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Abstract

An analytic framework integrating the concept of effective Hamiltonians and Reduced

density matrix theory is proposed for describing polarization transfer in solid-state

NMR. Specifically, the magnetization exchange between 13C nuclei in Rotational Res-

onance (R2) experiments is described in the presence of coupling to protons reser-

voir. The factors responsible for depolarization in R2 experiments and the role of

heteronuclear decoupling schemes during the dipolar mixing are thoroughly inves-

tigated. Additionally, implementation of fractional R2 experiments are discussed.

The simulations emerging from the proposed analytic model are well substantiated

through simulations emerging from exact numerical methods. The framework pre-

sented in the thesis is well-suited for describing both homonuclear and heteronuclear

experiments in solid-state NMR.



Chapter 1

Introduction

1.1 Background

Although from a historical perspective, the phenomenon of nuclear magnetic reso-

nance originated from the pioneering experiments of Rabi1 in 1936 and culminated

in the design of the NMR spectrometer in 19462,3, from an experimental perspec-

tive, the genesis of solid-state nuclear magnetic resonance (SSNMR) spectroscopy

began only in 1958 through the discovery of Magic Angle Spinning4,5 (MAS) experi-

ment. In contrast to solution NMR spectroscopy, the NMR spectra in the solid-state

are broadened by the anisotropic nature of the spin interactions. To overcome the

spatial anisotropy imposed by the inherent restricted mobility, Andrew et al.4 and

Lowe,5 independently proposed an ingenious approach of mechanically rotating the

sample along an axis inclined at an angle 54.7◦ with respect to the static magnetic

field. The resulting NMR spectrum under sample spinning comprises of a center-

band (at frequency ω0, determined by the isotropic parts of the spin interactions)

and a series of spinning sidebands (due to anisotropic part) disposed symmetrically

with respect to the center-band at integer multiples of the spinning frequency6–8.

With increase in the spinning frequency, the anisotropic parts of the interactions get

more or less averaged resulting in isotropic liquid like spectrum. In combination with

the cross-polarization9 (CP) technique, CP-MAS10 experiments along with multiple-

pulse based heteronuclear decoupling8,11–27 methods have become an integral building

block in the study of less-abundant nuclei. Nevertheless, it was soon realized that the

improved spectral resolution afforded by MAS arises at the expense of the structural
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information inherent in the anisotropic interactions (i.e. the anisotropic interactions

get wiped out under spinning conditions). In particular, the detection of through-

space contacts, which presents an attractive option to probe structural parameters

in the solid-state, is averaged under MAS. Unlike solution NMR spectroscopy, where

the measurement of the Overhauser effect28 between neighboring nuclei (usually 1H)

provides the desired constraints to determine the molecular structure, the dipolar

interactions in the solid-state encode the spatial information and play a central role

both in the spectral assignments as well as in experiments that involve measurement

of interatomic distances. Hence, reintroduction of dipolar interactions (both homonu-

clear and heteronuclear) under MAS conditions has remained the major emphasize

in the last couple of decades.

Employing sophisticated multiple-pulse schemes (commonly referred to as dipolar

recoupling experiments29–35), the averaging effect of MAS is partially compensated

during the dipolar mixing time. Subsequently, the dipolar interactions are rein-

troduced under MAS conditions in a controlled fashion depending on their role in

SSNMR experiments. For e.g, in the case of spectral assignment studies, the local

connectivity (or correlation) between different nuclei is established through broad-

band dipolar recoupling sequences (all the dipolar interactions in a system are rein-

troduced simultaneously). By contrast, in selective dipolar recoupling methods, the

dipolar interactions are reintroduced in a controlled fashion (between spin pair) and

are primarily designed for measuring interatomic distances. Here in this thesis, we

confine our discussion to homonuclear dipolar recoupling methods tailored towards

the measurement of interatomic distances in solid samples. In particular, we restrict

our attention to Rotational Resonance (R2) experiments in solid-state NMR.

After the successful design of MAS experiments in 1958, Andrew and cowork-

ers36,37 reported (in 1963) an interesting effect relating the spectral line broadening

and sample spinning frequency in MAS experiments. Specifically, when the sam-

ple spinning frequency (or integral multiples of it) is adjusted to match the isotropic

chemical shift difference between a pair of nuclei, distorted line-shapes (corresponding

to that particular pair of resonances) along with line broadening were observed. This

condition is commonly referred to as the Rotational Resonance (R2) condition in SS-

NMR experiments. Due to the presence of intermolecular spin interactions (31P , 100%

natural abundance), the distortions in the line-shape reported by Andrew et al. could
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never be quantified. To address this issue, Griffin and co-workers38–40 introduced the

concept of employing labeled (13C) spin pair samples (diluted in natural abundance

to minimize intermolecular effects) to mimic an isolated homonuclear spin pair sys-

tem. As reported earlier,37 the resonances corresponding to the selected spin pair

were broadened under Rotational Resonance (R2) conditions (i.e. |υ1 − υ2| = NυR).

Since dipolar interactions were responsible for the observed broadening in the spec-

trum, it was realized that the R2 experiment41 could serve as a method for extracting

interatomic distances in solid-state NMR.42–44 To achieve this objective, monitoring

the magnetization exchange between a pair of 13C nuclei was employed as a strategy

for extracting internuclear distance information in R2 experiments. In a typical longi-

tudinal magnetization exchange experiment, an initial state of difference polarization

is prepared along the rotating frame z-axis, and the time-evolution of this state is

examined as a function of the dipolar mixing time.

Very often, the magnetization exchange trajectory resulting from such experi-

ments depend on several parameters that includes the dipolar coupling constant, the

orientation dependence arising from the chemical shift tensors in addition to the un-

desired residual heteronuclear dipolar interactions (say 13C-1H) resulting from insuf-

ficient decoupling. Subsequently, to minimize the complexity in the data analysis, a

phenomenological damping constant45 (zero-quantum relaxation, TZQ) was employed

to fit the experimental magnetization exchange trajectories in R2 experiments. Under

idealized conditions (in cases where the chemical shift tensors are known), the dipolar

coupling constant along with the damping constant were employed to fit parameters

required to fit the experimental trajectories. Employing this approach, 13C − 13C

distance information in the strong and intermediate coupling regimes were obtained

in wide range of systems through selective labeling. Nevertheless, the extension of

the R2 method for extracting distances in the weak coupling limit is less straight

forward owing to the uncertainties involved in the data analysis46,47.

As an alternative, Costa et al.48 proposed the rotational resonance width (R2W )

experiments to improve the accuracy of the distances estimated from R2 experiments.

In contrast to the standard mixing time experiments, the magnetization exchange in

R2W experiments were monitored as a function of the spinning frequency under

constant mixing times. Employing this approach, interatomic distances in selectively

labeled samples were extracted both in the weak and strong coupling regimes with im-
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proved accuracy. Since extensions in larger biological systems entail the measurement

of multiple constraints (13C − 13C and 13C − 15N distances), the R2W approach was

subsequently integrated with two-dimensional spectroscopy for measuring multiple
13C − 13C distance constraints in a uniformly 13C, 15N - labeled dipeptide.46 Since

then, rotational resonance based experiments47,49–52 have almost become a routine

for measuring 13C − 13C distances in biological systems ranging from simple pep-

tides46,47,49,51 to membrane proteins.50,52 While these experiments have found utility

in the study of larger biological systems, the reliability of the constraints estimated

through theoretical models based on two-spin framework (inclusive of phenomeno-

logical damping terms) deserves a careful review.

As the number of measurable constraints available in the solid state is inherently

limited by resolution, the fitting of the R2 experimental data (in the weak-coupling

regime) becomes important in studies involving larger biological systems. To this end,

Meier and coworkers53 proposed an effective two-spin model that includes the dipolar

coupling of interest, zero-quantum relaxation rate in addition to a phenomenological

offset to account for the strongly coupled surrounding environment. In an alternate

formulation, Baldus and coworkers54 proposed the multi-spin (MS) analysis approach

based on numerical methods for describing the effects of protons in R2 experiments.

Employing approximate molecular geometry (in the form of 13C − 1H distance in-

formation), the experimental data for a given system was simulated with the dipolar

coupling constant as a free-fit parameter. Although, their studies reveal the impor-

tance of neighboring protons on the exchange dynamics, the implementation of the

MS analysis is time consuming and less insightful.

In a contrasting attempt, Ladizhansky and co-workers51 demonstrated the mea-

surement of 13C−13C distances in polypeptides and membrane proteins52 using homo-

geneously broadened R2 conditions. Employing moderate decoupling field strengths

on the proton channel, the R2 matching conditions were broadened and the result-

ing trajectories were simulated using the standard two-spin approach (inclusive of the

phenomenological damping term). Interestingly, the magnitude of the damping terms

employed in their studies were significantly higher in comparison to earlier studies

on similar systems under identical experimental conditions.47 This variation in the

magnitude of the damping terms was also corroborated in a recent theoretical study

by Ramachandran and co-workers.55 Hence, an alternate analytic theory is indispens-
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able for resolving the conflicting results reported in the literature with regard to the

mode of inclusion /role of 13C − 1H dipolar interactions in the R2 experimental data

analysis.

From a theoretical stand point, analytic description of multi-spin effects56,57 ob-

served in NMR experiments have always been fraught with difficulty, owing to (a)

the presence of time-dependent interactions (b) the dimension of the spin system.

For e.g., in the state space description58 of the spin dynamics, the density operator

is described in a vector space of dimension 2M (where ‘M’ denotes the number of

spins (I=1/2) present in the system), while in the operator space (or Liouville space)

description, the density operator is expanded and expressed in terms of 22M operators

defined in a vector space of dimension 22M . Hence, the dimensionality of the problem

increases with the number of spins both in the state and operator space description of

the spin dynamics. Additionally, the spin Hamiltonians in multiple-pulse based MAS

experiments have complicated time-dependence owing to the simultaneous presence

of sample rotation and RF pulses.

As an alternative to these treatments, an analytic theory combining the effective

Hamiltonian approach with the concept of reduced density matrix59,60 is proposed to

elucidate the effects of protons in R2 dynamics. The approach presented in the thesis

is quite general and is suitable for describing both homonuclear and heteronuclear re-

coupling experiments in SSNMR. In the proposed method, effective Hamiltonians61,62

to the desired order (say second-order) are derived utilizing the contact transforma-

tion procedure.63,64 To circumvent the complexities involved in the multi-spin analy-

sis of R2 experimental data, effective Hamiltonian based Reduced density matrices60

are proposed for describing the polarization transfer observed in R2 experiments.

Employing this formalism, the polarization transfer observed in R2 experiments is

described in terms of single-spin density matrices. The coupling with the proton

reservoir is incorporated through the effective Hamiltonians and is included in the

derivation of the density matrices for individual spins. The analytic results emerging

from the proposed approach are computationally less intensive and are quite useful

in the fitting of experimental trajectories. Employing suitable model systems and

interaction parameters, the polarization transfer in R2 experiments is studied theo-

retically and the results emerging from the analytic theory are compared and verified

with simulations emerging from exact numerical methods65,66. A brief outline of the
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thesis is presented in the following sections.

1.2 Objectives and Motivation

To determine the 3D-structure of a system, measurement of interatomic distances

remain vital. In this regard, the R2 experiment remains the only reliable technique

in SSNMR for measuring 13C − 13C distances in uniformly labeled solids. Although,

many theoretical formalisms do exist in the literature,45,47,54,55 the following issues of-

ten remain unaddressed: (i) the physical basis of phenomenological damping terms (ii)

role of heteronuclear dipolar interactions and decoupling sequences during R2 mixing

times (iii) multi-spin contributions resulting from overlapping R2 matching condi-

tions between different spin pairs. Since the number of constraints that are available

in the solid-state are limited by the resolution factor, the accuracy of the estimated

constraints become very crucial in the overall refinement of the 3D-structure. From a

theoretical standpoint, interpretation (or fitting) of the magnetization exchange tra-

jectories are complicated by the presence of both the spin interactions of the system

of interest as well as its coupling to the neighboring proton reservoir. Since the num-

ber of fit parameters increase with the spin system, phenomenological models have

become the method of choice to minimize the computational time in such studies.

As described in the previous section, the validity of such models deserve a thorough

review before it becomes operationally valid. To this end, the following problems are

addressed in this thesis:

1. An intuitive analytic model based on the concept of reduced density matrix is

proposed for describing the magnetization exchange in R2 experiments.

2. Employing a model system comprising of N-protons, the effect of 13C − 1H

dipolar interactions in R2 experiments is discussed.

3. Derivation of higher order /fractional R2 conditions in solid-state NMR exper-

iments.

In the following section, the general methodology adopted in this thesis is outlined

with few illustrative examples.
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1.3 Methodology

In quantum mechanics, description of an experimental phenomenon entails the pres-

ence of a framework wherein the states of the physical system are described through

parameters that are logically consistent and are of operational significance. Since

measurements in NMR spectroscopy are made on bulk samples (or large collection of

identical quantum mechanical systems), the density matrix formalism has remained

the preferred approach for studying the dynamics of spins.

Accordingly, the state of a system is described in terms of the density operator,

ρ(t) and the time-evolution of the system is studied through the Quantum-Liouville

equation.

i~
dρ(t)
dt

= [H(t), ρ(t)] (1.1)

ρ(t) = e
− i

~

t∫
0
H(t′)dt′

ρ(0)e
i
~

t∫
0
H(t′)dt′

(1.2)

In this thesis, we confine our discussion to the NMR experiments in the solid-state. In

contrast to solution NMR spectroscopy, the spin Hamiltonians in SSNMR are time-

dependent both due to sample rotation as well as RF irradiation. To facilitate analytic

description of the spin dynamics involving time-dependent Hamiltonians, effective

Hamiltonians61,62 based on the Floquet theory67–75 and the contact transformation

methods63,64 have been proposed in the past to describe the experiments47 in solid-

state NMR.

i~
dρ(t)
dt

= [Heff , ρ(t)] (1.3)

ρ(t) = e−
i
~Heff tρ(0)e i~Heff t (1.4)

In spite of this accomplishment, the density operator formalism remains less suitable

for analytic description beyond two-spins. To overcome this limitation, we propose

a solution that is built on the concepts of reduced density matrices and effective

Hamiltonians.

In the reduced density matrix formalism59, the system of interest (ψ) is con-

structed by the partial trace operation over all the unobserved spin variables (φ)

present in the combined system, ρ(t) (i.e., by taking the matrix elements of the total

density matrix which are diagonal in the unobserved variable ‘i’ and summing these

elements over all ‘i’). The reduced density matrix, ρ(ψ, t) and its elements are defined
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by,

〈ψj′| ρ(ψ, t) |ψj〉 =
∑
i

〈φiψj′| ρ(t) |φiψj〉 (1.5)

Subsequently, the observable associated with the system of interest is calculated

through single-spin density matrices as given below.

〈Op(t)〉 = Tr {ρ(ψ, t)Op} (1.6)

In the following sections, the utility of the reduced density matrix formalism is dis-

cussed through some known examples in the literature.

1.4 Spin interactions in NMR

To extract molecular information in NMR experiments, it is important to have a

description, wherein, the evolution of the system solely guided by its own internal

Hamiltonian. From a mathematical standpoint, this is accomplished through the

rotating wave approximation (RWA) of Rabi. In RWA of Rabi, the internal Hamil-

tonians are transformed into an interaction defined by the dominant terms (Zeeman

term) present in the external Hamiltonian. In this new frame, the contributions

from the Zeeman interaction are absent and the terms that commute with HZ are

retained (commonly referred to as high field approximation). The Zeeman interac-

tion represents the interaction between the nuclear spin magnetic moment and the

static magnetic field and is quantum mechanically represented through the Zeeman

Hamiltonian, HZ .

HZ = −µzB0 = −~γIzB0 = −~ω0Iz (1.7)

where µ is the magnetic moment, ~ is the plank’s constant divided by 2π, γ is the

gyromagnetic ratio, B0 is the strength of the static magnetic field and ω0 is the

Larmor frequency.

In a similar vein, the interaction of the nuclear spin with the oscillating magnetic

field applied (along the x-direction) is represented through the RF Hamiltonian given

below,

HRF (t) = −2~γB1 cos(ωref t+ φ)Ix = −2~ω1 cos(ωref t+ φ)Ix (1.8)

where ω1 = γB1 is the nutation frequency of the RF field and φ is the phase. De-

pending upon the amplitude of RF field and its duration, the excitation band width

is classified into broadband (shorter duration) and selective (longer duration).
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The chemical shift interaction depicts the interaction between the nuclear spin

magnetic moment mediated through the surrounding electronic cloud (environment).

In a typical liquid sample, the chemical shift interaction is represented by a scalar

quantity and is purely isotropic.

Hiso = −~∆ωIz (1.9)

where, ∆ω denotes the offset frequency.

In the case of solids (or polycrystalline samples), the chemical shift interaction is

orientation dependent and is characterized by the anisotropy as well as the asymmetry

parameter.

Hcs(t) = Hiso +Haniso(t) (1.10)

Under MAS conditions, the anisotropic part of the chemical shift interaction is time-

dependent.

Haniso(t) = HCSA(t) =
2∑

m=−2,m 6=0
ω

(m)
i eimωrtIz (1.11)

where ωr is the spinning frequency of the sample. The time-dependent components

of the chemical shift anisotropy (CSA) interactions are represented by

ω
(m)
i =

2∑
m1,m2,m=−2

R
(2)m1
cs,PAS.Dm1m2(ΩPM).Dm2m(ΩMR).dm0(βm) (1.12)

with βm denoting the magic angle.

In the above equation, R(2)m1
cs,PAS denotes the irreducible spatial tensor defined in the

PAS (R(2)0
csa,PAS = δaniso and R(2)±2

csa,PAS = − 1√
6δanisoη where δaniso and η are anisotropy

and asymmetry parameters respectively). D(Ω) represents the Wigner rotation ma-

trix76 with rank=2 and Ω, the set of Euler angles employed in the transformation

from the Principal axis system (PAS) to the Lab frame. A more detailed description

of these interactions are well documented in literature7,8 and have been consciously

omitted in this thesis to avoid repetition.

The interaction between nuclei are often pairwise and take place either through

bond or through space. Due to inherent tumbling motion, the through space inter-

actions are generally averaged (to first order) in liquids. By contrast, the restricted

mobility in the solid-state renders the through space interaction anisotropic. In MAS

9
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experiments, the dipolar Hamiltonian is time-dependent and is represented by,

Hd(t) =
2∑

m=−2,m 6=0
ω

(m)
12 eimωrt

[
2I1zI2z −

1
2
(
I+

1 I
−
2 + I−1 I

+
2

)]
(1.13)

Analogous to the CSA interactions, the anisotropic components of the dipolar inter-

actions are represented through Wigner rotation matrices.

ω
(m)
12 =

2∑
m1,m2,m=−2

R
(2)0
D,PAS,12.D0m2(ΩPM).Dm2m(ΩMR).dm0(βm) (1.14)

The only non-zero term, R(2)0
D,PAS,12 =

√
6b12(b12 = µ0γ1γ2~/4π|~r12|3 (rad/s) is the

dipolar coupling constant) represents the spatial tensor in the dipolar PAS. In the case

of heteronuclear dipolar interactions, the flip-flop operators in the above Hamiltonian

are ignored under secular approximation.

As described in Eq. (1.2), when the Hamiltonian is time-independent, the solution

to the quantum-Liouville equation reduces to a simpler form.

ρ(t) = e−
i
~Htρ(0)e i~Ht (1.15)

with ρ(0) denoting the density operator at time, t = 0.

Since the Hamiltonians under MAS are time-dependent, the evaluation of the

density operator gets complicated. In the numerical based approaches, the evolution

of a system under a time-dependent Hamiltonian is split and expressed as a product

through approximate time-independent Hamiltonians. Although, such methods are

computationally feasible, they are less insightful with regard to providing analytic

insights into the spin dynamics.

To this end, analytic methods based on AHT6,77,78 and Floquet theory67–75 have

formed extensive utility in the design and interpretation of experiments in SSNMR.

Although, such approaches have improved our understanding of the spin dynamics,

analytic description beyond two-spin framework has remained elusive.

In the state-space description of the spin dynamics, the density operator is ex-

pressed in terms of a matrix spanned by the number of spin basis states. For a

system composed of ‘N’ coupled spin I=1/2 nuclei, the combined density matrix is

constructed from the direct product between individual spin density matrices.

ρ = ρ1 ⊗ ρ2.......⊗ ρN (1.16)

10
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In the above equation, ρ denotes the density operator for the combined system (2N x

2N) and ρN , the individual spin density matrix (2x2). In the |Im〉 basis, the density

matrix for a single spin I=1/2 is represented by, ρα,α(t) ρα,β(t)

ρβ,α(t) ρβ,β(t)

 (1.17)

with

ρα,β(t) = 〈α| e− i
~Htρ(0)e i~Ht |β〉 (1.18)

representing the element of the density matrix at some arbitrary time ‘t’ and H, the

Hamiltonian of the spin system.

As depicted above, the dimension of the problem increases with the number of

spins and limits the utility of the method beyond the isolated two-spin framework.

By contrast, in the operator-space (or Liouville space) description of the spin dynam-

ics, the density operator is expressed in terms of operators. For a composite system

comprising of N spin I=1/2 nuclei, the density matrix is expressed in terms of 4N

operators. Subsequently, the time-evolution is described through a set of rate equa-

tions corresponding to the operators employed in the expansion of the density matrix.

Consequently, analytic description of the spin dynamics gets intractable (both in the

state as well as in the operator space) with the increase in the number of spins. To

overcome this limitation, a solution built on the concepts of reduced density matrices

and effective Hamiltonians is proposed in this thesis.

1.5 Reduced density matrix

To describe the utility of the reduced density matrix approach, we begin our discussion

with a composite system comprising of two subsystems, with ‘ψ’ representing the

subsystem of interest and ‘φ’ the other undetected /unobserved system. Let us assume

that there exists some interaction between the two subsystems (or equally that the

systems have interacted in the past) such that the system of interest is often in

some mixed state. The states of the composite system are expressed in terms of

the direct product between the basis states of the two subsystems. Employing the

combined basis states, the elements of the composite density operator are constructed

11
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as represented below.

〈Φi′ψj′| I(ψ) |Φiψj〉 = 〈ψj′| I(ψ) |ψj〉 · δi′i (1.19)

Our objective in this exercise is to reconstruct the density matrix of the system of

interest from the composite system. To evaluate the reduced density matrix of the

system of interest, the initial step involves the evaluation of the density operator of

the composite system governed by some Hamiltonian, at time ‘t’. Following this pro-

cedure, the reduced density matrix for the desired system is calculated by projecting

the combined density matrix into the subspace of interest. In general, the reduced

density matrix59 for a given system of interest is constructed by the partial trace

operation over all the unobserved spin variables present in the combined system (i.e.,

by taking the matrix elements of the total density matrix which are diagonal in the

unobserved variable ‘i’ and summing these elements over all ‘i’). As described earlier,

the expectation value is evaluated by the following procedure.

〈I(ψ, t)〉 =Tr [ρ(t)I(ψ)]

=
∑
i′ij′j

〈Φi′ψj′|ρ(t) |Φiψj〉〈Φiψj|I(ψ) |Φi′ψj′〉

=
∑
j′j

[∑
i

〈Φiψj′ |ρ(t) |Φiψj〉
]
〈ψj|I(ψ) |ψj′〉

=
∑
j′j

{
〈ψj′|

[∑
i

〈Φi|ρ(t) |Φi〉
]
|ψj〉

}
〈ψj|I(ψ) |ψj′〉

=
∑
j′j

{〈ψj′|ρ(ψ, t) |ψj〉}〈ψj|I(ψ) |ψj′〉 (1.20)

In the above representation, the reduced density matrix, ρ(ψ, t) and its elements are

defined by

〈ψj′ | ρ(ψ, t) |ψj〉 =
∑
i

〈Φiψj′| ρ(t) |Φiψj〉 (1.21)

To illustrate this concept, let us consider a composite system comprising of two spin-

1/2 nuclei. The composite system is represented by a matrix (ρ(t)) of dimension 4x4

(or in general, 2N x 2N). Based on the above description, the reduced density matrix

for the individual spins is deduced and represented below.

ρ(I1, t) =


ραα,αα(t) + ραβ,αβ(t) ραα,βα(t) + ραβ,ββ(t)

ρβα,αα(t) + ρββ,αβ(t) ρβα,βα(t) + ρββ,ββ(t)

 (1.22)
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and

ρ(I2, t) =


ραα,αα(t) + ρβα,βα(t) ραα,αβ(t) + ρβα,ββ(t)

ραβ,αα(t) + ρββ,βα(t) ραβ,αβ(t) + ρββ,ββ(t)

 (1.23)

In a similar vein, for a composite system comprising of three spin I=1/2 nuclei, the

reduced density matrices for the individual spins are calculated as represented below.

ρ(I1, t) =



ρααα,ααα(t) + ρααβ,ααβ(t)

+ραβα,αβα(t) + ραββ,αββ(t)

ρααα,βαα(t) + ρααβ,βαβ(t)

+ραβα,ββα(t) + ραββ,βββ(t)

ρβαα,ααα(t) + ρβαβ,ααβ(t)

+ρββα,αβα(t) + ρβββ,αββ(t)

ρβαα,βαα(t) + ρβαβ,βαβ(t)

+ρββα,ββα(t) + ρβββ,βββ(t)


(1.24)

ρ(I2, t) =



ρααα,ααα(t) + ρααβ,ααβ(t)

+ρβαα,βαα(t) + ρβαβ,βαβ(t)

ρααα,αβα(t) + ρααβ,αββ(t)

+ρβαα,ββα(t) + ρβαβ,βββ(t)

ραβα,ααα(t) + ραββ,ααβ(t)

+ρββα,βαα(t) + ρβββ,βαβ(t)

ραβα,αβα(t) + ραββ,αββ(t)

+ρββα,ββα(t) + ρβββ,βββ(t)


(1.25)

and

ρ(I3, t) =



ρααα,ααα(t) + ραβα,αβα(t)

+ρβαα,βαα(t) + ρββα,ββα(t)

ρααα,ααβ(t) + ραβα,αββ(t)

+ρβαα,βαβ(t) + ρββα,βββ(t)

ρααβ,ααα(t) + ραββ,αβα(t)

+ρβαβ,βαα(t) + ρβββ,ββα(t)

ρααβ,ααβ(t) + ραββ,αββ(t)

+ρβαβ,βαβ(t) + ρβββ,βββ(t)


(1.26)

In the following section, the utility of the reduced density matrix approach in the

theoretical description of NMR experiments is presented with few examples.

1.5.1 Detection of NMR signal

To begin with, let us consider a composite system comprising of two spin, I=1/2

nuclei. The Hamiltonian for such a system is represented by,

H = ω1I1z + ω2I2z + J12I1zI2z (1.27)

For the sake of illustration, the flip-flop operators are ignored in the scalar inter-

actions. In the conventional description of the spin dynamics, the NMR signal is

13
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calculated using the identity operator of the composite system.〈
I+

1 (t)
〉

=Tr
{
ρ(t)I+

1

}
=Tr

{
e−

i
~Htρ(0)e i~Ht.I+

1

}
=

4∑
i,j=1
〈φi|e−

i
~Htρ(0)e i~Ht |φj〉 〈φj|I+

1 |φi〉 (1.28)

where ρ(0) = aI1x + bI2x, is the initial condition of the system at time t=0. Since,

the Hamiltonian is diagonal in the basis chosen, the solution to the above equation

is straight forward. 〈
I+

1 (t)
〉

= aeiω1t cos
(
J12

2

)
t (1.29)

In a similar vein, the signal corresponding to spin-2 is evaluated .〈
I+

2 (t)
〉

=Tr
{
ρ(t)I+

2

}
=beiω2t cos

(
J12

2

)
t (1.30)

Alternatively, in the reduced density matrix approach, the NMR signal for the com-

posite system is calculated by evaluating the density operator of individual spins.

Based on our earlier description, the reduced density matrices for the individual

spins are calculated and represented below.

ρ(I1, t) =


0 ae−iω1t cos

(
J12
2

)
t

aeiω1t cos
(
J12
2

)
t 0

 (1.31)

and

ρ(I2, t) =


0 be−iω2t cos

(
J12
2

)
t

beiω2t cos
(
J12
2

)
t 0

 (1.32)

The signal corresponding to individual spins is evaluated separately through the Trace

operation described below. 〈
I+

1 (t)
〉

=Tr
{
ρ(I1, t)I+

1

}
=aeiω1t cos

(
J12

2

)
t (1.33)

〈
I+

2 (t)
〉

=Tr
{
ρ(I2, t)I+

2

}
=beiω2t cos

(
J12

2

)
t (1.34)
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1.5.2 Polarization transfer experiments in NMR

To extract molecular information (or parameters), polarization transfer experiments

are routinely employed in NMR spectroscopy. The molecular parameters in such

experiments are extracted by quantifying the polarization transfer /exchange among

spins. For demonstrative purposes, let us consider a coupled two-spin (spin-1/2)

system governed by the following zero quantum (ZQ) Hamiltonian.

H = ω1I1z + ω2I2z + J12
{
I1zI2z + 1

2(I+
1 I
−
2 + I−1 I

+
2 )
}

(1.35)

For the sake of clarity, the above Hamiltonian is represented in a compact form as

described below.

H = ω1I1z + ω2I2z +Dzz
12I1zI2z +DPM

12 I+
1 I
−
2 +DMP

12 I−1 I
+
2 (1.36)

where Dzz
12 = J12, DPM

12 = J12
2 (‘PM’ for plus-minus) and DMP

12 = J12
2 (‘MP’ for

minus-plus).

Our objective in this section is to calculate the polarization transfer between the

two spins. To begin with, let ρ(0) = aI1z + bI2z represent the initial state of the

composite system. In case of longitudinal polarization transfer experiments, the z-

component of the magnetization is measured using the composite density matrix,

ρ(t).

〈I1z(t)〉 = Tr {ρ(t)I1z} (1.37)

In the above equation, ρ(t) denotes the composite density matrix after time ‘t’. To

obtain a closed form of solution, the standard BCH (Baker-Campbell-Hausdorff)8,59

formula is employed.

(a+b)
2 0 0 0

0 (a− b)
{

1
2 −D

PM
12 DMP

12
sin2xt
x2

}
ρ(t)23 0

0 ρ(t)32 −(a− b)
{

1
2 −D

PM
12 DMP

12
sin2xt
x2

}
0

0 0 0 − (a+b)
2


(1.38)

where

ρ(t)23 = −(a− b)DPM
12

{(
ω1−ω2

2

)
sin2xt
x2 + i sin 2xt

2x

}

ρ(t)32 = −(a− b)DMP
12

{(
ω1−ω2

2

)
sin2xt
x2 − i sin 2xt

2x

}
15
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Using this result, the expectation value (i.e, the z-component of polarization) for

the individual spins is calculated.

〈I1z(t)〉 =Tr {(ρ(t))4X4(I1z)4X4}

=a− (a− b)DPM
12 DMP

12
sin2xt

x2 (1.39)

where x =
√(

ω1−ω2
2

)2
+DPM

12 DMP
12

〈I2z(t)〉 =Tr {[ρ(t)]4X4[I2z]4X4}

=b+ (a− b)DPM
12 DMP

12
sin2xt

x2 (1.40)

From the above expression, it is clear that the flip-flop operators in the scalar Hamil-

tonian are primarily responsible for the propagation of polarization among spins in

NMR spectroscopy. With increase in the number of spins, the above approach be-

comes intractable for analytic calculations. Hence, we revert to the reduced density

matrix approach.

Based on our earlier description, the reduced density matrices for the individual

spins are derived from the complete density matrix through the partial trace oper-

ation. For example, the first element of the reduced density matrix (refer to Eq.

1.22) is evaluated by calculating a set of matrix elements of the combined density

matrix. Employing BCH expansion, the elements of the reduced density matrix are

constructed from the combined density matrix as described below.

ρ(I1, t) =


ραα,αα(t) + ραβ,αβ(t) ραα,βα(t) + ραβ,ββ(t)

ρβα,αα(t) + ρββ,αβ(t) ρβα,βα(t) + ρββ,ββ(t)

 (1.41)

For the demonstrative purpose, let us evaluate the first element, ραα,αα(t) + ραβ,αβ(t).

ραα,αα(t) = 〈αα| e− i
~Htρ(0)e i~Ht |αα〉 (1.42)

〈αα| e−
i
~Ht =

[
cos

(
(ω1+ω2)

2

)
t− i sin

(
(ω1+ω2)

2

)
t
]
〈αα| (1.43)

ρ(0) = aI1z + bI2z (1.44)
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e
i
~Ht |αα〉 =

[
cos

(
(ω1+ω2)

2

)
t+ i sin

(
(ω1+ω2)

2

)
t
]
|αα〉 (1.45)

Now, ραα,αα(t) = (a+b)
2

In a similar vein,

ραβ,αβ(t) = 〈αβ| e− i
~Htρ(0)e i~Ht |αβ〉 (1.46)

〈αβ| e−
i
~Ht =

[
cosxt− i(ω1 − ω2)

2x sin xt
]
〈αβ| −

[
i
DPM

12
x

sin xt
]
〈βα| (1.47)

ρ(0) = aI1z + bI2z (1.48)

e
i
~Ht |αβ〉 =

[
cosxt+ i

(ω1 − ω2)
2x sin xt

]
|αβ〉+

[
i
DMP

12
x

sin xt
]
|βα〉 (1.49)

Now,

ραβ,αβ(t) =(a− b)1
2

[
cos2xt+ ((ω1 − ω2)/2)2 +DPM

12 DMP
12

((ω1 − ω2)/2)2 +DPM
12 DMP

12
sin2xt− 2DPM

12 DMP
12

sin2xt

x2

]

=(a− b)
[

1
2 −D

PM
12 DMP

12
sin2xt

x2

]
(1.50)

where x =
√(

ω1−ω2
2

)2
+DPM

12 DMP
12

Combining these two elements, the first element of the reduced density matrix cor-

responding to spin-1 is derived.

ραα,αα(t) + ραβ,αβ(t) = (a+ b)
2 + (a− b)

[
1
2 −D

PM
12 DMP

12
sin2xt

x2

]
(1.51)

Following the above procedure, the reduced density matrix for the individual spins are

calculated and the longitudinal single-spin polarizations are evaluated independently

through their individual reduced density matrices.

〈I1z(t)〉 =Tr {(ρ(I1, t))2X2(I1z)2X2}

=Tr





(a+b)
2 +

(a−b)
{

1
2−D

PM
12 DMP

12
sin2xt
x2

} 0

0
−(a−b)

{
1
2−D

PM
12 DMP

12
sin2xt
x2

}
−

(a+b)
2



 1
2 0

0 −1
2





=a− (a− b)DPM
12 DMP

12
sin2xt

x2 (1.52)
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where x =
√(

ω1−ω2
2

)2
+DPM

12 DMP
12

Similarly the signal corresponding to spin-2 is calculated by,

〈I2z(t)〉 =Tr {(ρ(I2, t)) (I2z)}

=Tr





(a+b)
2 −

(a−b)
{

1
2−D

PM
12 DMP

12
sin2xt
x2

} 0

0
(a−b)

{
1
2−D

PM
12 DMP

12
sin2xt
x2

}
−

(a+b)
2



 1
2 0

0 −1
2





=b+ (a− b)DPM
12 DMP

12
sin2xt

x2 (1.53)

The analytic expressions for the expectation values of the individual spins calculated

from the reduced density matrix approach are in accord with those employing full

density matrix methods.

In contrast to the description involving the composite density matrix (ρ(t)), the

reduced density matrix (ρ(I, t)) approach is comparatively less intense and its utility

in the description of polarization transfer in SSNMR experiments will be discussed

extensively in this thesis (refer Appendix-I(a) for expressions under DQ conditions).

1.6 Organization of the thesis

In this thesis, an analytic model integrating the concepts of effective Hamiltonians

and Reduced density matrix is proposed to describe the multi-spin effects arising in

SSNMR experiments. The approach presented is suitable to treat both homonuclear

and heteronuclear dipolar recouping experiments and could be employed to quantify

the experimental results emerging from such experiments.

For demonstrative purposes, the phenomenon of R2 is re-examined using the re-

duced density matrix formalism. To date, the R2 experiment remains the method

of choice for measuring 13C − 13C distances in uniformly labeled solids. In the R2

experiment, the dipolar interactions between spin pairs are reintroduced in a con-
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trolled fashion and have routinely been employed to measure interatomic distances in

systems of varying complexities. Since the number of structural constraints available

in the solid-state are restricted due to limited availability of resolution, the estima-

tion of constraints /interpretation of experimental data become important. With

this objective in mind, a thorough analysis of the magnetization exchange between

spins in R2 experiments is described in this thesis. In contrast to other existing

descriptions in the literature,45,47,49,51–55 the analytic model presented in this thesis

is computationally less intense and provides a better framework for elucidating the

role of residual 13C − 1H dipolar interactions on the exchange dynamics. Through

rigorous comparison with simulations emerging from exact numerical methods, the

validity of the analytic results is verified.

In the second chapter, the theory of R2 experiments is explained with in the

framework of the reduced density matrix. Integrating the concepts of reduced den-

sity matrix and effective Hamiltonians, polarization transfer between a spin-pair is

described analytically through expressions that resemble to those derived by Rabi.79

Additionally, polarization transfer in band selective experiments is described using a

model system comprising of three carbons.

In the third chapter, the role of 13C−1H dipolar interactions in R2 experiments is

discussed. In the past, the effect of protons were incorporated through phenomenolog-

ical damping constants. As an alternative, employing model systems I1−I2−SN and

I1−I2−I3−SN , the polarization transfer in R2 experiments is described analytically

through the reduced density matrix approach without increasing the complexity.

In the fourth chapter, the phenomenon of higher order and fractional Rotational

resonance conditions are discussed. Employing multi-mode Floquet theory, the phe-

nomenon of fractional R2 conditions in multiple-pulse based R2 experiments is dis-

cussed and illustrated with few examples. The results obtained in the thesis are

summarized in the final chapter along with possible extensions of the present work.
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1.7 Appendix-I

a. Polarization transfer in Double-quantum experiments

To describe the mechanism of polarization transfer experiments involving effective

Hamiltonians involving double-quantum operators (e.g. double-quantum version of

SPECIFIC CP80,81 experiment, RRTR experiments43,44,49 etc.), let us consider a cou-

pled two-spin (spin-1/2) system governed by the following equation.

H = ω1I1z + ω2I2z +Dzz
12I1zI2z +DPP

12 I
+
1 I

+
2 +DMM

12 I−1 I
−
2 (1.54)

To start with, let ρ(0) = aI1z + bI2z be the initial state of the composite system

at time, t=0. In the reduced density matrix approach, the longitudinal single-spin

polarizations (corresponding to I2 operators) are evaluated independently through

their individual reduced density matrices under the DQ Hamiltonian (Eq. 1.54).

〈I1z(t)〉 =Tr {ρ(I1, t).I1z}

=Tr





(a+b)
{

1
2−D

PP
12 DMM

12
sin2xt
x2

}
+

(a−b)
2

0

0 − (a−b)
2 −

(a+b)
{

1
2−D

PP
12 DMM

12
sin2xt
x2

}


 1

2 0

0 −1
2




=a− (a+ b)DPP
12 D

MM
12

sin2xt

x2 (1.55)

In a similar vein, the polarization build up on spin-2 is evaluated as given below.
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〈I2z(t)〉 =Tr {ρ(I2, t).I2z}

=Tr





(a+b)
{

1
2−D

PP
12 DMM

12
sin2xt
x2

}
−

(a−b)
2

0

0
(a−b)

2 −

(a+b)
{

1
2−D

PP
12 DMM

12
sin2xt
x2

}


 1

2 0

0 −1
2




=b− (a+ b)DPP
12 D

MM
12

sin2xt

x2 (1.56)

where x =
√(

ω1+ω2
2

)2
+DPP

12 D
MM
12 . When ρ(0) = aI1z, the above equations reduce

to a much simpler form.

〈I1z(t)〉 = a− aDPP
12 D

MM
12

sin2xt

x2 (1.57)

〈I2z(t)〉 = −aDPP
12 D

MM
12

sin2xt

x2 (1.58)

In contrast to the polarization transfer in ZQ process (Eq. 1.53), the polarization

transfer in DQ experiments has a negative sign (Eq. 1.58). Here, the reduced density

matrix approach provides better analytic insights into the mechanism of polarization

transfer in NMR experiments.
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Chapter 2

Description of R2 phenomenon

using Rabi oscillations and

Reduced density matrix theory

2.1 Rotational Resonance

2.1.1 Background

In 1963, Andrew and coworkers1,2 reported an interesting phenomenon depicting the

dependance of 31P nuclear relaxation times on sample spinning frequency in magic

angle spinning (MAS)3,4 experiments. Under normal experimental conditions, in a

magnetic field of strength 0.5 T, the spin-lattice relaxation times (T1) of the 31P nu-

clei in solid phosphorous pentachloride (comprising of tetrachloride and hexachloride

ions) were estimated to be 6 ms and 0.6 ms, respectively. Interestingly, when the

sample spinning frequency coincided with the chemical shift separation between the

two 31P nuclei, the measured T1 relaxation times were identical (0.6 ms) for both the
31P nuclei. However, for all other spinning frequencies, the two phosphorous nuclei

in phosphorous pentachloride tend to relax independently with different relaxation

times. This intriguing observation was explained in terms of the exchange of spin

energy between the two 31P nuclei through the flip-flop operators present in the dipo-

lar Hamiltonian and was subsequently termed as Rotational relaxation resonance or

nuclear cross-relaxation through sample rotation. Since the energy imbalance cre-
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Description of R2 phenomenon using Rabi oscillations and RDM theory

ated by the flip-flop processes was compensated through the mechanical rotation of

the sample, it was proposed that this new form of rotation induced cross-relaxation

should be possible in both homonuclear and heteronuclear spin systems. In addi-

tion to the T1 relaxation time measurements, Andrew and coworkers also reported

broadening of the peaks under these special conditions. Due to intermolecular spin

interactions (31P , 100% natural abundance), their experimental results could never

be utilized for extracting any molecular parameter of interest.

After a hiatus of almost two decades, Griffin and co-workers5–7 introduced a novel

approach of employing 13C- enriched spin pair samples (e.g. doubly labeled ZnAc)

for replicating the line broadening effects observed by Andrew and coworkers1,2 in

MAS experiments. To mimic an isolated spin pair and minimize the intermolecular

effects, the doubly labeled sample was diluted in natural abundance. In accord with

earlier observations,2 strong distortions to the line shapes along with splitting of the

individual resonances were observed in the vicinity of the rotational resonance (R2)

matching conditions (i.e., |υ1 − υ2| = NυR). In contrast to the experimental results

reported by Andrew and coworkers, the strategy of employing magnetically dilute

samples provided the luxury of quantifying the experimental observations under R2

conditions. With this objective, Griffin and coworkers5–7 proposed an experiment

(commonly referred to as longitudinal magnetization exchange), wherein the differ-

ence magnetization between the two spins in the sample was monitored as a function

of the mixing time. For the very first time in the literature, the resulting dipolar tra-

jectories were successfully simulated using molecular parameters such as the chemical

shielding tensors (magnitude and orientations) and dipolar coupling constants within

an isolated two-spin framework.

In a remarkable coincidence, Ernst and coworkers8 reported a novel method for

enhancing the spin diffusion among carbons in solid state MAS NMR experiments.

In a typical solid sample, spin diffusion takes place through the flip-flop operators

present in the dipolar Hamiltonian and could serve as an important experimental tool

for obtaining the structural information at the atomic level. Owing to the favorable

chemical shift dispersion, diffusion measurements among 13C nuclei were preferred in

spite of its lower natural abundance and low diffusion rate constants (0.01 s−1) avail-

able in the solid-state. In the conventional spin diffusion experiments (PDSD),9,10

the energy imbalance resulting from the flip-flop processes involving carbons is pro-
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vided through the interaction with the surrounding proton bath. Interestingly, when

the sample spinning frequency (multiple of it) was adjusted to the chemical shift dif-

ference between specific sites, their spin diffusion rates get enhanced. Subsequently,

this mode of spin diffusion was termed by Ernst and coworkers as ‘rotor-driven’ spin

diffusion (RDSD)8 in solid-state NMR. In contrast to the PDSD experiments, the dif-

fusion in RDSD experiments takes place at faster time-scales and are chemical shift

selective. Since the energy mismatch (resulting from the flip-flop processes) in RDSD

experiments are compensated by the mechanical rotation of the sample, coupling to

the proton bath is detrimental. Consequently, it was realized that MAS experiments

implemented at R2 conditions could present an attractive solution for chemical shift

selective polarization transfer among nuclei and could serve as a tool for extracting

interatomic homonuclear distances in solid-state NMR.

To this end, the initial attempt to describe the spin dynamics under R2 con-

ditions in MAS experiments was provided by Gan et al11. In the model proposed

by Gan et al, the polarization transfer between two spins under R2 conditions was

explained through a psuedo-spin model comprising of virtual spin states. Following

this approach, Levitt et al12 presented a model for describing the spin dynamics in

the Liouville space. To minimize the complexity in the Liouville space, Levitt et al

proposed an approach, wherein the spin dynamics in the Liouville space is described

in a reduced subspace (commonly referred to as "zero-quantum" subspace) through

a simple vector model (comprising of the set of operators Iz23, I
y
23 and Ix23) defined

on the basis of the fictitious spin operator framework.12 The z-component of this

vector comprises of the difference longitudinal magnetization, while the transverse

components comprise of the flip-flop operators. At the exact resonance condition,

the longitudinal magnetization is flipped to the transverse plane and the dynamics is

very similar to the standard description of single-pulse experiment using Bloch-type

equations. In the transverse plane, the magnetization decays with a rate constant12

(r = T−1
ZQ) and was presumed to be similar to the T2 spin-spin relaxation encountered

in standard NMR experiments. Although, such an approach minimizes the compu-

tational time and is quite handful in the description of isolated spin pair systems,

the framework presented is less suitable for quantitative purposes. Additionally, the

proposed model only presents a framework for the inclusion of a phenomenological

damping rate constant without any physical basis.
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As an alternative to the existing descriptions based on Average Hamiltonian theory

(AHT),13–15 Vega and coworkers16 provided a theoretical framework based on Floquet

theory.17–25 In their approach, the spin dynamics under R2 conditions was explained

through the concept of level-crossings between the dressed Floquet states. Although,

the approach presented is refreshingly new, the description is semi-analytical and does

not present a comprehensive framework for describing the underlying spin dynamics

in R2 experiments. In an alternate approach, Ramachandran and coworkers26,27

proposed a model for describing the spin dynamics in R2 experiments in the Floquet-

Liouville space. Employing the multipole formulation23,25 of Floquet theory, the

polarization transfer among spins in R2 experiments was described using a set of

coupled differential equations corresponding to ZQ coherences of rank 0,1 and 2.

Though the approach presents a framework for a complete description of the spin

dynamics, the dimension of the problem increases drastically with the number of

spins present in the system. This limitation forms the main motivation behind this

thesis. To circumvent the problems encountered in other existing treatments, a new

analytic method based on the reduced density matrix28 theory is proposed29 in this

thesis. The framework outlined in this chapter is quite general to any experiment in

solid-state NMR and is not limited by the number of spins present in the system. For

demonstrative purpose, in this chapter we confine our discussion to the description of

R2 experiments (see Fig. 2.1) in isolated spin pair systems under idealized conditions

of heteronuclear decoupling.

CP!

CP!

t1!

Decoupling!

Mixing!

1H!

13C!
tmix!

Figure 2.1: Pulse sequence depicting the Rotational resonance (R2) experiment.

2.2 Definition of the problem

As an alternative to other existing descriptions in the literature, a sophisticated

version of the density operator formalism is proposed for describing the dramatic
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effects observed under R2 conditions in MAS experiments. Since, the Hamiltonians

under MAS are time-dependent and periodic, Floquet theory17–25 is employed to

describe the underlying spin dynamics. To reduce the complexity in the Floquet

description, effective Floquet Hamiltonians30,31 are derived through the method of

contact transformation.32,33 In general, the polarization transfer among a pair of

spins in R2 experiments is not an isolated phenomenon. To alleviate the complexities

encountered in the brute force density matrix calculations (mainly due to the spin

dimension of the problem), the concept of reduced density matrix (RDM)28 is invoked

in this thesis. Employing the effective Floquet Hamiltonians (to the desired order of

accuracy), effective reduced density matrices for the individual spins are proposed29

to describe the spin dynamics under R2 conditions. The advantages of the proposed

approach is illustrated below with a rigorous comparison with simulations emerging

from exact numerical methods.

2.3 Theory

2.3.1 Description of R2 in isolated spin pair (I1 − I2)

To describe the magnetization exchange between 13C nuclei under R2 conditions, a

model system comprising of two-spins (I1 and I2) is employed in this section. The

time-dependent MAS Hamiltonian for the same is represented by,

H(t) = HC
System(t) =

2∑
i=1

(
ω

(0)
i + ωi(t)

)
Iiz + ω12(t)

(
2I1zI2z − 1

2(I+
1 I
−
2 + I−1 I

+
2 )
)
(2.1)

For demonstrative purposes, the residual interactions between neighboring spins are

neglected in the present treatment (i.e ideal heteronuclear decoupling is assumed).

In the above equation, ω(0)
i represents the isotropic chemical shift and ωi(t), the

time-dependent components of the anisotropic interactions (such as chemical shift

anisotropy, dipolar interactions) are represented by, ωi(t) =
2∑

m=−2,m 6=0
ω

(m)
i eimωrt. The

components of the anisotropic interactions are discussed in chapter-1.

To deduce the R2 matching conditions, the Hamiltonian in the rotating frame

(Eq.(2.1)) is transformed into an interaction frame defined by the transformation
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operator, U1 = einωrtI1ze−inωrtI2z .

H̃(t) =U1H(t)U−1
1

=(ω(0)
1 − nωr)I1z + (ω(0)

2 + nωr)I2z +
2∑
i=1

2∑
m=−2,m 6=0

ω
(m)
i eimωrtIiz+

2∑
m=−2,m 6=0

ω
(m)
12

[
2I1zI2ze

imωrt − 1
2
(
I+

1 I
−
2 e

i(m+2n)ωrt + I−1 I
+
2 e

i(m−2n)ωrt
)]

(2.2)

In the interaction frame, the dipolar interactions (the flip-flop operators) have an

additional time-dependence resulting from the transformation operator. When the

index ‘n’ is adjusted to satisfy the conditions m+ 2n = 0 or m− 2n = 0, one of the

components of the dipolar flip-operator is time-independent and is responsible for the

flip-flop processes observed under R2 conditions.

To present an accurate description of the spin dynamics, the time-dependent

components of the CSA and dipolar interactions have to be incorporated in the de-

scription. To this end, we employ an analytic approach based on Floquet theory for

describing the spin dynamics under R2 conditions. In contrast to Average Hamil-

tonian theory (AHT),13–15 Floquet theory17–25 provides a more general framework

for describing time-dependent phenomenon in quantum mechanics. In the Floquet

formalism, the time-dependent Hamiltonian is transformed into a time-independent

Hamiltonian via Fourier series expansion. Employing the Floquet operators (which

are constructed from the direct product between the spin and Fourier operator), the

time-independent Floquet Hamiltonian is derived. To circumvent the complexity im-

posed by the infinite dimensionality in the Floquet-space, effective Hamiltonian30,31

based on the contact transformation procedure32,33 is employed in the present study.

Since the contact transformation is an operator equivalent of the standard Rayleigh-

Schrodinger perturbation theory, the Floquet Hamiltonian is split and re-expressed

as a sum comprising of a zero-order and a series of perturbing terms arranged in a

decreasing order of magnitude.

HF = H0 +H1 = H0 + (H1,d +H1,od) (2.3)

In the above equation, H1,d and H1,od represent the diagonal and off-diagonal Floquet

Hamiltonians, respectively. The operators that are diagonal in the Fourier dimension
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are included along H1,d, while the off-diagonal terms are included along H1,od.

H0 =ωrIF (2.4)

H1,d =(ω(0)
1 − nωr)[I1z]0 + (ω(0)

2 + nωr)[I2z]0+

G
(0)
12,PM

[
I+

1 I
−
2

]
0

+G
(0)
12,MP

[
I−1 I

+
2

]
0

(2.5)

H1,od =
2∑

m=−2,m 6=0

2∑
i=1

G
(m)
i [Iiz]m +

2∑
m=−2,m6=0

G
(m)
12 [I1zI2z]m+

2∑
m=−2,m 6=0

(
G

(m+2n)
12,PM

[
I+

1 I
−
2

]
m+2n

+G
(m−2n)
12,MP

[
I−1 I

+
2

]
m−2n

)
(2.6)

The IF operator in Eq. (2.4) represents the identity operator in the infinite dimen-

sional Floquet space (i.e. IF =
∞∑

n=−∞
n |n〉 〈n|, where |n〉 represents the Fourier ket).

In a similar vein, the Floquet spin operators are constructed by taking the direct prod-

uct between the spin (Iα) and Fourier operators (i.e. [Iα]m = Iα⊗
∞∑

n=−∞
|n〉 〈n+m|).

The notations and conventions are very similar to the one that is employed in refer-

ence [23].

The choice of the zero-order and perturbing Hamiltonians play an important

role in determining the accuracy of the predictions /results emerging from analytic

treatments based on effective Hamiltonians. In the present description, the time-

independent component of the dipolar Hamiltonian (containing the flip-flop opera-

tors) is included as a diagonal term in the perturbation, H1. The non-zero coefficients

in the Floquet Hamiltonian are tabulated in Tables 2.1 & 2.2. In the contact trans-

formation procedure, the above Floquet Hamiltonian (Eq. 2.3) is transformed by a

single or a series of unitary transformations. In the present study, a single unitary

transformation defined by S1 is employed as illustrated below.

Heff =eiλS1HF e
−iλS1

=H(1)
0 +H

(1)
1 +H

(1)
2 + .... (2.7)

In contrast to the Rayleigh-Schrodinger perturbation theory, the perturbation cor-

rections in the contact transformation procedure are obtained in terms of operators

(as opposed to matrix elements) resulting in effective Hamiltonians. Employing BCH

(Baker-Campbell-Hausdorff) expansion and combining like terms, the various orders

of correction to the effective Hamiltonians are derived systematically as illustrated
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below.

H
(1)
0 =H0

H
(1)
1 =H1 + i [S1, H0]

H
(1)
2 =H2 + i [S1, H1]− 1

2 [S1 [S1, H0]] (2.8)

In the above equation, H(1)
n denotes the effective Hamiltonian to order ’n’ derived from

the first transformation (S1). The transformation function, S1 plays an important

role in the effectiveness of the method and is carefully chosen to compensate the

off-diagonality in H1,od.

S1 =
2∑

m=−2,m 6=0
i

{ 2∑
i=1

C
(m)
i [Iiz]m + C

(m)
12 [I1zI2z]m

}
+

2∑
m=−2,m 6=0

i
{
C

(m+2n)
12,PM

[
I+

1 I
−
2

]
m+2n

+ C
(m−2n)
12,MP

[
I−1 I

+
2

]
m−2n

}
(2.9)

The ‘G’ and ‘C’ coefficients employed in the Floquet Hamiltonian and the transfor-

mation function, S1 are tabulated in Tables 2.1 and 2.2.

N=1, R2

G
(m)
i = ω

(m)
i G

(m)
ij = 2ω(m)

ij

G
(3)
(12/13),PM = −1

2ω
(2)
(12/13) G

(1)
(12/13),MP = −1

2ω
(2)
(12/13)

G
(−1)
(12/13),PM = −1

2ω
(−2)
(12/13) G

(−3)
(12/13),MP = −1

2ω
(−2)
(12/13)

G
(2)
(12/13),PM = −1

2ω
(1)
(12/13) G

(0)
(12/13),MP = −1

2ω
(1)
(12/13)

G
(0)
(12/13),PM = −1

2ω
(−1)
(12/13) G

(−2)
(12/13),MP = −1

2ω
(−1)
(12/13)

G
(m)
23,PM = −1

2ω
(m)
23 G

(m)
23,MP = −1

2ω
(m)
23

C
(m)
i = G

(m)
i

mωr
C

(m)
ij = G

(m)
ij

mωr

C
(m)
ij,PM = G

(m)
ij,PM

mωr
C

(m)
ij,MP = G

(m)
ij,MP

mωr

Table 2.1: The table depicts the G and C-coefficients involved in the Floquet Hamiltonian

and the transformation function, S1, for N=1 R2 condition.
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N=2, R2

G
(m)
i = ω

(m)
i G

(m)
ij = 2ω(m)

ij

G
(4)
(12/13),PM = −1

2ω
(2)
(12/13) G

(0)
(12/13),MP = −1

2ω
(2)
(12/13)

G
(0)
(12/13),PM = −1

2ω
(−2)
(12/13) G

(−4)
(12/13),MP = −1

2ω
(−2)
(12/13)

G
(3)
(12/13),PM = −1

2ω
(1)
(12/13) G

(−1)
(12/13),MP = −1

2ω
(1)
(12/13)

G
(1)
(12/13),PM = −1

2ω
(−1)
(12/13) G

(−3)
(12/13),MP = −1

2ω
(−1)
(12/13)

G
(m)
23,PM = −1

2ω
(m)
23 G

(m)
23,MP = −1

2ω
(m)
23

C
(m)
i = G

(m)
i

mωr
C

(m)
ij = G

(m)
ij

mωr

C
(m)
ij,PM = G

(m)
ij,PM

mωr
C

(m)
ij,MP = G

(m)
ij,MP

mωr

Table 2.2: The table depicts the G and C-coefficients involved in the Floquet Hamiltonian

and the transformation function, S1, for N=2 R2 condition.

Following the procedure described above, the second order corrections (refer Table

2.3 for more details) are evaluated and the effective Hamiltonian to second-order is

derived.

Heff =H(1)
0 +H

(1)
1 +H

(1)
2

H
(1)
1 =H1,d

H
(1)
2 = i

2 [S1, H1,od] (2.10)

As depicted in Eq. 2.10, the effective Floquet Hamiltonian comprises of corrections

to both single-spin (longitudinal) and two-spin flip-flop operators.

Heff = ωrIF +
2∑
i=1

Ai[Iiz]0 +
[
D12,PM

[
I+

1 I
−
2

]
0

+D12,MP

[
I−1 I

+
2

]
0

]
(2.11)

In contrast to the untransformed Floquet Hamiltonian (Eq. 2.3), the effective Flo-

quet Hamiltonian described above is block-diagonal in the Floquet-space. Following

the standard procedure described in the literature,23,26,27 the spin dynamics in the

Floquet-space is confined to the super block corresponding to the Fourier index (n=0).
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The validity of these approximations have been well tested with experimental results

and have been employed in the present study.

In the brute force density matrix approach, the dimension of the problem increases

with the spin dimension. For e.g. in the case of a two-spin system, the density matrix

is described by a matrix of dimension 4 x 4. To minimize this complexity and provide

additional insights, we employ the reduced density matrix approach. As described

in chapter-1, in the reduced density matrix approach, the reduced density matrix

for a particular spin ‘i’ is constructed from the complete density matrix by taking

the partial trace over all other unobserved spins in the description. In the present

case, the complete density matrix in the Floquet-space is evaluated by the following

expression.

ρ(t) = e−
i
~Heff tρ(0)e

i
~Heff t (2.12)

Subsequently, the reduced density matrix for spin-1 (ρ(1, t)) is calculated by taking

the trace over the spin-2.

ρ(1, t) =


2∑
i=1

ρ
α1Φ(1)

i ,α1Φ(1)
i

(t)
2∑
i=1

ρ
α1Φ(1)

i ,β1Φ(1)
i

(t)
2∑
i=1

ρ
β1Φ(1)

i ,α1Φ(1)
i

(t)
2∑
i=1

ρ
β1Φ(1)

i ,β1Φ(1)
i

(t)

 (2.13)

In the above equation, ρ
α1Φ(1)

i ,α1Φ(1)
i

(t) represents the matrix element
〈
α1Φ(1)

i

∣∣∣ ρ(t)
∣∣∣α1Φ(1)

i

〉
with Φ(1)

i representing the spin state of the second spin, I2 (say Φ(1)
1 = |α2〉 ,Φ(1)

2 =

|β2〉) with the superscript denoting the total number of spins other than the one

observed (say I1, in this example).

ρ(1, t) =

 1− |D12|2
x2 sin2xt 0

0 −(1− |D12|2
x2 sin2xt)

 (2.14)

In a similar vein, the reduced density matrix for spin I2 (ρ(2, t)) is derived by taking

the partial trace over the spin states corresponding to I1.

ρ(2, t) =


2∑
i=1

ρΦ(1)
i α2,Φ(1)

i α2
(t)

2∑
i=1

ρΦ(1)
i α2,Φ(1)

i β2
(t)

2∑
i=1

ρΦ(1)
i β2,Φ(1)

i α2
(t)

2∑
i=1

ρΦ(1)
i β2,Φ(1)

i β2
(t)



=

 |D12|2
x2 sin2xt 0

0 − |D12|2
x2 sin2xt

 (2.15)
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In the present study, polarization transfer is calculated from spin I1 to I2 (i.e. ρ(0) =

I1z). In contrast to the standard description, the expectation value of the desired

observable in the reduced density matrix approach is calculated by employing only

the corresponding reduced density operator as illustrated below.

〈OI(t)〉 = Tr[ρ(I, t).OI ] (2.16)

Subsequently, the polarization transfer from spin I1 to I2 under R2 conditions is

calculated by evaluating 〈Iz〉, as illustrated below.

〈I1z(t)〉 = 1− |D12|2

x2 sin2xt (2.17)

〈I2z(t)〉 = |D12|2

x2 sin2xt (2.18)

In the above equations, the coefficient ‘x’ comprises of the dipolar and chemical shift

offset terms i.e. x =
√
|D12|2 +

(
(A1−A2)

2

)2
.

At the exact R2 conditions, the dominant first-order contributions contained in

single-spin operators tend to zero (see Table 2.3) resulting in maximum transfer

of polarization. Far from the R2 matching conditions, the contributions from the

single-spin operators dominate and decrease the efficiency of transfer. The result

depicted in Eq. 2.18, resembles to the one derived by Rabi34 for an isolated two-level

system. In contrast to other analytic methods, the analytic expressions (Eq. 2.17 &

2.18) are computationally less intense and provide a better picture of the resonance

phenomenon in R2 experiments.

2.3.2 Description of R2 in three-spin (I1 − I2 − I3) system

The next stage in our study was to describe the multi-spin effects arising from a

neighbouring carbon, a situation often encountered in band-selective transfer of po-

larization in R2 experiments. To this end, a model system comprising of three carbons

was employed in the present study. The Hamiltonian for such a system is represented

by,

H(t) =
3∑
i=1

(
ω

(0)
i + ωi(t)

)
Iiz +

3∑
i,j=1;i<j

ωij(t)
(

2IizIjz −
1
2(I+

i I
−
j + I−i I

+
j )
)

(2.19)

Accordingly, the above spin Hamiltonian is transformed into an interaction frame

through an unitary transformation, U1 = einωrtI1ze−inωrtI2ze−inωrtI3z . The transformed
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Hamiltonian in the interaction frame is represented by, H̃(t) = U1H(t)U−1
1 .

H̃(t) =(ω(0)
1 − nωr)I1z + (ω(0)

2 + nωr)I2z + (ω(0)
3 + nωr)I3z +

3∑
i=1

ω
(m)
i eimωrtIiz

2∑
m=−2,m 6=0

ω
(m)
12

[
2I1zI2ze

imωrt − 1
2
(
I+

1 I
−
2 e

i(m+2n)ωrt + I−1 I
+
2 e

i(m−2n)ωrt
)]

+

2∑
m=−2,m6=0

ω
(m)
13

[
2I1zI3ze

imωrt − 1
2
(
I+

1 I
−
3 e

i(m+2n)ωrt + I−1 I
+
3 e

i(m−2n)ωrt
)]

+

2∑
m=−2,m6=0

ω
(m)
23 eimωrt

[
2I2zI3z −

1
2
(
I+

2 I
−
3 + I−2 I

+
3

)]
(2.20)

As described in the previous case, the above Hamiltonian is transformed into a time-

independent Floquet Hamiltonian in which the zero order and the perturbation terms

are represented by

H0 =ωrIF (2.21)

H1,d =(ω(0)
1 − nωr)[I1z]0 + (ω(0)

2 + nωr)[I2z]0 + (ω(0)
3 + nωr)[I3z]0+

3∑
i=2

(
G

(0)
1i,PM

[
I+

1 I
−
i

]
0

+G
(0)
1i,MP

[
I−1 I

+
i

]
0

)
(2.22)

H1,od =
2∑

m=−2,m 6=0

3∑
i=1

G
(m)
i [Iiz]m +

3∑
i,j=1,i<j

2∑
m=−2,m 6=0

G
(m)
ij [IizIjz]m+

3∑
i=2

2∑
m=−2,m 6=0

(
G

(m+2n)
1i,PM

[
I+

1 I
−
i

]
m+2n

+G
(m−2n)
1i,MP

[
I−1 I

+
i

]
m−2n

)
+

2∑
m=−2,m 6=0

(
G

(m)
23

[
I+

2 I
−
3

]
m

+G
(m)
23

[
I−2 I

+
3

]
m

)
(2.23)

The transformation function, S1 (off-diagonal) is chosen to compensate the off-diagonal

terms present in H1,od as represented below.

S1 =
2∑

m=−2,m 6=0

3∑
i=1

C
(m)
i [Iiz]m +

3∑
i,j=1,i<j

2∑
m=−2,m6=0

C
(m)
ij [IizIjz]m+

3∑
i=2

2∑
m=−2,m 6=0

(
C

(m+2n)
1i,PM

[
I+

1 I
−
i

]
m+2n

+ C
(m−2n)
1i,MP

[
I−1 I

+
i

]
m−2n

)
+

2∑
m=−2,m6=0

(
C

(m)
23,PM

[
I+

2 I
−
3

]
m

+ C
(m)
23,MP

[
I−2 I

+
3

]
m

)
(2.24)

The ‘G and C’ coefficients involved in the Floquet Hamiltonian and the transfor-

mation function, S1 are tabulated in Tables 2.1 and 2.2. Following the procedure

described, the effective Floquet Hamiltonian for the model three-spin system is de-

rived and represented below and see Table 2.3 for all the corrections depicted in
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Heff .

Heff =
3∑
i=1

AiIiz +
3∑
j=2

[
D1j,PMI

+
1 I
−
j +D1j,MP I

−
1 I

+
j

]
(2.25)

Employing the the reduced density matrix formalism, the polarization transfer

from spin I1 to I2 and I3 is calculated and expressed in terms of analytic expressions

given below.

〈I1z(t)〉 =1− |D12|2

x1,(12)2 sin2x1,(12)t−
|D13|2

x1,(13)2 sin2x1,(13)t (2.26)

〈I2z(t)〉 = |D12|2

x1,(12)2 sin2x1,(12)t (2.27)

〈I3z(t)〉 = |D13|2

x1,(13)2 sin2x1,(13)t (2.28)

The ‘x’ coefficients in the above equations have the following definitions.

x1,(12) =

√√√√|D12|2 +
(

(A1 − A2)
2

)2

(2.29)

x1,(13) =

√√√√|D13|2 +
(

(A1 − A3)
2

)2

(2.30)

2.4 Results and Discussion

To substantiate the analytic theory and demonstrate its utility in the interpretation

/analysis of R2 experiments, the dipeptide N-acetyl- (U-13C,15N) -L-valine-L-leucine

(VL) was employed (Fig. 2.2) as a model system in our studies. Being a prototype

of a typical biological system, such model systems have been routinely employed

in the past for testing NMR methodologies and pulse schemes. To illustrate the

magnetization exchange under R2 conditions, the model system depicted in Figure

2.2 is further split into smaller models (see Figure 2.3), representative of the strong,

intermediate and weak coupling regimes encountered in R2 experiments.

The simulations depicted in Figures 2.4 and 2.5 represent R2 simulations in a

powder sample. The powder simulations were performed using a three-angle Euler set

(ZCW) comprising of 6044 crystallite orientations. The analytic expressions derived

in Eqs. 2.17 & 2.18 were employed in the present study. To test the validity of

the analytic simulations, simulations emerging from exact numerical methods (SPIN

EVOLUTION) were employed in the present study.
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Coefficients First - order Second - order

A1
(
ω

(0)
1 − nωr

) 1
2
(
C

(m)
12,PMG

(−m)
12,MP − C

(m)
12,MPG

(−m)
12,PM

)
+ 1

2
(
C

(m)
13,PMG

(−m)
13,MP − C

(m)
13,MPG

(−m)
13,PM

)
︸ ︷︷ ︸

Dipolar(13C−13C)×Dipolar(13C−13C)

A2
(
ω

(0)
2 + nωr

)
−1

2
(
C

(m)
12,PMG

(−m)
12,MP − C

(m)
12,MPG

(−m)
12,PM

)
︸ ︷︷ ︸

Dipolar(13C−13C)×Dipolar(13C−13C)

A3
(
ω

(0)
3 + nωr

)
−1

2
(
C

(m)
13,PMG

(−m)
13,MP − C

(m)
13,MPG

(−m)
13,PM

)
︸ ︷︷ ︸

Dipolar(13C−13C)×Dipolar(13C−13C)

D12,PM −1
2ω

(k)
12

1
2
(
C

(m)
1 G

(−m)
12,PM − C

(m)
12,PMG

(−m)
1

)
− 1

2
(
C

(m)
2 G

(−m)
12,PM − C

(m)
12,PMG

(−m)
2

)
︸ ︷︷ ︸

CSA(13C)×Dipolar(13C−13C)

D12,MP −1
2ω

(k)
12 −1

2
(
C

(m)
1 G

(−m)
12,MP − C

(m)
12,MPG

(−m)
1

)
+ 1

2
(
C

(m)
2 G

(−m)
12,MP − C

(m)
12,MPG

(−m)
2

)
︸ ︷︷ ︸

CSA(13C)×Dipolar(13C−13C)

D13,PM −1
2ω

(k)
13

1
2
(
C

(m)
1 G

(−m)
13,PM − C

(m)
13,PMG

(−m)
1

)
− 1

2
(
C

(m)
3 G

(−m)
13,PM − C

(m)
13,PMG

(−m)
3

)
︸ ︷︷ ︸

CSA(13C)×Dipolar(13C−13C)

D13,MP −1
2ω

(k)
13 −1

2
(
C

(m)
1 G

(−m)
13,MP − C

(m)
13,MPG

(−m)
1

)
+ 1

2
(
C

(m)
3 G

(−m)
13,MP − C

(m)
13,MPG

(−m)
3

)
︸ ︷︷ ︸

CSA(13C)×Dipolar(13C−13C)

Table 2.3: The table depicts the first-order and second-order corrections (for N=1 & 2

conditions) involved in the effective Hamiltonians (Eqns. 2.11 and 2.25). Depending on the

matching conditions (|υ1 − υ2| = NυR), the "k" indices are (a) N=1 (n=1/2): k= -1 and

+1 (b) N=2 (n=1): k= -2 and +2 for D12(13),PM and D12(13),MP respectively. The ‘G’ and

‘C’ coefficients in the above table are identical to those listed in Tables 2.1 & 2.2.
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Figure 2.2: Schematic diagram of N-Acetyl-L-Valine-L-Leucine derived from the crystal

structure35.

We begin with simulations depicting the polarization transfer from spin I1 to I2.

In the mixing time experiments, the polarization transfer is monitored as a function of

mixing time under constant spinning frequency. As depicted in Figures 2.4 & 2.5, the

polarization transfer profile is oscillatory in nature. This behavior is substantiated by

the analytic expressions (Eqs. 2.17 & 2.18) presented in the previous section. When

the magnitude of the dipolar coupling increases, the dipolar oscillations increase and

the time of equilibration between the spin polarizations decreases in time (i.e. the

polarization between the spins equilibrate at shorter mixing times). In contrast to the

profile depicted in Fig. 2.4, the dipolar oscillations in the N=2 matching condition

(Fig. 2.5) are highly oscillatory and tend to equilibrate at longer mixing times. This

trend is prominent in the medium and weaker coupling regimes (panels b1, c1 in

Fig. 2.5). The analytic expressions depicting the polarization transfer resemble to

those derived by Rabi34 for describing transition possibilities in a two-level system.

In the original description by Rabi , the transition probability from the ground state

to the excited state was calculated using time-dependent perturbation theory. In the

absence of dissipation, the transition probabilities oscillate back and forth without

any drop in intensity. To mimic the observations observed in experiments, Rabi

proposed an approach of including an exponential damping term (exp(-t/T)) along

the calculated transition probabilities. Depending on the magnitude of the damping
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Figure 2.3: Model systems constructed from Fig. 2.2 for describing the polarization

transfer in R2 experiments among 13C nuclei. The models depicted in panels (a), (b)

and (c) resemble the I1 − I2 system and correspond to the strong, intermediate and weak-

coupling regimes, respectively. The models depicted in panels (d) and (e) are representative

of the I1 − I2 − I3 system. The dipolar coupling constants between spin pairs are depicted

in all the models.

terms, the transitions probabilities oscillate with a decrease in their amplitude with

time.

Interestingly, the dipolar oscillations in the polarization transfer profile depicted

in Figures 2.4 & 2.5 decrease with time. At the outset, this result (emerging from

simulations) seems intriguing and counter intuitive owing to the fact that the system

under consideration is an isolated two-spin system and resembles very much to the

two-level system employed by Rabi in his calculations. This discrepancy results

from the spatial anisotropy of the dipolar interactions in the solid-state. In a typical

polycrystalline sample, due to restricted mobility, the dipolar coupling constants vary

across the sample and interference effects emerging from different spin pairs (of the

same kind) are responsible for the damping observed in the profiles depicted in Figures

2.4 & 2.5. To the best of our knowledge, such a description of the R2 phenomenon

does not exist in the literature.

To justify this explanation, simulations employing a single orientation are de-

42



Description of R2 phenomenon using Rabi oscillations and RDM theory

0 10 20 30 40 500
0.2
0.4
0.6
0.8

1

0 10 20 30 40 50

0 20 40 60 80 1000
0.2
0.4
0.6
0.8

1

In
te

ns
ity

0 20 40 60 80 100

0 30 60 90 120 150
                                     Mixing time (ms)

0
0.2
0.4
0.6
0.8

1

0 30 60 90 120 150

(a1) (a2)

(b1) (b2)

(c1) (c2)

N=1

Figure 2.4: The figure depicts the polarization transfer between 13C nuclei in a two-spin

system (from spin-1 (red) to spin-2 (blue)) as a function of mixing time under constant

spinning frequency (N=1, R2 condition) with powder averaging. For illustrative purposes,

polarization transfer in the strong (VCo → VCβ, 2.54 Å; panels: a1, a2), intermediate

(VCo → VCγ1 , 3.90 Å; panels: b1, b2) and weak (LeuCo → VCβ, 5.44 Å; panels: c1, c2)

coupling regimes are depicted. The role of CSA contributions (absent) is highlighted in

panels (a2, b2, c2). The analytic simulations (based on Eqs. (2.17) & (2.18)) are depicted

through dots, while the numerical simulations are denoted by solid lines. All the simulation

parameters are given in Table 2.4.

picted in Fig. (2.6). As depicted in this figure, in the absence of powder averaging

(contributions from all crystallites), the polarization transfer oscillates back and forth

without any damping. In accord with the simulations depicted in Figures 2.4 & 2.5,

the frequency of oscillations decrease with the dipolar coupling constant. Hence, the

damping observed in a typical polycrystalline sample could be interpreted as an in-

terference effect (i.e. superposition of different sine curves) emerging from dipolar

coupling constants associated with different crystallite orientations. In contrast to

other existing descriptions, the present approach provides a framework for unravel-

ling the phenomenon of decoherence frequently encountered in SSNMR experiments

involving powder samples. Since, a real system comprises of other interactions result-
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Spin 2 
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1.0 

 
(160, 33, 90) 

(137, 25, 105) 
(160, 33, 90) 

(-100, 23, 047) 
(-132, 35, -4) 

 
VCβ 
VCγ1 
VCα 
LCβ 
LCγ 

 
11.3 
-15.3 
11.3 
24.0 
11.3 

 
0.91 
0.0 

0.91 
0.92 
0.91 

 
(119, 94, -13) 
(-41, 26, 48) 

(119, 94, -13) 
(-49, 48, -170) 
(138, 88, -75) 

 
LCo 

 
-67.6 

 
0.99 

 
(104, 50, 130) 

 
VCβ 

 
11.3 

 
0.91 

 
(148, 89, -75) 

 
Spin pair (13C) 

 
Chemical shift difference (kHz) 

 
VCo - VCβ 

 
18 

 
VCo - VCγ1 

 
19 

 
LCo - VCβ 

 
18 

 
VCo - VCα; VCo - LCβ 

 
15, 17 

 
VCo - VCβ; VCo - LCγ 

 
18, 18.2 

 
Table 2.4: The figure depicts the CSA and chemical shift parameters (Ref. 26) of the

models depicted in Figure 2.3, used in various simulations in this thesis.

ing from insufficient heteronuclear decoupling, Levitt et al12 introduced the inclusion

of a phenomenological damping term (TZQ) to account for the depolarization (due to

insufficient decoupling) observed in R2 experiments.

In the model presented in this chapter, the damping observed in experiments

could be incorporated by including an exponential damping term (as proposed by

Rabi) along the final expressions in the calculations presented in the previous section

(see Eqs. 2.17 & 2.18). As illustrated in Figure 2.7, inclusion of the exponential

damping term decreases the intensity and amplitude of the oscillations. Although

such phenomenological models yield results that resemble to those obtained from

experiments, the physical basis for such effects needs to be investigated in greater

detail. Additionally, from a conceptual viewpoint, inclusion of a uniform damping

term for all the spin pairs in a polycrystalline sample seems highly inappropriate and

unjustifiable. A more rigorous description incorporating the effects of neighboring

protons will be presented in chapter-3. As depicted in Fig. 2.7, the observed damping

seems to be drastic in the weak coupling regime. Since long range distances (>4Å)
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Figure 2.5: The figure depicts the polarization transfer between 13C nuclei in a two-spin

system (from spin-1 (red) to spin-2 (blue)) as a function of mixing time under constant

spinning frequency (N=2, R2 condition) with powder averaging. The role of CSA contri-

butions (absent) is highlighted in panels (a2, b2, c2) and the description is similar to which

is given in Figure 2.4. All the simulation parameters are given in Table 2.4.

yield important constraints in refining the side chain orientations, careful analysis of

such schemes is very essential at least in the weak coupling regime.

As an alternative to mixing time experiments, Costa et al36 proposed a method

(Rotational resonance width, R2W ) wherein, the magnetization exchange is moni-

tored as a function of sample spinning frequency under constant mixing times. The

constant time experiments were presumably designed to minimize the effects of re-

laxation in the data analysis of R2 experiments. In Figures 2.8 & 2.9, polarization

transfer in R2W experiment is described both for the N=1 and N=2 condition. As

depicted, the width of the resonance (off-resonance magnetization exchange) increases

with an increase in the coupling constant and is maximum for the N=1, R2 condition.

Far away from the R2 condition, the detuning effect introduced by the longitudinal

single-spin operators (ω1−ω2 + 2nωr) increases and decreases the efficiency of trans-

fer. This effect is very similar to the detuning frequency (Ω = ω−ω0) defined by Rabi

with regard to the transitions observed in a two-level system. As depicted, in the
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Figure 2.6: The simulations depict the polarization transfer observed in a two-spin system

in R2 experiments (both N=1 & 2) when powder averaging is ignored. In the absence of

powder averaging, the polarization exchange is oscillatory and resembles to the famous Rabi

oscillations. Additionally, the oscillations are periodic and undamped. All the simulation

parameters are similar to those given in Fig. 2.4 and Table 2.4.

absence of the CSA interactions (see panels (a2, b2, c2) in Figures 2.4, 2.5, 2.8 & 2.9),

the efficiency of transfer more or less seems unaffected. However, at higher magnetic

field strengths, the second-order cross terms between CSA and dipolar interactions

might reduce the efficiency of transfer between the spin pair. As discussed earlier,

the inclusion of experimental damping just decreases the efficiency of transfer (Fig.

2.10).

The next stage in our study was to elucidate the role of the neighbouring carbons

in the R2 exchange dynamics. In the band-selective transfer of polarization from

carbonyl carbon to aliphatic carbons, there could be an overlap of the R2 matching

conditions. In the simulations depicted in Figures 2.11 & 2.12, polarization transfer

from I1 (representative of the carbonyl carbon) to I2, I3 (representative of the carbons

in the aliphatic region) is depicted. Since, the chemical shifts of the carbons in

the aliphatic region are very similar, only band-selective transfer of polarization is
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Figure 2.7: The figure depicts the role of phenomenological damping terms (solid line)

on the magnetization transfer observed in R2 experiments (both N=1 & 2). The following

damping parameters have been included in the simulations: TZQ=21ms (panels: a1, a2),

TZQ=23.7ms (panels: b1, b2) and TZQ=24.6ms (panels: c1, c2). The simulations depicted

in dots correspond to the undamped case. All the simulation parameters are similar to

those given in Fig. 2.4 and Table 2.4.

possible. The chemical shifts of the carbons present in the models depicted in Figure

2.3 (panels d, e) correspond to this situation and present an excellent system to verify

the validity of our analytic theory (Eqns. 2.27 & 2.28)). In Figure 2.11, polarization

transfer from the valine carbonyl carbon to the aliphatic carbons (valine alpha carbon,

Leucine beta carbon (VCo → VCα, 1.50 Å and VCo → LCβ, 3.24 Å) is depicted (panel

(d1) for N=1, (d2) for N=2).

Although, the model system (see Figure 2.3d) comprises of both a stronger and a

weaker coupling, the effects of dipolar truncation are absent in the isolated three-spin

system (I1− I2− I3) (panels, d1 & d2). i.e, the efficiency of transfer from VCo → LCβ

(r=3.24 Å) remains uneffected in the presence of the stronger VCo → VCα coupling.

To further substantiate this aspect, simulations depicting polarization transfer from

valine carbonyl carbon to the aliphatic carbons (valine beta carbon, Leucine gamma

carbon (VCo → VCβ , 2.54 Å and VCo → LCγ, 3.26 Å ) are depicted in Figure 2.12,

panels e1 (N=1) and e2 (N=2). In contrast to the previous model (Figure 2.3d), the
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Figure 2.8: The simulations depict the spinning frequency dependent polarization in R2W

experiments (N=1) under constant mixing times. All the simulation parameters are similar

to those given in Fig. 2.4 and Table 2.4.
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Figure 2.9: The simulations depict the spinning frequency dependent polarization in R2W

experiments (N=2) under constant mixing times. All the simulation parameters are similar

to those given in Fig. 2.4 and Table 2.4.
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Figure 2.10: The figure depicts the role of phenomenological damping terms (solid line)

on the magnetization transfer observed in R2W experiments (both N=1 & 2). The following

damping parameters have been included in the simulations: TZQ=21ms (panels: a1, a2),

TZQ=23.7ms (panels: b1, b2) and TZQ=24.6ms (panels: c1, c2). The simulations depicted

in dots correspond to the undamped case. All the simulation parameters are similar to

those given in Fig. 2.4 and Table 2.4.

resonance conditions in the chosen system (Figure 2.3e) are highly overlapping.

As depicted, the extend of overlap decreases with an increase in the resonance

condition. In contrast to other descriptions based on the Liouville space, the analytic

simulations based on the reduced density matrix approach are in excellent agree-

ment with the numerical simulations and present an attractive tool for simulating

experimental data in band-selective R2 experiments. Additionally, the simulations

emerging from the reduced density matrix approach are computationally less intense

and could be employed to fit experimental data with multiple fit parameters that

include chemical shift anisotropic parameters (magnitude and orientation), dipolar

coupling constants etc. A more detailed description of the spin dynamics in the

presence of heteronuclear decoupling will be discussed in chapter-3.
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Figure 2.11: The simulations depict the role of neighboring carbons in the polarization

transfer observed in R2 experiments. The polarization transfer from valine carbonyl carbon

to valine alpha carbon and leucine beta carbon (VCo → VCα, 1.50 Å and VCo → LCβ,

3.24 Å) as depicted in Figure 2.3(d). The numerical simulations (solid line) are from

SPINEVOLUTION37 and the analytic simulations (circles) are performed using the three-

spin RDM expressions (Eqns. 2.27 & 2.28). All the simulation parameters are given in

Table 2.4.

17.5 18 18.5
                                    Spinning frequency (kHz)

0

0.2

0.4

0.6

In
te

ns
ity

8.75 9 9.250

0.2

0.4

0.6N=1 N=2(e1) (e2)

Figure 2.12: The simulations depict the role of neighboring carbons in the polarization

transfer observed in R2 experiments. The polarization transfer from valine carbonyl carbon

to valine beta carbon and leucine gamma carbon (VCo → VCβ, 2.54 Å and VCo → LCγ , 3.26

Å) as depicted in Figure 2.3(e). The numerical simulations (solid line) are from SPINEVO-

LUTION37 and the analytic simulations (circles) are performed using the three-spin RDM

expressions (Eqns. 2.27 & 2.28). All the simulation parameters are given in Table 2.4.
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2.5 Conclusions

In summary, the reduced density matrix approach presents a simplified yet accurate

description of the R2 phenomenon observed in MAS experiments. In contrast to other

existing methods, the analytic expressions resemble to those derived by Rabi and are

computationally robust and facilitate simulations involving multiple fit parameters.

Although, quantitative description of relaxation has not been attempted, the model

presented in this chapter illustrates the shortcomings that arise from the inclusion of

phenomenological damping terms. A more detailed description of the R2 dynamics

in the presence of coupling to the surrounding bath of protons will be discussed in

the following chapter.
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Chapter 3

Description of multi-spin effects

and the role of heteronuclear

decoupling in R2 experiments

3.1 Background

To extend the utility and reliability of R2 experiments in structure determination,

quantifying experimental data remains essential. Since the number of 13C − 13C dis-

tance constraints estimated from R2 experiments are limited by the lack of sufficient

resolution, the precision of the measured 13C − 13C distances play an important role

in the overall structure refinement. In a real system, polarization transfer between
13C nuclei under R2 conditions takes place in the presence of abundant protons. To

minimize the role of protons in the magnetization exchange, strong decoupling fields

are applied on the proton channel during the R2 dipolar mixing period.1–4 Although

such methods improve the efficiency of polarization transfer under R2 conditions, the

effects of the residual heteronuclear dipolar interactions (13C − 1H) can not be elim-

inated altogether. Hence, the inclusion of a phenomenological damping term (T−1
ZQ)

in the R2 simulations within an isolated two-spin framework was proposed as a solu-

tion. In the analytic model proposed by Levitt et al.5, the spin dynamics under R2

conditions is described through a vector model defined in the ZQ subspace. In the

ZQ subspace, the spin dynamics is described within an isolated spin-pair framework

through components of angular momentum vector defined along the x, y, z axis in
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the ZQ subspace. The recoupled dipolar Hamiltonian depicts a vector in the trans-

verse plane while the longitudinal difference polarization is defined along the z-axis.

Analogous to the Bloch model of relaxation, a phenomenological damping term in

the ZQ subspace is included to compensate for both experimental imperfections and

inaccuracies in theoretical descriptions.

In the strong coupling regime, the exchange dynamics is predominantly influenced

by the reintroduced dipolar interactions. Under near idealized decoupling conditions,

the multi-spin effects seem less influential. On the contrary, in the weak-coupling

regime, the efficiency of transfer is inherently slow and the effects of relaxation come

into play. Since important measurements constraining the orientation of side chains

with respect to backbone are contained in the long-range contacts, extreme care needs

to be exercised in the interpretation of experimental data in the weaker coupling

regime.1–4 To this end, Costa et al.6 proposed constant mixing time experiments to

minimize the effects of relaxation. Although, constant mixing time experiments seem

to be an attractive solution, the effects of multi-spin interactions cannot be eliminated

altogether. Hence, the validity of phenomenological damping models employed in the

existing treatments needs to be revisited.

3.2 Definition of the problem

To settle this issue and present a comprehensive description of the exchange dynamics

under R2 conditions, a model system (comprising of N-protons in the form of I1−I2−

SN and I1− I2− I3−SN) was employed in the present study. Employing the reduced

density matrix approach, the role of different heteronuclear decoupling schemes7–26

(during R2 mixing period) is described analytically through effective Hamiltonians.

3.3 Theory

3.3.1 Effect of CW heteronuclear decoupling

A. I1 − I2 − SN system

To elucidate the role of protons in the magnetization exchange between 13C nuclei

in R2 experiments, we begin our discussion with a model system (I1 − I2 − SN)
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comprising of two carbons (denoted by I) coupled to N -protons (denoted by S).

Figure 3.1 depicts the CW7–9 field employed to decouple the heteronuclear dipolar

(13C − 1H) interactions during R2 mixing time.

mixing!

1H!

13C!
tmix!

CW!

Figure 3.1: Schematic diagram depicting the CW decoupling during the R2 mixing time.

The time-dependent MAS Hamiltonian for such a system is represented by,

H(t) = HC
System(t) +HC−H

System−Bath(t) +HH
Bath(t) +HH

RF (3.1)

In the above representation, HC
System(t) denotes the Hamiltonian of the system of

interest (13C) comprising of the chemical shift and dipolar interactions.

HC
System(t) =

2∑
m=−2

2∑
i=1

ω
(m)
Ii
eimωrtIiz+

2∑
m=−2;m6=0

ω
(m)
I1I2e

imωrt
(
2I1zI2z − 1

2(I+
1 I
−
2 + I−1 I

+
2 )
)

(3.2)

In a similar vein, HH
Bath(t) denotes the interactions present among the surrounding

bath of protons.

HH
Bath(t) =

2∑
m=−2

N∑
j=1

ω
(m)
Sj
eimωrtSjz+

2∑
m=−2;m 6=0

N∑
j,k=1;j<k

ω
(m)
SjSk

eimωrt (2SjzSkz − (SjxSkx + SjySky)) (3.3)

The coupling of the system with the surroundings is represented by HC−H
System−Bath(t)

and comprises of the heteronuclear dipolar interactions.

HC−H
System−Bath(t) =

2∑
m=−2;m6=0

2∑
i=1

N∑
j=1

ω
(m)
IiSj

eimωrt2IizSjz (3.4)

To improve the efficiency of magnetization exchange between the 13C nuclei, intense

RF fields (also referred to as decoupling fields) are applied along the proton channel
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to minimize the interaction between the carbons and the surrounding proton bath.

This action is represented quantum mechanically by

HH
RF =

N∑
j=1

ωrfSjx (3.5)

To deduce the R2 matching conditions and describe the effects of RF irradiation, the

Hamiltonian in the rotating frame (Eq. (3.1)) is transformed into an interaction frame

defined by the transformation operators, U1 =
N∑
j=1

ei
π
2 Sjy and U2 = einωrtI1ze−inωrtI2z

as represented below.

H̃(t) = U2U1H(t)U−1
1 U−1

2 (3.6)

H̃(t) = H̃C
System(t) + H̃C−H

System−Bath(t) + H̃H
Bath(t) + H̃H

RF (3.7)

A detailed representation of the Hamiltonian in the interaction frame is given below.

H̃C
System(t) =(ω(0)

I1 − nωr)I1z + (ω(0)
I2 + nωr)I2z +

2∑
m=−2;m6=0

2∑
i=1

ω
(m)
Ii
eimωrtIiz+

2∑
m=−2;m 6=0

ω
(m)
I1I2

[
2I1zI2ze

imωrt − 1
2

(
I+

1 I
−
2 e

i(m+2n)ωrt + I−1 I
+
2 e

i(m−2n)ωrt
)]

(3.8)

H̃C−H
System−Bath(t) = −

2∑
m=−2;m 6=0

2∑
i=1

N∑
j=1

ω
(m)
IiSj

eimωrt2IizSjx (3.9)

H̃H
Bath(t) =−

2∑
m=−2

N∑
j=1

ω
(m)
Sj
eimωrtSjx+

2∑
m=−2;m 6=0

N∑
j,k=1;j<k

ω
(m)
SjSk

eimωrt (2SjxSkx − (SjzSkz + SjySky)) (3.10)

H̃H
RF =

N∑
j=1

ωrfSjz (3.11)

As described in chapter-2, to minimize the complexity arising from time-dependent

Hamiltonians, Floquet theory is employed to transform the Hamiltonian (Eq. 3.7)

into a time-independent Hamiltonian as defined below.

HF = H0 +H1 = H0 + (H1,d +H1,od) (3.12)

In the above Floquet Hamiltonian, H1,d and H1,od represent the diagonal (diagonal

in the Fourier dimension) and off-diagonal contributions and have the following defi-

nitions.

H0 = ωrIF +
N∑
j=1

ωrf [Sjz]0 (3.13)
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H1,d =(ω(0)
I1 − nωr)[I1z]0 + (ω(0)

I2 + nωr)[I2z]0+

G
(0)
I1I2,PM

[
I+

1 I
−
2

]
0

+G
(0)
I1I2,MP

[
I−1 I

+
2

]
0

(3.14)

HC−C
1,od =

2∑
m=−2,m 6=0

2∑
i=1

G
(m)
Ii

[Iiz]m +
2∑

m=−2,m 6=0
G

(m)
I1I2 [I1zI2z]m+

2∑
m=−2,m 6=0

(
G

(m+2n)
I1I2,PM

[
I+

1 I
−
2

]
m+2n

+G
(m−2n)
I1I2,MP

[
I−1 I

+
2

]
m−2n

)
(3.15)

HC−H
1,od =

2∑
i=1

N∑
j=1

2∑
m=−2,m 6=0

(
G

(m)
IiSj ,ZP

[
IizS

+
j

]
m

+G
(m)
IiSj ,ZM

[
IizS

−
j

]
m

)
(3.16)

HH−H
1,od =

N∑
j=1

2∑
m=−2

(
G

(m)
Sj ,P

[
S+
j

]
m

+G
(m)
Sj ,M

[
S−j
]
m

)
+

N∑
j,k=1,j<k;

2∑
m=−2,m6=0

(
G

(m)
SjSk,PP

[
S+
j S

+
k

]
m

+G
(m)
SjSk,MM

[
S−j S

−
k

]
m

)
+

N∑
j,k=1,j<k;

2∑
m=−2,m6=0

(
G

(m)
SjSk

[SjzSkz]m +G
(m)
SjSk,PM

[
S+
j S
−
k

]
m

+G
(m)
SjSk,MP

[
S−j S

+
k

]
m

)
(3.17)

S1 =i
2∑

m=−2,m 6=0

2∑
i=1

C
(m)
Ii

[Iiz]m + i
2∑

m=−2,m 6=0
C

(m)
I1I2 [I1zI2z]m+

i
2∑

m=−2,m 6=0

(
C

(m+2n)
I1I2,PM

[
I+

1 I
−
2

]
m+2n

+ C
(m−2n)
I1I2,MP

[
I−1 I

+
2

]
m−2n

)
+

i
2∑
i=1

N∑
j=1

2∑
m=−2,m 6=0

(
C

(m)
IiSj ,ZP

[
IizS

+
j

]
m

+ C
(m)
IiSj ,ZM

[
IizS

−
j

]
m

)
+

i
N∑
j=1

2∑
m=−2

(
C

(m)
Sj ,P

[
S+
j

]
m

+ C
(m)
Sj ,M

[
S−j
]
m

)
+

i
N∑

j,k=1,j<k;

2∑
m=−2,m6=0

(
C

(m)
SjSk,PP

[
S+
j S

+
k

]
m

+ C
(m)
SjSk,MM

[
S−j S

−
k

]
m

)
+

i
N∑

j,k=1,j<k;

2∑
m=−2,m 6=0

(
C

(m)
SjSk

[SjzSkz]m + C
(m)
SjSk,PM

[
S+
j S
−
k

]
m

+ C
(m)
SjSk,MP

[
S−j S

+
k

]
m

)
(3.18)

Employing the contact transformation procedure, the above Floquet Hamilto-

nian (Eq. 3.12) is diagonalised by a single unitary transformation defined by the

transformation function, S1. The ‘G’ and ‘C’ coefficients employed in the Floquet

Hamiltonian and the transformation function, S1 are tabulated in Table 3.1. The
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remaining coefficients presented in Eqs. (3.12) & (3.18) are similar to those defined

in chapter-2 (refer to Tables 2.1 & 2.2).

G-coefficients C-coefficients

G
(m)
Sj ,P

= −1
2ω

(m)
Sj

C
(m)
Sj ,P

=
G

(m)
Sj,P

mωr+ωrf

G
(m)
Sj ,M

= −1
2ω

(m)
Sj

C
(m)
Sj ,M

=
G

(m)
Sj,M

mωr−ωrf

G
(m)
IiSj ,ZP

= −ω(m)
IiSj

C
(m)
IiSj ,ZP

=
G

(m)
IiSj,ZP

mωr+ωrf

G
(m)
IiSj ,ZM

= −ω(m)
IiSj

C
(m)
IiSj ,ZM

=
G

(m)
IiSj,ZM

mωr−ωrf

G
(m)
SjSk,PP

= 3
4ω

(m)
SjSk

C
(m)
SjSk,PP

=
G

(m)
SjSk,PP

mωr+2ωrf

G
(m)
SjSk,MM = 3

4ω
(m)
SjSk

C
(m)
SjSk,MM =

G
(m)
SjSk,MM

mωr−2ωrf

G
(m)
SjSk,PM

= 1
4ω

(m)
SjSk

C
(m)
SjSk,PM

=
G

(m)
SjSk,PM

mωr

G
(m)
SjSk,MP = 1

4ω
(m)
SjSk

C
(m)
SjSk,MP =

G
(m)
SjSk,MP

mωr

G
(m)
SjSk

= −ω(m)
SjSk

C
(m)
SjSk

=
G

(m)
SjSk

mωr

Table 3.1: The table depicts the ‘G’ and C-coefficients involved in the Floquet Hamiltonian

(Eq. 3.12) and the transformation function, S1 (Eq. 3.18).

Coefficients First - order Second - order

DIiSj 0 1
2
(
C

(m)
Sj ,P

G
(−m)
IiSj ,ZM

− C(m)
IiSj ,ZM

G
(−m)
Sj ,P

)
− 1

2
(
C

(m)
Sj ,M

G
(−m)
IiSj ,ZP

− C(m)
IiSj ,ZP

G
(−m)
Sj ,M

)
︸ ︷︷ ︸

CSA(1H)×Dipolar(13C−1H)

Table 3.2: This table depicts the heteronuclear dipolar coefficients (DIiSj ) involved in the

effective Hamiltonians (Eqs. 3.19 & 3.44). See Table 3.1 for all the ‘G’ and ‘C’ coefficients

with the corresponding Fourier indices (m) in the above table.

Following the procedure described in the previous chapter, the effective Hamilto-
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nian for the model (I1 − I2 − SN) system is derived and represented below.

Heff =
2∑
i=1

AIi [Iiz]0 +
N∑
j=1

ωrf [Sjz]0 +
[
DI1I2,PM

[
I+

1 I
−
2

]
0

+DI1I2,MP

[
I−1 I

+
2

]
0

]
+

2∑
i=1

N∑
j=1

DIiSj [IizSjz]0 (3.19)

The coefficients involved in the above effective Hamiltonian are tabulated in Tables

2.3 & 3.2. In contrast to the description involving only carbons (13C), the effective

Hamiltonian for the model systems involving protons (1H), comprises of second order

contributions resulting from cross-terms between the heteronuclear dipolar interac-

tions (13C-1H) and the CSA of the protons. The role of these cross-terms will be

discussed in the following sections.

To elucidate the role of protons in the exchange dynamics and demonstrate the

utility of the reduced density matrix approach, we begin our discussion with a model

three-spin system comprising of two carbons and a single proton (I1 − I2 − S).

Following the procedure described in the previous chapter, the reduced density

operator for I1 (ρ(I1, t)) is derived systematically by taking the partial trace over the

other spin variables (I2 and S) present in the combined system.

ρ(I1, t) =


4∑
i=1

ρ
α1Φ(2)

i ,α1Φ(2)
i

(t)
4∑
i=1

ρ
α1Φ(2)

i ,β1Φ(2)
i

(t)
4∑
i=1

ρ
β1Φ(2)

i ,α1Φ(2)
i

(t)
4∑
i=1

ρ
β1Φ(2)

i ,β1Φ(2)
i

(t)

 (3.20)

where ρ
α1Φ(2)

i ,α1Φ(2)
i

(t) represents the matrix element
〈
α1Φ(2)

i

∣∣∣ ρ(t)
∣∣∣α1Φ(2)

i

〉
with Φ(2)

i

representing the spin state of the remaining spin system, I2&S (say Φ(2)
1 = |α2α3〉,

Φ(2)
2 = |α2β3〉, Φ(2)

3 = |β2α3〉 and Φ(2)
4 = |β2β3〉) with the superscript denoting the

total number of spins other than the one observed. Accordingly, the polarization

transfer from spin I1 to I2 (i.e. ρ(0) = I1z) in the presence of a single proton is

calculated.

ρ(I1, t) =

 2− |DI1I2|
2 2∑
i=1

sin2xit
xi2

0

0 −
(

2− |DI1I2|
2 2∑
i=1

sin2xit
xi2

)
 (3.21)

In a similar vein, the reduced density matrix for I2 is derived by taking the partial

trace over the other spin variables (I1 and S).

ρ(I2, t) =


4∑
i=1

ρΦ(2)
i α2,Φ(2)

i α2
(t)

4∑
i=1

ρΦ(2)
i α2,Φ(2)

i β2
(t)

4∑
i=1

ρΦ(2)
i β2,Φ(2)

i α2
(t)

4∑
i=1

ρΦ(2)
i β2,Φ(2)

i β2
(t)

 (3.22)
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ρ(I2, t) =

 |DI1I2|
2 2∑
i=1

sin2xit
xi2

0

0 −|DI1I2|
2 2∑
i=1

sin2xit
xi2

 (3.23)

Subsequently, the polarization transfer from spin I1 to I2 in the presence of a single

proton under R2 conditions is calculated by evaluating 〈Iz〉 as shown below (normal-

ization factor, (2)K−2 where K=number of spins in the system is included).

〈OI(t)〉 = Tr[ρ(I, t).OI ] (3.24)

〈I1z(t)〉 = 1− |DI1I2|
2

2

2∑
i=1

sin2xit

xi2
(3.25)

〈I2z(t)〉 = |DI1I2|
2

2

2∑
i=1

sin2xit

xi2
(3.26)

In contrast to an isolated spin pair, additional oscillatory terms due to the residual
13C − 1H dipolar interactions are present in the ‘x’ coefficients.

x1 =

√√√√|DI1I2|
2 +

(
2(AI1 − AI2) + (DI1S1 −DI2S1)

4

)2

(3.27)

x2 =

√√√√|DI1I2|
2 +

(
2(AI1 − AI2)− (DI1S1 −DI2S1)

4

)2

(3.28)

Following the above approach, the reduced density matrices for the spins I1, I2 sur-

rounded by ‘N’ protons in the model spin system, I1−I2−SN is derived as represented

below.

ρ(I1, t) =


2λ∑
i=1

ρ
α1Φ(λ)

i ,α1Φ(λ)
i

(t)
2λ∑
i=1

ρ
α1Φ(λ)

i ,β1Φ(λ)
i

(t)
2λ∑
i=1

ρ
β1Φ(λ)

i ,α1Φ(λ)
i

(t)
2λ∑
i=1

ρ
β1Φ(λ)

i ,β1Φ(λ)
i

(t)

 (3.29)

ρ(I2, t) =


2λ∑
i=1

ρΦ(λ)
i α2,Φ(λ)

i α2
(t)

2λ∑
i=1

ρΦ(λ)
i α2,Φ(λ)

i β2
(t)

2λ∑
i=1

ρΦ(λ)
i β2,Φ(λ)

i α2
(t)

2λ∑
i=1

ρΦ(λ)
i β2,Φ(λ)

i β2
(t)

 (3.30)

In the above equation, the superscript ‘λ’ denotes the total number of spins other

than the one observed. Employing the effective Hamiltonian (Eq. 3.19), the reduced

density matrices corresponding to I1 and I2 are evaluated.

ρ(I1, t) =


(2)K−2 − |DI1I2 |

2 2N∑
i=1

sin2xit
xi2

0

0 −
(

(2)K−2 − |DI1I2|
2 2N∑
i=1

sin2xit
xi2

)
 (3.31)

ρ(I2, t) =


|DI1I2|

2 2N∑
i=1

sin2xit
xi2

0

0 −|DI1I2|
2 2N∑
i=1

sin2xit
xi2

 (3.32)
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Subsequently, the polarization transfer from I1 to I2 in the presence of coupling to

neighboring proton bath is calculated.

〈I1z(t)〉 = 1− |DI1I2|
2

(2)K−2

2N∑
i=1

sin2xit

xi2
(3.33)

〈I2z(t)〉 = |DI1I2|
2

(2)K−2

2N∑
i=1

sin2xit

xi2
(3.34)

As described above (see Eqs. 3.33 & 3.34), the analytic expressions for a system

coupled to N-protons comprises of 2N ‘xi’ coefficients.

xi =

√√√√|DI1I2|
2 +

(
2(AI1 − AI2) + yi

4

)2

(3.35)

For a given ‘xi’, the corresponding ‘yi’ coefficients are sequentially deduced from the

scheme depicted in Fig. 3.2.

y1 = 0

y1 = (DI1S1
− DI2S1

)

y2 = −(DI1S1
− DI2S1

)

y1 = (DI1S1
− DI2S1

)+ (DI1S2
− DI2S2

)

y2 = (DI1S1
− DI2S1

)− (DI1S2
− DI2S2

)

y3 = −(DI1S1
− DI2S1

)+ (DI1S2
− DI2S2

)

y4 = −(DI1S1
− DI2S1

)− (DI1S2
− DI2S2

)

CC( ) CCH( ) CCHH( )

Figure 3.2: The figure depicts the flow chart for deriving the ‘y’ coefficients described in

Eq. (3.35).

The analytic expressions depicted in Eqs. 3.33 & 3.34 could be employed to fit

experimental exchange curves employing multiple fit parameters such as 13C − 13C

distance, the orientation, magnitude of CSA tensors (both carbons and protons) and
13C − 1H distances.
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B. I1 − I2 − I3 − SN system

To describe the multi-spin contributions arising from neighboring spins, a model

system comprising of three spins I1−I2−I3 (all 13C nuclei) coupled to ‘N’ protons (1H)

was employed in continuation to the ideal three-spin system (I1−I2−I3) discussed in

chapter-2. The model serves as a prototype for describing band-selective polarization

transfer from the carbonyl carbons (I1) to the aliphatic carbons (I2, I3) found in a

typical amino acid /polypeptide sequence. Accordingly, the time-dependent MAS

Hamiltonian for the model system is represented by,

H(t) = HC
System(t) +HC−H

System−Bath(t) +HH
Bath(t) +HH

RF (3.36)

HC
System(t) = =

3∑
i=1

(
ω

(0)
i + ωi(t)

)
Iiz +

3∑
i,j=1;i<j

ωij(t)
(

2IizIjz −
1
2(I+

i I
−
j + I−i I

+
j )
)

(3.37)

HH
Bath(t) =

2∑
m=−2

N∑
j=1

ω
(m)
Sj
eimωrtSjz+

2∑
m=−2;m6=0

N∑
j,k=1;j<k

ω
(m)
SjSk

eimωrt (2SjzSkz − (SjxSkx + SjySky)) (3.38)

HC−H
System−Bath(t) =

2∑
m=−2;m6=0

3∑
i=1

N∑
j=1

ω
(m)
IiSj

eimωrt2IizSjz (3.39)

HH
RF =

N∑
j=1

ωrfSjx (3.40)

Analogous to the description employed in the model system (I1 − I2 − SN), the

Hamiltonian in the rotating frame (Eq. 3.36) is transformed into an interaction frame

defined by the transformation operators, U1 =
N∑
j=1

ei
π
2 Sjy and U2 = einωrtI1ze−inωrtI2ze−inωrtI3z

and U3 =
N∑
j=1

eiωrf tSjy .

H̃(t) = U3U2U1H(t)U−1
1 U−1

2 U−1
3 (3.41)

H̃(t) = H̃C
System(t) + H̃C−H

System−Bath(t) + H̃H
Bath(t) (3.42)
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A detailed representation of the Hamiltonian in the interaction frame is given below.

H̃(t) =(ω(0)
1 − nωr)I1z + (ω(0)

2 + nωr)I2z + (ω(0)
3 + nωr)I3z +

3∑
i=1

ω
(m)
i eimωrtIiz

2∑
m=−2,m 6=0

ω
(m)
12

[
2I1zI2ze

imωrt − 1
2
(
I+

1 I
−
2 e

i(m+2n)ωrt + I−1 I
+
2 e

i(m−2n)ωrt
)]

+

2∑
m=−2,m6=0

ω
(m)
13

[
2I1zI3ze

imωrt − 1
2
(
I+

1 I
−
3 e

i(m+2n)ωrt + I−1 I
+
3 e

i(m−2n)ωrt
)]

+

2∑
m=−2,m6=0

ω
(m)
23 eimωrt

[
2I2zI3z −

1
2
(
I+

2 I
−
3 + I−2 I

+
3

)]
(3.43)

The other spin interactions in the interaction frame remain identical to those depicted

in the previous section (refer to Eqs. 3.9, 3.10 & 3.11). Following the standard

procedure (Floquet theory and the contact transformation methods), the effective

Hamiltonian for the model system was derived and are represented below.

Heff =
2∑
i=1

AIi [Iiz]0 +
N∑
j=1

ωrf [Sjz]0 +
3∑
j=2

[
DI1Ij ,PM

[
I+

1 I
−
2

]
0

+DI1Ij ,MP

[
I−1 I

+
2

]
0

]
+

2∑
i=1

N∑
j=1

DIiSj [IizSjz]0 (3.44)

The coefficients involved in the above effective Hamiltonian are tabulated in Tables

2.3 & 3.2.

Analogous to the description presented in the previous section, the polarization

exchange in the model system (I1 − I2 − I3 − SN) is described using the following

expressions.

〈I1z(t)〉 =1− |DI1I2 |
2

2N∑
i=1

sin2xi,(I1I2)t

xi,(I1I2)2 − |DI1I3 |
2

2N∑
i=1

sin2xi,(I1I3)t

xi,(I1I3)2 (3.45)

〈I2z(t)〉 =|DI1I2|
2

2N∑
i=1

sin2xi,(I1I2)t

xi,(I1I2)2 (3.46)

〈I3z(t)〉 =|DI1I3|
2

2N∑
i=1

sin2xi,(I1I3)t

xi,(I1I3)2 (3.47)

In the above calculation, polarization transfer from spin-1 is calculated to the other

spins (I2&I3).

In accord with our earlier description, the inclusion of protons introduces additional

oscillatory terms and are responsible for the depolarization observed in R2 experi-
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ments. The general expressions for xi,(I1I2) and xi,(I1I3) is represented by,

xi,(I1I2) =

√√√√|DI1I2|
2 +

(
2(AI1 − AI2) + yi,(I1I2)

4

)2

(3.48)

xi,(I1I3) =

√√√√|DI1I3|
2 +

(
2(AI1 − AI3) + yi,(I1I3)

4

)2

(3.49)

The ‘yi’ coefficients depicted in Eqs. 3.48 & 3.49 could be systematically deduced

from the general scheme depicted in Figures 3.3 & 3.4 respectively.

y1,( I1I2 ) = 0

y1,( I1I2 ) = (DI1S1
− DI2S1

)

y2,( I1I2 ) = −(DI1S1
− DI2S1

)

y1,( I1I2 ) = (DI1S1
− DI2S1

)+ (DI1S2
− DI2S2

)

y2,( I1I2 ) = (DI1S1
− DI2S1

)− (DI1S2
− DI2S2

)

y3,( I1I2 ) = −(DI1S1
− DI2S1

)+ (DI1S2
− DI2S2

)

y4,( I1I2 ) = −(DI1S1
− DI2S1

)− (DI1S2
− DI2S2

)

CCC( ) CCCH( ) CCCHH( )

Figure 3.3: The figure depicts the flow chart for deriving the ‘y’ coefficients described in

Eq. (3.48).

In contrast to other existing descriptions of the spin dynamics, the analytic expres-

sions based on the reduced density matrix formulation are computationally robust

and provide a simplified description of the magnetization exchange in R2 experiments.

3.4 Results and discussion

3.4.1 R2 phenomenon under CW decoupling

To elucidate the role of protons in R2 experiments and to verify the validity of the

analytic treatment presented in the previous sections, polarization exchange between

carbon nuclei were investigated in the presence of protons through the model systems

66



Description of multi-spin effects and the role of heteronuclear decoupling in R2

y1,( I1I3 ) = 0

y1,( I1I3 ) = DI2S1

y2,( I1I3 ) = −DI2S1

y1,( I1I3 ) = (DI2S1
+ DI2S2

)

y2,( I1I3 ) = (DI2S1
− DI2S2

)

y3,( I1I3 ) = −(DI2S1
− DI2S2

)

y4,( I1I3 ) = −(DI2S1
+ DI2S2

)

CCC( ) CCCH( ) CCCHH( )

Figure 3.4: The figure depicts the flow chart for deriving the ‘y’ coefficients described in

Eq. (3.49).

depicted in Fig. 3.5. The model systems depicted in Fig. 3.5 were constructed from

the dipeptide, N-acetyl- (U-13C,15N) -L-valine-L-leucine (VL) (Fig.2.2). In all the

simulations depicted in this section, polarization transfer from the carbonyl carbons

to the aliphatic carbons were evaluated under constant mixing time by varying the

sample spinning frequency. All the simulations presented in this study were performed

at spectrometer frequency of 500 MHz (1H frequency) with system parameters such

as CSA, dipolar parameters obtained from Ref. (2).

To minimize the effects of protons, strong CW decoupling fields (of strength

100kHz) were employed on the proton channel during the dipolar mixing time. In

Figure 3.6 (panels a, b, c), numerical simulations depicting polarization transfer in the

model five-spin systems is presented. For illustrative purposes, the simulations emerg-

ing from the isolated two-spin model (panels: a1, b1, c1; dotted line) are compared

with the model five-spin systems comprising of protons. Although, the simulations

depicted in Figure 3.6 were performed at faster spinning frequencies (say 17-20 kHz)

and involved strong decoupling fields on the proton channel, the residual 13C-1H

dipolar interactions seem more influential in the weak-coupling regime (see panel c1).

Based on the analytic expressions (see Eqs. 3.33-3.35) and the coefficients listed
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Figure 3.5: Model systems constructed from N-acetyl-L-Val-L-Leu (Figure 2.2) for de-

scribing the role of protons in R2 experiments. The models depicted in panels (a), (b) and

(c) resemble the I1− I2−SN system and correspond to the strong, intermediate and weak-

coupling regimes, respectively. The models depicted in panels (d) and (e) are representative

of the I1 − I2 − I3 − SN system. The dipolar coupling constants between spin pairs are

depicted in all the models.

in Table 3.2, this depolarization effect results from the DIS coefficients associated

with the longitudinal two-spin operators, IzSz. The longitudinal two-spin operators

in the effective Hamiltonians (see Eq. 3.19) result from second-order cross-terms be-

tween the CSA interactions of the protons (δCSAH = 2500Hz, η =0.3, 500MHz (1H

frequency)) and the heteronuclear 13C-1H dipolar interactions (i.e. 1H-CSA X 13C-
1H dipolar interactions). Consequently, in the absence of the 1H-CSA interactions,

the efficiency of transfer should improve at least in principle. This inference of ours is

vindicated in the simulations depicted in the adjacent panel in Figure 3.6 (panels a2,

b2, c2). The solid lines in the simulations (Figure 3.6, panels a2, b2, c2) represent the

numerical five-spin simulations sans 1H-CSA interactions, while the analytic simula-

tions (dotted line) are based on the two-spin expressions derived in the chapter-2 (see

Eq. 2.18). Hence, decoupling schemes that minimize /remove 1H-CSA interactions
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Figure 3.6: The figure depicts the role of 1H-CSA interactions in the R2 experiments. The

solid lines (black) represent the simulations from SPINEVOLUTION,27 while the analytic

simulations (based on Eq. 3.34) are indicated by dots (red). The simulations depicted

in panels (a1, a2), (b1, b2) and (c1, c2) correspond to the model systems (a), (b) and

(c) depicted in Figure 3.5, respectively. The numerical simulations depicted in panels (a1,

b1, c1) compare the magnetization exchange observed in the model five-spin system (solid

lines) with the isolated two-spin system (broken lines) comprising of only 13C nuclei. The

simulations depicted in panels (a2, b2, c2) represent numerical five-spin simulations (solid

lines) in the absence of 1H-CSA interactions. In the absence of 1H-CSA interactions (δCSAH

= 2500Hz, η =0.3, 500MHz (1H frequency)), the simulations involving the model five-spin

system resemble to that of an isolated two-spin system (indicated by red dots). In all

the simulations presented, polarization transfer from the carbonyl carbon to the aliphatic

carbon is calculated satisfying the appropriate N=1, R2 conditions. All the remaining

simulation perimeters are given in Table 2.4.

are beneficial in improving the polarization transfer efficiencies in R2 experiments.

Since, 1H-CSA interactions are non-zero in real experiments, incorporation of the

CSA interactions along with the residual 13C − 1H dipolar interactions is essential

to quantify the magnetization exchange observed in R2 experiments. In addition to

decreasing the efficiency of transfer, the inclusion of the residual heteronuclear dipo-
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Figure 3.7: The figure depicts the polarization transfer from valine carbonyl carbon to va-

line beta carbon (VCo → VCβ, 2.54 Å) based on the model system CV oCV βHV βHV αHV γ (see

Figure 3.5a). The role of protons on the exchange dynamics is illustrated through simula-

tions comprising of two (a1, CV oCV β), three (a2, CV oCV βHV α), four (a3, CV oCV βHV βHV α)

and five (a4, CV oCV βHV βHV αHV γ) spin systems. The analytic simulations (dots) were

based on Eq. (3.34) and correspond to the N=1, R2 condition. All the remaining simula-

tion perimeters are given in Table 2.4.

lar interactions (13C − 1H) broadens the R2 exchange profile. This observation is

important, since, the standard approach of employing isolated two-spin models along

with phenomenological damping terms does not replicate the broadening observed

in the exchange trajectories in R2 experiments. Additionally, the ambiguity associ-

ated with the magnitude of the damping terms limits the utility of such methods

in the estimation of distances. Since biophysical applications of SSNMR entail the

measurement of long-range interactions /couplings, interpretation of the exchange

trajectories is very crucial in the weak-coupling regime. To address this issue, Bal-

dus and co-workers28 proposed the multi-spin (MS) analysis approach for quantifying

the experimental trajectories obtained under R2 conditions. Employing certain stan-

dard geometric parameters (that includes both the orientation and magnitude of the

residual heteronuclear dipolar interactions), the exchange trajectories were numer-

ically simulated with few neighboring protons. Interestingly, the reduced density

matrix formalism presented in this thesis, provides a convenient yet accurate descrip-

tion of the exchange dynamics in the presence of protons. To illustrate the effects
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/role of neighboring protons on the exchange trajectories, polarization transfer under

different coupling environments (with regard to 13C − 13C couplings) were investi-

gated through model systems comprising of two carbons coupled to finite number of

neighboring protons i.e. I1 − I2 − SN system.
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Figure 3.8: The figure depicts the polarization transfer from valine carbonyl car-

bon to valine gamma carbon (VCo → VCγ1 , 3.90 Å) based on the model system

CV oCV γ1HV βHV αHV γ1 (see Figure 3.5b). The role of protons on the exchange dynamics is

illustrated through simulations comprising of two (b1, CV oCV γ1), three (b2, CV oCV γ1HV β),

four (b3, CV oCV γ1HV βHV γ1) and five (b4, CV oCV γ1HV βHV αHV γ1) spin systems. The ana-

lytic simulations (dots) were based on Eq. (3.34) and correspond to the N=1, R2 condition.

All the remaining simulation perimeters are given in Table 2.4.

In Figure 3.7, polarization transfer from the valine carbonyl carbon to valine beta

carbon (VCo → VCβ, 2.54 Å) in the model five-spin system (Figure 3.5a) is presented.

The effect of protons on this model system is depicted methodically by increasing

the number of neighboring protons through panels ‘a2, a3 and a4’, respectively. As

depicted, the decrease in the efficiency in the presence of neighboring protons is only

marginal (decreases by 20%) when compared to the isolated two-spin case (see panel

a1).

To substantiate the validity of the analytic results, additional simulations depict-

ing polarization transfer in the intermediate (transfer from valine carbonyl carbon to

valine beta carbon, VCo → VCγ1 , 3.90 Å) and weak-coupling regimes (transfer from

leucine carbonyl carbon to valine beta carbon, LeuCo → VCβ, 5.44 Å) were further
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Figure 3.9: The figure depicts the polarization transfer from leucine carbonyl car-

bon to valine beta carbon (LeuCo → VCβ, 5.44 Å) based on the model system

CLoCV βHV βHV αHLα (see Figure 3.5c). The role of protons on the exchange dynamics is

illustrated through simulations comprising of two (c1, CLoCV β), three (c2, CLoCV βHV α),

four (c3, CLoCV βHV βHV α) and five (c4, CLoCV βHV βHV αHLα) spin systems. The analytic

simulations (dots) were based on Eq. (3.34) and correspond to the N=1, R2 condition. All

the remaining simulation perimeters are given in Table 2.4.

investigated and are depicted in Figures 3.8 and 3.9, respectively. In contrast to

the intermediate coupling regime, the depolarization effects arising from neighboring

protons is severe in the weak-coupling regime. Since, the magnitude of the dipolar

coupling constant decreases with increase in the interatomic distance, quantification

of results in the weak-coupling regime entails accurate description of the underlying

spin dynamics. Additionally, off-resonant polarization exchange (broadening of the

R2 condition) is observed prominently in the weak coupling regime.

As depicted, the analytic simulations (Figures 3.8-3.10) emerging from the reduced

density matrix approach are in excellent agreement with numerical simulations. In

contrast to exact numerical methods, the analytic simulations are computationally

less intense and present an attractive tool for simulating exchange trajectories involv-

ing an isolated spin pair coupled to a surrounding bath of protons (model I1−I2−SN).

The damping effect introduced by the surrounding protons, depend on the magnitude

of the residual 13C-1H interactions in addition to the 1H-CSA’s and vary depend-

ing on the spin topology and other external parameters (such as decoupling field
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strengths, magnetic field strengths, spinning frequencies etc.) employed in the simu-

lations. Hence, the practice of employing uniform damping constant (TZQ) for all the

data points in the resonance width experiments seem inappropriate. Although, such

approaches could result in appreciable results in the strong coupling regime, they are

of limited utility in the weak-coupling regime and could well be the reason behind the

inaccuracies reported in the measurement of long-range distances in the literature.1–4
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Figure 3.10: The figure depicts the polarization transfer from VCo → VCβ, 2.54 Å (a1,

a2), VCo → VCγ1 , 3.90 Å (b1, b2) an LeuCo → VCβ, 5.44 Å (c1, c2) correspond to the

N=1, R2 condition. The panels (a1, b1, c1) represent the polarization transfer in five-spin

systems in model systems shown in Figures 3.5 (a, b, c) respectively. The panels (a2, b2, c2)

represent the polarization transfer in the corresponding two-spin (C-C) systems along with

the damping term, exp(-t/T), used to match the intensity in the five-spin systems (panels

a1, b1, c1). The simulations in panels (a2, b2, c2) are generated using Liouville matrix

(solid line) and the reduced density matrix theory (dots) (Eq. 3.34). The phenomenological

damping constants (Tzq) used in the simulations corresponding to strong, medium and weak

coupling regimes are 72 ms (a2), 61ms (b2) and 19 ms (c2) respectively. All the remaining

simulation perimeters are given in Table 2.4.

To illustrate this aspect, simulations emerging from isolated two-spin models in

the presence of phenomenological damping terms are compared with the chosen model
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five-spin systems both in the N=1 (Fig. 3.10) and N=2 (Fig. 3.11) R2 matching

conditions. As depicted in the Figures 3.10 & 3.11, the simulations emerging from

the isolated two-spin model (inclusive of phenomenological damping terms) are in

complete disagreement (in particular for the N=1, R2 conditions, see Figure 3.10)

with those emerging from the model five spin systems in all the regimes. Although,

the inclusion of a damping term lowers the intensity in the simulations based on

the isolated two-spin framework, the broadening induced by the presence of residual

heteronuclear dipolar interactions is not reproduced.
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Figure 3.11: The figure depicts the polarization transfer from VCo → VCβ, 2.54 Å (a1,

a2), VCo → VCγ1 , 3.90 Å (b1, b2) an LeuCo → VCβ, 5.44 Å (c1, c2) correspond to the

N=2, R2 condition. The panels (a1, b1, c1) represent the polarization transfer in five-spin

systems in model systems shown in Figures 3.5 (a, b, c) respectively. The panels (a2, b2, c2)

represent the polarization transfer in the corresponding two-spin (C-C) systems along with

the damping term, exp(-t/T), used to match the intensity in the five-spin systems (panels

a1, b1, c1). The simulations in panels (a2, b2, c2) are generated using Liouville matrix (solid

line) and the reduced density matrix theory (circles) (Eq. 3.34). The phenomenological

damping constants (Tzq) used in the simulations corresponding to strong, medium and weak

coupling regimes are 54 ms (a2), 40 ms (b2) and 18 ms (c2) respectively. All the remaining

simulation perimeters are given in Table 2.4.

Interestingly, the simulations in the N=2, R2 experiments, seem to have a better
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agreement between the two models. Although, the discrepancy is prominent in the

weaker-coupling regime (see panels c1, c2 in Fig. 3.11), the agreements are satisfac-

tory in the strong and medium coupling regime. Since existing theoretical models

employ an isolated two-spin framework for data analysis, implementation of R2 ex-

periments for measuring interatomic 13C− 13C distances have always been limited to

the N=2 matching conditions.1,2 Often in such descriptions, the inaccuracies in the

estimation of distances in the weak-coupling regime have been incorrectly attributed

to experimental imperfections and other reasons such as zero-quantum relaxation

etc. The present study clearly highlights the limitations of existing theoretical mod-

els and also explicates the actual reason behind the non-implementation of the R2

experiments at the N=1 matching conditions.
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Figure 3.12: The figure depicts the polarization transfer from VCo → VCβ, 2.54 Å (N=1,

a1; N=2, a2) in a five-spin model system (Figure 3.5a) and from LeuCo → VCβ, 5.44 Å

(N=1, b1; N=2, b2) in a five-spin model system (Figure 3.5c) in the presence of different RF

decoupling amplitudes [50kHz (circles), 100kHz (triangle up) and 150kHz (diamonds)]. For

comparison purposes, polarization transfer in corresponding two-spin system (C-C) (black,

solid line) are depicted in all the panels under N=1 & 2, R2 conditions. All the remaining

simulation perimeters are given in Table 2.4.

To illustrate the role of the RF amplitudes involved in heteronuclear decoupling
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schemes in R2 experiments, simulations depicting polarization transfer under different

RF amplitudes is presented in Figure 3.12. As depicted, the decrease in the magnitude

of the RF amplitude broadens the R2 matching condition, and is currently termed as

homogeneously broadened R2 experiment. Employing this approach, 13C − 13C dis-

tance measurements in proteins have recently been demonstrated by Ladhizhansky

and coworkers.3,29 Employing an isolated two-spin model and a phenomenological

damping term, the polarization transfer under N=2, R2 conditions has been em-

ployed to extract interatomic distances. The inaccuracies in their measurements

have been attributed to multi-spin effects and other relaxation mechanisms during

the experiments. However, our investigations contradict their claims on the inaccu-

racies involved in the 13C − 13C distance measurements based on R2 experiments.
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Figure 3.13: The figure depicts the polarization transfer from valine carbonyl carbon to

valine alpha carbon and leucine beta carbon (VCo → VCα, 1.50 Å and VCo → LCβ, 3.24

Å) based on the model system CV oCV αCLβHLβHLαHV α (see Figure 3.5d). To illustrate

the multi-spin effects observed in band-selective experiments, polarization transfer corre-

sponding to both N=1 (panels d1, d2) and N=2 (panels d3, d4) matching conditions are

depicted. Additionally, simulations both in the absence (panels d1, d3) and presence of

protons (panels d2, d4) are also depicted. The analytic simulations (dots) were performed

based on Eqs. 3.46 & 3.47. All the remaining simulation perimeters are given in Table 2.4.
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To further substantiate the validity of the analytic theory presented in this thesis,

the role of neighboring carbons in the R2 magnetization exchange experiments were

investigated. The I1 − I2 − I3 − SN spin system serves as a suitable model system

for describing band-selective transfer of polarization from carbonyl carbons to the

aliphatic carbons encountered in typical biological solids. In the simulations depicted

below, polarization transfer from I1 (representative of the carbonyl carbon) to I2, I3

(representative of the carbons in the aliphatic region) is depicted in the presence of

coupling to the surrounding proton reservoir. Since the chemical shifts of the carbons

in the aliphatic region are very similar, only band-selective transfer of polarization is

possible.
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Figure 3.14: The figure depicts the polarization transfer from valine carbonyl carbon to

valine beta carbon and leucine gamma carbon (VCo → VCβ, 2.54 Å and VCo → LCγ , 3.26

Å) based on the model system CV oCV βCLγHV βHLγHV α (see Figure 3.5e). To illustrate

the multi-spin effects observed in band-selective experiments, polarization transfer corre-

sponding to both N=1 (panels e1, e2) and N=2 (panels e3, e4) matching conditions are

depicted. Additionally, simulations both in the absence (panels e1, e3) and presence of

protons (panels, e2, e4) are also depicted. The analytic simulations (dots) were performed

based on Eqs. 3.46 & 3.47. All the remaining simulation perimeters are given in Table 2.4.

The chemical shifts of the carbons present in the models depicted in Figure 3.5

(see panels d, e) correspond to this situation and present an excellent system to verify
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the validity of our analytic theory (see Eqs. 3.45-3.47). In Figure 3.13, polarization

transfer from the valine carbonyl carbon to the aliphatic carbons (valine alpha carbon

and Leucine beta carbon, (VCo → VCα, 1.50 Å; VCo → LCβ, 3.24 Å)) is depicted both

in the absence (see panel d1 for N=1; d3 for N=2) and presence of the neighboring

protons (see panel d2 for N=1; d4 for N=2).

Although, the model system (Figure 3.5d) comprises of both a stronger and a

weaker coupling, the effects of dipolar truncation are absent in the isolated three-

spin system (I1 − I2 − I3) (panels: d1, d3). However, in the presence of protons,

the efficiency of transfer from VCo → LCβ (r=3.24 Å) gets diminished (panels: d2,

d4) owing to the residual 13C-1H interactions (refer to Eq. 3.47) as opposed to the

stronger VCo → VCα coupling. To further substantiate this aspect, simulations de-

picting polarization transfer from the valine carbonyl carbon to the aliphatic carbons

(valine beta carbon, Leucine gamma carbon (VCo → VCβ, 2.54 Å; VCo → LCγ, 3.26

Å)) is depicted is Figure 3.14, both in the absence (see panels e1, e3) and presence

of neighboring protons (see panels e2, e4). In contrast to the previous model (Figure

3.5d), the resonance conditions in the chosen system (model 3.5e) are strongly over-

lapping. As depicted, the analytic simulations based on the reduced density matrix

approach are in excellent agreement with the numerical simulations and present an

attractive tool for simulating experimental data in band-selective R2 experiments. In

comparison to numerical methods and other operator-space based analytic descrip-

tions of the spin dynamics, the simulations emerging from the reduced density matrix

approach are computationally less intense and are suitable for fitting experimental

data with multiple free-fit parameters inclusive of interatomic distances and CSA

parameters.

3.4.2 R2 phenomenon under TPPM decoupling

To improve the efficiency of polarization transfer, an alternate decoupling scheme in

the form of TPPM11 was employed during the R2 mixing period. In contrast to the

CW experiment, the TPPM sequence (Fig. 3.15) comprises of two pulses that are

phase shifted by a constant factor (∆φ), the flip angles of the two pulses are chosen

to be 180◦ with a phase difference of 15◦.

In Figures 3.16 (panels: a1, b1, c1) & 3.17 (panels: d1, e1, f1), polarization
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Figure 3.15: Schematic diagram depicting the TPPM11 decoupling during mixing time

in R2 experiments
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Figure 3.16: The figure depicts the polarization transfer in five-spin systems (Figure 3.5: a

(panel, a1), b (panel, b1), c (panel, c1)) in the presence of TPPM decoupling on 1H-channel

under N=1, R2 conditions. Panels (a1, b1, c1) consist of the analytic simulations generated

under the TPPM (solid line) and the CW decoupling (dots) schemes in five-spin systems

at the RF, 100kHz with the phase difference (∆φ), 15◦. The analytic simulations (panels:

a2, b2, c2) depicting the polarization transfer in the corresponding isolated two-spin (C-C)

systems are presented for comparison. All the remaining simulation perimeters are given

in Table 2.4.

transfer in R2 experiments under CW and TPPM decoupling sequences is illustrated.

As depicted, the efficiency of polarization transfer is enhanced and is very similar to

those obtained for an isolated spin pair (panels: a2, b2, c2 and panels: d2, e2, f2).
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Specifically, the enhancement in the weak coupling limit is appreciable. The dotted

lines in panels a1, b1, c1 (Figures 3.16 & 3.17) represent the transfer under CW

decoupling while solid lines represent simulations from TPPM decoupling scheme.

To explain the better performance of the TPPM decoupling scheme, an analytic

theory is presented in the Appendix-II(a). In contrast to the description in the CW

case, the RF Hamiltonian in the rotating frame is time-dependent with modulation

frequency, ωm.
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Figure 3.17: The figure depicts the polarization transfer in five-spin systems (Figure 3.5: a

(panel, d1), b (panel, e1), c (panel, f1)) in the presence of TPPM decoupling on 1H-channel

under N=2, R2 conditions. Panels (d1, e1, f1) consist of the analytic simulations generated

under the TPPM (solid line) and the CW decoupling (dots) schemes in five-spin systems

at the RF, 100kHz for strong and intermediate (panels: d1, e1) and 150kHz for weak C-C

coupling regimes (panel, f1) with the phase difference (∆φ), 15◦. The analytic simulations

(panels: d2, e2, f2) depicting the polarization transfer in the corresponding isolated two-

spin (C-C) systems are presented for comparison. All the remaining simulation perimeters

are given in Table 2.4.

To elucidate the role of the modulation frequency, the RF Hamiltonian on the pro-

ton channel is initially transformed using the transformation function, S1. Employing

the transformation function (S1), the internal Hamiltonians such as heteronuclear
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dipolar interactions are further transformed resulting in two modulation frequencies,

ωr & ωm. Employing the procedure described, the effective Hamiltonian was derived

(see Appendix-II(a)). As described, the residual heteronuclear dipolar interactions

and the 1H-CSA interactions are scaled significantly and are primarily responsible for

improving the efficiency of transfer in R2 experiment. As described in Figures 3.16

& 3.17, the analytic simulations emerging from the TPPM decoupled scheme yield

results that are in excellent agreement with those emerging from exact numerical

methods. As depicted in Figures 3.16-3.17, in the presence of TPPM decoupling, the

exchange trajectories obtained in the model five-spin system resemble to that of the

isolated two-spin system. Hence, in the presence of TPPM decoupling, the depolar-

ization effects due to residual heteronuclear dipolar interactions (intramolecular) are

removed from the R2 experiments.

3.5 Conclusions

In summary, the reduced density matrix approach presented in this thesis is well

suited for describing the multi-spin effects arising in the polarization transfer experi-

ments involved in R2 experiments. The equations are very similar to those derived for

an isolated spin pair and are well suited for simulations involving multiple fit parame-

ters. The factors responsible depolarization in CW experiments are analyzed in detail

and are well described through comparisons with analytic and numerical simulations.

The depolarization resulting from heteronuclear dipolar interactions are significantly

removed in the TPPM decoupling scheme. Hence, the depolarization observed in

experiments (under TPPM) would result from other factors such as inter-molecular

effects and are presently beyond the scope of this thesis.
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3.6 Appendix-II

a. Effect of TPPM decoupling

The basic TPPM11 sequence involves two phases, ±φ with π pulses of length, tp =
π/ωrf (see Figure 3.15). Since, there is a phase variation on the 1H channel during

the mixing time of 13C nuclei, the heteronuclear dipolar interactions are periodically

modulated by both the MAS as well as the RF pulse sequence.

To describe the role of protons under TPPM decoupling in the polarization ex-

change between 13C nuclei inR2 experiments, a model system (I1−I2−SN) comprising

of two carbons (denoted by I) coupled to N -protons (denoted by S) was chosen. The

time-dependent MAS Hamiltonian for such a system is represented by,

H(t) = HC
System(t) +HC−H

System−Bath(t) +HH
Bath(t) +HH

RF (t) (3.50)

In the above Hamiltonian, HC
System(t) denotes the Hamiltonian of the system of in-

terest (13C − 13C) comprising mainly of the chemical shift and dipolar interactions.

In a similar vein, HH
Bath(t) denotes the interactions present among the surrounding

bath of protons. The coupling of the system with the surroundings is represented by

HC−H
System−Bath(t) and comprises of the heteronuclear dipolar interactions. The quan-

tum mechanical representation of all these interactions are similar as given in the

previous sections.

The time-dependent RF Hamiltonian with the Fourier series form of the two phase

modulation is represented by

HH
RF (t) = ωrf cosφ

N∑
j=1

Sjx + 4
π

sinφ
N∑
j=1

∞∑
n=−∞,odd

1
n

sin(nωmt)Sjy (3.51)

To deduce the R2 matching conditions and describe the effects of phase modulated

decoupling, the Hamiltonian in the rotating frame (Eq. 3.50) is transformed into an

interaction frame defined by the transformation operators, U1 = einωrtI1ze−inωrtI2z and

U2 =
N∑
j=1

ei
π
2 Sjy as represented below.

H̃(t) = U2U1H(t)U−1
1 U−1

2 (3.52)

H̃(t) = H̃C
System(t) + H̃C−H

System−Bath(t) + H̃H
Bath(t) + H̃H−H

Bath (t) + H̃H
RF (3.53)
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A detailed representation of the RF Hamiltonian after the transformation defined

above is given below.

H̃H
RF (t) = ωrf cosφ

N∑
j=1

Sjz + 4
π

sinφ
N∑
j=1

∞∑
n=−∞,odd

1
n

sin(nωmt)Sjy (3.54)

All the representations corresponding to the remaining interactions are similar to

those given in the earlier sections.

Under the assumption that the modulation frequency (ωm) is equal to the static

part of the RF Hamiltonian, the Hamiltonian in Eq. (3.53) is transformed into the

modulation frequency frame defined by the transformation operator, U3 =
N∑
j=1

eiωmtSjz

as represented below.
˜̃H(t) = U3H(t)U−1

3 (3.55)

˜̃H(t) = H̃C
System(t) + ˜̃HC−H

System−Bath(t) + ˜̃HH
Bath(t) + ˜̃HH−H

Bath (t) + ˜̃HH
RF (3.56)

The detailed form of an each interaction is given below.

˜̃HC−H
System−Bath(t) = −

2∑
m=−2; 6=0

2∑
i=1

N∑
j=1

ω
(m)
IiSj

eimωrt2 [IizSjx cosωmt− IizSjy sinωmt]

(3.57)
˜̃HH
Bath(t) = −

2∑
m=−2

N∑
j=1

ω
(m)
Sj
eimωrt (Sjx cosωmt− Sjy sinωmt) (3.58)

˜̃HH−H
Bath (t) =

2∑
m=−2;6=0

N∑
j,k=1;j<k

ω
(m)
SjSk

eimωrt
[
−SjzSkz − 3

2 sin 2ωmt (SjxSky + SjySkx)
]
+

2∑
m=−2;6=0

N∑
j,k=1;j<k

ω
(m)
SjSk

eimωrt
[
sin2ωmt (2SjySky − SjxSkx)

]
+

2∑
m=−2; 6=0

N∑
j,k=1;j<k

ω
(m)
SjSk

eimωrt
[
cos2ωmt (2SjxSkx − SjySky)

]
(3.59)

˜̃HH
RF (t) = 2

π
sinφ

N∑
j=1

Sjx+

2
π

sinφ
N∑
j=1

∞∑
n=−∞,odd

1
n

[sin(n+ 1)ωmt+ sin(n− 1)ωmt]Sjy+

2
π

sinφ
N∑
j=1

∞∑
n=−∞,odd

1
n

[cos(n− 1)ωmt− cos(n+ 1)ωmt]Sjx (3.60)

where |n− 1| 6= 0 (n 6= 1) in the above RF Hamiltonian.
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To simplify the description, the Hamiltonian is transformed by an unitary trans-

formation function, U4 =
N∑
j=1

ei
π
2 Sjy .

˜̃̃
H(t) = U4H(t)U−1

4 (3.61)

˜̃̃
H(t) = H̃C

System(t) + ˜̃̃
HC−H
System−Bath(t) + ˜̃̃

HH
Bath(t) + ˜̃̃

HH−H
Bath (t) + ˜̃̃

HH
RF (3.62)

The detailed form of an each interaction is given below.

˜̃̃
HC−H
System−Bath(t) = −

2∑
m=−2;6=0

2∑
i=1

N∑
j=1

ω
(m)
IiSj

eimωrt2 [IizSjz cosωmt− IizSjy sinωmt]

(3.63)
˜̃̃
HH
Bath(t) = −

2∑
m=−2

N∑
j=1

ω
(m)
Sj
eimωrt (Sjz cosωmt− Sjy sinωmt) (3.64)

˜̃̃
HH−H
Bath (t) =

2∑
m=−2; 6=0

N∑
j,k=1;j<k

ω
(m)
SjSk

eimωrt
[3
2SjzSkz −

3
2SjySky − SjxSkx

]
−

2∑
m=−2; 6=0

N∑
j,k=1;j<k

ω
(m)
SjSk

eimωrt
3
2 [sin 2ωmt (SjzSky + SjySkz)]+

2∑
m=−2; 6=0

N∑
j,k=1;j<k

ω
(m)
SjSk

eimωrt
1
2 [cos 2ωmt (SjzSkz + SjySky)] (3.65)

˜̃̃
HH
RF (t) = 2

π
sinφ

N∑
j=1

Sjz+

2
π

sinφ
N∑
j=1

∞∑
n=−∞,odd

1
n

[sin(n+ 1)ωmt+ sin(n− 1)ωmt]Sjy+

2
π

sinφ
N∑
j=1

∞∑
n=−∞,odd

1
n

[cos(n− 1)ωmt− cos(n+ 1)ωmt]Sjz (3.66)

where |n− 1| 6= 0 (n 6= 1) in the RF Hamiltonian.

The time independent Hamiltonian after employing the Floquet theory is repre-

sented by

HF = H0 +H1 +H2 = H0 +H1 + (H2,d +H2,od) (3.67)

where H1 and H2 are the perturbation Hamiltonians coming from RF phase modu-

lation and the MAS respectively.

H0 = ωrI
(m)
F + ωmI

(n)
F +G

(0,0)
Hj ,Z

Sjz (3.68)

H1 =
N∑
j=1

∑
n1=even

(
G

(0,n1)
Sj ,P

S+
j +G

(0,n1)
Sj ,M

S−j +G
(0,n1)
Sj ,Z

Sjz
)

(3.69)
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H2,d = (ω(0)
I1 − nωr)I1z + (ω(0)

I2 + nωr)I2z +G
(0,0)
I1I2,PMI

+
1 I
−
2 +G

(0,0)
I1I2,MP I

−
1 I

+
2 (3.70)

HC−C
2,od =

2∑
m=−2, 6=0

2∑
i=1

G
(m,0)
Ii

Iiz +
2∑

m=−2,6=0
G

(m,0)
I1I2 I1zI2z+

2∑
m=−2, 6=0

(
G

(m+2n,0)
I1I2,PM I+

1 I
−
2 +G

(m−2n,0)
I1I2,MP I

−
1 I

+
2

)
(3.71)

HC−H
2,od =

2∑
i=1

N∑
j=1

2∑
m=−2, 6=0

∑
n=±1

(
G

(m,n)
IiSj ,ZZ

IizSjz +G
(m,n)
IiSj ,ZP

IizS
+
j +G

(m,n)
IiSj ,ZM

IizS
−
j

)
(3.72)

HH
2,od =

N∑
j=1

2∑
m=−2

∑
n=±1

(
G

(m,n)
Sj ,Z

Sjz +G
(m,n)
Sj ,P

S+
j +G

(m,n)
Sj ,M

S−j
)

(3.73)

HH−H
2,od =

N∑
j,k=1,j<k;

2∑
m=−2, 6=0

∑
n=0,±2

(
G

(m,n)
SjSk,ZZ

SjzSkz +G
(m,n)
SjSk,PM

S+
j S
−
k

)
+

N∑
j,k=1,j<k;

2∑
m=−2, 6=0

∑
n=0,±2

(
G

(m,n)
SjSk,MPS

−
j S

+
k

)
+

N∑
j,k=1,j<k;

2∑
m=−2, 6=0

∑
n=0,±2

(
G

(m,n)
SjSk,PP

S+
j S

+
k +G

(m,n)
SjSk,MMS

−
j S
−
k

)
+

N∑
j,k=1,j<k;

2∑
m=−2, 6=0

∑
n=±2

(
G

(m,n)
SjSk,ZP

SjzS
+
k +G

(m,n)
SjSk,ZM

SjzS
−
k

)
+

N∑
j,k=1,j<k;

2∑
m=−2, 6=0

∑
n=±2

(
G

(m,n)
SjSk,PZ

S+
j Sjz +G

(m,n)
SjSk,MZS

−
j Sjz

)
(3.74)

The ‘G’ coefficients employed in the Floquet Hamiltonian and the transformation

function, S1 are tabulated in Table 3.3 and the remaining coefficients (related to

I − I) presented in Eq. (3.67) are similar to those defined in Tables 2.1 & 2.2 in

chapter-2.

The Hamiltonian (Eq. 3.69), H1 is a part of the Floquet Hamiltonian and their

G-coefficients are derived from the time-dependent RF Hamiltonian (Eq. 3.66). The

index n1 has ±(n+ 1) and ±(n− 1) values where n 6= 1 when n1 = |n− 1|.

Employing the contact transformation procedure, an unitary transformation de-

fined by the transformation function, S1 is performed to go into the RF interaction

frame (Eq. 3.69).

H̃F = eiλS1HF e
−iλS1 (3.75)
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G-coefficients

Single-spin (S) G
(m,n)
Sj ,P

= −1
4
n
|n|ω

(m)
Hj

;G(m,n)
Sj ,M

= 1
4
n
|n|ω

(m)
Hj

;G(m,n)
Sj ,Z

= −1
2ω

(m)
Hj

;G(0,0)
Sj ,Z

= 2
π

sinφ

Two-spin (I − S) G
(m,n)
IiSj ,ZP

= −1
2
n
|n|ω

(m)
Sj

;G(m,n)
IiSj ,ZM

= 1
2
n
|n|ω

(m)
Sj

;G(m,n)
IiSj ,ZPZ

= −ω(m)
Sj

Two-spin (S − S)

G
(m,0)
SjSk,ZZ

= 3
2ω

(m)
SjSk

;G(m,0)
SjSk,PM

= −5
8ω

(m)
SjSk

;G(m,0)
SjSk,MP = −5

8ω
(m)
SjSk

G
(m,0)
SjSk,PP

= 1
8ω

(m)
SjSk

;G(m,0)
SjSk,MM = 1

8ω
(m)
SjSk

G
(m,n)
SjSk,ZP

= −3
8
n
|n|ω

(m)
SjSk

;G(m,n)
SjSk,ZM

= 3
8
n
|n|ω

(m)
SjSk

G
(m,n)
SjSk,PZ

= −3
8
n
|n|ω

(m)
SjSk

;G(m,n)
SjSk,MZ = 3

8
n
|n|ω

(m)
SjSk

G
(m,n)
SjSk,ZZ

= 1
4ω

(m)
SjSk

;G(m,n)
SjSk,PM

= 1
16ω

(m)
SjSk

;G(m,n)
SjSk,MP = 1

16ω
(m)
SjSk

G
(m,n)
SjSk,PP

= − 1
16ω

(m)
SjSk

;G(m,n)
SjSk,MM = − 1

16ω
(m)
SjSk

C-coefficients

C
(0,n1)
Sj ,P

=
G

(0,n1)
Sj,P

n1ωm−G(0,0)
Hj,Z

;C(0,n1)
Sj ,M

=
G

(0,n1)
Sj,M

n1ωm+G(0,0)
Hj,Z

;C(0,n1)
Sj ,Z

=
G

(0,n1)
Sj,Z

n1ωm

Table 3.3: The table depicts the G-coefficients involved in the Floquet Hamiltonian (Eq.

3.67).

where the transformation function, S1 is represented by

S1 = i
N∑
j=1

∑
n1=even

(
C

(0,n1)
Sj ,Z

Sjz + C
(0,n1)
Sj ,P

S+
j + C

(0,n1)
Sj ,M

S−j
)

(3.76)

The index n1 in S1 is same as that of H1 and the C-coefficients are given in the Table

3.3.

Accordingly, the transformed Floquet Hamiltonian (H̃F ) in the RF interaction

frame is represented by,

H̃F = H̃0 + (H̃2,d + H̃2,od) (3.77)

where

H̃0 = ωrI
(m)
F + ωmI

(n)
F +

(
G

(0,0)
Hj ,Z

+R
(0,0)
Hj ,Z

)
Sjz (3.78)

H̃2,d = (ω(0)
I1 − nωr)I1z + (ω(0)

I2 + nωr)I2z +G
(0,0)
I1I2,PMI

+
1 I
−
2 +G

(0,0)
I1I2,MP I

−
1 I

+
2 (3.79)
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H̃C−C
2,od =

2∑
m=−2, 6=0

2∑
i=1

G
(m,0)
Ii

Iiz +
2∑

m=−2,6=0
G

(m,0)
I1I2 I1zI2z+

2∑
m=−2, 6=0

(
G

(m+2n,0)
I1I2,PM I+

1 I
−
2 +G

(m−2n,0)
I1I2,MP I

−
1 I

+
2

)
(3.80)

H̃C−H
2,od =

2∑
i=1

N∑
j=1

2∑
m=−2, 6=0

∞,odd∑
n2=−∞,6=0

(
R

(m,n2)
IiSj ,ZZ

IizSjz +R
(m,n2)
IiSj ,ZP

IizS
+
j +R

(m,n2)
IiSj ,ZM

IizS
−
j

)
(3.81)

H̃H
2,od =

N∑
j=1

2∑
m=−2

∞,odd∑
n2=−∞,6=0

(
R

(m,n2)
Sj ,Z

Sjz +R
(m,n2)
Sj ,P

S+
j +R

(m,n2)
Sj ,M

S−j
)

(3.82)

H̃H−H
2,od =

N∑
j,k=1,j<k;

2∑
m=−2, 6=0

∞,even∑
n2=−∞

(
R

(m,n2)
SjSk,ZZ

SjzSkz +R
(m,n2)
SjSk,PM

S+
j S
−
k +R

(m,n2)
SjSk,MPS

−
j S

+
k

)

+
N∑

j,k=1,j<k;

2∑
m=−2, 6=0

∞,even∑
n2=−∞

(
R

(m,n2)
SjSk,PP

S+
j S

+
k +R

(m,n2)
SjSk,MMS

−
j S
−
k

)
+

N∑
j,k=1,j<k;

2∑
m=−2, 6=0

∞,even∑
n2=−∞

(
R

(m,n2)
SjSk,ZP

SjzS
+
k +R

(m,n2)
SjSk,ZM

SjzS
−
k

)
+

N∑
j,k=1,j<k;

2∑
m=−2, 6=0

∞,even∑
n2=−∞

(
R

(m,n2)
SjSk,PZ

S+
j Sjz +R

(m,n2)
SjSk,MZS

−
j Sjz

)
(3.83)

In order to carryout the second transformation and to derive the effective Hamilto-

nian, the transformed Floquet Hamiltonian (H̃F ) is re-written as given below.

H̃F =H̃0 + H̃1

=H̃0 + (H̃1,d + H̃1,od) (3.84)

In the above equation, H̃1,d = H̃2,d and H̃1,od = H̃2,od.

Employing the Contact transformation method again, the second transformation

(S2) was performed in order to derive the effective Hamiltonian which is diagonal in

both the MAS (m) as well as the phase modulation (n) indices.

Heff = eiλS2H̃F e
−iλS2 (3.85)

Here the second transformation function (S2) was chosen to diagonalyse the off-

diagonal terms (H̃1,od) in the transformed Floquet Hamiltonian (H̃F ). The function,

87



Description of multi-spin effects and the role of heteronuclear decoupling in R2

S2 is defined as given below.

S2 =i
2∑

m=−2,m 6=0

2∑
i=1

C
(m,0)
Ii

Iiz + i
2∑

m=−2,m 6=0
C

(m,0)
I1I2 I1zI2z+

i
2∑

m=−2,m 6=0

(
C

(m+2n,0)
I1I2,PM I+

1 I
−
2 + C

(m−2n,0)
I1I2,MP I−1 I

+
2

)
+

i
2∑
i=1

N∑
j=1

2∑
m=−2, 6=0

∞,odd∑
n2=−∞, 6=0

(
C

(m,n2)
IiSj ,ZZ

IizSjz + C
(m,n2)
IiSj ,ZP

IizS
+
j + C

(m,n2)
IiSj ,ZM

IizS
−
j

)
+

i
N∑
j=1

2∑
m=−2, 6=0

∞,odd∑
n2=−∞, 6=0

(
C

(m,n2)
Sj ,Z

Sjz + C
(m,n2)
Sj ,P

S+
j + C

(m,n2)
Sj ,M

S−j
)
+

i
N∑

j,k=1,j<k;

2∑
m=−2, 6=0

∞,even∑
n2=−∞

(
C

(m,n2)
SjSk,ZZ

SjzSkz + C
(m,n2)
SjSk,PM

S+
j S
−
k + C

(m,n2)
SjSk,MPS

−
j S

+
k

)
+

i
N∑

j,k=1,j<k;

2∑
m=−2, 6=0

∞,even∑
n2=−∞

(
C

(m,n2)
SjSk,PP

S+
j S

+
k + C

(m,n2)
SjSk,MMS

−
j S
−
k

)
+

i
N∑

j,k=1,j<k;

2∑
m=−2, 6=0

∞,even∑
n2=−∞

(
C

(m,n2)
SjSk,ZP

SjzS
+
k + C

(m,n2)
SjSk,ZM

SjzS
−
k

)
+

i
N∑

j,k=1,j<k;

2∑
m=−2, 6=0

∞,even∑
n2=−∞

(
C

(m,n2)
SjSk,PZ

S+
j Sjz + C

(m,n2)
SjSk,MZS

−
j Sjz

)
(3.86)

The ‘R’ coefficients of the Floquet Hamiltonian (Eq. 3.77 & Eq. 3.84) and the ‘C’

coefficients of the transformation function, S2 (Eq. 3.86) are tabulated in Tables 3.4

and 3.5 respectively.

Following the Contact transformation procedure described in the previous chapter,

the effective Hamiltonian under TPPM decoupling is derived.

Heff =
2∑
i=1

AIiIiz +
[
DI1I2,PMI

+
1 I
−
2 +DI1I2,MP I

−
1 I

+
2

]
+

2∑
i=1

N∑
j=1

BIiSjIizSjz (3.87)

The coefficients involved in the above effective Hamiltonian (Eq. 3.87) are given in

Table 3.6.
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R-coefficients

R
(m,n2)
Sj ,Z

G
(m,±1)
Sj ,Z

[
1 + 2C(0,n1′)

Sj ,P
C

(0,n1)
Sj ,M

+ ...
]

+

G
(m,±1)
Sj ,P

[
C

(0,n1′)
Sj ,M

{
2C(0,n1)

Sj ,P
− C(0,n1)

Sj ,Z

}
+ 1

3

{
C

(0,n1′′)
Sj ,M

(
C

(0,n1′)
Sj ,Z

C
(0,n1)
Sj ,Z

+ 4C(0,n1′)
Sj ,P

C
(0,n1)
Sj ,M

)}
+ ...

]
−

G
(m,±1)
Sj ,M

[
C

(0,n1′)
Sj ,P

{
2C(0,n1)

Sj ,M
+ C

(0,n1)
Sj ,Z

}
+ 1

3

{
C

(0,n1′′)
Sj ,P

(
C

(0,n1′)
Sj ,Z

C
(0,n1)
Sj ,Z

+ 4C(0,n1′)
Sj ,P

C
(0,n1)
Sj ,M

)}
+ ...

]

R
(m,n2)
Sj ,P

G
(m,±1)
Sj ,Z

[
C

(0,n1)
Sj ,P

− 1
2C

(0,n1′)
Sj ,Z

C
(0,n1)
Sj ,P

+ 1
6

{
C

(0,n1′′)
Sj ,P

(
4C(0,n1′)

Sj ,P
C

(0,n1)
Sj ,M

+ C
(0,n1′)
Sj ,Z

C
(0,n1)
Sj ,Z

)}
− ...

]
+

G
(m,±1)
Sj ,P

[
1− C(0,n1)

Sj ,Z
+
{
C

(0,n1′)
Sj ,P

C
(0,n1)
Sj ,M

+ 1
2C

(0,n1′)
Sj ,Z

C
(0,n1)
Sj ,Z

}
− 1

6

{
C

(0,n1′′)
Sj ,Z

(
C

(0,n1′)
Sj ,Z

C
(0,n1)
Sj ,Z

+ 4C(0,n1′)
Sj ,P

C
(0,n1)
Sj ,M

)}
+ ...

]
+

G
(m,±1)
Sj ,M

[
−C(0,n1′)

Sj ,P
C

(0,n1)
Sj ,P

+ ...
]

R
(m,n2)
Sj ,M

G
(m,±1)
Sj ,Z

[
−C(0,n1)

Sj ,M
− 1

2C
(0,n1′)
Sj ,Z

C
(0,n1)
Sj ,M

− 1
6

{
C

(0,n1′′)
Sj ,M

(
4C(0,n1′)

Sj ,P
C

(0,n1)
Sj ,M

+ C
(0,n1′)
Sj ,Z

C
(0,n1)
Sj ,Z

)}
− ...

]
+

G
(m,±1)
Sj ,P

[
−C(0,n1′)

Sj ,M
C

(0,n1)
Sj ,M

+ ...
]

+

G
(m,±1)
Sj ,M

[
1 + C

(0,n1)
Sj ,Z

+
{
C

(0,n1′)
Sj ,P

C
(0,n1)
Sj ,M

+ 1
2C

(0,n1′)
Sj ,Z

C
(0,n1)
Sj ,Z

}
+ 1

6

{
C

(0,n1′′)
Sj ,Z

(
C

(0,n1′)
Sj ,Z

C
(0,n1)
Sj ,Z

+ 4C(0,n1′)
Sj ,P

C
(0,n1)
Sj ,M

)}
+ ...

]

R
(m,n2)
IiSj ,ZZ

G
(m,±1)
IiSj ,ZZ

[
1 + 2C(0,n1′)

Sj ,P
C

(0,n1)
Sj ,M

+ ...
]

+

G
(m,±1)
IiSj ,ZP

[
C

(0,n1′)
Sj ,M

{
2C(0,n1)

Sj ,P
− C(0,n1)

Sj ,Z

}
+ 1

3

{
C

(0,n1′′)
Sj ,M

(
C

(0,n1′)
Sj ,Z

C
(0,n1)
Sj ,Z

+ 4C(0,n1′)
Sj ,P

C
(0,n1)
Sj ,M

)}
+ ...

]
−

G
(m,±1)
IiSj ,ZM

[
C

(0,n1′)
Sj ,P

{
2C(0,n1)

Sj ,M
+ C

(0,n1)
Sj ,Z

}
+ 1

3

{
C

(0,n1′′)
Sj ,P

(
C

(0,n1′)
Sj ,Z

C
(0,n1)
Sj ,Z

+ 4C(0,n1′)
Sj ,P

C
(0,n1)
Sj ,M

)}
+ ...

]

R
(m,n2)
IiSj ,ZP

G
(m,±1)
IiSj ,ZZ

[
C

(0,n1)
Sj ,P

− 1
2C

(0,n1′)
Sj ,Z

C
(0,n1)
Sj ,P

+ 1
6

{
C

(0,n1′′)
Sj ,P

(
4C(0,n1′)

Sj ,P
C

(0,n1)
Sj ,M

+ C
(0,n1′)
Sj ,Z

C
(0,n1)
Sj ,Z

)}
− ...

]
+

G
(m,±1)
IiSj ,ZP

[
1− C(0,n1)

Sj ,Z
+
{
C

(0,n1′)
Sj ,P

C
(0,n1)
Sj ,M

+ 1
2C

(0,n1′)
Sj ,Z

C
(0,n1)
Sj ,Z

}
− 1

6

{
C

(0,n1′′)
Sj ,Z

(
C

(0,n1′)
Sj ,Z

C
(0,n1)
Sj ,Z

+ 4C(0,n1′)
Sj ,P

C
(0,n1)
Sj ,M

)}
+ ...

]
+

G
(m,±1)
IiSj ,ZM

[
−C(0,n1′)

Sj ,P
C

(0,n1)
Sj ,P

+ ...
]

R
(m,n2)
IiSj ,ZM

G
(m,±1)
IiSj ,ZZ

[
−C(0,n1)

Sj ,M
− 1

2C
(0,n1′)
Sj ,Z

C
(0,n1)
Sj ,M

− 1
6

{
C

(0,n1′′)
Sj ,M

(
4C(0,n1′)

Sj ,P
C

(0,n1)
Sj ,M

+ C
(0,n1′)
Sj ,Z

C
(0,n1)
Sj ,Z

)}
− ...

]
+

G
(m,±1)
IiSj ,ZP

[
−C(0,n1′)

Sj ,M
C

(0,n1)
Sj ,M

+ ...
]

+

G
(m,±1)
IiSj ,ZM

[
1 + C

(0,n1)
Sj ,Z

+
{
C

(0,n1′)
Sj ,P

C
(0,n1)
Sj ,M

+ 1
2C

(0,n1′)
Sj ,Z

C
(0,n1)
Sj ,Z

}
+ 1

6

{
C

(0,n1′′)
Sj ,Z

(
C

(0,n1′)
Sj ,Z

C
(0,n1)
Sj ,Z

+ 4C(0,n1′)
Sj ,P

C
(0,n1)
Sj ,M

)}
+ ...

]

Table 3.4: The table depicts the R-coefficients involved in the Floquet Hamiltonian (Eqs.

3.77 & 3.84).
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C-coefficients

C
(m,n2)
Sj ,Z

=
R

(m,n2)
Sj,Z

mωr+n2ωm
C

(m,n2)
IiSj ,ZZ

=
R

(m,n2)
IiSj,ZZ

mωr+n2ωm

C
(m,n2)
Sj ,P

=
R

(m,n2)
Sj,P

mωr+n2ωm−
(
G

(0,0)
Hj,Z

+R(0,0)
Hj,Z

) C
(m,n2)
IiSj ,ZP

=
R

(m,n2)
IiSj,ZP

mωr+n2ωm−
(
G

(0,0)
Hj,Z

+R(0,0)
Hj,Z

)

C
(m,n2)
Sj ,M

=
R

(m,n2)
Sj,M

mωr+n2ωm+
(
G

(0,0)
Hj,Z

+R(0,0)
Hj,Z

) C
(m,n2)
IiSj ,ZM

=
R

(m,n2)
IiSj,ZM

mωr+n2ωm+
(
G

(0,0)
Hj,Z

+R(0,0)
Hj,Z

)
Table 3.5: The table depicts the R-coefficients involved in the second transformation

function, S2 (Eq. 3.86).

Coefficients First - order Second - order

BIiSj 0
1
2

(
C

(m,n2)
Sj ,P

R
(−m,−n2)
IiSj ,ZM

− C(m,n2)
IiSj ,ZM

R
(−m,−n2)
Sj ,P

)
−

1
2

(
C

(m,n2)
Sj ,M

R
(−m,−n2)
IiSj ,ZP

− C(m,n2)
IiSj ,ZP

R
(−m,−n2)
Sj ,M

)


CSA (1H)×Dipolar (13C−1H)

Table 3.6: This table depicts the heteronuclear dipolar coefficients (BIiSj ) involved in

the effective Hamiltonian (Eq. 3.87). See Table 2.3 in chapter-2 for all the remaining

A-coefficients.
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Chapter 4

Description of higher-order and

fractional R2 experiments

4.1 Background

The next stage in our study was to explore the possibility altering the resonance

conditions in R2 experiments. In the first-order based R2 experiments (N=1, 2),

the resonance conditions are highly dependent on the isotropic chemical shift differ-

ences between nuclei. Such stringent conditions are detrimental in cases where the

chemical shift separation is much smaller than the CSA interactions. To address

this issue, experiments such as Rotational Resonance in the tilted rotating frame1

(R2TR) were conceived in the past. In contrast to the conventional R2 experiments,

a weak RF field (to preserve the selectivity) was employed in the R2TR experiments

to facilitate polarization transfer under modified resonance conditions. In addition

to zero-quantum (ZQ) matching conditions, new matching conditions corresponding

to single-quantum and double-quantum were identified in such experiments. Due to

lower scaling factors, the R2TR experiments were of limited utility in the estimation

of 13C − 13C distances in uniformly labeled solids. In a contrasting attempt, exper-

iments such as DARR2 (Dipolar Assisted Rotational Resonance) were proposed to

broaden the matching conditions in R2 experiments. To facilitate broadband trans-

fer of polarization, the amplitude of the CW fields employed in such experiments

were chosen to be integer multiples of the sample spinning frequency. Although, the

DARR experiments have found extensive applications in multi-dimensional spectral
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assignment studies, their extension in the estimation of 13C − 13C distances was lim-

ited due to the presence of multiple-spin interactions in the exchange dynamics. As

an alternative, the possibility of employing multiple-pulse sequences is discussed in

this chapter. The motivation for the present study stems from the multiple-pulse

experiments3,4 of Griffin and coworkers5 in 1994. In their experiment, the stringent

conditions on the sample spinning frequency (imposed by the chemical shift differ-

ence in R2 experiment) were modified through periodic multiple-pulse sequences. By

careful choice of the RF amplitudes, flip angles and the cycle time of the pulse se-

quence, modified resonance conditions (hereby referred to as ‘fractional resonance’

conditions) were proposed with chemical shift selectivity. To minimize the effects of

sample spinning during the multiple pulse sequence, the cycle time of the sequence

was deliberately chosen shorter than that of the MAS rotor period. The feasibility

and practical implementation of such schemes would be described in this section.

4.2 Definition of the problem

To develop a general framework for describing multiple-pulse based rotational reso-

nance experiments in solid-state MAS experiments. Employing the concept of effec-

tive Hamiltonians, the optimal conditions (that includes the choice of the spinning

frequency, modulation frequency, flip angles of the pulses) that are required for the

implementation of such schemes would be discussed.

4.3 Theory

4.3.1 Higher-order Rotational resonance (N=3, 4)

To describe the magnetization exchange between 13C nuclei under higher-order R2

conditions (N>2), we begin our discussion with a model system comprising of two-

spins (I1 and I2). In contrast to the N=1& 2, R2 experiments, the dipolar interactions

are averaged out to first-order in higher-order R2 experiments. Following the general

procedure6–14 described in chapter-2, the Floquet Hamiltonian is derived and is re-

expressed as illustrated.

HF = H0 +H1 = H0 + (H1,d +H1,od) (4.1)
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H0 =ωrIF (4.2)

H1,d =(ω(0)
1 − nωr)[I1z]0 + (ω(0)

2 + nωr)[I2z]0 (4.3)

H1,od =
2∑

m=−2,m 6=0

2∑
i=1

G
(m)
Ii

[Iiz]m +
2∑

m=−2,m 6=0
G

(m)
I1I2 [I1zI2z]m+

2∑
m=−2,m 6=0

(
G

(m+2n)
I1I2,PM

[
I+

1 I
−
2

]
m+2n

+G
(m−2n)
I1I2,MP

[
I−1 I

+
2

]
m−2n

)
(4.4)

In the above equation, for the N=3 & 4 matching conditions (i.e. ω1−ω2 = Nωr), the

corresponding ‘n’ values are 3/2, 2 respectively. The diagonal part of the Hamiltonian

comprises of only single-spin longitudinal operators. Employing the transformation

function, S1, the off-diagonal part of the Hamiltonian is folded through the standard

procedure described in the previous chapters.

S1 =
2∑

m=−2,m6=0
i

{ 2∑
i=1

C
(m)
Ii

[Iiz]m + C
(m)
I1I2 [I1zI2z]m

}
+

2∑
m=−2,m 6=0

i
{
C

(m+2n)
I1I2,PM

[
I+

1 I
−
2

]
m+2n

+ C
(m−2n)
I1I2,MP

[
I−1 I

+
2

]
m−2n

}
(4.5)

The form of the ‘G’ and ‘C’ coefficients present in the Floquet Hamiltonian and the

transformation function, S1 are tabulated in Tables 4.1 and 4.2.

Accordingly, the effective Hamiltonian15,16 to second order are evaluated through

the higher-order expressions /terms in the contact transformation procedure17,18.

Heff =H(1)
0 +H

(1)
1 +H

(1)
2

H
(1)
1 =H1,d

H
(1)
2 = i

2 [S1, H1] (4.6)

Analogous to our earlier description, the effective Hamiltonian comprises of single-

spin and two-spin operators.

Heff =
2∑
i=1

AIiIiz +
[
DI1I2,PMI

+
1 I
−
2 +DI1I2,MP I

−
1 I

+
2

]
(4.7)

In contrast to first-order based R2 experiments (N=1, 2), the two-spin operators in

the effective Hamiltonian result from second-order cross-terms between the CSA (of

carbons) and the dipolar interactions. When the chemical shift difference between

the spins is equal to 3ωr (i.e. ω1 − ω2 = 2nωr = Nωr; for n=3/2 or N=3), both the

m=1, 2 components of the CSA and dipolar interactions play an important role in
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G-coefficients

G
(m)
Ii

= ω
(m)
Ii

G
(m)
I1I2 = 2ω(m)

I1I2

G
(5)
I1I2,PM = −1

2ω
(2)
I1I2 G

(4)
I1I2,PM = −1

2ω
(1)
I1I2

G
(1)
I1I2,PM = −1

2ω
(−2)
I1I2 G

(2)
I1I2,PM = −1

2ω
(−1)
I1I2

G
(−1)
I1I2,MP = −1

2ω
(2)
I1I2 G

(−2)
I1I2,MP = −1

2ω
(1)
I1I2

G
(−5)
I1I2,MP = −1

2ω
(−2)
I1I2 G

(−4)
I1I2,MP = −1

2ω
(−1)
I1I2

C-coefficients

C
(m)
Ii

=
G

(m)
Ii

mωr
C

(m)
I1I2 =

G
(m)
I1I2
mωr

C
(m)
I1I2,PM =

G
(m)
I1I2,PM
mωr

C
(m)
I1I2,MP = G

(m)
12,MP

mωr

Table 4.1: The table depicts the G and C-coefficients involved in the Floquet Hamiltonian

and the transformation function, S1, for N=3, R2 condition

G-coefficients

G
(m)
Ii

= ω
(m)
Ii

G
(m)
I1I2 = 2ω(m)

I1I2

G
(6)
I1I2,PM = −1

2ω
(2)
I1I2 G

(5)
I1I2,PM = −1

2ω
(1)
I1I2

G
(2)
I1I2,PM = −1

2ω
(−2)
I1I2 G

(3)
I1I2,PM = −1

2ω
(−1)
I1I2

G
(−2)
I1I2,MP = −1

2ω
(2)
I1I2 G

(−3)
I1I2,MP = −1

2ω
(1)
I1I2

G
(−6)
I1I2,MP = −1

2ω
(−2)
I1I2 G

(−5)
I1I2,MP = −1

2ω
(−1)
I1I2

C-coefficients

C
(m)
Ii

=
G

(m)
Ii

mωr
C

(m)
I1I2 =

G
(m)
I1I2
mωr

C
(m)
I1I2,PM =

G
(m)
I1I2,PM
mωr

C
(m)
I1I2,MP =

G
(m)
I1I2,MP

mωr

Table 4.2: The table depicts the G and C-coefficients involved in the Floquet Hamiltonian

and the transformation function, S1, for N=4, R2 condition
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the reintroduction of the dipolar interactions. In a similar vein, when the chemical

shift difference equals to 4ωr (i.e. ω1 − ω2 = 2nωr = Nωr; for n=2 or N=4), the

cross-terms between the m = ±2 component of the CSA and the m = ±2 component

of the dipolar interactions are responsible for the two-spin operators in the effective

Hamiltonian. Hence, the CSA interactions play an important role in the higher-order

(integer) resonance conditions.

The coefficients contained in the effective Hamiltonian (Eq. 4.7) are listed in

Table 4.3. Employing the reduced density matrix theory, the polarization transfer

from spin I1 to I2 is described through the equations illustrated in chapter-3. The

higher-order R2 conditions described in this section rely on the CSA interactions.

As an alternative, the possibility of higher-order R2 matching conditions through

multiple pulses will be discussed in the following section.

Coefficients First - order Second - order

AI1

(
ω

(0)
I1 − nωr

) 1
2
(
C

(m)
I1I2,PMG

(−m)
I1I2,MP − C

(m)
I1I2,MPG

(−m)
I1I2,PM

)
+ 1

2
(
C

(m)
I1I3,PMG

(−m)
I1I3,MP − C

(m)
I1I3,MPG

(−m)
I1I3,PM

)
︸ ︷︷ ︸

Dipolar(13C−13C)×Dipolar(13C−13C)

AI2

(
ω

(0)
I2 + nωr

)
−1

2
(
C

(m)
I1I2,PMG

(−m)
I1I2,MP − C

(m)
I1I2,MPG

(−m)
I1I2,PM

)
︸ ︷︷ ︸

Dipolar(13C−13C)×Dipolar(13C−13C)

DI1I2,PM 0 1
2
(
C

(m)
I1 G

(−m)
I1I2,PM − C

(m)
I1I2,PMG

(−m)
I1

)
− 1

2
(
C

(m)
I2 G

(−m)
I1I2,PM − C

(m)
I1I2,PMG

(−m)
I2

)
︸ ︷︷ ︸

CSA(13C)×Dipolar(13C−13C)

DI1I2,MP 0 −1
2
(
C

(m)
I1 G

(−m)
I1I2,MP − C

(m)
I1I2,MPG

(−m)
I1

)
+ 1

2
(
C

(m)
I2 G

(−m)
I1I2,MP − C

(m)
I1I2,MPG

(−m)
I2

)
︸ ︷︷ ︸

CSA(13C)×Dipolar(13C−13C)

Table 4.3: This table depicts the first-order and second-order corrections for N=3 and

N=4, R2 conditions involved in the Eq. (4.7). For all the ‘G’ and ‘C’ coefficients and the

Fourier indices (m) in the above table, see the Tables 4.1 & 4.2 for N=3 and N=4, R2

conditions, respectively.

4.3.2 Fractional Rotational resonance

To derive alternate matching conditions, multiple pulse schemes were employed to

interfere with the rotor induced magnetization exchange. The feasibility of such

schemes (see Fig. 4.1) is discussed below in this section.
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Figure 4.1: The figure depicts the pulse sequence employed for the implementation of

fractional R2 experiments. The sequence involves four pulses of flip angle β = ω1tp and

opposite phases with a total cycle time, τm = 4τr + 4tp.

To begin with, the Hamiltonian for an isolated spin pair in the presence of a

periodic multiple-pulse scheme is depicted by,

H(t) =
2∑

m=−2,m 6=0

2∑
i=1

[
ω

(0)
i + ω

(m)
i eimωrt

]
Iiz+

2∑
m=−2,m 6=0

ω
(m)
12 eimωrt [2I1zI2z − (I1xI2x + I1yI2y)] +HRF (t) (4.8)

In the above equation, HRF (t) represents the Fourier series expansion of the multiple-

pulse sequence depicted in Fig. (4.1). For the pulse sequence depicted in Figure 4.1,

the Fourier series expansion is depicted below.

HRF (t) =8ωRF
π

∑
n=1,3,5..

(i)n+1 1
n

sin2
(
nωmtp

2

)
cos(nωmt) [I1y + I2y] (4.9)

In the above equation, ‘tp’ represents the duration of the pulse, ωRF is the am-

plitude and ωm, the modulation frequency of the multiple-pulse sequence (ωm = 2π
τm

,

where τm = 4τr + 4tp, is the cycle time of the pulse sequence). In contrast to the de-

scription presented in the previous section, the presence of a multiple-pulse sequence

alters both the resonance condition and the behavior of the spin system. Conse-

quently, the evolution of the system is governed by an effective Hamiltonian that is

different from the internal Hamiltonian of the system. From an experimental per-

spective, the form of this effective Hamiltonian could be tailored by the appropriate

choice of the spinning frequency, RF amplitude, duration of the pulse and the cycle

time of the experiment. In this section, we present an analytic approach to deduce

the matching conditions through effective Hamiltonians.

To describe the effects of the multiple-pulse scheme on the internal spin interac-

tions, the Hamiltonian in the rotating frame is transformed into an interaction frame
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Description of higher-order and fractional R2 experiments

defined by the RF interaction. In the past, Average Hamiltonian theory (AHT)19–21

was employed to describe the spin dynamics under certain conditions. To facilitate

analytic description, the cycle time (τm) of the pulse sequence is often synchronized

with the MAS rotor period, τr. As an alternative, a more general framework (without

synchronization conditions) based on Floquet theory6–14 is presented in this section.

In the Floquet framework, the time-dependent Hamiltonian is recast into a time-

independent Hamiltonian, as represented below.

HF =ωrIF1 + ωmIF2 + ω
(0)
1 [I1z]0,0 + ω

(0)
2 [I2z]0,0+

2∑
m=−2,m 6=0

G
(m)
1 [I1z]m,0 +

2∑
m=−2,m 6=0

G
(m)
2 [I2z]m,0+

2∑
m=−2,m 6=0

{
G

(m)
ZZ [I1zI2z]m,0 +G

(m)
XX [I1xI2x]m,0 +G

(m)
Y Y [I1yI2y]m,0

}
+

∞∑
n=±1,±3,±5..

G
(n)
RF

{
[I1y]0,n + [I2y]0,n

}
(4.10)

The Fourier indices, ‘m, n’ in the above Floquet Hamiltonian are representative

of the modulations imposed by MAS and multiple pulses, respectively.

To illustrate the effects of the RF modulation on the internal Hamiltonians, the

RF Hamiltonian in the Floquet framework is transformed using the transformation

function, S1. The procedure described below is the Floquet equivalent of the RF

interaction frame transformation in NMR spectroscopy. To realize this, the Floquet

Hamiltonian represented in Eq. (4.10) is re-expressed as a sum of two terms.

HF = H int
F +HRF

F (4.11)

The effective RF Hamiltonian is derived by re-expressing the HRF
F in terms of a

zero-order (HRF
0 ) and perturbing Hamiltonians (HRF

1 ) as illustrated below.

HRF
F =HRF

0 +HRF
1

HRF
0 =ωmIF2

HRF
1 =

∞∑
n=±1,±3,±5..

G
(n)
RF

{
[I1y]0,n + [I2y]0,n

}
(4.12)

To compensate the off-diagonality in HRF
1 , a suitable transformation function in

the form of S1 is employed.

S1 = i
∞∑

n=±1,±3,±5..
C

(n)
RF

{
[I1y]0,n + [I2y]0,n

}
(4.13)
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where C(n)
RF = G

(n)
RF

nωm
.

The effective RF Hamiltonian is obtained by transforming the untransformed

Floquet Hamiltonian, as illustrated below.

HRF
F,eff = eiλS1HRF

F e−iλS1 (4.14)

In this framework, the effective Hamiltonian describing the RF interaction reduces

to a much simpler from, HRF
F,eff = ωmI

(n)
F .

To describe the effects of the multiple-pulse scheme, the internal Floquet Hamil-

tonian (HF
int) is transformed by S1.

H̃ int
F = eiλS1H int

F e−iλS1 (4.15)

In the RF interaction frame, the internal Hamiltonians are modulated by both

MAS and the modulation frequency (ωm) imposed by the multiple pulse scheme.

Consequently, the internal Floquet Hamiltonian in the RF interaction frame is labeled

through indices ‘m,n’ (representative of the ωr and ωm modulations). For illustrative

purposes, the derivation of the internal Floquet Hamiltonians in the RF interaction

frame is described below.

i. Isotropic chemical shift:

In the RF interaction frame, the isotropic part of the chemical shift acquires time-

dependence due to the multiple pulse scheme. The unmodulated part of the chemical

shift interaction is represented through the [Iz]0 operator, while the modulated part

is represented by [Iz]0,n & [Ix]0,n operators.

HF,iso =ω(0)
1 [I1z]0 + ω

(0)
2 [I2z]0 (4.16)

H̃F,iso =eiλS1HF,isoe
−iλS1

=HF,iso + iλ [S1, HF,iso] + (iλ)2

2! [S1 [S1, HF,iso]] + ... (4.17)

The unmodulated part of the isotropic chemical shift interaction is scaled by the

multiple-pulse sequence with the scaling factor derived by evaluating the even terms

in Eq. (4.17).

[Iz]0,0

{
1 + (iλ)2

2! Cn1
RFC

n2
RF + (iλ)4

4! Cn1
RFC

n2
RFC

n3
RFC

n4
RF + ...

}
(4.18)
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The coefficients are chosen such that the conditions n1 + n2 = 0 and n1 + n2 +

n3 + n4 = 0 (with ni = ±1,±3,±5..) are satisfied. In addition to the [Iz]0,0 operator,

additional operators in the form [Iz]0,n′ (where ni = ±2,±3..) do exist and become

operationally valid depending on their scaling factors.

In a similar vein, transverse components of the chemical shift interaction are

derived by evaluating the odd-terms present in Eq. (4.17).

[Ix]0,n′
{

(iλ) [S1, [Iz]0] + (iλ)3

3! [S1 [S1 [S1, [Iz]0]]] + ...

}
(4.19)

The description presented above is equally valid for the chemical shift anisotropic

(CSA) interactions. In addition to the MAS modulation, the CSA interactions in the

RF interaction frame are modulated by the RF-pulses and are represented through

[Iz]m,0, [Iz]m,n′ and [Ix]m,n′′ operators. The coefficients corresponding to these op-

erators are derived systematically from Eq. (4.17). The final form of the chemical

shift interaction in the RF interaction frame along with scaling factors is represented

below.

H̃F,iso =kω(0)
1 [I1z]0,0 + kn

′

1 ω
(0)
1 [I1z]0,n′ + kn

′′

2 ω
(0)
1 [I1x]0,n′′+

kω
(0)
2 [I2z]0,0 + kn

′

1 ω
(0)
2 [I2z]0,n′ + kn

′′

2 ω
(0)
2 [I2x]0,n′′ (4.20)

In a similar vein, the CSA Hamiltonian in the RF interaction frame is derived

and expressed below.

H̃F,CSA =kω(m)
1 [I1z]m,0 + kn

′

1 ω
(m)
1 [I1z]m,n′ + kn

′′

2 ω
(m)
1 [I1x]m,n′′+

kω
(m)
2 [I2z]m,0 + kn

′

1 ω
(m)
2 [I2z]m,n′ + kn

′′

2 ω
(m)
2 [I2x]m,n′′ (4.21)

ii. Dipolar Hamiltonian

Analogous to the description in the previous section, the dipolar Hamiltonian in the

RF interaction has operators with Fourier indices associated with MAS and multiple

pulse modulations. A brief description of this procedure is illustrated below.

H̃F,dip = eiλS1HF,dipe
−iλS1 (4.22)

In the rotating frame, the dipolar Hamiltonian comprises of the [I1zI2z]m,0, [I1xI2x]m,0
and [I1yI2y]m,0 operators. In the RF interaction frame, the [I1yI2y]m,0 operators remain
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invariant (since
[
S1, [I1yI2y]m,0

]
= 0), while the transformed ˜[I1zI2z]m,0 and ˜[I1xI2x]m,0

are evaluated by the procedure described below.

˜[I1zI2z]m,0 =eiλS1 [I1zI2z]m,0e
−iλS1

=kG(m)
ZZ [I1zI2z]m,0 + kn

′

1 G
(m)
ZZ [I1zI2z]m,n′ + kn

′′

2 G
(m)
ZZ

{
[I1xI2z]m,n′′ + [I1zI2x]m,n′′

}
(4.23)

˜[I1xI2x]m,0 =eiλS1 [I1xI2x]m,0e
−iλS1

=kG(m)
XX [I1xI2x]m,0 + kn

′

1 G
(m)
XX [I1xI2x]m,n′ + kn

′′

2 G
(m)
XX

{
[I1zI2x]m,n′′ + [I1xI2z]m,n′′

}
(4.24)

Combining these expressions, the dipolar Floquet Hamiltonian in the RF interac-

tion frame is represented by,

H̃F,dip =eiλS1HF,dipe
−iλS1

=k
{
G

(m)
ZZ [I1zI2z]m,0 +G

(m)
XX [I1xI2x]m,0

}
+G

(m)
Y Y [I1yI2y]m,0+

kn
′

1

{
G

(m)
ZZ [I1zI2z]m,n′ +G

(m)
XX [I1xI2x]m,n′

}
+

kn
′′

2

(
G

(m)
ZZ +G

(m)
XX

) {
[I1xI2z]m,n′′ + [I1zI2x]m,n′′

}
(4.25)

The scaling factors involved in the chemical shift and dipolar interactions are iden-

tical. To derive the effective Hamiltonian, the internal Hamiltonian is diagonalized

using the contact transformation procedure. Accordingly, the internal Hamiltonian

is re-expressed as a sum of zero-order and perturbing Hamiltonians.

H̃F,int =H0 +H1

H0 =ωrI(m)
F + ωmI

(n)
F + kω

(0)
1 [I1z]0,0 + kω

(0)
2 [I2z]0,0

H1 =H̃F,dip + H̃F,CS + H̃F,CSA (4.26)

In the above equation, the scaled isotropic chemical shift (unmodulated) inter-

action is included along H0. Employing a second transformation function S2, the

Floquet Hamiltonian in the RF interaction frame is diagonalized.

H̃eff
F,int = eiλS2H̃F,inte

−iλS2 (4.27)

The form of the transformation function (S2) is deduced by the following equation,

H
(1)
1 = H1 + i [S2, H0] (4.28)
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or in other words, i [S2, H0] = −H1. To second-order, the corrections to the effective

Hamiltonian are derived using the standard procedure described in the thesis.

H
(1)
2 = i

2 [S2, H1] (4.29)

The form of the effective Hamiltonian and the expressions employed in the calcula-

tions are similar to those derived in chapter-2. The validity of the analytic description

presented in this section is discussed through simulations in the following section.

4.4 Results and Discussion

To describe the higher-order R2 phenomenon (N=3, 4), polarization transfer from

I1 to I2 in the model systems (see Fig. 3.5 in chapter-3) is depicted in Fig. (4.2).

In the simulations depicted, polarization transfer is monitored as a function of spin-

ning frequency under constant mixing time. Since the re-introduction of the dipolar

interactions result from a second order effect, the time required for polarization trans-

fer is longer in comparison to first-order based R2 experiments (N=1 & N=2). As

depicted, the width of the resonance profile is significantly reduced in the higher-

order R2 matching profiles depicted in Figures 4.2 & 4.3. In contrast to first-order

R2 experiments, the orientation and magnitude of CSA tensors play an important

role in the higher-order R2 exchange dynamics. The simulations depicted in Fig.

(4.3) highlight the role of CSA interactions and corroborate well with the analytic

predictions described in the previous section. From an experimental perspective,

the implementation of resonance width experiments at higher R2 conditions seems

less practical owing to the narrower width (see Figures 4.4 & 4.5) observed in the

profiles. This is illustrated through Figures 4.4 & 4.5 wherein the R2width profiles

corresponding to the N=1, 2, 3 & 4 conditions are depicted. The decrease in width is

more profound in the weak-coupling limit. Hence, mixing time experiments (Fig. 4.6)

seem to be a better option for the implementation of higher-order R2 experiments.

Additionally, since the exchange trajectories (at higher R2 matching conditions) are

extremely sensitive to the magnitude and orientation (of chemical shift tensors) of

the CSA interactions, prior knowledge of their magnitudes /orientations is essential.

Hence, higher-order R2 experiments seem to be of lesser utility in the measurement

of interatomic distances in solids.
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Figure 4.2: The figure depicts the spinning frequency dependent polarization transfer

from VCo to VCβ, 2.54 Å(a1, a2), from VCo to VCγ1 , 3.90 Å(b1, b2) and from LeuCo to VCβ,

5.44 Å(c1, c2) represented in the model systems in figure 2.3. The analytic simulations in

panels ((a1, Tmix=10ms), (b1, Tmix=80ms), (c1, Tmix=100ms)) represent the polariza-

tion exchange phenomenon for N=3 and the panels ((a2, Tmix=30ms), (b2, Tmix=100ms),

(c2, Tmix=250ms)) for N=4, R2 condition in a two-spin (C-C) system under constant mix-

ing time. The analytic simulations are based on the Eqs. (2.17) & (2.18) in chapter-2. All

the remaining simulation perimeters are given in Table 2.4 in Chapter 2.

As an alternative, multiple-pulse based techniques remain a better option for im-

plementing higher-order R2 experiments. In Figure 4.7, polarization transfer between

spins based on the multiple-pulse scheme is depicted. Depending on the choice of the

experimental parameters (spinning frequency, RF-offsets), both ZQ and DQ polar-

ization transfer profiles are observed. As depicted, the efficiency of transfer is on par

with the higher-order N=3, 4 R2 matching conditions. Additionally, the polarization

transfer takes place at a faster timescale. In the RF interaction frame, the isotropic

chemical shifts are scaled resulting in modified resonance conditions. In addition

to the dependence on the chemical shifts, the resonance conditions depend on the

modulation frequency of the pulse sequence employed.

In the case of multiple-pulse based experiments, the resonance condition corre-

sponds to k (ω1 − ω2) = mωr + nωm (where m = ±1,±2 and n = ±1,±2,±3......),

which in turn could also be expressed as (ω1 − ω2) = k′ωr with k′ being a real number.
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Figure 4.3: The figure depicts the CSA dependence of Carbonyl carbon in spinning

frequency dependent polarization transfer from VCo to VCβ, 2.54 Å (a1, a2), (δCSACo = -

8589Hz), from VCo to VCγ1 , 3.90 Å (b1, b2), (δCSACo = 8589Hz) and from LeuCo to VCβ,

5.44 Å (c1, c2), (δCSACo = -8500Hz) represented in the model systems in panels (a), (b) and

(c) of figure 2.3, respectively. The magnitude of the CSA interactions are varied in all the

simulations as the following: 100% (solid line), 60% (dotted line) and 30% (broken line).

The simulations depicted in panels (a1, b1, c1) correspond to the N=3 condition, while the

simulations correspond to the N=4 are illustrated in panels (a2, b2, c2). All the remaining

simulation perimeters are given in Table 2.4.

Although, the efficiency of polarization transfer under fractional R2 condition

is promising, from a practical perspective, implementation of the scheme is very

demanding owing to narrow resonance conditions. The resonance conditions are

extremely sensitive to the precise setting of the sample spinning frequency. This

aspect is highlighted in Fig. (4.10), through a set of simulations with wherein the

mismatch in the spinning frequency about ± 25Hz. This trend is exhibited both in

the strong and weak coupling regimes. The resonance conditions for a given sequence

is determined only through precise evaluation of scaling factors based on higher-

order (beyond second-order) perturbation theory. From a practical perspective, this

extreme sensitivity to the spinning frequency, could be the main limiting factor in

the implementation of fractional R2 experiments in solid-state NMR.
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Figure 4.4: The figure depicts the spinning frequency dependent polarization transfer

from valine carbonyl carbon to valine beta carbon (VCo → VCβ, 2.54 Å) in a two-spin

(C-C) system under N=1, 2, 3 and 4, R2 conditions.
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Figure 4.5: The figure depicts the spinning frequency dependent polarization transfer

from leucine carbonyl carbon to valine beta carbon (LeuCo → VCβ, 5.44 Å) in a two-spin

(C-C) system under N=1, 2, 3 and 4, R2 conditions.
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Figure 4.6: The figure depicts the mixing time dependent polarization transfer in the

strong (VCo to VCβ, 2.54 Å), medium (VCo to VCγ1 , 3.90 Å) and weak coupling (LeuCo to

VCβ, 5.44 Å) regimes in isolated two-spin systems under N=3 and N=4, R2 conditions. All

the remaining simulation perimeters are given in Table 2.4.
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Figure 4.7: The figure depicts the polarization transfer from I1 to I2 (VCo → VCβ, 2.54 Å;

panel a1), (VCo → VCγ1 , 3.90 Å; pane b1) and (LeuCo → VCβ, 5.44 Å; panel c1) in two-spin

systems under ZQ fractional R2 conditions ((k′=3.144, β = 270◦, tp = 15µs, panel a1);

(k′=3.1516, β = 270◦, tp = 15µs, panel b1) and (k′=3.144, β = 270◦, tp = 15µs, panel c1))

emerged from the multiple-pulse sequence (Figure 4.1) as a function of mixing time. All

the remaining simulation perimeters are given in Table 2.4.
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(a1)! (b1)! (c1)!

(a2)! (b2)! (c2)!

(a3)! (b3)! (c3)!

Figure 4.8: The figure depicts the role of the CSA interactions (CSA magnitude) in

the polarization transfer from I1 to I2 (VCo → VCβ, 2.54 Å; panels (a1, b1, c1); δCSACo =

-8589Hz), (VCo → VCγ1 , 3.90 Å; panels (a2, b2, c2); δCSACo = 8589Hz) and (LeuCo → VCβ,

5.44 Å; panels (a3, b3, c3); δCSACo = -8500Hz) as a function of mixing time in two-spin systems

under N=3 (a1, a2, a3), N=4 (b1, b2, b3) and fractional rotational resonance (k′=3.144,

c1; k′=3.1516, c2; k′=3.144, c3) conditions. In the simulation depicted, the magnitude of

the CSA interactions (carbonyl CSA) is varied as the following: 100% (solid line), 60%

(dotted line) and 30% (broken line). All the remaining simulation perimeters are given in

Table 2.4.
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Figure 4.9: The figure depicts the role of the CSA interactions (CSA orientations) in

the polarization transfer from I1 to I2 (VCo → VCβ, 2.54 Å; panels (a1, b1, c1)), (VCo →

VCγ1 , 3.90 Å; panels (a2, b2, c2)) and (LeuCo → VCβ, 5.44 Å; panels (a3, b3, c3)) as a

function of mixing time in two-spin systems under N=3 (a1, a2, a3), N=4 (b1, b2, b3)

and fractional rotational resonance (k′=3.144, c1; k′=3.1516, c2; k′=3.144, c3) conditions.

In the simulations depicted, the CSA orientations (α, β, γ) of I1 and I2 are varied as the

following: (0,0,0; 0,90,0)(dotted line), (0,90,0; 0,0,0) (broken line) and original (solid line).

All the remaining simulation perimeters are given in Table 2.4.
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Figure 4.10: The figure depicts the role of the resonance condition in the polarization

transfer from I1 to I2 in strong (VCo → VCβ, 2.54 Å; panel a1), medium (VCo → VCγ1 ,

3.90 Å; panel b1) and weak (LeuCo → VCβ, 5.44 Å; panel c1) coupling regimes under ZQ

fractional R2 conditions as a function of mixing time in two-spin systems. In all the panels,

simulations correspond to the exact resonance (blue) conditions (k′=3.144, a1; k′=3.1516,

b1; k′=3.144, c1) and with the mismatch in the spinning frequency about ± 25Hz (red,

green) are depicted.

4.5 Conclusions

In summary, the analytic framework presented in this chapter is suitable for explain-

ing the resonance conditions in higher-order and fractional based R2 experiments. In

contrast to first-order based R2 experiments, the higher-order (N=3, 4) conditions are

extremely sensitive to the CSA interactions (Figure 4.8 & 4.9). Although, multiple-

pulse based R2 experiments (or fractional R2 conditions) have less dependence on the

CSA interactions, precise setting of the spinning frequency seems to have a potential

role in the efficiency of transfer. From a practical perspective, we believe that such

schemes could be of limited potential when employed for distance measurements.
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Chapter 5

Summary and conclusions

In summary, an analytic framework integrating the concepts of effective Floquet

Hamiltonians and the Reduced density matrix theory is proposed to account for the

multi-spin effects observed in solid-state NMR experiments. Employing rotational

resonance (R2) experiments as a case study, the phenomenon of dipolar recoupling

and the effects of depolarization arising from multi-spin interactions (mainly for 13C−
1H dipolar interactions) are explained in terms of Rabi oscillations. To the best of our

knowledge, no such descriptions exist in the literature. The theory presented in this

thesis is well-suited to describe both homonuclear and heteronuclear dipolar recouping

experiments in solid-state NMR. A brief summary of the problems addressed in thesis

is presented in the following sections.

A. Description of R2 phenomenon in terms of Rabi oscillations

and Reduced density matrix theory.

To minimize the complexity in the description of spin dynamics in R2 experiments,

an analytic model based on the reduced density matrix theory is proposed to describe

the magnetization exchange from spin I1 to I2. The effective Hamiltonian describing

the magnetization exchange is derived from the contact transformation procedure.

Heff =
2∑
i=1

AiIiz +
[
D12,PMI

+
1 I
−
2 +D12,MP I

−
1 I

+
2

]
(5.1)

The polarization transfer from spin I1 to I2 in R2 experiments is described through

the following equations.

〈I1z(t)〉 = 1− |D12|2

x2 sin2xt (5.2)
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〈I2z(t)〉 = |D12|2

x2 sin2xt (5.3)

The coefficient x =
√
|D12|2 +

(
(A1−A2)

2

)2
, comprises of the dipolar and chemical-shift

offset terms. The analytic expressions described above resemble to those derived by

Rabi. In Fig. (5.1), the polarization transfer in the strong and weak coupling regimes

in two-spin systems (from Figure 5.2) is presented both in single crystal and powder

samples. The damping observed in the powder sample results from the interference

effects arising from the different orientations present in a powder sample. Hence,

phenomenological damping terms are not essential to observe the damping observed

in real samples.
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Figure 5.1: The figure depicts the polarization exchange between the carbons (C-C=2.54

Å: a1, b1) and (C-C=5.44 Å: a2, b2) as a function of mixing time in a two-spin (C-C) system.

The panels (a1, a2) represent the polarization exchange without powder averaging (single

crystal) and the panels (b1, b2) represent the polarization transfer with powder averaging

(powder sample) under N=1, R2 condition. The analytic simulations (dots) presented here

are based on Eqs. 5.2 & 5.3.

B. Description of multi-spin effects in R2 experiments.

To improve the accuracy of the estimated 13C − 13C distances from R2 experiments,

an analytic model based on reduced density matrix theory is proposed to describe

the magnetization exchange between spins, I1 & I2 coupled to a bath of surrounding
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protons. Employing a model system I1− I2−SN , polarization transfer between spins

(a) (b) 

Figure 5.2: The figure depicts the five-spin model systems correspond to the strong (Fig.

a) and weak (Fig. b) C-C coupling regimes.

I1 and I2 in the presence of CW decoupling field is described in a reduced dimen-

sion through the expressions give below. The equations describing the polarization

transfer resemble to those derived for an isolated spin pair and are computationally

robust.

Heff =
2∑
i=1

AIiIiz +
[
DI1I2,PMI

+
1 I
−
2 +DI1I2,MP I

−
1 I

+
2

]
+

2∑
i=1

N∑
j=1

DIiSjIizSjz (5.4)

〈I1z(t)〉 = 1− |DI1I2|
2

(2)K−2

2N∑
i=1

sin2xit

xi2
(5.5)

〈I2z(t)〉 = |DI1I2|
2

(2)K−2

2N∑
i=1

sin2xit

xi2
(5.6)

As described in the above equations, for a system (K=total number of spins) com-

prising of N-protons, the 2N ‘xi’ coefficients have the following definitions with ‘yi’

representing the heteronuclear dipolar (13C − 1H) coefficients.

xi =

√√√√|DI1I2|
2 +

(
2(AI1 − AI2) + yi

4

)2

(5.7)

The analytic expressions depicted in Eqs. 5.5 & 5.6 could be employed to fit experi-

mental exchange curves employing multiple fit parameters such as 13C−13C distance,

the orientation, magnitude of CSA tensors (both carbons and protons) and 13C− 1H

distances.

C. Effect of heteronuclear decoupling in R2 experiments.

To improve the efficiency of transfer in R2 experiments, an analytic theory based on

effective Floquet Hamiltonians is proposed to elucidate the factors responsible for
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Figure 5.3: Schematic diagram depicting the CW (Fig. a) and TPPM (Fig. b) decoupling

during the dipolar mixing time in R2 experiments
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Figure 5.4: The figure depicts the polarization transfer from I1 to I2 (C-C=2.54 Å, a1)

and (C-C=5.44 Å, a2) as a function spinning frequency in model five-spin systems depicted

in Figure 5.2. The simulations depict the polarization transfer under CW (blue, circles)

as and TPPM (solid line) decoupling schemes. For illustrative purposes, the polarization

transfer in an isolated two-spin system (red, dots) is depicted in both the panels.

depolarization observed in R2 experiments. In contrast to CW decoupling schemes,

the improved transfer efficiency (see Fig. 5.4) observed in R2 experiments in the

presence of TPPM decoupling is explained through better compensation of second-

order terms emerging from 1H-CSA and 13C − 1H dipolar interactions.

D. Description of higher-order and fractional R2 experiments.

An analytic framework is presented to explain the reintroduction of dipolar interac-

tions observed at higher-order (N=3, 4) R2 matching conditions. The dependence of

CSA interactions on the higher-order R2 matching conditions is discussed in model

systems with strong, medium and weak C-C coupling regimes. Employing Multi-
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mode Floquet theory (MMFT), the phenomenon of fractional R2 matching condi-

tions observed in multiple-pulse based R2 experiments (Fig. 5.5) is discussed and

illustrated with few examples (FIg. 5.6). The optimum conditions required for the

implementation of ZQ and DQ fractional R2 experiments are discussed in terms of

operators and are described elaborately.
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 y y
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Decoupling!1H!

13C!
2τr!τr! τr!

 y  y  y y

tp! (b)!

(a)!

τb/2! τb/2!
n!

n!

Figure 5.5: The schematic diagram depicting the multiple-pulse sequence employed for

the implementation of fractional R2 experiments.
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Figure 5.6: The figure depicts the polarization transfer from I1 to I2 (C-C=2.54 Å, a1)

and (C-C=5.44 Å, a2) as a function of mixing time in two-spin systems. The simulations

depicted in dotted line (N=3, black) and broken line (N=4, red) correspond to integer R2

conditions, while solid line (k′=3.144, blue) denotes ZQ fractional rotational resonance.

We believe that the analytic theory presented in this thesis would be beneficial

in improving the accuracy of 13C − 13C distances estimated from R2 experiments.

Furthermore, the analytic framework should provide the necessary impetus for quan-

tifying experiments involving broadband dipolar recouping experiments and would

enable in the better design of SSNMR experiments.
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