al. ${ }^{19 \mathrm{a}}$ reported the Pd-catalyzed regioselective synthesis of C-4 substituted thiophenes $\mathbf{3 d}$ by using arylboronic acids $\mathbf{3 b}$ as a coupling partner (Scheme 1). Next, the same group ${ }^{14 \mathrm{~b}}$ reported the β-selective arylation of thiophene derivatives $\mathbf{3 a}$ with iodoarenes $\mathbf{3 e}$ involving $\mathrm{PdCl}_{2} /$ $\mathrm{P}\left[\mathrm{OCH}\left(\mathrm{CF}_{3}\right)_{2}\right]_{3} / \mathrm{Ag}_{2} \mathrm{CO}_{3}$ catalytic system (Scheme 1). Further they also ${ }^{19 \mathrm{~b}}$ revealed the synthesis of C-3 substituted thiophenes $\mathbf{3 h}$ and $\mathbf{3 i}$ from thiophenes $\mathbf{3 a}$ with arylboronic acids $\mathbf{3 b}$ in presence of $\mathrm{Pd}(\mathrm{II})$-sulfoxide-oxazoline (sox) ligand $\mathbf{3 g}$ and iron-phthalocyanine. Subsequently,

Itami et al. ${ }^{19 \mathrm{c}}$ achieved the synthesis of sterically hindered heterobiaryls $\mathbf{3 k}$ in presence of $\mathrm{Pd}(\mathrm{OAc})_{2} /$ bisoxazoline/TEMPO catalytic system by using arylboronic acids $\mathbf{3 b}$ (Scheme 1).

Glorius et al. ${ }^{20}$ reported the regioselective direct $\mathrm{C}-\mathrm{H}$ functionalization of benzo[b]thiophenes $\mathbf{4 a}$ with arylchlorides $\mathbf{4 b}$ in the presence of dual catalytic system $(\mathrm{Pd} / \mathrm{C}$ and CuCl$)$. Further, Glorius's group ${ }^{14 \mathrm{c}}$ reported the synthesis of functionalizationalized thiophenes $\mathbf{4 f}$ and $\mathbf{4 g}$ via the direct C-H arylation route involving the Pd / C catalytic system (Scheme 2).

Direct C-H arylation of thiophene/furan systems

relatively less reactive positions
only few examples are known
well-established methods
available previous work
Eur. J. Org. Chem. 2010, 4412
direct C5 arylations of furfurylamines and 2- or 3-(aminoalkyl)-thiophenes

Unexplored work

bidentate ligand-directed regiocontrolled C3 arylations of furfurylamines and 2- or 3-(aminoalkyl)-thiophenes

$X=O, S ; \quad R^{4}=H$, COOMe

DG = Directing Group

Figure 3. C3 arylations of furfurylamine and 2- or 3-(aminoalkyl)-thiophene derivatives.

$\mathrm{R}^{1}=\mathrm{OMe}, \mathrm{Br}, \mathrm{Me}, \mathrm{H}, \mathrm{OPh}, \mathrm{Cl}, \mathrm{Ac}$, $R^{2}=\mathrm{Ph}, \mathrm{Me}, \mathrm{Cl}, \mathrm{H}, \mathrm{R}^{1}$ and $\mathrm{R}^{2}=$ benzene, thiophene Arl = aryl iodides

R $=\mathrm{Me}, \mathrm{H}, \mathrm{Et}, \mathrm{Ph}$
$\mathrm{R}^{1}=\mathrm{Me}$, Et, OMe, $\mathrm{H} ; \mathrm{R}$ and $\mathrm{R}^{1}=$ Benzene, cyclohexane
Scheme 1. C-H arylation of C-3 position of substituted thiophenes involving different coupling partners.

Bach et al. ${ }^{21 \mathrm{a}}$ reported the synthesis of 4 -substituted thiophenes $\mathbf{5 c}$ in presence of $\operatorname{Pd}(\mathrm{TFA})_{2}$ by using various aryl boronic acids 5b (Scheme 3). Recently, Larrosa et al. ${ }^{21 \mathrm{~b}}$ reported the Pdcatalyzed direct β-arylation of thiophenes 5a and benzo[b]thiophenes $\mathbf{5 a}$ (Scheme 3). In addition, Oi et al. ${ }^{21 \mathrm{c}}$ reported the synthesis of arylated thiophene $\mathbf{5 h}$ and $\mathbf{5 i}$ via the Pd-catalyzed direct β arylation of thiophenes $\mathbf{5 a}$ and benzothiophenes 5a with aryltrimethylsilanes $\mathbf{5 g}$ in presence of CuCl_{2} (Scheme 4). Huang and Wu et al. ${ }^{21 \mathrm{~d}}$ reported the direct C-H arylation of benzothiophenes 5a involving MIDA boronates $\mathbf{5 j}$ in presence of a palladium catalyst afforded the arylated benzo[b]thiophenes $\mathbf{5 k}$ (Scheme 4). Tsukada et al. ${ }^{21 \mathrm{e}}$ reported the β-arylation of thiophenes $\mathbf{5 a}$
with aryl iodides 5d catalyzed by dinuclear palladium carboxylate complex gave the arylated thiophens 5m (Scheme 4).

up to yield 94%
ArCl $=$ aryl chlorides
C3 / C2 >99:1
$\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{OMe}$

Scheme 2. Synthesis of C-3 substituted thiophenes $\mathbf{4 f}$ and benzo[b]thiophenes $\mathbf{4 c}$ and $\mathbf{4 g}$.

Arl = aryl iodides

Scheme 3. Construction of C-3 substituted thiophenes $\mathbf{5 c}$ and $\mathbf{5 e}$ and benzo[b]thiophenes $\mathbf{5 f}$.

5a
$\mathrm{Ar}=\mathrm{ary} \mathrm{l}$

$5 g$
$\mathrm{R}=\mathrm{Me},{ }^{n} \mathrm{Bu}, \mathrm{Cl}, \mathrm{Br}, \mathrm{C}_{6} \mathrm{H}_{5}$, 4-FC $\mathrm{F}_{6},(\mathrm{CO}) \mathrm{Me}$

up to yield 98%

$5 i$ up to yield 94%

5a
Ar = aryl

5j
$\mathrm{H}_{2} \mathrm{O}_{\left.-\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}-\text { TFA (} 2 \mathrm{~mol} \% \text {) }\right) ~}^{\text {(}}$

$30-50^{\circ} \mathrm{C}, 20 \mathrm{~h}$
$R=M e, C l, B r, P h, H$

5k up to yield 99%

Scheme 4. Synthesis of C-3 substituted thiophenes $\mathbf{5 h}$ and $\mathbf{5 m a n d}$ benzo[b]thiophenes $\mathbf{5 k}$.
Miura and co-workers ${ }^{22 a}$ prepared C-3 substituted thiophene-2-carboxamide $\mathbf{6 c}$ along with C3and C-5 substituted thiophene-2-carboxamide $\mathbf{6 d}$ via the C-H arylation of $\mathbf{6 b}$ with PhOTf $\mathbf{6 a}$ in the presence of $\mathrm{Pd}(\mathrm{OAc})_{2}$ as the catalyst and $\left[\mathrm{P}(o\right.$-biphenyl $\left.)(t \mathrm{Bu})_{2}\right]$ as the ligand (Scheme 5). Moreover, Doucet et al. ${ }^{11 \mathrm{~h}}$ reported the synthesis C-3 substituted thiophene-2-carboxamides 6e from the Pd-catalyzed reaction of $\mathbf{6 b}$ with PhOTf. Further, Doucet et al. ${ }^{22 b}$ reported the synthesis of C-3 arylated furan- and thiophene-2-carboxamides $\mathbf{6 g}$ from the Pd-catalyzed reaction of C-2 substituted furan- and thiophene-2-carboxamides $\mathbf{6 b}$ with substituted aryl bromides $\mathbf{6 f}$ (Scheme 5).

Studer et al. ${ }^{22 \mathrm{c}}$ reported the synthesis of C-3 substituted thiophenes $\mathbf{6 j}$ from the reaction of 2pyridyl thiophene $6 \mathbf{h}$ with arylboronic acid $\mathbf{6 i}$ in presence of $\left[\mathrm{RhCl}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]_{2}$ and $\mathrm{P}[p$ $\left.\left(\mathrm{CF}_{3}\right) \mathrm{C}_{6} \mathrm{H}_{4}\right]_{3}$ (Scheme 6). Doucet et al. ${ }^{22 \mathrm{~d}}$ reported the regioselective synthesis of β-arylated thiophenes $\mathbf{6 m}$ and $\mathbf{6 n}$ from the Pd -catalyzed reaction of thiophene derivatives $\mathbf{6 k}$ with benzenesulfonyl chlorides $6 \mathbf{1}$ (Scheme 6).

Scheme 5. C-H arylation of C-3 position of substituted thiophenes involving different coupling partners.

Scheme 6. C-H arylation of C-3 position of substituted thiophenesinvolving different coupling partners.

Representative papers dealing on the transition metal-catalyzed, directing group 8-aminoquinoline-aided, direct arylation of the $\mathrm{C}-3$ and $\mathrm{C}-4$ positions of thiophene and furan systems involving different arylating agents and other reagents.

Recently, the directing group-assisted regioselective functionalization (arylation/alkylation) of the ortho $\mathrm{C}-\mathrm{H}$ bonds of aromatic carboxylic acid derivatives found to be efficient approach for functionalizing the aromatic carboxamides and the construction of C-C bonds. ${ }^{4 e-p, 5}$ Ater the seminal paper published by Daugulis, which revealed the bidentate ligand 8 -aminoquinoline provided support to selectively activate/functionalize the ortho $\mathrm{C}-\mathrm{H}$ bonds of aromatic carboxylic acid derivatives; several research groups employed the bidentate ligand 8aminoquinoline as the ligand to functionalize various carboxylic acid derivatives. In this line, Nakamura et al. ${ }^{23 \mathrm{a}}$ achieved the synthesis of C-3 arylated thiophene $7 \mathrm{c} v i a$ the iron-catalyzed bidentate ligand 8-aminoquinoline-directd C3-arylation of 7a (Scheme 7). Nakamura et al.also ${ }^{23 \mathrm{~b}}$ reported the bidentate ligand 8 -aminoquinoline-directd ortho-allylation of thiophene-2carboxamide 7a with allyl ether 7d in presence of an iron catalyst (Scheme 7). Miura et al. ${ }^{23 \mathrm{c}}$ reported the synthesis of $\mathrm{C}-3$ substituted thiophene-2-carboxamides 7 g via thecopper-mediated C-H/C-H biaryl coupling of carboxylic acid derivatives 7a and 1,3-azoles 7f (Scheme 7). Recently our group ${ }^{23 \mathrm{~d}}$ reported the bidentate ligand 8 -aminoquinoline-assisted, $\mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{AgOAc}$-catalytic system-based regioselective $\mathrm{C}-\mathrm{H}$ arylation of $\mathrm{C}-3$ position of thiophene and furan-2carboxamides 7a with variety of aryl iodides $\mathbf{7 h}$, which gave several $\mathrm{C}-3$ substituted thiophene and furan-2-carboxamides $7 \mathbf{7 i}$ (Scheme 8). Recently, Sundararaju and co-workers ${ }^{23 e}$ revealed the Ni-catalyzed synthesis of C-3 allylated thiophenes 7k (Scheme 8).

Chatani et al. ${ }^{23 f}$ reported the bidentate ligand 8 -aminoquinoline-assisted, Pd-catalyzed regioselective C-H alkynylation of C-3 position of thiophene-2-carboxamides 8a which gave C-3 alkynylated thiophene 8c (Scheme 9). The same group revealed the synthesis of C-3 alkylated thiophene 8evia the bidentate ligand 8-aminoquinoline-assisted, Ni-catalyzed regioselective C-H alkylation of C-3 position of thiophene-2-carboxamides 8a (Scheme 9). Additionally, Kanai et $a l .{ }^{23 \mathrm{~h}}$ reported the regioselective synthesis of C-3 silylated thiophene-2-carboxamides $\mathbf{8 h}$ via the bidentate ligand 8-aminoquinoline-direced Pd-catalyzed silylation (Scheme 9).

Scheme 7. Bidentate ligand 8-aminoquinoline directed synthesis of C-3 substituted thiophene-2carboxamides $\mathbf{7 c}, \mathbf{7 e}$ and $\mathbf{7 g}$.

Scheme 8. Bidentate ligand 8 -aminoquinoline directed synthesis of C-3 substituted furan/thiophene-2-carboxamides $\mathbf{7 i}$ and $\mathbf{7 k}$.

Scheme 9. 8-Aminoquinoline-directed synthesis of C-3 substituted furan/thiophene-2carboxamides $\mathbf{8 c}, \mathbf{8 e}$ and $\mathbf{8 h}$.

Representative papers dealing on the transition metal-catalyzed, directing group picolinamide- or oxalylamide-aided, direct arylation and acetoxylation of the ortho $\mathbf{s p}^{\mathbf{2}} \mathrm{C}-\mathrm{H}$ bonds of aromatic carboxamides.

Alongside the popularity of the bidentate ligand 8 -aminoquinoline, ${ }^{5}$ which provided the support to selectively activate/functionalize the ortho C-H bonds of aromatic carboxylic acid derivatives; Daugulis et al. ${ }^{24 a}$ reported the bidentate directing group picolinamide as an efficient ligand for the direct arylation of the ortho $\mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$ bonds of aromatic amines, such as benzylamine systems. For example, the direct arylation of the ortho $\mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$ bonds of aromatic carboxamides $9 \mathbf{a}$ prepared from picolinic acid and 3-bromobenzylamine gave the ortho $\mathrm{C}-\mathrm{H}$ arylated benzylamine system 9c (Scheme 10). After this initial result, many groups used picolinamide as a directing group in various synthetic transformations pertaining to the $\mathrm{C}-\mathrm{H}$ functionalization of organic molecules. ${ }^{4 e-\mathrm{p}, 5}$ Recently, Zhao et al. ${ }^{24 \mathrm{~b}}$ reported the oxalylamide-directed direct arylation of the
ortho $\mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$ bonds of aromatic carboxamides 9 d gave the ortho $\mathrm{C}-\mathrm{H}$ arylated β-arylethylmines $9 f$ (Scheme 10).

9b

$\mathrm{R}^{2}=3-\mathrm{OMe}, 2-\mathrm{F}, 3-\mathrm{Cl}, 3-\mathrm{Br}, 2-\mathrm{Br}$, $2,4-(\mathrm{Cl})_{2}, 3-\mathrm{CF}_{3}, 2-\mathrm{Me}, 2-\mathrm{OMe}$, $3,4-(\mathrm{OMe})_{2}$, benzo[1,3]dioxane

$\mathrm{R}^{3}=4-\mathrm{Br}, 4-\mathrm{COCH}_{3}, 4-\mathrm{CN}, 4-\mathrm{NHAc}, 4-\mathrm{CHO}, 4-\mathrm{I}, 4-\mathrm{NO}_{2}$,
$4-\mathrm{CH}_{3}, 3-\mathrm{CF}_{3}, 3-\mathrm{CO}_{2} \mathrm{Me}, 4-\mathrm{CO}_{2} \mathrm{Me}$, benzo[1,4]-dioxane, 2-bromopyridine

Scheme 10. Picolinamide- and oxalylamide-directed arylation of the ortho $\mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$ bonds of aromatic carboxamides at γ and δ positions.

Similar to the concept pertaining to the bidentate ligand-aided transition metal catalyzed $\mathrm{C}-\mathrm{C}$ bond construction, the directing group-assisted regioselective C-H oxidation or acetoxylation of the sp^{2} ortho $\mathrm{C}-\mathrm{H}$ bonds of aromatic compounds found to be an efficient approach for functionalizing the aromatic carboxamides and the construction of C-O bonds. ${ }^{4 e-\mathrm{p}, 5,16,17 \mathrm{e}-\mathrm{i}}$
In particular, the directing-group-aided, transition-metal-catalyzed $\mathrm{C}-\mathrm{H}$ oxidation of the $\mathrm{C}\left(\mathrm{sp}^{2}\right)-\mathrm{H}$ bonds of arenes involving the C-O bond forming reactions is a straightforward approach for the synthesis of phenol derivatives. Sanford's group ${ }^{25 a}$ first reported the Pd-catalyzed pyridinedirected acetoxylation of the $\mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$ bond (Scheme 11). Subsequently, Yu et al., Chen et al. and Sahoo et al. and other research groups reported the directing group-aided acetoxylation of $\mathrm{C}-\mathrm{H}$ bond bonds of organic molecules. ${ }^{4 e-p, 5,16,17 e-h}$ The regioselective C-H oxidation or acetoxylation of the sp^{2} ortho $\mathrm{C}-\mathrm{H}$ bonds of aromatic compounds were accomplished with the help of bidentate directing groups such as 8 -aminoquinoline and picolinamide. Liang et al. ${ }^{25 \mathrm{~b}}$ first reported the Pdcatalyzed bidentate ligand picolinamide-directed acetoxylation of the compound 10c prepared
from picolinic acid and benzylamine (Scheme 12). Recently, Zhao et al. ${ }^{25 c}$ reported the Pdcatalyzed bidentate ligand oxalylamide-directed acetoxylation of the compound 11a prepared from oxalyl chloride and benzylamine (Scheme 13).

Scheme 11. Pyridine-directed direct C-H acetoxylation of the $\mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$ bond.

Scheme 12. Bidentate ligand picolinamide-directed C-H acetoxylation of the $\mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$ bond at γ position.

Scheme 13. Bidentate ligand oxalylamide-assisted C-H acetoxylation of the $\mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$ bond.

Representative papers dealing on the transition metal-catalyzed, directing group

 picolinamide-aided, intramolecular C-N formation and synthesis of heterocycles.Alongside the directing group-assisted transition metal-catalyzed $\mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$ activation followed by $\mathrm{C}-\mathrm{C}, \mathrm{C}-\mathrm{N}$ and C-O bonds, there have been efforts to assemble N-heterocycles via the directing group-assisted C-H activation followed by intramolecular C-N bond formation. Various groups revealed the synthesis of N -heterocycles, such as, phenanthridine and isoindoline/isoindolinone derivatives via the directing group-assisted C-H activation followed by intramolecular C-N bond formation. ${ }^{4 \mathrm{e}-\mathrm{p}, 5,26}$ Representative papers dealing on the synthesis of N-heterocycles via the directing group-assisted $\mathrm{C}-\mathrm{H}$ activation followed by intramolecular $\mathrm{C}-\mathrm{N}$ bond formation are; (a) Daugulis et al. ${ }^{26 a}$ reported thepalladium-catalyzed $\mathrm{C}-\mathrm{H} / \mathrm{N}-\mathrm{H}$ coupling and synthesis of sixmembered heterocyclic compound, dihydrophenanthridine 12b from the benzylamine system 12a linked with the bidentate ligand picolinamide (Scheme 14), (b) Chen et al. ${ }^{26 \mathrm{~b}}$ achieved the synthesis of phenanthridine molecules 12d involving $\mathrm{Pd}(\mathrm{OAc})_{2}$ as the catalyst and $\mathrm{PhI}(\mathrm{OAc})_{2}$, $\mathrm{Cu}(\mathrm{OAc})_{2}$ as oxidants (Scheme 14).

Scheme 14. Bidentate ligand -assisted C-H activation followed by intramolecular C-N bond formation and synthesis of phenanthridine derivatives 12b, 12d

Results and discussion.

Chapter 3a: $\mathbf{P d}($ II $)$-based bidentate directing group-aided regioselective $\mathbf{C}-\mathbf{H}$ arylations of the \mathbf{C} - $\mathbf{3}$ position of 2- or 3-(aminoalkyl)-thiophene and furfurylamine derivatives.

Given that the thiophene and furan systems considered as a important class of heteroaromatic substrates and versatile building blocks in organic synthesis, materials- and medicinal chemistry, categorically, in the context of finding new lead bio-active thiophene- and furan-based carboxamides exhibiting promising biological activities and for finding potential drug candidates, there have been bestowed interests and continuous efforts for preparing new libraries of thiophene- and furan-based carboxamides (Figure 4).

this work

Figure 4. Bio-active thiophene- and furan-based carboxamides and topic of this work.

While the transition-metal catalyzed C-H arylations of various thiophene/furan substrates were investigated in the literature, especially a literature survey indicated that there exists no report dealing on the direct and regioselective C3 arylations of furfurylamine and 2- or 3-(aminoalkyl)thiophene derivatives with aryl halides as the coupling partners (Figure 3). It is worth to mention here, in 2010 Doucet et al. investigated ${ }^{27}$ the Pd-catalyzed arylation of the C-H bonds furfurylamine and 2-(aminomethyl)-thiophene derivatives. Understandably, the arylations
occurred only at the relatively more reactive $\mathrm{C}(2)-\mathrm{H}$ and $\mathrm{C}(5)-\mathrm{H}$ positions of furfurylamine and 2-(aminomethyl)-thiophene derivatives (Figure 3).

Given the importance of C 3 or C5-arylated 2-/3-(aminoalkyl)-thiophene and furfurylamine derivatives as promising biologically active compounds (e.g., furosemide and lapatinib, Figure 4)and versatile synthetic intermediates, devising a C-H functionalization method for assembling of C3 arylated 2-/3-(aminoalkyl)-thiophene and furfurylamine scaffolds will be very useful. A literature survey indicated that the regioselective C3 arylations of 2-/3-(aminoalkyl)-thiophene and furfurylamine derivatives were not explored via the C-H bond activation route. Thus, a part of the thesis work envisioned to apply the bidentate ligand directed, Pd-catalyzed, regioselective ortho C-H functionalization strategy for assembling C3 arylated furfurylamine and 2- or 3-(aminoalkyl)-thiophene scaffolds with regiocontrol. Accordingly, a part of this thesis work report the $\mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{AgOAc}$ catalytic system-based, bidentate ligand-directed, highly regioselective mono C-H arylation of the C3-position of the 2-/3-(aminoalkyl)-thiophene and furfurylamine derived amides (Figure 4).

At the outset, for investigating regioselective C3 arylations of 2-/3-(aminoalkyl)-thiophene and furfurylamine derivatives via the C-H activation route, at first, the required 2-/3-(aminoalkyl)thiophene and furfurylamine derived amides 15a-h, 16a-c, 17 and 18 (Figure 5)were assembledby linking 2-3-(aminoalkyl)-thiophene and furfurylamine with the corresponding acid chlorides. Similarly, the 2-(aminomethyl)-thiophene substrates $\mathbf{1 5 a}$,d,e and $\mathbf{1 5 f}$-h were prepared from the corresponding bidentate ligand units, such as, picolinamide, quinoline-2-carboxamide, pyrazine-2-carboxamide and oxalylamide. Then, the 2-(aminomethyl)-thiophene substrates $\mathbf{1 5 b}, \mathbf{c}$ were prepared from benzoyl chloride and butanoyl chloride, respectively. Next, the 2- or 3-(aminoalkyl)-thiophene derivatives 16a-c containing picolinamide and oxalylamide directing groups were prepared from the corresponding starting materials, such as, DL- α-amino-2thiopheneacetic acid methyl ester hydrochloride and 3-(aminoethyl)thiophene. To further elaborate the substrate scope, the furfurylamine substrates $\mathbf{1 7}$ and $\mathbf{1 8}$ possessing the picolinamide directing group were also synthesized (Figure 5).
(a) directing groups examined
2-(aminomethyl)-thiophene linked with different directing groups

(b) substrate scope examined
2- or 3-(aminoalkyl)-thiophenes linked with picolinamide/oxalaylamide directing group 2-(aminomethyl)-furans linked with picolinamide directing group

Figure 5. Substrates and directing groups employed in this work.

To start the investigation for achieving the direct arylation at C3-position of 2-/3-(aminoalkyl)thiophene and furfurylamine derivatives; initially, various optimization reactions were carried out to find the suitable reaction conditions obtaining $\mathrm{C}(3)-\mathrm{H}$ arylated2-/3-(aminoalkyl)-thiophene and furfurylamine derivatives. Table 1 comprised of the bidentate ligand-assisted $\mathrm{Pd}(\mathrm{II})-$ catalyzed C-H arylation reaction of 2-(aminomethyl)-thiophene derivative 15a containing the picolinamide as the directing group ${ }^{28}$ with an aryl iodide 19a (1-(4-iodophenyl)ethan-1-one). The reaction of a mixture of 2-(aminomethyl)-thiophene derivative $\mathbf{1 5 a}$ (1 equiv), 1-(4-iodophenyl)ethan-1-one 19a (4 equiv) and AgOAc additive (2.2 equiv) in the absence of any palladium catalyst in toluene at $110{ }^{\circ} \mathrm{C}$ for 24 h did not give any C-H arylated thiophene derivatives (entry 1 , Table 1). Then, under the similar reaction conditions, the C-H arylation reaction of the 2-(aminomethyl)-thiophene derivative 15a with 19a (1-(4-iodophenyl)ethan-1one) in the presence of $10 \mathrm{~mol} \%$ of the $\mathrm{Pd}(\mathrm{OAc})_{2}$ catalyst without any additives, furnished the $\mathrm{C}(3)-\mathrm{H}$ arylated thiophene derivative 20 a in 11% yield (entry 2, Table 1). Next, the C-H arylation reaction of the 2-(aminomethyl)-thiophene derivative 15a with 19a (1-(4-iodophenyl)ethan-1-one) in the presence of $5 \mathrm{~mol} \%$ of the $\mathrm{Pd}(\mathrm{OAc})_{2}$ catalyst and 2.2 equiv of AgOAc additive in toluene at $110{ }^{\circ} \mathrm{C}$ for 36 h was performed. This reaction gave the $\mathrm{C}(3)-\mathrm{H}$ arylated 2-(aminomethyl)-thiophene derivative 20a in 78% yield with an excellent regioselectivity (entry 3, Table 1). Then, the C-H arylation of thiophene system 15 a with 19 a in the presence of $10 \mathrm{~mol} \%$ of the $\mathrm{Pd}(\mathrm{OAc})_{2}$ catalyst and only one equiv of AgOAc additive gave the $\mathrm{C}(3)$-H arylated 2-(aminomethyl)-thiophene derivative $\mathbf{2 0 a}$ in 74% yield (entry 4, Table 1). Then, it was envisioned to vary the equivalents of 19a for obtaining 20a with an improved yield.

Thus, the $\mathrm{C}(3)-\mathrm{H}$ arylation of $\mathbf{1 5 a}$ was carried out by using different equivalents of 19a (1-4 equiv) in the presence of $\mathrm{Pd}(\mathrm{OAc})_{2}$ catalyst ($10 \mathrm{~mol} \%$) and AgOAc (2.2 equiv) in toluene for 24 h or 36 h (entries 5-9, Table 1).

Table 1. Optimization reactions: Bidentate ligand picolinamide-directed $\mathrm{C}(3)$-H arylation of 2-(aminomethyl)-thiophene 15a.

 15a ($0.15 \mathrm{mmol}, 1$ equiv)			$\begin{aligned} & \mathrm{PdL}_{2}(\mathrm{~mol} \%), \\ & \text { solvent }(1.5 \mathrm{~m} \\ & 85-110^{\circ} \mathrm{C}, 24 \end{aligned}$		$\mathrm{H}_{3} \mathrm{CO}$		
entry	$\mathrm{PdL}_{2}(\mathrm{~mol} \%)$	additive (equiv)	19a (equiv)	solvent	$\mathrm{t}\left({ }^{\circ} \mathrm{C}\right)$	time (h)	20a: yield (\%)
1	nil	AgOAc (2.2)	4	toluene	110	24	0
2	$\mathrm{Pd}(\mathrm{OAc})_{2}(10)$	nil	4	toluene	110	36	11
3	$\mathrm{Pd}(\mathrm{OAc})_{2}(5)$	AgOAc (2.2)	4	toluene	110	36	78
4	$\mathrm{Pd}(\mathrm{OAc})_{2}(10)$	AgOAc (1)	4	toluene	110	36	74
5	$\mathrm{Pd}(\mathrm{OAc})_{2}(10)$	AgOAc (2.2)	1	toluene	110	36	34
6	$\mathrm{Pd}(\mathrm{OAc})_{2}(10)$	AgOAc (2.2)	2	toluene	110	36	50
7	$\mathrm{Pd}(\mathrm{OAc})_{2}(10)$	AgOAc (2.2)	3	toluene	110	36	74
8	$\mathrm{Pd}(\mathrm{OAc})_{2}(10)$	AgOAc(2.2)	4	toluene	110	24	65
9	$\mathrm{Pd}(\mathrm{OAc})_{2}(10)$	AgOAc (2.2)	4	toluene	110	36	85
10	$\mathrm{Pd}(\mathrm{OAc})_{2}(10)$	AgOAc (2.2)	4	1,2-DCE	85	36	7
11	$\mathrm{Pd}(\mathrm{OAc})_{2}(10)$	AgOAc (2.2)	4	1,4-dioxane	100	36	59
12	$\mathrm{Pd}(\mathrm{OAc})_{2}(10)$	AgOAc (2.2)	4	t-amylOH	100	36	77
13	$\mathrm{Pd}(\mathrm{OAc})_{2}(10)$	KOAc (2.2)	4	toluene	110	36	25
14	$\mathrm{Pd}(\mathrm{OAc})_{2}(10)$	$\mathrm{K}_{2} \mathrm{CO}_{3}$ (2.2)	4	toluene	110	36	33
15	$\mathrm{Pd}(\mathrm{OAc})_{2}(10)$	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$ (2.2)	4	toluene	110	36	70
16	$\mathrm{PdCl}_{2}(10)$	AgOAc (2.2)	4	toluene	110	36	79
17	$\mathrm{Pd}(\mathrm{TFA})_{2}(10)$	AgOAc (2.2)	4	toluene	110	36	22

Further optimization reactions were also carried out for obtaining 20a with an improved yield. The C(3)-H arylation of 15a with 19a (4 equiv) in the presence of $10 \mathrm{~mol} \%$ of $\mathrm{Pd}(\mathrm{OAc})_{2}$ catalyst and AgOAc additive (2.2 equiv) in toluene at $110^{\circ} \mathrm{C}$ for 36 h found to afford the $\mathrm{C}(3)-\mathrm{H}$ arylated 2-(aminomethyl)-thiophene derivative 20a in a maximum yield of 85% (entry 9, Table 1). Additionally, the $\mathrm{C}(3)-\mathrm{H}$ arylation of $\mathbf{1 5 a}$ with 19a in other solvents, such as 1,2-DCE or 1,4dioxane or t-amylOH afforded the $\mathrm{C}(3)-\mathrm{H}$ arylated 2-(aminomethyl)-thiophene derivative 20a in $7-77 \%$ yields (entries 10-12, Table 1). The $\mathrm{Pd}(\mathrm{II})$-catalyzed $\mathrm{C}(3)-\mathrm{H}$ arylation reaction of $\mathbf{1 5 a}$
with 19a in the presence other additives, such as, KOAc or $\mathrm{K}_{2} \mathrm{CO}_{3}$ or $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ furnished the $\mathrm{C}(3)-\mathrm{H}$ arylated 2-(aminomethyl)-thiophene derivative 20a in 25-70\% yields (entries 13-15, Table 1). Finally, the $\mathrm{C}(3)-\mathrm{H}$ arylation reaction of $\mathbf{1 5 a}$ with 19 a in the presence of other Pd catalysts, such as, PdCl_{2} or $\mathrm{Pd}(\mathrm{TFA})_{2}$ gave the $\mathrm{C}(3)-\mathrm{H}$ arylated 2-(aminomethyl)-thiophene derivative 20a in 79 and 22\%, respectively (entries 16 and 17, Table 1).

Having found the optimized reaction condition which gave the $\mathrm{C}(3)-\mathrm{H}$ arylated 2-(aminomethyl)-thiophene derivative 20a in high yield (entry 9, Table 1); next, it was envisaged to investigate the generality and scope of this protocol encompassing the bidentate ligand, picolinamide directed $\mathrm{Pd}(\mathrm{II})$-catalyzed $\mathrm{C}(3)-\mathrm{H}$ arylation of 2-(aminomethyl)-thiophene derivative 15a. Thus, the bidentate ligand, picolinamide directed $\mathrm{Pd}(\mathrm{II})$-catalyzed $\mathrm{C}(3)-\mathrm{H}$ arylation of 2-(aminomethyl)-thiophene derivative 15awith different para-substituted aryl iodides having electron-donating/withdrawing substituents furnished several $\mathrm{C}(3)-\mathrm{H}$ arylated 2-(aminomethyl)-thiophene derivatives 21a-g in 49-78\% yields, respectively (Scheme 15).

Similarly, the bidentate ligand, picolinamide directed $\mathrm{Pd}(\mathrm{II})$-catalyzed $\mathrm{C}(3)-\mathrm{H}$ arylation of 2-(aminomethyl)-thiophene derivative 15awith meta-substituted aryl iodides having electrondonating/withdrawing substituents also furnished the respective $\mathrm{C}(3)-\mathrm{H}$ arylated 2-(aminomethyl)-thiophene derivatives $\mathbf{2 1 h} \mathbf{- k}$ in $54-72 \%$ yields (Scheme 15). Additionally, the bidentate ligand, picolinamide directed $\mathrm{Pd}(\mathrm{II})$-catalyzed $\mathrm{C}(3)-\mathrm{H}$ arylation of 2-(aminomethyl)thiophene derivative 15a with the corresponding di-substituted aryl iodides afforded the $\mathrm{C}(3)-\mathrm{H}$ arylated 2-(aminomethyl)-thiophene derivatives 211-o in 63-81\% yields (Scheme 15). Furthermore, the bidentate ligand, picolinamide directed $\mathrm{Pd}(\mathrm{II})$-catalyzed $\mathrm{C}(3)$ - H arylation of 2-(aminomethyl)-thiophene derivative $\mathbf{1 5 a}$ with heteroaryl iodides successfully afforded the $\mathrm{C}(3)$ H arylated 2-(aminomethyl)-thiophene derivatives 21p-r in $27-75 \%$ yields (Scheme 15). It is worth to mention that all the reactions of Scheme 15 comprising the Pd-catalyzed C-H arylation of 15a were regioselective and gave the corresponding biaryl derivatives 21a-r with an excellent regioselectivity. The $\mathrm{Pd}(\mathrm{II})$-catalyzed $\mathrm{C}-\mathrm{H}$ arylation reactions involving iodopyridines afforded the corresponding products $\mathbf{2 1 p}$ and $\mathbf{2 1 q}$ in poor yields when compared to the $\mathrm{Pd}(\mathrm{II})$-catalyzed C-H arylation reactions involving iodobenzenes. Notably, our group previously reported a
similar trend in the $\mathrm{Pd}(\mathrm{II})$-catalyzed $\mathrm{C}(3)-\mathrm{H}$ arylation reactions involving furan- and thiophene-2carboxamides. ${ }^{23 \mathrm{~d}}$
(
${ }^{\mathrm{a}} 20 \mathrm{~mol} \%$ of $\mathrm{Pd}(\mathrm{OAc})_{2}$ was used. ${ }^{\mathrm{b}} 30 \mathrm{~mol} \%$ of $\mathrm{Pd}(\mathrm{OAc})_{2}$ was used.

Scheme 15. Scope and generality. Bidentate ligand picolinamide-directed $\mathrm{C}(3)$ - H arylation of 2-(aminomethyl)-thiophene 15a.

Successively, to increase the substrate scope and generality, it was envisaged to use the substrate thiophene derivative 16a containing picolinamide directing group (which was obtained from DL-α-amino-2-thiopheneacetic acid methyl ester hydrochloride, Scheme 16). Thus, the direct $\mathrm{C}(3)-\mathrm{H}$
arylation of thiophene derivative 16awith different aryl iodides in the presence of $\mathrm{Pd}(\mathrm{OAc})_{2}$ catalyst and AgOAc additive gave the corresponding $\mathrm{C}(3)-\mathrm{H}$ arylated 2-(aminomethyl)thiophene derivatives 22a-c in 30-57\% yields (Scheme 16). Notably, the $\operatorname{Pd}(I I)$-catalyzed direct $\mathrm{C}(3)-\mathrm{H}$ arylation of thiophene derivative 16awith different aryl iodides were regioselective and the observed regioselectivity for products 22a-c was confirmed on the basis of the X-ray structure of a representative $\mathrm{C}(3)-\mathrm{H}$ arylated 2-(aminomethyl)-thiophene derivative 22c (Figure $6)$.

Scheme 16. Scope and generality: Bidentate ligand picolinamide-directed C(3)-H arylation of 2-(aminomethyl)-thiophene 16a.

After examining the bidentate ligand picolinamide-directed $\mathrm{Pd}(\mathrm{II})$-catalyzed $\mathrm{C}(3)$ - H arylation of 2-(aminomethyl)-thiophene derivatives 15a and 16a, it was envisaged to examine the scope of the $\mathrm{Pd}(\mathrm{II})$-catalyzed $\mathrm{C}-\mathrm{H}$ arylation of 2-(aminomethyl)-thiophene derivative $\mathbf{1 5 e}$ which contains the pyrazine-2-carboxamide unit as the directing group (Scheme 17). Notably, the 2-(aminomethyl)-thiophene derivative $\mathbf{1 5 e}$ which contains the pyrazine-2-carboxamide as the directing group, which is structurally similar to picolinamide ligand (substrates 15a and 16a). Thus, it was envisaged that the $\mathrm{C}(3)-\mathrm{H}$ arylation of the 2-(aminomethyl)-thiophene derivative 15e will also be efficient. Accordingly, the direct C(3)-H arylation of the 2-(aminomethyl)-
thiophene 15e was carried out with different aryl iodides containing electrondonating/withdrawing substituents in the presence of $\mathrm{Pd}(\mathrm{OAc})_{2}$ catalyst and AgOAc additive, which gave the corresponding $\mathrm{C}(3)-\mathrm{H}$ arylated 2-(aminomethyl)-thiophene derivatives 23a-e in low to moderate yields (20-55\%) with high regioselectivity (Scheme 17).

When compared to the yields obtained in $\mathrm{C}(3)-\mathrm{H}$ arylation reactions of $\mathbf{1 5 a}$, the $\mathrm{C}(3)-\mathrm{H}$ arylation of 15egave the corresponding $\mathrm{C}(3)$-H arylated 2-(aminomethyl)-thiophene derivatives 23a-e in relatively lower yields. It was envisaged to check the efficiency of pyrazine-2-carboxamide by using a benzene derivative 15i, which contains the pyrazine-2-carboxamide ligand. Accordingly, the $\mathrm{Pd}(\mathrm{II})$-catalyzed $\mathrm{C}-\mathrm{H}$ arylation of $\mathbf{1 5 i}$ also gave product $\mathbf{2 3 f}$ in low yield (24%). The low yield obtained in the arylation reaction of $\mathbf{1 5 i}$ containing pyrazine-2-carboxamide ligand was comparable with the yield obtained in the arylation of thiophene system 15e containing same pyrazine-2-carboxamide ligand. Notably, the $\mathrm{Pd}(\mathrm{II})$-catalyzed direct $\mathrm{C}(3)-\mathrm{H}$ arylation of 2-(aminomethyl)-thiophene $\mathbf{1 5 e}$ was regioselective and the observed regioselectivity was confirmed based on the X-ray structure of a representative $\mathrm{C}(3)-\mathrm{H}$ arylated 2-(aminomethyl)thiophene derivative 23c (Figure 6).

15e, 15i ($0.5 \mathrm{mmol}, 1$ equiv)

$\mathrm{Pd}(\mathrm{OAc})_{2}(10-30 \mathrm{~mol} \%)$ $\xrightarrow[\substack{\text { toluene }(5 \mathrm{~mL}) \\ 110^{\circ} \mathrm{C}, 72 \mathrm{~h}}]{\mathrm{AgOAc}(2.2 \text { equiv })}$

23a-f

23a; $R^{1}=H, 40 \%$
23b; $R^{1}=M e, 25 \%{ }^{b}$
23c; $R^{1}=A c, 25 \%(48 h)^{a}$
23c; $R^{1}=A c, 55 \%$

23d; $R^{2}=\mathrm{Br}, 20 \%{ }^{\mathrm{c}}$
23e; $R^{2}=M e, 41 \%$

${ }^{\text {a }} 10 \mathrm{Mol} \%$ of $\mathrm{Pd}(\mathrm{OAc})_{2}$ was used. ${ }^{\mathrm{b}} 20 \mathrm{Mol} \%$ of $\mathrm{Pd}(\mathrm{OAc})_{2}$ was used. ${ }^{\mathrm{c}} 3$ Equiv of ArI was used.
Scheme 17. 2-Pyrazine carboxamide-directed C(3)-H arylation of 2-thiomethylamine $\mathbf{1 5 e}$ and $\mathbf{1 5 i}$.

Table 2. Optimization reactions. Oxalylamide-directed, $\mathrm{C}(3)-\mathrm{H}$ arylation of the 2-(aminomethyl)-thiophene derivative $\mathbf{1 5 f}$.

${ }^{\mathrm{a}}$ The reaction was carried out in presence of 0.3 equiv of pivalic acid. ${ }^{\mathrm{b}}$ This reaction was performed under open atm.

Furthermore, along the line of inspection of the ligand scope (Schemes 16 and 17) and to improve the efficiency of the $\mathrm{Pd}(\mathrm{II})$-catalyzed $\mathrm{C}(3)-\mathrm{H}$ arylation of 2-(aminomethyl)-thiophene derivatives, it was envisagedto investigate the $\mathrm{Pd}(\mathrm{II})$-catalyzed regisoselective $\mathrm{C}(3)-\mathrm{H}$ arylation of 2-(aminomethyl)-thiophene derivatives $\mathbf{1 5 f} \mathbf{- h}$, which are possessing oxalylamide unit as a directing group ${ }^{29}$ (Table 2, Scheme 18). To begin with, various optimization reactions were carried out to find the suitable reaction conditions as shown in Table 2. Table 2 comprises of the $\mathrm{Pd}(\mathrm{II})$-catalyzed regioselective $\mathrm{C}(3)-\mathrm{H}$ arylation of 2-(aminomethyl)-thiophene derivative 15fcontaining oxalylamide unit as the directing groupwith an aryl iodide 19a (1-(4-iodophenyl)ethan-1-one). The C-H arylation reaction of 2-(aminomethyl)-thiophene derivative 15f with 19a (1-(4-iodophenyl)ethan-1-one), 4 equiv) in the presence of $\mathrm{Pd}(\mathrm{OAc})_{2}$ catalyst (10 $\mathrm{mol} \%$) and AgOAc additive (2.2 equiv) in toluene at $110^{\circ} \mathrm{C}$ for 2 h gave the $\mathrm{C}(3)-\mathrm{H}$ arylated 2-
(aminomethyl)-thiophene derivative 24a in a maximum yield of 69% with an excellent regioselectivity (entry 7, Table 2). Various other optimization reactions were carried out to improve the yield of the $\mathrm{C}(3)-\mathrm{H}$ arylated 2-(aminomethyl)-thiophene derivative 24 a by varying the amounts of $\mathrm{Pd}(\mathrm{OAc})_{2}$ catalyst or equivalents of 19a (1-(4-iodophenyl)ethan-1-one) or reaction temperature/time. Nevertheless, there was no further significant improvement in the yield of the $\mathrm{C}(3)-\mathrm{H}$ arylated 2-(aminomethyl)-thiophene derivative 24a (entries 1-6, 8 and 9, Table 2). In the reaction involving the $\mathrm{Pd}(\mathrm{II})$-catalyzed $\mathrm{C}(3)-\mathrm{H}$ arylation of $\mathbf{1 5 f}$ with 19a; (a) the use of additives, such as, $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ or $\mathrm{K}_{2} \mathrm{CO}_{3}$ instead of AgOAc , (b) the reaction in other solvents, such as, $1,2-\mathrm{DCE}$ or t-amylOH instead of toluene, and (c) under open atm, did not help to improve the yield of the $\mathrm{C}(3)-\mathrm{H}$ arylated 2-(aminomethyl)-thiophene derivative 24a (entries 1013, Table 2).

gram scale reaction

Scheme 18. Oxalylamide-assisted, $\mathrm{C}(3)-\mathrm{H}$ arylation of 2-(aminomethyl)-thiophene derivatives 15 f -h.

Afterwards, having the optimized reaction condition in hand (entry 7, Table 2), it was envisaged to explore the generality of the $\mathrm{Pd}(\mathrm{II})$-catalyzed regioselective $\mathrm{C}(3)-\mathrm{H}$ arylation of $\mathbf{1 5 f}$ by using different aryl iodides. Accordingly, the $\mathrm{Pd}(\mathrm{II})$-catalyzed regioselective $\mathrm{C}(3)-\mathrm{H}$ arylation of $\mathbf{1 5 f}$ with various aryl iodides successfully afforded the $\mathrm{C}(3)-\mathrm{H}$ arylated 2-(aminomethyl)-thiophene derivatives24b-d in 64-70\% yields, respectively (Scheme 18). Then, a gram scale reaction involving the $\mathrm{Pd}(\mathrm{II})$-catalyzed direct $\mathrm{C}-\mathrm{H}$ arylation of $\mathbf{1 5 f}$ with iodobenzenealso was performed to afford the $\mathrm{C}(3)-\mathrm{H}$ arylated 2-(aminomethyl)-thiophene derivative 24b in 70% yield (Scheme 18). Furthermore, in analogy to the 2 -(aminomethyl)-thiophene derivative $\mathbf{1 5 f}$, the $\operatorname{Pd}(I I)$ catalyzed direct $\mathrm{C}(3)-\mathrm{H}$ arylation of other 2-(aminomethyl)-thiophene derivatives $\mathbf{1 5 g}$ and $\mathbf{1 5 h}$ containing the oxalylamide unit as the directing group, successfully furnished the corresponding products 25a,b and $\mathbf{2 6}$ in 57-75\% yields, respectively, with an excellent regioselectivity (Scheme 18).

Consecutively, it was envisaged to extend the substrate scope and to study the regioselective direct $\mathrm{C}(3)-\mathrm{H}$ arylation furfurylamine system. Accordingly, Scheme 19 shows the investigations on the $\mathrm{Pd}(\mathrm{II})$-based $\mathrm{C}(3)-\mathrm{H}$ arylation of furfurylamine derivatives $\mathbf{1 7}$ and $\mathbf{1 8}$ containing the picolinamide unit as a directing group. The $\mathrm{C}(3)-\mathrm{H}$ arylation reaction of furfurylamine derivative 17 with PhI (4 equiv) in the presence of the $\mathrm{Pd}(\mathrm{OAc})_{2}\left(30 \mathrm{~mol} \%\right.$) and $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ additive (4 equiv) in toluene at $110^{\circ} \mathrm{C}$ for 72 h gave the $\mathrm{C}(3)-\mathrm{H}$ arylated furfurylamine system 27 a in a maximum yield of 36% with an excellent regioselectivity (Scheme 19). Similarly, the $\operatorname{Pd}($ II) -promoted $\mathrm{C}(3)-\mathrm{H}$ arylation of furfurylamine system 17 with various aryl iodides finished the corresponding $\mathrm{C}(3)$-H arylated furfurylamine systems 27b-e in 22-36\% yields (Scheme 19). The usage of lesser amounts of Pd catalyst furnished the $\mathrm{C}(3)$-arylated product in low yields. For example, the $\mathrm{C}(3)-$ H arylation reaction of furfurylamine system 17 in the presence of $\mathrm{Pd}(\mathrm{OAc})_{2}(20 \mathrm{~mol} \%)$ gave the $\mathrm{C}(3)$-H arylated furfurylamine system $\mathbf{2 7 b}$ only in 17% yield. In analogy to furfurylamine system 17 the $\mathrm{Pd}(\mathrm{II})$-based regioselective direct C-H arylation of furfurylamine system 18 furnished the $\mathrm{C}(3)-\mathrm{H}$ arylated furfurylamine system $\mathbf{2 7 f}$ in 25% yield with high regioselectivity (Scheme 19). In fact, the $\mathrm{C}(3)-\mathrm{H}$ arylation of furfurylamine system 17 was carried out under variousreactions conditions; however, our efforts to improve the yield of $\mathrm{C}(3)-\mathrm{H}$ arylation of furfurylamine derivative 17 were not productive. Further, our trials to use lesser amounts of the Pd catalyst loadings were also not fruitful.

27a; 36\%

27c; 36\%

27d; 30\%

27e; 22\%
Ac

27f; 8\% (under neat condition)

Scheme 19. Pd (II)-based picolinamide-assisted $\mathrm{C}(3)$ - H arylation of furfurylamine derivatives 17 and 18.

Having investigated the $\mathrm{Pd}(\mathrm{II})$-catalyzed $\mathrm{C}(3)-\mathrm{H}$ arylation of 2-(aminomethyl)-thiophene derivatives 15a, 15e-h and 16a containing the respective bidentate ligands; then, it was envisaged to further extend the importance and substrate scope this method. Consequently, the 3-(aminoethyl)-thiophene systems $\mathbf{1 6 b}$ and 16c were assembled and subjected to the $\operatorname{Pd}(\mathrm{II})$ catalyzed $\mathrm{C}(3)-\mathrm{H}$ arylation reaction conditions. It is to be noted that the $\mathrm{C}(3)-\mathrm{H}$ bond that is arylated in 2-(aminomethyl)-thiophene derivatives 15a, 15e-h and 16a, is located at the γ position with respect to the amide nitrogen.

In general, the $\mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$ arylations of the $\gamma-\mathrm{C}-\mathrm{H}$ bond located at γ position with respect to the amide nitrogen or ortho $\mathrm{C}-\mathrm{H}$ bond of amides (benzylamine systems) prepared from bidentate ligands and benzylamines have been well explored. ${ }^{4 e-p, 5,23-29}$ On the other hand, the $\mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$
arylation of thje remote $\delta \mathrm{C}-\mathrm{H}$ bond located at the δ position with respect to the amide nitrogen or ortho C-H bond of amides prepared from the bidentate ligands and alkyl amines, e.g., β arylethylamine have not been explored well.

Thus, it is to be noted that in 3-(aminoethyl)-thiophene derivatives $\mathbf{1 6 b}$ and $\mathbf{1 6 c}$, which arecontaining picolinamide and oxalylamide as a directing groups, the $\mathrm{C}(3)-\mathrm{H}$ bond that is to be arylated is located at δ the position with respect to the amide nitrogen.Scheme 20 shows the studies carried out on the $\mathrm{Pd}(\mathrm{II})$-catalyzed $\mathrm{C}(3)-\mathrm{H}$ arylation of 3-(aminoethyl)-thiophene systems 16b and 16c containing picolinamide and oxalylamide directing groups, respectively. The $\mathrm{C}(3)$ H arylation reaction of 3-(aminoethyl)-thiophene derivative 16b with an aryl iodide 19a (1-(4-iodophenyl)ethan-1-one) in the presence of $\mathrm{Pd}(\mathrm{OAc})_{2}$ catalyst ($10 \mathrm{~mol} \%$) and AgOAc additive in toluene at $110^{\circ} \mathrm{C}$ for 48 h furnished the $\mathrm{C}(3)-\mathrm{H}$ arylated 3-(aminoethyl)-thiophene derivative 28a in 47% yield with an excellent regioselectivity (Scheme 20). Similarly, the C(3)-H arylation reaction of 3-(aminoethyl)-thiophene derivative $\mathbf{1 6 b}$ with different aryl iodides gave the C3arylated 3-(aminoethyl)-thiophene derivatives 28b-d in 41-71\% yields, respectively (Scheme 20). In analogy to 3-(aminoethyl)-thiophene derivative 16b, the $\mathrm{Pd}(\mathrm{II})$-catalyzed $\mathrm{C}-\mathrm{H}$ arylations of 2-(aminomethyl)-thiophene derivative 16c having the oxalylamide as a directing group with various aryl iodides successfully furnished the corresponding $\mathrm{C}(3)-\mathrm{H}$ arylated 3-(aminoethyl)thiophene derivatives $\mathbf{2 8 e} \mathbf{e}$ g in 50-62\% yields with high regioselectivity (Scheme 20).

Discussion with regard to the role and efficiency of bidentate ligands and the substrate scope/reactivity. Having described the Pd(II)-based C(3)-H arylation of 2-(aminomethyl)thiophene derivatives $15 a / 15 e-h / 16 a-c$ and furfurylamine derivatives $\mathbf{1 7 / 1 8}$ possessing the respective bidentate directing groups, it was envisaged to substantiate the role of bidentate ligand for the $\mathrm{Pd}(\mathrm{II})$-catalyzed regioselective $\mathrm{C}(3)-\mathrm{H}$ arylation of the substrates $\mathbf{1 5 a}, \mathbf{1 5 e}$-h, 16a-c, 17 and 18. Thus, the thiophene derivative $\mathbf{1 5 b}$ having the benzoyl group was assembled. Then, the C-H arylation reaction of $\mathbf{1 5 b}$ with an aryl iodide (4 equiv) was carried out in the presence of $\mathrm{Pd}(\mathrm{OAc})_{2}$ catalyst ($10 \mathrm{~mol} \%$) and AgOAc additive (2.2 equiv) in toluene at $110^{\circ} \mathrm{C}$ for 24 h . This reaction gave mixture of compounds without any selectivity and the column chromatographic purification of the crude reaction mixture was unsuccessful and the expected product 29a was not obtained (Scheme 21). Next, the C-H arylation of thiophene system 15c with 19a (4 equiv)
was performed in the presence of $\mathrm{Pd}(\mathrm{OAc})_{2}$ catalyst ($10 \mathrm{~mol} \%$) and AgOAc additive (2.2 equiv) in toluene at $110^{\circ} \mathrm{C}$ for 36 h . This reaction also gave a mixture compounds which was purified to furnish the di-arylated product 29b in low yield 22% along with some inseparable complex mixture of compounds (Scheme 21). These reactions revealed that the bidentate ligands are essential for achieving the $\mathrm{C}-\mathrm{H}$ arylation of $\mathrm{C}(3)-\mathrm{H}$ bond of thiophene derivatives 15a, 15e-h, and 16a-c as well as furfurylamine derivatives $\mathbf{1 7}$ and $\mathbf{1 8}$ with an excellent regioselectivity (Tables 1,2 and Schemes 15-20).

28d; 71\% (60 h) ${ }^{[a]}$

28a; $R=A c, 47 \%$ (48 h)
28b; $\mathrm{R}=\mathrm{CH}_{3}, 48 \%$ (60 h)

28e; 50\% (2 h)

28f; 65\% (4 h) ${ }^{[c]}$

28g; 62\% (5h) ${ }^{[b]}$
${ }^{\mathrm{a}}$ 2.2 Equiv of $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ was used. ${ }^{\mathrm{b}}$ 1.2 Equiv of AgOAc was used. ${ }^{\mathrm{c}} 3$ Equiv of aryl iodide was used.

Scheme 20. Pd (II)-based picolinamide/oxalylamide-directed $\mathrm{C}(3)-\mathrm{H}$ arylation 3-(aminoethyl)thiophenes 16b,c.
The investigation to find out the efficiency of bidentate ligands in the Pd-based $\mathrm{C}(3)-\mathrm{H}$ arylations of thiophene/furan derivatives $\mathbf{1 5 a}, \mathbf{1 5 e - h}, \mathbf{1 6 a - c}, \mathbf{1 7}$ and $\mathbf{1 8}$ containing the respective bidentate
ligands, revealed that picolinamide was the better bidentate directing group. Correspondingly, the picolinamide-aided $\mathrm{C}(3)-\mathrm{H}$ arylation afforded the $\mathrm{C}-\mathrm{H}$ arylated product 20 a in a maximum yield of 85%. On other hand, the efficiency of oxalylamide ligand was comparable with picolinamide ligand. The oxalylamide-aided $\mathrm{C}(3)-\mathrm{H}$ arylation gave the products 25a or 26 in a maximum yield of 75%. The efficiency of pyrazine-2-carboxamide ligand found to be moderate and pyrazine-2-carboxamide-aided $\mathrm{C}(3)-\mathrm{H}$ arylation afforded the product $23 \mathbf{c}$ in a maximum yield of 55%. It is to be noted a literature survey revealed that generally, the bidentate ligand, picolinamide has been well exploited to accomplish the C-H functionalization of a variety of carboxamide derivatives. ${ }^{4 e-p, 5,23-29}$

15b (0.25 mmol)

15c (0.25 mmol)

29c; $\mathrm{R}=\mathrm{H}, 0 \%$ 29d ${ }^{[a] ;} ; R=A c, 0 \%$
${ }^{\mathrm{a}} \mathrm{Ag}_{2} \mathrm{CO}_{3}$ (2.2 equiv) was used instead of AgOAc .
Scheme 21. Role of directing groups in the $\mathrm{Pd}(\mathrm{II})$-catalyzed direct arylations.

Though, the pyrazine-2-carboxamide ligand is structurally similar to picolinamide ligand, ${ }^{28}$ the C-H functionalization reactions have not been studied by using bidentate ligand pyrazine-2carboxamide. Further, it is to be noted that only recently, the bidentate ligand, oxalylamide was found to assist the C-H functionalization of carboxamide derivatives. ${ }^{29}$ Additionally, the Pdcatalyzed $\mathrm{C}-\mathrm{H}$ arylation of thiophene derivative $\mathbf{1 5 d}$ containing quinoline-2-carboxamide as a directing group failed to furnish the corresponding C-H arylated products 29c or 29d (Scheme 21). Although, the compound $\mathbf{1 5 d}$ contains bidentate ligand that is similar to the $\mathbf{1 5 a}$, at this stage, an exact reason for the failure of our trials to get the corresponding C-H arylated products 29c or 29d is not clear (Scheme 21). Apparently, in these cases, a rigid palladacycle TS might have not formed due to the steric hindrance provided by quinoline-2-carboxamide unit and this could be a plausible reason due to which the C-H arylated products 29c or 29d did not form.

With regard to thiophene/furan derivatives investigated in this work, though the bidentate directing group is same in furan/thiophene substrates 15a, 17 and 18, the reactivity of furfurylamine derivatives $\mathbf{1 7}$ and 18 was relatively lesser than 2-(aminomethyl)-thiophene derivative 15a. For example, the Pd -catalyzed picolinamide-directed $\mathrm{C}(3)-\mathrm{H}$ arylation of 2-(aminomethyl)-thiophene derivative 15a gave the $\mathrm{C}(3)-\mathrm{H}$ arylated product 20a in a maximum yield of 85%. Similarly, the oxalylamide-directed $\mathrm{C}(3)-\mathrm{H}$ arylation of 2-(aminomethyl)thiophene derivative $\mathbf{1 5 f}$ gave the $\mathrm{C}(3)-\mathrm{H}$ arylated product $\mathbf{2 5 a}$ in a maximum yield of $\mathbf{7 5 \%}$ and the pyrazine-2-carboxamide ligand-directed $\mathrm{C}(3)-\mathrm{H}$ arylation of 2-(aminomethyl)-thiophene derivative $\mathbf{1 5 e}$ afforded the $\mathrm{C}(3)-\mathrm{H}$ arylated compound $\mathbf{2 3 c}$ in maximum of yield 55%. However the picolinamide-directed C-H arylation of furfurylamine derivative $\mathbf{1 7}$ furnished the C3-arylated products $27 \mathbf{a} / 27 \mathrm{c}$ in a maximum yield of only 36%. Notably, the remote $\mathrm{C}(\delta)$-H arylation of picolinamide/oxalylamide-based 3-(aminoethyl)-thiophene derivatives 16b and 16c having an increased alkyl chain length (when compared to 15a) afforded the corresponding $\mathrm{C}(3)-\mathrm{H}$ arylated3-(aminoethyl)-thiophene derivatives 28a-g in moderate to good yields.

Furthermore, looking at the reactivity pattern of different aryl iodides (iodobenzenes) employed in this work, aryl iodides containing electron withdrawing- or donating groups gave the corresponding $\mathrm{C}(3)$-H-arylated 2-/3-(aminoalkyl)-thiophene and furfurylamine derivatives in comparable yields (e.g., products 20a and 21a-r, Tables 1 and 2). However, when compared to
iodobenzenes, iodopyridines gave the corresponding products $\mathbf{2 1 p}$ and $\mathbf{2 1 q}$ in poor yields. The following assumption may be one of the possible reasons for the poor yields in products $\mathbf{2 1 p}$ and 21q. Apparently, the complete process comprising the C-H arylation of $\mathbf{1 5 a}$ with iodopyridines includes a number of coordinating sites containing substrates that might be deterring the entire $\mathrm{Pd}(\mathrm{II})$-based C-H arylation process. In this regard, Yu et al. stated ${ }^{30}$ that in directing group-aided C-H activation reactions, strongly coordinating N/S/P heteroatoms frequently outcompete the directing groups for catalyst binding, thus, preventing the main C-H activation process.

As described in the introduction part, there are only inadequate reports dealing on the arylations of $\mathrm{C}(3)-\mathrm{H}$ and $\mathrm{C}(4)-\mathrm{H}$ bonds of different kinds of thiophene and furan derivatives with aryl iodides as coupling partners involving exceptional reaction conditions. Prior to this work, in 2005 Doucet's group ${ }^{27}$ reported that the Pd-catalyzed C-H arylation of furfurylamine and 2-(aminomethyl)-thiophene derivatives regioselectively occurred at the relatively more reactive $\mathrm{C}(5)-\mathrm{H}$ bond. On the other hand, a part of this thesis work report the bidentate ligand-aided regioselective arylation at the $\mathrm{C}(3)-\mathrm{H}$ bond of $2 / 3$-(aminoalkyl)-thiophene and furfurylamine derivatives with various aryl-/heteroaryl iodides. In concurrence with the literature works, ${ }^{4 e-p, 5,23-}$ ${ }^{30}$ and the present investigation with regard to the C-H arylation of 2/3-(aminoalkyl)-thiophene and furfurylamine derivatives has revealed that the bidentate ligands are essential for achieving regioselective direct arylation at the $\mathrm{C}(3)-\mathrm{H}$ bond of $2 / 3$-(aminoalkyl)-thiophene derivatives 15a, 15e-h and 16a-c and furfurylamine systems 17 and $\mathbf{1 8}$ (Tables 1,2 and Schemes 15-20).

Discussion with regard to the observed regioselectivity in the $\mathbf{P d}(\mathrm{II})$-based $\mathbf{C}(3)-\mathbf{H}$ arylation of furans/thiophenes. The observed regioselectivities in the $\operatorname{Pd}(I I)$-based, bidentate liganddirected, C-H arylation of 2- or 3-(aminoalkyl)-thiophene derived amides and the structure of 20a, 21a-r, 22a-c, 23a-e, 24a-d, 25a,b, 26 and 28a-g were assigned on the basis of the coupling constant (J) values of doublet peaks of the C 4 and C 5 protons of thiophene ring in 20a, 21a-r, 22a-c, 23a-e, 24a-d, 25a,b, 26 and 28a-g, which were found to be around 5 Hz in concurrence with the literature reports. Likewise, the observed regioselectivities in the $\mathrm{Pd}(\mathrm{II})$-based, bidentate ligand-directed, C-H arylation of furfurylamine derived amides and the structure of regioisomers 27a-e were assigned on the basis of coupling constant (J) values of the doublet peaks of the C 4 and C5 protons of furan ring in 27a-e, which were found to be around 1.8 Hz in concurrence with the literature reports. Additionally, the observed regioselectivity in the directing-group
enabled Pd (II)-based direct ortho $\mathrm{C}(3)-\mathrm{H}$ arylation of 2-/3-(aminoalkyl)-thiophene and furfurylamine derivatives and the structures of representative regioisomers 22c and 23c were explicitly determined from the single-crystal X-ray structure analyses (Figure 6). Having the results in the hand pertaining to the bidentate ligand-directed $\mathrm{Pd}(\mathrm{II})$-based $\mathrm{C}(3)$ - H arylation of 2-/3-(aminoalkyl)-thiophene and furfurylamine derivatives; the observed ortho selective C-H arylation of 2-/3-(aminoalkyl)-thiophene and furfurylamine derived amides linked with the bidentate ligand (e.g., picolinamide) can be explained via a plausible chelation-assisted reaction pathway in concurrence with the generally proposed $\mathrm{Pd}(\mathrm{II} / \mathrm{IV})$ catalytic cycle mechanism. ${ }^{4 \mathrm{e}-\mathrm{p}, 5,23-}$ ${ }^{30}$ In this $\mathrm{Pd}(\mathrm{II}) / \mathrm{AgOAc}$ catalytic system-based C-H activation of carboxamides aided by the bidentate ligands, the $\operatorname{Pd}(\mathrm{OAc})_{2}$ functions as a catalyst and AgOAc works as an additive to regenerate $\mathrm{Pd}(\mathrm{OAc})_{2}$ catalyst (Scheme 22).

23c

22c

Figure 6. Confirmation of the observed regioselectivity from the X-ray structures (ORTEP diagrams) of the representative compounds 22c and 23c.

Scheme 22. Plausible mechanism (in concurrence with the literature works ${ }^{4 \mathrm{e}-\mathrm{p}, 5,23-29}$). Regioselective C(3)-H arylation 2- or 3-(aminoalkyl) thiophenes directed by the 2-picolinamide and pyrazine-2-carboxamide ligands.

Chapter 3b: $\mathbf{P d}($ II) -catalyzed acetoxylation of the ortho $\mathbf{C}-\mathbf{H}$ bond of benzyl amines, γ and remote $\delta \mathrm{C}(3)-\mathrm{H}$ bond of 2-/3-(aminoalkyl)-thiophenes.

Substituted thiophenes are important synthetic building blocks in the research areas of materials and organic chemistry, medicinal chemistry and drug development. ${ }^{17}$ Various thiophene based molecules were found to be biologically active compounds. ${ }^{17,18}$ Though the Pd-catalyzed direct introduction of aryl groups or alkyl groups at the C-H bonds of furan- and thiophene-based systems was explored well, ${ }^{19-22}$ the direct C-H oxygenation of C-H bonds furan-and thiophenebased systems is not explored well. ${ }^{17,18}$ For example, the direct C-H acetoxylation of
furan/thiophene system will afford the corresponding C-H acetoxylated furan/thiophene systems (Figure 7).

Previous works

Figure 7. Assembling of functionalized thiophenes and literatures works related to C-H acetoxylations.

Although, there exist some exceptional papers dealing with the direct C-H activation/arylation of the C 3 or C 4 positions of thiophene, the direct $\mathrm{C}-\mathrm{H}$ activation/arylation of the C 2 or C 5 positions of thiophenes and related heteroaromatic substrates have received much attention. ${ }^{20-23}$ Various research groups including our group reported the regioselective C 3 arylation/functionalization of thiophenes/furans involving the bidentate ligand-directed regioselective $\mathrm{C}-\mathrm{H}$ activation/functionalization route. ${ }^{1-6,23-25}$

Given the noteworthy progress that has been made with regard to the oxygenation C-H bonds of aryl systems (e.g., aromatic carboxamides, aryl amines and benzylamines) by using various directing groups; however, the direct C-H oxygenation of $\mathrm{C}-\mathrm{H}$ bonds of thiophene compounds has been not explored well.

Given the importance of functionalized furans/thiophenes in various research areas, studying the regioselective acetoxylations of $\mathrm{C}\left(\mathrm{sp}^{2}\right)-\mathrm{H}$ of furans/thiophene systems using directing groups will be very useful (Figures 7 and 8). Accordingly, with a desire to foster the regioselective C3 functionalization of thiophenes and in continuation of our lab's interest on the C-H activation reactions and finding new directing groups, a part of this thesis envisages to examine the Pdcatalyzed highly regioselective C-H acetoxylation of the C3-position of the 2-3-(aminoalkyl)thiophene derived amides by using the unexplored/less explored directing groups, such as, pyrazine- or quinoline-2-carboxamides. Further, these directing groups were also examined to perform the acetoxylation of the ortho $\mathrm{C}-\mathrm{H}$ bond of benzyl amines under simple reaction conditions and short reaction period (toluene at $110^{\circ} \mathrm{C}$ for $3-15 \mathrm{~h}$).

pyrazine- (or) quinoline-2-carboxamide bidentate directing groups for the γ-acetoxylation of benzyl amine system

unexplored / less explored DGs

Figure 8. Topic of this work.

To begin with the investigations on the regioselective C3 acetoxylation of thiophene systemvia the $\mathrm{C}-\mathrm{H}$ bond activation method, at first, to find out the suitable directing group and reaction conditions, various optimization reactions comprising the acetoxylation of the ortho $\mathrm{C}-\mathrm{H}$ bond of benzyl amines. Though the reaction conditions for performing the acetoxylation of the ortho $\mathrm{C}-\mathrm{H}$ bond of benzyl amines systems are known, which involves picolinamide as a directing group and the reaction was performed in toluene in the presence of $\mathrm{AcOH} / \mathrm{Ac}_{2} \mathrm{O}$ at $150{ }^{\circ} \mathrm{C}$ (Figure 7). ${ }^{25 b}$

Table 3. C-H Acetoxylation of benzyl amines using pyrazine-2-carboxamide as the directing group.

[^0]In the present investigation it was found that the acetoxylation of the ortho $\mathrm{C}-\mathrm{H}$ bond of benzyl amine system 34a by using less explored pyrazine-2-carboxamide ligand in the presence of $\mathrm{PhI}(\mathrm{OAc})_{2}$ as an acetate source and $\mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%)$ as the catalyst in toluene at $110{ }^{\circ} \mathrm{C}$, afforded the mono acetoxylated product 35a and bis acetoxylated product 36a (50\% yield, 1.2:1 ratio of 35a:36a) (Table 3). Similarly, the acetoxylation of 34b containing pyrazine-2carboxamide ligand in the presence of $\mathrm{PhI}(\mathrm{OAc})_{2}$ and $\mathrm{Pd}(\mathrm{OAc})_{2}$ catalyst gave the mono acetoxylated product $\mathbf{3 5} \mathbf{b}$ and bis acetoxylated product $\mathbf{3 6 b}$ (50% yield with 1.5 :1 ratio of $\mathbf{3 5 b} \mathbf{3 6 b}$) (Table 3). Next, the C-H acetoxylation of benzyl amine systems 15i, 34c-e containing pyrazine-2-carboxamide ligand in the presence of $\mathrm{PhI}(\mathrm{OAc})_{2}$ and $\mathrm{Pd}(\mathrm{OAc})_{2}$ catalyst in toluene at $110^{\circ} \mathrm{C}$ afforded the mono acetoxylated products $\mathbf{3 5}$ c-f in $15-73 \%$ yields, respectively (Table 3).

Table 4. C-H Acetoxylation of benzyl amines using quinoline-2-carboxamide as the directing group.

The acetoxylation of the ortho $\mathrm{C}-\mathrm{H}$ bond of benzyl amine system 37a containing quinoline-2carboxamide ligand in the presence of $\mathrm{PhI}(\mathrm{OAc})_{2}$ and $\mathrm{Pd}(\mathrm{OAc})_{2}$ catalyst in toluene at $110{ }^{\circ} \mathrm{C}$ furnished the mono acetoxylated product 38a and bis acetoxylated product 39a (50% yield, 38a:39a (1:3), Table 4). Subsequently, the acetoxylation of ortho $\mathrm{C}-\mathrm{H}$ bond of benzyl amine systems 37b-d containing quinoline-2-carboxamide ligand in the presence of $\mathrm{PhI}(\mathrm{OAc})_{2}$ and $\operatorname{Pd}(\mathrm{OAc})_{2}$ catalyst afforded the mono acetoxylated products $\mathbf{3 8 b}-\mathbf{d}$ in $66-73 \%$ yields, respectively (Table 4). The yields obtained for the ortho $\mathrm{C}-\mathrm{H}$ acetoxylation of the substrates $\mathbf{3 4}$ and $\mathbf{3 7}$ having the corresponding bidentate ligands, such as, pyrazine-2-carboxamide and quinoline-2carboxamide were comparable.

Having found suitable reaction conditions for the acetoxylation of the ortho $\mathrm{C}-\mathrm{H}$ bond of benzyl amine systems (Tables 3 and 4) with the help of the corresponding directing groups; next, the 2-(aminomethyl)-thiophene systems 15a, 15d-gwere assembledbylinking 2-(aminomethyl)thiophene with the corresponding directing groups, such as, picolinamide, pyrazine-2carboxamide, quinoline-2-carboxamide and oxalylamide (Table 5). The acetoxylation of $\mathrm{C}(3)-\mathrm{H}$ bond of 2-(aminomethyl)-thiophene system15a containing the picolinamide ligand in the presence of $\mathrm{PhI}(\mathrm{OAc})_{2}$ and $\mathrm{Pd}(\mathrm{OAc})_{2}$ catalyst in toluene at $110{ }^{\circ} \mathrm{C}$ afforded the C 3 -acetoxylated 2-(aminomethyl)-thiophene system40a in 56% with high regioselectivity. Similarly, the $\operatorname{Pd}(I I)$ catalyzed $\mathrm{C}(3)-\mathrm{H}$ acetoxylation of 2-(aminomethyl)-thiophene systems $\mathbf{1 5 e}$ and $\mathbf{1 5 d}$ containing other bidentate ligands, such as, pyrazine-2-carboxamide and quinoline-2-carboxamide also furnished the corresponding C3-acetoxylated 2-(aminomethyl)-thiophene systems40b and 40c in 61 and 78% yields with high regioselectivity. Then, the $\mathrm{Pd}(\mathrm{II})$-catalyzed acetoxylation of 2-(aminomethyl)-thiophene systems $\mathbf{1 5 f}$ and $\mathbf{1 5 g}$ containing the oxalylamide directing groups furnished the corresponding C3-acetoxylated 2-(aminomethyl)-thiophene systems 40d and 40e in 48 and 57% yields, respectively. In the case of the acetoxylation of 2-(aminomethyl)-thiophene system 15g, along with C3-acetoxylated 2-(aminomethyl)-thiophene system 40e C3 and C5acetoxylated 2-(aminomethyl)-thiophene system 40e ${ }^{\prime}$ was also obtained in 17% yield and the product 40e' might have formed after the C3-acetoxylation of 2-(aminomethyl)-thiophene system 40e (Table 5).

A literature survey revealed that generally, the $\mathrm{C}(3)-\mathrm{H}$ and $\mathrm{C}(4)-\mathrm{H}$ bonds of thiophene system are relatively less reactive when compared to $\mathrm{C}(2)-\mathrm{H}$ and $\mathrm{C}(5)-\mathrm{H}$ bonds and the direct arylation/functionalization of the $\mathrm{C}(2)-\mathrm{H}$ and $\mathrm{C}(5)-\mathrm{H}$ bonds of thiophenes is well documented. ${ }^{6,11-15}$ In the present case, the C-H acetoxylations of thiophene compounds $\mathbf{1 5}$ (Table 5) selectively occurred at the $\mathrm{C}(3)-\mathrm{H}$ bond with the help of the corresponding bidentate directing groups.

Table5. Bidentate directing group-enabled regioselective $\mathrm{C}(3)-\mathrm{H}$ acetoxylation of 2-(aminomethyl)-thiophenes.

entry	substrate	acetoxylation product	time (h)	yield (\%)
1			12	$56^{\text {a }}$
2			6	$61^{\text {a }}$
3			3	78
4			2	48
5				$\begin{aligned} & \& 40 \mathrm{e}^{\prime} ; 17 \\ & 0 \mathrm{e}^{\prime}=74 \end{aligned}$

[^1]Table 6. Directing group free regioselective $\mathrm{C}(5)-\mathrm{H}$ acetoxylation of various thiophene systems.

Having observed the formation of the C3 and C5-acetoxylated product 40e' (Table 5) that might have formed after the C3-acetoxylation of 2-(aminomethyl)-thiophene system 40e, then, it was envisaged to investigate the selective C5-acetoxylation of 2-(aminomethyl)-thiophene system. In this regard, the 2-(aminomethyl)-thiophene systems that are not having any directing groups $\mathbf{1 5 c}$, 41b or thiophene systems 41c,d having a substitution at the C3-positionwere assembled(Table 6). The $\mathrm{C}-\mathrm{H}$ acetoxylation of the 2 -(aminomethyl)-thiophene system 15 c in the presence of $\mathrm{PhI}(\mathrm{OAc})_{2}$ and $\mathrm{Pd}(\mathrm{OAc})_{2}$ catalyst in toluene at $110{ }^{\circ} \mathrm{C}$ gave the C 5 -acetoxylated thiophene system 42a in 40% yield (Table 6). On the other hand, the C-H acetoxylation reaction of thiophene-2-carboxamide 41b in the presence of $\mathrm{PhI}(\mathrm{OAc})_{2}$ and $\mathrm{Pd}(\mathrm{OAc})_{2}$ catalyst failed to give the corresponding C5-acetoxylated thiophene compound 42b. Though the substrates 15 c and 41 b are structurally similar, however, at this stage, an explanation for the failure of the acetoxylation of the substrate 41b is not known. Along the same line, the acetoxylation reaction of thiophene
systems 41c and 41d having a substitution at the C 3 -position in the presence of $\mathrm{PhI}(\mathrm{OAc})_{2}$ and $\operatorname{Pd}(\mathrm{OAc})_{2}$ catalyst in toluene at $110{ }^{\circ} \mathrm{C}$ gave the corresponding C 5 -acetoxylated thiophene systems 42c and 42d in 40 and 35\% yields (Table 6).

Subsequently, it was envisaged to further expand the substrate scope and the significance of this method comprising Pd-catalyzed C-H acetoxylation of thiophene systems. In this regard, the 2-(aminoethyl)-thiophene systems 16b-c and 43a-b were preparedbylinking 2-(aminoethyl)thiophene with the corresponding directing groups, such as, picolinamide, pyrazine-2carboxamide, quinoline-2-carboxamide and oxalylamide (Table 7). It is to be noted that in the thiophene-based amides $\mathbf{1 5 a}, \mathbf{1 5 d - g}$ shown in Table 5 , with respect to amide nitrogen the $\mathrm{C}(3)-\mathrm{H}$ bond of thiophene ring is located at the γ-position. However, in the thiophene-based amides $\mathbf{1 6 b}$ c and 43a-b (Table 7), with respect to amide nitrogen the $\mathrm{C}(3)-\mathrm{H}$ bond of thiophene ring is located at the δ-position. It is worth to mention here that a literature survey revealed that the $\mathrm{C}-\mathrm{H}$ acetoxylation of the $\mathrm{sp}^{2} \mathrm{C}$ - H bond at γ-position of a designed carboxamide is explored well. ${ }^{4 \mathrm{e}-}$ $\mathrm{p}, 5,16,17 \mathrm{e}-\mathrm{h}$ On the other hand, the $\mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$ acetoxylation of the $\mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$ bond at δ-position of a designed carboxamide is rarely examined. Accordingly, it was envisaged to study the $\mathrm{C}-\mathrm{H}$ acetoxylation of thiophene systems $\mathbf{1 6 b}, \mathbf{c}, \mathbf{4 3 a}, \mathbf{b}$ (Table 7) which contain the $\mathrm{sp}^{2} \mathrm{C}$ - H bond at the δ-position.

The $\mathrm{sp}^{2} \mathrm{C}$-H acetoxylation of the $\mathrm{sp}^{2} \mathrm{C}$-H bond at the δ-position of 2-(aminoethyl)-thiophene system16b containing picolinamide ligand in the presence of $\mathrm{PhI}(\mathrm{OAc})_{2}$ and $\mathrm{Pd}(\mathrm{OAc})_{2}$ catalyst in toluene at $110{ }^{\circ} \mathrm{C}$ gave the C 3 -acetoxylated thiophene system 44 a in 27% yield along with the cyclized product $\mathbf{4 5 a}$ in 20% yield. Similarly, the $\mathrm{Pd}(\mathrm{II})$-catalyzed acetoxylation of 2 -(aminoethyl)-thiophene systems 43a and 43b containing the bidentate ligands, such as, pyrazine-2-carboxamide and quinoline-2-carboxamide furnished the corresponding C3-acetoxylated thiophenes $\mathbf{4 4 b}$ and $\mathbf{4 4}$ c in 52 and 43% yields. Then, the $\mathrm{Pd}(\mathrm{II})$-catalyzed C-H acetoxylation of 2-(aminoethyl)-thiophene system 16c containing oxalylamide as adirecting group failed to give the corresponding C3-acetoxylated products $\mathbf{4 4 d}$ and the reaction afforded a complex mixture (Table 7). An exact reason is not clear for the failure of C-H acetoxylation of $\mathbf{1 6 c}$; nevertheless, when compared to the other directing groups used for the C-H acetoxylation of thiophene system shown in Table 7, the oxalylamide directing group may be a weak directing group to assist the acetoxylation at the remote $\delta-\mathrm{C}-\mathrm{H}$ bond of the thiophene system 16c. Except in one case, where
the cyclized products 45 a was obtained under the present experimental condition, in other reactions the corresponding cyclized products were not observed under the experimental condition (Table 7).

Table 7: Regioselective $\mathrm{C}(3)-\mathrm{H}$ acetoxylation of 2-(aminoethyl)-thiophene systems by using various bidentate directing groups.

${ }^{\text {a }} 1.5$ Equiv of $\mathrm{PhI}(\mathrm{OAc})_{2}$ was used. ${ }^{\mathrm{b}}$ This reaction was performed with 2 equiv of $\mathrm{PhI}(\mathrm{OAc})_{2}$ and the reaction afforded a complex inseparable mixture of compounds.

The observed regioselectivities in the $\mathrm{Pd}(\mathrm{II})$-catalyzed, bidentate ligand-directed, selective $\mathrm{C}(3)$ H acetoxylation of 2- or 3-(aminoalkyl)-thiophenes 15a, 15d-g, 16b-c and 43a-b and the structure of the regioisomers 40 and 44 were assigned based on the coupling constant (J) of values of the doublet peaks of the C 4 and C 5 protons of thiophene ring, which were found to be around 5 Hz as reported in the literature. Furthermore, the observed regioselectivity in the directing-group aided $\mathrm{Pd}(\mathrm{II})$-catalyzed direct $\mathrm{C}(3)-\mathrm{H}$ acetoxylation of 2- or 3-(aminoalkyl)-
thiophenes and the structures of the representative regioisomer 40 b was unequivocally determined from the single-crystal X-ray structure (Figure 9). The observed ortho selective C(3)-H-acetoxylation of 2- or 3-(aminoalkyl)-thiophene derived amides linked with the respective bidentate ligands (e.g., picolinamide) can be exemplified via a generally proposed chelationassisted mechanism comprising the $\mathrm{Pd}(\mathrm{II} / \mathrm{IV})$ catalytic cycle. ${ }^{4 e-\mathrm{p}, 5,17,23-29}$

Scheme 24. Proposed mechanism (in concurrence generally proposed mechanism ${ }^{4 \mathrm{e}-\mathrm{p}, 5,17,23-29}$) for the regioselective C3-acetoxylation of thiophene system.

Figure 9. X-ray (ORTEP diagram) of the compound 40 b.

Conclusions.

In summary, chapter 3a revealed (a) a resourceful synthetic protocol comprising the $\mathrm{Pd}(\mathrm{II})$ based, bidentate ligand-directed, highly regioselective mono C-H arylation of the C3-position of 2- or 3-(aminoalkyl)-thiophene and furfurylamine derived amides, (b) investigations on the efficiency and role of bidentate ligands in the $\mathrm{Pd}(\mathrm{II})$-based $\mathrm{C}(3)-\mathrm{H}$ arylations of 2- or 3-(aminoalkyl)-thiophene and furfurylamine derived amidesand screening of the substrate scope and generality.

Given that a survey of the literature revealed several arylated thiophene/furan-based carboxamide derivativesare biologically active compounds; and given that there exists no report dealing on the regioselective arylations of the $\mathrm{C}(3)-\mathrm{H}$ bonds of 2-/3-(aminoalkyl)-thiophene and furfurylamine derived amides; it is believed that this method comprising the $\mathrm{Pd}(\mathrm{OAc})_{2}$-promoted $\mathrm{C}(3)-\mathrm{H}$ arylation of 2- or 3-(aminoalkyl)-thiophene and furfurylamine derived amides will be very helpful for assembling several heteroaromatic carboxamide scaffolds based on $\mathrm{C}(3)-\mathrm{H}-$ arylated 2-/3-(aminoalkyl)-thiophene or furfurylamine and different carboxylic acid units (bidentate ligands).

Further, the chapter 3 b revealed, (a) the $\mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$ acetoxylation of the ortho $\mathrm{C}-\mathrm{H}$ bond of benzyl amines under improved reaction conditions and short reaction period (toluene at $110{ }^{\circ} \mathrm{C}$ for 3-15 h) with the help of the directing groups, such as, pyrazine- or quinoline-2-carboxamides, (b) then, by using these reaction conditions found for the $\mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$ acetoxylation of the ortho $\mathrm{C}-\mathrm{H}$ bond of benzyl amines, the regioselective $\mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$ acetoxylation of the C 3 -position of 2- or 3-(aminoalkyl)-thiophene derived amides was accomplished by using the directing groups, such as, picolinamide, pyrazine- and quinoline-2-carboxamides.

Given the importance of functionalized thiophenes, this work dealing on the regioselective C-H acetoxylation of 2- or 3-(aminoalkyl)-thiophene systems will be a very useful method to obtain C3-acetoxylated thiophene systems.

All the C-H arylation/acetoxylation reactions were regioselective and all compounds included in the chapter 3 of this thesis are characterized by various characterization techniques including ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, IR, X-ray diffraction and HRMS. The structure and observed regioselectivity of representative products were established from the single crystal X-ray structure analyses. The relevant characterization data of all the compounds and complete experimental details are given in the experimental section. The synthesized molecules will be screened for their biological activities in collaboration with a medicinal chemistry lab and further work is in progress in this direction.

Experimental section.

General: Melting points are uncorrected. IR spectra were recorded as neat or thin films or KBr pellets. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded with 400 and 100 MHz spectrometers, respectively, (using TMS as an internal standard). Column chromatography was carried out on silica gel (100-200 mesh) or neutral $\mathrm{Al}_{2} \mathrm{O}_{3}$. Reactions were conducted in anhydrous solvent under nitrogen atmosphere where required. Solutions were dried using anhydrous sodium sulfate. Reagents were added to the reaction flask by using a syringe. Thin layer chromatography (TLC)
was performed on silica plates or neutral $\mathrm{Al}_{2} \mathrm{O}_{3}$ and components were visualized by observation under iodine. Isolated yields of all the products are reported (yields were not optimized). Ratios of regioisomers were determined from the ${ }^{1} \mathrm{H}$ (or) ${ }^{13} \mathrm{C}$ spectra of crude reaction mixture. The regioselectivity of the products were assigned based on the X-ray structure analysis of representative compounds. Good quality single crystals were grown by using a combination of dichloromethane or hexanes or methanol or acetone by slow solvent evaporation technique at 25 ${ }^{\circ} \mathrm{C}$ and the single crystal X-ray diffraction data for all the compounds was collected using four circle CCD diffractometer (monochromatic $\mathrm{Mo} \mathrm{K} \alpha$ radiation). Data collection and unit cell refinement for the data sets were done using APEX-II suit. The crystal structures were solved using Olex2 or WinGx packages using SHELXS97, and the structures were refined using SHELXL97. All the hydrogen atoms have been fixed at their geometrically ideal positions and refined using the riding model available within SHELXS97. All figures have been generated using Mercury.

General procedure A for the synthesis of carboxamides (15a-e, 15i, 16b, 17 and 18): The corresponding carboxylic acid (6 mmol) was dissolved in dry DCM $(25 \mathrm{~mL})$ by adding 2 to 3 drops of dry DMF. To this reaction mixture oxalyl chloride (1.5 equiv.) was added at $0{ }^{\circ} \mathrm{C}$ slowly and the resultant reaction mixture was stirred at rt for $6-8 \mathrm{~h}$ under a nitrogen atm. After this period, the reaction mixture was concentrated in vacuum to remove excess oxalyl chloride and solvent. The resultant acid chloride was dissolved in DCM (25 mL) and this reaction mixture was added to a separate flask which contained the corresponding amine (5 mmol), $\mathrm{Et}_{3} \mathrm{~N}(1.5$ equiv, 9 mmol$)$ in $\mathrm{DCM}(5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and the resultant reaction mixture was stirred at rt for 6-8 h under a nitrogen atm. After this period, the reaction mixture was diluted with DCM and then washed with water followed by saturated aqueous NaHCO_{3} solution. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuum. Purification of the resulting reaction mixture by column chromatography furnished the corresponding carboxamides 15a-e, 15i, 16b, 17 and 18.

Typical procedure B for the synthesis of methyl 2-(picolinamido)-2-(thiophen-2-yl)acetate (16a): The corresponding carboxylic acid (2 mmol) was dissolved in dry DCM (15 mL) by adding 2 to 3 drops of dry DMF followed by $\mathrm{Et}_{3} \mathrm{~N}$ (1.5 equiv) the reaction mixture was stirred at rt for 2 h . To this reaction mixture oxalyl chloride (1.5 equiv) was added at $0{ }^{\circ} \mathrm{C}$ slowly and the
reaction mixture was stirred at rt for $6-8 \mathrm{~h}$ under a nitrogen atm. After this period, the reaction mixture was concentrated in vacuum to remove excess oxalyl chloride and solvent. The resultant acid chloride was dissolved in $\mathrm{DCM}(10 \mathrm{~mL})$, this reaction mixture was added to a separate flask which contained corresponding amine (1 mmol), $\mathrm{Et}_{3} \mathrm{~N}$ (1.5 equiv, 1.5 mmol) in $\mathrm{DCM}(5 \mathrm{~mL})$ at 0 ${ }^{\circ} \mathrm{C}$ and the resultant reaction mixture was stirred at rt for $6-8 \mathrm{~h}$ under a nitrogen atm. After this period of time, the reaction mixture was diluted with dichloromethane and then washed with water followed by saturated aqueous NaHCO_{3} solution. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuum. Purification of the resulting reaction mixture by column chromatography furnished the carboxamide 16a.

General procedure \mathbf{C} for the synthesis of carboxamides $\mathbf{1 5 f} \mathbf{- h}$ and 16c: To a solution of the corresponding 2° amine (6 mmol) dissolved in dry DCM (25 mL) was added oxalyl chloride (1.5 equiv) was added drop wise at $0{ }^{\circ} \mathrm{C}$ slowly, then, the reaction mixture was stirred at rt for 30 min , then, $\mathrm{Et}_{3} \mathrm{~N}$ (1.2 equiv) was added drop wise at $0{ }^{\circ} \mathrm{C}$. The resultant reaction mixture was stirred at rt for 6 h under a nitrogen atm. The excess oxalyl chloride and the solvent were removed under reduce pressure. The resultant crude product was dissolved in 20 mL DCM at $0{ }^{\circ} \mathrm{C}$, to this solution was added the corresponding 1° amine (5 mmol) followed by $\mathrm{Et}_{3} \mathrm{~N}$ (1.2 equiv) drop wise at $0{ }^{\circ} \mathrm{C}$. Then, the reaction mixture was stirred at rt for 6 h under a nitrogen atm and then, the reaction was quenched with water. The organic layer was separated and the aqueous layer was extracted with DCM. The combined organic layers were washed with brine solution and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The resulting reaction mixture was purified by column chromatography on silica gel to give the corresponding carboxamides $\mathbf{1 5 f} \mathbf{- h}$ and $\mathbf{1 6 c}$.

General procedure D for the synthesis of amides $15 b$ and $15 c$: The corresponding amine (5 $\mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}$ (1.5 equiv) dissolved in dry $\mathrm{DCM}(25 \mathrm{~mL})$. To this reaction mixture acid chloride $(6 \mathrm{mmol})$ was added drop wise at $0{ }^{\circ} \mathrm{C}$. Then, the reaction mixture was stirred at rt for $6-8 \mathrm{~h}$ under a nitrogen atm. After this period of time, the reaction mixture was diluted with dichloromethane and then, washed with water followed by saturated aqueous NaHCO_{3} solution. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuum. Purification of the resulting reaction mixture by column chromatography furnished the carboxamides 15b and 15c.

General procedure E for the synthesis of carboxamides (34, 37 and 43): The corresponding carboxylic acid (4 mmol) was dissolved in dry DCM (15 mL) by adding 2 to 3 drops of dry DMF. To this reaction mixture oxalyl chloride (1.5 equiv) was added at $0{ }^{\circ} \mathrm{C}$ slowly and the reaction mixture was stirred for $6-8 \mathrm{~h}$ under a nitrogen atmosphere. After this period, the reaction mixture was concentrated in vacuo to remove the excess oxalyl chloride and solvent. The acid chloride was dissolved in DCM (15 mL), this reaction mixture was added to a separate flask which contained the corresponding amine (3 mmol), $\mathrm{Et}_{3} \mathrm{~N}$ (1.5 equiv) in $\mathrm{DCM}(5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 6-8 h . After this period of time, the reaction mixture was diluted with dichloromethane and then, washed with water followed by a saturated aqueous NaHCO_{3} solution. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Purification of the resulting reaction mixture by silica column chromatography furnished the corresponding carboxamides.

General procedure F for the regioselective arylation of $\mathbf{s p}^{2} \mathbf{C}(3)-H$ bond directed by 2 picolinamide and pyrazine-2-carboxamide: A mixture of the corresponding heterocyclic carboxamides (1 equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}(10-30 \mathrm{~mol} \%), \mathrm{AgOAc}\left(1-2.2\right.$ equiv) or $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ (2.2-4 equiv) and ArI (3-4 equiv) in anhydrous toluene was heated at $110^{\circ} \mathrm{C}$ for $24-72 \mathrm{~h}$ under a nitrogen atm. After the reaction period, the reaction mixture was concentrated in vacuum and purification of the reaction mixture by silica gel column chromatography gave the corresponding C3-arylated compounds (see the corresponding Tables/Schemes for specific details).

General procedure G for the regioselective arylation of $\mathbf{s p}^{\mathbf{2}} \mathbf{C}(3)-\mathbf{H}$ bond directed by oxalylamide: A mixture of the corresponding heterocyclic carboxamides (1 equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}$ ($10 \mathrm{~mol} \%$), AgOAc (1.2-2.2 equiv) and ArI (3-4 equiv) in anhydrous toluene was heated at 110 ${ }^{\circ} \mathrm{C}$ for $2-8 \mathrm{~h}$ under a nitrogen atm. After the reaction period, the reaction mixture was concentrated in vacuum and purification of the reaction mixture by silica gel column chromatography gave the corresponding C3-arylated compounds (see the corresponding Tables/Schemes for specific details).

General procedure \mathbf{H} for the regioselective acetoxylation of compounds: A mixture of the corresponding heterocyclic carboxamides $(0.25 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%)$ and $\mathrm{PhI}(\mathrm{OAc})_{2}(2-$ 3 equiv) in anhydrous toluene was heated at $110-130^{\circ} \mathrm{C}$ for 2-72 h under a nitrogen atmosphere. After the reaction period, the reaction mixture was concentrated in vacuum and purification of
the reaction mixture by silica gel column chromatography gave the corresponding acetoxylated products (see the respective Schemes/Tables for specific entries).
\boldsymbol{N}-(Thiophen-2-ylmethyl)picolinamide (15a): Following the general procedure described above
 15a was obtained after purification by column chromatography (EtOAc:Hexane = 30:70); as a brown colored solid ($654 \mathrm{mg}, 60 \%$); mp: 103$105{ }^{\circ} \mathrm{C}$; FT-IR (KBr): 3320, 3058, 1652, 1524, 1292, $703 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.56-8.54(\mathrm{~m}, 1 \mathrm{H}), 8.41(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.25\left(\mathrm{dt}, 1 \mathrm{H}, J_{1}=7.8, J_{2}=1.0 \mathrm{~Hz}\right), 7.88$ $\left(\mathrm{td}, 1 \mathrm{H}, J_{1}=7.7, J_{2}=1.7 \mathrm{~Hz}\right), 7.46-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.25\left(\mathrm{dd}, 1 \mathrm{H}, J_{l}=5.1, J_{2}=1.2 \mathrm{~Hz}\right), 7.08-7.06$ $(\mathrm{m}, 1 \mathrm{H}), 6.98\left(\mathrm{dd}, 1 \mathrm{H}, J_{l}=5.1, J_{2}=3.5 \mathrm{~Hz}\right), 4.86\left(\mathrm{dd}, 2 \mathrm{H}, J_{1}=6.0, J_{2}=0.7 \mathrm{~Hz}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 164.0,149.6,148.1,140.8,137.4,126.9,126.3,126.2,125.2,122.4,38.2$; HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{OS}[\mathrm{M}+\mathrm{H}]^{+} 219.0592$ found 219.0582.
\boldsymbol{N}-(Thiophen-2-ylmethyl)benzamide (15b): Following the general procedure described above
 15b was obtained after purification by column chromatography (EtOAc:Hexane $=25: 75$); as a colorless solid ($918 \mathrm{mg}, 85 \%$); mp: 120-122 ${ }^{\circ} \mathrm{C}$; FT-IR (KBr): 3300, 3054, 1682, 1421, 1264, $698 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.81-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.42(\mathrm{~m}$, $2 \mathrm{H}), 7.27\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=5.1, J_{2}=1.2 \mathrm{~Hz}\right), 7.06-7.05(\mathrm{~m}, 1 \mathrm{H}), 6.99\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=5.1, J_{2}=3.5 \mathrm{~Hz}\right)$, $6.58(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.83\left(\mathrm{dd}, 2 \mathrm{H}, J_{1}=5.5, J_{2}=0.4 \mathrm{~Hz}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 167.2$, $140.8,134.1,131.7,128.6,127.0,127.0,126.3,125.4,38.9$; HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{NOS}$ $[\mathrm{M}+\mathrm{H}]^{+} 218.0640$ found 218.0643.
\boldsymbol{N}-(Thiophen-2-ylmethyl)butyramide(15c): Following the general procedure described above 15c was obtained after purification by column chromatography (EtOAc:Hexane $=30: 70$); as a colorless solid ($750 \mathrm{mg}, 82 \%$); mp: 55-57 ${ }^{\circ} \mathrm{C}$; FT-IR (KBr): 3399, 2961, 1635, 1548, 1222, $831 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.24(\mathrm{~d}, 1 \mathrm{H}, J=4.8 \mathrm{~Hz}), 6.97-$ $6.95(\mathrm{~m}, 2 \mathrm{H}), 5.93(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.62(\mathrm{~d}, 2 \mathrm{H}, J=5.6 \mathrm{~Hz}), 2.19(\mathrm{t}, 2 \mathrm{H}, J=7.4$ $\mathrm{Hz}), 1.74-1.65(\mathrm{~m}, 2 \mathrm{H}), 0.96(\mathrm{t}, 3 \mathrm{H}, J=7.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100\right.$ $\mathrm{MHz}): \delta 172.7,141.2,126.9,125.9,125.2,38.6,38.2,19.1,13.8 ;$ HRMS (ESI) calcd for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{NOS}[\mathrm{M}+\mathrm{H}]^{+} 184.0796$ found 184.0790.
N-(Thiophen-2-ylmethyl)quinoline-2-carboxamide (15d): Following the general procedure described above 15d was obtained after purification by column chromatography (EtOAc:Hexane
$=25: 75)$; as a colorless solid ($1.1 \mathrm{~g}, 83 \%$); mp: $99-101{ }^{\circ} \mathrm{C}$; FT-IR (KBr): 3392, 3115, 1673, $1519,1218,773 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.67(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.37-8.31$
 $(\mathrm{m}, 2 \mathrm{H}), 8.09(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}) .7 .89(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}), 7.78-7.74(\mathrm{~m}, 1 \mathrm{H})$, $7.65-7.61(\mathrm{~m}, 1 \mathrm{H}), 7.27\left(\mathrm{dd}, 1 \mathrm{H}, J_{l}=5.1, J_{2}=1.1 \mathrm{~Hz}\right), 7.12(\mathrm{~d}, 1 \mathrm{H}, J=2.6 \mathrm{~Hz})$, $7.01\left(\mathrm{dd}, 1 \mathrm{H}, J_{l}=5.1, J_{2}=3.5 \mathrm{~Hz}\right), 4.93(\mathrm{~d}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $100 \mathrm{MHz}): \delta 164.3,149.5,146.5,140.9,137.6,130.2,129.7,129.4,128.0$, $127.8,127.0,126.2,125.3,118.9,38.3$; HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{OS}$ $[\mathrm{M}+\mathrm{H}]^{+} 269.0749$ found 269.0756.

N-(Thiophen-2-ylmethyl)pyrazine-2-carboxamide (15e): Following the general procedure
 described above 15e was obtained after purification by column chromatography (EtOAc:Hexane $=55: 45$); as a yellow colored solid ($403 \mathrm{mg}, 37 \%$); mp: 118$120{ }^{\circ} \mathrm{C}$; FT-IR (KBr): 3380, 3085, 1666, 1522, 1265, $749 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 9.46(\mathrm{~d}, 1 \mathrm{H}, J=1.2 \mathrm{~Hz}), 8.77(\mathrm{~d}, 1 \mathrm{H}, J=2.4 \mathrm{~Hz}), 8.53(\mathrm{t}$, $1 \mathrm{H}, J=1.7 \mathrm{~Hz}), 8.16(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.27(\mathrm{~s}, 1 \mathrm{H}), 7.09(\mathrm{~d}, 1 \mathrm{H}, J=3.4 \mathrm{~Hz}), 7.00\left(\mathrm{dd}, 1 \mathrm{H}, J_{l}=5.0, J_{2}=\right.$ $3.4 \mathrm{~Hz}), 4.87(\mathrm{~d}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 162.7,147.4,144.6,144.2$, $142.6,140.2,127.0,126.4,125.5,38.2$; HRMS (ESI) calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{OS}[\mathrm{M}+\mathrm{H}]^{+} 220.0545$ found 220.0541 .

N^{1}, N^{1}-Diisopropyl- N^{2}-(thiophen-2-ylmethyl)oxalamide (15f): Following the general procedure described above $\mathbf{1 5 f}$ was obtained after purification by column chromatography (EtOAc:Hexane $=30: 70$); as a yellow colored solid ($1.27 \mathrm{~g}, 95 \%$); mp: $124-126^{\circ} \mathrm{C}$; FT-IR (KBr): 3323, 2973, 1662, 1633, 1522, 1250, $726 \mathrm{~cm}^{-}$ ${ }^{1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.59(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.22\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=5.1, J_{2}=1.2 \mathrm{~Hz}\right), 7.00(\mathrm{dd}$, $\left.1 \mathrm{H}, J_{l}=3.4, J_{2}=0.9 \mathrm{~Hz}\right), 6.95\left(\mathrm{dd}, 1 \mathrm{H}, J_{l}=5.1, J_{2}=3.4 \mathrm{~Hz}\right), 4.71-4.64(\mathrm{~m}, 1 \mathrm{H}), 4.60(\mathrm{~d}, 2 \mathrm{H}, J=$ $6.0 \mathrm{~Hz}), 3.54-3.47(\mathrm{~m}, 1 \mathrm{H}), 1.40(\mathrm{~d}, 6 \mathrm{H}, J=6.8 \mathrm{~Hz}), 1.23(\mathrm{~d}, 6 \mathrm{H}, J=6.7 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right.$, 100 MHz): $\delta 163.0,162.9,140.0,126.9,126.3,125.3,49.7,46.5,37.9,20.8,20.0 ;$ HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{NaO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 291.1143$ found 291.1130.

N^{1}, N^{1}-Diethyl- N^{2}-(thiophen-2-ylmethyl)oxalamide (15g): Following the general procedure described above $\mathbf{1 5 g}$ was obtained after purification by column chromatography (EtOAc:Hexane $=30: 70$); as a brown colored semi solid ($660 \mathrm{mg}, 55 \%$); FT-IR (DCM): 3296, 2980, 1680, 1632, 1520, 1266, $736 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR
$\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.82(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.23\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=5.1, J_{2}=1.0 \mathrm{~Hz}\right), 7.00(\mathrm{~d}, 1 \mathrm{H}, J=2.6$ $\mathrm{Hz}), 6.95\left(\mathrm{dd}, 1 \mathrm{H}, J_{I}=5.1, J_{2}=3.6 \mathrm{~Hz}\right), 4.63(\mathrm{~d}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz}), 3.77(\mathrm{q}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}), 3.41$ $(\mathrm{q}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}), 1.28(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 1.16(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100\right.$ MHz): $\delta 161.7,161.2,140.0,126.9,126.3,125.3,43.3,42.0,37.9,14.7,12.5$; HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{NaO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 263.0830$ found 263.0826.

2-Oxo-2-(piperidin-1-yl)-N-(thiophen-2-ylmethyl)acetamide (15h): Following the general procedure described above $\mathbf{1 5 h}$ was obtained after purification by column chromatography
 (EtOAc: Hexane $=60: 40$); as a brown colored solid ($756 \mathrm{mg}, 60 \%$); mp: 57-59 ${ }^{\circ} \mathrm{C}$; FT-IR (KBr): 3291, 2943, 1678, 1631, 1447, 1265, $738 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.53(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.26\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=5.0, J_{2}=1.0 \mathrm{~Hz}\right), 7.02$ $(\mathrm{d}, 1 \mathrm{H}, J=3.0 \mathrm{~Hz}), 6.97\left(\mathrm{dd}, 1 \mathrm{H}, J_{l}=5.0, J_{2}=3.5 \mathrm{~Hz}\right), 4.66(\mathrm{~d}, 2 \mathrm{H}, J=6.0$ $\mathrm{Hz}), 4.00-3.98(\mathrm{~m}, 2 \mathrm{H}), 3.60-3.58(\mathrm{~m}, 2 \mathrm{H}), 1.68-1.62(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta$ 161.6, 161.0, 139.9, 126.9, 126.3, 125.4, 47.5, 44.2, 38.0, 26.7, 25.7, 24.5; HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{NaO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 275.0830$ found 275.0838.

N-(2-Chlorobenzyl)pyrazine-2-carboxamide (15i): Following the general procedure described
 above 15 i was obtained after purification by column chromatography (EtOAc:Hexane $=55: 45$); as a colorless solid ($743 \mathrm{mg}, 60 \%$); mp: 103-105 ${ }^{\circ} \mathrm{C}$; FT-IR (KBr): 3380, 3053, 1665, 1525, 1265, $764 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}, $400 \mathrm{MHz}): \delta 9.43(\mathrm{~d}, 1 \mathrm{H}, J=1.3 \mathrm{~Hz}), 8.76(\mathrm{~d}, 1 \mathrm{H}, J=2.4 \mathrm{~Hz}), 8.54(\mathrm{dd}, 1 \mathrm{H}$, $\left.J_{1}=2.4, J_{2}=1.5 \mathrm{~Hz}\right), 8.29(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.48-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.41-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.28-7.25(\mathrm{~m}, 2 \mathrm{H})$, $4.78(\mathrm{~d}, 2 \mathrm{H}, J=6.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 163.0,147.4,144.5,144.3$, 142.6, $135.2,133.8,130.3,129.7,129.2,127.2,41.5$; HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{ClN}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$ 248.0591 found 248.0585 .

Methyl 2-(picolinamido)-2-(thiophen-2-yl)acetate (16a):Following the general procedure described above 16a was obtained after purification by column chromatography (EtOAc:Hexane

$=30: 70$); as a brown colored solid ($139 \mathrm{mg}, 50 \%$); mp: 83-85 ${ }^{\circ} \mathrm{C}$;FT-IR (KBr): 3380, 2956, 1750, 1674, 1513, 1220, $703 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}): \delta 8.91(\mathrm{~d}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}), 8.62(\mathrm{~d}, 1 \mathrm{H}, J=4.6 \mathrm{~Hz}), 8.20(\mathrm{~d}, 1 \mathrm{H}$, $J=7.8 \mathrm{~Hz}), 7.87\left(\mathrm{td}, 1 \mathrm{H}, J_{1}=7.8, J_{2}=1.7 \mathrm{~Hz}\right), 7.49-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.31$ $\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=5.1, J_{2}=1.0 \mathrm{~Hz}\right), 7.18(\mathrm{~d}, 1 \mathrm{H}, J=3.6 \mathrm{~Hz}), 7.02\left(\mathrm{dd}, 1 \mathrm{H}, J_{l}=5.1, J_{2}=3.6 \mathrm{~Hz}\right), 6.09$
$(\mathrm{d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 3.85(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 170.2,163.8,149.0,148.4$, $138.4,137.4,127.1,126.6,126.5,126.0,122.4,53.1,52.0 ;$ HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{NaO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 299.0466$ found 299.0471.
\boldsymbol{N}-(2-(Thiophen-2-yl)ethyl)picolinamide (16b): Following the general procedure described
 above 16b was obtained after purification by column chromatography (EtOAc:Hexane $=30: 70$); as a brown colored semi solid ($672 \mathrm{mg}, 58 \%$); FT-IR (DCM): 3374, 2929, 1670, 1527, 1248, $749 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}, $400 \mathrm{MHz}): \delta 8.55(\mathrm{~d}, 1 \mathrm{H}, J=4.5 \mathrm{~Hz}), 8.26(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.22(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.86\left(\mathrm{td}, 1 \mathrm{H}, J_{l}=\right.$ $\left.7.8, J_{2}=1.6 \mathrm{~Hz}\right), 7.43\left(\mathrm{dd}, 1 \mathrm{H}, J_{I}=6.8, J_{2}=5.0 \mathrm{~Hz}\right), 7.19(\mathrm{~d}, 1 \mathrm{H}, J=4.7 \mathrm{~Hz}), 6.98-6.96(\mathrm{~m}, 1 \mathrm{H})$, $6.91(\mathrm{~d}, 1 \mathrm{H}, J=3.0 \mathrm{~Hz}), 3.78(\mathrm{q}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}), 3.18(\mathrm{t}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right.$, $100 \mathrm{MHz}): \delta 164.4,149.8,148.1,141.3,137.3,127.0,126.2,125.3,123.9,122.2,40.9,30.1$; HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{OS}[\mathrm{M}+\mathrm{H}]^{+} 233.0749$ found 233.0739.
N^{l}, N^{l}-Diisopropyl- N^{2}-(2-(thiophen-2-yl)ethyl)oxalamide (16c): Following the general
 procedure described above 16c was obtained after purification by column chromatography (EtOAc : Hexane $=30: 70$); as a light yellow colored solid ($1.1 \mathrm{~g}, 81 \%$); mp: $71-73{ }^{\circ} \mathrm{C}$; FT-IR (DCM): 3285, 2973, 1672, 1628, $1448,1259,735 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.28(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.16\left(\mathrm{dd}, 1 \mathrm{H}, J_{l}=5.1, J_{2}=\right.$ $1.1 \mathrm{~Hz}), 6.94\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=5.1, J_{2}=3.4 \mathrm{~Hz}\right), 6.88-6.87(\mathrm{~m}, 1 \mathrm{H}), 4.60-4.54(\mathrm{~m}, 1 \mathrm{H}), 3.58(\mathrm{q}, 2 \mathrm{H}, J$ $=6.8 \mathrm{~Hz}), 3.53-3.46(\mathrm{~m}, 1 \mathrm{H}), 3.08(\mathrm{t}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}), 1.41(\mathrm{~d}, 6 \mathrm{H}, J=6.8 \mathrm{~Hz}), 1.21(\mathrm{~d}, 6 \mathrm{H}, J=$ $6.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 163.5,163.4,140.9,127.0,125.4,123.9,49.8,46.4$, 40.6, 29.6, 20.8, 20.1; HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{NaO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 305.1300$ found 305.1393.
\boldsymbol{N}-(Furan-2-ylmethyl)picolinamide (17): Following the general procedure described above 17 was obtained after purification by column chromatography (EtOAc :Hexane $=30: 70$); as a black
 colored solid (798 mg, 79\%); mp: 93-95 ${ }^{\circ} \mathrm{C}$; FT-IR (KBr): 3345, 3108, 1663, $1524,1165,745 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$): $\delta 8.55-8.54(\mathrm{~m}, 1 \mathrm{H}), 8.37$ (br s, 1 H), $8.22\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=7.8, J_{2}=0.9 \mathrm{~Hz}\right), 7.85\left(\mathrm{td}, 1 \mathrm{H}, J_{1}=7.7, J_{2}=1.6\right.$ $\mathrm{Hz}), 7.44-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.38\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=1.8, J_{2}=0.8 \mathrm{~Hz}\right), 6.34\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=\right.$
$\left.3.2, J_{2}=1.8 \mathrm{~Hz}\right), 6.30\left(\mathrm{dd}, 1 \mathrm{H}, J_{l}=3.2, J_{2}=0.6 \mathrm{~Hz}\right), 4.67(\mathrm{~d}, 2 \mathrm{H}, J=5.9 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 164.1,151.3,150.0,148.1,142.3,137.4,126.3,122.4,110.4,107.5,36.4$; HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 225.0640$ found 225.0648.

N-((5-Methylfuran-2-yl)methyl)picolinamide (18): Following the general procedure described
 above 18 was obtained after purification by column chromatography (EtOAc:Hexane = 30:70); as a dark brown colored semi solid ($735 \mathrm{mg}, 68 \%$); FT-IR (DCM): 3341, 2923, 1677, 1524, $1189 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ MHz): $\delta 8.51(\mathrm{~d}, 1 \mathrm{H}, J=4.7 \mathrm{~Hz}), 8.32(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.19(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz})$, $7.81(\mathrm{t}, 1 \mathrm{H}, J=7.7 \mathrm{~Hz}), 7.40-7.37(\mathrm{~m}, 1 \mathrm{H}), 6.15(\mathrm{~d}, 1 \mathrm{H}, J=2.7 \mathrm{~Hz}), 5.87(\mathrm{~s}$, $1 \mathrm{H}), 4.58(\mathrm{~d}, 2 \mathrm{H}, J=5.8 \mathrm{~Hz}), 2.24(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 164.0,152.0,149.7$, $149.3,148.1,137.3,126.2,122.3,108.4,106.3,36.5,13.6$; HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 239.0796$ found 239.0789 .

N-((3-(4-Acetylphenyl)thiophen-2-yl)methyl)picolinamide (20a): Following the general procedure described above 20awas obtained after purification by column chromatography
 (EtOAc:Hexane $=60: 40$); as a brown colored solid ($42 \mathrm{mg}, 85 \%$); mp: 112$114{ }^{\circ} \mathrm{C}$; FT-IR (KBr): 3363, 3059, 1677, 1604, 1519, 1267, $749 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.53-8.51(\mathrm{~m}, 1 \mathrm{H}), 8.38(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.22(\mathrm{dt}, 1 \mathrm{H}$, $\left.J_{1}=7.8, J_{2}=1.0 \mathrm{~Hz}\right), 8.02(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}), 7.86\left(\mathrm{td}, 1 \mathrm{H}, J_{l}=7.8, J_{2}=1.7\right.$ $\mathrm{Hz}), 7.52(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}), 7.45-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.31(\mathrm{~d}, 1 \mathrm{H}, J=5.2 \mathrm{~Hz}), 7.09(\mathrm{~d}, 1 \mathrm{H}, J=5.2$ $\mathrm{Hz}), 4.88(\mathrm{~d}, 2 \mathrm{H}, J=5.8 \mathrm{~Hz}), 2.63(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 197.7,164.1,149.4$, $148.2,140.7,139.2,137.4,136.9,135.8,129.0,128.9,128.8,126.4,124.6,122.4,37.1,26.7$; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 337.1011$ found 337.1005.
\boldsymbol{N}-((3-Phenylthiophen-2-yl)methyl)picolinamide (21a): Following the general procedure
 described above 21awas obtained after purification by column chromatography (EtOAc:Hexane = 30:70); as a brown colored semi solid ($52 \mathrm{mg}, 72 \%$); FT-IR (DCM): 3390, 3020, 1674, 1520, 1265, $756 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right):$ $\delta 8.82(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.60(\mathrm{~d}, 1 \mathrm{H}, J=4.3 \mathrm{~Hz}), 8.36(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 8.02(\mathrm{td}$, $\left.1 \mathrm{H}, J_{1}=7.8, J_{2}=1.0 \mathrm{~Hz}\right), 7.59-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.45(\mathrm{~m}, 4 \mathrm{H}), 7.38-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.28(\mathrm{~d}, 1 \mathrm{H}$, $J=5.2 \mathrm{~Hz}), 7.08(\mathrm{~d}, 1 \mathrm{H}, J=5.2 \mathrm{~Hz}), 4.89(\mathrm{~d}, 2 \mathrm{H}, J=5.7 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta$
$162.8,148.5,146.7,140.7,139.1,135.9,135.3,129.2,128.9,128.7,127.3,126.8,124.2,123.6$, 37.3; HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{NaOS}[\mathrm{M}+\mathrm{Na}]^{+} 317.0725$ found 317.0715.

N-((3-(4-Methoxyphenyl)thiophen-2-yl)methyl)picolinamide (21b): Following the general procedure described above 21bwas obtained after purification by column chromatography
 (EtOAc:Hexane = 40:60); as a brown colored solid ($56 \mathrm{mg}, 69 \%$); mp: 65-67 ${ }^{\circ} \mathrm{C}$; FT-IR (KBr): 3379, 3057, 1674, 1506, 1247, $740 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}): \delta 8.52(\mathrm{~d}, 1 \mathrm{H}, J=4.7 \mathrm{~Hz}), 8.39(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.24\left(\mathrm{dt}, 1 \mathrm{H}, J_{l}=7.8, J_{2}\right.$ $=0.9 \mathrm{~Hz}), 7.85\left(\mathrm{td}, 1 \mathrm{H}, J_{I}=7.8, J_{2}=1.6 \mathrm{~Hz}\right), 7.43-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.36(\mathrm{~d}, 2 \mathrm{H}, J$ $=8.8 \mathrm{~Hz}), 7.26(\mathrm{~d}, 1 \mathrm{H}, J=5.2 \mathrm{~Hz}), 7.05(\mathrm{~d}, 1 \mathrm{H}, J=5.2 \mathrm{~Hz}), 6.98(\mathrm{~d}, 2 \mathrm{H}, J=$ $8.8 \mathrm{~Hz}), 4.87(\mathrm{~d}, 2 \mathrm{H}, J=5.8 \mathrm{~Hz}), 3.84(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 164.1,158.9$, $149.6,148.2,140.2,137.4,134.8,129.9,129.3,128.4,126.3,124.0,122.4,114.1,55.3,37.2$; HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{NaO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 347.0830$ found 347.0817.

N-((3-(p-Tolyl)thiophen-2-yl)methyl)picolinamide (21c): Following the general procedure described above 21cwas obtained after purification by column chromatography (EtOAc:Hexane $=30: 70$); as a brown colored semi solid ($53 \mathrm{mg}, 69 \%$); FT-IR (DCM): 3381, 3055, 1673, 1515, 1288, $748 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$: $\delta 8.54-8.52(\mathrm{~m}, 1 \mathrm{H}), 8.40(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.25(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.87\left(\mathrm{dt}, 1 \mathrm{H}, J_{1}\right.$ $\left.=7.7, J_{2}=1.6 \mathrm{~Hz}\right), 7.44-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.33(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.28-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.07(\mathrm{~d}, 1 \mathrm{H}$, $J=5.2 \mathrm{~Hz}), 4.89(\mathrm{~d}, 2 \mathrm{H}, J=5.8 \mathrm{~Hz}), 2.41(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 164.0,149.6$, $148.2,140.6,137.4,137.1,135.2,133.0,129.4,129.3,128.7,126.3,124.1,122.4,37.1,21.3 ;$ HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{NaOS}[\mathrm{M}+\mathrm{Na}]^{+} 331.0881$ found 331.0875.
\boldsymbol{N}-((3-(4-Ethylphenyl)thiophen-2-yl)methyl)picolinamide (21d): Following the general
 procedure described above 21dwas obtained after purification by column chromatography (EtOAc:Hexane $=30: 70$); as a brown colored semi solid (58 $\mathrm{mg}, 72 \%$); FT-IR (DCM): 3380, 2964, 1676, 1517, 1288, $748 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.55(\mathrm{~d}, 1 \mathrm{H}, J=4.5 \mathrm{~Hz}), 8.38(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.25(\mathrm{~d}, 1 \mathrm{H}, J=$ $7.8 \mathrm{~Hz}), 7.87\left(\mathrm{td}, 1 \mathrm{H}, J_{1}=7.7, J_{2}=1.4 \mathrm{~Hz}\right), 7.45-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.36(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.30-$ $7.28(\mathrm{~m}, 3 \mathrm{H}), 7.09(\mathrm{~d}, 1 \mathrm{H}, J=5.1 \mathrm{~Hz}), 4.89(\mathrm{~d}, 2 \mathrm{H}, J=5.8 \mathrm{~Hz}), 2.71(\mathrm{q}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 1.29(\mathrm{t}$, $3 \mathrm{H}, J=7.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 164.0,149.6,148.1,143.4,140.6,137.4,135.2$,
133.3, 129.3, 128.8, 128.2, 126.3, 124.0, 122.4, 37.2, 28.6, 15.6; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{NaOS}[\mathrm{M}+\mathrm{Na}]^{+} 345.1038$ found 345.1025.

N-((3-(4-Isopropylphenyl)thiophen-2-yl)methyl)picolinamide (21e): Following the general procedure described above 21ewas obtained after purification by column chromatography
 (EtOAc:Hexane $=30: 70$); as a yellowish brown colored semi solid (61 mg , 73%); FT-IR (DCM): 3386, 2954, 1675, 1517, 1290, $745 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.55-8.53(\mathrm{~m}, 1 \mathrm{H}), 8.38(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.26-8.24(\mathrm{~m}, 1 \mathrm{H})$, $7.87\left(\mathrm{td}, 1 \mathrm{H}, J_{1}=7.7, J_{2}=1.7 \mathrm{~Hz}\right), 7.45-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.37(\mathrm{~d}, 2 \mathrm{H}, J=8.3$ $\mathrm{Hz}), 7.31(\mathrm{~d}, 2 \mathrm{H}, J=8.3 \mathrm{~Hz}), 7.28(\mathrm{~d}, 1 \mathrm{H}, J=5.2 \mathrm{~Hz}), 7.09(\mathrm{~d}, 1 \mathrm{H}, J=5.2 \mathrm{~Hz}), 4.90(\mathrm{~d}, 2 \mathrm{H}, J=$ $5.8 \mathrm{~Hz}), 3.00-2.93(\mathrm{~m}, 1 \mathrm{H}), 1.31(\mathrm{~d}, 6 \mathrm{H}, J=6.9 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 164.0$, $149.6,148.1,148.0,140.6,137.4,135.1,133.4,129.3,128.7,126.7,126.3,124.0,122.4,37.2$, 33.9, 24.0; HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{NaOS}[\mathrm{M}+\mathrm{Na}]^{+} 359.1194$ found 359.1182.

N-((3-(4-Chlorophenyl)thiophen-2-yl)methyl)picolinamide (21f):Following the general

procedure described above 21fwas obtained after purification by column chromatography (EtOAc:Hexane $=30: 70$); as a brown colored solid (64 mg , 78%); mp:92-94 ${ }^{\circ} \mathrm{C}$; FT-IR (KBr): 3378, 3059, 1674, 1518, 1092, $748 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.56-8.54(\mathrm{~m}, 1 \mathrm{H}), 8.36(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.25\left(\mathrm{dt}, 1 \mathrm{H}, J_{1}\right.$ $\left.=7.8, J_{2}=0.9 \mathrm{~Hz}\right), 7.88\left(\mathrm{td}, 1 \mathrm{H}, J_{1}=7.8, J_{2}=1.7 \mathrm{~Hz}\right), 7.47-7.44(\mathrm{~m}, 1 \mathrm{H}), 7.42(\mathrm{~d}, 2 \mathrm{H}, J=8.6$ $\mathrm{Hz}), 7.37(\mathrm{~d}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}), 7.30(\mathrm{~d}, 1 \mathrm{H}, J=5.2 \mathrm{~Hz}), 7.06(\mathrm{~d}, 1 \mathrm{H}, J=5.2 \mathrm{~Hz}), 4.86(\mathrm{~d}, 2 \mathrm{H}, J=$ $5.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 164.1,149.5,148.2,139.2,137.4,136.0,134.4,133.3$, 130.1, 129.1, 128.8, 126.4, 124.4, 122.4, 37.0; HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{ClN}_{2} \mathrm{OS}[\mathrm{M}+\mathrm{H}]^{+}$ 329.0515 found 329.0513 .

N-((3-(4-Bromophenyl)thiophen-2-yl)methyl)picolinamide (21g): Following the general procedure described above 21gwas obtained after purification by column
 chromatography (EtOAc:Hexane $=30: 70$); as a grey colored solid (46 mg , 49\%); mp: 97-99 ${ }^{\circ} \mathrm{C}$; FT-IR (KBr): 3274, 3059, 1674, 1518, 1226, $748 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.55(\mathrm{~d}, 1 \mathrm{H}, J=4.4 \mathrm{~Hz}), 8.37$ (br s, 1H), 8.24 (d, $1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.88\left(\mathrm{td}, 1 \mathrm{H}, J_{1}=7.8, J_{2}=1.7 \mathrm{~Hz}\right), 7.57(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz})$, $7.47-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.31(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}), 7.29(\mathrm{~d}, 1 \mathrm{H}, J=5.2 \mathrm{~Hz}), 7.05(\mathrm{~d}$, $1 \mathrm{H}, J=5.2 \mathrm{~Hz}), 4.85(\mathrm{~d}, 2 \mathrm{H}, J=5.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 164.1,149.5,148.2$,
139.2, 137.4, 136.0, 134.9, 131.8, 130.4, 129.0, 126.4, 124.4, 122.4, 121.5, 37.1; HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{BrN}_{2} \mathrm{NaOS}[\mathrm{M}+\mathrm{Na}]^{+} 394.9830$ found 394.9820 .

N-((3-(m-Tolyl)thiophen-2-yl)methyl)picolinamide (21h):Following the general procedure described above 21hwas obtained after purification by column chromatography (EtOAc:Hexane
 $=30: 70$); as a brown colored semi solid ($54 \mathrm{mg}, 70 \%$); FT-IR (DCM): 3380, 3056, 1676, 1518, 1288, $748 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta$ $8.54(\mathrm{~d}, 1 \mathrm{H}, J=4.4 \mathrm{~Hz}), 8.40(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.25(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.87(\mathrm{t}$, $1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.45-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.34(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.28(\mathrm{~d}, 1 \mathrm{H}, J$ $=5.1 \mathrm{~Hz}), 7.24-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.18(\mathrm{~d}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.08(\mathrm{~d}, 1 \mathrm{H}, J=5.1 \mathrm{~Hz}), 4.90(\mathrm{~d}, 2 \mathrm{H}, J=$ $5.8 \mathrm{~Hz}), 2.42(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 164.0,149.6,148.2,140.7,138.3,137.4$, 135.9, 135.5, 129.6, 129.3, 128.5, 128.1, 126.3, 125.9, 124.0, 122.4, 37.1, 21.5; HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{NaOS}[\mathrm{M}+\mathrm{Na}]^{+} 331.0881$ found 331.0873.
\boldsymbol{N}-((3-(3-Nitrophenyl)thiophen-2-yl)methyl)picolinamide (21i): Following the general procedure described above 21iwas obtained after purification by column chromatography
 (EtOAc:Hexane $=45: 55$); as a pale yellow colored solid ($60 \mathrm{mg}, 72 \%$); $\mathrm{mp}: 117-119^{\circ} \mathrm{C}$; FT-IR (KBr): 3376, 3082, 1673, 1521, 1289, $713 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.54(\mathrm{~d}, 1 \mathrm{H}, J=4.7 \mathrm{~Hz}), 8.43(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.29$ (br s, 1H), 8.22-8.18 (m, 2H), $7.87\left(\mathrm{td}, 1 \mathrm{H}, J_{1}=7.7, J_{2}=1.7 \mathrm{~Hz}\right), 7.79(\mathrm{~d}$, $1 \mathrm{H}, J=7.7 \mathrm{~Hz}), 7.62(\mathrm{t}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.46-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.35(\mathrm{~d}, 1 \mathrm{H}, J=5.2 \mathrm{~Hz}), 7.11(\mathrm{~d}$, $1 \mathrm{H}, J=5.2 \mathrm{~Hz}), 4.87(\mathrm{~d}, 2 \mathrm{H}, J=5.9 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 164.1,149.3,148.4$, $148.2,137.8,137.6,137.5,137.3,134.8,129.6,128.9,126.5,124.9,123.6,122.4,122.2,37.0$; HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{NaO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 362.0575$ found 362.0564.

N-((3-(3-Chlorophenyl)thiophen-2-yl)methyl)picolinamide

(21j):
Following the general procedure described above 21jwas obtained after purification by column chromatography (EtOAc:Hexane $=30: 70$); as a brown colored semi solid ($50 \mathrm{mg}, 61 \%$); FT-IR (DCM): 3376, 3055, 1673, 1518, $1289,748 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.55-8.54(\mathrm{~m}, 1 \mathrm{H}), 8.39(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.24$ $\left(\mathrm{dt}, 1 \mathrm{H}, J_{1}=7.8, J_{2}=0.9 \mathrm{~Hz}\right), 7.87\left(\mathrm{td}, 1 \mathrm{H}, J_{1}=7.7, J_{2}=1.7 \mathrm{~Hz}\right), 7.46-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.34$ $(\mathrm{m}, 1 \mathrm{H}), 7.34-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.30(\mathrm{~d}, 1 \mathrm{H}, J=5.2 \mathrm{~Hz}), 7.06(\mathrm{~d}, 1 \mathrm{H}, J=5.2 \mathrm{~Hz}), 4.87(\mathrm{~d}, 2 \mathrm{H}, J=$

$129.9,129.0,128.9,127.5,127.0,126.4,124.4,122.5,37.0$; HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{ClN}_{2} \mathrm{OS}[\mathrm{M}+\mathrm{H}]^{+} 329.0515$ found 329.0518 .

N-((3-(3-Bromophenyl)thiophen-2-yl)methyl)picolinamide (21k): Following the general procedure described above 21kwas obtained after purification by column chromatography

(EtOAc: Hexane = 30:70); as a brown colored semi solid ($50 \mathrm{mg}, 54 \%$); FTIR (DCM): 3385, 3055, 1677, 1518, 1265, $705 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400$ MHz): $\delta 8.55$ (d, $1 \mathrm{H}, J=4.6 \mathrm{~Hz}$), 8.38 (br s, 1 H), $8.24(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz})$, 7.89-7.85 (m, 1H), $7.58(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.50-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.31(\mathrm{~m}, 2 \mathrm{H})$, $7.30(\mathrm{~d}, 1 \mathrm{H}, J=5.1 \mathrm{~Hz}), 7.05(\mathrm{~d}, 1 \mathrm{H}, J=5.1 \mathrm{~Hz}), 4.87(\mathrm{~d}, 2 \mathrm{H}, J=5.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right.$, $100 \mathrm{MHz}): \delta 164.1,149.5,148.2,138.9,138.0,137.4,136.5,131.8,130.4,130.2,129.0,127.4$, 126.4, 124.4, 122.7, 122.4, 37.0; HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{BrN}_{2} \mathrm{NaOS}[\mathrm{M}+\mathrm{Na}]^{+} 394.9830$ found 394.9832.
N-((3-(3,4-Dimethylphenyl)thiophen-2-yl)methyl)picolinamide (211):Following the general procedure described above 211was obtained after purification by column chromatography
 (EtOAc:Hexane $=30: 70$); as a brown colored semi solid ($65 \mathrm{mg}, 81 \%$); FT-IR (DCM): 3381, 2919, 1675, 1517, 1287, $751 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$): $\delta 8.55-8.53(\mathrm{~m}, 1 \mathrm{H}), 8.36(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.25(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.89-7.85(\mathrm{~m}, 1 \mathrm{H})$, 7.46-7.42 (m, 1H), $7.28(\mathrm{~d}, 1 \mathrm{H}, J=5.2 \mathrm{~Hz}), 7.23-7.16(\mathrm{~m}, 3 \mathrm{H}), 7.07(\mathrm{~d}, 1 \mathrm{H}, J=$ $5.2 \mathrm{~Hz}), 4.89(\mathrm{~d}, 2 \mathrm{H}, J=5.8 \mathrm{~Hz}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $100 \mathrm{MHz}): \delta 164.0,149.7,148.1,140.7,137.3,136.8,135.8,135.1,133.5,130.1,129.9,129.4$, $126.3,126.2,123.9,122.4,37.1,19.9,19.5 ;$ HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{OS}[\mathrm{M}+\mathrm{H}]^{+}$ 323.1218 found 323.1226 .
$\boldsymbol{N - ((3 - (3 , 4 - D i c h l o r o p h e n y l) t h i o p h e n - 2 - y l) m e t h y l) p i c o l i n a m i d e ~ (2 1 m) : ~ F o l l o w i n g ~ t h e ~ g e n e r a l ~}$ procedure described above 21mwas obtained after purification by column
 chromatography (EtOAc:Hexane $=30: 70$); as a pale yellow colored solid (57 $\mathrm{mg}, 63 \%$); mp: $108-110^{\circ} \mathrm{C}$; FT-IR (KBr): 3378, 3058, 1674, 1518, 1135, 746 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.55-8.54(\mathrm{~m}, 1 \mathrm{H}), 8.37(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.23$ $(\mathrm{d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.88\left(\mathrm{td}, 1 \mathrm{H}, J_{1}=7.7, J_{2}=1.7 \mathrm{~Hz}\right), 7.53-7.50(\mathrm{~m}, 2 \mathrm{H})$, 7.47-7.44 (m, 1H), $7.31(\mathrm{~d}, 1 \mathrm{H}, J=5.3 \mathrm{~Hz}), 7.29-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.04(\mathrm{~d}, 1 \mathrm{H}, J=5.3 \mathrm{~Hz}), 4.85(\mathrm{~d}$, $2 \mathrm{H}, J=5.9 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 164.1,149.4,148.2,137.9,137.4,136.8,135.9$,
132.7, 131.5, 130.6, 130.6, 128.9, 128.1, 126.4, 124.6, 122.4, 37.0; HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{OS}[\mathrm{M}+\mathrm{H}]^{+} 363.0126$ found 363.0138 .

N-((3-(3,5-Dimethylphenyl)thiophen-2-yl)methyl)picolinamide (21n): Following the general
 procedure described above 21nwas obtained after purification by column chromatography (EtOAc:Hexane $=30: 70$); as a brown colored semi solid ($58 \mathrm{mg}, 73 \%$); FT-IR (DCM): 3390, 3051, 1677, 1517, 1265, $740 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.55-8.54(\mathrm{~m}, 1 \mathrm{H}), 8.37(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.25(\mathrm{dt}, 1 \mathrm{H}$, $\left.J_{1}=7.8, J_{2}=1.0 \mathrm{~Hz}\right), 7.87\left(\mathrm{td}, 1 \mathrm{H}, J_{1}=7.8, J_{2}=1.7 \mathrm{~Hz}\right), 7.46-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.27(\mathrm{~d}, 1 \mathrm{H}, J=5.1$ Hz), $7.07(\mathrm{~d}, 1 \mathrm{H}, J=5.1 \mathrm{~Hz}), 7.04(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 7.01(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.90(\mathrm{~d}, 2 \mathrm{H}, J=5.8 \mathrm{~Hz}), 2.38(\mathrm{br} \mathrm{s}$, $6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 164.0,149.6,148.1,140.8,138.1,137.4,135.9,135.3$, $129.4,129.0,126.7,126.3,123.9,122.4,37.1,21.4$; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{NaOS}$ $[\mathrm{M}+\mathrm{Na}]^{+} 345.1038$ found 345.1046.
N-((3-(2,3-Dihydrobenzo[b][1,4]dioxin-6-yl)thiophen-2-yl)methyl)picolinamide
(210):

Following the general procedure described above 210was obtained after purification by column chromatography (EtOAc:Hexane $=45: 55$); as a brown colored semi solid (65
 $\mathrm{mg}, 74 \%$); FT-IR (DCM): 3378, 3056, 1674, 1506, 1286, $735 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.42(\mathrm{~d}, 1 \mathrm{H}, J=4.2 \mathrm{~Hz}), 8.27(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.13(\mathrm{~d}, 1 \mathrm{H}, J$ $=7.8 \mathrm{~Hz}), 7.75\left(\mathrm{td}, 1 \mathrm{H}, J_{1}=7.7, J_{2}=1.5 \mathrm{~Hz}\right), 7.34-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.15(\mathrm{~d}$, $1 \mathrm{H}, J=5.2 \mathrm{~Hz}), 6.92(\mathrm{~d}, 1 \mathrm{H}, J=5.2 \mathrm{~Hz}), 6.84(\mathrm{~d}, 1 \mathrm{H}, J=1.8 \mathrm{~Hz}), 6.82-6.78$ $(\mathrm{m}, 2 \mathrm{H}), 4.77(\mathrm{~d}, 2 \mathrm{H}, J=5.8 \mathrm{~Hz}), 4.19(\mathrm{~s}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 164.1,149.6$, $148.1,143.5,143.0,140.0,137.4,135.1,129.3,129.2,126.3,124.0,122.4,122.0,117.6,117.4$, 64.4, 64.4, 37.1; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 353.0960$ found 353.0951 .

N-((3-(6-Fluoropyridin-3-yl)thiophen-2-yl)methyl)picolinamide (21p): Following the general procedure described above 21pwas obtained after purification by column chromatography
 (EtOAc:Hexane = 35:65); as a brown colored semi solid ($31 \mathrm{mg}, 40 \%$); FTIR (DCM): 3372, 3059, 1672, 1519, 1253, $751 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}): \delta 8.55-8.53(\mathrm{~m}, 1 \mathrm{H}), 8.41(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.30-8.29(\mathrm{~m}, 1 \mathrm{H}), 8.22(\mathrm{dt}, 1 \mathrm{H}$, $\left.J_{1}=7.8, J_{2}=1.0 \mathrm{~Hz}\right), 7.92-7.86(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.44(\mathrm{~m}, 1 \mathrm{H}), 7.35(\mathrm{~d}, 1 \mathrm{H}, J=$ $5.2 \mathrm{~Hz}), 7.06(\mathrm{~d}, 1 \mathrm{H}, J=5.2 \mathrm{~Hz}), 7.04-7.01(\mathrm{~m}, 1 \mathrm{H}), 4.83(\mathrm{~d}, 2 \mathrm{H}, J=5.9 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right.$, $100 \mathrm{MHz}): \delta 164.1,162.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=238.5 \mathrm{~Hz}\right), 149.3,148.2,147.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=14.6 \mathrm{~Hz}\right), 141.4(\mathrm{~d}$,
$\left.J_{\mathrm{C}-\mathrm{F}}=7.8 \mathrm{~Hz}\right), 137.5,137.2,135.4,129.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=4.3 \mathrm{~Hz}\right), 128.8,126.5,125.0,122.4,109.5(\mathrm{~d}$, $J_{\mathrm{C}-\mathrm{F}}=37.2 \mathrm{~Hz}$), 36.9; HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{FN}_{3} \mathrm{OS}[\mathrm{M}+\mathrm{H}]^{+} 314.0763$ found 314.0753.
\boldsymbol{N}-((3-(5-Bromopyridin-2-yl)thiophen-2-yl)methyl)picolinamide (21q): Following the general

procedure described above 21qwas obtained after purification by column chromatography (EtOAc:Hexane = 35:65); as a colorless solid ($32 \mathrm{mg}, 35 \%$); mp: 112-114 ${ }^{\circ} \mathrm{C}$; FT-IR (KBr): 3390, 3054, 1671, 1515, 1265, $739 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$): $\delta 9.34(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.84(\mathrm{~s}, 1 \mathrm{H}), 8.58-8.57(\mathrm{~m}, 1 \mathrm{H})$, $8.23(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.90-7.82(\mathrm{~m}, 2 \mathrm{H}), 7.50(\mathrm{~d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}), 7.42-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.31-$ $7.23(\mathrm{~m}, 2 \mathrm{H}), 5.00(\mathrm{~d}, 2 \mathrm{H}, J=6.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 164.0,152.9,150.5$, $150.2,148.3,139.8,139.5,137.2,136.9,127.7,126.1,124.0,123.4,122.5,118.6,36.7$; HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{BrN}_{3} \mathrm{OS}[\mathrm{M}+\mathrm{H}]^{+} 373.9963$ found 373.9948.
\boldsymbol{N}-([2,3'-Bithiophen]-2'-ylmethyl)picolinamide (21r): Following the general procedure
 described above 21rwas obtained after purification by column chromatography (EtOAc:Hexane = 30:70); as a brown colored semi solid ($56 \mathrm{mg}, 75 \%$); FT-IR (DCM): 3380, 3104, 1673, 1518, $1288 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta$ $8.54(\mathrm{~d}, 1 \mathrm{H}, J=4.7 \mathrm{~Hz}), 8.44(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.25(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.86(\mathrm{t}, 1 \mathrm{H}, J$ $=7.8 \mathrm{~Hz}), 7.43\left(\mathrm{dd}, 1 \mathrm{H}, J_{l}=7.6, J_{2}=4.8 \mathrm{~Hz}\right), 7.33(\mathrm{~d}, 1 \mathrm{H}, J=5.2 \mathrm{~Hz}), 7.25(\mathrm{~d}, 1 \mathrm{H}, J=5.2$ $\mathrm{Hz}), 7.17(\mathrm{~d}, 2 \mathrm{H}, J=4.5 \mathrm{~Hz}), 7.10(\mathrm{t}, 1 \mathrm{H}, J=4.5 \mathrm{~Hz}), 4.98(\mathrm{~d}, 2 \mathrm{H}, J=5.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 164.1,149.5,148.2,137.4,137.4,135.5,132.6,129.2,127.7,126.4,125.7$, 125.1, 124.2, 122.4, 37.2; HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{NaOS}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 323.0289$ found 323.0280 .

Methyl 2-(3-(4-methoxyphenyl)thiophen-2-yl)-2-(picolinamido)acetate (22a): Following the
 general procedure described above 22awas obtained after purification by column chromatography (EtOAc:Hexane $=35: 65$); as a brown colored solid ($28 \mathrm{mg}, 30 \%$); $\mathrm{mp}: 141-143{ }^{\circ} \mathrm{C}$; FT-IR (KBr): 3383, 2950, 1746, 1681, 1506, $1248,750 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.79(\mathrm{~d}, 1 \mathrm{H}, J=6.4 \mathrm{~Hz}), 8.60$ $(\mathrm{d}, 1 \mathrm{H}, J=4.6 \mathrm{~Hz}), 8.16(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.85\left(\mathrm{td}, 1 \mathrm{H}, J_{1}=7.7, J_{2}=1.1 \mathrm{~Hz}\right), 7.48(\mathrm{~d}, 2 \mathrm{H}, J=$ $8.6 \mathrm{~Hz}), 7.46-7.44(\mathrm{~m}, 1 \mathrm{H}), 7.35(\mathrm{~d}, 1 \mathrm{H}, J=5.2 \mathrm{~Hz}), 7.06(\mathrm{~d}, 1 \mathrm{H}, J=5.2 \mathrm{~Hz}), 7.00(\mathrm{~d}, 2 \mathrm{H}, J=$ $8.6 \mathrm{~Hz}), 6.09(\mathrm{~d}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta$ $170.7,163.8,159.2,149.0,148.3,142.4,137.3,132.1,130.1,129.8,127.9,126.5,125.0,122.4$,
114.2, 55.3, 53.1, 51.2; HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{NaO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 405.0885$ found 405.0900 .

Methyl 2-(picolinamido)-2-(3-(m-tolyl)thiophen-2-yl)acetate (22b): Following the general procedure described above 22bwas obtained after purification by column chromatography
 (EtOAc:Hexane = 35:65); as a pale yellow colored solid ($28 \mathrm{mg}, 31 \%$); mp: 84$86{ }^{\circ} \mathrm{C}$; FT-IR (KBr): 3381, 3056, 1746, 1679, 1505, 1265, $738 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.79(\mathrm{~d}, 1 \mathrm{H}, J=6.6 \mathrm{~Hz}), 8.60-8.59(\mathrm{~m}, 1 \mathrm{H}), 8.17(\mathrm{~d}, 1 \mathrm{H}, J$ $=7.8 \mathrm{~Hz}), 7.85\left(\mathrm{td}, 1 \mathrm{H}, J_{1}=7.7, J_{2}=1.6 \mathrm{~Hz}\right), 7.47-7.44(\mathrm{~m}, 1 \mathrm{H}), 7.36-7.34(\mathrm{~m}$, $4 \mathrm{H}), 7.21-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.08(\mathrm{~d}, 1 \mathrm{H}, J=5.2 \mathrm{~Hz}), 6.10(\mathrm{~d}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 170.7,163.7,149.0,148.3,142.8,138.3,137.3,135.4$, $132.6,129.8,128.6,128.5,126.5,126.0,125.1,122.4,53.0,51.2,21.5$; HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{NaO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 389.0936$ found 389.0923.

Methyl 2-(3-(4-acetylphenyl)thiophen-2-yl)-2-(picolinamido)acetate (22c): Following the
 general procedure described above 22cwas obtained after purification by column chromatography (EtOAc:Hexane $=60: 40$); as a brown colored solid ($50 \mathrm{mg}, 57 \%$); mp: $154-156{ }^{\circ} \mathrm{C}$; FT-IR (KBr): 3377, 2954, 1746, 1681, 1505, $1268,750 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.89(\mathrm{~d}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}), 8.61-$ $8.59(\mathrm{~m}, 1 \mathrm{H}), 8.14(\mathrm{~d}, 1 \mathrm{H}, J=7.7 \mathrm{~Hz}), 8.07(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.85\left(\mathrm{td}, 1 \mathrm{H}, J_{1}=7.7, J_{2}=1.7\right.$ $\mathrm{Hz}), 7.69(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.48-7.44(\mathrm{~m}, 1 \mathrm{H}), 7.39(\mathrm{~d}, 1 \mathrm{H}, J=5.2 \mathrm{~Hz}), 7.09(\mathrm{~d}, 1 \mathrm{H}, J=5.2$ $\mathrm{Hz}), 6.11(\mathrm{~d}, 1 \mathrm{H}, J=7.0 \mathrm{~Hz}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.65(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 197.8$, $170.4,163.8,148.9,148.4,141.4,140.4,137.4,136.1,134.3,129.3,129.2,128.8,126.7,125.5$, 122.4, 53.2, 51.1, 26.7; HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 395.1066$ found 395.1076.

N-((3-Phenylthiophen-2-yl)methyl)pyrazine-2-carboxamide (23a): Following the general procedure described above 23awas obtained after purification by column chromatography
 (EtOAc:Hexane $=55: 45$); as a brown colored semi solid ($59 \mathrm{mg}, 40 \%$); FT-IR (DCM): 3391, 3059, 1678, 1522, 1265, $738 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}): \delta 9.45(\mathrm{~d}, 1 \mathrm{H}, J=1.3 \mathrm{~Hz}), 8.76(\mathrm{~d}, 1 \mathrm{H}, J=2.4 \mathrm{~Hz}), 8.51-8.50(\mathrm{~m}, 1 \mathrm{H})$, 8.11 (br s, 1H), 7.47-7.34 (m, 5H), $7.30(\mathrm{~d}, 1 \mathrm{H}, J=5.1 \mathrm{~Hz}), 7.09(\mathrm{~d}, 1 \mathrm{H}, J=$
$5.1 \mathrm{~Hz}), 4.90(\mathrm{~d}, 2 \mathrm{H}, J=5.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 162.7,147.4,144.5,144.2$, $142.6,140.8,135.8,134.9,129.4,128.8,128.7,127.5,124.3,37.1$; HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{OS}[\mathrm{M}+\mathrm{H}]^{+} 296.0858$ found 296.0870.

N-((3-(p-Tolyl)thiophen-2-yl)methyl)pyrazine-2-carboxamide (23b): Following the general
 procedure described above 23bwas obtained after purification by column chromatography (EtOAc:Hexane $=55: 45$); as a colorless solid ($38 \mathrm{mg}, 25 \%$); mp: 122-124 ${ }^{\circ} \mathrm{C}$; FT-IR (KBr): 3386, 2922, 1674, 1506, 1198, $821 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$): $\delta 9.45(\mathrm{~d}, 1 \mathrm{H}, J=1.4 \mathrm{~Hz}), 8.76(\mathrm{~d}, 1 \mathrm{H}, J=2.5 \mathrm{~Hz})$, $8.51\left(\mathrm{dd}, 1 \mathrm{H}, J_{l}=2.5, J_{2}=1.4 \mathrm{~Hz}\right), 8.11(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.32-7.25(\mathrm{~m}, 5 \mathrm{H}), 7.08(\mathrm{~d}, 1 \mathrm{H}, J=5.2 \mathrm{~Hz})$, $4.89(\mathrm{~d}, 2 \mathrm{H}, J=5.8 \mathrm{~Hz}), 2.40(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 162.7,147.4,144.5$, $144.2,143.0,140.9,137.2,134.4,132.9,129.4,129.4,128.6,124.2,37.1,21.2 ;$ HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{OS}[\mathrm{M}+\mathrm{H}]^{+} 310.1014$ found 310.1021.

N-((3-(4-Acetylphenyl)thiophen-2-yl)methyl)pyrazine-2-carboxamide (23c): Following the general procedure described above 23cwas obtained after purification by column (chromatography (EtOAc:Hexane $=80: 20$); as a brown colored solid (37 mg , 55%); mp: 150-152 ${ }^{\circ} \mathrm{C}$; FT-IR (KBr): 3390, 3055, 1673, 1523, $1265,735 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 9.44(\mathrm{~d}, 1 \mathrm{H}, J=1.5 \mathrm{~Hz}), 8.77(\mathrm{~d}, 1 \mathrm{H}, J=2.4$ $\mathrm{Hz}), 8.52\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=2.4, J_{2}=1.5 \mathrm{~Hz}\right), 8.15(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.04(\mathrm{~d}, 2 \mathrm{H}, J=8.4$ $\mathrm{Hz}), 7.53(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.34(\mathrm{~d}, 1 \mathrm{H}, J=5.2 \mathrm{~Hz}), 7.11(\mathrm{~d}, 1 \mathrm{H}, J=5.2 \mathrm{~Hz}), 4.90(\mathrm{~d}, 2 \mathrm{H}, J=$ $5.8 \mathrm{~Hz}), 2.65(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 197.6,162.7,147.5,144.5,144.0,142.6$, $140.6,139.5,136.2,135.9,129.1,128.9,128.8,124.8,37.1,26.7$; HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{NaO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 360.0783$ found 360.0793 .

N-((3-(3-Bromophenyl)thiophen-2-yl)methyl)pyrazine-2-carboxamide (23d): Following the general procedure described above 23dwas obtained after purification by column
 chromatography (EtOAc:Hexane $=55: 45$); as a brown colored semi solid ($37 \mathrm{mg}, 20 \%$); FT-IR (DCM): 3311, 2924, 1675, 1520, 1265, $749 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 9.45(\mathrm{~d}, 1 \mathrm{H}, J=1.3 \mathrm{~Hz}), 8.78(\mathrm{~d}, 1 \mathrm{H}, J=2.3$ $\mathrm{Hz}), 8.53\left(\mathrm{dd}, 1 \mathrm{H}, J_{I}=2.3, J_{2}=1.6 \mathrm{~Hz}\right), 8.10(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.56-7.55(\mathrm{~m}, 1 \mathrm{H})$, $7.50\left(\mathrm{dt}, 1 \mathrm{H}, J_{1}=7.5, J_{2}=1.6 \mathrm{~Hz}\right), 7.36-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.06(\mathrm{~d}, 1 \mathrm{H}, J=5.2 \mathrm{~Hz}), 4.88(\mathrm{~d}, 2 \mathrm{H}, J=$ $5.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 162.7,147.5,144.5,144.1,142.6,139.2,137.9,135.7$,
$131.8,130.5,130.2,129.1,127.4,124.6,122.7,37.0$; HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{BrN}_{3} \mathrm{OS}$ $[\mathrm{M}+\mathrm{H}]^{+} 373.9963$ found 373.9960 .
$\boldsymbol{N - ((3 - (m - T o l y l) t h i o p h e n - 2 - y l) m e t h y l) p y r a z i n e - 2 - c a r b o x a m i d e ~ (2 3 e) : ~ F o l l o w i n g ~ t h e ~ g e n e r a l ~}$
 procedure described above 23ewas obtained after purification by column chromatography (EtOAc:Hexane $=55: 45$); as a brown colored solid (63 mg , 41%); mp: 69-71 ${ }^{\circ}$ C; FT-IR (KBr): $3360,3053,1675,1522,1020,731 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 9.45(\mathrm{~d}, 1 \mathrm{H}, J=1.5 \mathrm{~Hz}), 8.75(\mathrm{~d}, 1 \mathrm{H}, J=2.2$ $\mathrm{Hz}), 8.51-8.50(\mathrm{~m}, 1 \mathrm{H}), 8.11(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.33(\mathrm{t}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}), 7.29(\mathrm{~d}, 1 \mathrm{H}, J=5.4 \mathrm{~Hz}), 7.22-$ $7.16(\mathrm{~m}, 3 \mathrm{H}), 7.08(\mathrm{~d}, 1 \mathrm{H}, J=5.4 \mathrm{~Hz}), 4.89(\mathrm{~d}, 2 \mathrm{H}, J=5.8 \mathrm{~Hz}), 2.41(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right.$, $100 \mathrm{MHz}): \delta 162.7,147.4,144.5,144.2,142.6,141.0,138.3,135.8,134.7,129.5,129.4,128.6$, 128.2, 125.8, 124.2, 37.1, 21.5; HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{OS}[\mathrm{M}+\mathrm{H}]^{+} 310.1014$ found 310.1000 .

N-((4'-Acetyl-3-chloro-[1,1'-biphenyl]-2-yl)methyl)pyrazine-2-carboxamide (23f): Following the general procedure described above 23fwas obtained after purification by column chromatography (EtOAc :Hexane $=80: 20$); as a brown colored solid ($44 \mathrm{mg}, 24 \%$); mp: 114-116
 ${ }^{\circ} \mathrm{C}$; FT-IR (KBr): 3397, 2928, 1682, 1522, 1266, $748 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}): \delta 9.37(\mathrm{~d}, 1 \mathrm{H}, J=1.3 \mathrm{~Hz}), 8.75(\mathrm{~d}, 1 \mathrm{H}, J=2.4 \mathrm{~Hz}), 8.51\left(\mathrm{dd}, 1 \mathrm{H}, J_{l}=2.2\right.$, $\left.J_{2}=1.6 \mathrm{~Hz}\right), 8.03(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}), 7.51\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=8.0, J_{2}=1.3 \mathrm{~Hz}\right), 7.44$ $(\mathrm{d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}), 7.36(\mathrm{t}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.23\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=7.6, J_{2}=1.2 \mathrm{~Hz}\right)$, $4.70(\mathrm{~d}, 2 \mathrm{H}, J=5.4 \mathrm{~Hz}), 2.65(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 197.7$, $162.2,147.3,144.8,144.4,144.3,144.0,142.6,136.4,136.0,132.4,129.7,129.4,129.1,128.9$, 128.5, 39.4, 26.8; HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{ClN}_{3} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 388.0829$ found 388.0819 .
\boldsymbol{N}^{1}-((3-(4-Acetylphenyl)thiophen-2-yl)methyl)- N^{2}, N^{2}-diisopropyloxalamide (24a): Following the general procedure described above 24awas obtained after purification by column chromatography (EtOAc:Hexane $=70: 30$); as a brown colored solid ($66 \mathrm{mg}, 69 \%$); mp: 120-122
 ${ }^{\circ} \mathrm{C}$; FT-IR (KBr): 3276, 2974, 1679, 1633, 1447, 1266, $755 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.01(\mathrm{~d}, 2 \mathrm{H}, J=8.3 \mathrm{~Hz}), 7.62(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.48$ $(\mathrm{d}, 2 \mathrm{H}, J=8.3 \mathrm{~Hz}), 7.29(\mathrm{~d}, 1 \mathrm{H}, J=5.2 \mathrm{~Hz}), 7.06(\mathrm{~d}, 1 \mathrm{H}, J=5.2 \mathrm{~Hz})$, 4.67-4.62 (m, 1H), 4.66 (d, 2H, $J=5.8 \mathrm{~Hz}), 3.54-3.47(\mathrm{~m}, 1 \mathrm{H}), 2.63(\mathrm{~s}$, $3 \mathrm{H}), 1.39(\mathrm{~d}, 6 \mathrm{H}, J=6.8 \mathrm{~Hz}), 1.23(\mathrm{~d}, 6 \mathrm{H}, J=6.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$,
$100 \mathrm{MHz}): \delta 197.8,163.0,162.9,140.6,139.4,136.1,135.8,129.0,128.9,128.7,124.7,49.8$, 46.5, 36.8, 26.7, 20.9, 20.0; HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{NaO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 409.1562$ found 409.1544 .
N^{l}, N^{l}-Diisopropyl- N^{2}-((3-phenylthiophen-2-yl)methyl)oxalamide (24b): Following the general procedure described above 24bwas obtained after purification by column chromatography
 (EtOAc:Hexane = 30:70); as a brown colored semi solid ($870 \mathrm{mg}, 70 \%$); FT-IR (DCM): 3272, 2972, 1673, 1624, 1448, 1257, $735 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.46-7.19(\mathrm{~m}, 6 \mathrm{H}), 7.06(\mathrm{~d}, 1 \mathrm{H}, J=5.2 \mathrm{~Hz}), 4.76-$ $4.56(\mathrm{~m}, 1 \mathrm{H}), 4.68(\mathrm{~d}, 2 \mathrm{H}, J=5.8 \mathrm{~Hz}), 3.56-3.49(\mathrm{~m}, 1 \mathrm{H}), 1.43(\mathrm{~d}, 6 \mathrm{H}, J=$ $6.8 \mathrm{~Hz}), 1.25(\mathrm{~d}, 6 \mathrm{H}, J=6.7 \mathrm{~Hz}),{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 162.8,162.7,140.8,135.8$, 134.5, 130.2, 129.3, 128.7, 128.7, 127.4, 124.3, 49.7, 46.6, 36.8, 20.9, 20.1; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{NaO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 367.1456$ found 367.1442.
N^{l}, N^{l}-Diisopropyl- $N^{2}-((3-(p-t o l y l) t h i o p h e n-2-y l) m e t h y l) o x a l a m i d e(24 c):$ Following the general
 procedure described above 24cwas obtained after purification by column chromatography (EtOAc:Hexane $=30: 70$); as a brown colored semi solid (57 $\mathrm{mg}, 64 \%$); FT-IR (DCM): 3273, 2971, 1675, 1624, 1447, 1254, $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.28-7.23(\mathrm{~m}, 5 \mathrm{H}), 7.05(\mathrm{~d}, 1 \mathrm{H}, J=5.2 \mathrm{~Hz})$, 4.77-4.70 (m, 1H), 4.67 (d, 2H, $J=5.8 \mathrm{~Hz}), 3.56-3.49(\mathrm{~m}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~d}, 6 \mathrm{H}, J=6.8$ $\mathrm{Hz}), 1.25(\mathrm{~d}, 6 \mathrm{H}, J=6.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 162.8,162.7,140.8,137.2,134.1$, $132.8,129.4,128.6,124.2,49.7,46.6,36.8,21.2,20.9,20.1$; HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{NaO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 381.1613$ found 381.1602.
N^{l}, N^{l}-Diisopropyl- N^{2}-((3-(m-tolyl)thiophen-2-yl)methyl)oxalamide (24d): Following the general procedure described above 24dwas obtained after purification by column chromatography (EtOAc:Hexane $=30: 70$); as a brown colored semi solid ($62 \mathrm{mg}, 70 \%$); FT-IR
 (DCM): 3271, 2968, 1673, 1623, 1448, 1256, $734 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.32(\mathrm{t}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 7.27(\mathrm{~d}, 1 \mathrm{H}, J=5.2 \mathrm{~Hz})$, 7.18 (br s, 2H), 7.16 (br s, 1H), $7.05(\mathrm{~d}, 1 \mathrm{H}, J=5.2 \mathrm{~Hz}$), 4.76-4.71 (m, $1 \mathrm{H}), 4.69(\mathrm{~d}, 2 \mathrm{H}, J=5.8 \mathrm{~Hz}), 3.56-3.49(\mathrm{~m}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~d}$,
$6 \mathrm{H}, J=6.8 \mathrm{~Hz}), 1.25(\mathrm{~d}, 6 \mathrm{H}, J=6.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 162.7,162.7,141.0$, $138.3,135.7,134.3,129.5,129.4,128.5,128.2,125.8,124.2,49.7,46.6,36.8,21.5,20.9,20.1$; HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{NaO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 381.1613$ found 381.1600.
N^{l}, N^{l}-Diethyl- N^{2}-((3-(p-tolyl)thiophen-2-yl)methyl)oxalamide (25a): Following the general

procedure described above 25awas obtained after purification by column chromatography (EtOAc:Hexane $=30: 70$); as a brown colored solid (66 mg , 75%); mp: 104-106 ${ }^{\circ} \mathrm{C}$; FT-IR (KBr): 3287, 2976, 1680, 1630, 1507, 1245, $735 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.64$ (br s, 1H), 7.28-7.23 (m, $5 \mathrm{H}), 7.04(\mathrm{~d}, 1 \mathrm{H}, J=5.2 \mathrm{~Hz}), 4.67(\mathrm{~d}, 2 \mathrm{H}, J=5.8 \mathrm{~Hz}), 3.78(\mathrm{q}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}), 3.41(\mathrm{q}, 2 \mathrm{H}, J=$ $7.0 \mathrm{~Hz}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 1.18(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100\right.$ $\mathrm{MHz}): \delta 161.3,161.0,140.8,137.2,134.1,132.9,129.4,129.4,128.6,124.2,43.3,42.1,36.8$, 21.2, 14.8, 12.5; HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{NaO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 353.1300$ found 353.1290 .
N^{1}-((3-(3,5-Dimethylphenyl)thiophen-2-yl)methyl)- N^{2}, N^{2}-diethyloxalamide(25b): Following

the general procedure described above 25bwas obtained after purification by column chromatography (EtOAc:Hexane $=30: 70$); as a brown colored semi solid (49 mg , 57%); FT-IR (DCM): 3281, 2931, $1679,1629,1460,1245,732 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.57$ (br s, 1H), $7.27(\mathrm{~d}, 1 \mathrm{H}, J=5.2 \mathrm{~Hz}$), $7.04(\mathrm{~d}, 1 \mathrm{H}, J=5.2 \mathrm{~Hz}$), 7.01 (br s, 1H), 6.98 (br s, 2H), 4.69 $(\mathrm{d}, 2 \mathrm{H}, J=5.8 \mathrm{~Hz}), 3.78(\mathrm{q}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}), 3.42(\mathrm{q}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}), 2.37(\mathrm{~s}, 6 \mathrm{H}), 1.30(\mathrm{t}, 3 \mathrm{H}, J$ $=7.0 \mathrm{~Hz}), 1.19(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}){ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 161.3,161.0,141.1,138.2$, 135.7, 134.2, 129.4, 129.1, 126.6, 124.1, 43.3, 42.1, 36.8, 21.4, 14.8, 12.5; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{NaO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 367.1456$ found 367.1444 .

N-((3-(4-Methoxyphenyl)thiophen-2-yl)methyl)-2-oxo-2-(piperidin-1-yl)acetamide
Following the general procedure described above 26was obtained after purification by column
 chromatography (EtOAc:Hexane $=65: 35$); as a colorless solid (67 mg , 75%); mp: 141-143 ${ }^{\circ} \mathrm{C}$; FT-IR (KBr): 3296, 2938, 1678, 1631, 1506, 1247, $756 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.46(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.30(\mathrm{~d}, 2 \mathrm{H}, J=$ $8.7 \mathrm{~Hz}), 7.26(\mathrm{~d}, 1 \mathrm{H}, J=5.2 \mathrm{~Hz}), 7.03(\mathrm{~d}, 1 \mathrm{H}, J=5.2 \mathrm{~Hz}), 6.97(\mathrm{~d}, 2 \mathrm{H}, J=$
$8.7 \mathrm{~Hz}), 4.66(\mathrm{~d}, 2 \mathrm{H}, J=5.8 \mathrm{~Hz}), 3.96-3.93(\mathrm{~m}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.58-$ $3.56(\mathrm{~m}, 2 \mathrm{H}), 1.68-1.62(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 161.4,160.8,159.0,140.6$,
133.6, 129.8, 129.4, 128.2, 124.1, 114.1, 55.4, 47.4, 44.3, 36.9, 26.8, 25.7, 24.5; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{NaO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 381.1249$ found 381.1236.

N-((3-Phenylfuran-2-yl)methyl)picolinamide (27a): Following the general procedure described above 27awas obtained after purification by column chromatography (EtOAc : Hexane $=30: 70$);
 as a green colored solid ($50 \mathrm{mg}, 36 \%$); $\mathrm{mp}: 85-87{ }^{\circ} \mathrm{C}$; FT-IR (KBr): 3391, $3055,1677,1521,740 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.57-8.55(\mathrm{~m}, 1 \mathrm{H})$, $8.39(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.25\left(\mathrm{dt}, 1 \mathrm{H}, J_{1}=7.8, J_{2}=1.0 \mathrm{~Hz}\right), 7.87\left(\mathrm{td}, 1 \mathrm{H}, J_{1}=7.7, J_{2}\right.$ $=1.7 \mathrm{~Hz}), 7.50-7.42(\mathrm{~m}, 6 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 1 \mathrm{H}), 6.58(\mathrm{~d}, 1 \mathrm{H}, J=1.8 \mathrm{~Hz}), 4.84$ (d, 2H, $J=5.6 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$): $\delta 164.2,149.7,148.1,146.1,142.1,137.4$, 132.9, 128.8, 128.0, 127.1, 126.3, 123.8, 122.4, 111.6, 35.6; HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 301.0953$ found 301.0947.

N-((3-(4-Acetylphenyl)furan-2-yl)methyl)picolinamide (27b): Following the general procedure
 described above 27bwas obtained after purification by column chromatography (EtOAc:Hexane $=60: 40$); as a dark brown colored solid (48 $\mathrm{mg}, 32 \%$); mp: compound decomposed after $50{ }^{\circ} \mathrm{C}$; FT-IR (KBr): 3363, 3059, 1679, 1523, 1270, $751 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.56-8.55(\mathrm{~m}$, $1 \mathrm{H}), 8.44(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.24(\mathrm{~d}, 1 \mathrm{H}, J=7.7 \mathrm{~Hz}), 8.02(\mathrm{~d}, 2 \mathrm{H}, J=8.3 \mathrm{~Hz}), 7.88\left(\mathrm{td}, 1 \mathrm{H}, J_{1}=7.7, J_{2}\right.$ $=1.6 \mathrm{~Hz}), 7.60(\mathrm{~d}, 2 \mathrm{H}, J=8.3 \mathrm{~Hz}), 7.48(\mathrm{~d}, 1 \mathrm{H}, J=1.8 \mathrm{~Hz}), 7.47-7.43(\mathrm{~m}, 1 \mathrm{H}), 6.61(\mathrm{~d}, 1 \mathrm{H}, J=$ $1.8 \mathrm{~Hz}), 4.85(\mathrm{~d}, 2 \mathrm{H}, J=5.7 \mathrm{~Hz}), 2.63(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 197.7,164.2$, $149.5,148.2,147.1,142.5,137.8,137.4,135.6,128.9,127.9,126.4,122.8,122.4,111.3,35.7$, 26.7; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 321.1239$ found 321.1233.

N-((3-(m-Tolyl)furan-2-yl)methyl)picolinamide (27c): Following the general procedure
 described above 27cwas obtained after purification by column chromatography (EtOAc:Hexane $=30: 70$); as a green colored solid (52 $\mathrm{mg}, 36 \%$); mp: $74-76{ }^{\circ} \mathrm{C}$; FT-IR (KBr): $3386,2924,1676,1521,750 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.56-8.54(\mathrm{~m}, 1 \mathrm{H}), 8.37(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.26(\mathrm{dt}$, $\left.1 \mathrm{H}, J_{1}=7.8, J_{2}=1.0 \mathrm{~Hz}\right), 7.87\left(\mathrm{td}, 1 \mathrm{H}, J_{l}=7.7, J_{2}=1.7 \mathrm{~Hz}\right), 7.46(\mathrm{~d}, 1 \mathrm{H}, J=1.8 \mathrm{~Hz}), 7.44-7.42$ $(\mathrm{m}, 1 \mathrm{H}), 7.35-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.14(\mathrm{~d}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 6.57(\mathrm{~d}, 1 \mathrm{H}, J=1.9 \mathrm{~Hz}), 4.84(\mathrm{~d}, 2 \mathrm{H}, J=$ $5.6 \mathrm{~Hz}), 2.41(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 164.1,149.7,148.1,146.1,142.0,138.4$,
137.4, 132.8, 128.7, 127.9, 126.3, 125.0, 123.9, 122.4, 111.6, 35.6, 21.5; HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 315.1109$ found 315.1117.

N-((3-(3,4-Dimethylphenyl)furan-2-yl)methyl)picolinamide (27d): Following the general
 procedure described above 27dwas obtained after purification by column chromatography (EtOAc:Hexane $=30: 70$); as a dark green colored semi solid ($46 \mathrm{mg}, 30 \%$); FT-IR (DCM): $3360,3021,1670,1524,1110,748 \mathrm{~cm}^{-}$ ${ }^{1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.56-8.55(\mathrm{~m}, 1 \mathrm{H}), 8.36(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.25$ $(\mathrm{d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.87\left(\mathrm{td}, 1 \mathrm{H}, J_{l}=7.7, J_{2}=1.8 \mathrm{~Hz}\right), 7.46-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.24(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.21-$ $7.20(\mathrm{~m}, 2 \mathrm{H}), 6.56(\mathrm{~d}, 1 \mathrm{H}, J=1.9 \mathrm{~Hz}), 4.83(\mathrm{~d}, 2 \mathrm{H}, J=5.6 \mathrm{~Hz}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 164.1,149.7,148.1,145.8,142.0,137.4,137.0,135.6,130.4,130.1$, $129.2,126.3,125.3,123.8,122.4,111.7,35.6,19.9,19.5$; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{NaO}_{2}$ $[\mathrm{M}+\mathrm{Na}]^{+} 329.1266$ found 329.1251.

N-((3-(3-Bromophenyl)furan-2-yl)methyl)picolinamide (27e): Following the general procedure
 described above 27e was obtained after purification by column chromatography (EtOAc:Hexane $=30: 70$); as a dark green colored semi solid ($39 \mathrm{mg}, 22 \%$); FT-IR (DCM): 3382, 3063, 1674, 1522, $748 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.57-8.55(\mathrm{~m}, 1 \mathrm{H}), 8.39(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.25(\mathrm{dt}$, $\left.1 \mathrm{H}, J_{1}=7.8, J_{2}=1.0 \mathrm{~Hz}\right), 7.88\left(\mathrm{td}, 1 \mathrm{H}, J_{1}=7.7, J_{2}=1.7 \mathrm{~Hz}\right), 7.62(\mathrm{t}, 1 \mathrm{H}, J=1.8 \mathrm{~Hz}), 7.47-7.43$ $(\mathrm{m}, 4 \mathrm{H}), 7.31(\mathrm{~d}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 6.55(\mathrm{~d}, 1 \mathrm{H}, J=1.9 \mathrm{~Hz}), 4.82(\mathrm{~d}, 2 \mathrm{H}, J=5.7 \mathrm{~Hz}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 164.2,149.6,148.1,146.7,142.3,137.4,135.1,130.9,130.3,130.1,126.6$, $126.4,122.8,122.5,122.4,111.4,35.5$; HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{BrN}_{2} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$ 379.0058 found 379.0051 .

N-((3-(4-Acetylphenyl)-5-methylfuran-2-yl)methyl)picolinamide (27f): Following the general
 procedure described above $\mathbf{2 7 f}$ was obtained after purification by column chromatography (EtOAc:Hexane $=65: 35$); as a dark green colored semi solid ($42 \mathrm{mg}, 25 \%$); FT-IR (DCM): 3382, 3056, 1676, 1605, 1267, $736 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.57-8.56(\mathrm{~m}, 1 \mathrm{H}), 8.38(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.25(\mathrm{dt}, 1 \mathrm{H}$, $\left.J_{1}=7.8, J_{2}=1.8 \mathrm{~Hz}\right), 8.01(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}), 7.88\left(\mathrm{td}, 1 \mathrm{H}, J_{1}=7.7, J_{2}=1.7 \mathrm{~Hz}\right), 7.57(\mathrm{~d}, 2 \mathrm{H}, J$ $=8.5 \mathrm{~Hz}), 7.47-7.44(\mathrm{~m}, 1 \mathrm{H}), 6.21(\mathrm{~s}, 1 \mathrm{H}), 4.79(\mathrm{~d}, 2 \mathrm{H}, J=5.6 \mathrm{~Hz}), 2.62(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 197.7,164.1,152.3,149.6,148.1,145.2,138.2,137.4,135.4$,
$128.9,127.8,126.4,123.7,122.4,107.2,35.8,26.6,13.6$; HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{NaO}_{3}$ $[\mathrm{M}+\mathrm{Na}]^{+} 357.1215$ found 357.1225.

N-(2-(3-(4-Acetylphenyl)thiophen-2-yl)ethyl)picolinamide (28a): Following the general
 procedure described above 28a was obtained after purification by column chromatography (EtOAc: Hexane $=60: 40$); as a brown colored semi solid ($41 \mathrm{mg}, 47 \%$); FT-IR (DCM): 3380, 3055, 1676, 1603, 1524, 1269, 748 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.51(\mathrm{~d}, 1 \mathrm{H}, J=4.9 \mathrm{~Hz}), 8.18(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 8.13(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.94(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}), 7.83\left(\mathrm{td}, 1 \mathrm{H}, J_{l}=7.8, J_{2}=1.4 \mathrm{~Hz}\right), 7.46$ $(\mathrm{d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}), 7.44-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.25(\mathrm{~d}, 1 \mathrm{H}, J=5.4 \mathrm{~Hz}), 7.06(\mathrm{~d}, 1 \mathrm{H}, J=5.4 \mathrm{~Hz}), 3.72$ $(\mathrm{q}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}), 3.25(\mathrm{t}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}), 2.60(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 197.7$, $164.3,149.6,148.0,141.4,138.8,137.4,137.3,135.5,129.2,128.9,128.6,126.2,123.3,122.2$, 41.1, 28.5, 26.7; HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 351.1167$ found 351.1176.
$\boldsymbol{N - (2 - (3 - (p - T o l y l) t h i o p h e n - 2 - y l) e t h y l) p i c o l i n a m i d e ~ (2 8 b) : ~ F o l l o w i n g ~ t h e ~ g e n e r a l ~ p r o c e d u r e ~}$ described above 28b was obtained after purification by column chromatography (EtOAc:Hexane
 $=30: 70$); as a brown colored semi solid ($38 \mathrm{mg}, 48 \%$); FT-IR (DCM): $3378,3055,1674,1524,1244,732 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta$ 8.54-8.53 (m, 1H), 8.19-8.17 (m, 2H), $7.84\left(\mathrm{td}, 1 \mathrm{H}, J_{1}=7.7, J_{2}=1.6 \mathrm{~Hz}\right)$, 7.44-7.41 (m, 1H), $7.28(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.21(\mathrm{~d}, 1 \mathrm{H}, J=5.2 \mathrm{~Hz}), 7.19$ $(\mathrm{d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.04(\mathrm{~d}, 1 \mathrm{H}, J=5.2 \mathrm{~Hz}), 3.73(\mathrm{q}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}), 3.23(\mathrm{t}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz})$, $2.38(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 164.3,149.8,148.0,140.0,137.3,136.6,135.7$, 133.7, 129.6, 129.2, 128.7, 126.1, 122.6, 122.2, 41.0, 28.5, 21.2; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{OS}[\mathrm{M}+\mathrm{H}]^{+} 323.1218$ found 323.1223.
N-(2-(3-(4-Methoxyphenyl)thiophen-2-yl)ethyl)picolinamide (28c): Following the general
 procedure described above 28c was obtained after purification by column chromatography (EtOAc:Hexane $=40: 60$); as a brown colored semi solid ($34 \mathrm{mg}, 41 \%$); FT-IR (DCM): 3384, 3055, 1674, 1526, 1246, $738 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.54(\mathrm{~d}, 1 \mathrm{H}, J=4.6 \mathrm{~Hz}), 8.18(\mathrm{~d}, 1 \mathrm{H}, J=$ $7.8 \mathrm{~Hz}), 8.18(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.86\left(\mathrm{td}, 1 \mathrm{H}, J_{1}=7.8, J_{2}=1.7 \mathrm{~Hz}\right), 7.45-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.30(\mathrm{~d}, 2 \mathrm{H}, J=$ $8.8 \mathrm{~Hz}), 7.21(\mathrm{~d}, 1 \mathrm{H}, J=5.1 \mathrm{~Hz}), 7.02(\mathrm{~d}, 1 \mathrm{H}, J=5.1 \mathrm{~Hz}), 6.91(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}), 3.83(\mathrm{~s}, 3 \mathrm{H})$, $3.73(\mathrm{q}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}), 3.22(\mathrm{t}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}){ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 164.3,158.6$,
$149.8,148.0,139.6,137.3,135.4,129.9,129.6,129.0,126.2,122.6,122.2,113.9,55.3,41.0$, 28.5; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 339.1167$ found 339.1178.

N-(2-([2,3'-Bithiophen]-2'-yl)ethyl)picolinamide (28d):Following the general procedure

described above 28d was obtained after purification by column chromatography (EtOAc:Hexane $=30: 70$); as a dark green colored semi solid ($55 \mathrm{mg}, 71 \%$); FT-IR (DCM): 3380, 3010, 1673, 1526, 1216, $754 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.55-8.53(\mathrm{~m}, 1 \mathrm{H}), 8.28(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.21(\mathrm{~d}$, $1 \mathrm{H}, J=7.7 \mathrm{~Hz}), 7.86\left(\mathrm{td}, 1 \mathrm{H}, J_{l}=7.7, J_{2}=1.4 \mathrm{~Hz}\right), 7.45-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.28(\mathrm{~d}, 1 \mathrm{H}, J=4.4 \mathrm{~Hz})$, $7.19(\mathrm{~d}, 1 \mathrm{H}, J=5.2 \mathrm{~Hz}), 7.15(\mathrm{~d}, 2 \mathrm{H}, J=5.0 \mathrm{~Hz}), 7.07\left(\mathrm{dd}, 1 \mathrm{H}, J_{I}=5.0, J_{2}=3.6 \mathrm{~Hz}\right), 3.80(\mathrm{q}$, $2 \mathrm{H}, J=6.8 \mathrm{~Hz}), 3.34(\mathrm{t}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 164.4,149.7,148.1$, $138.0,137.3,136.3,132.0,129.4,127.5,126.2,125.4,124.7,122.9,122.2,40.6,28.9$; HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{OS}_{2}[\mathrm{M}+\mathrm{H}]^{+} 315.0626$ found 315.0634.

N^{l}-(2-(3-(3,5-Dimethylphenyl)thiophen-2-yl)ethyl)- N^{2}, N^{2}-diisopropyloxalamide

(28e):Following the general procedure described above 28e was obtained after purification by column chromatography (EtOAc:Hexane $=35: 65$); as a brown colored semi solid (48 mg , 50%); FT-IR (DCM): $3286,2971,1675,1624,1447,1253,755 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.20(\mathrm{~d}, 1 \mathrm{H}, J=5.2 \mathrm{~Hz}), 7.04-6.99(\mathrm{~m}, 5 \mathrm{H}), 4.74-4.68(\mathrm{~m}, 1 \mathrm{H})$, $3.57-3.48(\mathrm{~m}, 3 \mathrm{H}), 3.13(\mathrm{t}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}), 2.37(\mathrm{br} \mathrm{s}, 6 \mathrm{H}), 1.43(\mathrm{~d}, 6 \mathrm{H}, J=6.8 \mathrm{~Hz}), 1.22(\mathrm{~d}, 6 \mathrm{H}$, $J=6.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 163.1,162.9,140.3,138.1,136.4,135.3,129.7$, $128.8,126.7,122.6,49.6,46.5,40.7,28.1,21.4,20.9,20.1$; HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{NaO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 409.1926$ found 409.1918.

N^{I}-(2-(3-(2,3-Dihydrobenzo[b][1,4]dioxin-6-yl)thiophen-2-yl)ethyl)- N^{2}, N^{2}-diisopropyloxalamide (28f): Following the general procedure described above $28 f$ was obtained after purification by column chromatography (EtOAc:Hexane $=40: 60$); as a brown colored semi solid ($67 \mathrm{mg}, 65 \%$); FT-IR (DCM): 3303, 2974, 1670, 1627, 1503, 1245, $732 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.18(\mathrm{~d}, 1 \mathrm{H}, J=5.2 \mathrm{~Hz}), 6.99(\mathrm{~d}, 1 \mathrm{H}, J=5.2 \mathrm{~Hz}), 6.97(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $6.91(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}), 6.87-6.82(\mathrm{~m}, 2 \mathrm{H}), 4.75-4.68(\mathrm{~m}, 1 \mathrm{H}), 4.31(\mathrm{~s}, 4 \mathrm{H}), 3.55-3.48(\mathrm{~m}, 3 \mathrm{H})$, $3.13(\mathrm{t}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}), 1.43(\mathrm{~d}, 6 \mathrm{H}, J=6.8 \mathrm{~Hz}), 1.22(\mathrm{~d}, 6 \mathrm{H}, J=6.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$,
$100 \mathrm{MHz}): \delta 163.2,162.9,143.4,142.8,139.4,135.1,129.8,129.6,122.6,121.9,117.5,117.3$, 64.4, 64.4, 49.6, 46.5, 40.6, 28.0, 20.9, 20.0; HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{NaO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$ 439.1667 found 439.1654 .
N^{1}-(2-(3-(4-Acetylphenyl)thiophen-2-yl)ethyl)- N^{2}, N^{2}-diisopropyloxalamide (28g): Following
 the general procedure described above $\mathbf{2 8 g}$ was obtained after purification by column chromatography (EtOAc:Hexane $=70: 30$); as a brown colored solid ($62 \mathrm{mg}, 62 \%$); mp: 94-96 ${ }^{\circ} \mathrm{C}$; FT-IR (KBr): 3416, 3055, 1681, 1635, 1422, 1265, $705 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$
$\mathrm{MHz}): \delta 8.01(\mathrm{~d}, 2 \mathrm{H}, J=8.3 \mathrm{~Hz}), 7.47(\mathrm{~d}, 2 \mathrm{H}, J=8.3 \mathrm{~Hz}), 7.24(\mathrm{~d}, 1 \mathrm{H}, J=5.2 \mathrm{~Hz}), 7.05(\mathrm{~d}, 1 \mathrm{H}$, $J=5.2 \mathrm{~Hz}), 4.68-4.61(\mathrm{~m}, 1 \mathrm{H}), 3.56-3.48(\mathrm{~m}, 3 \mathrm{H}), 3.15(\mathrm{t}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}), 2.64(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~d}$, $6 \mathrm{H}, J=6.8 \mathrm{~Hz}), 1.21(\mathrm{~d}, 6 \mathrm{H}, J=6.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 197.7,163.2,162.9$, $141.3,138.8,136.8,135.6,129.2,128.9$, 128.7, 123.3, 49.6, 46.5, 40.6, 28.2, 26.7, 20.8, 20.0; HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{NaO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 423.1718$ found 423.1706.
N-((3,5-Bis(4-acetylphenyl)thiophen-2-yl)methyl)butyramide (29b): Following the general procedure described above 29b was obtained after purification by column chromatography
 (EtOAc:Hexane = 80:20); as a brown colored solid ($23 \mathrm{mg}, 22 \%$); FTIR (KBr): 3326, 2926, 1679, 1602, 1268, $830 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}): \delta 7.89(\mathrm{~d}, 2 \mathrm{H}, J=8.3 \mathrm{~Hz}), 7.85(\mathrm{~d}, 2 \mathrm{H}, J=8.3 \mathrm{~Hz}), 7.33(\mathrm{~d}$, $4 \mathrm{H}, J=8.2 \mathrm{~Hz}), 7.07(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.66(\mathrm{~d}, 2 \mathrm{H}, J=5.8 \mathrm{~Hz}), 2.61(\mathrm{~s}, 3 \mathrm{H})$, $2.60(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{t}, 2 \mathrm{H}, J=7.4 \mathrm{~Hz}), 1.76-1.70(\mathrm{~m}, 3 \mathrm{H}), 0.99(\mathrm{t}, 3 \mathrm{H}, J$ $=7.4 \mathrm{~Hz}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 197.7,197.5,173.0,142.0$, $140.8,138.6,138.0,137.6,136.0,135.8,129.2,129.2,129.0,128.7,128.7,38.5,38.3,26.7,19.1$, 13.8; HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{NNaO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 442.1453$ found 442.1449 . The purity of this sample is about 95% and our trials to improve the purity of this sample were not fruitful as the compound 29b was isolated from a complex mixture.

N-Benzylpyrazine-2-carboxamide (34a): Following the general procedure described above 34a was obtained after purification by column chromatography (EtOAc:Hexane $=50: 50$); as a colorless solid (299 mg, 47\%); mp: 117-119 ${ }^{\circ} \mathrm{C}$; FT-IR (KBr): 3378, 2933, 1670, 1524, 1026 and $755 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}): \delta 9.47(\mathrm{~d}, 1 \mathrm{H}, J=1.0 \mathrm{~Hz}), 8.77(\mathrm{~d}, 1 \mathrm{H}, J=2.3 \mathrm{~Hz}), 8.52(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 8.15(\mathrm{br} . \mathrm{s}, 1 \mathrm{H})$,
7.39-7.31 (m, 5H), 4.70 (d, 2H, $J=6.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 162.9,147.4,144.6$, 144.4, 142.6, 137.7, 128.8, 127.9, 127.7, 43.5; HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$ 214.0980 found 214.0972.

N-(4-Chlorobenzyl)pyrazine-2-carboxamide (34b): Following the general procedure described
 above 34b was obtained after purification by column chromatography (EtOAc:Hexane $=55: 45$); as a colorless solid ($504 \mathrm{mg}, 68 \%$); mp: 138-140 ${ }^{\circ} \mathrm{C}$; FT-IR (KBr): 3361, 2939, 1661, 1528, 1025 and $797 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 9.45$ (br. s, 1H), 8.78 (d, $1 \mathrm{H}, J=2.4 \mathrm{~Hz}$), $8.53(\mathrm{~d}, 1 \mathrm{H}$, $J=1.5 \mathrm{~Hz}), 8.16(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 7.35-7.28(\mathrm{~m}, 4 \mathrm{H}), 4.66(\mathrm{~d}, 2 \mathrm{H}, J=6.2 \mathrm{~Hz}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100\right.$ MHz): δ 163.0, 147.5, 144.6, 144.2, 142.6, 136.3, 133.5, 129.2, 128.9, 42.8; HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{ClN}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 248.0591$ found 248.0584.

N-(2-Methoxybenzyl)pyrazine-2-carboxamide (34c): Following the general procedure described above 34c was obtained after purification by column chromatography (EtOAc:Hexane $=60: 40$);
 as a colorless solid ($269 \mathrm{mg}, 37 \%$); mp: 104-106 ${ }^{\circ} \mathrm{C}$; FT-IR (KBr): 3341, 2939, 1674, 1529, 1020 and $755 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 9.43(\mathrm{~d}$, $1 \mathrm{H}, J=1.4 \mathrm{~Hz}), 8.73(\mathrm{~d}, 1 \mathrm{H}, J=2.5 \mathrm{~Hz}), 8.52-8.51(\mathrm{~m}, 1 \mathrm{H}), 8.28$ (br. s, 1H), $7.36\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=7.4, J_{2}=1.4 \mathrm{~Hz}\right), 7.32-7.27(\mathrm{~m}, 1 \mathrm{H}), 6.96(\mathrm{~d}, 1 \mathrm{H}, J=7.4$ $\mathrm{Hz}), 6.92(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}), 4.69(\mathrm{~d}, 2 \mathrm{H}, J=6.2 \mathrm{~Hz}), 3.91(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100\right.$ $\mathrm{MHz}): \delta 162.7,157.7,147.1,144.8,144.5,142.5,129.8,129.1,125.8,120.7,110.4,55.4,39.3 ;$ HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 244.1086$ found 244.1080.

N-(2-Bromobenzyl)pyrazine-2-carboxamide (34d): Following the general procedure described
 above 34d was obtained after purification by column chromatography ($\mathrm{EtOAc}:$ Hexane $=55: 45$); as a colorless solid ($331 \mathrm{mg}, 38 \%$); mp: 105-107 ${ }^{\circ} \mathrm{C}$; FT-IR (KBr): 3378, 3057, 1674, 1526, 1021 and $754 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}): \delta 9.44$ (d, 1H, $J=1.4 \mathrm{~Hz}$), 8.77 (d, 1H, $J=2.5 \mathrm{~Hz}$), 8.55 (dd, 1H, $\left.J_{l}=2.4, J_{2}=1.6 \mathrm{~Hz}\right), 8.31($ br. s, 1 H$), 7.60\left(\mathrm{dd}, 1 \mathrm{H}, J_{l}=8.0, J_{2}=1.0 \mathrm{~Hz}\right), 7.48\left(\mathrm{dd}, 1 \mathrm{H}, J_{l}=7.6\right.$, $\left.J_{2}=1.5 \mathrm{~Hz}\right), 7.31\left(\mathrm{td}, 1 \mathrm{H}, J_{1}=7.5, J_{2}=1.1 \mathrm{~Hz}\right), 7.19\left(\mathrm{td}, 1 \mathrm{H}, J_{1}=7.8, J_{2}=1.6 \mathrm{~Hz}\right), 4.78(\mathrm{~d}, 2 \mathrm{H}$, $J=6.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 163.0,147.4,144.5,144.3,142.6,136.8,132.9$, 130.4, 129.4, 127.8, 123.9, 43.8; HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{BrN}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 292.0085$ found 292.0078 .
N-(4-Methoxybenzyl)pyrazine-2-carboxamide (34e):Following the general procedure described above 34e was obtained after purification by column chromatography (EtOAc:Hexane $=50: 50$); as a colorless solid ($294 \mathrm{mg}, 40 \%$); mp: 126-128 ${ }^{\circ} \mathrm{C}$; FT-IR (KBr): 3312, 3007, 1660, 1509 and $1023 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}, 400 MHz): $\delta 9.46$ (br. s, 1H), 8.76 (d, 1H, $J=2.4 \mathrm{~Hz}$), 8.51 (t, 1H, $J=1.6$ $\mathrm{Hz}), 8.07$ (br. s, 1H), $7.31(\mathrm{~d}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}), 6.91(\mathrm{~d}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}), 4.63(\mathrm{~d}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz})$, 3.82 (s, 3H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 162.8,159.2,147.3,144.5,144.5,142.5,129.8$, 129.3, 114.2, 55.3, 43.0; HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 244.1086$ found 244.1078.

N-Benzylquinoline-2-carboxamide (37a): Following the general procedure described above 37a was obtained after purification by column chromatography (EtOAc:Hexane $=25: 75$); as a
 colorless solid ($259 \mathrm{mg}, 48 \%$); mp: 117-119 ${ }^{\circ} \mathrm{C}$; FT-IR (KBr): 3385, 3065, 1673, 1528 and $749 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.64$ (br. s, 1 H), 8.38 $(\mathrm{d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}), 8.34(\mathrm{~d}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}), 8.09(\mathrm{~d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}), 7.90$ $\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=8.1, J_{2}=0.7 \mathrm{~Hz}\right), 7.79-7.75(\mathrm{~m}, 1 \mathrm{H}), 7.66-7.62(\mathrm{~m}, 1 \mathrm{H}), 7.46-$ $7.44(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.31(\mathrm{~m}, 1 \mathrm{H}), 4.77(\mathrm{~d}, 2 \mathrm{H}, J=6.1 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $100 \mathrm{MHz}): \delta 164.5,149.7,146.5,138.3,137.5,130.1,129.7,129.4,128.8,127.9,127.9,127.8$, 127.5, 119.0, 43.6; HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 263.1184$ found 263.1178.

N-(2-Chlorobenzyl)quinoline-2-carboxamide (37b): Following the general procedure described
 above 37b was obtained after purification by column chromatography (EtOAc:Hexane $=25: 75$); as a colorless solid ($408 \mathrm{mg}, 46 \%$); mp: 119-121 ${ }^{\circ} \mathrm{C}$; FT-IR (KBr): 3387, 3055, 1675, 1525 and $745 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, 400 MHz): $\delta 8.76$ (br. s, 1 H), 8.35 (d, 1H, $J=8.5 \mathrm{~Hz}$), 8.32 (d, 1H, $J=8.6$ $\mathrm{Hz}), 8.12(\mathrm{~d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}), 7.89\left(\mathrm{dd}, 1 \mathrm{H}, J_{l}=8.2, J_{2}=0.8 \mathrm{~Hz}\right), 7.79-7.75(\mathrm{~m}, 1 \mathrm{H}), 7.65-7.61$ $(\mathrm{m}, 1 \mathrm{H}), 7.53-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.43-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 2 \mathrm{H}), 4.86(\mathrm{~d}, 2 \mathrm{H}, J=6.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 164.6,149.6,146.5,137.5,135.7,133.7,130.1,129.9,129.8,129.6$, $129.4,128.9,128.0,127.8,127.1,118.9,41.4 ;$ HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{ClN}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$ 297.0795 found 297.0785 .

N-(2-Methoxybenzyl)quinoline-2-carboxamide (37c): Following the general procedure described above 37c was obtained after purification by column chromatography (EtOAc:Hexane $=30: 70$); as a colorless solid ($394 \mathrm{mg}, 45 \%$); mp: 89-91 ${ }^{\circ} \mathrm{C}$; FT-IR (KBr): 3393, 3055, 1674,

1527 and $744 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$): $\delta 8.75$ (br. s, 1 H), $8.35(\mathrm{~d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}$), $8.31(\mathrm{~d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}), 8.10(\mathrm{~d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}), 7.88(\mathrm{~d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz})$, 7.78-7.74 (m, 1H), 7.63-7.60 (m, 1H), $7.42(\mathrm{~d}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}), 7.32-7.28(\mathrm{~m}$, $1 \mathrm{H}), 6.97(\mathrm{~d}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}), 6.94(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 4.77(\mathrm{~d}, 2 \mathrm{H}, J=6.2$ $\mathrm{Hz}), 3.95(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 164.3,157.7,150.0,146.5$, $137.4,130.0,129.7,129.6,129.3,128.8,127.8,127.8,126.3,120.7,119.0$, 110.4, 55.4, 39.2; HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 315.1109$ found 315.1100.
N-(2-Bromobenzyl)quinoline-2-carboxamide (37d): Following the general procedure described
 above 37d was obtained after purification by column chromatography (EtOAc:Hexane $=25: 75$); as a colorless solid ($450 \mathrm{mg}, 44 \%$); mp: $126-128{ }^{\circ} \mathrm{C}$; FT-IR (KBr): 3385, 3065, 1674, 1525 and $776 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400$ MHz): $\delta 8.78$ (br. s, 1H), 8.34 (br. s, 2 H), 8.13 (d, $1 \mathrm{H}, J=8.5 \mathrm{~Hz}$), 7.90 (dd, $\left.1 \mathrm{H}, J_{1}=8.2, J_{2}=0.8 \mathrm{~Hz}\right), 7.80-7.76(\mathrm{~m}, 1 \mathrm{H}), 7.66-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.61\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=8.0, J_{2}=1.0\right.$ $\mathrm{Hz}), 7.52\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=7.6, J_{2}=1.5 \mathrm{~Hz}\right), 7.32\left(\mathrm{td}, 1 \mathrm{H}, J_{1}=7.5, J_{2}=1.1 \mathrm{~Hz}\right), 7.18\left(\mathrm{td}, 1 \mathrm{H}, J_{1}=\right.$ $\left.7.8, J_{2}=1.6 \mathrm{~Hz}\right), 4.84(\mathrm{~d}, 2 \mathrm{H}, J=6.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 164.5,149.5,146.5$, 137.5, 137.3, 132.9, 130.1, 130.0, 129.8, 129.4, 129.1, 128.0, 127.8, 123.8, 118.9, 43.8; HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{BrN}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 341.0290$ found 341.0300.

N-(2-(Thiophen-2-yl)ethyl)pyrazine-2-carboxamide(43a): Following the general procedure
 described above 43a was obtained after purification by column chromatography (EtOAc:Hexane $=25: 75$); as a colorless solid (720 mg , 62%); mp: 89-91 ${ }^{\circ} \mathrm{C}$; FT-IR (KBr): 3357, 2926, 1670, 1530 and $1020 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 9.43(\mathrm{~d}, 1 \mathrm{H}, J=1.5 \mathrm{~Hz}), 8.77(\mathrm{~d}, 1 \mathrm{H}, J=$ $2.5 \mathrm{~Hz}), 8.52\left(\mathrm{dd}, 1 \mathrm{H}, J_{l}=2.5, J_{2}=1.5 \mathrm{~Hz}\right), 8.00(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 7.20\left(\mathrm{dd}, 1 \mathrm{H}, J_{l}=5.1, J_{2}=1.1 \mathrm{~Hz}\right)$, $6.98\left(\mathrm{dd}, 1 \mathrm{H}, J_{l}=5.1, J_{2}=3.4 \mathrm{~Hz}\right), 6.90\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=3.4, J_{2}=0.9 \mathrm{~Hz}\right), 3.80(\mathrm{q}, 2 \mathrm{H}, J=6.7 \mathrm{~Hz})$, $3.19(\mathrm{t}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 163.0,147.3,144.4,144.4,142.6$, $141.0,127.1,125.5,124.1,40.8,30.0$; HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{OS}[\mathrm{M}+\mathrm{H}]^{+} 234.0701$ found 234.0696.

N-(2-(Thiophen-2-yl)ethyl)quinoline-2-carboxamide(43b): Following the general procedure described above 43b was obtained after purification by column chromatography (EtOAc:Hexane $=25: 75)$; as a colorless solid ($1.04 \mathrm{~g}, 74 \%$); mp: 67-69 ${ }^{\circ} \mathrm{C}$; FT-IR (KBr): 3385, 2926, 1673, 1527
and $774 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.50(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 8.34(\mathrm{~s}, 2 \mathrm{H})$,
 $8.10(\mathrm{~d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}), 7.92-7.89(\mathrm{~m}, 1 \mathrm{H}), 7.80-7.76(\mathrm{~m}, 1 \mathrm{H}), 766-7.62(\mathrm{~m}$, $1 \mathrm{H}), 7.22\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=5.1, J_{2}=1.2 \mathrm{~Hz}\right), 7.00\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=5.1, J_{2}=3.4 \mathrm{~Hz}\right)$, $6.95\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=3.4, J_{2}=0.9 \mathrm{~Hz}\right), 3.85(\mathrm{q}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}), 2.25(\mathrm{t}, 2 \mathrm{H}, J=$ $7.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 164.5,149.7,146.5,141.3,137.5,130.1,129.7,129.3$, $127.9,127.8,127.1,125.4,124.0,118.8,41.0,31.2 ;$ HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{OS}[\mathrm{M}+\mathrm{H}]^{+}$ 283.0905 found 283.0897 .

2-((Pyrazine-2-carboxamido)methyl)phenyl acetate (35a): Following the general procedure
 described above 35awas obtained after purification by column chromatography (EtOAc:Hexane $=70: 30$); as a brown colored solid (17 mg , 24\%); mp: 143-145 ${ }^{\circ}$ C; FT-IR (KBr): 3392, 3055, 1762, 1678, 1527 and 1265 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 9.44(\mathrm{~d}, 1 \mathrm{H}, J=1.3 \mathrm{~Hz}), 8.76(\mathrm{~d}, 1 \mathrm{H}, J=2.4 \mathrm{~Hz}), 8.52(\mathrm{dd}$, $1 \mathrm{H}, J_{1}=2.3, J_{2}=1.6 \mathrm{~Hz}$), 8.08 (br. s, 1 H), $7.45\left(\mathrm{dd}, 1 \mathrm{H}, J_{l}=7.6, J_{2}=1.5 \mathrm{~Hz}\right), 7.36\left(\mathrm{td}, 1 \mathrm{H}, J_{l}=\right.$ $\left.7.7, J_{2}=1.6 \mathrm{~Hz}\right), 7.28-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.11\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=8.0, J_{2}=1.0 \mathrm{~Hz}\right), 4.64(\mathrm{~d}, 2 \mathrm{H}, J=6.0$ $\mathrm{Hz}), 2.35(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 169.7,162.7,149.1,147.4,144.4,144.3$, 142.7, 130.2, 129.7, 129.2, 126.6, 122.7, 38.6, 21.0; HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{NaO}_{3}$ $[\mathrm{M}+\mathrm{Na}]^{+} 294.0855$ found 294.0846.

2-((Pyrazine-2-carboxamido)methyl)-1,3-phenylene diacetate (36a): Following the general
 procedure described above 36awas obtained after purification by column chromatography (EtOAc:Hexane $=75: 25$); as a brown colored solid (21 mg , 26\%); mp: 146-148 ${ }^{\circ}$ C; FT-IR (KBr): 3399, 3055, 1767, 1680, 1527 and 1265 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 9.40(\mathrm{~d}, 1 \mathrm{H}, J=1.4 \mathrm{~Hz}), 8.73(\mathrm{~d}, 1 \mathrm{H}, J$ $=2.4 \mathrm{~Hz}), 8.52\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=2.4, J_{2}=1.5 \mathrm{~Hz}\right), 7.98(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 7.39(\mathrm{t}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}), 7.04(\mathrm{~d}$, $2 \mathrm{H}, J=8.2 \mathrm{~Hz}), 4.58(\mathrm{~d}, 2 \mathrm{H}, J=5.8 \mathrm{~Hz}), 2.37(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 169.7$, $162.4,150.3,147.2,144.4,144.3,142.8,129.4,123.1$,

120.5, 32.9, 21.0; HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{NaO}_{5}[\mathrm{M}+\mathrm{Na}]^{+} 352.0909$ found 352.0921.

5-Chloro-2-((pyrazine-2-carboxamido)methyl)phenyl acetate (35b) and 5-chloro-2-((pyrazine-2-

 carboxamido)methyl)-1,3-phenylene diacetate (36b):Following the general procedure describedabove 35b/36bwas obtained after purification by column chromatography (EtOAc:Hexane $=$ 70:30); as an inseparable vicous liquid mixture of containing the compounds $\mathbf{3 5 b} \mathbf{b} \mathbf{3 6 b}$ in 49% yield. Since these compounds were not separable it was not possible to obtain the data for the corresponding compounds.

3-Chloro-2-((pyrazine-2-carboxamido)methyl)phenyl acetate (35c): Following the general
 procedure described above 35cwas obtained after purification by column chromatography (EtOAc:Hexane $=70: 30$); as a brown colored solid (55 $\mathrm{mg}, 73 \%$); mp: 130-132 ${ }^{\circ} \mathrm{C}$; FT-IR (KBr): 3395, 2930, 1768, 1681, 1525 and $1194 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 9.41(\mathrm{~d}, 1 \mathrm{H}, J=1.4 \mathrm{~Hz})$, $8.74(\mathrm{~d}, 1 \mathrm{H}, J=2.4 \mathrm{~Hz}), 8.51\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=2.2, J_{2}=1.6 \mathrm{~Hz}\right), 8.08($ br. $\mathrm{s}, 1 \mathrm{H}), 7.36-7.28(\mathrm{~m}, 2 \mathrm{H})$, $7.05\left(\mathrm{dd}, 1 \mathrm{H}, J_{l}=7.8, J_{2}=1.4 \mathrm{~Hz}\right), 4.80(\mathrm{~d}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz}), 2.42(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100\right.$ MHz): $\delta 169.7,162.5,150.3,147.3,144.4,144.3,142.6,135.9,129.6,128.3,127.5,121.8,35.5$, 20.9; HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{ClN}_{3} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+} 328.0465$ found 328.0456 .

3-Methoxy-2-((pyrazine-2-carboxamido)methyl)phenyl acetate (35d): Following the general
 procedure described above 35dwas obtained after purification by column chromatography (EtOAc:Hexane $=75: 25$); as a brown colored solid (48 mg , 64%); mp: 129-131 ${ }^{\circ}$ C; FT-IR (KBr): 3405, 2945, 1766, 1679, 1526 and 1206 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 9.41(\mathrm{~d}, 1 \mathrm{H}, J=1.4 \mathrm{~Hz}), 8.71(\mathrm{~d}, 1 \mathrm{H}, J=$ $2.5 \mathrm{~Hz}), 8.49\left(\mathrm{dd}, 1 \mathrm{H}, J_{l}=2.3, J_{2}=1.6 \mathrm{~Hz}\right), 8.07(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 7.31(\mathrm{t}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}), 6.83(\mathrm{~d}, 1 \mathrm{H}$, $J=8.3 \mathrm{~Hz}), 6.73(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}), 4.67(\mathrm{~d}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 169.9,162.4,159.0,149.8,147.1,144.7,144.4,142.6,129.3,118.5$, 115.1, 108.3, 56.0, 32.6, 21.0; HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+} 324.0960$ found 324.0948.

3-Bromo-2-((pyrazine-2-carboxamido)methyl)phenyl acetate

(35e):
Following the general procedure described above 35ewas obtained after purification by column chromatography (EtOAc:Hexane $=70: 30$); as a brown colored solid (49 mg, 56\%); mp: 126-128 ${ }^{\circ} \mathrm{C}$; FT-IR (KBr): 3397, 3055, 1767, 1680, 1526 and $1194 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 9.41(\mathrm{~d}, 1 \mathrm{H}, J=1.3 \mathrm{~Hz}), 8.74(\mathrm{~d}, 1 \mathrm{H}, J=2.4 \mathrm{~Hz})$, $8.52\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=2.3, J_{2}=1.5 \mathrm{~Hz}\right), 8.11(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 7.53\left(\mathrm{dd}, 1 \mathrm{H}, J_{l}=8.0, J_{2}=0.8 \mathrm{~Hz}\right), 7.25(\mathrm{t}$, $1 \mathrm{H}, J=8.1 \mathrm{~Hz}), 7.09(\mathrm{~d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}), 4.81(\mathrm{~d}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz}), 2.41(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR
$\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 169.8,162.5,150.2,147.3,144.4,144.3,142.7,130.7,130.1,129.9,125.9$, 122.5, 37.9, 21.0; HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{BrN}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 350.0140$ found 350.0148 .

5-Methoxy-2-((pyrazine-2-carboxamido)methyl)phenyl acetate(35f): Following the general
 procedure described above 35fwas obtained after purification by column chromatography (EtOAc:Hexane $=75: 25$); as a brown colored thick liquid (11 mg, 15\%); FT-IR (DCM): 3396, 2928, 1766, 1677, 1527 and $1206 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 9.43(\mathrm{~d}, 1 \mathrm{H}, J=1.4 \mathrm{~Hz}), 8.75$ $(\mathrm{d}, 1 \mathrm{H}, J=2.4 \mathrm{~Hz}), 8.52-8.51(\mathrm{~m}, 1 \mathrm{H}), 8.00(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 7.36(\mathrm{~d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}), 6.81\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}\right.$ $\left.=8.5, J_{2}=2.6 \mathrm{~Hz}\right), 6.66(\mathrm{~d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}), 4.56(\mathrm{~d}, 2 \mathrm{H}, J=5.9 \mathrm{~Hz}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 169.7,162.6,160.2,149.9,147.3,144.4,142.7,131.1,121.7$, 112.3, 108.5, 55.6, 38.2, 21.0; HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{H}]^{+} 324.0960$ found 324.0947 .

2-((Quinoline-2-carboxamido)methyl)-1,3-phenylene diacetate (39a): Following the general
 procedure described above 39awas obtained after purification by column chromatography (EtOAc:Hexane = 35:65) ; as a light yellow colored solid (66 $\mathrm{mg}, 76 \%$); mp: 107-109 ${ }^{\circ} \mathrm{C}$; FT-IR (KBr): 3382, 2925, 1768, 1677, 1527 and $1191 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.43$ (br. s, 1H), 8.31 (s, 2H), 8.10 $(\mathrm{d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}), 7.87(\mathrm{~d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}), 7.76-7.72(\mathrm{~m}, 1 \mathrm{H}), 7.63-7.59(\mathrm{~m}$, $1 \mathrm{H}), 7.39(\mathrm{t}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}), 7.07(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}), 4.66(\mathrm{~d}, 2 \mathrm{H}, J=5.8 \mathrm{~Hz}), 2.39(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 169.5,164.0,150.4,149.5,146.5,137.4,130.0,130.0,129.3,129.1$, 127.9, 127.6, 123.3, 120.5, 118.7, 33.2, 21.0; HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}$ 379.1294 found 379.1281. The corresponding mono acetoxylated compound 38a could not be isolated in pure form.

3-Chloro-2-((quinoline-2-carboxamido)methyl)phenyl acetate (38b): Following the general procedure described above 38bwas obtained after purification by column
 chromatography (EtOAc:Hexane $=30: 70$); as a light yellow colored solid (63 $\mathrm{mg}, 71 \%$); mp: $123-125^{\circ} \mathrm{C}$; FT-IR (KBr): 3389, 2937, 1767, 1678, 1525 and $1194 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.56$ (br. s, 1H), 8.31 (br. s, 2H), 8.10 $(\mathrm{d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}), 7.87(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}), 7.75\left(\mathrm{td}, 1 \mathrm{H}, J_{1}=7.0, J_{2}=1.2 \mathrm{~Hz}\right)$, $7.63-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.36\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=8.1, J_{2}=1.0 \mathrm{~Hz}\right), 7.32-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.06(\mathrm{~d}, 1 \mathrm{H}, J=8.0$
$\mathrm{Hz}), 4.87(\mathrm{~d}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz}), 2.43(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 169.7,164.0,150.4$, $149.5,146.5,137.5,135.9,130.0,129.9,129.4,129.3,128.7,127.9,127.7,127.4,121.8,118.9$, 35.7, 21.1; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{ClN}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 355.0849$ found 355.0838.

3-Methoxy-2-((quinoline-2-carboxamido)methyl)phenyl acetate (38c): Following the general
 procedure described above 38cwas obtained after purification by column chromatography (EtOAc:Hexane $=35: 65$); as a brown colored solid $(57 \mathrm{mg}$, 66\%); mp: 111-113 ${ }^{\circ} \mathrm{C}$; FT-IR (KBr): 3399, 3055, 1766, 1678, 1527 and 1265 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.56$ (br. s, 1H), $8.33(\mathrm{~d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz})$, $8.29(\mathrm{~d}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}), 8.09(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.87\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=8.2, J_{2}=\right.$ $0.8 \mathrm{~Hz}), 7.77-7.72(\mathrm{~m}, 1 \mathrm{H}), 7.62-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.32(\mathrm{t}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}), 6.86(\mathrm{~d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz})$, $6.76\left(\mathrm{dd}, 1 \mathrm{H}, J_{l}=8.2, J_{2}=0.6 \mathrm{~Hz}\right), 4.75(\mathrm{~d}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 169.9,164.0,159.1,150.0,149.9,146.5,137.3,129.9,129.8,129.2,129.1$, $127.8,127.7,119.0,118.9,115.1,108.4,56.0,32.8,21.1$; HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{NaO}_{4}$ $[\mathrm{M}+\mathrm{Na}]^{+} 373.1164$ found 373.1151.

3-Bromo-2-((quinoline-2-carboxamido)methyl)phenyl acetate (38d): Following the general
 procedure described above 38dwas obtained after purification by column chromatography (EtOAc:Hexane $=30: 70$); as a brown colored solid (72 mg , 73%); mp: 122-124 ${ }^{\circ} \mathrm{C}$; FT-IR (KBr): 3055, 2987, 1768, 1680, 1526 and 1265 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.59$ (br. s, 1 H$), 8.31(\mathrm{~s}, 2 \mathrm{H}), 8.11(\mathrm{~d}, 1 \mathrm{H}$, $J=8.5 \mathrm{~Hz}), 7.87\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=8.2, J_{2}=0.6 \mathrm{~Hz}\right), 7.77-7.73(\mathrm{~m}, 1 \mathrm{H}), 7.63-7.59$ $(\mathrm{m}, 1 \mathrm{H}), 7.55\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=8.0, J_{2}=0.9 \mathrm{~Hz}\right), 7.24(\mathrm{t}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}), 7.11\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=8.2, J_{2}=\right.$ $0.8 \mathrm{~Hz}), 4.88(\mathrm{~d}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz}), 2.43(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 169.7,163.9$, $150.3,149.5,146.5,137.5,130.7,130.3,130.0,129.9,129.8,129.3,127.9,127.7,125.9,122.5$, 118.9, 38.2, 21.1; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{BrN}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 399.0344$ found 399.0330.

2-(Picolinamidomethyl)thiophen-3-yl acetate (40a): Following the general procedure described above 40awas obtained after purification by column chromatography
 (EtOAc:Hexane = 45:55); as a dark brown colored semi-solid ($39 \mathrm{mg}, 56 \%$); FT-IR (DCM): 3380, 3058, 1766, 1673, 1520, 1204, $751 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.55-8.53(\mathrm{~m}, 1 \mathrm{H}), 8.40($ br. $\mathrm{s}, 1 \mathrm{H}), 8.22\left(\mathrm{dt}, 1 \mathrm{H}, J_{l}=\right.$ $\left.7.8, J_{2}=1.0 \mathrm{~Hz}\right), 7.85\left(\mathrm{td}, 1 \mathrm{H}, J_{l}=7.7, J_{2}=1.7 \mathrm{~Hz}\right), 7.44-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.19$
$(\mathrm{d}, 1 \mathrm{H}, J=5.5 \mathrm{~Hz}), 6.87(\mathrm{~d}, 1 \mathrm{H}, J=5.5 \mathrm{~Hz}), 4.70(\mathrm{~d}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz}), 2.32(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 169.0,164.1,149.5,148.2,144.4,137.4,126.3,125.5,123.2,122.4,121.9$, 34.4, 20.8; HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{NaO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 299.0466$ found 299.0465.

2-((Pyrazine-2-carboxamido)methyl)thiophen-3-yl acetate (40b): Following the general
 procedure described above 40bwas obtained after purification by column chromatography (EtOAc:Hexane $=70: 30$); as a brown colored solid (42 mg , 61%); FT-IR (KBr): 3369, 2931, 1764, 1673, 1525, 1204, $735 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 9.44$ (br. s, 1 H), $8.76(\mathrm{~d}, 1 \mathrm{H}, J=2.4 \mathrm{~Hz}), 8.54(\mathrm{~d}, 1 \mathrm{H}, J=1.5 \mathrm{~Hz}), 8.16$ (br. s, 1H), $7.22(\mathrm{~d}, 1 \mathrm{H}, J=5.5 \mathrm{~Hz}), 6.87(\mathrm{~d}, 1 \mathrm{H}, J=5.5 \mathrm{~Hz}), 4.71(\mathrm{~d}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz}), 2.34(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 169.1,162.8,147.4,144.6,144.4,144.2,142.7,125.0$, 123.5, 122.0, 34.3, 20.8; HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{NaO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 300.0419$ found 300.0408 .

2-((Quinoline-2-carboxamido)methyl)thiophen-3-yl acetate (40c): Following the general procedure described above 40cwas obtained after purification by column chromatography
 (EtOAc:Hexane $=35: 65$); as a brown colored solid ($63 \mathrm{mg}, 78 \%$); mp: 102-104 ${ }^{\circ} \mathrm{C}$; FT-IR (KBr): 3386, 2923, 1767, 1675, 1500, 1204, $776 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.63$ (br. s, 1 H), $8.32(\mathrm{~d}, 2 \mathrm{H}, J=1.9 \mathrm{~Hz}), 8.10(\mathrm{~d}, 1 \mathrm{H}, J=$ $8.5 \mathrm{~Hz}), 7.88-7.86(\mathrm{~m}, 1 \mathrm{H}), 7.77-7.73(\mathrm{~m}, 1 \mathrm{H}), 7.61\left(\mathrm{td}, 1 \mathrm{H}, J_{1}=8.1, J_{2}=1.1\right.$ $\mathrm{Hz}), 7.21(\mathrm{~d}, 1 \mathrm{H}, J=5.5 \mathrm{~Hz}), 6.89(\mathrm{~d}, 1 \mathrm{H}, J=5.5 \mathrm{~Hz}), 4.78(\mathrm{~d}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz}), 2.34(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 169.0,164.3,149.4,146.5,144.4,137.5,130.1,129.8,129.4,128.0$, 127.7, 125.6, 123.2, 122.0, 118.9, 34.6, 20.8; HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$ 327.0803 found 327.0809.

2-((2-(Diisopropylamino)-2-oxoacetamido)methyl)thiophen-3-yl acetate (40d): Following the general procedure described above 40dwas obtained after purification by column
 chromatography (EtOAc:Hexane $=35: 65$); as a brown color solid (42 mg , 48%) $\mathrm{mp}: 94-96{ }^{\circ} \mathrm{C}$; FT-IR (KBr): 3275, 2923, 1673, 1631, 1448, 1206, $756 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.19(\mathrm{~d}, 1 \mathrm{H}, J=5.5 \mathrm{~Hz}), 6.86(\mathrm{~d}$, $1 \mathrm{H}, J=5.5 \mathrm{~Hz}), 4.72-4.65(\mathrm{~m}, 1 \mathrm{H}), 4.49(\mathrm{~d}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz}), 3.55-3.48(\mathrm{~m}$,
$1 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~d}, 6 \mathrm{H}, J=6.8 \mathrm{~Hz}), 1.24(\mathrm{~d}, 6 \mathrm{H}, J=6.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100\right.$ $\mathrm{MHz}): \delta 168.9,162.9,162.7,144.5,124.7,123.3,121.9,49.7,46.6,34.1,20.9,20.0$; HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{NaO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 349.1198$ found 349.1183.

2-((2-(Diethylamino)-2-oxoacetamido)methyl)thiophen-3-yl acetate (40e): Following the
 general procedure described above 40ewas obtained after purification by column chromatography ($\mathrm{EtOAc}: \mathrm{Hexane}=35: 65$); as a brown colored thick liquid ($43 \mathrm{mg}, 57 \%$); FT-IR (DCM): 3300, 2930, 1767, 1633, 1487 and $1246 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.71$ (br. s, 1 H), 7.18 (d, $1 \mathrm{H}, J=$ $5.5 \mathrm{~Hz}), 6.85(\mathrm{~d}, 1 \mathrm{H}, J=5.5 \mathrm{~Hz}), 4.49(\mathrm{~d}, 2 \mathrm{H}, J=6.1 \mathrm{~Hz}), 3.73(\mathrm{q}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}), 3.40(\mathrm{q}, 2 \mathrm{H}, J=$ $7.1 \mathrm{~Hz}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 1.16(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100\right.$ $\mathrm{MHz}): \delta 168.9,161.4,161.2,144.5,124.7,123.3,122.0,43.3,42.0,34.1,20.8,14.7,12.5$; HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{NaO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 321.0885$ found 321.0873.

5-((2-(Diethylamino)-2-oxoacetamido)methyl)thiophene-2,4-diyl diacetate (40e'): Following
 the general procedure described above 40e'was obtained after purification by column chromatography (EtOAc:Hexane $=40: 60$); as a brown colored solid ($15 \mathrm{mg}, 17 \%$); mp: $155-157{ }^{\circ} \mathrm{C}$; FT-IR (KBr): 3400, $3055,1766,1680,1527$ and $1265 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta$ 7.61 (br. s, 1H), $6.51(\mathrm{~s}, 1 \mathrm{H}), 4.43(\mathrm{~d}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz}), 3.74(\mathrm{q}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}), 3.41(\mathrm{q}, 2 \mathrm{H}, J=$ $7.1 \mathrm{~Hz}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 1.17(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 168.7,167.2,161.2,161.1,148.9,140.5,116.7,108.3,43.3,42.1,33.8$, 20.7, 20.7, 14.8, 12.4; HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{NaO}_{6} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 379.0940$ found 379.0927.

5-(Butyramidomethyl)thiophen-2-yl acetate (42a): Following the general procedure described
 above 42awas obtained after purification by column chromatography (EtOAc:Hexane $=25: 75$); as a colorless liquid ($24 \mathrm{mg}, 40 \%$); FT-IR (DCM): 3301, 2923, 1656, 1539 and $749 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}): \delta 6.70(\mathrm{~d}, 1 \mathrm{H}, J=3.8 \mathrm{~Hz}), 6.52(\mathrm{~d}, 1 \mathrm{H}, J=3.8 \mathrm{~Hz}), 5.85(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 4.52(\mathrm{~d}, 2 \mathrm{H}, J=5.6$ $\mathrm{Hz}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{t}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz}), 1.69(\mathrm{q}, 2 \mathrm{H}, J=7.4 \mathrm{~Hz}), 0.96(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 172.7,167.6,151.0,133.4,122.3,113.2,38.7,38.5,20.8,19.1,13.8$; HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NNaO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 264.0670$ found 264.0664.

5-((2-(Diethylamino)-2-oxoacetamido)methyl)-4-(3,5-dimethylphenyl)thiophen-2-yl acetate (42c): Following the general procedure described above 42cwas obtained after purification by column chromatography $($ EtOAc:Hexane $=25: 75)$; as a colorless liquid $(40 \mathrm{mg}, 40 \%) ;$ FT-IR (DCM): 3273, 2920, 1682, 1634, 1275 and $750 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.52$ (br. s, 1H), $6.99(\mathrm{~s}, 1 \mathrm{H}), 6.95(\mathrm{~s}, 2 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H}), 4.60(\mathrm{~d}, 2 \mathrm{H}, J=$ $5.8 \mathrm{~Hz}), 3.77(\mathrm{q}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}), 3.42(\mathrm{q}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}), 2.36(\mathrm{~s}, 6 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{t}, 3 \mathrm{H}$, $J=7.1 \mathrm{~Hz}), 1.19(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 167.5,161.2,160.9,150.0$, $138.2,137.4,135.3,129.2,126.5,126.3,115.5,43.3,42.2,36.7,21.4,20.8,14.8,12.5$; HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{NaO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 425.1511$ found 425.1496 .

5-((2-(Diisopropylamino)-2-oxoacetamido)methyl)thiophene-2,4-diyl diacetate (42d):

Following the general procedure described above 42dwas obtained after purification by column chromatography (EtOAc:Hexane $=25: 75$); as a colorless liquid ($34 \mathrm{mg}, 35 \%$); FT-IR (DCM): 3277, 2926, 1771, 1627 and $1199 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.19$ (br. s, 1 H), 6.51 (s, $1 \mathrm{H}), 4.73-4.66(\mathrm{~m}, 1 \mathrm{H}), 4.42(\mathrm{~d}, 2 \mathrm{H}, J=5.9 \mathrm{~Hz}), 3.55-3.48(\mathrm{~m}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 6 \mathrm{H}), 1.42(\mathrm{~d}, 6 \mathrm{H}, J$ $=6.8 \mathrm{~Hz}), 1.24(\mathrm{~d}, 6 \mathrm{H}, J=6.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 168.7,167.1,162.9,162.5$, $149.0,140.5,116.7,108.3,49.7,46.6,33.7,20.9,20.7,20.0$; HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{NaO}_{6} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 407.1253$ found 407.1257.

2-(2-(Picolinamido)ethyl)thiophen-3-yl acetate (44a): Following the general procedure
 described above 44awas obtained after purification by column chromatography (EtOAc:Hexane $=25: 75$); as a brown coloured semisolid ($37 \mathrm{mg}, 27 \%$); FT-IR (DCM): 3382, 2926, 1767, 1672, 1526 and $1203 \mathrm{~cm}^{-}$ ${ }^{1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.55-8.54(\mathrm{~m}, 1 \mathrm{H}), 8.28$ (br. $\left.\mathrm{s}, 1 \mathrm{H}\right), 8.21$ $(\mathrm{d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.88-7.83(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.12\left(\mathrm{dd}, 1 \mathrm{H}, J_{l}=5.5, J_{2}=0.7 \mathrm{~Hz}\right)$, $6.88(\mathrm{~d}, 1 \mathrm{H}, J=5.5 \mathrm{~Hz}), 3.69(\mathrm{~d}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}), 3.02(\mathrm{t}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}), 2.24(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 169.0,164.5,149.8,148.1,143.9,137.4,126.2,126.0,122.2,122.0$, 121.7, 40.1, 26.3, 20.7; HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 291.0803$ found 291.0812.

2-(2-(Pyrazine-2-carboxamido)ethyl)thiophen-3-yl acetate(44b): Following the general procedure described above 44bwas obtained after purification by column chromatography
(EtOAc:Hexane = 25:75); as a colorless liquid ($37 \mathrm{mg}, 52 \%$); FT-IR (DCM): 3378, 2930, 1768, 1673, 1530 and $1203 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 9.41(\mathrm{~d}, 1 \mathrm{H}, J$
 $=1.5 \mathrm{~Hz}), 8.75(\mathrm{~d}, 1 \mathrm{H}, J=2.5 \mathrm{~Hz}), 8.52\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=2.5, J_{2}=1.5 \mathrm{~Hz}\right)$, 8.03 (br. s, 1H), 7.12 (d, 1H, $J=5.5 \mathrm{~Hz}), 6.86(\mathrm{~d}, 1 \mathrm{H}, J=5.5 \mathrm{~Hz}), 3.71$ $(\mathrm{q}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz}), 3.03(\mathrm{t}, 2 \mathrm{H}, J=6.7 \mathrm{~Hz}), 2.25(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 169.0,163.2,147.3,144.4,144.3,144.0,142.6,125.7,122.1,121.9,40.1$, 26.1, 20.7; HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{NaO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 314.0575$ found 314.0583.

2-(2-(Quinoline-2-carboxamido)ethyl)thiophen-3-yl acetate (44c): Following the general
 procedure described above $\mathbf{4 4}$ cwas obtained after purification by column chromatography (EtOAc:Hexane $=25: 75$); as a colorless liquid (37 mg , 43%); FT-IR (DCM): 3378, 2926, 1767, 1673, 1528 and $1203 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.51$ (br. s, 1 H), 8.32 ($\mathrm{s}, 2 \mathrm{H}$), 8.11 (d, 1H, J $=8.4 \mathrm{~Hz}), 7.89\left(\mathrm{dd}, 1 \mathrm{H}, J_{l}=7.7, J_{2}=0.8 \mathrm{~Hz}\right), 7.80-7.75(\mathrm{~m}, 1 \mathrm{H}), 7.65-7.61(\mathrm{~m}, 1 \mathrm{H}), 7.14(\mathrm{~d}, 1 \mathrm{H}$, $J=5.5 \mathrm{~Hz}), 6.90(\mathrm{~d}, 1 \mathrm{H}, J=5.4 \mathrm{~Hz}), 3.77(\mathrm{q}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}), 3.09(\mathrm{t}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}), 2.55(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 169.1,164.7,149.6,146.5,143.9,137.5,130.1,129.7$, $129.3,127.9,127.8,126.0,122.1,121.8,118.7,40.2,26.3,20.8$; HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 341.0960$ found 341.00967 .

References.

(1) a) Roncali, J. Chem. Rev. 1992, 92, 711-738. b) Mori, A.; Sugie, A. Bull. Chem. Soc. Jpn.2008, 81, 548-561. c) Dalvie, D. K.; Kalgutkar, A. S.; Khojasteh-Bakht, S. C.; Obach, R. S.; O'Donnell, J. P. Chem. Res. Toxicol. 2002, 15, 269-299. d)Baumann, M.; Baxendale, I. R.; Ley, S. V.; Nikbin, N. Beilstein J. Org. Chem. 2011, 7, 442-495. e) McCulloch, I.; Heeney, M.; Chabinyc, M. L.; DeLongchamp, D.; Kline, R. J. Colle, M.; Duffy, W.; Fischer, D.; Gundlach, D.; Hamadani, B.; Hamilton, R.; Richter, L.; Salleo, A.; Shkunov, M.; Sparrowe, D.; Tierney, S.; Zhang, W. Adv. Mater.2009, 21, 1091-1109. f) Hassan, J.; Sevignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M. Chem. Rev. 2002, 102, 1359-1469. g) L.-W. P.; Giralt, E. Chem. Soc. Rev.2001, 30, 145-157. h) Nicolaou, K. C.; Bulger, P. G.; Sarlah, D. Angew. Chem. Int. Ed.2005, 44, 44424489. i) Malytskyi, V.; Simon, J.-J.; Patrone, L.; Raimundo, J.-M. RSC Adv.2015, 5, 354-397. j) Zhang, F.; Wu, D.; Xu, Y.; Feng, X. J. Mater. Chem.2011, 21, 17590-17600. k) Bey, E.;

Marchais.-Oberwinkler, S.; Werth, R.; Negri, M.; Al.-Sound, Y. A.; Kruchten, P.; Oster, A.; Frotscher, M.; Birk, B.; Hartmann, R. W. J. Med. Chem. 2008, 51, 6725-6739. 1) Potavathri, S.; Kantak, A.; DeBoef, B. Chem. Commun. 2011, 47, 4679-4681. m) Hassanpour, A.; Carufel, C. A. D.; Bourgault, S.; Forgione, P. Chem. Eur. J.2014, 20, 2522-2528. n) Lauth, M.; Bergström, A.; Shimokawa, T.; Toftgård, R. Proc. Natl. Acad. Sci. USA 2007, 104, 8455-8460.
(2) For examples of biologically active candidates of C-3-arylated thiophene-2-carboxylic acid and C-3-arylated furan-2-carboxylic acid derivatives, see: a) Cui, Z.; Zhou, J.; Liu, S.; Cheng, Y.; Chen, S. (South China Agricultural University), CN 103570672 A, 2014. b) Aissaoui, H.; Boss, C.; Gude, M.; Koberstein, R.; Lehmann, D.; Sifferlen, T.; Trachsel, D. WO 2009016560 A2, 2009. c) Branch, C. L.; Marshall, H.; Mccritchie, J.; Porter, R. A.; Spada, S. WO 2007080159 A2, 2007. d) Fujii, A., Negoro, T., Migihashi, C., Murata, M., Nakamura, K., Nukuta, T., Matsumoto, T., Konno. K. JP 2005060385 A, 2005; e) Mailliet, P.; Le Brun, A.; Thompson, F.; Tiraboschi, G. WO 2004108685 A1, 2004.
(3) For selected articles/patents dealing on the importance of C 3 or C 5 -arylated furfurylamine and 2- or 3-(aminoalkyl)-thiophene derivatives, see: a) Katsura, Y.; Nishino, S.; Ohno, M.; Sakane K.; Matsumoto, Y.; Morinaga, C.; Ishikawa, H.; Takasugi, H. J. Med. Chem.1999, 42, 2920-2926. b) Oku, T., Kayakiri, H., Abe, Y., Sawada, Y., Mizutani, T. WO 9711069 A1 and WO 9728153 A1 1997. c) Laraia, L.; Stokes, z J.;Emery, A.;McKenzie, G. J.;Venkitaraman, A. R.; Spring, D. R. ACS Med. Chem. Lett.2014, 5, 598-603. d) Huang, H.; Li, H.; Yang, S.; Chreifi, G.; Martasek, P., Roman, L. J.; Meyskens, F. L.; Poulos, T. L.; Silverman, R. B. J. Med. Chem.2014, 57, 686-700.
(4) a) Negishi, E. (Ed.), Handbook of Organopalladium Chemistry for Organic Synthesis Part III, Wiley, New York, 2002, p. 213. b) Miyaura, N (Ed.), Cross-Coupling Reactions: A Practical Guide, Springer, Berlin, 2002. c) Li, J. J.; Gribble, G. W. (Ed.), Palladium in Heterocyclic Chemistry, Pergamon, Amsterdam, 2000. d) de Meijere, Diederich, F. (2nd Ed.), MetalCatalyzed Cross-Coupling Reactions, Wiley-VCH, New York, NY, 2004. e) Ros, A.; Fernandez, R.; Lassaletta, J. M. Chem. Soc. Rev.2014, 43, 3229-3243. f) Li, H.; Li, B.-J.; Shi, Z.-J. Catal. Sci. Technol.2011, 1, 191-206. g) Sun, C.-L.; Li, B.-J.; Shi, Z.-J. Chem. Rev.2011, 111, 12931314. h) McMurray, L.; O’Hara, F.; Gaunt, M. J. Chem. Soc. Rev.2011, 40, 1885-1898. i) Yeung, C. S.; Dong, V. M. Chem. Rev. 2011, 111, 1215-1292. j) Liu, B.; Huang, X.; Wang, X.; Ge, Z.;

Li, R. Org. Chem. Front.2015, 2, 797-800 (and references therein). k) Wang, G.-W.; Yuan, T.T.; Wu, X.-L. J. Org. Chem.2008, 73, 4717-4720. 1) Chan, L. Y.; Meng, X.; Kim, S. J. Org. Chem.2013, 78, 8826-8832. m) Desai, L. V.; Stowers, K. J.; Sanford, M. S. J. Am. Chem. Soc.2008, 130, 13285-13293. n) Lennartz, P.; Raabe, G.; Bolm, C. Adv. Synth. Catal.2012, 354, 3237-3249. o) Wang, B.; Lin, C.; Liu, Y.; Fan, Z.; Liu, Z.; Zhang, Y. Org. Chem. Front.2015, 2, 973-977. p) Zhang, H.; Hu, R.-B.; Zhang, X.-Y.; Li, S.-X.; Yang, S.-D. Chem. Commun.2014, 50, 4686-4689.
(5) a)Mousseau, J. J.; Charette, A. B. Acc. Chem. Res. 2013, 46, 412-424. b) Li, B.; Dixneuf, P. H. Chem. Soc. Rev. 2013, 42, 5744-5767. c) Kuhl, N.; Hopkinson, M. N., Wencel.-Delord, J.; Glorius, F. Angew. Chem. Int. Ed.2012, 51, 10236-10254. d) Arockiam, P. B.; Bruneau, C.; Dixneuf, P. H. Chem. Rev.2012, 112, 5879-5918. e) Chen, David. Y.-K.; Youn, S. W. Chem.Eur. J.2012, 18, 9452-9474. f) Neufeldt, S. R.; Sanford, M. S. Acc. Chem. Res.2012, 45, 936-946. g) Ackermann, L. Chem. Rev. 2011, 111, 1315-1345. h) Daugulis, O.; Do, H.-Q.; Shabashov, D. Acc. Chem. Res. 2009, 42, 1074-1086. i) Kakiuchi, F.; Chatani, N. Adv. Synth. Catal. 2003, 345, 1077-1101. j) Chen, X.; Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Angew. Chem. Int. Ed. 2009, 48, 5094-5115. k) Thomas W. Lyons and Melanie S. Sanford. Chem. Rev. 2010, 110, 1147-1169. 1) Rouquet, G.; Chatani, N. Angew. Chem. Int. Ed.2013, 52, 11726-11743. m) Zhang, M.; Zhang, Y.; Jie, X.; Zhao, H.; Li, G.; Su, W. Org. Chem. Front.2014, 1, 843-895. n) Sarkar, S. D.; Liu, W.; Kozhushkov, S. I.; Ackermanna, L. Adv. Synth. Catal. 2014, 356, 1461-1479. o) Parella, R.; Babu, S. A. J. Org. Chem.2015, 80, 2339-2355 (and references cited therein).p) Yang, X.; Shan, G.; Wang, L.; Rao, Y. Tetrahedron Lett. 2016, 57, 819-836. q) Li, B.-J.; Shi, Z.-J. Chem. Soc. Rev. 2012, 41, 5588-5598. r) Zhang, M. Adv. Synth. Catal.2009, 351, 2243-2270. s) Corbet, M.; De Campo, F. Angew. Chem. Int. Ed.2013, 52, 9896-9898. t) Yu, J.-Q. Adv. Synth. Catal.2014, 356, 1393. u) Wang, C.; Huang, Y. Synlett2013, 24, 145-149. v) Castro, L. C. M.; Chatani, N. Chem. Lett.2015, 44, 410-421. w) Wan, J.-P.; Li, Y.; Liu, Y. Org. Chem. Front. DOI:10.1039/c6qo00077k. x) Yamaguchi, J.; Yamaguchi, A. D.; Itami, K. Angew. Chem. Int. Ed.2012, 51, 8960-9009. y) Davies, H. M. L.; Du Bois, J.; Yu, J.-Q. Chem. Soc. Rev. 2011,40, 1855-1856. z) Daugulis, O.; Roane, J.; Tran, L. D. Acc. Chem. Res. 2015, 48, 1053-1064.
(6) For selected reviews on C-H arylations of thiophenes and furans, see: a) Rossi, R.; Bellina, F.; Lessi, M.; Manzini, C. Adv. Synth. Catal. 2014, 356, 17-117. b) Anthony, J. E. Chem. Rev.2006, 106, 5028-5048. c) Alberico, D.; Scott, M. E., Lautens. M. Chem. Rev.2007, 107, 174-
238. d) Bellina, F.; Rossi, R. Tetrahedron2009, 65, 10269-10310. e) Miura, M.; Satoh, T.; Hirano, K. Bull. Chem. Soc. Jpn.2014, 87, 751-764. f) Fairlamb, I. J. S. Chem. Soc. Rev. 2007, 36, 1036-1045. g) Ackermann, L.; Vicente, R.; Kapdi, A. R. Angew. Chem. Int. Ed. 2009, 48, 9792-9826. h) Seregin, I. V.; Gevorgyan, V. Chem. Soc. Rev.2007, 36, 1173-1193. i) Hou, X. L.; Cheung, H. Y.; Hon, T. Y.; Kwan, P. L.; Lo, T. H.; Tong, Y. S.; Wong, H. N. C. Tetrahedron1998,54, 1955-2020. j) Keay, B. A.Chem. Soc. Rev.1999, 28, 209-215. k) Zhao, D.; You, J.; Hu, C. Chem. Eur. J.2011, 17, 5466-5492. 1) Chiusoli, G. P.; Catellani, M.; Costa, M.; Motti, E.; Della Ca’, N.; Maestri, G. Coordination Chemistry Reviews2010, 254, 456-469.
(7) a) Oi, S.; Funayama, R.; Hattori, T.; Inoue, Y. Tetrahedron 2008, 64, 6051-6059. b) Ackermann, L.; Mulzer, M.Org. Lett. 2008, 10, 5043-5045. c) Ackermann, L. Acc. Chem. Res.2014, 47, 281-295.
(8) a) Berman, A. M.; Lewis, J. C.; Bergman, R. G.; Ellman, J. A. J. Am. Chem. Soc. 2008, 130, 14926-14927. b) Lewis, J. C.; Wiedemann, S. H.; Bergman, R. G.; Ellman, J. A.;Org. Lett.2004, 6, 35-38. c) Lewis, J. C.; Bergman, R. G.; Ellman, J. A. Acc. Chem. Res. 2008, 41, 1013-1025. d) Colby, D. A.; Tsai, A. S.; Bergman, R. G.; Ellman, J. A. Acc. Chem. Res. 2012, 45, 814-825. e) Colby, D. A.; Bergman, R. G.; Ellman, J. A. Chem. Rev. 2010, 110, 624-655.
(9) a) Do, H.-Q.; Daugulis, O. J. Am. Chem. Soc. 2007, 129, 12404-12405. b) Phipps, R. J.; Grimster, N. P.; Gaunt, M. J. J. Am. Chem. Soc. 2008, 130, 8172-8174. c) Ackermann, L.; Potukuchi, H. K., Landsberg, D.; Vicente. R.Org. Lett. 2008, 10, 3081-3084. d) Besselie`vre, F.; Piguel, S.; Mahuteau-Betzer, F.; Grierson, D. S.Org. Lett. 2008, 10, 4029-4032. e) Yoshizumi, T.; Tsurugi, H.; Satoh, T.; Miura, M. Tetrahedron Lett.2008, 49, 1598-1600. f) Liu, J.; Chen, G.; Tan, Z. Adv. Synth. Catal. 2016, DOI: 10.1002/adsc. 201600031.
(10) Join, B.; Yamamoto, T.; Itami, K. Angew. Chem. Int. Ed. 2009, 48, 3644-3647.
(11) For selected papers dealing on the arylation of the C 2 or C 5 positions of thiophene using aryl halide or triflate, see: a) Yanagisawa, S.; Sudo, T.; Noyori, R.; Itami. K. Tetrahedron2008, 64, 6073-6081. b) Laroche, J.; Beydoun, K.; Guerchais, V.; Doucet. H. Catal. Sci. Technol. 2013, 3, 2072-2080. c) Kobayashi, K.; Sugie, A.; Takahashi, M.; Masui, K.; Mori, A. Org. Lett. 2005, 7, 5083-5085. d) Bensaid, S.; Roger, J.; Beydoun, K.; Roy, D.; Doucet, H. Synth. Commun.2011, 41, 3524-3531. e) Liu, B.; Huang, Y.; Lan, J.; Song, F.; You, J. Chem. Sci.2013, 4, 2163-2167. f) Srinivasan, R.; Kumaran, R. S.; Nagarajan, N. S. RSC Adv. 2014, 4, 4769747700. g) Liegault, B.; Petrov, I.; Gorelsky, S. I.; Fagnou, K. J. Org. Chem. 2010, 75, 1047-1060.
h) Laidaoui, N.; Roger, J.; Miloudi, A.; Abed, D. E.; Doucet, H.Eur. J. Org. Chem. 2011, 43734385. i) Dong, J. J.; Doucet, H. Eur. J. Org. Chem. 2010, 611-615. j) Chen, L.; Roger, J.; Bruneau, C.; Dixneuf, P. H.; Doucet, H. Adv. Synth. Catal. 2011, 353, 2749-2760. k) Roger, J.; Doucet, H. Org. Biomol. Chem.2008, 6, 169-174. 1) Larbi,K. S.; Djebbar, S.; Doucet, H. Eur. J. Inorg. Chem. 2011, 3493-3502. m) Gorelsky, S. I.;Lapointe, D.; Fagnou, K. J. Org. Chem.2012, 77, 658-668. n) Derridj, F.; Roger, J.; Geneste, F.; Djebbar, S.; Doucet, H. J. Organomet. Chem.2009, 694, 455-465. o) Yanagisawa, S.; Itami, K. Tetrahedron 2011, 67, 4425-4430. p) Churruca, F.; Hernandez, S.; Perea, M.; SanMartin, R.; Dominguez, E. Chem. Commun. 2013, 49, 1413-1415. q) Zhang, J.; Kang, D.-Y.; Barlow, S.; Marder, S. R. J. Mater. Chem.2012, 22, 21392-21394. r) Derridj, F.; Roger, J.; Djebbar, S.; Doucet, H. Org. Lett.2010, 12, 4320-4323. s) Battace, A.; Lemhadri, M.; Zair, T.; Doucet, H.; Santelli, M. Adv. Synth. Catal.2007, 349, 25072516.
(12) For selected papers dealing on the arylation of the C 2 or C 5 positions of furan using aryl halide or triflate, see: a) Battace, A.; Lemhadri, M.; Zair, T.; Doucet, H.; Santelli, M. Organometallics 2007, 26, 472-474. b) Fu, H. Y.; Doucet, H. Eur. J. Org. Chem. 2011, 71637173. c) McClure, M. S.; Glover, B.; McSorley, E.; Millar, A.; Osterhout, M. H.; Roschangar, F. Org. Lett. 2001, 3, 1677-1680. d) Dong, J. J.;Roger, J.;Pozgan,F.; Doucet, H. Green Chem.2009, 11, 1832-1846. e) ref. ${ }^{11 \mathrm{~h}}$. f) Juwaini, N. A. B.; Ng, J. K. P.; Seayad, J. ACS Catal.2012, 2, 17871791. g) Parisien, M.; Valette, D.; Fagnou, K. J. Org. Chem. 2005, 70, 7578-7584. h) ref. ${ }^{\text {11a, j-k }}$
(13) For papers on selective arylation at the C-2 or C-5 position of a 3-substituted thiophenes and furans by using aryl halide, see: a) Yanagisawa, S.; Sudo, T.; Noyori, R.; Itami, K. J. Am. Chem. Soc.2006, 128, 11748-11749. b) Glover, B.; Harvey, K. A.; Liu, B.; Sharp, M. J.; Tymoschenko M. F.Org. Lett. 2003, 5, 301-304. c) Amaladass, P.; Clement, J, A.; Mohanakrishnan, A. K. Tetrahedron2007, 63, 10363-10371.
(14) For selected papers on selective arylation at the C-4 or C-5 position of 2- or 3-substituted thiophenes by using aryl halide, see: a) Yanagisawa, S.; Ueda, K.; Sekizawa, H.; Itami, K.J. Am. Chem. Soc.2009, 131, 14622-14623. b) Ueda, K.; Yanagisawa, S.; Yamaguchi, J.; Itami, K. Angew. Chem. Int. Ed. 2010, 49, 8946-8949. c) Tang, D.-T. D.; Collins, K. D.; Ernst, J. B.; Glorius, F. Angew. Chem. Int. Ed. 2014, 53, 1809-1813. d) Lavenot, L.; Gozzi, C.; Ilg, K.; Orlova, I.; Penalva, V.; Lemaire, M. J. Organomet. Chem. 1998, 567, 49-55.
(15) For papers on selective arylation at the C-4 position of C-2 and C-5-disubstituted thiophenes and furans by using aryl halides, see: a). Gottumukkala, A. L, Doucet, H. Adv. Synth. Catal. 2008, 350, 2183-2188. b) Dong, J. J.; Roger, J.; Doucet, H. Tetrahedron Lett. 2009, 50, 27782781. c) Chen, L.; Roger, J.; Bruneau, C.; Dixneuf, P. H.; Doucet, H. Chem. Commun. 2011, 47, 1872-1874. d) Nakano, M.; Tsurugi, H.; Satoh, T.; Miura, M. Org. Lett. 2008, 10, 1851-1854. e) Yokooji, A.; Okazawa, T.; Satoh, T.; Miura, M.; Nomura, M. Tetrahedron2003, 59, 5685-5689.
(16) a) Krylov, I. B.; Vil', V. A.; Terent'ev, A. O. Beilstein J. Org. Chem.2015, 11, 92-146 (and references therein). b) Wang, Z.; Kuninobu, Y.; Kanai, M. Org. Lett.2014, 16, 4790-4793. c) Yadav, M. R.; Rit, R. K.; Sahoo, A. K. Chem. Eur. J.2012, 18, 5541-5545. d) Ye, X.; He, Z.; Ahmed, T.; Weise, K.; Akhmedov, N. G.; Petersen, J. L.; Shi, X. Chem. Sci.2013, 4, 3712-3716. e) Li, Q.; Zhang, S.-Y.; He, G.; Nack, W. A.; Chen, G. Adv. Synth. Catal.2014, 356, 1544-1548. f) Wang, M.; Yang, Y.; Fan, Z.; Cheng, Z.; Zhu, W.; Zhang, A. Chem. Commun.2015, 51, 32193222. g) Cheng, T.; Yin, W.; Zhang, Y.; Zhang, Y.; Huang, Y. Org. Biomol. Chem.2014, 12, 1405-1411. h) Reddy, B. V. S.; Reddy, L. R.; Corey, E. J. Org. Lett.2006, 8, 3391-3394. For papers dealing on the acetoxylation of indoles, see: i) Choy, P. Y.; Lau, C. P.; Kwong, F. Y. J. Org. Chem.2011, 76, 80-84. j) Soni, V.; Patel, U. N.; Punji, B. RSC Adv.2015, 5, 57472-57481. (17) a) Rappoport, Z. The Chemistry of Phenols, Wiley-VCH, Weinheim, 2003. b) Hartwig, J. F. in Handbook of Organopalladium Chemistry for Organic Synthesis, Vol. 1 (Ed.:Negishi, E.-I), Wiley-Interscience, New York, 2002, 1097. Catechol derivatives drugs. c) Fiegel, H.; Voges, H.W.; Hamamoto, T.; Umemura, S.; Iwata, T.; Miki, H.; Fujita, Y.; Buysch, H.-J.; Garbe, D.; Paulus, W. Phenol Derivatives in Ullmann's Encyclopedia of Industrial Chemistry; Wiley-VCH: New York, 2002. d) Rappoport, Z. The chemistry of phenols, Wiley-Interscience, 2003. e) Dick, A. R.; Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc. 2004, 126, 2300-2301. f) Vickers, C. J.; Mei, T.-S.; Yu, J.-Q. Org. Lett.2010, 12, 2511-2513. g) Chen, X.; Hao, X.-S. Goodhue, C. E. Yu, J.-Q. J. Am. Chem. Soc.2006, 128, 6790-6791. h) Ju, L.; Yao, J.; Wu, Z.; Liu, Z.; Zhang, Y. J. Org. Chem.2013, 78, 10821-10831.
(18) a) Theobald, R. S.; Schofield, K. Chem. Rev. 1950,46, 170-189. b) Kock, I.; Heber, D.; Weide, M.; Wolschendorf, U.; Clement, B. J. Med. Chem. 2005,48, 2772-2777. c) Barthelmes, H.; Niederberger, E.; Roth, T.; Schulte, K.; Tang, WC.; Boege, F.; Fiebig, H.-H, Eisenbrand, G.; Marko, D. British Journal of Cancer2001, 85, 1585-1591. d) Park, G. Y.; Wilson, J. J.; Song, Y.; Lippard, S. J.; Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 11987-11992. e) Bailly, C.; Arafa, R.
K.; Tanious, F. A.; Laine, W.; Tardy, C.; Lansiaux, A.; Colson, P.; Boykin, D. W.; Wilson, W. D. Biochemistry 2005,44, 1941-1952. f) Zhang, J.; Lakowicz, J. R. J. Phys. Chem. B 2005, 109, 8701-8706.
(19) a) Kirchberg, S.; Tani, S.; Ueda, K.; Yamaguchi, J.; Studer, A.; Itami, K. Angew. Chem. Int. Ed.2011, 50, 2387-2391. b) Yamaguchi, K.; Kondo, H.; Yamaguchi, J.; Itami, K. Chem. Sci.2013, 4, 3753-3757. c) Yamaguchi, K.; Yamaguchi, J.; Studer, A.; Itami, K. Chem. Sci. 2012, 3, 2165-2169.
(20) D.Tang, D.-T.; Collins, K. D.; Glorius, F. J. Am. Chem. Soc. 2013, 135, 7450-7453.
(21) a) Schnapperelle, I.; Breitenlechner, S.; Bach, T. Org. Lett. 2011, 13, 3640-3643. b) Colletto, C.; Islam, S.; Julia.-Hernandez, F.; Larrosa, I. J. Am. Chem. Soc.2016, 138, 1677-1683. c) Funaki, K.; Sato, T.; Oi, S. Org. Lett.2012, 14, 6186-6189. d) Wang, Z.; Li, Y.; Yan, B.; Huang, M.; Wu, Y. Synlett 2015, 26, 531-536. e) Maki, Y.; Goto, T.; Tsukada, N. ChemCatChem 2016, 8, 699-702.
(22) a) Okazawa, T.; Satoh, T.; Miura, M.; Nomura, M. J. Am. Chem. Soc. 2002, 124, 52865287. b) Larbi, K. S.; Fu, H. Y.; Laidaoui, N.; Beydoun, K.; Miloudi, A.; Abed, D. E.; Djabbar, S.; Doucet, H. ChemCatChem2012, 4, 815-823. c) Vogler, T.; Studer, A. Org. Lett. 2008, 10, 129-131. d) Yuan, K.; Doucet, H. Chem. Sci.2014, 5, 392-396.
(23) a) Shang, R.; Ilies, L.; Asako, S.; Nakamura, E. J. Am. Chem. Soc. 2014, 136, 14349-14352. b) Asako, S.; Ilies, L.; Nakamura, E. J. Am. Chem. Soc. 2013, 135, 17755-17757. c) Nishino, M.; Hirano, K.; Satoh, T.; Miura, M. Angew. Chem. Int. Ed.2013, 52, 4457-4461. d) Padmavathi, R.; Sankar, R.; Gopalakrishnan, B.; Parella, R.; Babu, S. A. Eur. J. Org. Chem. 2015, 3727-3742 (and references cited therein). e) Barsu, N.; Kalsi, D.; Sundararaju, B. Chem. Eur. J.2015, 21, 9364-9368. f) Ano, Y.; Tobisu, M.; Chatani, N. Org. Lett. 2012, 14, 354-357. g) Aihara, Y.; Chatani, N. J. Am. Chem. Soc. 2013, 135, 5308-5311. h) Kanyiva, K. S.; Kuninobu, Y.; Kanai, M. Org. Lett. 2014, 16, 1968-1971.
(24) a) Zaitsev, V. G.; Shabashov, D.; Daugulis, O. J. Am. Chem. Soc.2005, 127, 13154-13155. b) Han, J.; Liu, P.; Wang, C.; Wang, Q.; Zhang, J.; Zhao, Y.; Shi, D.; Huang, Z.; Zhao, Y. Org. Lett. 2014, 16, 5682-5685.
(25) a) Dick, A. R.; Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc. 2004, 126, 2300-2301. b) Gou, F.-R.; Wang, X.-C.; Huo, P.-F.; Bi, H.-P.; Guan, Z.-H, Liang, Y.-M. Org. Lett. 2009, 11, 57265729. c) Liu, P.; Han, J.; Chen, C. P.; Shi, D. Q.; Zhao, Y. S. RSC Adv. 2015, 5, 28430-28434.
(26) a) Nadres, E. T.; Daugulis, O. J. Am. Chem. Soc.2012, 134, 7-10. b) Pearson, R.; Zhang, S.; He, G.; Edwards, N.; Chen, G. Beilstein J. Org. Chem. 2013, 9, 891-899. c) Shaikh, T. M.; Hong, F.-E. J. Organomet. Chem.2016, 801, 139-156.
(27) For an available paper revealing the Pd-catalyzed C5 arylations of furfurylamine and 2-(aminoalkyl)-thiophene derivatives, see: Roger, J.; Doucet, H. Eur. J. Org. Chem.2010, 44124425 (and references cited therein).
(28) For selected papers dealing on the picolinamide ligand-directed $\mathrm{sp}^{2} / \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}$ functionalization/arylation, see: a) He, G.; Zhao, Y.; Zhang, S.; Lu, C.; Chen, G. J. Am. Chem. Soc.2012, 134, 3-6. b) Topczewski, J. J.; Sanford, M. S. Chem. Sci.2015, 6, 70-76. c) Rit, R. K.; Yadav, M. R.; Ghosh, K.; Sahoo, A. K. Tetrahedron2015, 71, 4450-4459. For a selected paper revealing vinylic C-H activation based on pyrazine unit as a monodentate ligand, see: d) Beck, R.; Camadanli, S.; Flörke, U.;Klein, H.-F.Eur. J. Inorg. Chem. 2015, 2543-2559. e) Shabashov, D.; Daugulis, O. J. Am. Chem. Soc.2010, 132, 3965-3972. f) Gutekunst, W. R.; Baran, P. S. J. Org. Chem.2014, 79, 2430-2452 (and references cited therein).
(29) For selected papers dealing on the oxalylamide ligand-directed $\mathrm{sp}^{2} / \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}$ functionalization/arylation, see: a) Wang, Q.; Han, J.; Wang, C.; Zhang, J.; Huang, Z.; Shi, D.; Zhao, Y. Chem. Sci.2014, 5, 4962-4967. b) Wang, C.; Chen, C.; Zhang, J.; Han, J.; Wang, Q.; Guo, K.; Liu, P.; Guan, M.; Yao, Y.; Zhao, Y. Angew. Chem. Int. Ed.2014, 53, 9884-9888.
(30) Liu, Y.-J.; Xu, H.; Kong, W.-J.; Shang, M.; Dai, H.-X.; Yu, J.-Q. Nature2014, 515, 389.

Appendix Section

Brief single crystal X-ray structure analysis data of compounds.

Proton/Carbon NMR spectra of representative compounds.

Appendix Section(Brief single crystal X-ray structure analysis data of compounds of Chapter 1)			
X-ray Structure			
Compound	39c	39d	40b
CCDC No.	CCDC 1011746	CCDC 1011747	CCDC 1011745
Empirical formula	$\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{ClN}_{3} \mathrm{O}_{2} \mathrm{~S}$	$\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$	$\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2}$
Formula weight	371.83	365.44	346.38
Temperature / K	1385.6	571.15	571.15
Crystal system	triclinic	monoclinic	monoclinic
Space group	P-1	$\mathrm{P} 2_{1} / \mathrm{n}$	$\mathrm{P} 21 / \mathrm{c}$
$\begin{aligned} & \hline \mathrm{a} / \AA, \\ & \mathrm{b} / \AA, \\ & \mathrm{c} / \AA \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 7.9737(9), \\ & 10.6719(13), \\ & 11.1080(12) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 6.1500(6), \\ 20.407(2), \\ 15.7035(16) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 6.1848(4), \\ 14.5904(8), \\ 20.7597(12) \\ \hline \end{array}$
$\begin{array}{\|l} \hline \alpha /{ }^{\circ}, \\ \beta / /^{\prime}, \\ \gamma /{ }^{\prime} \\ \hline \end{array}$	$\begin{aligned} & \hline 81.44(2), \\ & 86.04(2), \\ & 75.606(19) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 90, \\ 97.229(7), \\ 90 \\ \hline \end{array}$	$\begin{aligned} & \hline 90, \\ & 96.743(3), \\ & 90 \\ & \hline \end{aligned}$
Volume / A ${ }^{\text {3 }}$	904.9(2)	1955.2(3)	1860.37(19)
Z	2	4	4
$\rho_{\text {calc }} / \mathrm{mg} \mathrm{mm}^{-3}$	1.365	1.241	1.237
μ / mm^{-1}	0.342	0.184	0.083
$\mathrm{F}(000)$	384	768	728
Crystal size / mm ${ }^{3}$	$0.2 \times 0.2 \times 0.2$	$0.3 \times 0.3 \times 0.2$	$0.3 \times 0.2 \times 0.2$
2Θ range for data collection	6.35 to 54.956°	3.288 to 50.054°	3.42 to 50.06°
Index ranges	$\begin{aligned} & -10 \leq h \leq 10, \\ & -13 \leq k \leq 13, \\ & -14 \leq 1 \leq 14 \end{aligned}$	$\begin{aligned} & -7 \leq \mathrm{h} \leq 7, \\ & -24 \leq \mathrm{k} \leq 24, \\ & -17 \leq 1 \leq 18 \\ & \hline \end{aligned}$	$\begin{aligned} & -5 \leq \mathrm{h} \leq 7, \\ & -16 \leq \mathrm{k} \leq 17, \\ & -24 \leq 1 \leq 24 \end{aligned}$
Reflections collected	9761	13268	12614
Independent reflections	$4124[\mathrm{R}(\mathrm{int})=0.0697]$	$3461[\mathrm{R}(\mathrm{int})=0.0492]$	$3273[\mathrm{R}(\mathrm{int})=0.0465]$
Data/restraints/ parameters	4124/7/225	3461/3/187	3273/0/238
Goodness-of-fit on F^{2}	1.588	1.563	1.014
Final R indexes $[\mathrm{I}>2 \sigma(\mathrm{I})]$	$\begin{aligned} & \mathrm{R}_{1}=0.1289, \\ & \mathrm{wR}_{2}=0.3849 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{1}=0.1367, \\ & \mathrm{wR}_{2}=0.4071 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{1}=0.0648, \\ & \mathrm{wR}_{2}=0.1713 \end{aligned}$
Final R indexes [all data]	$\begin{aligned} & \mathrm{R}_{1}=0.1501, \\ & \mathrm{wR}_{2}=0.4225 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{R}_{1}=0.2097, \\ & \mathrm{wR}_{2}=0.4577 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{R}_{1}=0.1226, \\ & \mathrm{wR}_{2}=0.2055 \end{aligned}$
Largest diff. peak/hole /e \AA^{-3}	2.855/-1.057	1.466/-1.373	0.304/-0.273

Appendix Section(Brief single crystal X-ray structure analysis data of compounds of Chapter 1)					
X-ray Structure					
Compound					

Appendix Section(Brief single crystal X-ray structure analysis data of compounds of Chapter 1)			
X-ray Structure			
Compound	71	77	79
CCDC No.	CCDC 931884	CCDC 932693	CCDC 931883
Empirical formula	$\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4}$	$\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{4}$	$\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{4}$
Formula weight	354.4	288.35	213.26
Temperature / K	569(2)	571.15	571.15
Crystal system	monoclinic	orthorhombic	orthorhombic
Space group	$\mathrm{P} 2_{1} / \mathrm{c}$	Fdd2	$\mathrm{P} 2_{1} 2_{1} 2_{1}$
$\begin{aligned} & \text { a / A, } \\ & \text { b/ } \AA \\ & \text { c / } \AA \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 19.2090(13), \\ & 6.1778(5), \\ & 16.3757(11) \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline 17.767(9), \\ 56.77(3), \\ 6.166(3) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 7.3502(5), \\ 8.4518(6), \\ 18.6480(13) \\ \hline \end{array}$
$\begin{aligned} & \alpha / /^{\circ}, \\ & \beta /{ }^{\prime}, \\ & \gamma /^{\circ}, \end{aligned}$	$\begin{aligned} & \hline 90, \\ & 106.529(4), \\ & 90 \\ & \hline \end{aligned}$	$\begin{aligned} & 90, \\ & 90, \\ & 90 \\ & \hline \end{aligned}$	$\begin{aligned} & 90, \\ & 90, \\ & 90 \\ & \hline \end{aligned}$
Volume / \AA^{3}	1863.0(2)	6219(5)	1158.46(14)
Z	4	16	4
$\rho_{\text {calc }} / \mathrm{mg} \mathrm{mm}^{-3}$	1.264	1.232	1.223
μ / mm^{-1}	0.089	0.076	0.078
$\mathrm{F}(000)$	752	2432	452
Crystal size / mm ${ }^{3}$	$0.3 \times 0.2 \times 0.2$	$0.3 \times 0.3 \times 0.3$	$0.3 \times 0.2 \times 0.2$
2Θ range for data collection	2.22 to 50.26°	2.86 to 61.14°	4.36 to 50.04°
Index ranges	$\begin{aligned} & -21 \leq \mathrm{h} \leq 22, \\ & -7 \leq \mathrm{k} \leq 7, \\ & -19 \leq 1 \leq 18 \\ & \hline \end{aligned}$	$\begin{aligned} & -23 \leq h \leq 23, \\ & -74 \leq k \leq 80, \\ & -6 \leq 1 \leq 7 \\ & \hline \end{aligned}$	$\begin{aligned} & -7 \leq h \leq 8, \\ & -10 \leq k \leq 10, \\ & -22 \leq 1 \leq 17 \end{aligned}$
Reflections collected	8722	8792	5911
Independent reflections	$3299[\mathrm{R}(\mathrm{int})=0.0632]$	$3086[\mathrm{R}(\mathrm{int})=0.0502]$	2031[R(int) $=0.0262$]
Data/restraints/ parameters	3299/0/238	3086/1/207	2031/0/147
Goodness-of-fit $\text { on } \mathrm{F}^{2}$	1.055	1.016	1.081
Final R indexes [I $>2 \sigma(\mathrm{I})]$	$\begin{aligned} & \mathrm{R}_{1}=0.0635, \\ & \mathrm{wR}_{2}=0.197 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{R}_{1}=0.0426, \\ & \mathrm{wR}_{2}=0.104 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{R}_{1}=0.0346 \\ & \mathrm{wR}_{2}=0.0818 \\ & \hline \end{aligned}$
Final R indexes [all data]	$\begin{aligned} & \hline \mathrm{R}_{1}=0.0935, \\ & \mathrm{wR}_{2}=0.226 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{R}_{1}=0.0565, \\ & \mathrm{wR}_{2}=0.1133 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{R}_{1}=0.0424, \\ & \mathrm{wR}_{2}=0.0869 \\ & \hline \end{aligned}$
Largest diff. peak/hole / e \AA^{-3}	0.336/-0.236	0.148/-0.173	0.104/-0.107

Appendix Section(Brief single crystal X-ray structure analysis data of compounds of Chapter 2)			
X-ray Structure	der 8.8		- K
Compound	33	34	39
CCDC No.	CCDC 847073	CCDC 847074	CCDC 847075
Empirical formula	$\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{6}$	$\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{5}$	$\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{FN}_{2} \mathrm{O}_{6}$
Formula weight	400.42	332.35	404.39
Temperature / K	569.15	569.15	571.15
Crystal system	monoclinic	monoclinic	triclinic
Space group	C2/c	$\mathrm{P} 2_{1} / \mathrm{n}$	P-1
$\begin{aligned} & \hline \text { a / A }, \\ & \mathrm{b} / \AA \AA \\ & \mathrm{c} / \AA \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 21.9132(7), \\ 10.7761(3), \\ 16.6742(5) \\ \hline \end{array}$	$\begin{aligned} & \hline 9.4307(9), \\ & 7.7612(9), \\ & 22.764(2) \end{aligned}$	$\begin{aligned} & \hline 6.5931(13), \\ & 10.063(2), \\ & 14.260(3) \\ & \hline \end{aligned}$
$\begin{aligned} & \alpha /{ }^{\circ}, \\ & \beta / /^{\prime}, \\ & \gamma /{ }^{\prime}, \\ & \hline \end{aligned}$	$\begin{aligned} & 90, \\ & 99.612(2), \\ & 90 \end{aligned}$	$\begin{aligned} & 90, \\ & 93.340(7), \\ & 90 \\ & \hline \end{aligned}$	$\begin{aligned} & 92.373(11), \\ & 99.725(12), \\ & 99.565(11) \end{aligned}$
Volume / ${ }^{3}$	3882.1(2)	1663.4(3)	917.1(3)
Z	8	4	2
$\rho_{\text {calc }} / \mathrm{mg} \mathrm{mm}^{-3}$	1.37	1.327	1.464
μ / mm^{-1}	0.101	0.099	0.115
$\mathrm{F}(000)$	1696	704	424
Crystal size / mm ${ }^{3}$	$0.2 \times 0.2 \times 0.1$	$0.2 \times 0.2 \times 0.1$	$0.3 \times 0.2 \times 0.2$
2Θ range for data collection	4.22 to 56.56°	3.58 to 50.06°	4.12 to 47.06°
Index ranges	$\begin{aligned} & -28 \leq \mathrm{h} \leq 29, \\ & -12 \leq \mathrm{k} \leq 14, \\ & -22 \leq 1 \leq 22 \\ & \hline \end{aligned}$	$\begin{aligned} & -11 \leq \mathrm{h} \leq 10, \\ & -9 \leq \mathrm{k} \leq 9, \\ & -27 \leq 1 \leq 26 \end{aligned}$	$\begin{aligned} & -7 \leq \mathrm{h} \leq 7, \\ & -9 \leq \mathrm{k} \leq 11, \\ & -15 \leq 1 \leq 15 \\ & \hline \end{aligned}$
Reflections collected	36652	10343	6280
Independent reflections	4818[R(int) $=0.0293]$	2938[R(int) $=0.134]$	2714[R(int) $=0.0643]$
Data/restraints/ parameters	4818/0/266	2938/0/265	2714/0/347
Goodness-of-fit on F^{2}	1.092	0.955	1.028
Final R indexes [$\mathrm{I}>2 \sigma(\mathrm{I})]$	$\begin{aligned} & \mathrm{R}_{1}=0.0433, \\ & \mathrm{wR}_{2}=0.1261 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{R}_{1}=0.0816, \\ & \mathrm{wR}_{2}=0.2074 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{R}_{1}=0.0571, \\ & \mathrm{wR}_{2}=0.1516 \\ & \hline \end{aligned}$
Final R indexes [all data]	$\begin{aligned} & \hline \mathrm{R}_{1}=0.0658, \\ & \mathrm{wR}_{2}=0.1491 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{R}_{1}=0.1465, \\ & \mathrm{wR}_{2}=0.241 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{R}_{1}=0.0668, \\ & \mathrm{wR}_{2}=0.1612 \\ & \hline \end{aligned}$
Largest diff. peak/hole /e \AA^{-3}	0.535/-0.446	0.517/-0.418	0.284/-0.249

Appendix Section(Brief single crystal X-ray structure analysis data of compounds of Chapter 2)			
X-ray Structure			
Compound	47a	48a	50
CCDC No.	CCDC 847076	CCDC 847077	CCDC 847078
Empirical formula	$\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{4}$	$\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3}$	$\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{No}_{6}$
Formula weight	429.47	361.39	421.43
Temperature / K	571.15	571.15	563.15
Crystal system	monoclinic	monoclinic	monoclinic
Space group	P21/c	P2 ${ }_{1} / \mathrm{c}$	C2/c
$\begin{aligned} & \hline \text { a / A, } \\ & \mathrm{b} / \AA, \\ & \mathrm{c} / \AA \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 12.9718(6), \\ 6.9048(3), \\ 26.2625(12) \\ \hline \end{array}$	$\begin{array}{\|l} \hline 8.801(3), \\ 20.946(6), \\ 9.974(3) \\ \hline \end{array}$	$\begin{aligned} & 22.2874(3), \\ & 10.7589(2), \\ & 17.0986(2) \\ & \hline \end{aligned}$
$\begin{aligned} & \hline \alpha /^{\circ}, \\ & \beta /^{\prime}, \\ & \gamma /^{\circ}, \end{aligned}$	$\begin{aligned} & 90, \\ & 100.4240(10), \\ & 90 \end{aligned}$	$\begin{aligned} & \hline 90, \\ & 97.905(14), \\ & 90 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 90, \\ & 95.5070(10), \\ & 90 \end{aligned}$
Volume / \AA^{3}	2313.45(18)	1821.3(9)	4081.11(11)
Z	4	4	8
$\rho_{\text {calc }} / \mathrm{mg} \mathrm{mm}^{-3}$	1.313	1.318	1.372
μ / mm^{-1}	0.092	0.09	0.099
$\mathrm{F}(000)$	960	760	1776
Crystal size / mm ${ }^{3}$	$0.2 \times 0.2 \times 0.1$	$0.2 \times 0.2 \times 0.2$	$0.2 \times 0.1 \times 0.1$
2Θ range for data collection	3.16 to 53.46°	3.88 to $58.46{ }^{\circ}$	3.68 to 51.36°
Index ranges	$\begin{aligned} & -16 \leq h \leq 16, \\ & -8 \leq k \leq 7, \\ & -33 \leq 1 \leq 33 \end{aligned}$	$\begin{aligned} & -9 \leq \mathrm{h} \leq 11, \\ & -19 \leq \mathrm{k} \leq 28, \\ & -13 \leq 1 \leq 13 \end{aligned}$	$\begin{aligned} & -26 \leq h \leq 27, \\ & -13 \leq k \leq 13, \\ & -20 \leq 1 \leq 20 \end{aligned}$
Reflections collected	22883	12244	20843
Independent reflections	4919[R(int) $=0.0264$]	$4581[\mathrm{R}(\mathrm{int})=0.044]$	$3853[\mathrm{R}(\mathrm{int})=0.019]$
Data/restraints/ parameters	4919/0/392	4581/0/321	3853/0/372
Goodness-of-fit on F^{2}	1.143	1.03	1.08
Final R indexes $[\mathrm{I}>2 \sigma(\mathrm{I})]$	$\begin{aligned} & \hline \mathrm{R}_{1}=0.062, \\ & \mathrm{wR}_{2}=0.1606 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{R}_{1}=0.0533, \\ & \mathrm{wR}_{2}=0.1225 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{1}=0.0376, \\ & \mathrm{wR}_{2}=0.1057 \\ & \hline \end{aligned}$
Final R indexes [all data]	$\begin{array}{\|l} \hline \mathrm{R}_{1}=0.0869, \\ \mathrm{wR}_{2}=0.189 \\ \hline \end{array}$	$\begin{aligned} & \hline \mathrm{R}_{1}=0.1045, \\ & \mathrm{wR}_{2}=0.1444 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{1}=0.046, \\ & \mathrm{wR}_{2}=0.1195 \\ & \hline \end{aligned}$
Largest diff. peak/hole/e \AA^{-3}	0.826/-0.851	0.196/-0.187	0.23/-0.179

Appendix Section(Brief single crystal X-ray structure analysis data of compounds of Chapter 2)			
X-ray Structure Compound		54	 55
CCDC No.	CCDC 847079	CCDC 847080	CCDC 847081
Empirical formula	$\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4}$	$\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO}_{7}$	$\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{5}$
Formula weight	450.48	399.39	428.43
Temperature / K	563.15	571.15	571.15
Crystal system	monoclinic	monoclinic	orthorhombic
Space group	P21/c	C2/c	Pbca
a/A, b/ Å, c/ \AA	$\begin{aligned} & \hline 13.6139(12), \\ & 11.2334(10), \\ & 16.8670(14) \end{aligned}$	$\begin{aligned} & \text { 25.0264(8), } \\ & 7.7155(3), \\ & 19.4079(7) \end{aligned}$	$\begin{aligned} & 14.4264(7), \\ & 10.7925(4), \\ & 54.837(2) \end{aligned}$
$\begin{aligned} & \alpha /^{\circ}, \\ & \beta /^{\circ}, \\ & \gamma 1^{\circ} \end{aligned}$	$\begin{array}{\|l\|} \hline 90, \\ 112.459(3), \\ 90 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 90, \\ 98.967(2), \\ 90 \\ \hline \end{array}$	$\begin{array}{\|l} 90, \\ 90, \\ 90 \\ \hline \end{array}$
Volume / \AA^{3}	2383.8(4)	3701.7(2)	8537.9(6)
Z	4	8	16
$\rho_{\text {calc }} / \mathrm{mg} \mathrm{mm}^{-3}$	1.342	1.491	1.333
μ / mm^{-1}	0.092	0.115	0.094
F(000)	1012	1744	3584
Crystal size / mm ${ }^{3}$	$0.2 \times 0.2 \times 0.1$	$0.1 \times 0.1 \times 0.1$	$0.2 \times 0.2 \times 0.15$
2Θ range for data collection	3.24 to 50.06°	4.24 to 54.2°	3.2 to 54.2°
Index ranges	$\begin{aligned} & -16 \leq h \leq 14, \\ & -13 \leq k \leq 10, \\ & -19 \leq 1 \leq 20 \end{aligned}$	$\begin{aligned} & -32 \leq \mathrm{h} \leq 31, \\ & -9 \leq \mathrm{k} \leq 9, \\ & -24 \leq 1 \leq 24 \\ & \hline \end{aligned}$	$\begin{aligned} & -18 \leq h \leq 17, \\ & -13 \leq k \leq 13, \\ & -70 \leq 1 \leq 68 \end{aligned}$
Reflections collected	14720	20286	93815
Independent reflections	$4208[\mathrm{R}(\mathrm{int})=0.0299]$	$4079[\mathrm{R}(\mathrm{int})=0.0485]$	$9411[\mathrm{R}(\mathrm{int})=0.1255]$
Data/restraints/ parameters	4208/0/327	4079/0/342	9411/0/715
Goodness-of-fit on F^{2}	1.044	1.019	1.006
Final R indexes $[\mathrm{I}>2 \sigma(\mathrm{I})]$	$\begin{aligned} & \hline \mathrm{R}_{1}=0.0539, \\ & \mathrm{wR}_{2}=0.1531 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{R}_{1}=0.0421, \\ & \mathrm{wR}_{2}=0.0882 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{1}=0.0629, \\ & \mathrm{wR}_{2}=0.1193 \\ & \hline \end{aligned}$
Final R indexes [all data]	$\begin{aligned} & \hline \mathrm{R}_{1}=0.0807 \\ & \mathrm{wR}_{2}=0.1763 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{R}_{1}=0.0779 \\ & \mathrm{wR}_{2}=0.1025 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{1}=0.1713, \\ & \mathrm{wR}_{2}=0.1572 \end{aligned}$
Largest diff. peak/hole /e \AA^{-3}	0.395/-0.269	0.191/-0.186	0.489/-0.319

Appendix Section(Brief single crystal X-ray structure analysis data of compounds of Chapter 2)			
X-ray Structure		Q	
Compound	60	63b	67a
CCDC No.	CCDC 847082	CCDC 847083	CCDC 1447111
Empirical formula	$\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{No}_{6}$	$\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{ClN}_{2} \mathrm{O}_{6}$	$\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{2}$
Formula weight	397.41	457.88	461.55
Temperature / K	563.15	569.15	569(2)
Crystal system	monoclinic	triclinic	monoclinic
Space group	P2 ${ }_{1} / \mathrm{c}$	P-1	P2 $1 / \mathrm{c}$
$\begin{aligned} & \hline \mathrm{a} / \AA \AA, \\ & \mathrm{b} / \AA \AA, \\ & \mathrm{c} / \AA \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 7.8690(6), \\ & 24.188(2), \\ & 12.5034(10) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 10.378(2), \\ & 12.316(3), \\ & 18.342(5) \\ & \hline \end{aligned}$	$\begin{aligned} & 12.473(4), \\ & 10.220(4), \\ & 19.035(6) \\ & \hline \end{aligned}$
$\begin{aligned} & \alpha /^{\prime}, \\ & \beta /{ }^{\prime}, \\ & \gamma /{ }^{\prime}, \end{aligned}$	$\begin{array}{\|l\|} \hline 90, \\ 125.238(5), \\ 90 \end{array}$	$\begin{aligned} & \hline 87.581(12), \\ & 80.085(12), \\ & 75.464(17) \\ & \hline \end{aligned}$	$\begin{aligned} & 90, \\ & 92.846(18), \\ & 90 \end{aligned}$
Volume / ${ }^{3}$	1943.7(3)	2235.5(9)	2423.5(15)
Z	4	4	4
$\rho_{\text {calc }} / \mathrm{mg} \mathrm{mm}^{-3}$	1.358	1.36	1.265
μ / mm^{-1}	0.099	0.213	0.08
$\mathrm{F}(000)$	840	956	976
Crystal size / mm ${ }^{3}$	$0.2 \times 0.2 \times 0.1$	$0.5 \times 0.4 \times 0.2$	$0.2 \times 0.2 \times 0.2$
2Θ range for data collection	3.36 to $50.04{ }^{\circ}$	2.26 to 50.06°	4.28 to 50.06°
Index ranges	$\begin{aligned} & -9 \leq h \leq 9, \\ & -28 \leq k \leq 27, \\ & -14 \leq 1 \leq 14 \end{aligned}$	$\begin{aligned} & -11 \leq \mathrm{h} \leq 12, \\ & -14 \leq \mathrm{k} \leq 14, \\ & -21 \leq 1 \leq 21 \end{aligned}$	$\begin{aligned} & -12 \leq \mathrm{h} \leq 14, \\ & -5 \leq \mathrm{k} \leq 12, \\ & -22 \leq 1 \leq 22 \\ & \hline \end{aligned}$
Reflections collected	10053	11266	13685
Independent reflections	$3421[\mathrm{R}(\mathrm{int})=0.0971]$	$7786[\mathrm{R}(\mathrm{int})=0.0391]$	$4281[\mathrm{R}(\mathrm{int})=0.0424]$
Data/restraints/ parameters	3421/0/266	7786/0/581	4281/0/425
Goodness-of-fit on F^{2}	0.93	0.999	1.038
Final R indexes [$\mathrm{I}>2 \sigma(\mathrm{I})]$	$\begin{aligned} & \mathrm{R}_{1}=0.0608, \\ & \mathrm{wR}_{2}=0.1202 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{R}_{1}=0.102, \\ & \mathrm{wR}_{2}=0.2838 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{R}_{1}=0.0385, \\ & \mathrm{wR}_{2}=0.0946 \end{aligned}$
Final R indexes [all data]	$\begin{aligned} & \mathrm{R}_{1}=0.1532, \\ & \mathrm{wR}_{2}=0.1585 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{R}_{1}=0.1816, \\ & \mathrm{wR}_{2}=0.3393 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{R}_{1}=0.0464, \\ & \mathrm{wR}_{2}=0.1004 \\ & \hline \end{aligned}$
Largest diff. peak/hole /e \AA^{-3}	0.172/-0.184	0.95/-0.4	0.216/-0.146

| Appendix Section(Brief single crystal X-ray structure analysis data of compounds of Chapter 2) |
| :--- | :--- | :--- | :--- |
| X-ray Structure |

Appendix Section(Brief single crystal X-ray structure analysis data of compounds of Chapter 2) X-ray Structure		
	68e	

Appendix Section(Brief single crystal X-ray structure analysis data of compounds of Chapter 3) X-ray Structure			
		40b	
Compound			

Appendix Section. Representative NMR-spectra.

	1	T	,	1	1	1	1	1	1	1
PPM	180	160	140	120	100	80	60	40	20	0

$$
\underbrace{}_{\text {Nive }}
$$

	1		,					1	1	1
PPM	180	160	140	120	100	80	60	40	20	0

	1	1	1	1	1	1	1	1	1	
PPM	180	160	140	120	100	80	60	40	20	0

				$\begin{aligned} & \stackrel{\rightharpoonup}{\circ} \\ & \stackrel{\sim}{\omega} \end{aligned}$							
PPM	10.0	9.0	8.0	7.0	6.0	5.0	4.0	3.0	2.0	1.0	0.0

SpinWorks 3: Rk717b1 Carbon test

	1	1	1	1	1	\|	1	1	1	1
PPM	180	160	140	120	100	80	60	40	20	0

SpinWorks 3: RK-47R2D2 Carbon test

SpinWorks 3: RK-204W Carbon test

SpinWorks 3: RK-16D Carbon test

	1	1	1	1	1		1	1	1	1
PPM	200	180	160	140	120	100	80	60	40	20

SpinWorks 3: Rk359r2c2 Proton test

	1	1	1	1		1	1	1	1	1	1
PPM	200	180	160	140	120	100	80	60	40	20	0

SpinWorks 3: Rk442a1 Proton test

SpinWorks 3: RK 1641 A

PROTON CDCl3 /opt/topspin3.5pl2/nmrdata nmrsu 29

\circ
0
N
U
U
1


```
SpinWorks 3: RK 1641 A
```


	$\begin{aligned} & \text { w } \\ & \stackrel{\rightharpoonup}{0} \\ & \text { v } \end{aligned}$
$1 /$	

76.7423
77.0594
77.3774

PPM

120
1
100

$1 \quad 1$
1
60
1
40

SpinWorks 3: RK-1589 A1

SpinWorks 3: RK 1589 A1

$\begin{aligned} & \text { yyoz } \\ & \text { oöd } \\ & \text { odod } \end{aligned}$	$\stackrel{\rightharpoonup}{\circ}$ $\stackrel{i}{\sim}$
)	

SpinWorks 3: rk-1687-b

0.0144

C13CPD256 CDC13/opt/topspin3.5pl2/nmrdata nmrsu 28

$\begin{aligned} & \stackrel{\rightharpoonup}{\circ} \\ & \stackrel{\leftrightarrow}{6} \\ & \stackrel{\omega}{6} \end{aligned}$	隹	

C13CPD256 CDC13 /opt/topspin nmrsu 16

SpinWorks 3：RK 1560／1560 A
PROTON CDCI3／opt／topspin nmrsu

VVV	90		$\omega \omega \omega \omega$	N	－ャッ－ャ
Nへi－	∞	V viciovi	نvivir	i	－
∞	जैज	Noovuco	NuFOO	$\stackrel{\sim}{6}$	
ज1ワ®	い゙ー	NGONOOU जOWNO ∞	NNN゙ロ』	$\stackrel{\ominus}{\bullet}$	¢NON
4	Ψ	$L^{L 1}$	lifir ded		$1 \ll$

SpinWorks 3：RK 1560 A 13CPD256 CDCl3／opt／topspin nmrsu 6

	＋
4	

SpinWorks 3：NM 2244 B

$\bigcirc \bigcirc \infty \infty$	∞	VVのの	
	\bigcirc	－ト $-\infty$	\checkmark VOOOO
ャッツUWNNN	$\stackrel{\omega}{\omega}$	いトワソ	いNOC
	∞	－ローロ	の○○か wuo
		1	dif

SpinWorks 3：NM 2244 B

$\stackrel{\rightharpoonup}{\bullet}$	$\stackrel{\square}{\bullet}$	ャートゥம	ャャャ				
9	$\stackrel{9}{\omega}$	$\stackrel{\rightharpoonup}{\square} \stackrel{\rightharpoonup}{+}+\frac{A}{N}$	NNN	ソソン	\bigcirc	N	N
${ }^{\circ}$	－	wiñoi	$\checkmark-\infty$	$\bigcirc{ }^{\circ} \mathrm{O}$	\bigcirc	\bigcirc	\checkmark
$\stackrel{+}{\square}$	\checkmark	－voñ	$\bigcirc \bigcirc$	○¢	\bigcirc	\bigcirc	N
${ }_{\sim}^{\sim}$	9	¢VVのソ	\because ソ®	ONW	∞	$\stackrel{\omega}{\omega}$	N
		41					

[^0]: ${ }^{\text {a }} 3$ Equiv of $\mathrm{PhI}(\mathrm{OAc})_{2}$ was used.

[^1]: ${ }^{\mathrm{a}}$ The reaction was carried out by using 1:1 Gla. AcOH and $\mathrm{Ac}_{2} \mathrm{O}$.

