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Notation

N set of natural numbers

Z set of integers

C set of complex numbers

Lp Lebesgue measurable space
∂
∂z

partial derivative with respect to z

f̂ Fourier transform of a function f

f̌ inverse Fourier transform of f

F Fourier transform operator

SN(f) partial sum of a Fourier series

Ck k times differentiable functions

f ∗ g convolution

χ[a,b] characteristic function of the interval [a, b]

‖f‖p p-norm of f

dim(G) dimension of G

Ker(f) kernel of f

Im(f) image of f

Re(z) real part of z

Im(z) imaginary part of z
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Abstract

Most of life is uncertain, no one with 100 percent accuracy can tell what’s going to

happen next in their life. In 1927 Prof. Heisenberg claimed that it is not possible to

simultaneously measure the complementary pairs; in his case momentum and position

of a particle with 100 percent accuracy. In 1928 Kennard and Weyl separately gave the

detailed proof of the claim. From there several questions came into existence regarding

under what different conditions can you see uncertainties and how these uncertainties

help us to make optimised decisions. Taking inspiration from the classical uncertainty

principle: the Heisenberg uncertainty principle; I tried to analyse the simultaneous be-

haviour of a function and its Fourier transform under different notions of concentration.
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Chapter 1

Fourier Analysis

1.1 Basic Preliminaries

Definition 1.1. A function f is said to be continuous at x if for every ε > 0 there exists

δ > 0 such that

|x− y| < δ ⇒ |f(x)− f(y)| < ε.

Definition 1.2. Let X be a topological space.For a continuous function,f : X →

R(or C) support of a function f is defined as

supp(f) = {x ∈ X|f(x) 6= 0}.

Definition 1.3. A topological space,X is compact if every open cover of X has finite

subcover.

Definition 1.4. A function is said to be holomorphic if it is complex differentiable in a

neighbourhood of every point in its domain.

Definition 1.5. A complex function is called an entire function if it is analytic at all

finite points of the complex plane.

Most common example of entire functions are polynomials.

Theorem 1.6. (Dominated Convergence theorem)

Let {fn} be a sequence of measurable functions that converges point-wise to f , i.e.fn →

f a.e. as n→∞. Let g be an integrable function i.e. g ∈ L1 and |fn| ≤ g ∀ n then f is

integrable and limit and integral can be exchanged i.e.∫
fdµ =

∫
limn→∞fndµ = limn→∞

∫
fndµ.
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Theorem 1.7. (Fubini’s Theorem) Let A,B be complete measure spaces and f(x, y)

be A×B measurable. If
∫
A×B |f(x, y)|d(x, y) <∞ then∫

A

(∫
B

f(x, y)dy

)
dx =

∫
B

(∫
A

f(x, y)dx

)
dy =

∫
A×B
|f(x, y)|d(x, y).

Theorem 1.8. (Cauchy-Schwarz Inequality)

If f, g ∈ L2 then

| < f, g > | ≤ ‖f‖2‖g‖2.

Theorem 1.9. (Morera’s Theorem)

Let f be a continuous function in the open disc D. If for every triangle in D we have∫
T

f(z)dz = 0

then f is holomorphic.

Theorem 1.10. (Liouville’s Theorem)

If f(z) is entire and bounded then f(z) is constant.

Theorem 1.11. (Leibniz Rule)

For all Cm functions f, g on R, Leibniz rule is

dm

dtm
(fg) =

m∑
k=0

(
m

k

)
dkf

dtk
dm−kg

dtm−k
.

Theorem 1.12. (Maximum Modulus Principle)

Let f be a non-constant holomorphic function in region D then |f | cannot attain maxi-

mum in D.

Theorem 1.13. (Hőlders inequality)

Let f ∈ Lp(Rn) and g ∈ Lq(Rn) and p, q be such that 1/p+ 1/q = 1 then

‖fg‖1 ≤ ‖f‖p‖g‖q.

Theorem 1.14. (Minkowski’s Integral Inequality)

Let f be Lebesgue measurable and p ∈ [1,∞) then(∫
|
∫
h(x, y)dy|pdx

)1/p

≤
∫ (∫

|h(x, y)|pdx
)1/p

dy.

Lemma 1.15. (Fatou’s lemma)

Let {fn} be sequence of non-negative measurable functions converging to the function

f , then ∫
limn→∞fndµ ≤ limn→∞

∫
fndµ.
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1.2 Fourier Series

1.2.1 Definitions

Fourier series of an integrable function f on [−π, π] is defined as∑
n∈N

f̂(n)einx

where f̂(n) is Fourier coefficient of f given by

f̂(n) =
1

2π

∫ b

a

f(x)e−2inxdx

Partial sums, SN are defined as SN(f) =
∑N
−N f̂(n)einx.

Theorem 1.16. Let f be a twice continuously differentiable function on the circle, then

we have f̂(n)→ 0 as |n| → ∞.

Proof It is obtained by using integration by parts twice. For n 6= 0, we get

2πf̂(n) =

∫ π

−π
f(m)e−inmdm

=

[
−f(m)e−inm

in

]π
−π

+
1

in

∫ π

−π
f ′(m)e−inmdm

=
1

in

∫ π

−π
f ′(m)e−inmdm (as f is 2π periodic function)

=
1

in

[
−f ′(m)e−inm

in

]π
−π

+
1

(in)2

∫ π

−π
f ′′(m)e−inmdm

=
−1

n2

∫ π

−π
f ′′(m)e−inmdm (as f ′ is also 2π periodic function)

Now,

|2πn2f̂(n)| = 2π|n2||f̂(n)| = | −
∫ π

−π
f ′′(m)e−inmdm| ≤

∫ π

−π
|f ′′(m)||e−inm|dm ≤M

As 1/n2 converges to 0, so does f̂(n).

Also, it can be seen that f̂ ′ = inf̂ ∀ n ∈ Z.

1.2.2 Convolution

Convolution of 2π functions f and g on R is defined as

(f ∗ g)(x) =
1

2π

∫ π

−π
f(y)g(x− y)dy.
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Partial sums are important while considering convergence of Fourier series, to see that,

let us first see different ways in which partial sums can be written(here f is 2π periodic

function)

SN(f)(x) =
N∑

n=−N

f̂(n)einx

=
N∑

n=−N

(
1

2π

∫ π

−π
f(y)e−inydy

)
einx

=
1

2π

∫ π

−π
f(y)

( N∑
n=−N

ein(x−y)

)
dy

= (f ∗DN)(x)

where DN is N th Dirichlet kernel defined as

DN(x) =
N∑

n=−N

einx.

Proposition 1.17. For 2π periodic functions f, g and h, we have

(i) f ∗ (g + h) = f ∗ g + f ∗ h

(ii) (cf) ∗ g = c(f ∗ g) = f ∗ (cg) for some c ∈ C.

(iii) f ∗ g = g ∗ f

(iv) (f ∗ g) ∗ h = f ∗ (g ∗ h)

(v) f ∗ g is continuous.

(vi) f̂ ∗ g = f̂ ĝ

1.2.3 Good Kernels

The family {Kn}n∈N is a family of good kernels on circle if it satisfies three conditions:

(a) 1
2π

∫ π
−πKn(x)dx = 1 ∀ n ≥ 1.

(b) for all n ≥ 1, there exists M > 0 such that∫ π

−π
|Kn(x)|dx ≤M.

4



(c) for each δ > 0 as n→∞, ∫
δ≤|x|≤π

|Kn(x)|dx→ 0.

Good kernels along with convolutions, gives the important result

Theorem 1.18. Suppose f be an integrable function on circle and {Kn}n∈N be family

of good kernels, then whenever f is continuous at x we have,

limn→∞(f ∗Kn)(x) = f(x).

The limit will be uniform be if f is continuous everywhere.

Proof As f is continuous at x, then for every ε > 0 there exists δ > 0 such that

|x− y| < δ ⇒ |f(y)− f(x)| < ε.

Then,

|(f ∗Kn)(x)− f(x)| =
∣∣∣∣ 1

2π

∫ π

−π
Kn(y)f(x− y)dy − f(x)

∣∣∣∣
=

∣∣∣∣ 1

2π

∫ π

−π
Kn(y)[f(x− y)− f(x)]dy

∣∣∣∣ (from condition(a))

≤ 1

2π

∫ π

−π
|Kn(y)||f(x− y)− f(x)|dy

=
1

2π

∫
|y|≤δ
|Kn(y)||f(x− y)− f(x)|dy

+
1

2π

∫
δ≤|y|≤π

|Kn(y)||f(x− y − f(x)|dy

≤ ε

2π

∫
|y|≤δ
|Kn(y)|dy +

2B

2π

∫
δ≤|y|≤π

|Kn(y)|dy

≤ ε

2π

∫ π

−π
|Kn(y)|dy +

2B

2π

∫
δ≤|y|≤π

|Kn(y)|dy

where f is bounded by B. Form condition(c), second term is less than ε for large values

of n and from condition(b), first term is bounded by εM/2π. Therefore, for all large n,

there exists C > 0 such that

|(f ∗Kn)(x)− f(x)| ≤ ε.

Now if f is everywhere continuous, then we can choose δ independent of x. Therefore

(f ∗Kn)(x)→ f(x) uniformly.
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1.3 Fourier transform

Fourier transform of a function, f ∈ L1(Rn) is defined as

f̂(ξ) =

∫
Rn

f(x)e−2πixξdx ∀ ξ ∈ Rn.

Lemma 1.19. (Riemann-Lebesgue lemma)

If f̂ ∈ L1(Rn) then f̂(ξ)→ 0 as |ξ| → ∞. Thus, f̂ ∈ C0.

Theorem 1.20. Let f ∈ Lp(Rn) where p ∈ [1,∞) and let g ∈ L1(Rn) then h = f ∗ g

is well defined and h ∈ Lp(Rn). In fact ‖h‖p ≤ ‖f‖p‖g‖1.

Proof As, |h(x)| = |(f ∗ g)(x)| ≤
∫
Rn |f(x− y)||g(y)|dy

then by Minkowski’s integral inequality, we get(∫
Rn

|h(x)|pdx
)1/p

=

(∫
Rn

∣∣∣∣ ∫
Rn

f(x− y)g(y)dy

∣∣∣∣pdx)1/p

≤
∫
Rn

(∫
Rn

|f(x− y)|p|g(y)|pdx
)1/p

dy

=

∫
Rn

(
|
∫
Rn

|f(x− y)|pdx
)1/p

|g(y)|dy

= ‖f‖p‖g‖1.

Proposition 1.21. Fourier transforms of a function,f ∈ L1(Rn) under different condi-

tions, where h, ξ, x ∈ Rn; δ > 0; g ∈ L1(Rn):

(i) f(x+ h)→ f̂(ξ)e2πihξ

(ii) f(x)e−2πixh → f̂(ξ + h)

(iii) f(δx)→ δ−1f̂(δ−1ξ)

(iv)
∂

∂xk
f(x)→ 2πiξkf̂(ξ)

(v) −2πixf(x)→ d
dξ
f̂(ξ)

(vi) f̂ ∗ g = f̂ ĝ

In order to see formula for inverse of a Fourier transform, we first define Abel mean and

Gauss mean.

Abel mean of a function,f is defined as

Aε = Aε(f) =

∫
Rn

f(x)e−ε|x|dx
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∫
Rn f(x)dx is said to be Abel summable if

limε→0Aε(f) = limε→0

∫
Rn

f(x)e−ε|x|dx

exists and is finite.

Gauss mean of a function,f is defined as

Gε = Gε(f) =

∫
Rn

f(x)e−ε|x|
2

dx

∫
Rn f(x)dx is said to be Gauss summable if

limε→0Gε(f) = limε→0

∫
Rn

f(x)e−ε|x|
2

dx

exists and is finite.

Let us collectively, define Mε,φ such that

Mε,φ(f) =

∫
Rn

φ(εx)f(x)dx

where φ(t) > 0, φ ∈ (C)0 and φ(0) = 1.

We will also require the following theorem,

Theorem 1.22. (Multiplication Formula)

For f, g ∈ L1(Rn), we have∫
Rn

f̂(x)g(x)dx =

∫
Rn

f(x)ĝ(x)dx.

Proof From Fubini’s theorem we get,∫
Rn

f̂(x)g(x)dx =

∫
Rn

(∫
Rn

f(t)e−2πixtdt

)
g(x)dx

=

∫
Rn

(∫
Rn

g(x)e−2πixtdx

)
f(t)dt

=

∫
Rn

f(t)ĝ(t)dt

Let Φ be an integrable function and φ denotes its Fourier transform. Also, for ε > 0 let

us define φε(x) = ε−nφ(x/ε). Then we have

(̂δεΦ)(x) = ε−nφ(x/ε) = φε(x).

On applying the multiplication formula to e2πitxδεΦ(x) and f(x) we get the following

result
7



Theorem 1.23. Let f,Φ ∈ L1(Rn) and φ be Fourier transform of Φ, then∫
Rn

f̂(x)e2πitxΦ(εx)dx =

∫
Rn

f(x)φε(x− t)dx.

Theorem 1.24. Let φ ∈ L1(Rn) such that φ(x) > 0 for x ∈ Rn and∫
Rn φ(x)dx = 1. For δ > 0 let φε(x) = ε−nφ(x/ε), then for f ∈ Lp(Rn) where

p ∈ [1,∞) or f ∈ C0 ⊂ L∞(Rn) we get

‖f ∗ φε − f‖p → 0 as ε→ 0.

Theorem 1.25. (Inversion theorem)

If Φ and its Fourier transform φ are integrable such that
∫
Rn φ(x)dx = 1 then Φ means

of the integral
∫
Rn f̂(t)e2πixtdt converge to f(x) in L1 norm.

Corollary 1.26. Let f, f̂ ∈ L1(Rn) then

f(x) =

∫
Rn

f̂(t)e2πixtdt a.e.

Therefore, if f̂(t) = 0 ∀ t ∈ Rn then f(x) = 0 a.e.

Applying the result to the function f = f1 − f2 we get uniqueness result for the Fourier

transform.

Theorem 1.27. Let f ∈ L1 ∩ L2 then ‖f̂‖2 = ‖f‖2.

Proof Let g(x) = f(−x) then ĝ = f̂ . Define h = f ∗ g ∈ L1, from the property of

Fourier transform on convolution we get that ĥ = f̂ ∗ g = f̂ ĝ, so ĥ = |f̂ |2. Now, we

have ∫
|f̂(x)|2dx =

∫
ĥ(x)dx = h(0) =

∫
f(x)g(0− x)dx =

∫
|f(x)|2dx.

Thus, Fourier transform is a bounded operator on L1 ∩ L2 ⊂ L2 with the L2 norm, in

fact its an isometry. Therefore, there exists a unique extension F , known as Fourier

transform operator, on all of L2.

Theorem 1.28. (Plancherel Theorem)

Fourier transform, F is an isometry on L2 and Inverse of Fourier transform is defined

as (F−1g)(x) = (Fg)(−x) for all g ∈ L2.
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1.4 Special functions

1.4.1 Hermite Functions

Definition 1.29. Hermite functions are defined as

Hn(x) =
(−1)n

n!
ex

2/2Dn(e−x
2

)

where D is differential operator.

Proposition 1.30. Hermite functions satisfy the following recursion formulas

(i) H ′n(x)− xHn(x) = −(n+ 1)Hn+1(x) forx ≥ 0.

(ii) Ĥn(x) = (−i)nHn(x).

Proof

(i) The following recursion formula can be easily obtained by differentiating Hn(x),

H ′n(x) =
d

dx
(Hn(x))

=
(−1)n

n!

[
(Dn(e−x

2

)
d

dx
(ex

2/2) + (ex
2/2)

d

dx
Dn(e−x

2

)

]
=

(−1)n

n!

[
(Dn(e−x

2

)xex
2/2 + (ex

2/2)Dn+1(e−x
2

)

]
= xHn(x) +

(−1)n

n!
(ex

2/2)Dn+1(e−x
2

)

= xHn(x)− (n+ 1)Hn+1(x)

(ii) Let us prove that Ĥ0 = H0 i.e. recursion formula is true for n = 0. From the

definition of Hermite functions we get that H0(x) = e−x
2/2 and derivative of its

Fourier transform will be

Ĥ0

′
(y) =

1√
2π

∫
R
e−x

2/2e−ixy(−ix)dx

=
i√
2π

∫
R
(−x)e−x

2/2e−ixydx

=
i√
2π

∫
R
(e−x

2/2)′e−ixydx

=
i√
2π

[
e−x

2/2e−ixy
∣∣∣∣∞
−∞
−
∫
R
(−iy)e−ixye−x

2/2dx

]
=

i√
2π

∫
R
(iy)e−ixye−x

2/2dx

= −yĤ0(y)

9



from above calculation we can see that

⇒ Ĥ0

′
(y)

Ĥ0(y)
= −y ⇒ Ĥ0(y) = Ĥ0(0)e−y

2/2

as Ĥ0(0) = 1√
2π

∫
R e
−x2/2dx = 1⇒ Ĥ0(y) = e−y

2/2.

Since, Hermite functions satisfy the recursion formula

H ′n(x)− xHn(x) = −(n+ 1)Hn+1(x) for x ≥ 0,

and multiplying both sides with (i)n+1 we get that

−(n+ 1)(i)n+1Ĥn+1(x) = (i)n+1(H ′n(x)− xHn(x))̂

= (i)n+1Ĥ ′n(x)− (i)n+1(xHn(x))̂

= (i)n+1iyĤn(x) + (i)n(−ixHn(x))̂

= −yinĤn(x) + in(Ĥn(x))′

since inĤn satisfy same recursion formula as Hn, we get that

inĤn = Hn ⇒ Ĥn = (−i)nHn.

Remark

• Hermite functions are eigenfunctions of the Fourier transform operator and they

have eigenvalues as some power of −i.

• Hermite functions,Hn are n-degree polynomials multiplied with e−x2/2.

1.4.2 Gaussian Functions

Definition 1.31. Functions of the form g(x) = e−ax
2

where a > 0 are called Gaussian

functions.

Here we will compute an important integral for the Gaussian function e−πx2 .(∫ ∞
−∞

e−πx
2

dx

)2

=

∫ ∞
−∞

∫ ∞
−∞

e−π(x2+y2)dxdy

=

∫ 2π

0

∫ ∞
0

e−πr
2

rdrdθ (changing to polar coordinates)

=

∫ ∞
0

2πre−πr
2

dr

=

[
− e−πr2

]∞
0

= 1

10



Theorem 1.32. Fourier transform of Gaussian functions are Gaussian.

Proof Let us first prove it for a = π. As f̂(ξ) =
∫
R f(x)e−2πixξdx, we first calculate

f̂(0).

f̂(0) =

∫
R
e−πx

2

dx

= 1.

d

dξ
f̂(ξ) =

∫
R
(−2πix)f(x)e−2πixξdx (from Prop. 1.21(iv))

= i

∫
R
f ′(x)e−2πixξdx (as f ′(x) =

d

dx
(e−πx

2

) = −2πxe−πx
2

)

= i(2πiξ)f̂(ξ) (from Prop. 1.21(v))

= −2πξf̂(ξ)

⇒ f̂ ′(ξ)

f̂(ξ)
= −2πξ

taking the integral on both sides gives us f̂(ξ) = e−πξ
2
+c (c : constant of integration).

But from Riemann-Lebesgue lemma, |f̂(ξ)| → 0 as |ξ| → ∞ therefore c = 0. For

a 6= π, result can be obtained by suitable change of variables.
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Chapter 2

Uncertainty Principles

We will try to see behaviour of a function,f and its Fourier transform, f̂ under different

notions of concentration.

2.1 Concentration: Support

Here we try to analyse the behaviour of f and f̂ while considering support of a function.

Let us first start by considering a function f ∈ R which has a compact support, say

A ⊆ [a, b]. Suppose Fourier transform of f also has compact support, say C ⊆ [c, d]

which is given by

f̂(ξ) =

∫
R
f(x)e−2πixξdx

Now, by the Inversion formula we get that f is equal to some continuous function. Let

us now define a function g as

g(z) =

∫ b

a

f(x)e−2πixzdx ∀ z ∈ C

the integral is well-defined as for z = p+ iq we have∫ b
a
|f(x)e−2πixz|dx =

∫ b
a
|f(x)|e2πxqdx < ∞ as f is continuous function with compact

support so it will be bounded, say the bound is M and e2πbq − e2πaq <∞.

Since we know that e−2πixz is an entire function so by Cauchy’s its integral over a closed
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curve γ will be zero i.e.
∫
γ
e−2πixzdz = 0. Therefore, we have

∫
γ

F (z)dz =

∫
γ

(∫ b

a

f(x)e−2πixzdx

)
dz

=

∫ b

a

f(x)

(∫
γ

e−2πixzdz

)
dx (Fubini′s theorem)

= 0

Thus, by Morera’s theorem F is an entire function.

Since F |R = f̂ ⇒ zeros of f̂ ⊆ zeros of F . But zeros of an analytic function are

isolated thus f̂ cannot have compact support.

Now, we look at a stronger condition where support of a function is finite(need not be

compact).

2.1.1 Benedicks Theorem

Theorem 2.1. Benedicks Theorem

Let f ∈ L1(R) such that supports of f and f̂ are of finite measure i.e

|suppf ||suppf̂ | <∞

then f = 0 a.e.

Proof f ∈ L1 (given),so f̂ ∈ C0(R) (Riemann-Lebesgue lemma)

To see f̂ ∈ L1 (R)

Define A = {x ∈ R : f(x) 6= 0} and B = {ξ ∈ R : f̂(ξ) 6= 0}

Let suppf̂ = B be finite then

‖f̂‖1 6 ‖f̂‖∞|B| ⇒ f̂ ∈ L1(R)

f(x) =

∫
R
f̂(t)e2πixtdt a.e (by Inversion formula)

=

∫
R
g(t)e2πixtdt (let f̂(t) = g(t))

= ĝ(−x) ∈ C0(R)

⇒ f(x) ∈ C0(R)
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Therefore f, f̂ ∈ L1 ∩ C0(R)

For δ > 0 , define fδ(x) = f(δx) ∀ x ∈ R

suppfδ = {x ∈ R : fδ(x) 6= 0}

= {x ∈ R : f(δx) 6= 0}

⇒ {x ∈ R : δx ∈ suppf}

⇒ {x ∈ R : x ∈ suppf
δ
}

⇒ suppfδ =
suppf

δ

Therefore by choosing δ as α|suppf | where α > 1, we can get |suppfδ| < 1.

Hence by dilation we assume |suppf | < 1.

Assume |A| > 0 and |B| > 0

Define 1-periodic function,

G(ξ) =
∑
n∈Z

χB(ξ + n) ∀ ξ ∈ R

where χB is the indicator function.

0 < |B| =
∫
R
χB(t)dt

Also,by change of variables∫ 1

0

∑
n∈Z

χB(ξ + n)dξ =
∑
n∈Z

∫ n+1

n

χB(ξ)d(ξ)

=

∫
R
χB(ξ)d(ξ) = |B|

Since suppf̂ has finite measure and B ⊂open B ⇒
∫ 1

0
G(ξ)dξ <∞.

Since
∫ 1

0
G(ξ)dξ <∞ and G(ξ) ≥ 0⇒ G(ξ) <∞ a.e.

So ∃ E ⊆ [0, 1], |E| = 1 such that G(ξ) <∞ ∀ ξ ∈ E.

Therefore, there can be only finitely many non-zero terms in the definition of G(ξ) for

ξ ∈ E. Hence for ξ ∈ E,(ξ + Z) ∩B is finite.

For each η ∈ E, let us now define a 1-periodic function φη such that

φη(x) =
∑
n∈Z

f(x+ n)e−2πiη(x+n) ∀ x ∈ R

Claim φη ∈ L1[0, 1] and φ̂η(k) = f̂(η + k) where k ∈ Z
14



(i) φη ∈ L1[0, 1]

∫ 1

0

|φη(x)|dt =

∫ 1

0

|
∑
n∈Z

f(x+ n)e−2πiη(x+n)|dx

6
∫ 1

0

∑
n∈Z

|f(x+ n)|dx

=
∑
n∈Z

∫ n+1

n

|f(x)|dx

=

∫
R
|f(x)|dx <∞ (∵ f ∈ L1(R))

(ii) φ̂η(k) = f̂(η + k) where k ∈ Z

φ̂η(k) =

∫ 1

0

φη(x)e−2πixkdx

=

∫ 1

0

∑
n∈Z

f(x+ n)e−2πiη(x+n)e−2πixkdx

=

∫ 1

0

∑
n∈Z

f(x+ n)e−2πiη(x+n)e−2πi(x+n)kdx (∵ e−2πink = 1)

=

∫ 1

0

∑
n∈Z

f(x+ n)e−2πi(η+k)(x+n)dx

=
∑
n∈Z

∫ 1

0

f(x+ n)e−2πi(η+k)(x+n)dx (Fubini′s theorem)

=
∑
n∈Z

∫ n+1

n

f(x)e−2πi(η+k)(x)dx (change of variables)

=

∫
R
f(x)e−2πix(η+k)dx

= f̂(η + k)

⇒ φ̂η(k) = f̂(η + k)

Since (ξ + Z) ∩B is finite for ξ ∈ E ⊆ [0, 1].

Therefore, for η ∈ E, f̂(η + k) 6= 0 for finitely many k. So for η ∈ E, φη has only

finitely many non-zero Fourier coefficients,therefore

φη(t) =
m∑
j=1

φ̂η(kj)e
2πikjt

15



let us now substitute φ̂η(kj) by cj and e2πit by z

For z ∈ C \ {0} and fix η , define

F (z) =
m∑
j=1

cjz
kj

= z−N
m∑
j=1

cjz
lj (with lj ≥ 0 and N sufficiently large)

= z−NQ(z) (Q(z) is polynomial in z)

Since Q(z) have finitely many zeros in C unless it is identically zero,therefore it will

have finitely many zeros in [0,1].So, φη is a trigonometric polynomial which has finitely

many zeros in [0,1] unless it is identically zero.

Also,

|φη(x)| ≤
∑
n

χA(x+ n)|f(x+ n)|

≤ ‖f‖∞
∑
n

χA(x+ n)

But, ∫ 1

0

∑
n

χA(x+ n)dx = |A| < 1

and since χA is either 0 or 1.

⇒
∑

n χA(x+ n) must vanish on set of positive measure, so also φη ∀ η ∈ E ⊆ [0, 1]

⇒ For almost all η ∈ [0, 1], φη = 0

⇒ f̂(η + k) = 0 a.e. η ∈ [0, 1]

⇒ f̂ = 0 a.e.

2.1.2 Amrein-Berthier Inequality

Amrein-Berthier inequality is the quantitative version of Benedicks Theorem.

Theorem 2.2. Amrein-Berthier Inequality

Let E,Σ be two subsets of finite measure in R then there exists a positive constant CE,Σ

such that ∀ f ∈ L2(R)

‖f‖2
2 ≤ C(

∫
R\E
|f(x)|2dx+

∫
R\Σ
|f̂(ξ)|2dξ).
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Proof 1:We divide the proof in two steps:

Step 1: f ∈ L2(R) (given).

Assume that suppf̂ ⊆ Σ⇒
∫
R\Σ |f̂(ξ)|2dξ = 0.

Suppose above inequality does not hold true, then for each n, we can find a function

fn ∈ L2(R), ‖fn‖2 = 1 with suppf̂n ⊆ Σ such that

1 > n

∫
R\E
|fn(x)|2dx

Since Fourier transform is an isometry on L2(R), so unit ball is mapped to unit ball

and since unit ball is weakly compact, we can get a subsequence {fn} such that {f̂n}

converges weakly to g ∈ L2(R). Now to check that supp g ⊆ Σ.

Let F ⊂ Σc such that |F | <∞, then

0 =

∫
f̂n(ξ)χF (ξ)dξ −→

∫
g(ξ)χF (ξ)dξ = 0 (as f̂n w−→ g)

then ∀ F ⊂ Σc,

∫
F

g(ξ)dξ = 0⇒ supp g ⊆ Σ.

Since f̂ ∈ L2(R) and suppf̂ ⊆ Σ and |Σ| <∞, therefore f̂ ∈ L1(R) ⇒ f̂ ∈ L1 ∩L2.

Let T = (F)−1 be Inverse Fourier operator defined on L2(R) as

T :L2(R) −→ L2(R)

f̂n −−−−−−→ fn

Also,

T∣∣L1(R)
: f̂n −→ hn

Since, Inverse Fourier operator on L2 is an extension of Inverse Fourier transform on L1,

so by uniqueness property of Fourier transform fn = hn. Therefore, we can write the

inversion formula,

fn(x) =

∫
R
f̂n(ξ)χΣ(ξ)e2πiξxdξ a.e.

We may assume that each fn is continuous. Also,

let φx(ξ) = χΣ(ξ)e2πixξ ,then

∫
f̂n(ξ)φx(ξ)dξ −→

∫
g(ξ)φx(ξ)dξ (as f̂n w−→ g)

1This proof was thought by Prof. Aline Bonami over a cup of morning coffee and was neatly and

systematically written by Prof. Shobha Madan
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⇒ limn→∞fn = f where f = ǧ

To show: suppf ⊆ E

∫
R\E
|f(x)|2dx =

∫
R\E

limn→∞|fn(x)|2dx

≤ limn→∞

∫
R\E
|fn(x)|2dx (Fatou′s lemma)

≤ limn→∞1/n = 0

⇒ suppf ⊆ E

Now, by Hőlder’s inequality

|fn(x)|2χE(x) = |
∫
R
f̂n(ξ)χΣ(ξ)e2πiξxdξ|2χE(x)

≤ ‖f̂n‖2
2|Σ|χE(x)

= |Σ|χE(x) (as ‖f̂n‖2 = 1)

Also, ∫
R
|Σ|χE(x)dx = |Σ||E| <∞

Since,

‖f‖2
2 =

∫
R
|f(x)|2dx

=

∫
R
|f(x)|2χE(x)dx (as suppf ⊆ E)

=

∫
R
|limn→∞fn(x)|2χE(x)dx

=

∫
R
limn→∞|fn(x)|2χE(x)dx

= limn→∞

∫
R
|fn(x)|2χE(x)dx (by DCT )

= limn→∞

∫
R
(|fn(x)|2 − |fn(x)|2χR\E)dx

= limn→∞

∫
R
|fn(x)|2dx− limn→∞

∫
R
|fn(x)|2χR\Edx

= 1 (as ‖fn‖2 = 1 and limn→∞

∫
R
|fn(x)|2χR\Edx = 0)

⇒ ‖f‖2
2 = 1
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Step 2: Let f ∈ L2(R), and we can write f̂ = f̂χΣ + f̂χR\Σ.

‖f‖2
2 = ‖f̂‖2

2 (Plancherel theorem)

= ‖f̂χΣ‖2
2 + ‖f̂χR\Σ‖2

2 (Pythagoras theorem)

= ‖(f̂χΣ)̌‖2
2 + ‖f̂χR\Σ‖2

2 (Plancherel theorem)

≤ C(

∫
R\E
|(f̂χΣ)̌(x)|2dx) +

∫
R\Σ
|f̂(ξ)|2dξ (first term from Step 1) . . . (∗)

Using the fact that |a+ b|2 ≤ 2(|a|2 + |b|2) and decomposition for first term as

(f̂χΣ)̌(x) = (f̂ − f̂χR\Σ)̌(x), we get

∫
R\E
|(f̂χΣ)̌(x)|2dx ≤ 2(

∫
R\E
|f(x)|2dx+

∫
R\E
|(f̂χΣ)̌(x)|2dx

Substituting above inequality in the expression of (∗), we get

‖f‖2
2 ≤ C(2

∫
R\E
|f(x)|2dx+ 2

∫
R\E
|(f̂χΣ)̌(x)|2dx) +

∫
R\Σ
|f̂(ξ)|2dξ

Now since,∫
R\E
|(f̂χΣ)̌(x)|2dx =

∫
R\E
|(f̂χΣ)(x)|2dx ≤

∫
R
|(f̂χΣ)(x)|2dx =

∫
R\Σ
|f̂(ξ)|2dξ

Finally we get ,

‖f‖2
2 ≤ CE,Σ(

∫
R\E
|f(x)|2dx+

∫
R\Σ
|f̂(ξ)|2dξ).

Another proof of Amrein-Berthier inequality is given by using concept of Hilbert-Schmidt

operator.

Let us first see some pre-requisites needed for the proof:-

• A linear operator T on L2(X, dµ) is Hilbert-Schmidt operator if there exists an

orthonormal basis {en}∞n=1 such that
∑

n ‖Ten‖2 <∞.

• A linear operator T onL2(X, dµ) is Hilbert-Schmidt operator iff there is a function

k ∈ L2(X ×X, dµ× dµ) such that

Tf(x) =

∫
X

k(x, y)f(y)dµ(y) ∀f ∈ L2(X, dµ).

In fact ‖T‖HS = ‖k‖2 where ‖T‖HS = (
∑

n ‖Ten‖2)
1
2 and ‖k‖2 is L

2 norm.

Proof Let T be Hilbert-Schmidt operator and {en}∞n=1 be an orthonormal basis on
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L2(X, dµ).Then we know that

∑
n

‖Ten‖ =
∞∑

n,m=1

|〈Ten, em〉| <∞

and the sum is independent of orthonormal basis. For n,m ≥ 1 let σn,m be the

function on X ×X defined as

σn,m(x, y) = en(x)em(y)

then σn,m is an orthonormal basis for L2(X ×X, dµ× dµ).Define

k(x, y) =
∑
n,m

〈Ten, em〉σn,m(x, y) for x, y ∈ X.

Square summability of the coefficients of above series implies that the series

converges in L2(X×X, dµ×dµ) and hence the resulting function k is in L2(X×

X, dµ × dµ). Moreover, if k ∈ L2(X ×X, dµ × dµ) then it induces an bounded

operator S on Hilbert space L2(X, dµ) for f ∈ L2(X, dµ) as:

Sf(x) =

∫
X

k(x, y)f(y)dµ(y) for f ∈ L2(X, dµ).

To see the boundedness of the operator,

‖Sf‖2
2 =

∫
X

|Sf(x)|2dµ(x)

=

∫
X

|
∫
X

k(x, y)f(y)dµ(y)|2dµ(x)

≤
∫
X

(

∫
X

|k(x, y)|2dµ(y))(

∫
X

|f(y)|2dµ(y))dµ(x) (Cauchy − Schwarz inequality)

≤
∫
X

∫
X

|k(x, y)|2dµ(y)‖f‖2
2dµ(x)

≤ ‖f‖2
2

∫
X

∫
X

|k(x, y)|2dµ(y)dµ(x)

≤ ‖f‖2
2‖k‖2

2 <∞

Now, if we can prove that the operator S and T are in fact same then we are done.
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To see this, let us calculate

〈Sen, em〉 =

∫
X

Sen(x)em(x)dµ(x)

=

∫
X

∫
X

k(x, y)en(y)dµ(y)em(x)dµ(x)

=

∫
X

∫
X

(
∑
j,k

〈Tej, ek〉σj,k(x, y))en(y)dµ(y)em(x)dµ(x)

=

∫
X

∫
X

(
∑
j,k

〈Tej, ek〉ej(x)ek(y))en(y)dµ(y)em(x)dµ(x)

=

∫
X

∫
X

∑
j,k

〈Tej, ek〉ej(x)ek(y))en(y)em(x)dµ(y)dµ(x)

Conversely if k ∈ L2(X ×X, dµ× dµ) and T is operator given by

Tf(x) =

∫
X

k(x, y)f(y)dµ(y) ∀f ∈ L2(X, dµ),

we have to show that T is Hilbert-Schmidt operator.

Let en be an orthonormal basis of L2(X, dµ), then for any n ≥ 1 and

x ∈ X,Ten(x) = 〈en, kx〉, where kx(y) = k(x, y).

Then from Phythagorean theorem,
∞∑
n=1

|Ten(x)|2 = ‖kx‖2 =

∫
X

|k(x, y)|2dµ(y)

Now,
∞∑
n=1

‖Ten(x)‖2 =
∞∑
n=1

∫
X

|Ten(x)|2dµ(x)

=

∫
X

∞∑
n=1

|Ten(x)|2dµ(x) (Fubini′s theorem)

=

∫
X

∫
X

|k(x, y)|2dµ(x)dµ(y)

= ‖k(x, y)‖2 <∞

• Hilbert-Schmidt integral operators are compact.

Proof Let T be Hilbert-Schmidt operator and {en} be set of orthonormal basis.

The idea is to show that T is compact by expressing it as a norm limit of finite

rank operators. Define Tk : E −→ F (where k ∈ N and E,F are Hilbert spaces)

given by

Tk(
∞∑
1

xnen) =
k∑
1

xnTen

21



where x =
∑∞

1 xnen is an arbitrary element of E i.e. Tk agrees with T in the span

of e1, e2, · · · · · · , ek and is zero on the span of remaining ens. The rank of Tk is

atmost k, so Tk is compact. Now for x =
∑∞

1 xnen ∈ E,

(T − Tk)x =
∞∑
1

xnTen −
k∑
1

xnTen =
∞∑
k+1

xnTen

Hence,

‖(T − Tk)x‖ = ‖
∞∑
k+1

xnTen‖

≤
∞∑
k+1

|xn|‖Ten‖

≤ (
∞∑
k+1

|x|2)1/2(
∞∑
k+1

‖Ten‖2)1/2

≤ ‖x‖(
∞∑
k+1

‖Ten‖2)1/2

⇒ ‖(T − Tk)‖ ≤ (
∞∑
k+1

‖Ten‖2)1/2

Now, choose k sufficiently large such that (
∑∞

k+1 ‖Ten‖2)1/2 < ε

Thus T −→ Tk in the operator norm, so T is compact.

• A Hilbert-Schmidt integral operator T with k ∈ L2(X ×X) such that

k(x, y) = k(y, x) is self-adjoint and therefore also normal⇒ spectral theorem can

applied.

Let us now start with the proof.

Proof 2: Let FE,Σ = {f ∈ L2(R) : suppf ⊂ E, suppf̂ ⊂ Σ}

Claim 1:dim(FE,Σ) = 0.

Consider the operators defined by PE(f) = fχE and P̂Σ(f) = (f̂χΣ)̌.

Claim 2:PE ◦ P̂Σ is Hilbert-Schmidt operator with kernel k(x, y) = χE(x)χ̂Σ(x− y).
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Proof of the claim 2:

PE ◦ P̂Σ(f)(x) = PE(P̂Σ(f)(x))

= PE(f̂(x)χΣ(x))̌)

= (f̂(x)χΣ(x))̌χE(x)

=

∫
R
f̂(ξ)χΣ(ξ)e2πixξdξ.χE(x)

=

∫
R
(

∫
R
f(y)e−2πiyξdy)χΣ(ξ)e2πixξdξ.χE(x)

=

∫
R
f(y)

∫
R
χΣ(ξ)e2πiξ(x−y)dξχE(x)dy

=

∫
R
f(y) ˆχΣ(x− y)χE(x)dy

Therefore PE ◦ P̂Σ is Hilbert-Schmidt operator with kernel k(x, y) = χE(x)χ̂Σ(x− y).

Also,

‖PE ◦ P̂Σ‖2
HS = ‖k‖2

2 = |Σ||E|

Assume that there exists orthonormal basis {en} adapted to the decomposition

L2(R) = Im(PE ◦ P̂Σ)⊕Ker(PE ◦ P̂Σ)

So, ‖PE ◦ P̂Σ‖2
HS = |E||Σ| = Σn‖(PE ◦ P̂Σ)en‖2 ≥ dim(FE,Σ)

Since FE,Σ ⊆ Im(PE◦P̂Σ) and elements of FE,Σ are eigenvectors of the operator PE◦P̂Σ

with eigenvalue equal to 1.

Now to proceed further let us first prove the lemma.

Lemma 2.3. If E ⊆ R is a subset with finite measure and ε > 0 then there exists a 6= 0

such that

|E| < |E ∪ (E + a)| < |E|+ ε.

Proof of the lemma: As χE ∗ χ̃E(x) = |E ∩ (E + a)| and χE ∗ χ̃E(0) = |E|. So,

there exists an a 6= 0 and ε0 > 0 such that

|E| − ε0 < |E ∩ (E + a)| < |E|

Now, as E ∪ (E + a) = [E ∩ (E + a)] ∪ [E \ (E + a)] ∪ [(E + a) \ E]

we have |E ∪ (E + a)| = |E ∩ (E + a)|+ |E \ (E + a)|+ |(E + a) \ E|

As,

|E| = |E\(E + a)|+|E∩(E+a)| ⇒ |E| > |E\(E + a)|+|E|−ε0 ⇒ |E\(E + a)| < ε0
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Similarly,

|(E + a) \ E| < ε0

Therefore |E∪(E+a)| < |E|+ε0 +ε0 ⇒ |E∪(E+a)| < |E|+2ε0 ⇒ |E∪(E+a)| <

|E|+ ε where 2ε0 = ε.

Now, for any N , let M = max{dim(FE,Σ) : |E||Σ| < N}.

Suppose E,Σ are such that dim(FE,Σ) = M . Let us choose a basis for this space, say

φ1, φ2, · · · · · · , φM . Choose an ε > 0 such that (|E|+ ε)|Σ| < N. From above

lemma 2.2 , we can get a set E ′ = E ∪ (E + a). Then |E| < |E ′| < |E| + ε and

the function φM+1(x) = φ1(x− a) lies in FE′,Σ and the elements φ1, φ2, · · · , φM+1 are

linearly independent. Hence dim(FE′,Σ) = M + 1, which contradicts the definition of

M,unless M = 0.

2.1.3 Uncertainty Principle for Finite Fourier Series

In this section we are going to look at Fourier analysis for functions on finite sets, more

specifically, on finite abelian groups. Here infinite sums are replaced by finite sums so

the issue of convergence disappears.

We are going to start with group Z(N) which is group of N th roots of unity and proceed

by showing that same group can be identified as Z/NZ which is equivalence classes of

integers modulo N . As N → ∞ , group Z(N) approximates circle. Also we are going

to see Vandermonde matrix and proof Chebotarev’s theorem and finally we will prove

Uncertainty Principle for Z/pZ.

The Group Z(N)

A complex number z is N th root of unity if zN = 1 where N is a positive integer. N th

roots of unity are precisely the set, Z(N) where

Z(N) = {1, e2πi/N , · · · , e2πi(N−1)/N}.

Then

zN = 1⇒ reiNθ = 1⇒ |z| = |reiNθ| = |r| = 1⇒ r = 1.

Therefore eiNθ = 1 ⇒ Nθ = 2πk where k ∈ Z. Now, let ζ = e2πi/N then ζk achieves

all the N th roots of unity and ζN = 1. Then

ζn = ζm if and only if (n−m) is divisible by N.
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It is easy to see that Z(N) satisfies following properties:

1. If z, w ∈ Z(N), then zw ∈ Z(N) and zw = wz.

2. 1 ∈ Z(N).

3. If z ∈ Z(N),then z−1 = 1/z ∈ Z(N) and zz−1 = 1.

So, it can be seen that Z(N) is an abelian group under multiplication.

Now, let us visualise the group Z(N) in terms of integer power of ζ . Since ζn = ζm

whenever n and m differ by integer multiple of N . Therefore we can choose n such

that 0 ≤ n ≤ N − 1. Since ζnζm = ζn+m and n + m will not necessarily lie in the

interval [0,N], so we can choose ζnζm = ζk such that (n+m)− k is an integer multiple

of N. Therefore, this group can be seen as integers modulo N denoted by Z/NZ. The

association

R(k)←→ e2πik/N

where R(k) denotes the equivalence class or residue class of integer k modulo N .

On Z(N) consider the N functions {e0, e1, · · · , eN−1} defined by

el(k) = ζ lk = e2πilk/N for l, k = 0, 1, · · · , N − 1 where ζ = e2πi/N .

Consider complex-valued functions on Z(N) as a vector space V, with the Hermitian

inner product

(F,G) =
N−1∑
k=0

F (k)G(k)

and the associated norm

‖F‖2 =
N−1∑
k=0

|F (k)|2.

Lemma 2.4. The family {e0, · · · , eN−1} is orthogonal. In fact,

(en, em) =

N if m = n

0 if m 6= n.

Proof Since we have

(em, en) =
N−1∑
k=0

ζmkζ−nk =
N−1∑
k=0

ζ(m−n)k.
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If m = n then each term is equal to 1 and the resulting sum is N . If m 6= n, then

q = ζ(m−n) 6= 1 and the sum will correspond to

1 + q + q2 + · · ·+ qN−1 =
1− qN

1− q
= 0 (as qN = 1).

This proves the lemma.

Since the N functions {e0, e1, · · · , eN−1} are orthogonal hence they are linearly in-

dependent, and since the vector space V is of N dimension, we can conclude that

{e0, e1, · · · , eN−1} is an orthogonal basis for V. By the lemma each vector en has the

norm
√
N , so if we define

e∗n =
1√
N
el,

{e∗0, e∗1, · · · , e∗N−1} is an orthonormal basis for V. Hence for any F ∈ V we have

F =
N−1∑
k=0

(F, e∗n)e∗n as well as ‖F‖2 =
N−1∑
k=0

|(F, e∗n)|2.

We define the nth Fourier coefficient of F by

an =
1

N

N−1∑
k=0

F (k)e−2πikn/N .

Theorem 2.5. If F is a function on Z(N), then

F (k) =
N−1∑
n=0

ane
2πikn/N

Also,
N−1∑
n=0

|an|2 =
1

N

N−1∑
k=0

|F (k)|2.

Vandermonde Matrix

Let z0, z1, · · · , zN−1 be complex numbers, the associated Vandermonde matrix would be

VN =


1 z0 z2

0 · · · zN−1
0

1 z1 z2
1 · · · zN−1

1

...
...

...
...

...

1 zN−1 z2
N−1 · · · zN−1

N−1


And its determinant is given by

det(VN) =
∏

0≤j<k≤(N−1)

(zj − zk).
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To see this, we consider a polynomial P (z) given by

P (z) =

∣∣∣∣∣∣∣∣∣∣∣∣

1 z0 z2
0 · · · zN−1

0

1 z1 z2
1 · · · zN−1

1

...
...

...
...

...

1 z z2 · · · zN−1

∣∣∣∣∣∣∣∣∣∣∣∣
Note that P (z) is of degree N − 1 and has z0, z1, · · · , zN−2 as its roots. Therefore we

can write

P (z) = C
∏

0≤k≤(N−2)

(z − zk)

where C is the coefficient of zN−1 and can be determined using Vandermonde matrix

for VN−1.Applying induction on N , we get the desired result.

Now let us see the Vandermonde matrix for complex numbers {z0, z1, · · · , zN−1} where

z0 = 1, z1 = ω = e2πi/N and zj = ωj for j = 2, 3, · · · , N − 1. We then have

VN =


1 1 1 · · · 1

1 ω ω2 · · · ωN−1

...
...

...
...

...

1 ωN−1 ω2(N−1) · · · ω(N−1)(N−1)


is non-singular.

Since zj are all different where zj = ωj for j ∈ {0, 1, 2, · · · , N − 1} and ω = e2πi/N , it

is easy to see that

det(VN) =
∏

0≤j<k≤(N−1)

(zj − zk) 6= 0.

Let us now consider a minor Wk(a k × k matrix) of VN with {n1, n2, · · · , nk} as row

indices and {m,m + 1, · · · ,m + k − 1} are consecutive k columns. We will now try

to see that whether every minor of the Vandermonde matrix is also non-singular. In

general, it is not necessarily true but if N = p where p is prime, Chebotarev’s theorem

shows that every minor of the Vandermonde matrix is also non-singular. But to prove

the Chebotarev’s theorem we will require a lemma.

Let us first consider an arbitrary k × k minor of the a Vandermonde matrix,

Wk =


1 zm1

n1
zm2
n1
· · · zmk

n1

1 zm1
n2

zm2
n2
· · · zmk

n2

...
...

...
...

...

1 zm1
nk

zm2
nk
· · · zmk

nk


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As earlier consider a polynomial P (z) defined as :

P (z) =


1 zm1

n1
zm2
n1
· · · zmk

n1

1 zm1
n2

zm2
n2
· · · zmk

n2

...
...

...
...

...

1 zm1 zm2 · · · zmk


Now P(z) is a polynomial of degree mk ≥ k and only k roots of the polynomial P are

visible, so we can write

P (znk
) = det(Wk) =

∏
j<j′

(znj
− znj′

)Q(znk
)

but we don’t know whether Q(znk
) is zero or not.

To see this we first prove the lemma.

Lemma 2.6. For p(prime) and n(integer) , let P (z1, z2, · · · , zn) be polynomial with

integer coefficients. Let ξ1, ξ2, · · · , ξn be pth roots of unity (not necessarily distinct) such

that P (ξ1, ξ2, · · · , ξn) = 0 then P (1, 1, · · · , 1) = 0(mod p).

Proof Let ξ denote primitive pth root of unity and ξj = ξkj for kj = 1, 2, · · · , p. We

then define a polynomial Q(z) such that

Q(z) = P (zk1 , zk2 , · · · , zkn)mod(zp − 1)

Then

Q(ξ) = P (ξk1 , ξk2 , · · · , ξkn) = P (ξ1, ξ2, · · · , ξn) = 0 (given)

and Q(1) = P (1k1 , 1k2 , · · · , 1kn) = P (1, 1, · · · , 1). As Q(z) is of degree at most

(p-1) degree with integer coefficients and thus should be an integer multiple of minimal

polynomial 1 + z + z2 + · · ·+ zp−1 of ξ.

Theorem 2.7. Chebotarev’s Theorem

If p is a prime and ξ is a primitive pth root of unity then every minor of the Vandermonde

matrix V = (ξjk)p−1
j,k=0 is non-singular.

Proof 2Let 1 ≤ n ≤ p and let k1, k2, · · · , kn and l1, l2, · · · , ln denote the row and

column indices of the minor matrix W = (ξkilj)i,j . Also let ωi = ξki then each ωi is

2This proof of Cheboratev’s theorem was given by Terence Tao
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different.

Now consider the polynomial

D(z1, z2, · · · , zn) = det((z
lj
i )i,j)

It is easy to see thatD(1, 1, · · · , 1) = 0 but we need to show thatD(ω1, ω2, · · · , ωn) 6= 0.

It can be seen that D = 0 whenever zi = zi′ for some 1 ≤ i < i′ ≤ n, so we can write

D(z1, z2, · · · , zn) =
∏
i<i′

(zi − zi′)P (z1, z2, · · · , zn)

where P is a polynomial with integer coefficients.

We need to show that P (1, 1, · · · , 1) 6= 0(mod p).

To see this we apply the differential operator

(z1
d

dz1

)0(z2
d

dz2

)1 · · · (zn
d

dzn
)n−1

on D(z1, z2, · · · , zn) =
∏

i<i′(zi − zi′)P (z1, z2, · · · , zn) and compute the result at z1 =

z2 = · · · = zn = 1.

Total number of differential operators applied here are 1 + 2 + · · · + n − 1 = n(n−1)
2

which is equal to the total number of linear factors (zi − zi′) in the expression of

D(z1, z2, · · · , zn). By Leibniz rule, each operator (zi
d
dzi

) either differentiates one of

these linear factors(and reduces them to zi or differentiate the polynomial P (z1, z2, · · · , zn).

But, in Leibniz expansion only terms which survive when z1 = z2 = · · · = zn = 1 are

the linear terms which get differentiated by the operator. Therefore we never have to

actually differentiate P (z1, z2, · · · , zn). Since (n− 1) copies of the differential operator

(zn
d
dzn

) can eliminate only (n − 1) copies of the linear factor (zi − zn) and it can be

done in (n− 1)! ways. Similarly, (n− 2) copies of the differential operator (zn−1
d

dzn−1
)

can eliminate only (n − 2) copies of the linear factor (zi − zn−1) and it can be done in

(n− 2)! ways and so on. Therefore, we get

(z1
d

dz1

)0(z2
d

dz2

)1 · · · (zn
d

dzn
)n−1D(z1, z2, · · · , zn)|z1=z2=···=zn=1

= (n− 1)!(n− 2)! · · · 1!P (1, 1, · · · , 1)

Since,(n− 1)!(n− 2)! · · · 1! is not a multiple of p it remains to show that P (1, 1, · · · , 1)

is not a multiple of p.

Another way of differentiating D(z1, z2, · · · , zn) = det((z
lj
i )i,j) with respect to the
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operator (z1
d
dz1

)0(z2
d
dz2

)1 · · · (zn d
dzn

)n−1 is by using multi-linearity of the determinant

and the fact that (zi
d
dzi

)zli = lzli we get that

(z1
d

dz1

)0(z2
d

dz2

)1 · · · (zn
d

dzn
)n−1D(z1, z2, · · · , zn)|z1=z2=···=zn=1 = det(li−1

k )

Since det(li−1
k ) is Vandermonde determinant and each lk is different modulo p for k =

1, 2, · · · , n , we get that

det(li−1
k ) =

∏
k<k′

(lk − lk′) 6= 0

So we get that P (1, 1, · · · , 1) 6= 0 so from the lemma P (ω1, ω2, · · · , ωn) 6= 0 . Hence

D(ω1, ω2, · · · , ωn) 6= 0.

From above theorem we get that

Corollary 2.8. Let p be a prime and A,B be non-empty subsets of Z/pZ such that

|A| = |B|, then the linear transformation l2(A) −→ l2(B) given as Tf = f̂ |B is

invertible(here l2(A) denotes the set of functions which are zero outside A).

Uncertainty Principle for Z/pZ

Theorem 2.9. Uncertainty Principle for Z/pZ

Let p be prime number and let f : Z/pZ −→ C be a non-zero function then

|supp(f)|+ |supp(f̂)| ≥ p+ 1.

Conversely, if there are non-zero subsets A and B of Z/pZ such that |A|+ |B| ≥ p+ 1

then there exists a non-zero function such that supp(f) = A and supp(f̂) = B.

Proof On contrary let us assume that there exists a non-zero function f such that

|supp(f)|+ |supp(f̂)| ≤ p.

Let us write supp(f) = A, then we can find a subset B of Z/pZ such that |A| = |B| and

B ∩ supp(f̂) = 0. But from above corollary T : l2(A) −→ l2(B) should be invertible

but we get Tf = 0 for f 6= 0.

To prove the converse we first prove it for |A|+ |B| = p+1. Let us choose a subset F of

Z/pZ such that |A| = |F | and F ∩ B = (ξ). By corollary the map T : l2(A) −→ l2(F )

is invertible and therefore we can find a non-zero function f ∈ l2(A) such that f̂ is zero
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on the set F \ ξ and non-zero on ξ. Now, such a function f has to be non-zero on all

of A and all of B otherwise first statement of uncertainty principle will get violated.

Therefore supp(f) = A and supp(f̂) = B.

Now, for |A| + |B| > p + 1 we can consider the subsets A′ ⊂ A and B′ ⊂ B such that

|A′| + |B′| = p + 1 and the claim follows by taking generic linear combinations of the

two.

2.2 Concentration: Deviation from a point

2.2.1 Heisenberg’s Uncertainty Principle

This section is denoted to classical Heisenberg’s uncertainty Principle. To prove the

classical result we will require a lemma.

Lemma 2.10. Let r, s, t ∈ R+ and j ∈ {1, 2, · · · , n}.If f ∈ Lr(Rn) with partial

derivative ∂jf ∈ Ls(Rn) and xjf ∈ Lt(Rn) then there exists a sequence of functions

gn ∈ C∞c (Rn) such that

‖gn − f‖r + ‖∂jgn − ∂jf‖s + ‖xjgn − xjf‖t −→ 0 for n −→∞.

Proof We divide the proof in three steps. The idea is to approximate f with a sequence

fp of functions in Lr(Rn) with compact support :

fp(x) = kp(x)f(x) = k(x/p)f(x)

where k : Rn −→ [0, 1] is in C∞c (Rn) and defined by

k(x) =


1 for |x| ≤ 1

0 ≤ k(x) ≤ 1 for 1 < |x| < 2

0 for |x| ≥ 2.

Then for each p approximate fp with a sequence gp,q ∈ C∞c (Rn)

gp,q(x) = hq ∗ fp(x) where hq(x) = q−1h(qx)

with h ∈ C∞c (Rn) and
∫
R h(x)dx = 1. Proving the convergence for each approximation

yields the desired result.
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Step 1: Since |fp(x)| ≤ |f(x)| ∀ x ∈ Rn and fp(x) −→ f(x) pointwise

⇒ fp −→ f in Lr(Rn).Similarly xjfp −→ xjf in Lt(Rn). Since ∂jf ∈ Ls(Rn) it can

be seen that k(x/p)(∂jf) ←→ (∂jf). Also, ∂jkp(x) = 1
p
∂jk so f∂jkp → 0 in Ls(Rn).

Using Leibniz’s rule and triangle inequality, we get

‖∂jfp − ∂jf‖s ≤ ‖(∂jf)kp − ∂jf‖s + ‖f∂jkp‖s −→ 0 for p→∞, .

Step 2: Now above lemma has been proved for fp, but the sequence fp may not be

in C∞c (Rn).The convolution hq ∗ fp is in C∞(Rn). Since fp ’s has compact support

thus its convolution with fp will also have compact support. Now, we have sequence

gp,q = hq ∗ fp that approximates fp for q →∞. Since ∂jfp is in Ls(Rn), so we can write

∂jgp,q = hq ∗ ∂jfp → ∂jfp in Ls for q −→∞.

The convolution hq ∗ fp has compact support independent of q because

supp(hq ∗ fp) ⊆ supp(hq) + supp(fp) ⊆ supp(h) + supp(fp)

The sets supp(h) and supp(fp) are compact and therefore the sum is compact. On this

set multiplication with xj is a bounded operator on Lt(Rn) and is continuous. This gives

the last required convergence xjgp,q → xjfp in Lt(Rn) as q →∞.

Step 3: For each k ∈ N, I can choose p and q such that

‖gp,q − fp‖r + ‖∂jgp,q − ∂jfp‖s + ‖xjgp,q − xjfp‖t ≤
1

2k

‖fp − f‖r + ‖∂jfp − ∂jf‖s + ‖xjfp − xjf‖t ≤
1

2k

setting gk = gp,q and using Schwarz inequality proves that the sequence gk ∈ C∞c (Rn)

satisfies above lemma.

Theorem 2.11. Heisenberg’s Uncertainty Principle

Let f ∈ L2(Rn), then for all j ∈ {1, 2, · · · , n}∫
Rn

x2
j |f(x)|2dx

∫
Rn

y2
j |f̂(y)|2dy ≥ 1

4
(

∫
Rn

|f(x)|2)2

Proof The inequality is obvious if f(x) = 0 almost everywhere. So, we will assume

that f(x) is non-zero in L2(Rn) then neither xjf(x) nor yj f̂(y) is zero. Now, if either of

them has infinite L2-norm the inequality is obvious. So, let us now assume that xjf(x)
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and yj f̂(y) are in L2(Rn).

We will first prove the inequality for f ∈ C∞c (Rn) and then use the above lemma.

For f ∈ C∞c (Rn) we have,∫
Rn

x2
j |f(x)|2dx

∫
Rn

y2
j |f̂(y)|2dy =

∫
Rn

x2
j |f(x)|2dx

∫
Rn

|(∂jf)(x)|2dx

≥ (

∫
Rn

|xj(∂jf)(x)f(x)|dx)2

≥ (

∫
Rn

xjRe((∂jf)(x)f(x) )dx)2 (as |z| ≥ Re(z) )

=
1

4
(

∫
Rn

xj((∂jf)(x)f(x) + (∂jf)(x)f(x))dx)2

=
1

4
(

∫
Rn

xj(∂j|f |2)(x)dx)2

=
1

4
(

∫
Rn

|f(x)|2)2 (Integration by parts)

here first inequality ids due to Cauchy-Schwarz inequality.

Using above lemma with r = s = t = 2 , proves the Heisenberg’s inequality in general,

i.e. ∫
Rn

x2
j |f(x)|2dx

∫
Rn

y2
j |f̂(y)|2dy ≥ 1

4
(

∫
Rn

|f(x)|2)2

Remark (The case of equality) If n = 1 and if f(x), xf(x) and yf̂(y) are in L2(R)

then the equality holds for Gaussian functions.

First let us observe that if xf(x) ∈ L2(R) then
√
|x|f(x) ∈ L2(R). To see this let us

define a function g ∈ L2(R) such that

g(x) =

|f(x)| for |x| ≤ 1

x|f(x)| for |x| > 1

and |x||f(x)|2 ≤ |g(x)|2 ∀ x ∈ R⇒
√
|x|f(x) ∈ L2(R). Then (1 +

√
x)f(x) ∈ L2(R)

and since (1 +
√
x)−1 ∈ L2(R), using Hőlder’s inequality we get that f(x) ∈ L1(R).

Similarly, it can be shown that f̂(x) ∈ L1(R)(as ‖f‖2 = ‖f̂‖2 by P lancherel theorem)

and now using Inverse transform formula it can be shown that f is equivalent to a

continuous function.

Now, assume the equality holds in Heisenberg’s inequality, then the equality holds for

Cauchy-Schwarz inequality i.e. for the expression∫
Rn

x2
j |f(x)|2dx

∫
Rn

|(∂jf)(x)|2dx ≥ (

∫
Rn

|xj(∂jf)(x)f(x)|dx)2
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which holds for any f ∈ L2(R). But it holds only if kxf(x) = ∂f(x) for some complex

k.Then ∂f(x) is also continuous. Now it can be seen that ∂f(x) is actually f ′(x) from∫ x

0

∂f(t)dt = limn→∞

∫ x

0

g′n(t)dt

= limn→∞[gn(x)]x0

= limn→∞(gn(x)− gn(0))

= f(x)− f(0) (as f is continuous).

Here the sequence gn is chosen as in above lemma. Now, we have ordinary differential

equation of the form

f ′(x) = kxf(x)

which when solved by separation of variables, shows that f is a Gaussian function.

2.3 Concentration: Rate of decay

2.3.1 Hardy’s Theorem

To prove the Hardy’s theorem we will first prove the Phragmén-Lindélőf theorem for a

cone.

Theorem 2.12. (Phragmén-Lindélőf) Given a ∈ (1/2,∞) and 2aφ < π define

D = {z ∈ C| − φ ≤ arg(z) ≤ φ}

Let f be a function which is holomorphic in the interior Do of D and continuous on the

boundary ∂D of D and there exists a constants b and C such that

|f(z)| ≤ Ceb|z|
a

for z ∈ D.

If there exists a constant M such that |f(z)| ≤ M for z ∈ ∂D then |f(z)| ≤ M for all

z ∈ D.

Proof As 2aφ < π, we can choose s > a such that 2sφ < π. Now, for A > 0, let us

define

h(z) =
f(z)

exp(Azs)
, z ∈ D
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The function z 7→ Azs is holomorphic in Do and continuous on ∂D thus same holds for

h(z).

Now for z = reiφ, we have

|h(z)| = |f(z)|
|exp(Azs)|

=
|f(z)|

|exp(A(rseiφs))|
≤ M

exp(Arscos(sφ))
≤M

as sφ < π
2

so, cos(sφ) ≥ 0 and exp(Arscos(sφ)) ≥ 1.

Similarly it is also the case with z = re−iφ. So, |h(z)| ≤M on ∂D.

Let us now define

Dr = {z ∈ D||z| ≤ r} for r ≥ 0.

We have shown that it is true for z = reiφ and z = re−iφ for any r ≥ 0. We will now

show that there will exist r ≥ R0 for which |h(z)| ≤M for z = reiθ where−φ < θ < φ

and r ≥ R0.

To see this we define m = inf−φ<θ<φcos(sθ) then as sφ < π
2

and−φ < θ < φ therefore

m > 0 .

Now,

|exp(Arseisθ)| = exp(Arscos(sθ)) = exp(Arsm)

For |z| = r and s > a, we have

|h(z)| = |f(z)|
|exp(Azs)|

≤ Cexp(bra)

exp(Arsm)
= Cexp(bra − Arsm)→ 0 as r →∞

So there exists r ≥ R0 for which we have |h(z)| ≤ M for z ∈ ∂Dr, by Maximum

Modulus theorem we have |h(z)| ≤M for z ∈ Dr when r ≥ R0.

Therefore again by Maximum Modulus theorem we have |h(z)| ≤M for z ∈ D i.e.

|f(z)| ≤Mexp(Azs) for z ∈ D and A > 0

As A→ 0 we get |f(z)| ≤M for z ∈ D.

We will also prove a lemma

Lemma 2.13. For a given function f , let us assume there exists a ≥ 0 and C ≥ 0 such

that |f(z)| ≤ Ce−ax
2
, then f̂(z) defined as

f̂(z) =

∫
R
f(x)e2πixzdx for all z ∈ C

is well-defined and entire.
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Proof The integral given above is well defined as for z ∈ C∫
R
|f(x)||eixz|dx =

∫
R
|f(x)|eIm(z)xdx ≤ CeIm(z)x−ax2 <∞

Now to show continuity of f̂ let us consider a sequence {(zn)n∈N} ∈ C which converges

to z ∈ C i.e. zn → z.

Therefore

|f̂(zn)− f̂(z)| = 1√
2π
|
∫
R
f(x)e2πixzn − f(x)e2πixzdx|

=
1√
2π
|
∫
R
f(x)(e2πixzn − e2πixz)dx|

≤ 1√
2π

∫
R
|f(x)||(e2πixzn − e2πixz)|dx

Now,since zn → z as n→∞ and the mapping z 7→ eixz is continuous for x ∈ Ri so

|f̂(zn)− f̂(z)| ≤
∫
R
|f(x)||(e2πixzn − e2πixz)|dx→ 0 as n→∞.

In order to prove the that the function f̂ is entire, we try to calculate its integral over the

loop γ : [0, 1]→ C.Since the function e−izx is entire then its closed integral over γ will

be zero by Cauchy integral theorem i.e.
∫
γ
e−izxdz = 0.∫

γ

f̂(z) =

∫
γ

∫
R
f(x)e−izxdxdz

=

∫ 1

0

∫
R
f(x)e−iγ(s)xγ′(s)dxds

=

∫
R
f(x)

∫
γ

e−izxdzdx

= 0

By Morera’s theorem, we get that f̂ is entire function.

Theorem 2.14. Hardy’s Inequality

Let f be a function which satisfies

|f(x)| ≤ Ce−ax
2

and|f̂(ξ)| ≤ De−bξ
2

where a, b, C,D ∈ R+ and x, ξ ∈ R, then we have following three properties:

(i) If ab = 0 then f is a Gaussian function.

(ii) If ab > 1/4 then f = 0.

(iii) If ab < 1/4 then there are infinitely many functions satisfying the given conditions.
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Proof We will first show that actual values of a and b do not matter, we are only

interested in the value of the product as whole. Let us assume that the function and its

Fourier transform satisfy the given conditions.Now we define a function f1(x) = f(kx)

for some k 6= 0. Then

f̂1(ξ) =
1√
2

∫
R
f(kx)e−ixξdx =

1√
2

∫
R
k−1f(x)e−ik

−1xξdx = k−1f̂(k−1ξ)

From the given conditions, we get for f1

|f1(x)| ≤ Ce−ak
2x2 = Ce−mx

2

and

|f̂1(ξ)| = |k−1f̂(k−1ξ)| = k−1|f̂(k−1ξ)| ≤ k−1De−bk
−2ξ2 = D′e−nξ

2

where m = ak2 and n = bk−2. Now we can see that the product

mn = ak2bk−2 = ab.

Thus exact values are not important, we are mainly concerned with the product.

(i) Let us start with ab = 1/4. Since exact values of a, b are not important, for

simplicity we can consider a =
1

4
π and b = π.

We know that if f is a even function then so is f̂ , then for a even function f we

can write its Fourier transform series as f̂(y) =
∑

n∈N cnz
2n, where y ∈ C.

Let us define a function h(y) = f̂(
√
y) =

∑
n∈N cnz

n, where y ∈ C, then for f̂

we have

|f̂(y)| = 1√
2
|
∫
R
f(x)e−ixydx|

≤ 1√
2

∫
R
|f(x)||e−ixy|dx

=
1√
2

∫
R
|f(x)|eIm(y)xdx

≤ C√
2

∫
R
e−x

2/4πeIm(y)xdx

=
C√

2

∫
R
g(x)e−i(iIm(y))xdx ( where g(x) = e−x

2/4π)

= Cĝ(iIm(y))

= C ′e−Im
2(y)
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Since Fourier transform of a Gaussian is Gaussian function.

For y = Reit we get

|h(y)| = |f̂(
√
y)| ≤ C ′e−Im

2(
√
y)

and since
√
Reit =

√
Rcos(t) + iRsin(t) = a+ ib

⇒ Rcos(t) = a2 − b2andRsin(t) = 2ab we get b = ±
√
Rsin(t/2).

So we get

|h(y)| ≤ C ′e−πRsin
2(t/2).

If y ∈ R+ then we have y = R and then

|h(y)| = |f̂(
√
y)| ≤ De−πR(from given conditions of decay).

Let M = max(C ′, D) be such that it satisfies both the above inequalities. Now,

we define a plane Dδ = {Reit|0 ≤ t ≤ δ, R ≥ 0} where 0 ≤ δ ≤ π and a

function

gδ(y) = exp(
iπRye−iδ/2

sin(δ/2)
).

Then for y = Reit, we get

|gδ(Reit)| = exp(
−πRsin(t− δ/2)

sin(δ/2)
)

For t = 0 we get |gδ(R)| = eπR and for t = π we get |gδ(Reiπ)| = e−πR,then

from above we have

|gδ(R)h(R)| ≤M and |gδ(Reit)h(Reit)| ≤M

The function gδh is limited on the boundary of Dδ and as function is analytic, by

Phragmén-Lindelőf, it is bounded on whole of Dδ. Also

sin(t− δ/2)

sinδ/2
→ −cost as δ → π

and gδh ≤M gives that

|h(y)| ≤Me−πrcost for 0 ≤ t ≤ π.

For −π ≤ t ≤ 0 we can get similar result. For all z = reit ∈ C we get

|eπzh(z)| = |eπR(cost+isint)h(z)| = |eπRcosth(z)| ≤M.
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By Liouville’s theorem, we get that eπzh(z) is constant for all z ∈ C.Thus, we

get that f̂(y) = Ke−πy
2 and by Fourier inversion formula we get that f(x) =

K ′e−x
2/4π.

Also, if f odd then so is its f̂ , and it can be written as power series f̂(y) =∑
n∈N cny

2n+1 then y−1f̂ will be analytic and even. Then treating it as even

function we get f̂(y) = yKe−πy
2 and which can be bounded for all y ∈ C only if

K = 0.

Now any function can be split into f = feven + fodd such that

feven(x) =
f(x) + f(−x)

2
and fodd(x) =

f(−x)− f(−x)

2

Since f satisfies the given conditions, so does feven and fodd. Therefore, for ab =

1/4 we get f, f̂ are Gaussian functions.

(ii) For ab > 1/4, let us assume that a > 1/4π and b > π. Then from the given

conditions we will have

|f(x)| ≤ Ce−ax
2 ≤ Ce−x

2/4π as a > 1/4π

|f̂(ξ)| ≤ De−bξ
2 ≤ De−ξ

2/4π as b > π

then from (i) we get that f = C ′e−x
2/4π for some C ′, but that would mean that

C ′e−x
2/4π ≤ Ce−ax

2 for all x ∈ R which is only possible if C ′ = 0 as a > 1/4π.

(iii) For ab < 1/4 we can assume that a = b < 1/2. Since Hermite functions are

polynomials multiplied with e−x2/2 and any polynomial function is bounded by

ekx
2 for some k > 0, so there exists K >) such that

|Ĥn(x)| = |Hn(x)| ≤ Ke−(k+1/2)x2

by choosing k such that k + 1/2 > a we get that e−(k+1/2)x2 ≤ e−ax
2 .

Therefore we get infinite family of functions satisfying given conditions of decay.

2.3.2 Beurling’s Theorem

Let us suppose f and f̂ satisfy

|f(x)| ≤ Ce−ax
2 ∀ x ∈ R
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and

|f̂(ξ)| ≤ De−bξ
2 ∀ ξ ∈ R

for some a, b, C,D ∈ R then∫
R
f(x)e−a

′x2dx ≤ C

∫
R
e−(a+a′)x2dx <∞.

Similarly for
∫
R f̂(ξ)e−b

′ξ2dξ.

Now, let us compute ∫
R

∫
R
f(x)f̂(ξ)e−a

′x2e−b
′ξ2dxdξ

i.e. ∫
R

∫
R
f(x)f̂(ξ)e−(a′x2+b′ξ2)dxdξ

As we know that x2 + ξ2 > xξ ⇒ e−(x2+ξ2) < e−xξ

Therefore computing the integral with e−|x||ξ|,will give us a stronger result and the result

will also be true with e−(x2+ξ2).

However, a much stronger result is Beurling-Hőrmander Theorem:

Theorem 2.15. Beurling-Hőrmander Theorem

If f ∈ L1(R) satisfies ∫ ∫
R×R
|f(x)||f̂(ξ)|e2π|x||ξ|dxdξ <∞

then f = 0.

Due to time constraint, the proof of the theorem could not be completed fully. How-

ever, one can consult appendix section of the paper by Aline Bonami, Bruno Demange,

Philippe Jaming, on Hermite functions and uncertainty principles for the Fourier and the

windowed Fourier transforms, to see the proof of the theorem.
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