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Abstract

With the development of technology and improved understanding of nuclear spin-spin in-
teractions and their behavior in static/oscillating magnetic fields, NMR spectroscopy has
emerged as a powerful tool for characterizing molecular structure in wide range of systems
of chemical, physical and biological relevance. Here in this thesis, employing the concept
of effective Hamiltonians, an analytic theory is introduced to describe transitions in a
multi-level system in nuclear magnetic resonance (NMR) spectroscopy. Specifically, the
discussion is centered towards the treatment of selective and non-selective excitations in
static single-crystal and magic angle spinning (MAS) powder sample in quadrupolar spin
(I > 1/2) systems. Employing the spherical tensor formalism, effective radio-frequency
(RF) Hamiltonians are proposed for describing transitions in I=1, 3/2 and 5/2. The
optimum conditions desired for selective excitation in a multi-level system are derived
pedagogically from first principles and presented through analytic expressions. As an
extension of this approach, multi-quantum (MQ) excitation in quadrupolar systems is
discussed. Since MQ NMR spectroscopy of quadrupolar nuclei forms the basis for struc-
tural characterization of inorganic solids and clusters, we believe that the analytic theory
presented herein would be beneficial both in the understanding and design of MQ NMR
experiments.
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Chapter 1

Introduction

1.1 Background
Recent technological advancements and innovations in methodology have established nu-
clear magnetic resonance1–4 (NMR) as one of the most reliable spectroscopic tools avail-
able for determining molecular structure5 both in ordered and intrinsically disordered
systems.6–14 In comparison to other forms of spectroscopy, the phenomenon of NMR15–19

results from an intrinsic quantum mechanical property, commonly referred to as ‘spin’20–25

and characterized through 2I + 1 spin states (‘I’ represents the nuclear spin quantum
number). To induce appreciable transitions, presence of an external magnetic field26 is
necessary to lift the degeneracy of the nuclear spin states. Subsequently, transitions be-
tween nuclear spin states are induced by employing oscillating magnetic fields17–19 with
frequencies in the radio-frequency (RF) region of the electromagnetic (EM) spectrum.
Nevertheless, the smaller energy gap between the nuclear spin states renders NMR spec-
troscopy, a less sensitive tool in comparison to other available spectroscopic techniques.
In spite of this inherent limitation, the versatility (and uniqueness) of NMR spectroscopy
lies in the flexibility that it provides in the design of experiments through careful control
and manipulation27 of the spin interactions at the atomic level. In particular, the nuclear
spin interactions play an important role in defining the utility of NMR as a molecular
probe. The information characterizing the chemical surroundings of the desired nuclei
under investigation, depends on the availability of high-resolution spectrum.28 In general,
the resolution of the NMR spectrum depends on the state of the sample29–35 in addition
to the spin quantum number of the nucleus under investigation. For example, in the case
of a liquid sample, the inherent molecular motion renders the spin interactions isotropic
and results in sharp, narrow spectra. On the contrary, the restricted mobility in the solid
state renders the spin interactions anisotropic and results in broad spectra.

Depending on the magnitude of the spin quantum number of a particular nucleus, the
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nature of the spin interactions vary. For spin-1/2 nuclei, the spin interactions mainly
comprise of the dipole-dipole interaction between spins, chemical shift anisotropy (CSA),
indirect spin-spin interaction (J-coupling), etc. Due to rapid molecular tumbling mo-
tion, the dipolar interactions in the liquid state are averaged to zero. With the ad-
vent of Magic angle spinning36,37 (MAS) and other sophisticated double resonance and
multiple-pulse experiments such as cross-polarization38,39 (CP) and hetero-nuclear decou-
pling40–46 methods, the differences between solution and solid-state NMR (ssNMR) of
spin 1/2 nuclei have narrowed down in recent years.47–51 These developments, together
with the continuing advances in NMR hardware and software, have facilitated molecular
level structure determination of materials (of both chemical and biological relevance) in
the solid-state.6–14

In spite of this tremendous success, the advancement of NMR methodology in quadrupo-
lar nuclei (nuclei with I > 1/2) is only marginal. Since, 70% of the nuclei in the periodic
table possess spin quantum numbers greater than 1/2, the NMR study of such nuclei be-
come relevant. In contrast to their spin 1/2 counterparts, nuclei with spin I > 1/2 possess
a non-spherical distribution of charge around the nucleus leading to an intrinsic property,
commonly referred to as the “quadrupole moment".52 The interaction between this non-
symmetrical charge distribution around the nucleus with the electric field gradients (EFG)
resulting from the local charge distribution in a molecule (created by surrounding elec-
trons) is referred to as the “quadrupolar interaction".47,52–57 In contrast to other internal
spin interactions, the quadrupolar interactions are stronger and are primarily responsi-
ble for the observed line broadening. Interestingly, the rapid molecular tumbling motion
present in liquids diminishes the impact of the quadrupolar interactions in solution NMR.
Nevertheless, quadrupolar interactions do have a prominent role on the T1 and T2 relax-
ation times of nuclei in the solution state.28 In the past, de novo structure determination
(biological systems in particular) was primarily centered around studies involving spin
1/2 nuclei.6–14,58 The dipolar interactions in particular, have remained the main source
for providing molecular constraints such as intramolecular distances (13C−13C, 13C−15N)
and molecular torsion angles.59–62,62–65 In a typical multidimensional solid-state NMR (ss-
NMR) experiment involving spin 1/2 nuclei, the spatial averaging effect of MAS is partially
compensated through multiple-pulse schemes during selected periods of time (or dipolar
mixing time), resulting in the reintroduction of dipolar interactions without compromising
the spectral resolution afforded by MAS.66–68 Depending on the nature of the experiment,
the dipolar interactions are reintroduced in a controlled fashion.69–74 A detailed account
of such experiments is well documented in the literature69–74 and would not be elaborated
upon any further in this thesis.

Alternatively, we shall confine our discussion to the quadrupolar interactions encoun-
tered in the study of quadrupolar nuclei. Many interesting systems (such as biological
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molecules, catalysts, glasses, metals, semiconductors, superconductors and other advanced
materials) of importance containing quadrupolar nuclei are insoluble in typical solvents
and/or lose their structure on dissolution. In cases where these materials are soluble in
liquids, rapid molecular tumbling averages the nuclear quadrupolar interactions result-
ing in broad, uninformative NMR peaks. Hence, their characterization in the solid state
is mandatory. Furthermore, ssNMR spectra of quadrupolar nuclei (in contrast to their
spin 1/2 counterparts) are extremely sensitive to the inherent dynamical changes in the
molecular structure. Very often, the dynamical changes taking place in the structure are
monitored through the changes in the NMR line shapes and the chemical shifts of the
participating nuclei. In the case of spin 1/2 nuclei, the observable dynamical time scale is
limited to the milli-seconds regime (often decided by the dominant interaction present in
the system), while dynamical processes occurring at faster time scales (in the range of few
micro-seconds) could well be studied using quadrupolar nuclei as molecular probes.

To realize these objectives and beyond, it is important to quantify the line-shapes of
quadrupolar nuclei.47,75,76 This in turn, requires spectral resolution, which in the case of
quadrupolar nuclei is obscured by the presence of the dominant quadrupolar interactions.
To this end, special techniques such as Variable Angle Spinning77,78 (VAS), Double Ro-
tation79 (DOR) and Dynamic Angle Spinning80–82 (DAS) were introduced in the past to
improve the spectral resolution of quadrupolar nuclei. Due to technical limitations and the
degree of sophistication required, such techniques could never be implemented with the
available NMR hardware. To overcome this limitation, Frydman and co-workers proposed
the multi-quantum (MQ) MAS (MQMAS) experiments83,84 for acquiring isotropic spectra
of quadrupolar nuclei with traditional NMR hardware. The MQMAS technique85–87 is
essentially a two-dimensional experiment, that provides a correlation between the second-
order quadrupolar shifted isotropic chemical shifts in the indirect dimension (or MQ
dimension) with that of the second-order quadrupolar powder pattern in the direct di-
mension. The local structural information contained in the electric field gradients (EFG’s)
of the individual sites is deduced from the resolution obtained in the MQ dimension. Al-
though, such an approach seems very viable, the poor excitation85,88–97 efficiency of the
MQ coherences and its reconversion87,88,93,94,98–101 to detectable single-quantum (SQ) co-
herence, seems to be the major limiting factor. The multi-quantum (MQ) coherences
are quite important not only for MQMAS experiments of half-integer quadrupolar nuclei,
but also for X-14N HMQC type of experiments.102–104 Since measurements in NMR are
carried out on bulk samples, the efficiency of excitation depends on contributions from
the individual crystallites present in a polycrystalline sample. In a typical powder sample,
the presence of anisotropic interactions such as CSA, dipolar and quadrupolar interac-
tions results in a distribution of resonance frequencies leading to the so-called “powder
spectrum”. In such cases, the excitation profile and the overall excitation efficiency of a

3



particular transition depends on several parameters that includes the type of anisotropic
interaction, its magnitude relative to the amplitude of the RF fields, the pulse duration
besides the sample rotor period in MAS experiments.

In cases where the amplitude of the RF fields employed in the excitation pulse exceeds the
magnitudes of the internal interactions present in the system, uniform excitation similar
to those obtained in the solution state is possible, at least in principle. Such idealized
conditions are less practical in the NMR studies involving quadrupolar nuclei. Addi-
tionally, the presence of multiple levels in the quadrupolar spin system, only adds on
to the complexities involved in the excitation process. For example, in the case of half-
integral quadrupolar spin systems, the line broadening effects arising from the first-order
quadrupolar interactions are avoided when the excitation is confined either to the cen-
tral or the symmetric MQ transition (of highest order) present in the system. However,
both the central and MQ transitions are influenced by second-order quadrupolar inter-
actions and the information about the local environment contained in the EFG tensors
are obtained by quantifying the second-order quadrupolar interactions manifested in such
transitions. Despite its success in improving the resolution in the MQ dimension, the
utility of MQMAS experiments depends on the extraction of the quadrupolar coupling
constant and asymmetry parameters from the experimental data. This in turn, requires
a formal understanding of the response of the system (say quadrupolar nuclei) under an
RF pulse.

In the past, several theoretical approaches based on fictitious spin operators29,105–108 and
spherical tensor operator formalisms109–124 were proposed to address this issue. In par-
ticular, fictitious spin operator formalism has been employed extensively for describing
selective excitations108 in a wide range of quadrupolar systems.106,107,125–130 However, a
rigorous description of the spin dynamics under MAS conditions has not yet been reported
in the literature. This has been the main motivation behind this thesis. As an alternative,
a solution in the form of effective Hamiltonians is proposed in this thesis for describing
the evolution of the system under RF pulses under different experimental conditions. The
differences in the excitation conditions in single crystals and polycrystalline sample are
investigated and optimum excitation conditions are derived both in spinning and non-
spinning regimes. A brief outline of the thesis is presented in the following sections.

2. Objectives and Motivation

To quantify the experimental data in NMR experiments involving quadrupolar nuclei,
systematic investigation of the quantum evolution of the system during the pulse and
free evolution under MAS conditions is mandatory. To realize this objective, a formal
theoretical framework based on spherical tensor formalism is presented in this thesis.
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To explicate the inconsistencies in the notations and conventions, the spherical tensor
formalism is revisited and a consistent framework for the representation of the spatial
and spin tensor operators is presented. Employing the spherical tensor formalism, ef-
fective radio-frequency (RF) Hamiltonians are proposed to describe both single-quantum
(SQ) and multi-quantum (MQ) transitions in quadrupolar systems under static and MAS
conditions. Below, we give a briefly outline the general methodology adopted in this
thesis.

1.2 Methodology

In quantum mechanics (QM), depending on the state of a system the response of a sys-
tem is studied using either the Schrödinger equation or through the Quantum-Liouville
equation.131 When the state of a quantum mechanical system (comprising of single or
collection of identical systems) is represented through a single wave-function, the time-
evolution of the system is described through a simple linear differential equation proposed
by Schrödinger:

i~
d |ψ(t)〉
dt

= H(t) |ψ(t)〉 (1.1)

In the above equation |ψ(t)〉 represents the state of the system after time ‘t’ and H(t) is
the Hamiltonian of the system. The solution to the above differential equation is given
by,

|ψ(t)〉 = U(t, t0) |ψ(t0)〉 (1.2)

where |ψ(t0)〉 is the initial state of the system at time t = t0 and U(t, t0) is the evolution
operator,

U(t, t0) = T exp(− i
~

t∫
t0

H(t′)dt′) (1.3)

In Eq. (1.3) ‘T ’ represents the Wick-Dyson time ordering operator,132,133 and orders the
Hamiltonian H(t) at different times such that only products ... H(t3)H(t2)H(t1) with ...
t3 > t2 > t1 are allowed. Since, the state of a quantum mechanical system is not defined
(prior to measurement), the state function |ψ(t)〉 is often expanded in terms of a complete
orthonormal basis |ϕj〉 as given below,

|ψ(t)〉 =
n∑
j

cj(t) |ϕj〉 (1.4)
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Subsequently, the expectation value of any observable at time ‘t’ is calculated using the
standard expression

〈o〉 = 〈ψ(t)| o |ψ(t)〉
〈ψ(t)|ψ(t)〉 (1.5)

Since measurements in NMR spectroscopy are made on bulk sample, a single state func-
tion does not suffice to provide a complete description. Often, the state of such a system
(comprising of a collection of identical quantum mechanical systems) is said to be in a
mixed state. From a theoretical standpoint, it would be impractical to calculate a macro-
scopic property (such as spin polarization) by handling the state function of each spin
individually and summing the results over the entire ensemble. In such cases, the den-
sity operator formalism is employed in quantum mechanics (and in particular in NMR
spectroscopy) to study the evolution of a system.134–136 To present a reasonable depiction
of the system, the idea of describing the states of individual spins is abandoned in favor
of a description for the entire ensemble. Operationally, the state of the entire ensem-
ble is described (through ρ(t)) by defining an average over the entire ensemble as given
below,

ρ(t) = |ψs(t)〉 〈ψs(t)| =
N∑
s

ps |ψs(t)〉 〈ψs(t)| (1.6)

Employing a suitable basis (the choice of which is dependent on the problem of interest),
the density operator for a system is constructed as described below,

ρ(t) =
N∑
s

ps
n∑
j

n∑
l

csj(t)cs∗l (t) |ϕj〉 〈ϕl|

=
n∑
j

n∑
l

cj(t)c∗l (t) |ϕj〉 〈ϕl|

=
n∑
j

n∑
l

ρjl(t) |ϕj〉 〈ϕl|

(1.7)

In Eq. (1.7), ρjl(t) = cj(t)c∗l (t) represents the elements of the density matrix. The diagonal

elements ρjj(t) =
∣∣∣cj(t)∣∣∣2 of the density matrix are the populations of the corresponding

states, while the off-diagonal elements ρjl(t) = cj(t)c∗l (t) are known as coherences.28,29,52

When the off-diagonal elements are non-zero, the states |ϕj〉 and |ϕl〉 are statistically
correlated. The coherence order between spin states |ϕj〉 and |ϕl〉 is given by the difference
of corresponding magnetic quantum numbers(m) as given below,

Mjl = mj −ml (1.8)
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When an external magnetic field is applied to an ensemble of spins at a temperature
‘T’, the coherence between states with differing energies are absent and the populations
define the probability of finding the system in a given energy eigenstate. Subsequently,
employing the Boltzmann distribution, the equilibrium density operator for a system at
a given temperature ‘T’ is defined by,

ρeq(t) = A exp(−H/kBT )

= A exp(−BH)
(1.9)

where A = 1
Tr{exp(−BH)} and B = 1/kBT is called the thermodynamic beta or the inverse

temperature (kB = 1.3807 × 10−23JK−1 is the Boltzmann constant). Under the high-
temperature approximation (generally fulfilled at room temperature), expanding and ne-
glecting the higher order terms in B, a truncated form of the above equation is employed
as indicated below,

ρeq(t) ' A(I − BH) (1.10)

In the high temperature limit, the value of A is equal to,

A = 1
Tr{I} =

1
n

(1.11)

with ‘n’ denoting the dimension of the system. Since the Zeeman interaction (Hamil-
tonian) is dominant (proportional to Iz), the density operator at thermal equilibrium
(neglecting the Identity operator) is usually represented by,

ρeq(t) ' Iz (1.12)

Employing Eq. (1.6) in Eq. (1.1) the evolution of the quantum mechanical system is
described by,

i~dρ(t)
dt

= [H(t), ρ(t)] (1.13)

This differential equation is commonly referred to as Liouville- von Neumann equation131

or more simply density operator equation and is of central importance for calculating the
dynamics of quantum mechanical systems.47,131,137–140
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Analogous to Eq. (1.3) the formal solution to the Liouville equation is represented by,

ρ(t) = U(t, t0)ρ(t0)U−1(t, t0)

= T exp(− i
~

t∫
t0

H(t′)dt′)ρ(t0) exp( i
~

t∫
t0

H(t′)dt′)
(1.14)

In cases where the Hamiltonian is time-independent, the solution reduces to a much
simpler form as illustrated below,

ρ(t) = exp[− i
~H(t− t0)]ρ(t0) exp[ i~H(t− t0)] (1.15)

In contrast to Eq. (1.5), the expectation value of an observable is calculated employing
the following equation,

〈o〉 = Tr[ρ(t).o] (1.16)

When the Hamiltonian is explicitly time-dependent (refer to Eq. (1.14)), analytic descrip-
tion of the time evolution becomes complicated. In such cases, the standard approach
involves a description based on numerical methods. In the numerical approach, the evo-
lution under a time-dependent Hamiltonian is approximated through a description that
involves a series of time-independent Hamiltonians defined at shorter time-scales. Accord-
ingly, the total evolution of the system is expressed as a product of the evolution at shorter
times through the solution described in Eq. (1.15). Although, such methods yield accurate
results, they are of less utility in the design and optimization of experiments.

To this end, development of analytical methods has remained a major pursuit for sev-
eral decades.111,141–146 In the analytic based methods, the time-evolution of the system
is described through a time-averaged Hamiltonian under certain approximations. In
NMR spectroscopy, analytical methods are based on (1) Average Hamiltonian theory
(AHT)147–149 (2) Floquet theory.150 In the AHT framework proposed by Waugh and Hae-
berlen, the evolution of a system under time-dependent Hamiltonians is described through
a time-averaged Hamiltonian that is derived based on the Magnus expansion147,151–153 for-
mula for time-dependent equations. By contrast, in Floquet theory, the time-evolution is
described in terms of time-independent Hamiltonians defined in an infinite dimensional
vector space. Employing the contact transformation143,154–159 procedure, the dimension-
ality of the problem in the Floquet calculations are alleviated through the concept of
effective Hamiltonians.143,160–162 Here in this thesis, we confine our discussion to Floquet
based methods for describing the dynamics of quadrupolar nuclei under RF fields. In
the following Section 1.2.1, we list the analytic methods employed for studying the time
evolution of a system (1/2) under different experimental conditions.
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1.2.1 Concept of effective Hamiltonians

To, illustrate the effective Hamiltonian approach, a pedagogical description of the ‘spin
dynamics’ is presented with an isolated spin I = 1/2 nuclei as an example. The Hamilto-
nian for an isolated spin (I = 1/2) system is represented by,

H = ~ω0Iz︸ ︷︷ ︸
HZ

+ ~ω0σisoIz︸ ︷︷ ︸
HC,iso

+ 2~ω1 cosωt Ix︸ ︷︷ ︸
HRF

= ~ωzIz︸ ︷︷ ︸
HZ,C

+ 2~ω1 cosωt Ix︸ ︷︷ ︸
HRF

(1.17)

with HZ denoting the Zeeman interaction, HC,iso the isotropic chemical shift and HRF

the interaction of the oscillating RF field with the spin system.

In the above equation ω0 = −γB0 represents the Larmor frequency, ωz the chemically
shifted Larmor frequency, ωiso = −σisoγB0 the isotropic chemical shift, ω the carrier
frequency and ω1 the amplitude of the oscillating field. To describe the effects of the
oscillating field, the Hamiltonian is transformed into a rotating frame,

H̃ = UHU− (1.18)

where U = exp(iIzωt). When ω = ω0 the rotating frame Hamiltonian has both a longitu-
dinal as well as transverse component.

Figure 1.1: Energy level diagram for spin I = 1/2 system in the presence of chemical shift off-set along
with simple single pulse sequence.

H̃ = ~∆ωIz + ~ω1Ix (1.19)

where ∆ω is the off-set frequency (i.e ∆ω = ωz−ω). Depending on the magnitudes of these
interactions, different theoretical frameworks34,38,107,112,163–165 have emerged in the past to
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describe the evolution of the system under time-dependent fields. For illustrative purposes,
some of the general procedures employed in this thesis are summarized below.

Case I: ω1 � ∆ω

When the amplitude of the oscillating field exceeds the magnitude of the chemical-shift
offset term, the off-set contributions (∆ω) are ignored during the pulse. Subsequently,
the effective Hamiltonian during the pulse is represented by,

H̃eff = ~ω1Ix (1.20)

To have a consistent description, the initial density operator is also transformed into
the rotating frame (i.e. U = exp(iIzωt)). Since, [Iz, ρ(0)] = 0, the equilibrium density
operator remains invariant. Subsequently, the density operator after the pulse is evaluated
and is represented below.

ρ̃(tp) = Iz cos(ω1tp)− Iy sin(ω1tp) (1.21)

As depicted in Eq. (1.21), the maximum signal in the transverse plane is obtained when
ω1tp = π

2 . Subsequently, the density operator after the pulse is represented by,

ρ̃(tp) = −Iy (1.22)

The density operator after the pulse evolves under the chemical shift Hamiltonian and is
represented below,

ρ̃(tp + t) = −Iy cos(∆ωt) + Ix sin(∆ωt) (1.23)

To have a consistent description, the detection operator ‘I+’ is also transformed (Ĩ+ =
UI+U− = Ĩ+(t) = I+exp(iωt)). Employing Eq. (1.16), the optimized time domain signal
is evaluated. 〈

I+(t)
〉

= Tr[ρ(tp + t)Ĩ+]

= C(1)2.
1
2 exp(iω0 + ∆ωt)

(1.24)

Case I: ω1 ≈ ∆ω

Method I: Brute force approach
When the magnitude of the chemical shift offset term is comparable to that of the ampli-

10



tude of the RF field, a more rigorous description is required. In the brute force approach,
the evolution of the system during the pulse is evaluated using the Baker-Campbell-
Hausdorff (BCH)166–171,171,172 expansion as given below,

ρ̃(tp) =
[

∆ω2

ω2
eff

+ ω2
1

ω2
eff

cos(ωeff tp)
]
Iz +

[
∆ωω1
ω2

eff
− ∆ωω1

ω2
eff

cos(ωeff tp)
]
Ix − ω1

ωeff
sin(ωeff tp)Iy

(1.25)

with ωeff =
√
ω2

1 + ∆ω2. As illustrated in Eq. (1.25), maximum signal in the transverse
plane is obtained when ωeff tp = π

2 . Subsequently, the density operator after the pulse is
evaluated and is represented by,

ρ̃(tp) = ∆ω2

ω2
eff
Iz + ∆ωω1

ω2
eff

Ix − ω1
ωeff

Iy (1.26)

Figure 1.2: Simulations depicting the the role of off-sets (∆υ = 0 to 40 kHz) on the NMR line shapes.
In panel A, the the off-sets were ignored in the optimization process (ω1t = π/2). In panel B, off-set
frequencies were included in the optimization process i.e ωeff t = π/2 along with intensity correction (see
Eqs. (1.25) and (1.28)).

Following our earlier description, the density operator under free evolution is represented
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by,

ρ̃(tp + t) = ∆ω2

ω2
eff
Iz − Iy

[
ω1
ωeff

cos(∆ωt)− ∆ωω1
ω2

eff
sin(∆ωt)

]
+ Ix

[
∆ωω1
ω2

eff
cos(∆ωt) + ω1

ωeff
sin(∆ωt)

] (1.27)

Accordingly, the optimized time-domain signal is evaluated and is represented by,

〈
I+(t)

〉
= C(1)2.12( ω1

ωeff
+ i∆ωω1

ω2
eff

) exp(iωt) (1.28)

In Fig. 1.2, the effects of finite off-sets on the NMR line-shapes is depicted through a
set of simulations employing different offsets. In systems with finite off-sets, the flip
angle depends on both the RF amplitude as well as the chemical shift off-set. When the
chemical shift off-set terms are incorporated in the optimization of the flip angles along
with intensities, the distortions observed in the line shapes are removed completely from
the spectrum.

Method II: Tilted rotating frame method
As an alternative to the brute force approach, the Hamiltonian in the rotating frame is
transformed into a tilted frame34,164,165 such that the effective field experienced by the spin
is quantized along the z-axis. Mathematically, this is accomplished by the transformation
function,

U = exp(iθIy) (1.29)

where tanθ = ω1
∆ω . The effective Hamiltonian in the tilted rotating frame during the pulse

is represent by,

˜̃Heff = UHU− = ~ωeffIz (1.30)

Accordingly, the initial density operator is transformed and is represented in the tilted
rotating frame by,

˜̃ρ(0) = Iz cos θ − Ix sin θ (1.31)

Employing the effective Hamiltonian (Eq. (1.30)), the density operator after the pulse
(under the Eq. (1.30)) is evaluated and represented by,

˜̃ρ(tp) = Iz cos θ − Ix sin θ cos(ωeff tp)− Iy sin θ sin(ωeff tp) (1.32)
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Figure 1.3: The figure depicts the tilted
rotating frame transformation about −θ
along y-axis.

As depicted in Eq. (1.32), the maximum signal in the transverse plane is obtained when
ωeff tp = π

2 . Following this procedure, the density operator in the titled rotating frame is
transformed into the rotating frame by the following reverse transformation:

ρ̃(tp) = U− ˜̃ρ(tp)U = cos2θIz + sin θ cos θIx − sin θIy (1.33)

The evolution of the density operator under the chemical shift Hamiltonian in the rotating
frame is represented by,

ρ̃(tp + t) = cos2θIz − Iy [sin θ cos(∆ωt)− cos θ sin θ sin(∆ωt)]

+ Ix [cos θ sin θ cos(∆ωt) + sin θ sin(∆ωt)]
(1.34)

The optimized time-domain signal is evaluated accordingly and is represented by,

〈
I+(t)

〉
= C(1)2.12(sin θ + i sin θ cos θ) exp(iωzt) (1.35)

On substitution (sin θ = ω1
ωeff

, cos θ = ∆ω
ωeff

), the above Eq. (1.35) reduces to the familiar
form depicted in Eq. (1.28)

Method III: Contact Transformation Method
To illustrate the utility of the contact transformation143,154–159 procedure in the derivation
of effective Hamiltonians, an alternate description based on perturbation theory is pre-
sented in this section. Since the amplitude of the RF field often exceeds the magnitude of
the chemical-shift off-set, the RF Hamiltonian defined in the rotating frame is quantized
along the z-axis through a π/2 rotation along y-axis using the transformation function
U = exp(iπ2 Iy). As is the case with perturbation techniques, the Hamiltonian in the tilted
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rotating frame is divided into zero-order and first-order term as given below.

˜̃H = ~ω1Iz︸ ︷︷ ︸
H0

− ~∆ωIx︸ ︷︷ ︸
H1

(1.36)

Following the procedure described in the appendix Section 1.A, the off-diagonal contri-
butions in the original Hamiltonian are folded through a unitary transformation, defined
by the transformation function,

S1 = −∆ω
ω1
Iy (1.37)

The operators (along with their coefficients) present in the transformation function are
chosen such that the off-diagonal contributions resulting from H1 are removed to first
order. Following the procedure, the second order corrections are evaluated.

H
(1)
2 = i [S1, H1]− 1

2 [S1, [S1, H0]]

= i
2 [S1, H1]

= ~∆ω2

2ω1
Iz

(1.38)

The effective Hamiltonian during the pulse (to second order) is represented by,

Heff = ~ω1Iz + ~∆ω2

2ω1
Iz (1.39)

In a similar vein, the initial density operator is transformed using the transformation
functions, as illustrated below.

˜̃̃ρ(0) = −Ix cos(∆ω
ω1

) + Iz sin(∆ω
ω1

) (1.40)

Subsequently, employing the effective Hamiltonian, the evolution of the density operator
under the pulse is calculated as represented below,

˜̃̃ρ(tp) = Iz sin(∆ω
ω1

)− Ix cos(∆ω
ω1

) cos
(
(ω1 + ∆ω2

2ω1
)tp
)

− Iy cos(∆ω
ω1

) sin
(
(ω1 + ∆ω2

2ω1
)tp
) (1.41)

From Eq. (1.41), the maximum signal in the transverse plane is obtained when (ω1 +
∆ω2

2ω1
)tp = π

2 . As described earlier, the density operator after the pulse is transformed
back into the standard rotating frame through the reverse transformations as illustrated
below.

ρ̃(tp) = U−e−is1 ˜̃̃ρ(tp)eis1U = sin2(∆ω
ω1

)Iz + sin(∆ω
ω1

) cos(∆ω
ω1

)Ix − cos(∆ω
ω1

)Iy (1.42)
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The free evolution of the density operator under the chemical shift Hamiltonian in the
rotating frame is calculated and the time-domain signal is evaluated.

ρ̃(tp + t) = sin2(∆ω
ω1

)Iz − Iy
[
cos(∆ω

ω1
) cos(∆ωt)− sin(∆ω

ω1
) cos(∆ω

ω1
) sin(∆ωt)

]
+ Ix

[
cos(∆ω

ω1
) sin(∆ω

ω1
) cos(∆ωt) + cos(∆ω

ω1
) sin(∆ωt)

] (1.43)

〈
I+(t)

〉
= C(1)2.12 [cos(∆ω

ω1
) + i sin(∆ω

ω1
) cos(∆ω

ω1
)] exp(iωzt) (1.44)

It is important to realize here that, when the magnitudes of the perturbing Hamiltoni-
ans are comparable to the zero order Hamiltonian, there could be significant deviations
observed in the results emerging from the contact transformation procedure with those
derived from other methods. Moreover, the extension of the methods proposed in this
section to the study of the quadrupolar spin is less straightforward and forms the main
motivation behind this thesis.

1.3 Organization of the thesis
In this thesis, an analytic framework based on the concept of effective Hamiltonians is
proposed to describe the effects of RF pulses on quadrupolar nuclei. The description
presented is well suited for describing the excitation in both static and spinning sam-
ples. To present a pedagogical description, the conventions employed in the description
of spin Hamiltonians in the solid-state based on spherical tensor formalism is revisited
in chapter-2. Although, several descriptions do exist in the literature,30,56,75,87,173–179 the
motivation for this pursuit has been to develop a consistent notation for the description of
both spatial and spin tensor operators and develop a framework for extending its utility
in the description of coupled spin systems. Accordingly, the normalization constants and
phase factors employed in the description of spatial and spin tensor operators is re-derived.
Employing the spherical tensor formalism, effective Hamiltonians are derived to explain
the excitation of quadrupolar nuclei in the third chapter. To understand the effects of the
spatial anisotropy, excitations in single crystals and powder samples is described both in
the static and spinning conditions. The optimum conditions required for excitation are
derived for both selective and non-selective excitation conditions. Employing the method
of contact transformation, the excitation of quadrupolar nuclei is described in terms of ef-
fective RF Hamiltonians. In the fourth chapter, excitation of MQ transitions is described.
The role of sample spinning frequency, RF amplitudes, duration of the pulse and the mag-
nitude of the quadrupolar coupling constant in the excitation process is analyzed in detail.
In the past, such descriptions existed only for static single crystals.105–107 The validity of
the secular approximation in the MQ excitation process is discussed thoroughly through
analytic expressions and simulations. Finally, a brief summary of the proposed effective
Hamiltonian approach is presented in chapter-5 along with possible extensions.
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Appendix

1.A The van Vleck and Contact transformation

In NMR spectroscopy, the magnitude of the internal Hamiltonians differ significantly
from one another. Since the eigenvalues encode the frequencies observed in the spectrum,
accurate determination of them play an important role in the spectral interpretation. To
this end, analytical methods such as the Rayleigh-Schrödinger perturbation theory have
found extensive utility in the determination of eigenvalues. In the Rayleigh-Schrödinger
method, corrections to the zero-order (dominant term) eigen values are obtained in terms
of matrix elements. As an alternative to this exercise, derivation of effective Hamiltonians
has long been known and practiced in molecular spectroscopy.156,159,180 In this section, we
describe two such methods (van Vleck154,155 and contact transformation143,156–159,181) for
deriving effective Hamiltonians. In contrast to the Rayleigh-Schrödinger approach, the
perturbation corrections are obtained in terms of operators resulting in the concept of
effective Hamiltonians.

Analogous to the standard perturbation theory, the interaction Hamiltonians are arranged
in the decreasing order of their magnitude as follows,

H = H0 + λH1 + λ2H2 + ... (1.45)

where λ is perturbation or bookkeeping parameter, H0 is the zero-order Hamiltonian and
H1, H2, etc. are the perturbation Hamiltonians. Employing series of unitary transforma-
tions, the original Hamiltonian is transformed.

H̃ = H(n) = UHU−1 (1.46)

The series of unitary transformations are represented by,

U = UnUn−1......U2U1 (1.47)
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with

Un = eiλ
nSn (1.48)

The transformation functions S1, S2, S3, ... are chosen to remove the effects of off-diagonal
operators in H to order λ, λ2, λ3, .... respectively. Each of the successive transformations
produced by the development of U is known as a contact transformation, while the first
transformation (H(1) = U1HU

−1
1=eiS1He−iS1) is what is usually referred to as the van

Vleck transformation.

Now we can expand the Hamiltonian after the first transformation (van Vleck transfor-
mation) as given below,

H(1) = U1HU
−1
1 =H(1)

0 + λH
(1)
1 + λ2H

(1)
2 + ... (1.49)

The transformed Hamiltonian H(1) obtained after first transformation is given by,

H(1) = U1HU
−1
1 =H +

∞∑
n=1

inλn

n! [S1, [S1, ..., [︸ ︷︷ ︸
n

S1, H]...] (1.50)

with unitary transformation:

U1 = eiλS1 = 1 + iλS1 − λ2S2
1..... (1.51)

Equating like powers in Eqs. (1.49) and (1.50), the perturbation corrections to orders are
obtained.

H
(1)
0 = H0,

H
(1)
1 = H1 + i[S1, H0],

H
(1)
2 = H2 + i[S1, H1]− 1

2 [S1, [S1, H0]],

H
(1)
3 = H3 + i[S1, H2]− 1

2 [S1, [S1, H1]]− i
6 [S1, [S1, [S1, H0]]],

.

.

(1.52)

In general, the nth-order correction (resulting from the first transformation) is represented
by,

H(1)
n = Hn +

n−1∑
m=0

in−m

(n−m)! [S1, [S1, ..., [︸ ︷︷ ︸
n−m

S1, Hm]...] (1.53)

The crux of the contact transformation procedure lies in the determination/choice of trans-
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formation function.143,156 For e.g, the transformation function S1 is chosen to compensate
the off-diagonal term in H1.

H
(1)
1 = H1 + i[S1, H0] (1.54)

In general, H1 may contain both diagonal and off-diagonal terms. The operator S1 is
chosen such that the transformed Hamiltonian H

(1)
1 does not contain any off-diagonal

terms to order λ1 (commutator [S1, H0] compensates the off-diagonal terms present in
H1).

The above procedure can be repeated to perform a second contact transformation. The
Hamiltonian obtained by van Vleck transformation can be subjected to successive contact
transformations using transformation function S2 such that H0 + λH

(1)
1 + H

(2)
2 would be

diagonal.

H(2) = eiλ
2S2H(1)e−iλ

2S2=H(2)
0 + λH

(2)
1 + λ2H

(2)
2 + ... (1.55)

Equating like powers in Eq. (1.55) we get,

H
(2)
0 = H0,

H
(2)
1 = H

(1)
1 ,

H
(2)
2 = H

(1)
2 + i[S2, H0],

H
(2)
3 = H

(1)
3 + i[S2, H

(1)
1 ],

H
(2)
4 = H

(1)
4 + i[S2, H

(1)
2 ]− 1

2 [S2, [S2, H0]],

H
(2)
5 = H

(1)
5 + i[S2, H

(1)
3 ]− 1

2 [S2, [S2, H
(1)
1 ]],

(1.56)

The above procedure is repeated until eigenvalues of the transformed Hamiltonian are
closer to the exact eigenvalues of the untransformed Hamiltonian.

In general, the effective Hamiltonian after kth transformation is given by,

H(k)
n = H(k−1)

n +
n−k∑
m=0

i
(
n−m
k

)

(n−m
k

)!
[Sk, [Sk, ..., [︸ ︷︷ ︸

n−m
k

Sk, H
(k−1)
m ]...] ∀ n−m

k
,+integers (1.57)
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Chapter 2

Conventions and Notations for
generalized representation of spin
interactions

2.1 Background
The versatility of NMR spectroscopy1–4 lies in the interactions of the nuclear spins among
themselves in addition to external sources such as static and oscillating magnetic field
strengths.5–10 The controlled manipulation of nuclear spin interactions through radio-
frequency (RF) pulses11,12 has led to many exciting developments in the field of NMR
spectroscopy and remains an active area of research. To maximize the information content
derived from NMR experiments, understanding of the nuclear spin interactions5–10,13–15

is quintessential both in the design of new experiments as well as in the interpretation
of experimental data. Since the phenomenon of magnetic resonance16–20 emerges from a
quantum mechanical property, quantum mechanics21–27 seems to be the theory of choice
for any formal description of the spin physics. From a theoretical perspective, a semiclas-
sical approach has always been employed to describe the interaction of radiation (both
electric or magnetic field) with matter.5,7,28 The classical potential describing the inter-
action of EM radiation with matter is recast into a Hamiltonian form and the dynamical
changes in the system are monitored within the Hamiltonian framework. Although, sev-
eral excellent treatise on NMR theory do exist in the literature,14,15,29–36 the notations and
conventions employed in the description of the spin interactions seem to differ. In partic-
ular,understanding the convention/notations employed in the description of nuclear spin
interactions in terms of spherical tensor operator formalism35–51 remains a daunting task
for a beginner or any serious experimentalist. This has been the main motivation behind
the inclusion of this chapter in this thesis. Since analytic formulation of the nuclear spin
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dynamics involving quadrupolar nuclei5,14,52–56 is facilitated through the tensor operator
formalism, a formal understanding of the notations seem mandatory. Furthermore, since
tensorial representation of the spatial and spin components is convenient for theoreti-
cal studies in MAS experiments,32,57,58 the transformation properties23,35,38,43,44,51,59–65 of
the tensor operators under rotations is essential. Below, we summarize the conventions
and notations that would be closely followed in the thesis to describe the spin dynamics
involving quadrupolar nuclei.

2.2 Nuclear spin Hamiltonians and their representa-
tions

Just like charge, mass etc, spin is also a fundamental property of matter and is exhibited by
all subatomic particles. In addition to the spin property, each nucleus in turn comprises
of fundamental particles (that possess electric charge) that are coupled together. The
presence of moving charged particles within the nucleus results in an intrinsic total angular
momentum J and a total magnetic moment, µ. When these two vectors are aligned in
parallel, they are related through a simple expression illustrated below.

µ = γJ (2.1)

(where ‘γ’ represents the gyromagnetic ratio and is characteristic of a particular nucleus)
The total angular momentum (J) is related to a dimensionless angular momentum oper-
ator through the equation illustrated below.

J = ~I (2.2)

The individual components of the angular momentum operator (say Ix, Iy, Iz) com-
mute with I2 and are non-commuting among themselves. Employing commuting set of
observables (Iz and I2), the basis set ( |Im〉) for a given spin system is constructed.

I2 |Im〉 = I(I + 1) |Im〉

Iz |Im〉 = m |Im〉
(2.3)

The changes observed (due to rotation) in the magnetic moment and the electric charge
within a nucleus, results in an interaction energy and is quantum mechanically studied
through the corresponding interaction Hamiltonians (or internal Hamiltonians). In gen-
eral, the nuclear spin Hamiltonian has two contributions, an electric spin Hamiltonian,
which describes the way the nuclear electric energy changes (as the nucleus rotates) and a
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magnetic spin Hamiltonian, which describes the way the nuclear magnetic energy changes
as the nucleus rotates. Accordingly, the spin Hamiltonian operator for a nucleus may
therefore be written as

H = Helec +Hmag (2.4)

In NMR, all spin interaction Hamiltonians are magnetic spin Hamiltonians, with quadrupo-
lar interaction being the one exception. In addition to the internal interactions, the inter-
action of the nuclear spin with the external magnetic fields (both static and oscillating)
is often referred to as external interaction.

H = HExt +HInt (2.5)

To have a consistent notation, a brief quantum mechanical description of the interactions
is illustrated in the following sections.

2.2.1 External Hamiltonians

The external Hamiltonian comprises of the interactions between the nuclear spin magnetic
moment with the static and oscillating magnetic fields.

HExt = HZ +HRF (2.6)

2.2.1.1 Zeeman interaction

The direct magnetic interaction of the nuclear spin with the static external magnetic field
is called Zeeman interaction. In spin I = 1/2 nuclei, Zeeman interaction dominates all
other internal spin interactions. In the absence of static external magnetic field, all the
2n energy levels corresponding to ‘n’ spin I = 1/2 nuclei are degenerate. By contrast, the
electric quadrupolar interaction (only found in nucleus with I > 1/2), dominates all other
internal spin interactions and in some cases has magnitudes comparable to the Zeeman
interaction. In the absence of the static magnetic field, the (2I+1) states in a quadrupolar
nuclei are doubly degenerate and are studied through NQR spectroscopy.

The application of a static magnetic field (of strength B) results in an interaction energy
in the nucleus and is quantum mechanically represented by,

H = −
∑
j=1

µj.B (2.7)

where the negative sign is indicative of the fact that the interaction energy is minimum,
when the magnetic moment of the nucleus is parallel to the applied field. When the static
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external magnetic field is applied along the z-direction, the Eq. (2.7) reduces to a simpler
form,

HZ = −~
∑
j

γjB0Ijz

= ~
∑
j

ωj0Ijz
(2.8)

with ωj0 = −γjB0 representing the Larmor frequency of the jth nucleus. Following the
description presented in the Appendix, the above Hamiltonian is reexpressed in terms of
irreducible spherical tensor operators.

HZ = ~
∑

ωj0[ −i
C(0..1j0..)T

(1)0(0..1j0..)] (2.9)

In Eq. (2.9), the constant ‘C’ differs depending on the number of spins presented in the
system and is deduced from the Table 2.6.

2.2.1.2 RF interaction

The interaction of the nuclear spin with the oscillating external field is commonly referred
to as RF interaction. When the oscillating field (with amplitude B1) is applied along
x-direction, the Hamiltonian is represented by,

HRF = −2~
∑
j

γjBj,1 cos(ωjt+ φj)Ijx

= 2~
∑
j

ωj,1 cos(ωjt+ φj)Ijx
(2.10)

where ωj,1 = −γjBj,1 is the nutation frequency, ωj is carrier frequency and φj is the phase
of the RF pulse for the jth nucleus. The corresponding Hamiltonian in terms of tensor
operators is represented below,

HRF = 2~
∑
j

ωj,1 cos(ωjt+ φ)
[

i√
2C(0..1j0..) T

(1)1(0..1j0..)− i√
2C(0..1j0..) T

(1)−1(0..1j0..)
]

(2.11)

2.2.2 Internal Hamiltonians

The internal Hamiltonian represents the sum contribution of all the interactions present
within the system.

HInt = HC +HJ +HD +HQ +HS (2.12)
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2.2.2.1 Chemical Shift interaction

The indirect magnetic interaction of the nuclear spins with the static external magnetic
field mediated through the surrounding electronic clouds in a molecule is often termed as
the chemical shift interaction. The magnetic fields induced by the surrounding electronic
clouds differ at different nuclear sites aid in the identification of different nuclear sites
within a molecule. The local field at a site ‘j’ has contributions from the static field as
well as that induced by the surrounding electron cloud.

Bj,local = B0 +Bj,Induced (2.13)

where Bj,Induced = σj.B0. In general, the chemical shift Hamiltonian is represented
through a product between vectors (I & B) and a second rank tensor ‘σ’.

HC = −~
∑
j

γj(Ij.σj.B)

= −~
∑
j

γjIjzσ
j
zzB0

(2.14)

In Eq. (2.14), σj represents the orientation dependent chemical shift tensor and in the
principal axe frame (PAS) is represented by,

σj =


σjxx 0 0

0 σjyy 0

0 0 σjzz

 (2.15)

Due to rapid molecular motion, the chemical shift interaction is isotropic in the solution
state and is represented by,

HC = −~
∑
j

γjσ
j
isoIjzB0

= ~
∑
j

σjisoωj0Ijz
(2.16)

where σjiso represents the isotropic value of chemical shift tensor.

σjiso = 1
3(σjxx + σjyy + σjzz) (2.17)

Along with the isotropic chemical shift, the chemical shift interaction is defined in terms
of chemical shift anisotropy δCj and asymmetry parameter ηCj .

δCj = σjzz − 1
3(σjxx + σjyy + σjzz) = σjzz − σ

j
iso (2.18)
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ηCj = σj
xx−σj

yy

δC
j

(2.19)

Employing these definitions and the relations described in Tables 2.7 and 2.8, the chem-
ical shift interaction is represented in terms of spherical tensors. The spatial and spin
irreducible tensors (operators) depicting the chemical shift interactions are listed in Ta-
ble 2.1.

Spatial components Spin components

R
(0)0
C,P = −i

√
3

C(0..1j0..)σ
j
iso Y (0)0 = iC(0..1j0..)√

3 IjzB0 = B0√
3T

(1)0(0..1j0..)

R
(1)0
C,P = 0 Y (1)0 = 0

R
(1)±1
C,P = 0 Y (1)±1 = iC(0..1j0..)

2 I±j B0 = −B0√
2 T

(1)±1(0..1j0..)

R
(2)0
C,P = i

C(0..1j0..)(
√

3
2δ
C
j ) Y (2)0 = −i2C(0..1j0..)√

6 IjzB0 = −2B0√
6 T (1)0(0..1j0..)

R
(2)±1
C,P = 0 Y (2)±1 = ±iC(0..1j0..)

2 I±j B0 = ∓B0√
2 T

(1)±1(0..1j0..)

R
(2)±2
C,P = i

2C(0..1j0..)(δ
C
j η

C
j ) Y (2)±2 = 0

HC = ~∑
j
CC
j

2∑
k=0

−k∑
q=k

(−1)k−qR(k)−q

C,P Y (k)q(I) where CC
j = −γj

Table 2.1: Chemical shift Hamiltonian in tensorial representation.

2.2.2.2 J-Coupling interaction

The indirect magnetic interaction of the nuclear spins with each other mediated through
bonded electrons is commonly referred to as J-coupling or spin-spin coupling interac-
tion.

HJ = ~
∑
j<l

Ij.J
jl.Il (2.20)

The term J jl represents the orientation dependent J-coupling interaction tensor between
jth and lth nucleus and is represented by (in the PAS),

J jl =


J jlXX 0 0

0 J jlY Y 0

0 0 J jlZZ

 (2.21)
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Similar to the chemical shift interaction, the J-coupling interaction tensor in the solution
state is averaged out to isotropic form due to rapid tumbling motion. Accordingly, the
isotopic form of J-coupling or scalar coupling Hamiltonian represented by,

HJ = ~J jl
∑
j<l

Ij.Il (2.22)

with J jl representing the isotopic J-coupling or scalar coupling constant.

J jliso = 1
3(J jlxx + J jlyy + J jlzz) (2.23)

In addition to the isotropic constant, the J-interaction is characterized through the J-
coupling anisotropy δJjl and asymmetry parameter ηJjl.

δJjl = J jlzz − 1
3(J jlxx + J jlyy + J jlzz) = J jlzz − J

jl
iso

ηJjl = Jjl
xx−Jjl

yy

δJ
jl

(2.24)

The spatial and spin components of the tensors are represented in Table 2.2.

Spatial components Spin components

R
(0)0
J,P =

√
3

C(0..1j0..1l0..) (Jjliso) T (0)0(0..1j0..1l0..) = C(0..1j0..1l0..)√
3 Ij .Il

R
(1)0
J,P = 0 T (1)0(0..1j0..1l0..) = C(0..1j0..1l0..)

2
√

2

[
I+
j I
−
l − I

−
j I

+
l

]
R

(1)±1
J,P = 0 T (1)±1(0..1j0..1l0..) = C(0..1j0..1l0..)

2
[
I±j Ilz − IjzI

±
l

]
R

(2)0
J,P = −1

C(0..1j0..1l0..) (
√

3
2δ
J
jl) T (2)0(0..1j0..1l0..) = −C(0..1j0..1l0..)√

6 [3IjzIlz − Ij .Il]

R
(2)±1
J,P = 0 T (2)±1(0..1j0..1l0..) = ±C(0..1j0..1l0..)

2
[
I±j Ilz + IjzI

±
l

]
R

(2)±2
J,P = −1

2C(0..1j0..1l0..) (δJjlηJjl) T (2)±2(0..1j0..1l0..) = −C(0..1j0..1l0..)
2 I±j I

±
l

HJ = ~
∑
j<l

CJjl
2∑
k=0

−k∑
q=k

(−1)k−qR(k)−q

J,P T (k)q(II) where CJjl = 1

Table 2.2: J-coupling Hamiltonian in tensorial representation

33



2.2.2.3 Dipolar Coupling interaction

The direct magnetic interaction of the nuclear spins with each other (through space) is
referred to as the dipolar interaction. In the spherical polar coordinates, the dipolar
Hamiltonian is represented by,

HD = µ0

4π
∑
j<l

[
µj.µl
|rjl|3

− 3(µj.rjl)(µl.rjl)
|rjl|5

]
(2.25)

HD = −~
∑
j<l

bjl(Ajl +Bjl + Cjl +Djl + Ejl + Fjl) (2.26)

with bjl = −µ0~γjγl

4π|rjl|3
denoting the dipolar constant and µ0 = 4π× 10−7Hm−1 the magnetic

constant or permeability of free space. The dipolar alphabets5 in Eq. (2.26) are repre-
sented below,

Ajl = IjzIlz(1− 3cos2θjl)

Bjl = −1
4(I+

j I
−
l + I−j I

+
l )(1− 3cos2θjl)

Cjl = −3
2(I+

j I lz + I jzI
+
l )sinθjl cos θjle−iφjl

Djl = −3
2(I−j I lz + I jzI

−
l )sinθjl cos θjleiφjl

Ejl = −3
4I

+
j I

+
l sin

2θjle−2iφjl

Fjl = −3
4I
−
j I
−
l sin

2θjle2iφjl

(2.27)

Figure 2.1: Relationship between
cartecian coordinates x, y, z (describing
the position of nucleus j relative to nu-
cleus l) and the polar coordinates r, θ, φ

Analogous to the scalar interaction (see Eq. (2.20)), the dipolar Hamiltonian is reexpressed
in terms of the dipolar tensor, Djl

HD = ~
∑
j<l

~µ0γjγl

4π Ij.D
jl.Il (2.28)

For illustrative purpose, the explicit form of the components in the dipolar tensor is
represented below,

Djl
αβ = 1

|rjl|3
(δαβ − 3eαeβ) with (α,β) = x, y, z (2.29)
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Djl
xx = 1

|rjl|3 (1− 3sin2θjlcos2φjl)

Djl
yy = 1

|rjl|3 (1− 3sin2θjlsin2φjl)

Djl
zz = 1

|rjl|3 (1− 3cos2θjl)

Djl
xy = Djl

yx = − 1
|rjl|3 (3sin2θjl cosφjl sinφjl)

Djl
xz = Djl

zx = − 1
|rjl|3 (3 sin θjl cos θjl cosφjl)

Djl
yz = Djl

zy = − 1
|rjl|3 (3 sin θjl cos θjl sinφjl)

(2.30)

In the PAS (θjl = 0 and φjl = 0), the dipolar tensor has a simpler form.

Djl =


Djl
xx 0 0

0 Djl
yy 0

0 0 Djl
zz

 =


1
|rjl|3

0 0

0 1
|rjl|3

0

0 0 − 2
|rjl|3

 (2.31)

Based on the relations listed in Tables 2.7 and 2.8, the spatial and spin tensors for the
dipolar interaction are listed in Table 2.3.

Spatial components Spin components

R
(0)0
D,P = 0 T (0)0(0..1j0..1l0..) = C(0..1j0..1l0..)√

3 Ij.Ij

R
(1)0
D,P = 0 T (1)0(0..1j0..1l0..) = C(0..1j0..1l0..)

2
√

2

[
I+
j I
−
j − I−j I+

j

]

R
(1)±1
D,P = 0 T (1)±1(0..1j0..1l0..) = C(0..1j0..1l0..)

2

[
I±j Ijz − IjzI±j

]

R
(2)0
D,P =

√
6

C(0..1j0..1l0..)|rjl|3
T (2)0(0..1j0..1l0..) = −C(0..1j0..1l0..)√

6 [3IjzIjz − Ij.Ij]

R
(2)±1
D,P = 0 T (2)±1(0..1j0..1l0..) = ±C(0..1j0..1l0..)

2

[
I±j Ijz + IjzI

±
j

]

R
(2)±2
D,P = 0 T (2)±2(0..1j0..1l0..) = −C(0..1j0..1l0..)

2 I±j I
±
j

HD = ~ ∑
j<l
CD
jl

2∑
k=0

−k∑
q=k

(−1)k−qR(k)−q

D,P T
(k)q(II) where CD

jl = ~µ0γjγl

4π

Table 2.3: Dipolar coupling Hamiltonian in tensorial representation

2.2.2.4 Quadrupolar interaction

The interaction of the quadrupole moment (observed in spin I > 1/2) with the sur-
rounding electric field gradient (generated by molecular electronic clouds) is termed the
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quadrupolar interaction.

HQ =
∑
j

∑
α,β=x,y,z

eQj

6Ij(2Ij − 1)

{
V j
αβ

[3
2(IjαIjβ + IjβIjα)− δαβIj(Ij + 1)

]}

=
∑
j

eQj

4Ij(2Ij − 1)[V j
zz(3I2

jz − Ij2) + (V j
xx − V j

yy)(I2
jx − I2

jy)]
(2.32)

The term Qj represents the quadrupolar moment of the jth nucleus and ‘e’ the elemen-
tary charge. The components of the electric field gradient tensor V j

αβ are conveniently
expressed.

ηQj =V j
xx−V j

yy

V j
zz

eqj =V j
zz

(2.33)

The asymmetry parameter ηj is in the range (0 ≤ ηj ≤ 1) with the convention V j
zz ≥ V j

yy ≥
V j
xx. Employing these relations, the above Eq. (2.32) reduces to,

HQ =
∑
j

e2qjQj

4Ij(2Ij − 1)[3I2
jz − Ij(Ij + 1) + ηj(I2

jx − I2
jy)]

= −~
∑
j

ωPASQj

6 [3I2
jz − Ij(Ij + 1) + ηj

2 (Ij+2 + Ij
−2)]

(2.34)

where ωPASQj = −3e2qjQj

2Ij(2Ij−1)~ = −3πCQj
Ij(2Ij−1) , the quadrupolar splitting parameter and CQj = e2qjQj

h

is quadrupolar coupling constant for the jth nucleus. In terms of the electric field gradient
tensor V j, the quadrupolar Hamiltonian is often represented by,

HQ = ~
∑
j

eQj

2Ij(2Ij − 1)~Ij.V
j.Ij (2.35)

The form of the electric field gradient tensor in the PAS is represented below,

V j =


V j
xx 0 0

0 V j
yy 0

0 0 V j
zz

 (2.36)

Following the procedure described in the previous sections, the spatial and spin tensor
operators are derived and listed in Table 2.4.
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Spatial components Spin components

R
(0)0
Q,P = 0 T (0)0(I) = C(0..0j..0)I

R
(1)0
Q,P = 0 T (1)0(I) = C(0..1j..0)iIz

R
(1)±1
Q,P = 0 T (0..1j ..0)±1(I) = ∓C(0..1j ..0)i√

2 I±

R
(2)0
Q,P = − 1

C(0..2j ..0)(
√

3
2eqj) T (2)0(I) = −C(0..2j ..0)√

6 [3I2
z − I(I + 1)]

R
(2)±1
Q,P = 0 T (2)±1(I) = ±C(0..2j ..0)

2 (IzI± + I±Iz)

R
(2)±2
Q,P = − 1

2C(0..2j ..0)(η
Q
j eqj) T (2)±2(I) = −C(0..2j ..0)

2 I±I±

HQ = ~∑
j
CQ
j

2∑
k=0

−k∑
q=k

(−1)k−qR(k)−q

Q,P T (k)q(I) where CQ
j = eQj

2Ij(2Ij−1)~

Table 2.4: Quadrupolar coupling Hamiltonian in tensorial representation

2.2.2.5 Spin-Rotation interaction

Interaction of the nuclear spins (nuclear spin magnetic moment) with the magnetic mo-
ment produced by the angular momentum of the molecule due to rotational motion is
defined as spin-rotation interaction. Even though spin-rotation interaction in solids is
unimportant (due to restricted mobility of molecule), a brief description is presented to
complete the description of spin interactions in NMR.

HS = ~
∑
j

Ij.S
j.J (2.37)

In Eq. (2.37) Sj denotes the spin-rotation interaction tensor. The isotopic form of the
spin-rotation interaction (in liquids) is represented by,

HS = ~
∑
j

SjisoIj.J (2.38)

with Sjiso denoting the isotopic spin-rotation coupling constant.

Sjiso = 1
3(Sjxx + Sjyy + Sjzz) (2.39)
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In similar vein, the anisotropic part of the interaction is represented through spin-rotation
anisotropy δSj and asymmetry parameter ηSj .

δSj = Sjzz − 1
3(Sjxx + Sjyy + Sjzz) = Sjzz − S

j
iso

ηSj = Sj
xx−Sj

yy

δS
j

(2.40)

The normalized tensor operators for the spin-rotation interaction is represented in Ta-
ble 2.5,

Spatial components Spin components

R
(0)0
S,P =

√
3

C(0..1j0..1l) (Sjiso) T (0)0(0..1j0..1l) = C(0..1j0..1l)√
3 Ij .J

R
(1)0
S,P = 0 T (1)0(0..1j0..1l) = C(0..1j0..1l)

2
√

2

[
I+
j J
− − I−j J+]

R
(1)±1
S,P = 0 T (1)±1(0..1j0..1l) = C(0..1j0..1l)

2
[
I±j Jz − IjzJ±

]
R

(2)0
S,P = −1

C(0..1j0..1l) (
√

3
2δ
S
j ) T (2)0(0..1j0..1l) = −C(0..1j0..1l)√

6 [3IjzJz − Ij .J]

R
(2)±1
S,P = 0 T (2)±1(0..1j0..1l) = ±C(0..1j0..1l)

2
[
I±j Jz + IjzJ

±]
R

(2)±2
S,P = −1

2C(0..1j0..1l) (δSj ηSj ) T (2)±2(0..1j0..1l) = −C(0..1j0..1l)
2 I±j J

±

HS = ~
∑
j

CSj
2∑
k=0

−k∑
q=k

(−1)k−qR(k)−q

S,P T (k)q(IJ) where CSj = 1

Table 2.5: Spin-rotation Hamiltonian in tensorial representation

2.2.3 Transformation of spin Hamiltonians

As illustrated in the previous sections, the spatial tensors (R(k)q) are defined in the PAS of
the respective interactions. A detailed description of the rotational transformations and
conventions employed are briefly discussed in the Appendix. Employing Wigner rotation
matrices, the spatial tensors defined in the PAS are transformed in the LAB frame.

In the case of MAS experiments involving powder samples, three sets of transforma-
tions are required to transform the spatial tensors from the PAS to the LAB frame (see
Fig. 2.2).

PAS D(ΩP M )→ MolAS D(ΩMR)→ RAS D(ΩRL)→ LAS (2.41)
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Figure 2.2: The figure depicts the set of transformations which are required to transform MAS Hamilto-
nian from PAS to LAS for a single molecule in the powdered sample. The coordinate axes frames shown
in blue, red, green and black are corresponding to PAS, MolAS, RAS and LAS respectively.

Based on the relations expressed in Tables 2.1 to 2.5 the spin Hamiltonian can be expressed
as a product of the spatial and spin tensor operators.

Hλ = ~Cλ
2∑

k=0

k∑
q=−k

(−1)k−qR(k)−q
λ,L T

(k)q
λ (2.42)

In Eq. (2.42), ‘λ’ represents the spin interactions (such as chemical shift, J-coupling, dipo-
lar coupling, quadrupolar coupling, spin-rotation coupling). The term R

(0)0
λ,L corresponding

k = 0 is isotropic part and is invariant under rotational transformations. The tensors R(1)q
λ,L

corresponding to k = 1 are traceless antisymmetric parts have no importance in NMR
(more over from above Tables 2.1 to 2.5 the contribution of these parts are zero). The
tensors R(2)q

λ,L corresponding to k = 2 are traceless symmetric parts and contribute to the
spectrum in MAS experiments.

Hλ = ~CλR
(0)0
λ,L T

(0)0
λ + ~Cλ

2∑
q=−2

(−1)2−qR
(2)−q
λ,L T

(2)q
λ (2.43)

At higher external magnetic field strengths, the contributions from the terms that are non-
commuting with the Zeeman interaction (i.e [Iz, T (k)q] 6= 0 for q 6= 0) are ignored.

The transformed spatial part of the Hamiltonian R(2)q
λ,L is represented by,

R
(2)q
λ,L =

2∑
q1,q2,q3=−2

R
(2)q3
λ,P D(2)

q3q2(ΩPM)D(2)
q2q1(ΩMR)D(2)

q1q(ΩRL)

=
2∑

q1,q2,q3=−2
R

(2)q3
λ,P D(2)

q3q2(ΩPM)D(2)
q2q1(ΩMR)D(2)

q1q(−ωrt, βRL, 0)
(2.44)

Employing the spatial components and the properties of the Wigner-rotation matri-
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ces,23,38,43,44,63 the Hamiltonians is reexpressed in a compact form. The secular (q = 0)
spatial part of the Hamiltonian9 is represented by,

CλR
(2)0
λ,L =

2∑
m=−2
m 6=0

G
(2)0
λ,me

imωrt
(2.45)

with

G
(2)0
λ,m = Cλ

2∑
q2,q3=−2

R
(2)q3
λ,P D(2)

q3q2(ΩPM)D(2)
q2m(ΩMR)d(2)

m0(βRL) (2.46)

The non-secular (q 6= 0) spatial part of the Hamiltonian (relevant only in the case of
quadrupolar interaction) is represented by,

Cλ(−1)2−qR
(2)−q
Q,L =

2∑
m=−2
m 6=0

G
(2)q
Q,me

imωrt
(2.47)

with

G
(2)−q
Q,m = CQ

2∑
q2,q3=−2

R
(2)q3
Q,P D

(2)
q3q2(ΩPM)D(2)

q2m(ΩMR)d(2)
mq(βRL) (2.48)

Employing these relations, the Hamiltonian under MAS is represented by,

H = HZ +HRF + ~CλR
(0)0
λ,L T

(0)0
λ︸ ︷︷ ︸

Isotropic(λ=C,J,S)

+ ~
2∑

m=−2
m6=0

G
(2)0
λ,me

imωrtT
(2)0
λ

︸ ︷︷ ︸
Secular(λ=C,J,D,Q,S)

+ ~
2∑

q=−2
q 6=0

2∑
m=−2
m 6=0

G
(2)q
Q,me

imωrtT
(2)q
Q

︸ ︷︷ ︸
Non−secular

(2.49)

2.3 Effective Hamiltonians for spin I = 1/2 system
under MAS

The Hamiltonian for an isolated spin (I = 1/2) system under MAS in rotating frame is
represented by,

H̃ = ~ω1Ix + ~
−2∑
m 6=0
m=2

ω
(m)
C Ize

imωrt (2.50)

with ω
(m)
C = −iC(1)

√
2
3B0G

(2)0
m , Since the magnitude of the RF field exceeds the CSA

interaction (ω(m)
C ), the RF Hamiltonian is quantized along the z-axis using unitary trans-
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formation, U = ei
π
2 Iy

H̃ = ~ω1Iz − ~
−2∑
m6=0
m=2

ω
(m)
C Ixe

imωrt (2.51)

Employing the Floquet framework (see Appendix Section 2.D) the time-dependent MAS
Hamiltonian is transformed into time-independent Floquet Hamiltonian.66 The Floquet
Hamiltonian corresponding to equation Eq. (2.50) is written as follows

H̃F = ~ωrIF + ~ω1Iz,0 − ~
−2∑
m6=0
m=2

ω
(m)
C Ix,m (2.52)

The index ‘m’ denotes the off-diagonality in the Fourier space and is folded using the
contact transformation procedure.31,33,67–72 To facilitate the process, the Hamiltonian is
expressed as a sum of zero-order and perturbation Hamiltonian.

˜̃H0 = ~ωrIF + ~ω1Iz,0 (2.53)

˜̃H1 = −~
−2∑
m 6=0
m=2

ω
(m)
C Ix,m = −~

−2∑
m 6=0
m=2

ω
(m)
C

2 (I+
m + I−m) (2.54)

The effective Hamiltonian is obtained by transforming the Floquet Hamiltonian using a
unitary transformation.

Heff = eiS1HF e
−iS1 (2.55)

The transformation function31 S1 = i
−2∑
m6=0
m=2

(C1,mI
+
m + C2,mI

−
m) is chosen to compensate

the off-diagonality due to H1 (i.e H(1)
1 = H1 + i[S1, H0]) with the constants C1,m =

ω
(m)
C

2(mωr+ω1) , C2,m = ω
(m)
C

2(mωr−ω1) . The diagonal corrections to the zero order Hamiltonian are
obtained by evaluating the expression given below,

H
(1)
2 = i

2 [S1, H1]

= ~
−2∑
m 6=0
m=2

(ω(−m)
C C1,m − ω(−m)

C C2,m)Iz
(2.56)

To second-order, the effective Floquet Hamiltonian during the pulse is represented by,

Heff = H0 +H
(1)
2 (2.57)
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Since [Iz, ρ(0)] = 0, the thermal equilibrium density operator (ρ(0)) remains invariant in
the rotating frame i.e. ρ̃(0) = ρ(0). The density operator after second transformation is
represented by ˜̃ρ(0) = −Ix. Subsequently, in the Floquet frame, the density operator gets
reduced to,

˜̃̃ρ(0) = −Ix cos a1 +
−2∑
m6=0
m=2

(C1,m − C2,m) sin a1

a1
Iz,m (2.58)

The density operator after the pulse is denoted and represented by,

˜̃̃ρ(tp) =− cos a1Ix cos

[ω1 +
−2∑
m 6=0
m=2

(ω(−m)
C C1,m − ω(−m)

C C2,m)]tp



− cos a1Iy sin

[ω1 +
−2∑
m 6=0
m=2

(ω(−m)
C C1,m − ω(−m)

C C2,m)]tp


(2.59)

where a1 =
√

(C1,m − C2,m)(C1,−m − C2,−m). As depicted in Eq. (2.59), the maximum

signal in the transverse plane is obtained when [ω1 +
−2∑
m 6=0
m=2

(ω(−m)
C C1,m−ω(−m)

C C2,m)]tp = π
2 .

The density operator corresponding to maximum signal after the pulse is given by,

ρ̃(tp) = U−e−is1 ˜̃̃ρ(tp)eis1U = − cos a1 cos a2Iy (2.60)

with a2 =
√

(C1,m + C2,m)(C1,−m + C2,−m). Subsequently, the system evolves under the
evolution Hamiltonian. In the Floquet framework, the evolution Hamiltonian is repre-
sented by,

H̃F = ~ωrIF︸ ︷︷ ︸
H0

+ ~
−2∑
m 6=0
m=2

ω
(m)
C Iz,m

︸ ︷︷ ︸
H1

(2.61)

Employing the contact transformation procedure, the effective Hamiltonian during the
evolution period is obtained by the transformation function S1 = −i

−2∑
m 6=0
m=2

ω
(m)
C

mωr
Iz,m,

Hevol = H0 = ~ωrIF (2.62)
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Figure 2.3: Simulations depicting the effects of spinning frequency on line shapes and intensities em-
ploying in panel (A) red line for static and black lines with spinning frequency υr = 5 kHz, (B) red
line for static and black lines with spinning frequency υr = 10 kHz at different asymmetry parameters
η = 0.0, 0.5, 1.0 for panels 1, 2, 3 respectively. All other parameters like chemical shift anisotropy
δC = 4 kHz, υ1 = 50 kHz kept constant.

43



Accordingly, the density operator after the pulse is derived and represented by,

˜̃ρ(tp) = − cos a1 cos a2[Iy −
−2∑
m6=0
m=2

iω
(m)
C

mωr
Ix,m +

−2∑
m1,m2 6=0
m1,m2=2

ω
(m1)
C ω

(m2)
C

m1m2ω2
r

Iy,m1+m2
2! + ..] (2.63)

The density operator after the evolution for the time ‘t’ is given by,

˜̃ρ(tp + t) =−cos a1 cos a2[Iy −
−2∑
m6=0
m=2

iω
(m)
C

mωr
Ix,me

−imωrt +
−2∑

m1,m2 6=0
m1,m2=2

ω
(m1)
C ω

(m2)
C

m1m2ω2
r

Iy,m1+m2
2! e−i(m1+m2)ωrt + ..]

(2.64)

ρ̃(tp + t) = e−is1 ˜̃ρ(tp + t)eis1

= − cos a1 cos a2

Iy − iIx

2!

−2∑
m1,m2,m3 6=0
m1,m2,m3=2
m1+m2+m3=0

ω
(m1)
C ω

(m2)
C ω

(m3)
C

m1m2m3ω3
r

(e−im1ωrt − e−i(m1+m2)ωrt))

−Iy
−2∑

m1,m2 6=0
m1,m2=2
m1+m2=0

ω
(m1)
C ω

(m2)
C

m1m2ω2
r
e−im1ωrt + Iy

2!2!

−2∑
m1,m2,m3,m4 6=0
m1,m2,m3,m4=2

m1+m2+m3+m4=0

ω
(m1)
C ω

(m2)
C ω

(m3)
C ω

(m4)
C

m1m2m3m4ω4
r

e−i(m1+m2)ωrt..


(2.65)

Employing Eq. (1.16), the time-domain signal is evaluated accordingly and is represented
by,

〈
I+(t)

〉
= cos a1 cos a2.C(1)2

2

e−iω0t −
−2∑

m1,m2,m3 6=0
m1,m2,m3=2
m1+m2+m3=0

ω
(m1)
C ω

(m2)
C ω

(m3)
C

2!m1m2m3ω3
r

(e−i(m1ωr+ω0)t − e−i[(m1+m2)ωr+ω0]t)

−
−2∑

m1,m2 6=0
m1,m2=2
m1+m2=0

ω
(m1)
C ω

(m2)
C

m1m2ω2
r
e−i(m1ωr+ω0)t +

−2∑
m1,m2,m3,m4 6=0
m1,m2,m3,m4=2

m1+m2+m3+m4=0

ω
(m1)
C ω

(m2)
C ω

(m3)
C ω

(m4)
C

2!2!m1m2m3m4ω4
r

e−i[(m1+m2)ωr+ω0)]t..


(2.66)

In the Floquet framework, the time-domain signal comprises of the center band and a
series of side bands.The simulations depicted in Fig. 2.3, substantiate the analytic results
presented in this section.
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Appendix

2.A Irreducible spherical tensors37

Tensors:Tensors are geometric objects with arrays of numbers or functions that describe
linear relations between scalars, vectors and other tensors.

Y =


Yxx Yxy Yxz

Yyx Yyy Yyz

Yzx Yzy Yzz

 (2.67)

Cartesian tensor

The more familiar cartesian tensors are not suitable because they usually appear in re-
ducible form. Thus, from direct product of cartesian tensors, one can form sets of linear
combination of components of a cartesian tensor which transform differently. Transfor-
mation laws are much simpler for the tensors with spherical components since they are
proportional to the spherical Harmonics, Y m

l

Irreducible spherical tensor: An irreducible tensor operator of rank ‘k’ is defined as a
set of 2k+1 functions T (k)q, which transform under the 2k+1 dimensional representation
of the rotation group as63

D(αβγ)T (k)qD−1(αβγ) =
−k∑
q′=k

D
(k)
q′q (αβγ)T (k)q′ (2.68)

(or)
The set T (k)q constitutes an irreducible tensor if the following commutator relationships
with angular momentum operators are fulfilled65

[Iz, T (k)q] = qT (k)q

[I±, T (k)q] =
√
k(k + 1)− q(q ± 1)T (k)q

(2.69)
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Employing the theory of addition of angular momentum, a general representation of irre-
ducible spherical tensors35,37,73 for a coupled spin system is represented by,

T
(k)q
(K1K2K3....KN−2)

(k1k2k3...kN) (2.70)

where N is the number of spins, k is the overall rank, q the component which takes values
from −k to k, KN−2 the intermediate angular momentum vector and kN the rank of
individual spins and it takes the values from 0 to 2IN.

These tensor operators are irreducible and symmetric traceless74–76 and are denoted by
[I](k). The normalized form77,78 of these operators are given by,

T (k)(I) =
√

2k+1
2I+1

[I](k)√
[I](k)�k[I](k) (2.71)

Tr[T (k)(I)�kT (k)(I)] = 2k + 1 (2.72)

The factor in denominator in Eq. (2.71) is evaluated by the equation given below,

[I](k)�k[I](k) = (k!)2(2I+k+1)!
2k(2I+1)(2k)!(2I−k)! (2.73)

Based (Eq. (2.73)), The normalization constant C(k) is defined.

C(k) =
√

(2k+1)2k(2k)!(2I−k)!
(k!)2(2I+k+1)!

(2.74)

T (k)(I) = C(k)[I](k) (2.75)

The 2k + 1 spherical components of above tensor T (k)(I) can be written with respect to
covariantI spherical basis74–76 e(k)q which is given in Tables 2.7 and 2.8. The complex
conjugate of e(k)q is

e(k)q∗ = (−1)k−qe(k)−q = e(k)
q (2.76)

Accordingly, the spherical components in this basis is expressed by,

T (k)q(I) = T (k)(I)�ke(k)q (2.77)

IIn literature we find covariant representation as component q in superscript e(k)
q and for contravariant

representation as component q in subscript e(k)q but we are following opposite convention just for better
representation of spin and other label in covariant tensors.
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k C(k)

0
√

(2I)!
(2I+1)! =

√
1

(2I+1)

1 2
√

3
√

(2I−1)!
(2I+2)! =

√
3

(2I+1)I(I+1)

2 2
√

30
√

(2I−2)!
(2I+3)! =

√
30

(2I+1)I(I+1)(2I+3)(2I−1)

3 4
√

70
√

(2I−3)!
(2I+4)!

4 12
√

70
√

(2I−4)!
(2I+5)!

5 24
√

124
√

(2I−5)!
(2I+6)!

6 16
√

3003
√

(2I−6)!
(2I+7)!

7 96
√

715
√

(2I−7)!
(2I+8)!

C(k1k2...kN) = C(k1)C(k2)...C(kN)

Table 2.6: Explicit form of the normalization constant for single spin operators up to rank k = 7 and
multiple spin operator in N spin basis

with the complex conjugate of T (k)q defined by,

T (k)q(I)† = (−1)k−qT (k)−q(I) = T (k)
q (2.78)

The normalization condition for the tensor operators is defined by taking the quantum
trace.

Tr[T (k)q(I)†T (k′)q′(I)] = δkk′δqq′ (2.79)

The quantum trace of any individual tensor operator defined by,

Tr[T (k)q(I)] = 1
C(0)Tr[T

(k)q(I)T (0)0(I)] = δkoδq0
C(0) (2.80)

with T (0)0 is the tensor with rank zero. In usual terms we call it as a scalar.

T (0)0(I) = C(0)I (2.81)

where I is the Identity operator. The spherical basis e(k)q and the corresponding com-
ponents of cartesian tensors with different ranks are given in Tables 2.7 and 2.8. The
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explicit form of tensors up to rank 1 in the basis e(1)q of Table 2.7 are given by,

T (1)0(I) = C(1)iIz

T (1)±1(I) = ∓C(1)i√
2 I
±

(2.82)

Spherical coordinates Spherical components

e(1)0 = iẑ Y (1)0 = iYz

e(1)1 = − i√
2(x̂+ iŷ) Y (1)1 = − i√

2(Yx + iYy)

e(1)−1 = i√
2(x̂− iŷ) Y (1)−1 = i√

2(Yx − iYy)

Y =
−1∑
q=1

(−1)1−qY (1)qe(1)−q

Table 2.7: The spherical basis e(k)q and the corresponding spherical components of cartesian tensor of
rank k = 1

Spherical coordinates Spherical components

e(0)0 = 1√
3(xx+ yy + zz) Y (0)0 = 1√

3(Yxx + Yyy + Yzz)

e(1)0 = − i√
2(xy − yx) Y (1)0 = − i√

2(Yxy − Yyx)

e(1)±1 = −1
2 [zx− xz ± i(zy − yz)] Y (1)±1 = −1

2 [Yzx − Yxz ± i(Yzy − Yyz)]

= −1
2 [Yzx ± iYzy − (Yxz ± iYyz)]

e(2)0 = −1√
6 [3zz − (xx+ yy + zz)] Y (2)0 = −1√

6 [3Yzz − (Yxx + Yyy + Yzz)]

e(2)±1 = ±1
2 [xz + zx± i(yz + zy)] Y (2)±1 = ±1

2 [Yxz + Yzx ± i(Yyz + Yzy)]

= ±1
2 [Yxz ± iYyz + Yzx ± iYzy]

e(2)±2 = −1
2 [xx− yy ± i(xy + yx)] Y (2)±2 = −1

2 [Yxx − Yyy ± i(Yxy + Yyx)]

Y =
2∑

k=0

−k∑
q=k

(−1)k−qY (k)qe(k)−q

Table 2.8: The spherical basis e(k)q and the corresponding spherical components of cartesian tensor of
rank k = 2

The higher rank tensors are constructed by coupling of lower rank tensors as illustrated
in Eq. (2.83). Explicit forms of tensor operators corresponding to single spin up to rank
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k = 7 is given in Table 2.9. The general relation of T (k)q(I) operator with product
operators is given in Appendix Section 2.B.2.

T
(k)q =

∑
q1,q2

√
(2k + 1)(−1)(k−q)

 k1

q1

k2

q2

k

−q

T(k1)q1T(k2)q2 (2.83)

Extending this algebra, tensor operators corresponding to multiple spins derived by cou-
pling of individual spin operators as given in Eq. (2.84). The essential tensor operators
in multiple spin basis is given in Appendix Section 2.B.3.

.

T
(k)q

{K̄N−2}(k1k2....kN) =
∑

q1,q2....qN

q̄1,q̄2....q̄N−2

√
(2K̄1 + 1)(2K̄2 + 1)....(2K̄N−2 + 1)(2k + 1)

(-1)(K̄1+K̄2+...K̄N−2)(−1)(k1+k2+k3...kN +k) (-1)(q̄1+q̄2+...q̄N−2) (-1)(k−q)

k1

q1

k2

q2

K̄1

−q̄1


K̄1

q̄1

k3

q3

K̄2

−q̄2

 ....
K̄N−2

q̄N−2

kN

qN

k

−q

T(k1)q1(I1) T(k2)q2(I2) ....T(kN )qN (I1)

(2.84)

2.B Essential relations of tensor operators

2.B.1 Explicit form of T (k)q(I) operators up to the rank k=7

k q T (k)q(I)

0 0 C(0)I

1 0 C(1)iIz

1 ±1 ∓C(1)i√
2 I±

2 0 C(2)√
6 (I2 − 3I2

z )

2 ±1 ±C(2)
2 [Iz, I±]+

2 ±2 −C(2)
2 I2
±

3 0 C(3)i√
10 (3I2 − 5I2

z − 1)Iz

3 ±1 ±C(3)i
4

√
3

10 [(I2 − 5Iz + 1/2), I±]+

Continued on next page
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Table 2.9 – Continued from previous page

k q T (k)q(I)

3 ±2 −C(3)i
√

3
4I±IzI±

3 ±3 ±C(3)i
2
√

2 I
3
±

4 0 C(4)
2
√

70 [(35I4
z − 30I2I2

z + 25I2
z + 3I4 − 6I2)]

4 ±1 ∓ C(4)
2
√

14 [(7I3
z − 3I2Iz − Iz), I±]+

4 ±2 C(4)
4
√

7 [(7I2
z − I2 − 5), I2

±]+

4 ±3 ∓C(4)
2
√

2 [Iz, I3
±]+

4 ±4 C(4)
4 I4
±

5 0 C(5)i
6

√
1

14 [63I5
z + 35I3

z (3− 2I2) + I z(12− 50I2 + 15I4)]

5 ±1 ∓C(5)i
4

√
5

21I±[21I4
z ± 42I3

z + 7I2
z (9− 2I2)± 14I z(3− I2)− 8I2 + I4 + 12]

5 ±2 C(5)i
2

√
5
3I

2
±[3I3

z ± 9I2
z + I z(12− I2)± (6− I2)]

5 ±3 ∓C(5)i
12

√
5
2I

3
±[9I2

z ± 27I z + 24− I2]

5 ±4 C(5)i
√

5
16I

4
±[Iz ± 2]

5 ±5 ∓C(5)i
4
√

2 I
5
±

6 0 −C(6)
4

√
1

231 [231I6
z + 105I4

z (7− I2) + 21I2
z (14− 25I2 + I4) + 5(−12I2 + 8I4 − I8)]

6 ±1 ±C(6)
4

√
1

22I±[66I5
z ± 165I4

z + 60I3(6− I2)± 15I2
z (25− 6I2) + 2I z(117− 55I2 + 5I4)±

(12− 40I2 + I4)]

6 ±2 −C(6)
8

√
5

11I
2
±[33I4

z ± 132I3
z + 3I2

z (91− 6I2)± 6I z(47− 6I2)− 26I2 + I4 + 120]

6 ±3 ±C(6)
8

√
5

11I
3
±[22I3

z ± 90I2
z + 179I z − 6I2I z ∓ 9I2 ± 120]

6 ±4 −C(6)
4

√
3

22I
4
±[11I2

z ± 44I z + 50− I2]

6 ±5 ±C(6)
√

3
64I

5
±[2Iz ± 5]

6 ±6 −C(6)
8 I6
±

7 0 −C(7)i
4

√
1

429 [429I7
z + 231I5

z (10− 3I2) + 21I3
z (101− 105I2 + 15I4) + I z(180− 882I2 +

385I4 − 35I8)]

7 ±1 ±C(7)i
8

√
7

858I±[429I6
z ± 1287I5

z + 165I4
z (23 − 3I2) ± 495I3

z (11 − 2I2) + 3I2
z (1832 −

645I2 + 45I4)± 9I z(332− 160I2 + 15I4) + 5(144− 108I2 + 200I4 − I8]

Continued on next page
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Table 2.9 – Continued from previous page

k q T (k)q(I)

7 ±2 −C(7)i
8

√
7

143I
2
±[143I5

z ± 715I4
z + 55I3

z (37− 2I2)± 55I2
z (59− 6I2) + I z(2862− 490I2 +

15I4)± 15(72− 18I2 + I4)]

7 ±3 ±C(7)i
8

√
7

286I
3
±[143I4

z ± 858I3
z + 11I2

z (215− 6I2)± 66I z(49− 3I2) + 3(600− 62I2 + I4]

7 ±4 −C(7)i
4

√
7

26I
4
±[13I3

z ± 78I2
z + 179Iz − 3I2Iz ± 6(25− I2)]

7 ±5 ±C(7)i
8

√
7

26I
5
±[13I2

z ± 65Iz + 90− I2]

7 ±6 −C(7)i
√

7
8I

6
±[Iz ± 3]

7 ±7 ±C(7)i
8
√

2 I
7
±

Table 2.9: Explicit form of T (k)q(I) operators up to the rank k=7

2.B.2 General relation of T (k)q(I) operator with product opera-
tors

T (k)±k(I) = C(k)
(
T (1)±1(I)

)k
(2.85a)

T (k)q±1(I) = 1√
(k±q+1)(k∓q)

[
I±, T

(k)q(I)
]

(2.85b)

T (k)q(I) = ( −i√2)k
[

(k+q)!
(2k)!(k−q)!

]1/2
C(I) [I−, ..., [I−︸ ︷︷ ︸

k−q

, (I+)k], ...] (2.85c)

T (k)−q(I) = ( i√
2)k
[

(k+q)!
(2k)!(k−q)!

]1/2
C(I) [I+, ..., [I+︸ ︷︷ ︸

k−q

, (I−)k], ...] (2.85d)
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2.B.3 Explicit form of T (k)q(Ī) operators in multiple spin basis
(Essential two spin tensor operators)

T (0)0(0..1j0..1l0..) =

 N∏
s=1
s6=j,l

√
1

(2Is+1)

√
3

Ij(Ij+1)(2Ij+1)

√
3

Il(Il+1)(2Il+1)


︸ ︷︷ ︸

C(0..1j0..1l0..)

1√
3Ij.Il (2.86a)

T (1)0(0..1j0..1k0..) = C(0..1j0..1k0..). 1
2
√

2

[
I+
j I
−
k − I−j I+

k

]
(2.86b)

T (2)0(0..1j0..1k0..) = C(0..1j0..1k0..).−1√
6 [3IjzIkz − Ij.Ik] (2.86c)

T (1)±1(0..1j0..1k0..) = C(0..1j0..1k0..).12
[
I±j Ikz − IjzI±k

]
(2.86d)

T (2)±1(0..1j0..1k0..) = C(0..1j0..1k0..).± 1
2

[
I±j Ikz + IjzI

±
k

]
(2.86e)

T (2)±2(0..1j0..1k0..) = C(0..1j0..1k0..).−1
2 I
±
j I
±
k (2.86f)

2.B.4 Relation with level shift operators79–81

|IM〉 〈IM ′| = (−1)I−M
2I∑
k=0

−k∑
q=k

√
2k + 1(−i)k

 I k I

−M q M ′

T (k)q(I) (2.87a)

T (k)q(I) =
√

2k + 1(i)k
∑
M,M ′

(−1)I−M
 I k I

−M q M ′

 |IM〉 〈IM ′| (2.87b)

These follow from Wigner-Eckart theorem and reduced matrix element23,38,44,63,65,82–84

given below

〈I
∥∥∥T (k)q

∥∥∥ I ′〉 =
√

2k + 1(i)kδII′ (2.88)

2.B.5 Relation with unnormalized or non-unit tensors36,51,64

TN
(k)q
(K1K2....KN−2)

(k1k2...kN) = (i)(k1+k2+...+kN )C(k1k2...kN)T (k)q
(K1K2....KN−2)

(k1k2...kN) (2.89)
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2.B.6 Commutator relation between tensor operators35,37 T (k)q(Ī)’s

Single spin:
[
T

(k)q(I), T (k′)q′ (I)
]

=
∑
k′′,q′′

ϕ(kk′k′′)(−1)2I(i)k+k′+k′′
√

(2k + 1)(2k′ + 1)(2k′′ + 1)

× (−1)
k−k′+k′′


k′′ k k′

I I I

 (−1)k
′′−q′′

k k′ k′′

q q′ −q′′

T (k′′)q′′ (I)

(2.90)

with ϕ(kk′k′′) = [1− (−1)k+k′+k′′ ]

Multiple spin:
[
T

(k)q

{K}(k1k2..kN ), T (k′)q′

{K′} (k′1k′2..k′N )
]

=
∑

all k′′1→N ,q
′′,

K′′1→N−2,k
′′

ϕj=1→N (kjk′jk′′j)(−1)2(I1+I2+..IN )

× (i)k1+k2+..kN (i)k
′1+k′2+..k′N (i)k

′′1+k′′2+..k′′N
√

(2k + 1)(2k′ + 1)(2k′′ + 1)

×

√√√√N−2∏
l=1

(2Kl + 1)(2K ′l + 1)(2K ′′l + 1)
N∏
j=1

(2kj + 1)(2k′j + 1)(2k′′j + 1)

× (−1)
k−k′+k′′

k
′′

1 k1 k′1

I1 I1 I1


k
′′

2 k2 k′2

I2 I2 I2

 ..
k
′′
N kN k′N

IN IN IN



×


k1 k2 K1

k′1 k′2 K ′1

k′′1 k′′2 K ′′1




K1 k3 K2

K ′1 k′3 K ′2

K ′′1 k′′3 K ′′2


..


KN−2 kN k

K ′N−2 k′N k′

K ′′N−2 k′′N k′′


× (−1)k

′′−q′′

k k′ k′′

q q′ −q′′

T (k′′)q′′

{K′′} (k′′1k′′2....k′′N )

(2.91)

with ϕj=1→N(kjk′jk′′j) = [1− (−1)

N∑
j=1

kj+k′j+k′′j
]

2.C Transformation properties
In the Euclidean space, transformation from one coordinate axes to another is described
through three angles, commonly referred as Euler angles (α, β, γ).23,38,43,44,51,62,63,82,83 This
transformation is accomplished through either the so called passive rotation (shown in
Fig. 2.5) or through active rotation (shown in Fig. 2.7).
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Figure 2.4: Euler angles: A passive rotation by α(0 ≤ α ≤ 2π) about z-axis called vertical axis, a
passive rotation by β(0 ≤ β ≤ π) about y′-axis called line of nodes and a passive rotation by γ(0 ≤ γ ≤ 2π)
about z′′-axis called figure axis.

The rotation operator corresponding to passive rotation of coordinate axes frame (for
rotation shown in Fig. 2.4) is represented by,

D(αβγ) = e−iγIz′′e−iβIy′e−iαIz

= e−iαIze−iβIye−iγIz
(2.92)

For the positive rotation of the coordinate axes system, the relative rotation of vector is
negative. Hence the rotation operator corresponding to rotation of any tensor depicted
in Fig. 2.4 is represented by

D(−α− β − γ) = eiγIz′′eiβIy′eiαIz

= eiαIzeiβIyeiγIz
(2.93)

Direction
Rotation Passive Active

Axes tensor tensor

Positive D(αβγ) D(−α− β − γ) D−1(−α− β − γ) = D(γβα)

Negative D(−α− β − γ) D(αβγ) D−1(αβγ) = D(−γ − β − α)

Table 2.10: The rotation operators corresponding to passive and active rotations.
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2.C.1 Passive rotation

In the passive rotation, rotation of the coordinate axes frame is accomplished through
instantaneous axis, while tensor (or body) is passively fixed in coordinate system.

Figure 2.5: A passive rotation of co-
ordinate axes by −α or rotation of vec-
tor by α about z-axis.

Positive rotation: By definition, a positive rotation is based on the simple convention,
on rotation right handed screw move to wards positive direction of the axis (away from
the origin). In quantum theory of angular momentum, this is referred to as anti-clock
wise rotation. In this rotation we follow right hand rule which is shown in Fig. 2.6. The

Figure 2.6: Right hand rule: The right
thumb denotes the axis of rotation, the remaining
curled fingers depicts the direction of the rotation
of tensor.

rotation operator corresponding to positive rotation of the vector (Fig. 2.5) is defined
by,

D(αβγ) = e−iαIze−iβIye−iγIz (2.94)

The corresponding transformation of the covariant tensor is given by,

D(αβγ)T (k)qD−1(αβγ) =
−k∑
q′=k

D
(k)
q′q (αβγ)T (k)q′ (2.95)
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In a similar vein, the transformation of contravariant tensor is given by,

D(αβγ)Tq(k)D−1(αβγ) =
−k∑
q′=k

D
(k)
q′q (−αβ − γ)Tq′ (k) (2.96)

where D
(k)
q′q (αβγ)38 are the elements of Wigner D-matrix or Wigner rotation matrix

D(k)(αβγ) called Wigner functions.

D
(k)
q′q (αβγ) = 〈kq′|D(αβγ) |kq〉

= 〈kq′| e−iαIze−iβIye−iγIz |kq〉

= e−iq
′αe−iqγ 〈kq′| e−iβIy |kq〉

= e−iq
′αe−iqγd

(k)
q′q(β)

(2.97)

with d
(k)
q′q(β)38 is the element of reduced Wigner rotation matrix d(k)(β) called Wigner

formula. Some useful relations of Wigner functions and Wigner formulae are given below,

[D(k)
q′q (αβγ)]

†
= D

(k)
qq′ (−γ − β − α)

= (−1)q
′−qD

(k)
−q′−q(αβγ)

d
(k)
q′q(β) = (−1)q

′−qd
(k)
qq′ (β)

= (−1)q
′−qd

(k)
q′q(−β)

= (−1)q
′−qd

(k)
−q′−q(β)

(2.98)

2.C.2 Active rotation

Rotation of the tensor or body using space fixed axis system is called active or space fixed
rotation. In this rotation, body or tensor is actively rotated along coordinate axis, hence
in the literature it is defined as vector rotation.

Figure 2.7: An active rotation of a
vector with negative rotation by −α
about z-axis

Negative rotation: By definition, a negative rotation is based on simple convention, on
rotation right handed screw move to wards negative direction of axis (towards the origin).
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In quantum theory of angular momentum, this is referred to as clock wise rotation. In
this rotation we follow left hand rule which is shown in Fig. 2.8.

Figure 2.8: Left hand rule: The left thumb
denotes the axis of rotation, the remaining curled
fingers depicts the direction of the rotation of ten-
sor.

The rotation operator corresponding to negative rotation of vector (Fig. 2.7) is defined
by,

D−1(αβγ) = eiγIzeiβIyeiαIz (2.99)

The corresponding transformation of the covariant tensor given by,

D−1(αβγ)T (k)qD(αβγ) =
−k∑
q′=k

D
(k)
qq′ (−αβ − γ)T (k)q′ (2.100)

In a similar vein, the transformation of contravariant tensor is given by,

D−1(αβγ)Tq(k)D(αβγ) =
−k∑
q′=k

D
(k)
qq′ (αβγ)Tq′ (k) (2.101)

Based on Eqs. (2.95) and (2.100) the transformation of covariant tensors components is
described by passive rotation of vector with positive rotation. In a similar vein, (from
Eqs. (2.96) and (2.101)) the transformation of contravariant tensors components is de-
scribed by active rotation of vector with negative rotation.

2.D Floquet theory
In the Floquet formalism,66 a periodic time-dependent Hamiltonian, represented in a
finite dimensional basis set, is transformed into a time independent Hamiltonian (usu-
ally referred as Floquet Hamiltonian) represented in an infinite dimensional basis set via
Fourier series expansion.66 Vega et al. introduced the Floquet operators85,86 for studying
the time evolution during MAS in the Floquet-state space. Subsequently, the Floquet
approach was formulated into a Fourier state representation by Levante et al.87 and to
an integral representation by Filip et al.88 We can write the state function of the system
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with periodic time-dependancy as given below,

|ψ(t)〉 =
∞∑

n=−∞

l∑
j=1

cjn(t)einωt |ϕjn〉 (2.102)

and the Hamiltonian of the system as:

H(t) =
∞∑

m=−∞
Hme

imωt (2.103)

Now the time-dependent Schrödinger equation given by

i~
d |ψ(t)〉
dt

= H(t) |ψ(t)〉 (2.104)

∞∑
n1=−∞

l∑
j=1

(
i~dcjn1 (t)

dt
ein1ωt |ϕjn1〉 − cjn1 (t)(n1~ω)ein1ωt |ϕjn1〉

)
=

∞∑
m=−∞

Hme
imωt

∞∑
n=−∞

l∑
s=1

csn(t)einωt |ϕsn〉

(2.105)

multiplying left side with 〈ϕjn1| and equating like powers on both sides for the condition
n1 = m+ n or m = n1 − n we get,

∞∑
n1=−∞

[
i~
dcjn1(t)
dt

− cjn1(t)(n1~ω) = 〈ϕjn1|
∞∑

n=−∞

l∑
s=1

Hn1−ncsn(t) |ϕsn〉
]

⇒
∞∑

n1=−∞

i~dcjn1(t)
dt

=
∞∑

n=−∞

l∑
s=1

[〈ϕjn1|Hn1−n |ϕsn〉+ n~ωδjsδn1n]︸ ︷︷ ︸
HF

csn(t)

 (2.106)

Now from the above Eq. (2.106) we can write the time independent Floquet Hamiltonian
as:

HF = Hn1−n︸ ︷︷ ︸
Floquet off-diagonal operator

+~ω
∞∑

n=−∞

l∑
j=1

n |ϕjn〉〈ϕjn|︸ ︷︷ ︸
Floquet diagonal operator

= Hm + ~ωIF

(2.107)

Now the time-dependent Schrödinger equation in Floquet basis given by,

i~
d |ψF (t)〉

dt
= HF |ψF (t)〉 (2.108)

where |ψF (t)〉 represents the Floquet state, defined by,

|ψF (t)〉 =
∞∑

n=−∞

l∑
j=1

cjn(t) |ϕjn〉 (2.109)
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The Floquet basis states are constructed as the direct product of spin states |ϕj〉 and
Fourier states |n〉 as given below,

|ϕjn〉 = |n〉 ⊗ |ϕj〉 (2.110)

The off-diagonal contributions in the Floquet Hamiltonian (i.e Hm = Fm ⊗H) are repre-
sented through Fourier operator Fm,

Fm =
∞∑

n=−∞
|n+m〉 〈n| (2.111)

The diagonal contributions in the Floquet Hamiltonian (i.e IF = FI ⊗ I) are represented
through the Iz equivalent of Fourier diagonal operator FI ,

FI =
∞∑

n=−∞
n |n〉 〈n| (2.112)

The following commutators relations between the operators is employed.

[IF , Ix,m] = [FI , Fm]Ix = mFmIx = mIx,m

[Ix,m1 , Iy,m2 ] = Fm1+m2 [Ix, Iy] = i~Iz,m1+m2

	
(2.113)

Similarly the commutator relations of Floquet tensor operators given by,

[IF , T (k)q
m ] = [FI , Fm]T (k)q = mFmT

(k)q = mT (k)q
m

[T (k1)q1
m1 , T (k2)q2

m2 ] = Fm1+m2 [T (k1)q1 , T (k2)q2 ] = cT
(k3)q3
m1+m2

(2.114)

2.E Normalization factors corresponding to different
detection operators in NMR theory

Pulse

Detection
I−j T (1)−1(0..1j..0) I+

j T (1)1(0..1j..0) Ijz T (1)0(0..1j..0)

X −iC(0..1j..0)2 −
√

2C(0..1j..0) iC(0..1j..0)2 −
√

2C(0..1j..0) C(0..1j..0)2 −iC(0..1j..0)

Y C(0..1j..0)2 −i
√

2C(0..1j..0) C(0..1j..0)2 i
√

2C(0..1j..0) C(0..1j..0)2 −iC(0..1j..0)

Table 2.11: The normalization factors corresponding to different detection operators for typical single
X, Y-Pulses.
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Chapter 3

Concept of effective Hamiltonians
for Single Quantum (SQ) transitions
in multi-level systems

3.1 Background
Theoretical description of radio frequency (RF) pulses on quadrupolar spins is unique
and challenging due to the presence of (a)quadrupolar interaction (b) multiple levels
in the system.1–6 Since quadrupolar nuclei constitute more than 70% of the elements
in the periodic table, they are often employed as molecular probes to investigate the
local environments in inorganic compounds and clusters.5,7–10 Consequently, suites of ex-
perimental techniques11–15 centered on the manipulation of the quadrupolar interactions
have emerged in the last two decades for investigating the structure of inorganic com-
pounds.6,7,9 In all these experiments, the local environment is primarily characterized
through the quadrupolar coupling constant and asymmetry parameter and is experimen-
tally obtained through the quantification of the line-shapes and intensity measurements
in a single crystal or a polycrystalline sample.4,10,14–18 In contrast to spin I = 1/2 systems,
analytic description of the evolution of the density operator in multiple-pulse experiments
has always remained elusive while dealing with quadrupolar systems.

To this end, several theoretical approaches based on fictitious spin operators1,19–22 and
spherical tensor operator23–34 formalisms have been proposed in the past.10,13 In particu-
lar, the fictitious spin operator formalism22 has been employed extensively for describing
selective excitations in wide range of systems.20,21,35–40 Although, these approaches have
enhanced our understanding of the spin dynamics involving quadrupolar spin systems,
they often remain semi-analytical and have limited utility in describing multiple-pulse
experiments involving coupled spin systems that involve quadrupolar nuclei. Addition-
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ally, the factors governing the optimal excitation of a particular transition in a multi-level
system are less tangible with increasing spin magnitude.

As an alternative, a solution in the form of effective Hamiltonians41–44 is proposed for
understanding the excitation process in quadrupolar systems. Employing the spherical
tensor operator formalism,12 effective RF Hamiltonians are derived by transforming into
the quadrupolar interaction frame. Although, the application of the spherical tensor for-
malism for describing pulses in quadrupolar systems in the hard-pulse limit is known,24–27

the description of pulses in the soft-pulse regime is of practical relevance due to larger
magnitude of the quadrupolar coupling constants in comparison to existing RF ampli-
tudes. To this end, a more general treatment in terms of effective RF Hamiltonians is
proposed for studying the effect of RF pulses on quadrupolar systems. The proposed effec-
tive RF Hamiltonian in the quadrupolar interaction frame encodes the various transition
frequencies and is suitable for describing transitions (both selective and non-selective) in a
multi-level system. The validity of the secular approximation is thoroughly examined and
effective RF Hamiltonians for selective and non-selective excitations are derived from first
principles. Additionally, the differences in the excitation conditions in single crystals and
polycrystalline sample are investigated and optimum excitation conditions are derived.
Depending on the relative magnitudes of the RF amplitude and the quadrupolar coupling
constant, optimum conditions required for the excitation of a particular transition are
derived from analytic expressions. In particular, the interplay between selectivity/non-
selectivity of transitions in multi-level systems is explained in terms of the secular ap-
proximation employed in the derivation of effective Hamiltonians. Employing effective
RF Hamiltonians, analytic expressions for the density operator are derived along with
suitable expressions for the time-domain signal. In terms of the analytical expressions for
the density operator, optimum flip angles and duration of pulses are derived.

3.2 Methodology
In this section, the general methodology employed for understanding the effects of RF
pulses is outlined. To begin with, the Hamiltonian for an isolated quadrupolar spin
system is represented by,

H = HZ +HQ +HRF (3.1)

with HZ denoting the Zeeman interaction, HQ the quadrupolar interaction and HRF the
interaction of the oscillating RF field with the spin system.

HZ = ~ω0Iz (3.2a)

HQ = ~
2∑

q=−2
G(2)qT (2)q (3.2b)
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HRF = 2~ω1 cosωtIx (3.2c)

In the above equation, ω0 denotes the Larmor frequency, ω the carrier frequency and ω1

the RF amplitude. The spatial part of the quadrupolar interaction is represented by G(2)q,
(‘q’ denotes the coherence order). When the magnitude of the Zeeman interaction exceeds
the quadrupolar interaction, to first-order, the quadrupolar interaction is truncated and
represented through T (2)0 (G(2)0 coefficient) operator. Unlike in the spin I=1/2 case, the
magnitude of the quadrupolar interaction often exceeds other internal spin interactions in
a given system. Consequently, analytic description of the density operator during radio-
frequency pulses entails the presence of the quadrupolar Hamiltonian. To address these
issues, a general description in the form of effective RF Hamiltonians are proposed to
describe the effect of RF pulses on quadrupolar spin systems. Specifically, selective and
non-selective excitations in quadrupolar systems are described in terms of effective RF
Hamiltonians. To provide a pedagogical description of the underlying spin dynamics, we
outline the three important stages employed in the analytic calculations.

Stage-I:
In the calculations involving first order quadrupolar interactions, the initial step involves
the transformation of the spin Hamiltonian (Eq. (3.1)) into the quadrupolar interaction
frame.

H̃(t) = e
i
~HQtHe−

i
~HQt (3.3)

In equation Eq. (3.3), HQ denotes only the first-order quadrupolar interaction represented
by

HQ = ~
1

C(2) .
ωQ (α, β, γ)√

6︸ ︷︷ ︸
G(2)0

.T (2)0 (3.4)

The term ωQ(α, β, γ)= −3πCQ

I(2I−1)(
3cos2β−1

2 + η
2sin2β cos 2α) represents the quadrupolar split-

ting parameter, CQ= e2qQ
h

the quadrupolar coupling constant and C(2)=
√

30
(2I+1)I(I+1)(2I+3)(2I−1) .

The angle (α, β, γ) denotes the Euler angles required for the transformation from the PAS
to LAS.

In the quadrupolar interaction frame, the Zeeman Hamiltonian remains invariant (i.e.
H̃Z = HZ), while the RF Hamiltonian (see below) acquires multipole character due to
the mixing of single-quantum (SQ) coherences corresponding to different ranks.

H̃RF (t) = e
i
~HQtHRF (t)e−

i
~HQt (3.5)

Depending on the spin magnitude I, the form of the RF Hamiltonian differs and a closed
form solution in terms of spherical tensor operators is proposed in the quadrupolar inter-
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action frame.

Stage-II:
The next stage in the calculation involves the transformation into the Zeeman interaction
frame,

˜̃HRF (t) = e
i
~HZtH̃RF (t)e−

i
~HZt (3.6)

Employing the secular approximation, the SQ transitions in a given spin system are
identified in terms of effective Hamiltonians. Depending on the magnitude of the RF
amplitude relative to the quadrupolar coupling constant, the effective RF Hamiltonian
reduces to an ‘Ix’ operator in the hard pulse regime (non-selective excitation), while in the
soft-pulse limit (selective excitation) the Hamiltonian comprises of SQ operators ‘T (k)±1’
with k = 1, 2, ...2I).

Stage-III:
Employing the appropriate effective RF Hamiltonians, the time-evolution of the system
during selective and non-selective excitation is studied from the quantum-Liouville equa-
tion.

i~
d ˜̃ρ(t)
dt

=
[ ˜̃HRF , ˜̃ρ(t)

]
(3.7)

When the Hamiltonian is time-independent, the solution is expressed by,

˜̃ρ(t) = e−
i
~

˜̃HRF t ˜̃ρ(0)e
i
~

˜̃HRF t (3.8)

with ρ(0) depicting the initial density operator (ρ(0) ∝ Iz). Employing the above solution,
the density operator after a pulse of duration ‘tp’, is calculated.

˜̃ρ(tp) = e−
i
~

˜̃HRF tp ˜̃ρ(0)e
i
~

˜̃HRF tp (3.9)

Subsequently, employing the appropriate detection operator, the time-domain signal is
evaluated using the standard expression given below,

〈
Ô(t)

〉
= Tr

[
˜̃ρ(tp) ˜̃O(t)

]
(3.10)

In the above equation, Õ(t) denotes the detection operator in the quadrupolar interaction
frame i.e. Õ(t) = exp( i~HQt)Ô exp(− i

~HQt). A detailed description of the underlying spin
dynamics along with analytic expressions for the time-domain signal is presented in the
following sections.
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Figure 3.1: Energy level diagram for spin I=1 system in the presence of first-order quadrupolar
interactions.

3.3 Theory and Discussion

3.3.1 Effective Hamiltonians for I=1

3.3.1.1 Static (Single-crystal)

The first order quadrupolar Hamiltonian for a single crystal is represented by,

HQ = ~G(2)0.T (2)0 (3.11)

Following the description in the previous section, the RF Hamiltonian in the quadrupolar
interaction frame for an isolated spin I=1 system is derived and represented by,

H̃RF (t) = 2~ω1 cosωt
[
iT (1)1(a) cos

√
3
2G

(2)0t− iT (2)1(s) sin
√

3
2G

(2)0t
]

(3.12)

where the suffices (s) and (a) refer to the symmetric and antisymmetric26 combinationsI

respectively. Employing Eq. (3.6), the above Hamiltonian is transformed into the Zeeman
interaction frame. To elucidate the resonance conditions, the Hamiltonian in the Zeeman
interaction frame is re-expressed as a sum of SQ transitions (see Fig. 3.1),

˜̃HRF (t) = ˜̃HRF,A(t) + ˜̃HRF,B(t) (3.13)

The Hamiltonians ˜̃HRF,A(t), ˜̃HRF,B(t) depict the transitions associated with the excitation

ISymmetric T (k)q(s) = T (k)q + T (k)−q

Antisymmetric T (k)q(a) = T (k)q − T (k)−q
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frequencies ω = ω0 −
√

3
2G

(2)0 and ω = ω0 +
√

3
2G

(2)0 respectively (see Fig. 3.1),

˜̃HRF,A(t) = ~ω1
2 (iT (1)1 + T (2)1)e−i[ω−(ω0−

√
3
2G

(2)0)]t − ~ω1
2 (iT (1)−1 + T (2)−1)e+i[ω−(ω0−

√
3
2G

(2)0)]t

˜̃HRF,B(t) = ~ω1
2 (iT (1)1 − T (2)1)e−i[ω−(ω0+

√
3
2G

(2)0)]t − ~ω1
2 (iT (1)−1 − T (2)−1)e+i[ω−(ω0+

√
3
2G

(2)0)]t

(3.14)

Depending on the choice of the excitation frequency (ω0 ∓
√

3
2G

(2)0), the above time-
dependent Hamiltonian Eq. (3.14) reduces to much simpler time-independent effective
Hamiltonian as represented below,

˜̃HRF,A = ~ω1
2 [iT (1)1(a) + T (2)1(a)]

˜̃HRF,B = ~ω1
2 [iT (1)1(a)− T (2)1(a)]

(3.15)

In general, the excitation of a transition between any two-levels in a multi-level system de-
pends on (a) the magnitude of the internal interactions (such as dipolar, quadrupolar etc)
(b) the amplitude of the RF source. When the amplitude of the employed RF field exceeds
the magnitude of the internal spin interactions (inclusive of the quadrupolar interaction),
all SQ transitions in a given spin system are excited simultaneously. However, when the
magnitude of the quadrupolar interaction exceeds the amplitude of the RF modulation,
only selective excitations are possible. Although, these two conditions conform to the two
extremes and are well understood, the excitation in the intermediate regime requires a
more thorough understanding. To this end, we intend to present an analytic description
in terms of effective RF Hamiltonians to elucidate the optimum conditions required for
excitations in all the three regimes. The approach presented herein is extended to spins
of higher magnitude and forms the preface for the sections that follow.

Case-I: (ωQ << ω1)

When the amplitude of the RF field exceeds the internal interactions (inclusive of quadrupo-
lar interaction), all the SQ transitions are excited in the system. For a spin I=1, both
the transitions (ω = ω0∓

√
3
2G

(2)0) depicted in Fig. 3.1 are excited simultaneously, result-
ing in an effective Hamiltonian that comprises of contributions from both ˜̃HRF,A(t) and
˜̃HRF,B(t) as depicted in Eq. (3.13). The excitation in this limit is termed non-selective
and is described by the effective RF Hamiltonian given below,

˜̃HRF,eff = ˜̃HRF,A + ˜̃HRF,B

= ~ω1iT
(1)1(a) = ~ω1Ix

(3.16)
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Since,
[
T (2)0, ρ(0)

]
= 0, the thermal equilibrium density operator (ρ(0)) remains invariant

in both the quadrupolar and Zeeman interaction frames, i.e. ˜̃ρ(0) = ρ(0). Subsequently,
the density operator after a non-selective (hard) pulse reduces to the familiar form,

˜̃ρ(tp)Non−selective = Iz cosω1tp − Iy sinω1tp (3.17)

Employing Eq. (3.10), the detection operator in the effective interaction frame is evaluated
and represented below,

˜̃T (1)1(t) = 1
2

(
T (1)1 + iT (2)1

)
ei(ω0+

√
3
2G

(2)0)t + 1
2

(
T (1)1 − iT (2)1

)
ei(ω0−

√
3
2G

(2)0)t (3.18)

As depicted in Eq. (3.17), the maximum signal in the transverse plane is obtained when
ω1tp = π

2 . Employing Eq. (3.10), the optimized time-domain signal is evaluated. Since
the effective RF Hamiltonian in the non-selective regime includes ˜̃HRF,A and ˜̃HRF,B (see
Eq. (3.16)), the time-domain signal comprises of both the frequencies as represented
below,

〈
T (1)1(t)

〉
=
√

2C(1).Tr
[
˜̃ρ(tp) ˜̃T

(1)1
(t)
]

=
√

2C(1).12

[
ei(ω0+

√
3
2G

(2)0)t + ei(ω0−
√

3
2G

(2)0)t
] (3.19)

where the constant C(1) =
√

3
(2I+1)I(I+1) is derived from Table 2.6 (Section 2.A, Chapter 2).

In contrast to pure selective excitation (see Eq. (3.22)), the signal intensity is higher in
the case of non-selective excitation and is in accord with experiments.

Case-II: (ωQ >> ω1)

When the magnitude of the quadrupolar interaction exceeds the amplitude of the RF
field (i.e. ωQ >> ω1), the effective RF Hamiltonian (see Eq. (3.13)) corresponding to the
excited transition (excitation frequency ω = ω0 −

√
3
2G

(2)0), reduces to

˜̃HRF,eff = ˜̃HRF,A (3.20)

In this limit, the time-dependent high frequency term ˜̃HRF,B(t) is neglected under secular
approximation. Subsequently, the density operator after the selective pulse (corresponding
to the excitation frequency ω = ω0 −

√
3
2G

(2)0), is represented by,

˜̃ρ(tp)Selective = Iz− 1
2
√

2 [T (1)1(s)− iT (2)1(s)] sin
√

2ω1tp− 1
2( 1√

2 iT
(1)0 +

√
3
2T

(2)0)(cos
√

2ω1tp−1)
(3.21)

As depicted in Eq. (3.21), the maximum signal in the transverse plane is obtained when
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ω1tp = π
2
√

2 . Employing Eq. (3.10) and Eq. (3.18), the optimized time-domain signal is
evaluated and represented by,

〈
T (1)1(t)

〉
=
√

2C(1). 1
2
√

2e
i(ω0−
√

3
2G

(2)0)t (3.22)

When the excitation frequency chosen corresponds to ω = ω0 −
√

3
2G

(2)0, ˜̃HRF,A in Eq
Eq. (3.13) is time-independent while ˜̃HRF,B(t) is time-dependent and oscillates with a
frequency that is proportional to the quadrupolar coupling constant. In such cases, the
suitability of invoking the secular approximation in analytic treatments, depend on the
relative magnitudes of the quadrupolar coupling constant and the RF amplitude and might
lead to erroneous results if the time-dependent terms due to ˜̃HRF,B(t) are neglected.

To address this issue, an effective RF Hamiltonian corresponding to the selected transition
(excitation frequency ω = ω0 −

√
3
2G

(2)0) inclusive of the time-dependent term is derived
and represented by,

˜̃HRF,eff (t) = ˜̃HRF,A + ~ω1
2i
√

6G(2)0

[
(iT (1)1 − T (2)1)(ei

√
6G(2)0t − 1) + (iT (1)−1 − T (2)−1)(e−i

√
6G(2)0t − 1)

]
(3.23)

Since, the complete effective RF Hamiltonian comprises of both ˜̃HRF,A(t) and ˜̃HRF,B(t),
the optimum flip-angles that were deduced (see Eq. (3.21)) are inadequate for improving
the selectivity of a particular transition. To alleviate this problem, an additional con-
straint in the form of the duration of the pulse (tp) is proposed as a solution to improve
the selectivity of the excited transition. As depicted in Eq. (3.23), when the duration of
the pulse is adjusted to the quadrupolar coupling constant (i.e. tp = 2nπ/2

√
3
2G

(2)0), the
selectivity of the excited transition could in principle be improved. Hence, for improved
selectivity and maximum signal intensity, a unique set of (ω1, tp) that simultaneously sat-
isfies Eqs. (3.21) and (3.23) (i.e. ω1tp = π

2
√

2 and tp = 2π/2
√

3
2G

(2)0) is required. The
above optimum conditions are equally valid for ω = ω0 +

√
3
2G

(2)0.

To verify the validity of the analytical predictions, simulations depicting the FT-spectrum
of a single crystal are presented in Fig. 3.2 (A1). In these simulations, the amplitude of
the RF field was deliberately chosen higher (than the quadrupolar coupling constant) to
depict the possible single-quantum transitions in a given system. Alternatively, when the
magnitude of the quadrupolar coupling constant exceeds the RF amplitude, only selective
excitations are possible. This is illustrated in Fig. 3.2 (A2) through simulations involving
selective excitation in a single crystal. To illustrate the validity of the derived analytic
expressions, the intensities associated with a particular transition depicted in Fig. 3.2
(A2), have been normalized with respect to their corresponding intensities in the case of
non-selective excitations. As depicted, the intensities in the case of selective excitation
are lower in contrast to the intensities in non-selective excitations. The preliminary sim-
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Figure 3.2: Simulations depicting the FT-spectrum of 6Li (I = 1) system corresponding to non-selective
and selective excitation in a single crystal. The following parameters were employed in the simulations:
CQ = 30 kHz and in panel (A1) π

2 -pulse with RF amplitude υ1 = 150 kHz, duration tp = 1.67 µs
and excitation frequency υ = υ0, in panel (A2) π

2
√

2 -pulse with RF amplitude υ1 = 3.98 kHz, duration
tp = 44.44 µs and excitation frequency 22.5 kHz (i.e υ = υ0 + υQ

2 ).

ulations depicted in Fig. 3.2 (A1) and (A2) yield results that are in excellent agreement
with the analytic theory.

To further substantiate the analytic theory, the FT spectrum of a polycrystalline powder
sample was simulated. Since the quadrupolar coupling constants in majority of the sys-
tems are larger than the RF amplitudes, the objective of our investigation was to derive
optimum conditions required for improving (a) the selectivity (b) the signal intensity of
the excited transition in a powder sample. In a typical static powder sample, the inherent
spatial anisotropy due to restricted mobility results in a wide distribution of quadrupolar
coupling constants. As illustrated in Eq. (3.4), the anisotropy in the G(2)0 coefficient is
described using the spatial variables (α, β). However, the statistical weight associated
with a given set of orientations (α, β) in a polycrystalline sample is different. In particu-
lar, the statistical weight for a given value of ‘β’ varies with maxima centered at ‘β = π

2 ’.
Consequently, for axially symmetric systems (η = 0), the excitation frequency depicted by
ω = ω0∓ ωQ

2 in Fig. 3.1 is modified to ω = ω0± ωQ

4 . To illustrate this aspect, simulations
with excitation frequencies corresponding to ω = ω0 + ωQ

4 in Fig. 3.3 (A1), ω = ω0 + ωQ

2

in Fig. 3.3 (A2) are presented. As depicted, enhanced signal intensity (see Fig. 3.3 (A1))
is obtained only with the modified resonance condition corresponding to ω = ω0 + ωQ

4 .
Interestingly, this orientation dependence is unobserved in the case of the single crystal
spectrum shown in Fig. 3.2 (A2)).

To further improve the efficiency of the selected transition, a series of numerical simu-
lations with varying flip-angles (implemented by varying the RF amplitude for a given
pulse duration) were performed in our studies. As depicted in Fig. 3.4 (see figure (B2)),
maximum signal intensity for the selected transition is obtained for a unique flip-angle
(ω1tp = θ = π

2
√

2) (different from the standard ω1tp = θ = π
2 ) and is in agreement with

Eq. (3.21). In contrast to Fig. 3.3 (ω1tp = θ = π
2 ), the signal intensity in Fig. 3.4 is higher
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Figure 3.3: Simulations depicting the selective excitation using a π
2 -pulse (υ1 = 20 kHz, tp = 12.5 µs)

in a powder sample corresponding to I=1 system. The following parameters were employed in the
simulations: I=1, 6Li, CQ = 2.9 MHz, υQ = 4.35 MHz, η = 0. In a typical powder sample, the spectral
width for I=1 system ranges from υQ

2 to −υQ

2 , however due to higher statistical weight, the maxima is
attained at ±υQ

4 . The above plots depict the role of the excitation frequency in a powdered sample. The
‘*’ in panel (A1) υ0 + υQ

4 (υQ

4 = 1.0875 MHz) and in panel (A2) υ0 + υQ

2 (υQ

2 = 2.175 MHz) denotes the
frequency of excitation.

Figure 3.4: Simulations depicting the role of the flip angle in the selective excitation in a powder sample
corresponding to I=1 system. The quadrupolar parameters are identical to Fig. 3.3 and the frequency of
excitation is υ0 + υQ

4
(υQ

4 = 1.0875 MHz
)
. The spectrum depicted in panel (B1) corresponds to the flip

angle π
2
√

2 (υ1 = 20 kHz, tp = 8.84 µs). In panel (B2), the intensity is measured as a function of the RF
amplitude (υ1) for tp = 8.84 µs. As depicted, the maximum intensity is obtained when ω1tp = π

2
√

2 and
is in accord with the theoretical predictions.
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Figure 3.5: Simulations depicting the selective excitation (υ = υ0 + υQ
4 (υQ

4 = 75 kHz)) in I=1
system corresponding to CQ = 200 kHz, υQ = 300 kHz, η= 0. As depicted in the figure (see A1),
the excitation is no longer selective in spite of the optimized flip angles and excitation frequency. As
described in the theoretical section, the additional peak results from the non-secular time-dependent
terms in the effective Hamiltonian. The following parameters were employed in the simulations: in panel
(A1) υ1 = 17.68 kHz, tp = 10 µs and in panel (A2) υ1 = 26.52 kHz, tp = 6.67 µs. As depicted, maximum
selectivity is achieved in panel (A2) in spite of employing higher power. Hence, lowering the RF amplitude
may not only be the solution for selective excitation.

with the optimum flip angle. Hence, in the pure soft-pulse regime, sets of (ω1, tp) could
satisfy the condition for the optimum flip angle derived in Eq. (3.21).

From an experimental perspective, the more interesting case arises when the quadrupolar
coupling constants are weaker and comparable to existing RF amplitudes. In such cases,
the excitations are no longer selective and additional constraints other than the optimized
flip-angle are required for improving both the selectivity and efficiency of the selected
transition. As described in the previous section, the effective RF Hamiltonian in the
intermediate regime is no longer selective and additional constraint is deduced by the
manipulation of the time-dependent terms proportional to 1

ωQtp
(eiωQtp − 1) in the effective

Hamiltonian. Following the description in the previous section, the selectivity in such
cases is obtained when the duration of the pulse ‘tp’ is adjusted to compensate the time-
dependent term in the effective Hamiltonian i.e. tp = 2π

ωQ
. In combination with the

optimized ‘tp’ and the flip-angle (ω1tp = θ = π
2
√

2), the selectivity associated with a
particular transition is improved. Hence, in the intermediate regime (when the non-
secular terms become relevant), maximum selectivity and signal intensity is obtained for
a unique set of (ω1, tp). This analytic insight is substantiated through simulations (see
Fig. 3.5) depicting a comparison between the selective excitation using the standard and
the optimized approach. As depicted, the selectivity and the relative signal intensity in
I=1 system is enhanced (see panel (A2), in Fig. 3.5) when the duration of the pulse is
chosen in accord with Eq. (3.23). To further substantiate this aspect, a comparison is
made between simulations employing different pulse widths in Fig. 3.6. Since the intensity
of the undesired peaks is proportional to 1

ωQtp
, increasing ‘tp’ to ‘2tp’ reduces the intensity
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Figure 3.6: Simulations depicting the role of tp on the efficiency of excitation. The excitation frequency
and quadrupolar parameters are identical to Fig. 3.6. The following parameters were employed in the
simulations: in panel (A1) υ1 = 26.52 kHz, tp = 6.67 µs, in panel (A2) υ1 = 17.68 kHz, tp = 10 µs and
in panel (A3) υ1 = 13.26 kHz, tp = 13.33 µs. The ‘tp’ employed in panel (A3) is twice that of the one
employed in panel (A1) and seems to yield both maximum selectivity and signal intensity.

of the undesired peaks to half as depicted in Fig. 3.6 (see panel (A3)).

3.3.1.2 Magic Angle Spinning (Powder-sample)

The Hamiltonian for an isolated quadrupolar spin system under MAS is represented
by,

H = HZ +HRF + ~
2∑

m=−2
m 6=0

G(2)0
m eimωrtT (2)0

(3.24)

In Eq. (3.24), G(2)0
m denotes the spatial anisotropy associated with the quadrupolar inter-

action (also see Table 2.4) and is represented below,

G
(2)0
Q,m = CQ

2∑
q2,q3=−2

R
(2)q3
Q,P D

(2)
q3q2(ΩPM)D(2)

q2m(ΩMR)d(2)
m0(βRL) (3.25)

In the case of selective excitation (corresponding to excitation frequency ω = ω0 −√
3
2G

(2)0), the Hamiltonian after transforming to Zeeman and quadrupolar interaction
(see Eq. (3.13)) frame is represented by,

˜̃H = ~
2∑

m=−2
m 6=0

G(2)0
m eimωrtT (2)0 − ~G(2)0T (2)0 + ˜̃HRF,A (3.26)
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In contrast to the static case, the Hamiltonian in the rotating frame under MAS is time
dependent and periodic. To present a general framework, Floquet theory45 was employed
in our study. In the Floquet formalism,42,46,47 the time-dependent Hamiltonian described
in a finite dimensional basis set is transformed into a time-independent Hamiltonian via
Fourier series expansion. The proposed Hamiltonian (commonly referred to as Floquet
Hamiltonian) is described in an infinite dimensional vector space through an operator
basis constructed from the direct product between the spin and the Fourier operators.
Employing the irreducible Floquet tensor operators,23,48,49 the Floquet Hamiltonian de-
picting first-order quadrupolar interaction is represented by,

HF = ~ωrIF + ~
2∑

m=−2
m 6=0

G(2)0
m T (2)0

m − ~G(2)0T
(2)0
0 + ω1

2 [iT (1)1
0 (a) + T

(2)1
0 (a)] (3.27)

In the rotating frame, the RF Hamiltonian is diagonal in the Fourier dimension. To
compensate the off-diagonality introduced by the quadrupolar interaction, the Floquet
Hamiltonian is transformed by a unitary transformation as illustrated below.

H̃F = eiS1HF e
−iS1 (3.28)

To facilitate this procedure, the Floquet Hamiltonian HF is expressed as a sum of two
terms.

HF = H0 +H1

H0 = ~ωrIF − ~G(2)0T
(2)0
0 (3.29)

H1 = ω1
2 [iT (1)1

0 (a) + T
(2)1
0 (a)]︸ ︷︷ ︸

H1,diagonal

+ ~
2∑

m=−2
m6=0

G(2)0
m T (2)0

m

︸ ︷︷ ︸
H1,off−diagonal

(3.30)

The diagonal part of the H1 comprises of RF Hamiltonian, while the anisotropic part of
quadrupolar interaction is classified into H1,off−diagonal. The transformation function S1,
is chosen to compensate the off-diagonality in H1 (i.e H1,off−diagonal)

S1 = −i
2∑

m=−2
m 6=0

G
(2)0
m

mωr
T (2)0
m (3.31)
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H
(1)
1 = H1 + i[S1, H0]

= H1,diagonal +H1,off−diagonal + i[S1, H0]
(3.32)

H
(1)
1 = H1,diagonal (or) in other words H1,off−diagonal = −i[S1, H0] (3.33)

Employing the BCH expansion, the higher-order corrections to the effective Hamiltonians
are evaluated.

H
(1)
2 = i[S1, H1,diagonal]

H
(1)
3 = −1

2 [S1, [S1, H1,diagonal]]

.

.

In the Floquet frame work, the effective Floquet Hamiltonian describing a selective pulse
is represented by,

HF = ~ωrIF − ~G(2)0T
(2)0
0

+ ω1

2


(iT (1)1

0 + T
(2)1
0 )−

√
3
2

2∑
m=−2
m 6=0

G
(2)0
m

mωr
(iT (1)1

m + T
(2)1
m ) + 1

2! (
3
2 )

2∑
m1,m2=−2
m1,m2 6=0

G
(2)0
m1 G

(2)0
m2

m1m2ω2
r

(iT (1)1
m1+m2

+ T
(2)1
m1+m2

)− ....

−(iT (1)−1
0 + T

(2)−1
0 )−

√
3
2

2∑
m=−2
m 6=0

G
(2)0
m

mωr
(iT (1)−1

m + T
(2)−1
m )− 1

2! (
3
2 )

2∑
m1,m2=−2
m1,m2 6=0

G
(2)0
m1 G

(2)0
m2

m1m2ω2
r

(iT (1)−1
m1+m2

+ T
(2)−1
m1+m2

)..


(3.34)

Under special condition (i.e. nωr =
√

3
2G

(2)0), the effective Hamiltonian reduces to a
much simpler form.

H̃F,n = ~ω1
2 [an(iT (1)1

−n + T
(2)1
−n )− bn(iT (1)−1

n + T (2)−1
n )] (3.35)

and for mth side band as

H̃F,n+m = ~ωrIF + ~ω1
2 [an+m(iT (1)1

−n+m + T
(2)1
−n+m)− bn+m(iT (1)−1

n+m + T
(2)−1
n+m )] (3.36)
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Figure 3.7: Simulations depicting the role of spinning frequency on the excitation efficiency of SQ
transitions in spin I = 1, (excitation frequency, υ = υ0 + υQ

4 or υ = υ0 + 90 kHz). The following
parameters were employed in the simulations: in panels (A1, A2) υr = 10 kHz and in panels (B1,
B2) υr = 11 kHz. The remaining parameters CQ = 240 kHz (υQ = 360 kHz), excitation frequency
υ = 90 kHz , υ1 = 31.79 kHz, tp = 5.56 µs were held constant in all the simulation. The analytic
simulations depicted in panels (A1), (B1) are based on the effective Hamiltonian, while the simulations
in panel (A2), (B2) are from Simpson.50

where the constants an, bn (for m=0) and an+m, bn+m are given by following equa-
tions

an+m = [−
√

3
2

2∑
m1=−2

m1=−n+m
m1 6=0

G
(2)0
m1

m1ωr
+ 3

2!2

2∑
m1,m2=−2

m1+m2=−n+m
m1,m2 6=0

G
(2)0
m1 G

(2)0
m2

m1m2ω2
r
− ....]

(3.37)

bn+m = [
√

3
2

2∑
m1=−2
m1=n+m
m1 6=0

G
(2)0
m1

m1ωr
+ 3

2!2

2∑
m1,m2=−2

m1+m2=n+m
m1,m2 6=0

G
(2)0
m1 G

(2)0
m2

m1m2ω2
r
....]

(3.38)

Subsequently, the density operator after the selective pulse (corresponding to the excita-
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Figure 3.8: Simulations depicting the role of spinning frequency on the excitation efficiency of SQ
transitions in spin I = 1, (excitation frequency, υ = υ0 + υQ

4 or υ = υ0 + 90 kHz). The following
parameters were employed in the simulations: in panels (A1, A2) υr = 18 kHz and in panels (B1,
B2) υr = 19 kHz. The remaining parameters CQ = 240 kHz (υQ = 360 kHz), excitation frequency
υ = 90 kHz , υ1 = 31.79 kHz, tp = 5.56 µs were held constant in all the simulation. The analytic
simulations depicted in panels (A1), (B1) are based on the effective Hamiltonian, while the simulations
in panel (A2), (B2) are from Simpson.50
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Figure 3.9: Simulations depicting the role of spinning frequency on the excitation efficiency of SQ
transitions in spin I = 1, (excitation frequency, υ = υ0 + υQ

4 or υ = υ0 + 90 kHz). The following
parameters were employed in the simulations: in panels (A1, A2) υr = 30 kHz and in panels (B1,
B2) υr = 31 kHz. The remaining parameters CQ = 240 kHz (υQ = 360 kHz), excitation frequency
υ = 90 kHz , υ1 = 31.79 kHz, tp = 5.56 µs were held constant in all the simulation. The analytic
simulations depicted in panels (A1), (B1) are based on the effective Hamiltonian, while the simulations
in panel (A2), (B2) are from Simpson.50
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tion frequency ω = ω0 −
√

3
2G

(2)0), is derived and represented below,

ρ̃(tp)n = Iz − 1
2
√

2anbn
[an(T (1)1

−n − iT
(2)1
−n ) + bn(T (1)−1

n − iT (2)−1
n )] sin(

√
2anbnω1t)

− 1
2
√

2anbn
(iT0

(1)0 +
√

3T0
(2)0)[cos(

√
2anbnω1tp)− 1]

(3.39)

ρ̃(tp)n+m= Iz− 1
2
√

2an+mbn−m

[an+m(T (1)1
−n+m − iT

(2)1
−n+m) + bn+m(T (1)−1

n+m − iT
(2)−1
n+m )] sin(

√
2an+mbn−mω1t)

− 1
2
√

2an+mbn−m

(iT0
(1)0 +

√
3T0

(2)0)[cos(
√

2an+mbn−mω1tp)− 1]
(3.40)

Accordingly, the detection operator corresponding to the excitation frequency (ω0 −√
3
2G

(2)0) in the effective interaction frame is derived and represented below,

T̃
(1)1
A (t) = 1

2 [(T (1)1
0 − iT (2)1

0 )ei(ω0)t +
√

3
2

2∑
m=−2
m 6=0

G
(2)0
m

mωr
(T (1)1

m − iT (2)1
m )ei(ω0+mωr)t

+ 1
2!

√
3
2

2∑
m1,m2=−2
m1,m2 6=0

G
(2)0
m1 G

(2)0
m2

m1m2ω2
r

(T (1)1
m1+m2 − iT

(2)1
m1+m2)ei[ω0+(m1+m2)ωr]t + ....]

(3.41)

Employing Eq. (3.10), the optimized time-domain signal is evaluated.

〈
T (1)1(t)

〉
=
√

2C(1).
√
anbn

2
√

2
sin(

√
2anbnω1t)e

it(ω0−
√

3
2G

(2)0) (3.42)

〈
T (1)1
m (t)

〉
=
√

2C(1).
√
an+mbn−m

2
√

2
sin(

√
2an+mbn−mω1t)e

it(ω0−
√

3
2G

(2)0+mωr) (3.43)

In Figs. 3.7 to 3.9, the role of spinning frequency on the selective excitation profile in
MAS experiment is depicted. When an integral multiple of the spinning frequency is
matched to the quadrupolar off-set frequency (υQ

4 ), the efficiency of excitation increases.
The results are in accord with the predictions emerging from the analytic theory.

3.3.2 Effective Hamiltonians for I=3/2

3.3.2.1 Static (Single-crystal)

To illustrate the spin dynamics involving half-integral quadrupolar spins, spin I=3/2
is employed as a case study in this section. Following the procedure outlined in the
previous sections, the RF Hamiltonian in the quadrupolar interaction frame is derived
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Figure 3.10: Energy level diagram for spin I=3/2 system in the presence of first-order quadrupolar
interactions.

and represented by,

H̃RF (t) = 2~ω1 cosωt

iT (1)1(a)( 2√
10 + 3√

10 cosG(2)0t)−
√

3
2iT

(2)1(s)(sinG(2)0t)

+
√

3
5iT

(3)1(a)(1− cosG(2)0t)

 (3.44)

In contrast to integral spins, the RF Hamiltonians involving half-integral spins in the
quadrupolar-Zeeman interaction frame comprises of the central and satellite transitions
as illustrated below,

˜̃HRF (t) = ˜̃H
CT

RF (t) + ˜̃H
ST

RF (t) (3.45)

As depicted in Fig. 3.10, the RF Hamiltonians associated with the central transition
(involving states

∣∣∣12〉→ ∣∣∣−1
2

〉
) is represented by,

˜̃HCT
RF (t) = ~ω1[(

√
2
5 iT

(1)1 +
√

3
5 iT

(3)1)e−i(ω−ω0)t − (
√

2
5 iT

(1)−1 +
√

3
5 iT

(3)−1)ei(ω−ω0)t]
(3.46)

The satellite transitions associated with the states
∣∣∣32〉→ ∣∣∣12〉 , ∣∣∣−1

2

〉
→
∣∣∣−3

2

〉
are expressed

as a set of Hamiltonians given below,

˜̃H
ST

RF (t) = ˜̃H
ST

RF,1A(t) + ˜̃H
ST

RF,1B(t) (3.47)
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˜̃HST
RF,1A(t) = ~ω1

2

 ( 3√
10iT

(1)1 +
√

3
2 iT

(2)1 −
√

3
5iT

(3)1)e−it[ω−(ω0−G(2)0)]

−( 3√
10iT

(1)−1 +
√

3
2 iT

(2)−1 −
√

3
5iT

(3)−1)eit[ω−(ω0−G(2)0)]

 (3.48)

˜̃HST
RF,1B(t) = ~ω1

2

 ( 3√
10iT

(1)1 −
√

3
2 iT

(2)1 −
√

3
5iT

(3)1)e−it[ω−(ω0+G(2)0)]

−( 3√
10iT

(1)−1 −
√

3
2 iT

(2)−1 −
√

3
5iT

(3)−1)eit[ω−(ω0+G(2)0)]

 (3.49)

The effective RF Hamiltonian describing non-selective excitation is derived by adding
Eqs. (3.46) and (3.47) and reduces to the familiar form obtained earlier.

˜̃HRF,Non−selective = ~ω1

√
5
2iT

(1)1(a) = ~ω1Ix (3.50)

The transformed detection operator is represented by,

˜̃T
(1)1

(t)=(2
5T

(1)1 +
√

6
5 T

(3)1)eit(ω0) + 1
2(3

5T
(1)1 −

√
6

5 T
(3)1 +

√
3
5iT

(2)1)eit(ω0−G(2)0)

+ 1
2(3

5T
(1)1 −

√
6

5 T
(3)1 −

√
3
5iT

(2)1)eit(ω0+G(2)0)
(3.51)

Employing the detection operator (see Eq. (3.51)), the time-domain signal in the case of
non-selective excitation is evaluated and represented below,

〈
T (1)1(t)

〉
=
√

2C(1). 1√
10 [2eit(ω0) + 3

2(eit(ω0−G(2)0) + eit(ω0+G(2)0))] (3.52)

In the pure soft-pulse regime (ωQ >> ω1), selective excitation of either the central or the
satellite transition is possible. For e.g, in the selective excitation of the central transition
(ω = ω0), the effective RF Hamiltonian under secular approximation reduces to,

˜̃H
CT

RF = ~ω1[
√

2
5iT

(1)1(a) +
√

3
5iT

(3)1(a)] (3.53)

Subsequently, the density operator after the selective excitation of the central transition
reduces to,

˜̃ρ(tp)CT,S = Iz − 1
2 [
√

2
5T

(1)1(s) +
√

3
5T

(3)1(s)] sin 2ω1tp − 1
2(
√

1
5 iT

(1)0 +
√

9
5 iT

(3)0)[cos 2ω1tp − 1]
(3.54)

Based on the above equation, maximum signal in the transverse plane is obtained when
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Figure 3.11: Simulations depicting the FT-spectrum of 7Li (I = 3/2) system corresponding to non-
selective and selective excitation in a single crystal. The following parameters were employed in the
simulations: CQ = 85 kHz and in (A1) π

2 -pulse with RF amplitude υ1 = 150kHz, duration tp = 1.67 µs
and excitation frequency υ = υ0, in (A2) CT π

4 -pulse with RF amplitude υ1 = 5.31 kHz, duration
tp = 23.53 µs and excitation frequency υ = υ0 and ST π

2
√

3 -pulse with RF amplitude υ1 = 6.13 kHz,
duration tp = 23.53 µs and excitation frequency 42.5 kHz(i.e υ = υ0 + υQ).

ω1tp = π
4 , as represented below,

〈
T (1)1(t)

〉
=
√

2C(1).12
√

2
5e
iω0t (3.55)

In a similar vein, the effective RF Hamiltonian corresponding to the selective excitation
of one of the satellite transitions (say ω = ω0 −G(2)0), is represented by,

˜̃H
ST

RF = ~ω1
2 [ 3√

10iT
(1)1(a) +

√
3
2T

(2)1(s)−
√

3
5iT

(3)1(a)] (3.56)

The corresponding density operator and time-domain signal is evaluated and represented
below.

˜̃ρ(tp)ST,S =Iz − 1√
5

(
1
2iT

(1)0 +
√

5
2 T

(2)0 − iT (3)0
) [

cos
√

3ω1tp − 1
]

− 1
2
√

3 [ 3√
10T

(1)1(s)−
√

3
2iT

(2)1(s)−
√

3
5T

(3)1(s)] sin
√

3ω1tp
(3.57)

〈
T (1)1(t)

〉
=
√

2C(1).12
√

3
10e

it(ω0−G(2)0) (3.58)

In contrast to the central transition, maximum signal intensity in the case of the satellite
transition (see Eq. (38)) results when ω1tp = π

2
√

3 . Additionally, the effective RF Hamil-
tonian describing the selective excitation of the central transition comprises of only odd
rank SQ operators (see Eq. (3.53)).
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Figure 3.12: Simulations depicting selective excitations (υ = υ0 + υQ
2 (υQ

2 = 300 kHz) in figures D1, D2)
and (υ = υ0 in figures D3, D4) in I=3/2, system corresponding to CQ = 1.2 MHz, υQ = 600 kHz, η= 0.
Since, the difference between adjacent peaks is υQ

2 , the duration of the pulse 2tp = 2
(υQ

2
)−1 = 6.67 µs.

The optimum flip angles for the satellite transition π
2
√

3 (D1, D2) and central transition π
4 (D3, D4) were

employed in the simulations. The following parameters were employed in the simulations: (D1) υ1 =
17.3 kHz, tp = 8.33 µs; (D2) υ1 = 21.65 kHz, tp = 6.67 µs; (D3) υ1 = 15 kHz, tp = 8.33 µs and (D4)
υ1 = 18.75 kHz, tp = 6.67 µs.

As described in earlier Section 3.3.1.1, the selectivity in the excitation of the central
and satellite transitions could further be improved when the duration of the pulse ‘tp’ is
adjusted to compensate the undesired terms in the effective Hamiltonian i.e. tp = 2nπ

G(2)0 . In
combination with the optimum flip-angles based on Eqs. (3.54) and (3.57), the efficiency
and selectivity of the excited central (ω1tp = π

4 ) and satellite transitions (ω1tp = π
2
√

3)
could further be improved. In Fig. 3.12, simulations depicting the selective excitation in
I=3/2 system is presented. As described earlier, the spin I=3/2 system comprises of a
central (see figures D3, D4) and a set of satellite transitions (figures D1, D2). The flip
angles employed are in accord with those tabulated in Table 3.1.

3.3.2.2 Magic Angle Spinning (Powder-sample)

The Hamiltonian for an isolated quadrupolar spin system under MAS is represented
by,

H = HZ +HRF + ~
2∑

m=−2
m 6=0

G(2)0
m eimωrtT (2)0

(3.59)

In the case of selective excitation (ωQ >> ω1), the Hamiltonian after transforming to
Zeeman and quadrupolar interaction (see Eq. (3.13)) (ω = ω0−G(2)0) frame is represented
by,
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˜̃H = ~
2∑

m=−2
m6=0

G(2)0
m eimωrtT (2)0 − ~G(2)0T (2)0 + ˜̃HST

RF,A (3.60)

Following the description in the previous section, the Floquet Hamiltonian is derived and
represented below,

HF = ~ωrIF + ~
2∑

m=−2
m 6=0

G(2)0
m T (2)0

m − ~G(2)0T
(2)0
0 + ˜̃H

ST

RF,A (3.61)

To compensate the off-diagonality due to quadrupolar interaction, the Floquet Hamilto-
nian is transformed using the transformation function S1 (S1 = −i

2∑
m=−2
m 6=0

G
(2)0
m

mωr
T (2)0
m ). When

an integral multiple of the spinning frequency matches to the quadrupolar frequency, the
Floquet Hamiltonian reduces to much simpler form.

H̃F,n = ~ω1
2 [an( 3√

10 iT
(1)1
−n +

√
3
2 iT

(2)1
−n −

√
3
5 iT

(3)1
−n )− bn( 3√

10 iT
(1)−1
n +

√
3
2 iT

(2)−1
n −

√
3
5 iT

(3)−1
n )]

(3.62)

and for mth side band as

H̃F,n+m = ~ωrIF + ~ω1
2

an+m( 3√
10 iT

(1)1
−n+m +

√
3
2 iT

(2)1
−n+m −

√
3
5 iT

(3)1
−n+m)

−bn+m( 3√
10 iT

(1)−1
n+m +

√
3
2 iT

(2)−1
n+m −

√
3
5 iT

(3)−1
n+m )

 (3.63)

where the constants an, bn (for m=0) and an+m, bn+m given by following equations

an+m = [−
2∑

m1=−2
m1=−n+m
m1 6=0

G
(2)0
m1

m1ωr
+ 1

2!

2∑
m1,m2=−2

m1+m2=−n+m
m1,m2 6=0

G
(2)0
m1 G

(2)0
m2

m1m2ω2
r
− ....]

(3.64)

bm+n = [
2∑

m1=−2
m1=n+m
m1 6=0

G
(2)0
m1

m1ωr
+ 1

2!

2∑
m1,m2=−2

m1+m2=n+m
m1,m2 6=0

G
(2)0
m1 G

(2)0
m2

m1m2ω2
r
....]

(3.65)

Subsequently, the density operator after the selective pulse (corresponding to the excita-
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Figure 3.13: Simulations depicting the role of spinning frequency on the excitation efficiency of SQ
transitions in spin I = 3/2, (excitation frequency, υ = υ0 + υQ

2 or υ = υ0 + 270 kHz). The following
parameters were employed in the simulations: in panels (A1, A2) υr = 10 kHz and in panels (B1,
B2) υr = 11 kHz. The remaining parameters CQ = 1.08 MHz (υQ = 540 kHz), excitation frequency
υ = 270 kHz , υ1 = 19.5 kHz, tp = 7.4 µs were held constant in all the simulation. The analytic
simulations depicted in panels (A1), (B1) are based on the effective Hamiltonian, while the simulations
in panel (A2), (B2) are from Simpson.50
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Figure 3.14: Simulations depicting the role of spinning frequency on the excitation efficiency of SQ
transitions in spin I = 3/2, (excitation frequency, υ = υ0 + υQ

2 or υ = υ0 + 270 kHz). The following
parameters were employed in the simulations: in panels (A1, A2) υr = 18 kHz and in panels (B1,
B2) υr = 19 kHz. The remaining parameters CQ = 1.08 MHz (υQ = 540 kHz), excitation frequency
υ = 270 kHz , υ1 = 19.5 kHz, tp = 7.4 µs were held constant in all the simulation. The analytic
simulations depicted in panels (A1), (B1) are based on the effective Hamiltonian, while the simulations
in panel (A2), (B2) are from Simpson.50
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Figure 3.15: Simulations depicting the role of spinning frequency on the excitation efficiency of SQ
transitions in spin I = 3/2, (excitation frequency, υ = υ0 + υQ

2 or υ = υ0 + 270 kHz). The following
parameters were employed in the simulations: in panels (A1, A2) υr = 30 kHz and in panels (B1,
B2) υr = 31 kHz. The remaining parameters CQ = 1.08 MHz (υQ = 540 kHz), excitation frequency
υ = 270 kHz , υ1 = 19.5 kHz, tp = 7.4 µs were held constant in all the simulation. The analytic
simulations depicted in panels (A1), (B1) are based on the effective Hamiltonian, while the simulations
in panel (A2), (B2) are from Simpson.50
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tion frequency ω = ω0 −G(2)0), is evaluated.

ρ̃(tp)n = Iz − 1√
5anbn

(
1
2iT

(1)0
0 +

√
5

2 T
(2)0
0 − iT (3)0

0

)
)(cos

√
3anbnω1tp − 1)

− 1
2
√

3anbn

 an( 3√
10T

(1)1
−n −

√
3
2 iT

(2)1
−n −

√
3
5T

(3)1
−n )

−bn( 3√
10T

(1)−1
n −

√
3
2 iT

(2)−1
n −

√
3
5T

(3)−1
n )

 sin(
√

3anbnω1t)
(3.66)

ρ̃(tp)n+m = Iz − 1√
5an+mbn−m

(
1
2 iT

(1)0
0 +

√
5

2 T
(2)0
0 − iT (3)0

0

)
)(cos

√
3an+mbn−mω1tp − 1)

− 1
2
√

3an+mbn−m

 an+m( 3√
10T

(1)1
−n+m −

√
3
2 iT

(2)1
−n+m −

√
3
5T

(3)1
−n+m)

−bn+m( 3√
10T

(1)−1
n+m −

√
3
2 iT

(2)−1
n+m −

√
3
5T

(3)−1
n+m )

 sin(
√

3an+mbn−mω1t)

(3.67)

Accordingly, the detection operator corresponding to excitation (ω0−G(2)0) in the effective
interaction frame is evaluated and represented below,

T̃
(1)1
A (t) =1

2 [(3
5T0

(1)1 −
√

3
5 iT0

(2)1 −
√

6
5 T0

(3)1)ei(ω0)t

+
√

3
2

2∑
m=−2
m 6=0

G
(2)0
m
mωr

(3
5T

(1)1
m −

√
3
5 iT

(2)1
m −

√
6

5 T
(3)1
m )ei(ω0+mωr)t

+ 1
2!

√
3
2

2∑
m1,m2=−2
m1,m2 6=0

G
(2)0
m1 G

(2)0
m2

m1m2ω2
r

(3
5T

(1)1
m1+m2 −

√
3
5 iT

(2)1
m1+m2 −

√
6

5 T
(3)1
m1+m2)ei[ω0+(m1+m2)ωr]t

+....]

(3.68)

Employing Eq. (3.10), the optimized time-domain signal is evaluated.

〈
T (1)1(t)

〉
=
√

2C(1).12
√

3anbn

10 sin(
√

3anbnω1t)eit(ω0−G(2)0) (3.69)

〈
T (1)1
m (t)

〉
=
√

2C(1).12
√

3an+mbn−m

10 sin(
√

3an+mbn−mω1t)eit(ω0−G(2)0+mωr) (3.70)

The simulations depicted in Figs. 3.14, 3.15 and 3.17 substantiate the analytic theory.
Hence, the choice of the spinning frequency play an important role in the excitation of
satellite transition in half-integer quadrupolar spins.

3.3.3 Effective Hamiltonians for I=5/2

3.3.3.1 Static (Single-crystal)

As depicted in Fig. 3.16, the spin I=5/2 system, comprises of a central and two sets of
satellite transitions (denoted by 1 and 2). In the effective RF Hamiltonian framework,
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the SQ transitions are represented by,

˜̃HRF (t) = ˜̃H
CT

RF (t) + ˜̃H
ST

RF,1(t) + ˜̃H
ST

RF,2(t) (3.71)

The central transition is depicted by,

˜̃HCT
RF (t) = ~ω1

2

 ( 9√
35iT

(1)1 + 6√
15iT

(3)1 + 6
√

5
42iT

(5)1)e−it(ω−ω0)

−( 9√
35iT

(1)−1 + 6√
15iT

(3)−1 + 6
√

5
42iT

(5)−1)eit(ω−ω0)

 (3.72)

while, the two sets of satellite transitions (with C1 = 1
2

√
3
7) are represented by,

˜̃H
ST

RF,1(t) = ˜̃H
ST

RF,1A(t) + ˜̃H
ST

RF,1B(t) (3.73)

˜̃HST
RF,1A(t) = ~ω1

2

 (
8√
35 iT

(1)1 + 2√
15 iT

(3)1 − 4
√

5
42 iT

(5)1 + 4
√

1
14T

(2)1 + 2
√

5
7T

(4)1
)

e−it[ω−(ω0−C1G(2)0)]

−
(

8√
35 iT

(1)−1 + 2√
15 iT

(3)−1 − 4
√

5
42 iT

(5)−1 + 4
√

1
14T

(2)−1 + 2
√

5
7T

(4)−1
)

eit[ω−(ω0−C1G(2)0)]


(3.74)

˜̃HST
RF,1B(t) = ~ω1

2

 (
8√
35 iT

(1)1 + 2√
15 iT

(3)1 − 4
√

5
42 iT

(5)1 − 4
√

1
14T

(2)1 − 2
√

5
7T

(4)1
)

e−it[ω−(ω0+C1G(2)0)]

−
(

8√
35 iT

(1)−1 + 2√
15 iT

(3)−1 − 4
√

5
42 iT

(5)−1 − 4
√

1
14T

(2)−1 − 2
√

5
7T

(4)−1
)

eit[ω−(ω0+C1G(2)0)]


(3.75)

˜̃H
ST

RF,2(t) = ˜̃H
ST

RF,2A(t) + ˜̃H
ST

RF,2B(t) (3.76)

Figure 3.16: Energy level diagram for spin I =5/2 system in the presence of first-order quadrupolar
interactions.
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˜̃HST
RF,2A(t) = ~ω1

2

 (
8√
35 iT

(1)1 − 2√
15 iT

(3)1 + 4
√

5
42 iT

(5)1 + 4
√

1
14T

(2)1 − 2
√

5
7T

(4)1
)

e−it[ω−(ω0−2C1G(2)0)]

−
(

8√
35 iT

(1)−1 − 2√
15 iT

(3)−1 + 4
√

5
42 iT

(5)−1 + 4
√

1
14T

(2)−1 − 2
√

5
7T

(4)−1
)

eit[ω−(ω0−2C1G(2)0)]


(3.77)

˜̃HST
RF,2B(t) = ~ω1

2

 (
8√
35 iT

(1)1 − 2√
15 iT

(3)1 + 4
√

5
42 iT

(5)1 − 4
√

1
14T

(2)1 + 2
√

5
7T

(4)1
)

e−it[ω−(ω0+2C1G(2)0)]

−
(

8√
35 iT

(1)−1 − 2√
15 iT

(3)−1 + 4
√

5
42 iT

(5)−1 − 4
√

1
14T

(2)−1 + 2
√

5
7T

(4)−1
)

eit[ω−(ω0+2C1G(2)0)]


(3.78)

The effective RF Hamiltonian describing non-selective excitation is derived by adding
Eqs. (3.71) and (3.72) and reduces to the familiar form obtained earlier.

˜̃HRF,Non−selective = ~ω1

√
35
4 iT

(1)1(a) = ~ω1Ix (3.79)

The detection operator in the effective RF interaction frame is derived and represented
by,

˜̃T
(1)1

(t) =
(

9
35T

(1)1 + 6
5

1√
21T

(3)1 + 1
7

√
6T (5)1

)
eit(ω0)

+ 1
2

(
16
35T

(1)1 + 4
5

1√
21T

(3)1 − 4
7

√
2
3T

(5)1 − 4
7

√
2
5iT

(2)1 − 4
7iT

(4)1
)

eit(ω0−C1G(2)0)

+ 1
2

(
16
35T

(1)1 + 4
5

1√
21T

(3)1 − 4
7

√
2
3T

(5)1 + 4
7

√
2
5iT

(2)1 + 4
7iT

(4)1
)

eit(ω0+C1G(2)0)

+ 1
2

(
2
7T

(1)1 − 2√
21T

(3)1 + 1
7

√
2
3T

(5)1 −
√

10
7 iT (2)1 + 1

7iT
(4)1
)

eit(ω0−2C1G(2)0)

+ 1
2

(
2
7T

(1)1 − 2√
21T

(3)1 + 1
7

√
2
3T

(5)1 +
√

10
7 iT (2)1 − 1

7iT
(4)1
)

eit(ω0+2C1G(2)0)

(3.80)

Employing the detection operator (see Eq. (3.80)), the time-domain signal in the case of
non-selective excitation is evaluated and represented below,

〈 ˜̃T
(1)1

(t)〉 =
√

2C(1). 1
2
√

35 [9eit(ω0) + 8(eit(ω0−C1G
(2)0) + eit(ω0+C1G

(2)0)) + 5(eit(ω0−2C1G
(2)0) + eit(ω0+2C1G

(2)0)]
(3.81)

In the pure soft-pulse regime (ωQ >> ω1), selective excitation of either the central or the
satellite transition is possible. The effective RF Hamiltonian under secular approximation

93



for selective excitation of the central transition (ω = ω0) reduces to,

˜̃HCT
RF (t) = ~ω1

2 [ 9√
35iT

(1)1(a) + 6√
15iT

(3)1(a) + 6
√

5
42iT

(5)1(a)] (3.82)

Subsequently, the density operator after the selective excitation of the central transition
reduces to,

˜̃ρ(tp) = Iz − 1
2

(√
2
35 iT

(1)0 +
√

16
45 iT

(3)0 + 10
3
√

7 iT
(5)0
)

[cos (3ω1t)− 1]

− 1
6

[
9√
35T

(1)1(s) + 6√
15T

(3)1(s) + 6
√

5
42T

(5)1(s)
]

sin (3ω1t)
(3.83)

Based on the above equation, maximum signal in the transverse plane is obtained when
ω1tp = π

6 , as represented below,

〈 ˜̃T
(1)−1

(t)〉 =
√

2C(1). 3
2
√

35eit(ω0) (3.84)

In a similar vein, the effective RF Hamiltonian corresponding to the selective excitation
of one of the satellite transitions (say ω = ω0 − C1G

(2)0), is represented by,

˜̃HST
RF,1A(t) = ~ω1

2

[
8√
35 iT

(1)1(s) + 2√
15 iT

(3)1(s)− 4
√

5
42 iT

(5)1(s) + 4
√

1
14T

(2)1(s) + 2
√

5
7T

(4)1(s)
]

(3.85)

The density operator after the selective pulse and the time-domain signal is calculated
using the standard procedure.

˜̃ρ(tp) = Iz − 1
2

(√
2

35 iT
(1)0 +

√
3

28T
(2)0 +

√
1

20 iT
(3)0 +

√
25
28T

(4)0 −
√

25
28 iT

(5)0
)[

cos
(√

8ω1t
)
− 1
]

− 1
2
√

8

[
8√
35T

(1)1(s) + 2√
15T

(3)1(s)− 2
√

10
21T

(5)1(s)− 2
√

2
7 iT

(2)1(s)− 2
√

5
7 iT

(4)1(s)
]

sin
(√

8ω1t
)

(3.86)

〈 ˜̃T
(1)1

(t)〉 =
√

2C(1).
√

2
35 eit(ω0−C1G

(2)0) (3.87)

The effective RF Hamiltonian corresponding to the selective excitation of one of the
satellite transitions (say ω = ω0 − 2C1G

(2)0), is represented by,

˜̃HST
RF,2A(t) = ~ω1

2

[
8√
35 iT

(1)1(s)− 2√
15 iT

(3)1(s) + 4
√

5
42 iT

(5)1(s) + 4
√

1
14T

(2)1(s)− 2
√

5
7T

(4)1(s)
]

(3.88)
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Figure 3.17: Simulations depicting the FT-spectrum of 27Al (I = 5/2) system corresponding to non-
selective and selective excitation in a single crystal. The following parameters were employed in the
simulations: CQ = 118 kHz and in (A1) π

2 -pulse with RF amplitude υ1 = 150 kHz, duration tp = 1.67 µs
and excitation frequency υ = υ0, in (A2) CT π

6 -pulse with RF amplitude υ1 = 1.48 kHz, duration
tp = 56.5 µs and excitation frequency υ = υ0, ST1 π

2
√

8 -pulse with RF amplitude υ1 = 1.56 kHz, duration
tp = 56.5 µs and excitation frequency 17.7 kHz (i.e υ = υ0 + υQ and ST2 π

2
√

5 -pulse with RF amplitude
υ1 = 1.98 kHz, duration tp = 56.5 µs and excitation frequency 35.4 kHz (i.e υ = υ0 + 2υQ).

The corresponding density operator and time-domain signal is evaluated and represented
below.

˜̃ρ(tp) = Iz − 1
2

(√
2

35 iT
(1)0 +

√
3
7T

(2)0 −
√

4
5 iT

(3)0 −
√

4
7T

(4)0 +
√

1
7 iT

(5)0
)[

cos
(√

5ω1t
)
− 1
]

− 1
2
√

5

[√
5
7T

(1)1(s)−
√

5
3T

(3)1(s) +
√

5
42T

(5)1(s)−
√

25
14 iT

(2)1(s) +
√

5
7 iT

(4)1(s)
]

sin
(√

5ω1t
)

(3.89)

〈 ˜̃T
(1)1
〉 =
√

2C(1).12
√

5
35eit(ω0−2C1G(2)0) (3.90)

Analogous to the spin I=3/2 description, the optimum time-period for selective excitation
of central and satellite transitions are identical (i.e. tp = 2π

C1.G(2)0 ) with optimum flip-
angles ω1tp = π

6 , ω1tp = π
2
√

8 and ω1tp = π
2
√

5 respectively. The simulation depicted
in Fig. 3.17, illustrate the selective and non-selective transitions and those depicted in
Fig. 3.18, substantiate analytic theory.

3.3.3.2 Magic Angle Spinning (Powder-sample)

In the case of selective excitation (ω = ω0 − C1G
(2)0), the MAS Hamiltonian after trans-

forming to Zeeman and quadrupolar interaction (see Eq. (3.13)) frame is represented
by,
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Figure 3.18: Simulations depicting selective excitations (υ = υ0 + υQ
2 (υQ

2 = 120 kHz) in figures E1, E2),
(υ = υ0 + υQ (υQ = 240 kHz) in figures E3, E4 and υ = υ0 in E5, E6) in I=5/2, system corresponding to
CQ = 1.6 MHz, υQ = 240 kHz, η= 0. Since, the difference between adjacent peaks is υQ

2 , the duration of
the pulse 2tp = 2

(υQ
2
)−1 = 16.67 µs. Based on Table 3.1, the optimum flip angles π

2
√

8 (E1, E2),
π

2
√

5 (E3,
E4) for the satellite and π

6 (E5, E6) for the central transition were employed. The following parameters
were employed in the simulations: (E1) υ1 = 4.9 kHz, tp = 18 µs; (E2) υ1 = 5.3 kHz, tp = 16.67 µs; (E3)
υ1 = 6.21 kHz, tp = 18 µs; (E4) υ1 = 6.71 kHz, tp = 16.67 µs; (E5) υ1 = 4.63 kHz, tp = 18 µs and (E6)
υ1 = 5 kHz, tp = 16.67 µs.

˜̃H = ~
2∑

m=−2
m6=0

G(2)0
m eimωrtT (2)0 − ~G(2)0T (2)0 + ˜̃HST

RF,1A (3.91)

Following the description presented in the previous section, the effective Hamiltonian
(under nωr = C1G

(2)0) is represented by,

H̃F,n = ~ω1
2 [an( 8√
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where the constants an, bn (for m=0) and an+m, bn+m given by following equations

an+m = [−c1
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Figure 3.19: Simulations depicting the role of spinning frequency on the excitation efficiency of SQ
transitions in spin I = 5/2, (excitation frequency, υ = υ0 + υQ

2 or υ = υ0 + 150 kHz). The following
parameters were employed in the simulations: in panels (A1, A2) υr = 10 kHz and in panels (B1,
B2) υr = 11 kHz. The remaining parameters CQ = 2.0 MHz (υQ = 300 kHz), excitation frequency
υ = 150 kHz , υ1 = 13.33 kHz, tp = 6.63 µs held constant. The analytic simulations depicted in panels
(A1), (B1) are based on the effective Hamiltonian, while the simulations in panel (A2), (B2) are from
Simpson.50

Subsequently, the density operator after the selective pulse(corresponding to the excitation
frequency ω = ω0 − C1G

(2)0), is represented by,
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Accordingly, the detection operator corresponding to excitation frequency ω = ω0 −
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Figure 3.20: Simulations depicting the role of spinning frequency on the excitation efficiency of SQ
transitions in spin I = 5/2, (excitation frequency, υ = υ0 + υQ

2 or υ = υ0 + 150 kHz). The following
parameters were employed in the simulations: in panels (A1, A2) υr = 30 kHz and in panels (B1,
B2) υr = 31 kHz. The remaining parameters CQ = 2.0 MHz (υQ = 300 kHz), excitation frequency
υ = 150 kHz , υ1 = 13.33 kHz, tp = 6.63 µs held constant. The analytic simulations depicted in panels
(A1), (B1) are based on the effective Hamiltonian, while the simulations in panel (A2), (B2) are from
Simpson.50
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Figure 3.21: Simulations depicting the role of spinning frequency on the excitation efficiency of SQ
transitions in spin I = 5/2, (excitation frequency, υ = υ0 + υQ

2 or υ = υ0 + 300 kHz). The following
parameters were employed in the simulations: in panels (A1, A2) υr = 10 kHz and in panels (B1,
B2) υr = 11 kHz. The remaining parameters CQ = 2.0 MHz (υQ = 300 kHz), excitation frequency
υ = 300 kHz , υ1 = 13.33 kHz, tp = 8.39 µs held constant. The analytic simulations depicted in panels
(A1), (B1) are based on the effective Hamiltonian, while the simulations in panel (A2), (B2) are from
Simpson.50
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Figure 3.22: Simulations depicting the role of spinning frequency on the excitation efficiency of SQ
transitions in spin I = 5/2, (excitation frequency, υ = υ0 + υQ

2 or υ = υ0 + 300 kHz). The following
parameters were employed in the simulations: in panels (A1, A2) υr = 30 kHz and in panels (B1,
B2) υr = 31 kHz. The remaining parameters CQ = 2.0 MHz (υQ = 300 kHz), excitation frequency
υ = 300 kHz , υ1 = 13.33 kHz, tp = 8.39 µs held constant. The analytic simulations depicted in panels
(A1), (B1) are based on the effective Hamiltonian, while the simulations in panel (A2), (B2) are from
Simpson.50
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C1G
(2)0 in the effective interaction frame is evaluated and represented below,
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Employing Eq. (3.10), the optimized time-domain signal is evaluated.

〈
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In a similar vein, the optimized time-domain signal corresponding to the selective excita-
tion of one of the satellite transitions (say ω = ω0 − 2C1G

(2)0), is represented by,
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where the constants cn, dn (for m=0) cn+m, dn+m given by following equations
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The simulations depicted in Figs. 3.19 to 3.22 substantiate the analytic theory presented
in this section. In accord with our description for spin I = 3/2, the excitation efficiency
of satellite transitions depend on the choice of the spinning frequency.

3.4 Conclusions and Perspectives
In summary, a unified description of the spin dynamics involving irreducible spatial and
spin tensor operators is presented for describing the effect of RF pulses in quadrupolar spin
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systems. The concept of effective RF Hamiltonians introduced for describing transitions
in a multi-level system provides important constraints for improving both the selectivity
and efficiency of the excited transitions. The validity of the secular approximation com-
monly employed in analytic treatments is thoroughly investigated and is well explained
and substantiated through extensive numerical simulations. In contrast to existing de-
scriptions in the literature, both selective and non-selective excitations are described in
terms of effective Hamiltonians based on spherical tensor operator formalism.

From the above derivations presented in this chapter, it is clear that the excitation ef-
ficiency of a particular transition say |I,m〉 → |I,m− 1〉, depends on parameters that
are inherently related to the quadrupolar-coupling constant and the amplitude of the RF
irradiation. In the case of non-selective excitation (hard-pulse regime) the optimum flip
angle is always π

2

(
ω1tp = π

2

)
and the intensity associated with a particular transition say

|I,m〉 → |I,m− 1〉 is summarized by,

INon−selective (|I,m〉 → |I,m− 1〉) = [(I +m) (I −m+ 1)]
I∑

mI=−I
[(I +mI) (I −mI + 1)] (3.105)

Interestingly, the optimum flip-angle in the case of selective excitation depends on the
states involved and are depicted below along with the expression for the intensity.

θ|I,m〉→|I,m−1〉 = π

2
√

(I +m) (I −m+ 1) (3.106)

ISelective (|I,m〉 → |I,m− 1〉) =

√
(I +m) (I −m+ 1)

I∑
mI=−I

[(I +mI) (I −mI + 1)]
(3.107)

We believe that the analytic approach presented in this chapter could be extended for
studying multiple-pulse experiments and understanding phase cycling in quadrupolar sys-
tems. In particular, the effective RF Hamiltonians in the soft-pulse regime could be
employed to construct phase-alternated schemes to minimize distortions in the powder
spectrum. In experiments involving excitation of multi-quantum coherences, the effective
RF Hamiltonians provide insights into the choice of a particular sequence. For e.g. in
the hard pulse regime, the density operator after a single pulse results in the creation
of only single-quantum coherences (of rank 1). Hence, evolution under the quadrupolar
Hamiltonian is a prerequisite for the creation of multi-quantum coherences in the three-
pulse schemes. Alternatively, in the case of selective pulse excitation, the density operator
after a single pulse creates single-quantum coherences corresponding to different ranks. In
such cases, an additional pulse creates multi-quantum coherence without evolution under
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Spin Transitions Intensity Flip-angle

I |m〉 ↔ |m− 1〉 I θ
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Table 3.1: Summary of intensities and flip angles for selective excitations in integral and half-integral
quadrupolar systems. The intensities depicted in the brackets correspond to non-selective excitation (see
Eqs. (3.105) and (3.107)).

quadrupolar Hamiltonian. The formalism presented here provides a framework for under-
standing these experimental observations in a tangible manner. A formal description of
the evolution of the density operator in multi-quantum experiments along with optimum
conditions for excitation would be described in the following chapter.
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Chapter 4

Theory of Multi-Quantum (MQ)
excitation in multi-level systems

4.1 Background
Ever since its inception in 1995, Multi-Quantum1,2 (MQ) NMR spectroscopy (due to Fryd-
man and Harwood) of quadrupolar nuclei (I > 1/2) has held the centre stage in the struc-
tural characterization of inorganic solids owing to the simplicity of its implementation.3–5

With the combined efforts of several researchers,4,6–17 interesting new innovations18–27 to
the original scheme have emerged in recent past, resulting in exciting applications of this
methodology in studying inorganic clusters comprising of nuclei possessing higher spin
quantum numbers. Although, recent advancements in the form of high field magnets,
faster spinning modules, efficient high power probes have enabled in better implemen-
tation of experiments, improved understanding of the MQ phenomenon is quintessential
for both design and interpretation of MQ experiments/experimental data. In particular,
improvement to the signal-to-noise ratio (S/N) in MQ experiments (relies on efficient
excitation/re-conversion of MQ coherences) remains a daunting task both from an exper-
imental as well as a theoretical perspective. Depending on the relative magnitudes of the
quadrupolar coupling constant and the amplitude of the oscillating radio frequency (RF)
field, the mode of excitation/re-conversion of MQ coherences in experiments differ.28

In general, the efficiency of excitation differs and suitability of a particular pulse scheme
depends on external parameters such as the frequency of excitation, duration, amplitude,
spinning frequency and flip angle of the pulse in addition to the intrinsic quadrupolar
coupling constant of a particular system. Hence, a suitable analytic framework inclusive of
these experimental parameters is essential for understanding the underlying spin dynamics
and for reliable extraction of quadrupolar coupling constant and asymmetry parameters
in MQ experiments. Here in this chapter, we confine our discussion to the development
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of analytic methods for understanding MQ NMR experiments of quadrupolar nuclei in
both single-crystal and MAS cases.

To this end, seminal contributions to understand MQ NMR experiments originated from
Vega and co-workers.29–31 In particular, the approach of Vega and Naor31 has been used
extensively for the description of MQ-NMR experiments and its variants. In combina-
tion with numerical methods14,32,33 and the fictitious spin operator formalism,29,34 semi-
analytical treatments have also emerged for describing both static and MAS experiments
involving quadrupolar nuclei.14,32,35,36 As an alternative, spherical tensor based formalisms
have also been employed for studying quadrupolar spins in both NQR and NMR spec-
troscopy.37–43 In particular, employing the hard-pulse approximation (a condition that
is satisfied in systems with smaller quadrupolar coupling constant), multiple-pulse ex-
periments involving quadrupolar nuclei have been studied using the spherical tensor for-
malism.38,42,43 Although, such approaches have helped our understanding of the basic
methodology, they are of limited utility in describing systems with larger quadrupolar
coupling constants. To address these concerns, an alternate approach in the form of ef-
fective Hamiltonians36,44–46 based on spherical tensor formalism was recently proposed
to describe selective and non-selective excitations in quadrupolar systems.47 Here in this
chapter, we demonstrate the utility of this approach in understanding the excitation of
MQ-coherences in single-pulse experiments involving quadrupolar nuclei.

In the approach of Vega and Naor,31 a diagonalized representation of the Hamiltonian
(comprising of the RF and the quadrupolar Hamiltonian) was proposed as a solution to
describe the spin dynamics in the soft-pulse regime. Although, such an approach has
been demonstrated for studying spin I=1, 3/2 systems,48–51 their extensions in higher
spin systems are less straightforward. Alternatively, by invoking the concept of “Secu-
lar Approximation” (also known as rotating wave approximation),52 the nuances of MQ
excitation is explained through effective RF Hamiltonians. As a test case, excitation of
MQ coherences in spin 1 (DQ coherence), spin 3/2 (TQ coherence) and spin 5/2 (TQ, 5Q
coherences) systems are described. In Section 4.2, analytic theory of MQ excitation in
multi-pulse experiments is discussed along with simulations followed by a brief summary
in Section 4.3.

4.2 Theory and Discussion

To understand the nuances of MQ excitation, we begin our discussion with the Hamilto-
nian of an isolated quadrupolar spin system,

H = ~ω0Iz︸ ︷︷ ︸
Hz

+ ~G(2)0T (2)0︸ ︷︷ ︸
HQ

+ 2~ω1 cosωtIx︸ ︷︷ ︸
HRF

(4.1)
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In the above equation, the external interactions are represented in terms of ‘ω0’ the Larmor
frequency, ‘ω’ the carrier frequency of the RF field and ‘ω1’ the amplitude of the RF field.
The quadrupolar interaction (to first-order) is represented by G(2)0 and is anisotropic for
a polycrystalline sample, represented by,

G(2)0 =
√

6
C(2) .

ωQ(α, β, γ)
6

(4.2)

The term ωQ(α, β, γ)= −3πCQ

I(2I−1)(
3cos2β−1

2 + η
2sin2β cos 2α) represents the quadrupolar split-

ting parameter, CQ= e2qQ
h

the quadrupolar coupling constant and C(2)=
√

30
(2I+1)I(I+1)(2I+3)(2I−1) .

The angle (α, β, γ) denotes the Euler angles required for the transformation from the PAS
to LAS.

To describe the effects of the RF modulation on the system, the Hamiltonian defined
in the laboratory frame (Eq. (4.1)) is transformed into the Zeeman-Quadrupolar (Z-Q)
interaction frame, resulting in an effective RF Hamiltonian.47

H̃RF (t) = eiω0tIz .eiG
(2)0tT (2)0

He−iG
(2)0tT (2)0

.e−iω0tIz (4.3)

Depending on the relative magnitudes of the quadrupolar coupling constant and the RF
amplitude, both selective and non-selective excitations have been described in terms of
effective RF Hamiltonians (as described in Chapter 3). In the hard pulse limit (ω1 >>

ωQ), the effective RF Hamiltonian reduces to an Ix (for an x-pulse) operator. Here
in this chapter, we focus our discussion to the description of MQ experiments in the
intermediate regimes. In the following sections, analytic description in the form of effective
RF Hamiltonians are presented for understanding the MQ behavior depicted in Figs. 4.1
to 4.3 (for I = 1), Figs. 4.4 to 4.6 (for I = 3/2) and Figs. 4.7 to 4.9 (for I = 5

2).

4.2.1 Description for I=1 system

4.2.1.1 Static (Single-crystal)

In the Z-Q interaction frame, the RF Hamiltonian corresponding to the excitation fre-
quency ω = ω0 is represented by,

˜̃HRF (t) = ~ωRF

2

 (iT (1)1 + T (2)1)e−i
√

3
2G

(2)0t − (iT (1)−1 + T (2)−1)ei
√

3
2G

(2)0t

+(iT (1)1 − T (2)1)ei
√

3
2G

(2)0t − (iT (1)−1 − T (2)−1)e−i
√

3
2G

(2)0t

 (4.4)

The above RF Hamiltonian is time-dependent and if neglected under “secular approxi-
mation” would result in a trivial result i.e. ρ̃(t) = exp(−i~ H̃RF,eff t)ρ̃(0) exp( i~H̃RF,eff t) =
ρ̃(0). Hence, to explain the observed DQ coherence from the single-pulse experiment,
Eq. (4.4) has to be retained. This inference suggests a possible breakdown of the secular
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approximation and is bit counter-intuitive, since the amplitude of the RF pulses employed
in panel (B1) of Fig. 4.1 is much smaller than quadrupolar coupling constant CQ. The
discrepancy could however be resolved by invoking ‘time’ as a criterion for deciding the
suitability of secular approximation. For e.g., when the time-evolution of a quantum sys-
tem is monitored for shorter time periods, the effects of high frequency oscillating terms
are of lesser consequence and could be neglected in the dynamics. However, for longer
durations of observation, the oscillating time-dependent terms may have a profound effect
as illustrated by the simulations depicted in Figs. 4.1 to 4.9.

To facilitate analytic description and alleviate the complexity due to time-dependent

Hamiltonians (i.e. ρ̃(τ) = exp
(
−i
~

τ∫
0
H̃RF,eff (t)dt

)
ρ̃(0) exp

(
i
~

τ∫
0
H̃RF,eff (t)dt

)
), an alter-

nate approach is presented below. In this approach (instead of transforming into the Z-Q
interaction frame), the Hamiltonian described in Eq. (4.1) is transformed into the RF
frame of reference (for on-resonance irradiation) defined below,

H̃ = exp(iω0tIz)H exp(−iω0tIz)

= ~G(2)0T (2)0 + ~ω1Ix
(4.5)

Since
√

6G(2)0 > ω1, effective Hamiltonians based on the method of contact transforma-
tion45,46,53–55 are proposed to explain the simulation results. Following this approach, the
dominant term due to the quadrupolar interaction is included as the zero order Hamilto-
nian, while the RF part forms the perturbation.

H̃ = H0 +H1

H0 = ~G(2)0T (2)0

H1 = ~ω1
[
iT (1)1(a)

] (4.6)

Employing a unitary transformation defined by S1, the above Hamiltonian Eq. (4.5) is
transformed into an effective Hamiltonian Heff , illustrated below,

Heff = eiS1H̃e−iS1 (4.7)

Following the standard procedure, the nth order correction to the zero order Hamiltonian
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is expressed in terms of operators53 by expanding Eq. (4.7)

H
(1)
0 = H0 = ~G(2)0T (2)0

H
(1)
1 = H1 + i [S1, H0] = 0

H
(1)
2 = i [S1, H1]− 1

2 [S1, [S1, H0]]

= ~ω2
1

G(2)0T
(2)0 + ~ω2

1√
6G(2)0

T (2)2(s)

(4.8)

In the above equation, the transformation function S1 (i.e. S1 = i 2ω1√
6G(2)0T

(2)1(s)) is
chosen carefully to compensate the off-diagonality due to H1. Subsequently, the effective
Hamiltonian to second order during a pulse is represented by,

Heff =
(
~G(2)0 + ~ω2

1
G(2)0

)
T (2)0 + ~ω2

1√
6G(2)0

T (2)2(s) (4.9)

To have a consistent description, the initial density operator is re-defined in the frame of
the transformation function S1, as represented below,

˜̃ρ(0) = eiS1Ize
−iS1

= Iz cos b+ sin bT (2)1(a)
(4.10)

where b = 2ω1√
6G(2)0 . Since ωQ > ω1, the term proportional to sin b in Eq. (4.10) tends

to zero and the term proportional to cos b tends to 1 i.e the effect of the transformation
function S1 on the density operator can be neglected. Employing the effective Hamiltonian
(Eq. (4.9)) the density operator after a pulse (of duration τ) is evaluated and represented
by,

˜̃ρ(τ) = e−
i
~Heff ˜̃ρ(0)e

i
~Heff

= Iz cos θ1 + i sin θ1T
(2)2(a)

' ρ̃(τ) = e−iS1 ˜̃ρ(τ)eiS1

(4.11)

where θ1 = 2ω2
1√

6G(2)0 τ . The time-domain signal corresponding to the DQ coherence in the
rotating frame is evaluated employing the standard procedure and is represented by,

< T̃ (2)2 > = Tr[T (2)2ρ̃(τ)]

= −i sin θ1
(4.12)

As depicted in Fig. 4.1 (see panels A1 & A2), the frequency of oscillation (DQ coher-
ence) increases with the amplitude of the RF fields, employed in the excitation process.
With increase in quadrupolar coupling constant (panels A1 & B1), the frequency of os-
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Figure 4.1: Simulations depicting the role of RF amplitude and quadrupolar coupling strength on
excitation efficiency of double-quantum (DQ) transitions in single-crystal spin I = 1. The following
parameters were employed in the simulations: in panel (A1) CQ = 0.5 MHz, υ1 = 60 kHz, in panel
(A2) CQ = 0.5 MHz, υ1 = 120 kHz, in panel (B1) CQ = 1.0 MHz, υ1 = 60 kHz and in panel (B2)
CQ = 1.0 MHz, υ1 = 120 kHz. The remaining parameters spinning frequency υr = 0 kHz, η=0, excitation
frequency υ = 0 kHz were held constant in all the simulation. The analytic simulations depicted red dots
are based on the effective Hamiltonian, while the simulations in black solid lines are from Simpson.56
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cillations decreases. This trends is in accord with the analytic expressions presented in
Eq. (4.12).

4.2.1.2 Magic Angle Spinning (Powder-sample)

The Hamiltonian for an isolated quadrupolar spin system under MAS is represented
by,

H = HZ +HRF + ~
2∑

m=−2
m 6=0

G(2)0
m eimωrtT (2)0

(4.13)

In Eq. (4.13), G(2)0
m denotes the spatial anisotropy associated with the quadrupolar inter-

action (also see Table 2.4) and is represented below,

G
(2)0
Q,m = CQ

2∑
q2,q3=−2

R
(2)q3
Q,P D

(2)
q3q2(ΩPM)D(2)

q2m(ΩMR)d(2)
m0(βRL) (4.14)

The corresponding Floquet Hamiltonian57 in the standard rotating frame is represented
by,

H̃ = ~ωrIF + ~
−2∑
m=2
m6=0

G(2)0
m T (2)0

m + ~ω1Ix (4.15)

Unlike the single-crystal, two transformations are necessary in MAS descriptions. To
facilitate the contact transformation method, the Hamiltonian is divided into two parts
as represented below,

H0 = ~
−2∑
m=2
m6=0

G(2)0
m T (2)0

m (4.16)

H1 = ~ωrIF + ~ω1Ix (4.17)

Following the standard procedure, the higher-order corrections are derived employing the
transformation function S1 (i.e. S1 = i 2ω1√

6G(2)0
m

T (2)1
m (s)), as represented below,

H
(1)
0 = H0 = ~

−2∑
m=2
m6=0

G(2)0
m T (2)0

m

H
(1)
1 = H1 + i [S1, H0] = ~ωrIF

H
(1)
2 = i [S1, H1]− 1

2 [S1, [S1, H0]]

=
−2∑
m=2
m 6=0

~ω2
1

G
(2)0
m

[
T (2)0
m + 1√

6
T (2)2
m (s)

]
−

−2∑
m1,m2,m3=2
m1+m2+m3=0

~ω2
1G

(2)0
m3

G
(2)0
m1 G

(2)0
m2

[
T (2)0 + 1√

6
T (2)2(s)

]
(4.18)
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Figure 4.2: Simulations depicting the role of RF amplitude and quadrupolar coupling strength on
excitation efficiency of double-quantum (DQ) transitions in spin I = 1. The following parameters were
employed in the simulations: in panel (A1) CQ = 0.5 MHz, υ1 = 60 kHz, in panel (A2) CQ = 0.5 MHz,
υ1 = 120 kHz, in panel (B1) CQ = 1.0 MHz, υ1 = 60 kHz and in panel (B2) CQ = 1.0 MHz, υ1 = 120 kHz.
The remaining parameters spinning frequency υr = 10 kHz, η=0, excitation frequency υ = 0 kHz were
held constant in all the simulation. The analytic simulations depicted red dots are based on the effective
Hamiltonian, while the simulations in black solid lines are from Simpson.56

The effective Hamiltonian after first transformation is divided based on the diagonality
in the Fourier basis as in conventional way and is given below,

Heff = H
(1)
0 +H

(1)
1 +H

(1)
2

= H0 +H1
(4.19)

where

H0 = ~ωrIF −
−2∑

m1,m2,m3=2
m1+m2+m3=0

~ω2
1G

(2)0
m3

G
(2)0
m1 G

(2)0
m2

[
T (2)0 + 1√

6
T (2)2(s)

]

H1 = ~
−2∑
m=2
m 6=0

G(2)0
m T (2)0

m +
−2∑
m=2
m6=0

~ω2
1

G
(2)0
m

[
T (2)0
m + 1√

6
T (2)2
m (s)

] (4.20)
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Figure 4.3: Simulations depicting the role of RF amplitude and quadrupolar coupling strength on
excitation efficiency of double-quantum (DQ) transitions in spin I = 1. The following parameters were
employed in the simulations: in panel (A1) CQ = 0.5 MHz, υ1 = 60 kHz, in panel (A2) CQ = 0.5 MHz,
υ1 = 120 kHz, in panel (B1) CQ = 1.0 MHz, υ1 = 60 kHz and in panel (B2) CQ = 1.0 MHz, υ1 = 120 kHz.
The remaining parameters spinning frequency υr = 30 kHz, η=0, excitation frequency υ = 0 kHz were
held constant in all the simulation. The analytic simulations depicted red dots are based on the effective
Hamiltonian, while the simulations in black solid lines are from Simpson.56
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The corresponding transformation function55,58 is represented by,

S2 = −
−2∑
m=2
m 6=0

iG(2)0
m

mωr
T (2)0
m −

−2∑
m=2
m 6=0

iω2
1

G
(2)0
m mωr

[
T (2)0
m + 1√

6
T (2)2
m (s)

]
(4.21)

Employing the above transformation function, the final effective Hamiltonian after two
transformations is represented by,

Heff = ~ωrIF −
−2∑

m1,m2,m3=2
m1+m2+m3=0

~ω2
1G

(2)0
m3

G
(2)0
m1 G

(2)0
m2

[
T (2)0 + 1√

6
T (2)2(s)

]
(4.22)

To have a consistent description, the initial density operator is re-defined in the frame of
the transformation function S1 and S2, as represented below,

˜̃̃ρ(0) = eiS2eiS1Ize
−iS1e−iS2

= Iz cos c
(4.23)

with c =
2∑

m=−2
m 6=0

2ω2
1

mωr

√
G

(2)0
m G

(2)0
−m

. Employing the effective Hamiltonian (Eq. (4.22)) the den-

sity operator after a pulse (of duration τ) is evaluated and represented by,

˜̃̃ρ(τ) = cos c[Iz cos θ2 + i sin θ2T
(2)2(a)] (4.24)

where θ2 =
−2∑

m1,m2,m3=2
m1+m2+m3=0

2ω2
1G

(2)0
m3

G
(2)0
m1 G

(2)0
m2
τ . Subsequently, the density operator after the pulse is

transformed back into the standard rotating frame through the reverse transformations
as illustrated.

ρ̃(τ)DQ = e−iS1e−iS2 ˜̃̃ρ(τ)eiS2eiS1

= cos2 c[i sin θ2T
(2)2(a)]

(4.25)

The time-domain signal corresponding to the DQ coherence in standard rotating frame is
evaluated employing standard procedure and is represented by,

< T̃ (2)2 > = Tr[T (2)2ρ̃(τ)]

= −i cos2 c sin θ2
(4.26)

To substantiate the validity of the analytic theory, excitation of DQ transition in spin
I = 1 is depicted in Figs. 4.2 and 4.3. In contrast to the result obtained from single-
crystal, the excitation efficiency is much lower in MAS experiments involving powder
samples. This decrease in the efficiency is due to the presence of cos2 c term in Eq. (4.26).
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As depicted, the simulations emerging from the effective Hamiltonians are in excellent
agreement with those emerging from exact numerical methods.

4.2.2 Description for I=3/2 system

4.2.2.1 Static (Single-crystal)

Following the description for the I = 1 case, the Hamiltonian for an isolated spin (I = 3/2)
system is represented as a sum of two terms.

H̃ = H0 +H1

H0 = ~G(2)0T (2)0

H1 = ~ω1

√
5
2iT

(1)1(a)

(4.27)

Employing the transformation function S1 = i
√

3
2

ω1
G(2)0T

(2)1(s), the effective Hamiltonian
Heff = eiS1He−iS1 is derived. In contrast to spin I = 1 system, corrections to third
order are essential for the creation of TQ coherence in single-pulse experiments involving
spin I = 3/2 systems. Neglecting the off-diagonal contributions and retaining terms that
commute with H0, the effective Hamiltonian is re-written as follows:

Heff =
(
~G(2)0 + 3~ω2

1
2G(2)0

)
T (2)0 − 3~ω3

1
4(G(2)0)2 iT

(3)3(a) (4.28)

In a similar vein, the initial density operator (Iz) is transformed as represented be-
low,

˜̃ρ(0) = Iz + 1√
2
T (2)1(a) sin b+ 1√

5

(
−iT (1)0 + 2iT (3)0

)
(cos b− 1) (4.29)

with b =
√

3 ω1
G(2)0 . Employing the effective Hamiltonian (Eq. (4.28)) the density operator

after a pulse (of duration τ), is evaluated and represented below.

˜̃ρ(τ) = e−
i
~Heff ˜̃ρ(0)e

i
~Heff

ρ̃(τ) = e−iS1 ˜̃ρ(τ)eiS1 = Iz + 3
2 sin θ1T

(3)3(s) + 3
2
√

5

(
−3iT (1)0 + iT (3)0

)
(cos θ1 − 1)

(4.30)

where θ1 = 3ω3
1τ

2(G(2)0)2 . Accordingly, the time-domain signal for TQ coherence is evaluated
(i.e. Tr[−T (3)3ρ̃ (τ)])I and represented by,

< T (3)3 >= −3
2 sin θ1 (4.31)

IThe negative sign in the detection operator corresponding to odd quantum coherence is arising from
the convention we used for RF nutation frequency (i.e ω1 = −γB1)
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Figure 4.4: Simulations depicting the role of RF amplitude and quadrupolar coupling strength on
excitation efficiency of triple-quantum (TQ) transitions in single-crystal spin I = 3/2. The following
parameters were employed in the simulations: in panel (A1) CQ = 1.08 MHz, υ1 = 60 kHz, in panel
(A2) CQ = 1.08 MHz, υ1 = 120 kHz, in panel (B1) CQ = 2.16 MHz, υ1 = 60 kHz and in panel (B2)
CQ = 2.16 MHz, υ1 = 120 kHz. The remaining parameters spinning frequency υr = 0 kHz, η=0,
excitation frequency υ = 0 kHz were held constant in all the simulation. The analytic simulations
depicted red dots are based on the effective Hamiltonian, while the simulations in black solid lines are
from Simpson.56
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The simulations presented in Fig. 4.4 shows similar trends exhibited for spin I = 1 system
and are in good agreement with exact numerical methods.

4.2.2.2 Magic Angle Spinning (Powder-sample)

Following the description for spin I = 1 system, the initial Hamiltonian (Eq. (4.13))
is transformed using the unitary transformation function S1 = i

√
3
2

ω1
G

(2)0
m

T (2)1
m (s) and is

divided as represented below,

Heff = H0 +H1 (4.32)

where

H0 = ~ωrIF −
−2∑

m1,m2=2
m1+m2=0

3~ω3
1

4G(2)0
m1 G

(2)0
m2

iT (3)3(a)

H1 = ~
−2∑
m=2
m6=0

G(2)0
m T (2)0

m −
−2∑

m1,m2=2
m1+m2 6=0

3~ω3
1

4G(2)0
m1 G

(2)0
m2

iT
(3)3
m1+m2(a)

(4.33)

The corresponding transformation function is represented by,

S2 = −
−2∑
m=2
m 6=0

iG(2)0
m

mωr
T (2)0
m −

−2∑
m1,m2=2
m1+m2 6=0

3~ω3
1

4(m1 +m2)ωrG(2)0
m1 G

(2)0
m2

T
(3)3
m1+m2(a) (4.34)

Subsequently, the final effective Hamiltonian after two transformations is derived and
represented by,

Heff = ~ωrIF −
−2∑

m1,m2=2
m1+m2=0

3~ω3
1

4G(2)0
m1 G

(2)0
m2

iT (3)3(a) (4.35)

The initial density operator is re-defined in the frame of the transformation function S1

and S2, as represented below,

˜̃̃ρ(0) = eiS2eiS1Ize
−iS1e−iS2

= 9 cos c
10 Iz

(4.36)

where c =
−2∑

m1,m2=2
m1+m2 6=0

3ω3
1

2(m1+m2)ωr

√
G

(2)0
m1 G

(2)0
m2 G

(2)0
−m1

G
(2)0
−m2

. Employing the effective Hamiltonian

Eq. (4.35), the density operator after a pulse (of duration τ) is evaluated and represented
by,

˜̃̃ρ(τ) = 9 cos c
10

[
Iz + 3

2 sin θ2T
(3)3(s) + 3

2
√

5
(
−3iT (1)0 + iT (3)0

)
(cos θ2 − 1)

]
(4.37)
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Figure 4.5: Simulations depicting the role of RF amplitude and quadrupolar coupling strength on
excitation efficiency of triple-quantum (TQ) transitions in spin I = 3/2. The following parameters were
employed in the simulations: in panel (A1) CQ = 1.08 MHz, υ1 = 60 kHz, in panel (A2) CQ = 1.08 MHz,
υ1 = 120 kHz, in panel (B1) CQ = 2.16 MHz, υ1 = 60 kHz and in panel (B2) CQ = 2.16 MHz,
υ1 = 120 kHz. The remaining parameters spinning frequency υr = 10 kHz, η=0, excitation frequency
υ = 0 kHz were held constant in all the simulation. The analytic simulations depicted red dots are based
on the effective Hamiltonian, while the simulations in black solid lines are from Simpson.56
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Figure 4.6: Simulations depicting the role of RF amplitude and quadrupolar coupling strength on
excitation efficiency of triple-quantum (TQ) transitions in spin I = 3/2. The following parameters were
employed in the simulations: in panel (A1) CQ = 1.08 MHz, υ1 = 60 kHz, in panel (A2) CQ = 1.08 MHz,
υ1 = 120 kHz, in panel (B1) CQ = 2.16 MHz, υ1 = 60 kHz and in panel (B2) CQ = 2.16 MHz,
υ1 = 120 kHz. The remaining parameters spinning frequency υr = 30 kHz, η=0, excitation frequency
υ = 0 kHz were held constant in all the simulation. The analytic simulations depicted red dots are based
on the effective Hamiltonian, while the simulations in black solid lines are from Simpson.56

where θ2 =
−2∑

m1,m2=2
m1+m2=0

3ω3
1

2G(2)0
m1 G

(2)0
m2
τ . To have a consistent description, the density operator

after the pulse is transformed back into the standard rotating frame through the reverse
transformations as illustrated.

ρ̃(τ)TQ = e−iS1e−iS2 ˜̃̃ρ(τ)eiS2eiS1

= 27 cos2 c
20 sin θ2T

(3)3(s)
(4.38)

The time-domain signal corresponding to TQ in standard rotating frame is evaluated
employing standard procedure and is represented by,

< T̃ (3)3 > = Tr[−T (3)3ρ̃(τ)]

= −27 cos2 c
20 (3

2 sin θ2)
(4.39)

The simulations depicted in Figs. 4.5 and 4.6, substantiate the analytic predictions emerg-
ing from the effective Hamiltonian.
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4.2.3 Description for I=5/2 system

4.2.3.1 Static (Single-crystal)

H̃ = H0 +H1

H0 = ~G(2)0T (2)0

H1 = ~ω1

√
35
4 iT

(1)1(a)

(4.40)

Following the description presented in the previous Sections 4.2.1.1 and 4.2.2.1, the effec-
tive Hamiltonian for spin I = 5/2 system is derived by employing the transformation func-
tion S1 = 13ω1√

6G(2)0 iT
(2)1(a) +

√
15ω1
G(2)0 iT

(4)1(a). Employing the higher-order corrections, the
effective Hamiltonian depicting the TQ & 5Q excitation in spin I = 5/2 is derived.

Heff,TQ=
(
~G(2)0+13~ω2

1
2G(2)0

)
T (2)0− 49~ω3

1
2(G(2)0)2 iT

(3)3(a) (4.41)

Heff,5Q=
(
~G(2)0+13~ω2

1
2G(2)0−

1477~ω4
1

24(G(2)0)3

)
T (2)0+

(
15~ω2

1√
3G(2)0

− 595~ω4
1

2
√

3(G(2)0)3

)
T (4)0+ 245~ω5

1
12(G(2)0)4 iT

(5)5(a)

(4.42)

Employing the effective Hamiltonians Eqs. (4.41) and (4.42), the density operators cor-
responding to TQ and 5Q after a pulse (of duration τ), is evaluated and represented
below.

˜̃ρ(τ) = e−
i
~Heff ˜̃ρ(0)e

i
~Heff (4.43)

ρ̃ (τ)TQ = Iz +
√

5
2

(
T (3)3(s)

)
sin θ1 + 1

2
√

5

(
−18

√
2
7 iT

(1)0 + iT (3)0
)

(cos θ1 − 1) (4.44)

ρ̃ (τ)5Q = Iz −
5
2
(
T (5)5(s)

)
sin θ2 + 5

√
5
(
−
√

1
14 iT

(1)0 + 1
6 iT

(3)0
)

(cos θ2 − 1) (4.45)

where θ1 =
49
√

5
2ω

3
1

3(G(2)0)2 τ and θ2 = 245ω5
1

6(G(2)0)4 τ . Accordingly, the optimized time-domain signal
corresponding to TQ and 5Q coherence is evaluated and represented by,

< T̃ (3)3 > = Tr[−T (3)3ρ̃(τ)]

= −
√

5
2 sin θ1

(4.46)
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Figure 4.7: Simulations depicting the role of RF amplitude on excitation efficiency of triple-quantum
(TQ) transition in panels (A1 & A2) and five-quantum (5Q) transition in panels (B1 & B2) in single-
crystal spin I = 5/2. The following parameters were employed in the simulations: in panel (A1 & B1)
υ1 = 60 kHz and in panel (A2 & B2) υ1 = 120 kHz. The remaining parameters CQ = 3.2 MHz spinning
frequency υr = 0 kHz, η=0, excitation frequency υ = 0 kHz were held constant in all the simulation.
The analytic simulations depicted red dots are based on the effective Hamiltonian, while the simulations
in black solid lines are from Simpson.56
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< T̃ (5)5 > = Tr[−T (5)5ρ̃(τ)]

= 5
2 sin θ2

(4.47)

The simulations presented in Fig. 4.7 shows similar trends exhibited for spin I = 1 and
I = 3/2 system and are in good agreement with exact numerical methods.

4.2.3.2 Magic Angle Spinning (Powder-sample)

Following the description presented in the previous section, the initial Hamiltonian is
transformed using the unitary transformation function S1 = 13ω1√

6G(2)0 iT
(2)1
m (a)+

√
15ω1
G(2)0 iT

(4)1
m (a).

Five-quantum (5Q):
The transformed Hamiltonian corresponding to 5Q is divided as represented below to
facilitate the second contact transformation.

Heff = H0 +H1 (4.48)

where

H0 = ~ωrIF +
−2∑

m1,m2,m3,m4=2
m1+m2+m3+m4=0

245~ω5
1

12G(2)0
m1 G

(2)0
m2 G

(2)0
m3 G

(2)0
m4

iT (5)5(a)

H1 = ~
−2∑
m=2
m6=0

G(2)0
m T (2)0

m +
−2∑

m1,m2,m3,m4=2
m1+m2+m3+m4 6=0

245~ω5
1

12G(2)0
m1 G

(2)0
m2 G

(2)0
m3 G

(2)0
m4

iT
(5)5
m1+m2+m3+m4(a)

(4.49)

The corresponding transformation function is represented by,

S2 = −
−2∑
m=2
m6=0

iG
(2)0
m

mωr
T (2)0
m −

−2∑
m1,m2,m3,m4=2

m1+m2+m3+m4 6=0

245~ω5
1

12(m1 +m2 +m3 +m4)ωrG(2)0
m1 G

(2)0
m2 G

(2)0
m3 G

(2)0
m4

T
(5)5
m1+m2+m3+m4

(a)

(4.50)

The final effective Hamiltonian after two transformations is represented by,

Heff = ~ωrIF −
−2∑

m1,m2,m3,m4=2
m1+m2+m3+m4=0

245~ω5
1

12G(2)0
m1 G

(2)0
m2 G

(2)0
m3 G

(2)0
m4

iT (5)5(a) (4.51)

The initial density operator is re-defined in the frame of the transformation function S1

and S2, as represented below,

˜̃̃ρ(0) = eiS2eiS1Ize
−iS1e−iS2

= 5
7Iz cos c

(4.52)
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Figure 4.8: Simulations depicting the role of RF amplitude on excitation efficiency of triple-quantum
(TQ) transition in panels (A1 & A2) and five-quantum (5Q) transition in panels (B1 & B2) in spin
I = 5/2. The following parameters were employed in the simulations: in panel (A1 & B1) υ1 = 60 kHz
and in panel (A2 & B2) υ1 = 120 kHz. The remaining parameters CQ = 3.2 MHz spinning frequency
υr = 10 kHz, η=0, excitation frequency υ = 0 kHz were held constant in all the simulation. The analytic
simulations depicted red dots are based on the effective Hamiltonian, while the simulations in black solid
lines are from Simpson.56

where c =
−2∑

m1,m2,m3,m4=2
m1+m2+m3+m4 6=0

245~ω5
1

6(m1+m2+m3+m4)ωr

√
G

(2)0
m1 G

(2)0
m2 G

(2)0
m3 G

(2)0
m4 G

(2)0
−m1

G
(2)0
−m2

G
(2)0
−m3

G
(2)0
−m4

. Employing

the effective Hamiltonian Eq. (4.51), the density operator after a pulse (of duration τ) is
evaluated and represented by,

˜̃̃ρ(τ) = e−
i
~Heff ˜̃̃ρ(0)e

i
~Heff (4.53)

ρ̃(τ)5Q = e−iS1e−iS2 ˜̃̃ρ(τ)eiS2eiS1

= 5
7 cos c[−5

2 T
(5)5(s) sin θ3]

(4.54)

where θ3 =
−2∑

m1,m2,m3,m4=2
m1+m2+m3+m4 6=0

245~ω5
1

6(m1+m2+m3+m4)ωrG
(2)0
m1 G

(2)0
m2 G

(2)0
m3 G

(2)0
m4

τ . Accordingly, The time-domain

signal corresponding to 5Q is evaluated.

< T̃ (5)5 > = Tr[−T (5)5ρ̃(τ)]

= 5
7 cos2 c(5

2 sin θ3)
(4.55)
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Triple-quantum (TQ):
In a similar vein, The transformed Hamiltonian corresponding to TQ is represented
by,

Heff = H0 +H1 (4.56)

where

H0 = ~ωrIF −
−2∑

m1,m2=2
m1+m2=0

49~ω3
1

2G(2)0
m1 G

(2)0
m2

iT (3)3(a)
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iT
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m1+m2(a)

(4.57)

The corresponding transformation function is given by,

S2 = −
−2∑
m=2
m 6=0

iG(2)0
m

mωr
T (2)0
m −

−2∑
m1,m2=2
m1+m2 6=0

49~ω3
1

2(m1 +m2)ωrG(2)0
m1 G

(2)0
m2

T
(3)3
m1+m2(a) (4.58)

Employing the two transformation functions, the final effective Hamiltonian after two
transformations is represented by,

Heff = ~ωrIF −
−2∑

m1,m2=2
m1+m2=0

49~ω3
1

2G(2)0
m1 G

(2)0
m2

iT (3)3(a) (4.59)

The initial density operator is re-defined in the frame of the transformation function S1

and S2, as represented below,

˜̃̃ρ(0) = eiS2eiS1Ize
−iS1e−iS2

= 9
35(cos 4d+ 2 cos

√
10d)Iz

(4.60)

with d =
−2∑

m1,m2=2
m1+m2 6=0

49ω3
1

6(m1+m2)ωr

√
G

(2)0
m1 G

(2)0
m2 G

(2)0
−m1

G
(2)0
−m2

. Employing the effective Hamiltonian

Eq. (4.59), the density operator after a pulse (of duration τ) is evaluated and represented
by,

ρ̃(τ)TQ = e−iS1e−iS2 ˜̃̃ρ(τ)eiS2eiS1

= 9
35(cos2 4d+ 2 cos2√10d)

√
5
2 sin θ4T

(3)3(s)
(4.61)
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Figure 4.9: Simulations depicting the role of RF amplitude on excitation efficiency of triple-quantum
(TQ) transition in panels (A1 & A2) and five-quantum (5Q) transition in panels (B1 & B2) in spin
I = 5/2. The following parameters were employed in the simulations: in panel (A1 & B1) υ1 = 60 kHz
and in panel (A2 & B2) υ1 = 120 kHz. The remaining parameters CQ = 3.2 MHz spinning frequency
υr = 30 kHz, η=0, excitation frequency υ = 0 kHz were held constant in all the simulation. The analytic
simulations depicted red dots are based on the effective Hamiltonian, while the simulations in black solid
lines are from Simpson.56

with θ4 =
−2∑

m1,m2=2
m1+m2=0

49
√

5
2ω

3
1

3G(2)0
m1 G

(2)0
m2
τ . Accordingly, The time-domain signal corresponding to

TQ is evaluated.

< T̃ (3)3 > = Tr[−T (3)3ρ̃(τ)]

= 1
35(4 cos2 4c+ 10 cos2√10c)(−

√
5
2 sin θ4)

(4.62)

The simulations presented in Figs. 4.8 and 4.9 illustrate the role of RF amplitudes and
quadrupolar coupling constants in the excitation profile. In general the efficiency of MQ
excitations increases with the amplitude of the RF field employed in MQMAS experiments.
By constant, the efficiency of excitation is inversely proportional to the quadrupolar cou-
pling constant. This trend is exhibited in all the spin systems described in this chapter
and is in agreement with the numerical simulations.
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4.3 Conclusions and Perspectives
In summary, the concept of effective RF Hamiltonians presents an attractive approach for
understanding the phenomenon of multi-quantum (MQ) excitation in quadrupolar nuclei.
Employing effective RF Hamiltonians, the mechanism of MQ excitation is investigated.
In the original two-pulse scheme (incorporated from solution NMR) , evolution under the
quadrupolar Hamiltonian between pulses was essential for the creation of MQ coherence.
However, this requirement is crucial only to systems with smaller quadrupolar coupling
constants. Since the magnitude of the quadrupolar coupling constant exceeds the RF
amplitude in majority of the systems, the original two-pulse MQ excitation scheme was
subsequently refined to a single-pulse experiment. From a theoretical perspective, this
refinement of the experimental scheme could be explained by invoking the concept of
effective Hamiltonians introduced in this chapter. For example, when ω1 > ωQ (hard-
pulse limit), the effective RF Hamiltonian in the Z-Q interaction frame reduces to an
(for an X-pulse) Ix operator. Consequently, the density operator after the initial pulse
comprises of only SQ coherences (of rank 1). To create SQ coherences of higher ranks
(k > 1), evolution under quadrupolar Hamiltonian is mandatory. Introduction of a second
pulse is essential to convert the higher rank SQ coherences (k > 1) into MQ coherences.
Hence, evolution under the quadrupolar Hamiltonian is a prerequisite for creating MQ
coherences in two-pulse experiments. Interestingly, the above description is invalid when
the magnitude of the quadrupolar coupling constant exceeds the RF amplitude.

By contrast, excitation of MQ coherences in single-pulse experiments (see Figs. 4.1 to 4.9)
relies on the time-dependent terms in the effective Hamiltonian, suggesting a possible
breakdown of the secular approximation. This inference of ours is bit counter-intuitive.
Hence, the suitability of secular approximation in MQ NMR experiments depends on
the duration of the pulses employed in the study. When the duration of the pulses is
longer, the time-dependent oscillating terms have an important role in the excitation
of MQ coherences. Consequently, the excitation period is often longer in single pulse
experiments. The analytic theory presented in this chapter could be employed to develop
models for quantify the MQMAS experiments.
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Chapter 5

Conclusions and Perspectives

The utility of NMR spectroscopy as a tool for characterizing molecular structure de-
pends on the accuracy of the constraints estimated through experiments. To facilitate
this process, a formal understanding of the nuclear spin interactions at the atomic level
is quintessential in the interpretation of experimental data as well as in the design of
new experiments (that includes improvements to existing experimental schemes). In par-
ticular, the description of NMR experiments in the solid-state has always remained a
challenging task both from an experimental and theoretical perspective. To this end, we
believe that the present thesis makes a modest attempt to address some of the perti-
nent issues of relevance to both experimentalist and theoreticians in the field of magnetic
resonance. As a preliminary step, a unified description of the nuclear spin interactions
in terms of irreducible spatial and spin tensor operators is presented in this thesis with
important derivations. In contrast to spin 1/2 nuclei, the spherical tensor formalism is
of extreme importance in the study of quadrupolar nuclei. Although, several excellent
treatise on spherical tensor formalism do exist in the literature, a consistent description
along with appropriate conventions has always remained a mystery. The phase factors
and normalization constants employed in the construction of the tensor operators are ex-
amined thoroughly and are derived systematically for facilitating their extension in the
description of NMR experiments that involve both spin 1/2 and quadrupolar nuclei.

In the second half of the thesis, the concept of effective RF Hamiltonians is introduced
to describe the spectroscopically allowed transitions in quadrupolar nuclei. In contrast to
their spin 1/2 counterparts, analytic description of the transitions in quadrupolar nuclei is
fraught with difficulty owing to the presence of (a) multiple levels (b) quadrupolar inter-
actions. Employing the spherical tensor operator formalism, effective RF Hamiltonians
are proposed for describing both selective and non-selective transitions in quadrupolar
nuclei. Depending on the magnitude of the quadrupolar coupling constant, important
constraints for improving both the selectivity and efficiency of the excited transitions are
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derived employing the density matrix formalism. The validity of the secular approxima-
tion commonly employed in analytical treatments is thoroughly investigated in all regimes
and is well explained and substantiated through extensive numerical and analytic simula-
tions. In contrast to existing descriptions in the literature, both selective and non-selective
excitations are described in terms of effective Hamiltonians based on the spherical tensor
operator formalism. In combination with Floquet theory, the effective RF Hamiltonian
approach presented in this thesis is extended for describing MAS (magic angle spinning)
experiments in solid-state NMR. Below, we summarize the three major highlights of this
thesis.

5.1 Concept of effective RF Hamiltonians

To verify the authenticity of the normalised spherical tensor operators presented in this
thesis, transitions in quadrupolar nuclei (spin I=1, 3/2 and 5/2) were investigated in
static systems. Employing the concept of effective Hamiltonians, an analytic framework
based on the density operator formalism is presented for elucidating the optimum con-
ditions for exciting transitions in quadrupolar nuclei. Depending on the spin-quantum
number and the participating levels, optimum flip angles are derived along with appropri-
ate excitation frequency (see Fig. 5.1). Although, the application of the spherical tensor
formalism for describing pulses in quadrupolar systems in the hard-pulse limit is known,
the description of pulses in the soft-pulse regime is of practical relevance. To this end,
a more general treatment in terms of effective RF Hamiltonians for studying the effect
of RF pulses on quadrupolar systems is presented. The proposed effective RF Hamilto-
nian in the quadrupolar interaction frame encodes the various transition frequencies and
is suitable for describing transitions (both selective and non-selective) in a multi-level
system. The validity of the secular approximation is thoroughly examined and effective
RF Hamiltonians for selective and non-selective excitations are derived from first prin-
ciples. Additionally, the differences in the excitation conditions in single crystals and
polycrystalline sample are investigated and optimum excitation conditions are derived.
Depending on the relative magnitudes of the RF amplitude and the quadrupolar coupling
constant, the optimum conditions required for the excitation of a particular transition are
derived from analytical expressions. In particular, the interplay between selectivity/non-
selectivity of transitions in multi-level systems is explained in terms of the secular approx-
imation employed in the derivation of effective Hamiltonians. Employing the effective RF
Hamiltonians, analytical expressions for the density operator are derived along with suit-
able expressions for the time-domain signal. Based on the analytical expressions for the
density operator, optimum flip angles and durations of pulses are derived for both integral
and half-integral systems. The simulations presented in Figs. 5.1 and 5.2 are representa-
tive of the conditions that are required for optimizing transitions in a multi-level system.
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Figure 5.1: Simulations depicting in panel (A) the role of excitation frequency using a π
2 -pulse

(υ1 = 20 kHz, tp = 12.5 µs) and in panel (B) the role of the flip angle in the selective excitation of a
powder sample corresponding to I=1 system. The following parameters were employed in the simula-
tions: (I=1, 6Li, CQ = 2.9 MHz, υQ = 4.35 MHz, η = 0). In a typical powder sample, the spectral width
for I=1 system ranges from υQ

2 to −υQ

2 , however due to higher statistical weight, the maxima is attained
at ±υQ

4 (υQ

4 = 1.0875 MHz) as depicted in panel (A). In panel (B), the intensity is measured as a function
of the RF amplitude (υ1) for tp = 8.84 µs and the frequency of excitation υ0 + υQ

4
(υQ

4 = 1.0875 MHz
)
.

As depicted, the maximum intensity is obtained when ω1tp = π
2
√

2 and is in accord with the theoretical
predictions.

Figure 5.2: Simulations depicting the FT-spectrum of 6Li (I = 1) system corresponding to non-selective
and selective excitation in a single crystal. The following parameters were employed in the simulations:
CQ = 30 kHz, η=0 and in panel (A1) π

2 -pulse with RF amplitude υ1 = 150 kHz, duration tp = 1.67 µs
and excitation frequency υ = υ0, in panel (A2) π

2
√

2 -pulse with RF amplitude υ1 = 3.98 kHz, duration
tp = 44.44 µs and excitation frequency 22.5 kHz (i.e υ = υ0 + υQ

2 ).

5.2 Excitation of satellite transitions in MAS exper-
iments

Integrating Floquet theory and the method of contact transformation, effective Floquet
Hamiltonians are proposed for describing MAS experiments. To begin with, excitation of
single-quantum transitions in quadrupolar systems under MAS conditions is investigated.
In the case of integral quadrupolar spin systems, the excitation frequency of SQ transitions
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Figure 5.3: Numerical simulations depicting the role of spinning frequency on the excitation efficiency
of SQ transitions in spin I = 3/2, (excitation frequency, υ = υ0 + υQ

2 or υ = υ0 + 270 kHz). The
following spinning frequency was employed in the simulations: in panel (A1) υr = 10 kHz, in panel (B1)
υr = 11 kHz, in panel (A2) υr = 18 kHz, in panel (B2) υr = 19 kHz, in panel (A3) υr = 30 kHz and in
panel (B3) υr = 31 kHz. The remaining parameters CQ = 1.08 MHz (υQ = 540 kHz), η=0, excitation
frequency υ = 270 kHz, υ1 = 19.5 kHz, tp = 7.4 µs were held constant in all the simulation.

has a profound dependence on the first-order quadrupolar interactions. By contrast,
the central transitions in half-integral quadrupolar spins are independent of first-order
quadrupolar interactions. In a typical powder sample, precise matching of the excitation
frequency is hindered due to the anisotropic nature of the quadrupolar interaction. Our
objective in this study was to design alternate strategies for improving the excitation
of SQ transitions in both integral and half-integral quadrupolar systems. To this end,
the simulations depicted in Fig. 5.3 illustrate an interesting trend. When the off-set
frequency (proportional to quadrupolar frequency) is matched to an integral multiples of
the sample spinning frequency (nωr = ωQ), enhanced excitation efficiency of the satellite
transitions is observed both in the integral and half-integral quadrupolar spin systems.
This observation of ours was deduced based on the effective Hamiltonians and is well
corroborated through both analytic and numerical simulations (see Fig. 5.3). A detailed
description of this resonance phenomenon is discussed in the thesis.
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5.3 Excitation of MQ transitions in MAS experiments
To extend the utility of the effective Hamiltonian approach, excitation of MQ transition in
quadrupolar systems was investigated under MAS conditions. In contrast to other exist-
ing descriptions,the effective RF Hamiltonian approach, presents an attractive framework
for understanding the phenomenon of multi-quantum (MQ) transitions in quadrupolar
nuclei. In the original two-pulse scheme (incorporated from solution NMR), evolution
under the quadrupolar Hamiltonian between pulses was essential for the creation of MQ
coherence. However, this requirement is crucial only to systems with smaller quadrupolar
coupling constants. Since the magnitude of the quadrupolar coupling constant exceeds the
RF amplitude in majority of the systems, the original two-pulse MQ excitation scheme
was subsequently refined to a single-pulse experiment. From a theoretical perspective,
this refinement of the experimental scheme could be explained by invoking the concept of
effective Hamiltonians introduced in this thesis. For example, when ω1 > ωQ (hard-pulse
limit), the effective RF Hamiltonian in the Z-Q interaction frame reduces to an (for an
X pulse) Ix operator. Consequently, the density operator after the initial pulse comprises
of only SQ coherences (of rank 1). Hence, evolution under quadrupolar Hamiltonian is
required to create SQ coherences of higher ranks (k >1). Introduction of a second pulse
is essential to convert the higher rank SQ coherences (k >1) into MQ coherences. Hence,
evolution under the quadrupolar Hamiltonian is a prerequisite for creating MQ coherences
in two-pulse experiments. Interestingly, the above description is invalid when the magni-
tude of the quadrupolar coupling constant exceeds the RF amplitude. When ωQ >> ω1,
the form of the effective RF Hamiltonian differs and is sequence specific. The subsequent
action of pulses, facilitates the creation of MQ coherences without the requirement for
evolution under the quadrupolar Hamiltonian. Since the pulses employed are of shorter
duration, the time-dependent terms in the effective Hamiltonian are neglected in these
experiments under secular approximation. By contrast, excitation of MQ coherences in
single-pulse experiments relies on the time-dependent terms in the effective Hamiltonian.
Hence, the suitability of secular approximation in MQ NMR experiments depends on the
duration of the pulses employed in the study. When the duration of the pulses is longer,
the time-dependent oscillating terms have an important role in the excitation of MQ co-
herences. The predictions emerging from the analytic theory are well corroborated with
simulations emerging from exact numerical methods (see Fig. 5.4).

We believe that the theoretical framework presented in this thesis would provide the nec-
essary impetus for the development of sophisticated multiple pulse experiments involving
quadrupolar nuclei.
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Figure 5.4: Simulations depicting the role of RF amplitude and quadrupolar coupling strength on
excitation efficiency of triple-quantum (TQ) transitions in spin I = 3/2. The following parameters were
employed in the simulations: in panel (A1) CQ = 1.08 MHz, υ1 = 60 kHz, in panel (A2) CQ = 1.08 MHz,
υ1 = 120 kHz, in panel (B1) CQ = 2.16 MHz, υ1 = 60 kHz and in panel (B2) CQ = 2.16 MHz,
υ1 = 120 kHz. The remaining parameters spinning frequency υr = 10 kHz, η=0, excitation frequency
υ = 0 kHz were held constant in all the simulation. The analytic simulations depicted red dots are based
on the effective Hamiltonian, while the simulations in black solid lines are from Simpson.
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