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Notation

N set of natural numbers

) set of integers

C set of complex numbers

Lr Lebesgue measurable space

2 partial derivative with respect to z
f Fourier transform of a function f
f inverse Fourier transform of f

F Fourier transform operator

Sny(f)  partial sum of a Fourier series

c* k times differentiable functions
fxg convolution
Xla,b] characteristic function of the interval [a, b]

Ifl,  pnorm of f
dim(G) dimension of G
Ker(f) kernel of f
Im(f) image of f
Re(z)  real part of z

Im(z)  imaginary part of z



Abstract

Most of life is uncertain, no one with 100 percent accuracy can tell what’s going to
happen next in their life. In 1927 Prof. Heisenberg claimed that it is not possible to
simultaneously measure the complementary pairs; in his case momentum and position
of a particle with 100 percent accuracy. In 1928 Kennard and Weyl separately gave the
detailed proof of the claim. From there several questions came into existence regarding
under what different conditions can you see uncertainties and how these uncertainties
help us to make optimised decisions. Taking inspiration from the classical uncertainty
principle: the Heisenberg uncertainty principle; I tried to analyse the simultaneous be-

haviour of a function and its Fourier transform under different notions of concentration.
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Chapter 1

Fourier Analysis

1.1 Basic Preliminaries

Definition 1.1. A function f is said to be continuous at x if for every € > 0 there exists

0 > 0 such that
[z —yl <d=[f(z) - fy) <e

Definition 1.2. Let X be a topological space.For a continuous function,f : X —

R(or C) support of a function f is defined as

supp(f) = {z € X|f(z) # 0}.

Definition 1.3. A ropological space, X is compact if every open cover of X has finite

subcover.

Definition 1.4. A function is said to be holomorphic if it is complex differentiable in a

neighbourhood of every point in its domain.

Definition 1.5. A complex function is called an entire function if it is analytic at all
finite points of the complex plane.
Most common example of entire functions are polynomials.
Theorem 1.6. (Dominated Convergence theorem)
Let { f,.} be a sequence of measurable functions that converges point-wise to f, i.e. f,, —

f a.e.asn — oo. Let g be an integrable function i.e. g € L' and | f,| < gV n then f is

integrable and limit and integral can be exchanged i.e.

/fdu: /limn%oofndu: limnﬁoo/fndu.

1



Theorem 1.7. (Fubini’s Theorem) Let A, B be complete measure spaces and f(z,y)
be A x B measurable. If [, . |f(x,y)|d(z,y) < oo then

[ (frwman)ar= [ [ ranac)ar= | e

Theorem 1.8. (Cauchy-Schwarz Inequality)
If f,g € L? then

| < frg> 1< fll2llgll2-
Theorem 1.9. (Morera’s Theorem)

Let f be a continuous function in the open disc D. If for every triangle in D we have

/Tf(z)dz =0

then f is holomorphic.

Theorem 1.10. (Liouville’s Theorem)

If f(2) is entire and bounded then f(z) is constant.

Theorem 1.11. (Leibniz Rule)

For all C™ functions f, g on R, Leibniz rule is
dm ™ m dkf dm—kg
a9 = Z (k)W—dtmk ~
Theorem 1.12. (Maximum Modulus Principle)

Let f be a non-constant holomorphic function in region D then |f| cannot attain maxi-

mum in D.

Theorem 1.13. (Hélders inequality)
Let f € LP(R") and g € LY(R") and p, q be such that 1/p+ 1/q = 1 then

1fglle < [1fllpllgllq-

Theorem 1.14. (Minkowski’s Integral Inequality)

Let f be Lebesgue measurable and p € [1,00) then

([1] neyrac) Ve J([mnpra) "

Lemma 1.15. (Fatou’s lemma)
Let {f,} be sequence of non-negative measurable functions converging to the function

f, then
/ iMoo fudpt < limy oo / fndp.
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1.2 Fourier Series

1.2.1 Definitions

Fourier series of an integrable function f on [—, 7| is defined as
5 fme
neN

where f(n) is Fourier coefficient of f given by

I .
:%/a f(z)e 2™ dy

Partial sums, Sy are defined as Sy (f) = Z]_VN f(n)en=.

Theorem 1.16. Let f be a twice continuously differentiable function on the circle, then

we have f(n) — 0 as |n| — .

Proof It is obtained by using integration by parts twice. For n # 0, we get
2m f / f(m)e "™™dm

:{#L LT e

n m
1

= — f'(m)e"™™dm (as f is 27 periodic function)
in

- _f/(m)e—inm " 1 " " —inm
——n[—n]+ i) / JHmjerdm

1 (7 ,
=— / f"(m)e™"™dm (as f"is also 2w periodic function)
n —T

Now,

[270? f ()| = 2x|n®||f ()] = | —/ f'(m)e” " dm| S/ [ (m)]Je”"™™|dm < M

As 1/n? converges to 0, so does f(n).

Also, it can be seen that f’ = mf Vn e Z.

1.2.2 Convolution

Convolution of 27 functions f and g on R is defined as

(f o) 2W/ fly



Partial sums are important while considering convergence of Fourier series, to see that,
let us first see different ways in which partial sums can be written(here f is 27 periodic

function)

Sn(f)(@) = Y fln)e™

- n=—N
= (f * Dy)(2)
where Dy is N*" Dirichlet kernel defined as
N
Dy(z) = Z e
n=—N

Proposition 1.17. For 27 periodic functions f, g and h, we have
(i) fx(g+h)=fxg+[*h
(ii) (c¢f)*g=c(f*g)=f=*(cg)for somec e C.
(iii) fxg=gxf
(iv) (f*g)xh=fx*(gxh)
(v) f * g is continuous.

i) T+g=fg

1.2.3 Good Kernels

The family { K, },,cn is a family of good kernels on circle if it satisfies three conditions:
@) 5= [7 Ky(z)de=1VYn>1

(b) for all n > 1, there exists M > 0 such that

/W |K,,(z)|dz < M.

—T
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(c) foreachd > 0asn — oo,

/ | K, (z)|dx — 0.
6<|z|<m

Good kernels along with convolutions, gives the important result

Theorem 1.18. Suppose f be an integrable function on circle and { K, } ,en be family

of good kernels, then whenever f is continuous at x we have,

limp oo (f % K)(z) = f(2).

The limit will be uniform be if f is continuous everywhere.

Proof As f is continuous at x, then for every ¢ > 0 there exists 4 > 0 such that
[z —yl <d=[fly) — flz)| <e

Then,
(F + Kola) = @)l = |5 [ Kol o =) = i)
~|: [ K@ = ) = sy (From condition)
<o [ 1Kl — ) - sy
=57 [ @I =)~ sy
tap | WISy
<o [ e 32y
<o [ w2 [ ik

where f is bounded by B. Form condition(c), second term is less than ¢ for large values
of n and from condition(b), first term is bounded by e /2x. Therefore, for all large n,

there exists C' > 0 such that

|(f % K,)(2) — f(z)| < e

Now if f is everywhere continuous, then we can choose ¢ independent of x. Therefore

(f x Ky,)(x) — f(x) uniformly.



1.3 Fourier transform

Fourier transform of a function, f € L'(R") is defined as
f&) = [ flax)e = dx Ve € R™
R

Lemma 1.19. (Riemann-Lebesgue lemma)
If f € L*(R™) then f(€) — 0as |€| — co. Thus, f € Co.

Theorem 1.20. Let f € LP(R™) where p € [1,00) and let g € L*(R") then h = f * g
is well defined and h € L*(R"). In fact ||h|, < || fll»llg1-

Proof  As, [1(z)| = |(f * 9)(@)| < fau [f(x = »)llg(y)|dy
then by Minkowski’s integral inequality, we get

(fmore)*~(1 o)

< [ ([ re—vrowra) a

= [ (1] =) oy

= [I£1lpllglh-

flx —y)g(y)dy

R

Proposition 1.21. Fourier transforms of a function, f € L*(R") under different condi-

tions, where h,&, v € R";§ > 0;g € L*(R"):
(i) f(x+h) = f(g)e’me
(ii) f(x)e ™" — f(€+ D)
(iii) f(0x) = 671 f(571¢)
(iv) a% (x) — 2migf(€)
(v) —2mizf(x) = & (€)
(vi) Fxg=fg
In order to see formula for inverse of a Fourier transform, we first define Abel mean and

Gauss mean.

Abel mean of a function, f is defined as

A= A(f) = /R f(z)e ldy
6



Jgn f(2)dz is said to be Abel summable if
lime0Ac(f) = limeso f(q:)e’6|"”‘da:
Rn

exists and is finite.

Gauss mean of a function, f is defined as
G.=G(f) = A flx)e
Jgn f(2)da is said to be Gauss summable if
limeoGe(f) = limeyo | flz)e 9 dz
R®

exists and is finite.

Let us collectively, define M, , such that

Meo(f) = (ex)f(x)dx

Rn
where ¢(t) > 0,¢ € (C)y and ¢(0) = 1.

We will also require the following theorem,

Theorem 1.22. (Multiplication Formula)
For f,g € L*(R"), we have

fla)g(z)de = | F@)gla)dz.

R

Proof From Fubini’s theorem we get,
Foiar= [ ([ roetat)gwe
Rn n \ Jrr
:/ (/ g(a:)e_%mdx>f(t)dt
= [ f(t)g(t)dt
RTL

Let ® be an integrable function and ¢ denotes its Fourier transform. Also, for e > 0 let

us define ¢.(z) = e "¢(z/€). Then we have

(0c2)(z) = € "(z/€) = Pc(x).

On applying the multiplication formula to e?™*§.®(x) and f(z) we get the following

result



Theorem 1.23. Let f,® € L'(R"™) and ¢ be Fourier transform of ®, then
f(@)e*™ " ® (ex)da = f(z)pe(x — t)d.
R'"/ Rn
Theorem 1.24. Let ¢ € L'(R™) such that ¢(x) > 0 for x € R™ and
Jgn ®(x)dz = 1. For § > 0 let ¢ (x) = e "¢(x/e), then for f € LP(R™) where
p € [l,00)or f € Cy C L*®(R") we get

|f*pe — fll, > 0ase— 0.

Theorem 1.25. (Inversion theorem)
If ® and its Fourier transform ¢ are integrable such that fR" o(z)dz = 1 then ® means

of the integral [, f (t)e*™ =t dt converge to f(x) in L' norm.
Corollary 1.26. Let f, f € L'(R™) then
flx) = F(H)e*™ ™ dt a.e.
R"L

Therefore, if f(t) =0Vt € R" then f(z) = 0 a.e.
Applying the result to the function f = f; — f, we get uniqueness result for the Fourier

transform.

Theorem 1.27. Let f € L' N L? then ||f|\2 = | f]]2-

Proof Let g(x) = f(—x) then g = ? Define h = f * g € L', from the property of
Fourier transform on convolution we get that h = m = f g, SO h = | f |2. Now, we

have

[1i@Pds = [ h@de =10) = [ fla)g0 - a)do = [ 15(a)de.

Thus, Fourier transform is a bounded operator on L' N L? C L? with the L? norm, in
fact its an isometry. Therefore, there exists a unique extension F, known as Fourier

transform operator, on all of L.

Theorem 1.28. (Plancherel Theorem)
Fourier transform, F is an isometry on L* and Inverse of Fourier transform is defined
as (F1g)(z) = (Fg)(—x) forall g € L*.

8



1.4 Special functions

1.4.1 Hermite Functions

Definition 1.29. Hermite functions are defined as
—1)"
Hn($) _ ( ) exz/QDn(e—a:Q)
n!
where D is differential operator.

Proposition 1.30. Hermite functions satisfy the following recursion formulas

(i) H,(z) —xH,(x) = —(n+ 1)H,41(x) forx > 0.

(ii) Ho(x) = (—i)"Hy(2).

Proof

(i) The following recursion formula can be easily obtained by differentiating H,, (),

H' () = (. (0)
= (_nl')n |:(Dn(€—$2)%(em2/2) + (612/2>%Dn<6_m2):|
B <_n1')n {(Dn(€_$2)$€$2/2 + (er/Q)DnH(e_wz)}
= ot (@) + E ey pri e

— ¢H,(2) — (n+ 1) Hypa (2)

(i1) Let us prove that ﬁo = Hj i.e. recursion formula is true for n = 0. From the

definition of Hermite functions we get that Hy(z) = e *"/? and derivative of its

Fourier transform will be
— 1 2 ~
H, = — [ e e (_jg)dx
o)== [ (~iz)

2 2 .
_ (_x)e—m /Qe—zrydx
V2T /R

1 2 ,
_ (efx /2>/efza:ydx
7 .

- /(—iy)e‘izye_‘rzﬁdx
—00 R
i

! —x2/2 _—izy
= e e
2T {
. 2
iy)e e 2y
o /R (iy)
= —yHy(y)




from above calculation we can see that

A,

_, 1o (v)
Ho(y)

as Ho(0) = = [ e=*/2de = 1 = Hy(y) = e '/2

= —y = Hyly) = Ho(0)e "

Since, Hermite functions satisfy the recursion formula
H',(x) —zH,(x) = —(n+ 1)H,1(x) for z >0,
and multiplying both sides with (i)"™! we get that
~(n+ D)(@)" Ho (2) = ()" (o) = oH, (a)
= (i) Hy (x) = ()" (e Ho ()
()" iy Hy (x) + (i) (—iwH, (x)

— —yi”[/—ﬁ(x) + ZH(EL(Q:))/

since ¢" H,, satisfy same recursion formula as f7,,, we get that
i"H, = H, = H, = (—i)"H,.
Remark

e Hermite functions are eigenfunctions of the Fourier transform operator and they

have eigenvalues as some power of —i.

e Hermite functions, H,, are n-degree polynomials multiplied with e/,

1.4.2 Gaussian Functions

Definition 1.31. Functions of the form g(x) = e~ where a > 0 are called Gaussian

functions.

Here we will compute an important integral for the Gaussian function e~

o0 2 ) 0
(/ e”zd:c) :/ / €7ﬂ(x2+y2)dxdy

2w )
/ / e ™ rdrdf (changing to polar coordinates)
o Jo

/ e dr
0
-,
—e
0
1

10



Theorem 1.32. Fourier transform of Gaussian functions are Gaussian.

Proof Let us first prove it for a = 7. As f(€) = [ f(x)e > dx, we first calculate

£(0).

if(g) = A(—2ﬁix)f(x)e_2”ix5dx (from Prop. 1.21(iv))

dg
= i/Rf’(x)eZ’ri‘”5dx (as f'(x) = %(6”2) = —2mpe” ™)
— i(2mi€) f(€) (from Prop.1.21(v))
= —2m¢f(¢)
= & = —2n&
f€)

taking the integral on both sides gives us f (&) = e ™ +c (c : constant of integration).
But from Riemann-Lebesgue lemma, |f(€)| — 0 as |¢| — oo therefore ¢ = 0. For

a # 7, result can be obtained by suitable change of variables.

11



Chapter 2

Uncertainty Principles

We will try to see behaviour of a function, f and its Fourier transform, f under different

notions of concentration.

2.1 Concentration: Support

Here we try to analyse the behaviour of f and f while considering support of a function.
Let us first start by considering a function f € R which has a compact support, say
A C [a,b]. Suppose Fourier transform of f also has compact support, say C' C [, d|

which is given by
fie) = [ flare s
R

Now, by the Inversion formula we get that f is equal to some continuous function. Let

us now define a function g as

b
g(z) = / f(z)e ®™**dx V¥ z € C

the integral is well-defined as for z = p 4 7q we have
fab |f(z)e ™% |dy = ff |f(x)|e*™™dx < oo as f is continuous function with compact
support so it will be bounded, say the bound is M and 2™ — ¢?7% < oo,

Since we know that e =27 is an entire function so by Cauchy’s its integral over a closed
12



curve 7 will be zero i.e. f7 e~ 27z > — (). Therefore, we have

/7 F(2)dz = A ( / ’ f(x)e—%mczx) 0
_ / ’ f(x)( L 62”de2) dz (Fubini's theorem)

=0

Thus, by Morera’s theorem F' is an entire function.

Since F|g = f = zeros of f C zeros of F. But zeros of an analytic function are
isolated thus f cannot have compact support.

Now, we look at a stronger condition where support of a function is finite(need not be

compact).

2.1.1 Benedicks Theorem

Theorem 2.1. Benedicks Theorem

Let f € L'(R) such that supports of f and f are of finite measure i.e

|supp f||suppf| < oo

then f =0 a.e.

Proof f e L! (given),so f € Co(R) (Riemann-Lebesgue lemma)
Tosee f € L' (R)

Define A= {z € R: f(z) #0}and B={€ e R: f(£) # 0}

Let supp f = B be finite then

1l < IfllsclBl = f € L'(R)

f(z)

|
—

F()eX™ ™ dt a.e (by Inversion formula)
R

g(t)e™dt (let f(t) = g(t))

I
=

9(—=z) € Co(R)
13



Therefore f, f € L' N Cy(R)
For § > 0, define f5(z) = f(dz) V2 € R

suppfs = {x € R: fs(x) # 0}
={z eR: f(ox) # 0}
= {x e R:éx € suppf}

supp f
5 }

suppf
= suppfs = 5

={reR:z¢€

Therefore by choosing § as «|suppf| where o > 1, we can get |suppfs| < 1.
Hence by dilation we assume |suppf| < 1.
Assume |[A| > 0and |B| >0

Define 1-periodic function,
GE)=> xplE+n)VEeR
nez

where y g is the indicator function.

0<Mﬂ=/xmﬂﬁ
R

Also,by change of variables

1 il
[ Ssternie =Y [ waieate

neZ neL

aém@wa=w|

Since supp has finite measure and B Cgpe,, B = fol G(&)d§ < 0.

Since [} G(£)dé < oo and G(€) > 0= G(§) < 0 a.e.

So3E C0,1],|F| =1suchthat G({) < 0oV € E.

Therefore, there can be only finitely many non-zero terms in the definition of G(&) for
¢ € E. Hence for { € E,(§ + 7Z) N B is finite.

For each ) € E, let us now define a 1-periodic function ¢,, such that

on(z) = Z fz+n)e mEtn y 4 ¢ R
nez
Claim ¢, € L'[0,1] and ¢, (k) = f(n + k) where k € Z
14



(i) ¢, € L'[0,1]

1 1 )
/ 6 )]t = / |3 fo + mpe2min )|y
0

nez
/ Z|f T+ n)|dx
nez
= Z/ x)|dz
nez

—/R\f(a:)\dx <oo (. f€LY(R))

(i) o,(k) = f(n+ k) where k € Z

1
L k) :/ ¢n(x)e—27rixkdx

/ E f x4 TL —2min(z+n) 27rz:ckdx

nez

/ Z f T+ TL 27rz77(:t+n) —27i( x—i—n)kdx ( —2mnk 1)

neL

/ Zf T+ TL 727rz 7]+k)(ac+n)dx

nEZ

= Z f z 4 n)e” T OHR@) go ( Fubing's theorem)

nez V0

_ Z/ e~ 2mi(n+k)(x) g, (Change of UCL?”i(Zbl@S)
nez
/f —2wzx(n+k

= f(n+k)

= Gu(k) = f(n+ k)

Since (£ + Z) N B is finite for £ € £ C [0, 1].
Therefore, for n € E, f (n 4+ k) # 0 for finitely many k. So for n € E, ¢, has only

finitely many non-zero Fourier coefficients,therefore

m
E 2mk’ it
1

5



let us now substitute ¢, (k;) by ¢; and > by 2

For z € C\ {0} and fix 77, define

F(z)= Z c; 2"
j=1
=z Z c;2" (with l; > 0 and N suf ficiently large)
j=1
= 2YQ(2) (Q(z) is polynomial in z)

Since ((z) have finitely many zeros in C unless it is identically zero,therefore it will
have finitely many zeros in [0,1].So, ¢,, is a trigonometric polynomial which has finitely
many zeros in [0,1] unless it is identically zero.

Also,

[Pn(@)] <Y xale +n)|f(x+n)|
<l flloe Y xalz+n)

But,
1
/ S xalw+n)dz = |A] < 1
0 n

and since Y 4 is either O or 1.

= > xa(x + n) must vanish on set of positive measure, so also ¢, V7 € E C [0, 1]
= For almost all € [0,1],¢, =0

= f(n+k)=0aenel01]

:f:Oa.e.

2.1.2 Amrein-Berthier Inequality

Amrein-Berthier inequality is the quantitative version of Benedicks Theorem.

Theorem 2.2. Amrein-Berthier Inequality

Let E, Y be two subsets of finite measure in R then there exists a positive constant Cg x.

such thatV f € L*(R)

112 < ¢ / ICRES / F©)Rde).

R\X

16



Proof !:We divide the proof in two steps:

Step 1: f € L*(R) (given).

Assume that suppf C ¥ = Jais |f(€)|2de = 0.

Suppose above inequality does not hold true, then for each n, we can find a function

2 _ : ;
n ’ nil2 — n =
fn € L*(R), || full2 = 1 with suppf, C 3 such that

2
1 >n/R\E|fn(x)| dx

Since Fourier transform is an isometry on L*(R), so unit ball is mapped to unit ball
and since unit ball is weakly compact, we can get a subsequence {f,,} such that {f, }
converges weakly to g € L*(R). Now to check that supp g C X.

Let F' C X such that |F'| < oo, then
0= [ A& @ — [ 9Oxe©dE =0 (as f, w o)

thenV F C Ec,/ g(&)dé =0 = supp g C X.
F

Since f € L(R) and suppf C ¥ and |S| < oo, therefore f € L'(R) = f e L' N L2

Let T = (F)~! be Inverse Fourier operator defined on L*(R) as

T :L*(R) — L*(R)

fn—>fn

Also,

T|L1(R) S fo — hy

Since, Inverse Fourier operator on L? is an extension of Inverse Fourier transform on L?,
so by uniqueness property of Fourier transform f,, = h,,. Therefore, we can write the

inversion formula,
fn(m) = / fn(&)XZ(f)GQﬂ-iExdg a.e.
R

We may assume that each f,, is continuous. Also,

let ¢,(&) = xx(£)e* ¢ then

[ 500015 — [ (@000 (05 £ 15 )

I'This proof was thought by Prof. Aline Bonami over a cup of morning coffee and was neatly and

systematically written by Prof. Shobha Madan
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= lzmn—wofn = f where f =g

To show: suppf C F

[ As@tae= [t o)
R\E R\E

< iMoo / | fn(2)?dz (Fatou's lemma)
R\E
< limyool/n =0

= suppf C F

Now, by Holder’s inequality

a0 Pxe(a) = | / s (O™ de Px s ()
< A 2IS e ()
— 1Sxe(z) (as [fullz = 1)
Also,

/ Slxs()de = |Z)|E| < oo
R

Since,

112 = / (@) Pda

_ / @) Pxp(e)de (as suppf C F)
_ / it s () P ()
R
:/limn_,oo|fn(x)|2XE(x)dx
R
:limnﬁm/ﬂ%\fn(x)\szﬂ(x)dx (by DCT)
=iy, [ (15@) = ) P )i
=1 n—00 n 2d —li n—00 n 2 d
im /R|f () 2 — i /R|f (2) e i
“ 1 (as || fulls = 1 and lim,Hoo/ o) Pxmpdz = 0)
R

= [Ifl3=1

18



Step 2: Let f € L*(R), and we can write f=fys+ fXR\g.

£l = Hng (Plancherel theorem)
= | Fxsl2 + || fxesll? (Pythagoras theorem)

= [I(/x)l3 + I xmll3 (Plancherel theorem)

< C(/ |(]?X25(£U)!2d36) + / ]f(£)|2d§ (first term from Step 1) ... (x)
R\E R\

Using the fact that |a + b|> < 2(|a|* + |b|*) and decomposition for first term as

(fXES(SU) = (f - J?XR\zj(l'), we get

AgvxzdeQ z)|2dx AEVxQd:U
/R\wa ()] (/R\Elf( )| +/ (Frs(@)]

R\E

Substituting above inequality in the expression of (x), we get

(P (@) o) + / ()

R\Z

1712 < c / WERES /

R\E

Now since,
| ibei@bis = [ (Fe@pde < [ 1Ge)@Pd = [ 1fePd
R\E R\E R R\Z
Finally we get,
913 < Cos( | If@Pdz+ [ |f©Pdc)
R\E R\
Another proof of Amrein-Berthier inequality is given by using concept of Hilbert-Schmidt
operator.

Let us first see some pre-requisites needed for the proof:-

e A linear operator 7" on L?(X,du) is Hilbert-Schmidt operator if there exists an

orthonormal basis {e,, }22; such that Y [|Te,||* < oc.

e A linear operator 7' on L?( X, dy) is Hilbert-Schmidt operator iff there is a function
k€ L*(X x X, du x dpu) such that

Tf(z) = /X k(. 9)f(y)duly) Vf € L2(X, dp).

In fact | T s = ||k||» where | T||gs = (5, [|Ten||?)? and [|kl» is L? norm.

Proof Let T be Hilbert-Schmidt operator and {e,, }5° ; be an orthonormal basis on
19



L*(X,du). Then we know that

SoITea = 3 [(Ten )| < oo

n,m=1

and the sum is independent of orthonormal basis. For n,m > 1 let o0,,,, be the

function on X x X defined as

Un,m(xa Y) = en(T)en(y)

then o, ,, is an orthonormal basis for L?(X x X, du x du).Define

k(x,y) = Z(Tem em)Onm(z,y) forz,ye X.

n,m

Square summability of the coefficients of above series implies that the series
converges in L?(X x X, dy x dy) and hence the resulting function k is in L?(X x
X, dp x dp). Moreover, if k € L*(X x X, du x du) then it induces an bounded
operator S on Hilbert space L?(X, du) for f € L*(X, dpu) as:

S () = /X ke, 9)f(9)duly) for | € L(X, du).

To see the boundedness of the operator,

1571 = [ 154 Pana)
= [ 1] ke swduto) Pt
< [ ([ 1K) Pauti)( [ 15)Pduts))duta) (Cauchy — Schwar incquality)
< [ [ it o)
<17 [ [ Ihte ) Pdntanto

< [IF 131113 < oo

Now, if we can prove that the operator S and 7" are in fact same then we are done.
20



To see this, let us calculate

(Sen, em) :/XSen(a:)em(x)du(:c)

_ / / Kz, y)en(y)dp(y)em () dp(z)

/ / S (Te;, )3, ) en(y)din(y)em@dn()
/ / S (Te ex)es (@)ex(n))en(y)diu(y)em@dulz)

-/ Z<Tej, e, (@)en(y))en (v)en(@)dn(y)dp(x)
X JX .k
Conversely if k € L*(X x X, du x du) and T is operator given by

Tfx) = /X ke, ) f () dp(y) Y € L2, dp),

we have to show that 7" is Hilbert-Schmidt operator.
Let e, be an orthonormal basis of L?(X, du), then for any n > 1 and
x € X, Te,(x) = (e, ki), where k,(y) = k(z,y).

Then from Phythagorean theorem,

S Ten(o)? = [kl = /X k(. ) Pdp(y)

Now,

S Tea@? = /X Te(o)2dp(z)

:/ Z |Te,(z)2du(z) (Fubini's theorem)
X n=1

:/X/X|k;(:c,y)|2du(:c)du(y)

= [Ik(z, y)l]2 < o0

e Hilbert-Schmidt integral operators are compact.
Proof Let T be Hilbert-Schmidt operator and {e, } be set of orthonormal basis.
The idea is to show that T is compact by expressing it as a norm limit of finite
rank operators. Define 7T}, : £ — F (where k£ € N and E, F' are Hilbert spaces)

given by

00 k
Tk(z Tpepn) = Z x,Te,
1 1

21



where © = ) ° z,,e, is an arbitrary element of E i.e. T}, agrees with 7" in the span
of 1,69, - ,ex and is zero on the span of remaining e,s. The rank of T} is

atmost k, so T} is compact. Now for x = Z‘fo Tpe, € F,

00 k 0o
(T —Ty)x = anTen — Z x,Te, = Z xp,Te,
1 1

k+1

Hence,

T =Tzl = 1| ) waTell

k+1
< Z |2a [ Ten||

k+1
< Q)P Q el

k+1 k+1
<2l 1 Teal?)?

k+1

= (T =Tl < QI Teal)?

k+1

Now, choose k sufficiently large such that (3", [|Te,||*)"/? < €

Thus 17" — T}, in the operator norm, so 7" is compact.

e A Hilbert-Schmidt integral operator 7" with k € L?(X x X)) such that

k(z,y) = k(y, ) is self-adjoint and therefore also normal = spectral theorem can

applied.

Let us now start with the proof.

Proof 2:Let Fpy = {f € L*(R) : suppf C E, suppf C £}
Claim 1:dim(Fgyx) = 0.
Consider the operators defined by Py (f) = fxg and Ps(f) = (fxs).

Claim 2: Py, o P, is Hilbert-Schmidt operator with kernel k(x,y) = xe(z)xs(x — ).
22



Proof of the claim 2:

Py o Po(f)(x) = Pe(Ps(f)(2))

= Pu(f()xs(@)))
— (f@)x=(@)xe()
- / F(6)xs (€)= de xp(x)

/ / F(y)e 298 dy) s (€)2dE X ()
= [ 1) [ xs(@em e inptayay
- / Fo)xs(e — )xa(@)dy

Therefore Pj; o Py is Hilbert-Schmidt operator with kernel k(z, y) = yg(z)Xs(z — y).
Also,
1Pe o Psllys = Ikl = 15[ £]

Assume that there exists orthonormal basis {e,,} adapted to the decomposition
L*(R) = Im(Pg o Py) ® Ker(Pg o Py)

So,

Polltis = 1EIIS] = Sall(Pe o Po)en||? > dim(Fix)
Since Fpy C 1 m(PEof’g) and elements of F'; 5; are eigenvectors of the operator PEoPE
with eigenvalue equal to 1.

Now to proceed further let us first prove the lemma.

Lemma 2.3. If E C R is a subset with finite measure and € > 0 then there exists a # 0
such that

|E| <|EU(E+a)| <|E|+e.
Proof of the lemma: As xg * Yz(z) = |[EN (FE + a)| and xg * xz(0) = |E|. So,
there exists an a # 0 and €, > 0 such that

|E| —€e < |[EN(E+a)| <|E]

Now,as EU(E+a)=[EN(E+a)|UE\ (E+a)|U[(E+a)\E]
wehave |[EU (E+a)|=|EN(E+a)|+ |E\ (E+a)|+|(E+a)\E|
As,

|E| = |E\(E + a)|+|EN(E+a)| = |E| > |E\(E + a)|+|E|—€ = |[E\(E +a)| < €
23



Similarly,

(E+a)\ E| <€

Therefore |EU(E+a)| < |E|+ey+¢e = |[EU(E+a)| < |E|+2¢ = |[EU(E+a)| <
|E| + € where 2¢y = e.

Now, for any N, let M = maz{dim(Fgy) : |E||X| < N}.

Suppose E, ¥ are such that dim(Fgy) = M. Let us choose a basis for this space, say
1, Doy e , ®ar- Choose an € > 0 such that (| E| + €)|X| < N. From above

lemma 2.2 , we can get a set £/ = F U (E + a). Then |E| < |E'| < |E| + € and
the function ¢p;41(x) = ¢1(z — a) lies in Fi 5, and the elements ¢y, ¢o, - - - , dar41 are
linearly independent. Hence dim(Fg 5) = M + 1, which contradicts the definition of
M,unless M = 0.

2.1.3 Uncertainty Principle for Finite Fourier Series

In this section we are going to look at Fourier analysis for functions on finite sets, more
specifically, on finite abelian groups. Here infinite sums are replaced by finite sums so
the issue of convergence disappears.

We are going to start with group Z(N) which is group of N*" roots of unity and proceed
by showing that same group can be identified as Z/NZ which is equivalence classes of
integers modulo N. As N — oo, group Z(N) approximates circle. Also we are going
to see Vandermonde matrix and proof Chebotarev’s theorem and finally we will prove

Uncertainty Principle for Z/pZ.

The Group Z(N)

A complex number z is N*" root of unity if 2" = 1 where N is a positive integer. N

roots of unity are precisely the set, Z(/N') where
Z(N) — {1’ eQm'/N’ . 7627ri(N—1)/N}'

Then
N=1=reM=1=z|=reM| =r|=1=r=1.
Therefore ¢N? = 1 = N6 = 2rk where k € Z. Now, let ( = e*™/N then (* achieves
all the N*" roots of unity and ¢V = 1. Then
"=C"ifandonlyif (n —m)is divisible by N.
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It is easy to see that Z(/V) satisfies following properties:
1. If z,w € Z(N), then zw € Z(N) and zw = wz.
2. 1€ Z(N).
3. If 2 € Z(N),jthen 27! = 1/2 € Z(N) and zz7! = 1.

So, it can be seen that Z(N) is an abelian group under multiplication.

Now, let us visualise the group Z(N) in terms of integer power of (. Since (" = (™
whenever n and m differ by integer multiple of N. Therefore we can choose n such
that 0 < n < N — 1. Since {"¢™ = (™™™ and n + m will not necessarily lie in the
interval [0,N], so we can choose ("(™ = (* such that (n +m) — k is an integer multiple
of N. Therefore, this group can be seen as integers modulo N denoted by Z/NZ. The
association

R(k) +— e¥mik/N

where R(k) denotes the equivalence class or residue class of integer £ modulo .

On Z(N) consider the N functions {eg, €1, - -+ , ey_1} defined by
el(k;) — Clk — 2milk/N for Lk=0,1,--- N —1 where ¢ = o2mi/N-

Consider complex-valued functions on Z(N) as a vector space V, with the Hermitian

inner product

i

(F.G) =) F(k)G(k)

0

i

and the associated norm

N-1
IF* = |F®R)P.
k=0

Lemma 2.4. The family {ey, - ,en_1} is orthogonal. In fact,
N ifm=n
(€n7 em) =
0 ifm#n.

Proof Since we have

N-1 N-1
<€m7 €n> _ kaé‘fnk _ Z C(mfn)k
k=0 k=0



If m = n then each term is equal to 1 and the resulting sum is N. If m # n, then

q = (™= = 1 and the sum will correspond to

2 o1 1—4" N
Itata o+ == =0(asg" =1)
This proves the lemma.
Since the N functions {eg, €1, -+ ,ey_1} are orthogonal hence they are linearly in-

dependent, and since the vector space V is of N dimension, we can conclude that
{eo, €1, ,en_1} is an orthogonal basis for V. By the lemma each vector ¢,, has the

norm /N, so if we define

1
N
{e§, e, -+ ,ey_1} is an orthonormal basis for V. Hence for any F' € V' we have

N-1 N-1
F =Y (Fe)e, aswellas ||F|* =" |(Fe})*.
k=0 k=0
We define the n'* Fourier coefficient of F by

1 N-1
- —2mikn/N
n =+ ;0 F(k)e :

Theorem 2.5. If F is a function on Z(N), then

N-1
F(k’) — CLnGQMkn/N
n=0
Also,
N-1 L Nl
2 2
Sl = 5 STIF(R)
n=0 k=0
Vandermonde Matrix
Let 2p, 21, - - - , 2y—1 be complex numbers, the associated Vandermonde matrix would be
1 2z zg e zév -1
1 2 22
Vi =
N-1
I zna ZJ2V—1 RN

And its determinant is given by

det(Vy) = ’H (2 — 2).-



To see this, we consider a polynomial P(z) given by

1 oz 22 - 27
1 z 22 --. N1
1 z 22 ... N1
Note that P(z) is of degree N — 1 and has 2, 21, -+ , zy_2 as its roots. Therefore we

can write

Piz)=C [ (z—2)

0<k<(N—-2)

where C is the coefficient of 2V ~! and can be determined using Vandermonde matrix

for Vy_1.Applying induction on /V, we get the desired result.

Now let us see the Vandermonde matrix for complex numbers {2, z1, - - - , zy_1 } Where
2=1,2=w=e"Nand z; =w’ for j=2,3,---, N — 1. We then have
1 1 1 e 1
1 w w? whN—1
Vy =
1 wN-1 2v-1) W(N=D)(N-1)

is non-singular.
Since z; are all different where z; = w’ for j € {0,1,2,--- ,N —1} and w = >™/V it
is easy to see that

det(Vy) =[] (z—2) #0.

0<j<k<(N-1)

Let us now consider a minor Wy (a k x k matriz) of Viy with {ny,ng,--- ,n;} as row
indices and {m, m + 1,--- ;m + k — 1} are consecutive k columns. We will now try
to see that whether every minor of the Vandermonde matrix is also non-singular. In
general, it is not necessarily true but if N = p where p s prime, Chebotarev’s theorem
shows that every minor of the Vandermonde matrix is also non-singular. But to prove
the Chebotarev’s theorem we will require a lemma.

Let us first consider an arbitrary £ x k£ minor of the a Vandermonde matrix,

mi1 m2 .. mi

L zpr 2y Zpe

mi M2 s

W, — L 2zt 2 Zn
mi mz .. m

| A A Zp,
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As earlier consider a polynomial P(z) defined as :

mi m2 . mp
1 Znpt 2y Zp:
mi m2 . mp
1 Zpal Zpy Zn,
P(z) =
1 2™ M2 ... Mk

Now P(z) is a polynomial of degree m; > k and only k roots of the polynomial P are
visible, so we can write

i<y’
but we don’t know whether ()(z,, ) is zero or not.

To see this we first prove the lemma.

Lemma 2.6. For p(prime) and n(integer) , let P(zy, 23, - , z,) be polynomial with
integer coefficients. Let &1, &y, -+ -, &, be p'!* roots of unity (not necessarily distinct) such

that P(&1,&s,- -+ ,&,) = 0then P(1,1,--- ;1) = 0(mod p).

Proof Let ¢ denote primitive p*" root of unity and ; = &% for k; = 1,2,--- | p. We

then define a polynomial ()(z) such that
Qz) = P2, 252 ... ,zk")mod(zp - 1)

Then
Q) = P(Eh, €, &) = P&, &, -+ &) = 0 (given)
and Q(1) = P(1%1 1k2 ... [1F) = P(1,1,--- ,1). As Q(2) is of degree at most
(p-1) degree with integer coefficients and thus should be an integer multiple of minimal

polynomial 1 + 2z + 22 + -+ - + 2P~ of €.

Theorem 2.7. Chebotarev’s Theorem
If p is a prime and € is a primitive p'" root of unity then every minor of the Vandermonde

. 1 —1 . .
matrix V = (f]k)f o IS non-singular.

Proof 2Let1 < n < pand let ki, ks, -+ ,k, and l;,l5,- - , 1, denote the row and

column indices of the minor matrix W = (&%), ;. Also let w; = £* then each w; is

2This proof of Cheboratev’s theorem was given by Terence Tao
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different.

Now consider the polynomial
D(z1, 20, 2) = det(():)

Itis easy to see that D(1,1,--- ,1) = 0 but we need to show that D(w,ws, - -+ ,w,) # 0.

It can be seen that D = 0 whenever z; = z; for some 1 < i < ¢/ < n, so we can write

D(z1, 20, 20) = H(Zz — 2¢)P(z1, 22, , 2n)

1<d’
where P is a polynomial with integer coefficients.
We need to show that P(1,1,--- ,1) # 0(mod p).

To see this we apply the differential operator

d 0 d 1 d n—1
(=1 dzl) <Z2d22) (anzn)
on D(z1, 29, ,2n) = [ [;,c0r(2i — 20)P(21, 22, - - - , 2,) and compute the result at z; =

29 = -+ =2, = 1.

n(n—1)
2

Total number of differential operators applied here are 1 +2 + --- +n —1 =

which is equal to the total number of linear factors (z; — zy) in the expression of

D(z1,2, -+, 2,). By Leibniz rule, each operator (z;7-) either differentiates one of
these linear factors(and reduces them to z; or differentiate the polynomial P(zy, zo, - - - , 2,).
But, in Leibniz expansion only terms which survive when z; = 20 = -+ = 2, = 1 are

the linear terms which get differentiated by the operator. Therefore we never have to
actually differentiate P(zq, 2o, - , 2,,). Since (n — 1) copies of the differential operator
(zn%) can eliminate only (n — 1) copies of the linear factor (z; — z,) and it can be
done in (n — 1)! ways. Similarly, (n — 2) copies of the differential operator (zn_lé)
can eliminate only (n — 2) copies of the linear factor (z; — z,_1) and it can be done in

(n — 2)! ways and so on. Therefore, we get

d o, d 4 d
<Zld_21) (Z2d_,22> "'(an—%)

n*1D<le 22y 7Zn)|21222:---:zn:1

=(m—1Dl(n—2)!--11P(1,1,--- 1)

Since,(n — 1)!(n —2)!- - - 1! is not a multiple of p it remains to show that P(1,1,--- ,1)
is not a multiple of p.

Another way of differentiating D(z1, 29, , 2,) = det((zij)i7j) with respect to the
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operator (z175-)(227%)" -+ (zag%)" " is by using multi-linearity of the determinant

and the fact that (z;7-)z! = [z} we get that

d d d ., i
(Zld_zl)O(Z2d_Zg)l e (znd_Zn) 1D<Zla 22yttt Z”)‘ZIZZQZ“':Zn:]- = det(lk 1)
Since det (I} ') is Vandermonde determinant and each [, is different modulo p for k =

1,2,--- ,n, we get that

det(li7") = T[ (h — ) #0

k<k'

So we get that P(1,1,---,1) # 0 so from the lemma P(w;,ws,- - ,wy,) # 0. Hence
D(C()l,CUQ,“‘ 7wn) 7é 0

From above theorem we get that

Corollary 2.8. Let p be a prime and A, B be non-empty subsets of 7./pZ such that

|A| = |B|, then the linear transformation 1>(A) — 12(B) given as Tf = f|p is

invertible(here I*( A) denotes the set of functions which are zero outside A).

Uncertainty Principle for Z /pZ

Theorem 2.9. Uncertainty Principle for 7./ pZ

Let p be prime number and let f : 7Z./pZ — C be a non-zero function then

|supp(f)| + |supp(f)| > p+ 1.

Conversely, if there are non-zero subsets A and B of 7./ pZ such that |A| + |B| > p+ 1

then there exists a non-zero function such that supp(f) = A and supp(f) = B.

Proof On contrary let us assume that there exists a non-zero function f such that

|supp(f)| + |supp(f)| < p.

Let us write supp(f) = A, then we can find a subset B of Z/pZ such that |A| = | B| and
BN supp(f) = 0. But from above corollary T : I2(A) — [2(B) should be invertible
but we get T'f = 0 for f # 0.

To prove the converse we first prove it for |A|+|B| = p+ 1. Let us choose a subset F' of
Z/pZ such that |A| = |F| and F'N B = (£). By corollary the map T : [*(A) — [*(F)

is invertible and therefore we can find a non-zero function f € I?(A) such that f is zero
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on the set I\ ¢ and non-zero on £. Now, such a function f has to be non-zero on all

of A and all of B otherwise first statement of uncertainty principle will get violated.

A

Therefore supp(f) = A and supp(f) = B.
Now, for |A| + |B| > p + 1 we can consider the subsets A’ C A and B’ C B such that
|A'| + |B’| = p+ 1 and the claim follows by taking generic linear combinations of the

two.

2.2 Concentration: Deviation from a point

2.2.1 Heisenberg’s Uncertainty Principle

This section is denoted to classical Heisenberg’s uncertainty Principle. To prove the

classical result we will require a lemma.

Lemma 2.10. Let r,s,t € Ry and j € {1,2,--- ,n}.If f € L"(R") with partial
derivative 0;f € L*(R™) and x;f € L'(R") then there exists a sequence of functions

gn € C°(R™) such that

1gn = Fllr + 110590 = 0 flls + 2590 = 2 fll: —> 0 forn — oo

Proof We divide the proof in three steps. The idea is to approximate f with a sequence

[, of functions in L"(R™) with compact support :

o) = kp(x) f(x) = k(z/p) f ()

where &k : R" — [0, 1] is in C2°(R™) and defined by

(
1 for |z] <1

k() =q0<k(z)<1 forl<|z|<2

0 for |z| > 2.

\

Then for each p approximate f,, with a sequence g, , € C>°(R")

Ip.q(T) = hy x fp(x) where hy(z) = q71h<q$)

with h € C°(R") and [, h(x)dx = 1. Proving the convergence for each approximation

yields the desired result.
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Step 1: Since |f,(z)| < |f(z)| V2 € R"and f,(x) — f(x) pointwise
= f, — [ in L"(R").Similarly z;f, — z;f in L*(R"). Since 0,f € L*(R") it can
be seen that k(z/p)(0;f) <— (0;f). Also, 0;k,(z) = %@-k so fO;jk, — 0in L*(R™).

Using Leibniz’s rule and triangle inequality, we get
105fp = 03 flls < (95 F)kyp = 0 flls + 1 fOskplls — O for p — oo,

Step 2: Now above lemma has been proved for f,, but the sequence f, may not be
in C°(R™).The convolution h, * f, is in C*°(R™). Since f, ’s has compact support
thus its convolution with f, will also have compact support. Now, we have sequence

Gpq = hg* f, that approximates f,, for ¢ — oo. Since 0; f,, is in L*(R"), so we can write
OiGpg = hg ¥ 0;f, = 0;f, in L® for ¢ — oo.
The convolution A, * f, has compact support independent of q because

supp(hq * fp) C supp(hg) + supp(f,) € supp(h) + supp(f,)

The sets supp(h) and supp(f,) are compact and therefore the sum is compact. On this
set multiplication with x; is a bounded operator on L*(R") and is continuous. This gives
the last required convergence g, , — ;f, in L'(R") as ¢ — oc.

Step 3: For each k € N, I can choose p and q such that
1
19p.0 = follr +11059pa = O folls + [|%39p.q — @i fplle < 2%

1
1o = Fllr + 105 fp = i flls + llzifo — 25 flle = o

setting gr = ¢g,, and using Schwarz inequality proves that the sequence g, € C°(R")

satisfies above lemma.

Theorem 2.11. Heisenberg’s Uncertainty Principle
Let f € L*(R,), then forall j € {1,2,--- ,n}

[ @rds [ @iwka= 5[ 150

n n n

Proof The inequality is obvious if f(x) = 0 almost everywhere. So, we will assume
that f(x) is non-zero in L?(RR,,) then neither z; f () nor y, f(y) is zero. Now, if either of

them has infinite Z?-norm the inequality is obvious. So, let us now assume that z; f(z)
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and y, f (y) are in L2(R").
We will first prove the inequality for f € C2°(R™) and then use the above lemma.
For f € C°(R") we have,

[ i@ [ fera = [ @b [ j@nw@Pke
> ([ 1ay03) @) T da

> ([ ayRe((@,) @) (@) o) (as |2] = Re(2))

_ }J / (0,0 @) @) + 01)w) f ()’

1 2 2
1 2@ @)

1
= ([ |f(@)»)? (Integration by parts)
R”

4
here first inequality ids due to Cauchy-Schwarz inequality.
Using above lemma with » = s = ¢ = 2, proves the Heisenberg’s inequality in general,
Le.

[ s [ giswra= [ s

Remark (The case of equality) If n = 1 and if f(z), zf(z) and yf(y) are in L2(R)
then the equality holds for Gaussian functions.

First let us observe that if zf(x) € L*(R) then \/[z[f(x) € L?(R). To see this let us
define a function g € L?(R) such that

[f(@)]  for x| <1
g(x) =
x|f(z)| for|z|>1

and |z]|f(2)]? < |g(@)[2¥ & € R = /2l f(x) € L2(R). Then (1 + V&) f(z) € L*(R)
and since (1 + y/z)~! € L?(R), using Holder’s inequality we get that f(z) € L'(R).
Similarly, it can be shown that f(z) € L'(R)(as || f||2 = || f||2 by Plancherel theorem)
and now using Inverse transform formula it can be shown that f is equivalent to a
continuous function.

Now, assume the equality holds in Heisenberg’s inequality, then the equality holds for

Cauchy-Schwarz inequality i.e. for the expression

[ s@pas [ (@p@pde= ([ a0 @)’
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which holds for any f € L*(R). But it holds only if kx f(x) = 0 f(z) for some complex

k.Then Of (z) is also continuous. Now it can be seen that O f () is actually f'(x) from

/0 8f(t)dt:lz’mnHOO/O g, (t)dt

= limy—o0[9n(2)]g
= l@'mn—}oo(gn(x) - gn(o))
= f(x) — £(0) (as fis continuous).

Here the sequence g, is chosen as in above lemma. Now, we have ordinary differential

equation of the form

f'(x) = kxf(x)

which when solved by separation of variables, shows that f is a Gaussian function.

2.3 Concentration: Rate of decay

2.3.1 Hardy’s Theorem

To prove the Hardy’s theorem we will first prove the Phragmén-Lindél6f theorem for a

cone.

Theorem 2.12. (Phragmén-Lindéldf) Given a € (1/2,00) and 2a¢ < w define
D={z€C|-¢<arg(z) < ¢}

Let f be a function which is holomorphic in the interior D° of D and continuous on the

boundary 0D of D and there exists a constants b and C such that
1£(2)] < Ce" for 2 € D.

If there exists a constant M such that |f(z)| < M for z € 0D then |f(z)| < M for all
z e D.

Proof As 2a¢ < 7, we can choose s > a such that 2s¢ < 7. Now, for A > 0, let us

define
f(2)
exp(Az®)
34
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The function z — Az® is holomorphic in D° and continuous on 0D thus same holds for
h(z).

Now for z = re'®, we have

e 1f(2)] M
Ih(=) = lexp(Az®)|  |exp(A(rseids))] = exp(Arcos(s¢)) =

as s¢ < 7 s0, cos(s¢) > 0 and exp(Aricos(sp)) > 1.
Similarly it is also the case with z = re~%. So, |h(2)| < M on dD.
Let us now define

D, ={z¢e D||z| <r} for r>0.

We have shown that it is true for z = r¢’® and 2z = re~* for any r > 0. We will now
show that there will exist r > R, for which |h(z)| < M for z = re? where —¢ < 0 < ¢
and r > Ry.

To see this we define m = inf_gg.4cos(s0) then as s¢ < 5 and —¢ < 0 < ¢ therefore
m > 0.

Now,

lexp(Ar®e’™)| = exp(Aricos(s)) = exp(Arim)
For |z| = r and s > a, we have

__r=2) Cexp(br)
)] = lexp(Azs)| = exp(Arsm)

= Cexp(br® — Ar®m) — 0asr — oo

So there exists 7 > R for which we have |h(z)| < M for z € 0D,, by Maximum
Modulus theorem we have |h(z)| < M for z € D, whenr > Ry.

Therefore again by Maximum Modulus theorem we have |h(z)| < M for z € D i.e.
|f(2)] < Mexp(Az®) for z€ Dand A >0

As A — Oweget|f(z)| < M forz e D.

We will also prove a lemma

Lemma 2.13. For a given function f, let us assume there exists a > 0 and C' > 0 such
that | f(2)| < Ce*, then f(z) defined as

f(z) = /Rf(:c)e%mdx forall ze C

is well-defined and entire.
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Proof The integral given above is well defined as for z € C
[ @le=lde = [ |(@)leede < e < oc
R R

Now to show continuity of f let us consider a sequence {(z,)nent € C which converges
toz e Cie. 2z, — 2.

Therefore

’f(zn) - f<2)| = \/%’ /le(x)e%'rixzn _ f(x)eZﬂixzdx’

1 . -
= — x)le TITZn __ e TITZ dl‘
= [ 1) )da
1 . ,
< E— X 627”372777, _ 627I’7,£Ez d([,‘
< —= [ 1@l )

Now,since 2z, — z as n — oo and the mapping z +— €®* is continuous for z € Ri so

1f(2) — f(2)] < /R | f(z)]|(e*™** — ™ %) |dx — 0 as n — oo.

In order to prove the that the function f is entire, we try to calculate its integral over the
loop 7 : [0, 1] — C.Since the function e~*** is entire then its closed integral over  will

be zero by Cauchy integral theorem ie. [ e ***dz = 0.

[ﬂ@=[éﬂ@em@ﬁ
_ /0 1 /R F(@)e O (5)dwds

_ /R f(2) L e dzda

=0
By Morera’s theorem, we get that f is entire function.

Theorem 2.14. Hardy’s Inequality

Let f be a function which satisfies
f(@)] < Cemand| f(§)] < De™*
where a,b,C, D € R and x,£ € R, then we have following three properties:
(i) If ab = 0 then f is a Gaussian function.
(ii) If ab > 1/4 then f = 0.

(iii) If ab < 1/4 then there are infinitely many functions satisfying the given conditions.
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Proof We will first show that actual values of a and b do not matter, we are only
interested in the value of the product as whole. Let us assume that the function and its
Fourier transform satisfy the given conditions.Now we define a function f;(z) = f(kx)

for some k£ # 0. Then

¢ _i xefmg x:i -1 xefik_lxg v = —1f£/7.-1
fl(ﬁ)—ﬂ/Rf(k) d ﬁ/kaU dr = k(1)

From the given conditions, we get for f;
[fi@)] < Cem" = Qe

and

F1(©)] = [k F (16| = k7 (k7€) < kT De ¢ = D¢

where m = ak? and n = bk~2. Now we can see that the product
mn = ak*bk™* = ab.
Thus exact values are not important, we are mainly concerned with the product.

(i) Let us start with ab = 1/4. Since exact values of a,b are not important, for
simplicity we can consider a = iﬂ' and b = .
We know that if f is a even function then so is f , then for a even function f we
can write its Fourier transform series as f (y) = > ey Cn2™", where y € C.

Let us define a function h(y) = f(\/ﬂ) = > nen Cn2", where y € C, then for f

1 —ix
=5 [ 1@l
< [ 1@l =as
_ L Im(y)x

7 [ @l

<Y / o= m Im(w)e g

e MWz g (where g(x) = e’x2/4”)
-5 fo

= Cg(ilm(y))

we have

_ C«/e—Im (v)
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Since Fourier transform of a Gaussian is Gaussian function.

For y = Re® we get

h(y)| = |f(vy)| < C'e”m* WD)

and since v Re't = \/Rcos(t) + iRsin(t) = a + ib
= Rcos(t) = a® — bPandRsin(t) = 2ab we get b = ++/Rsin(t/2).
So we get

|h(y)| < C«/e—ﬂRsinQ(t/Q).

If y € R* then we have y = R and then
W) = |f (V)| < De™E(from given conditions of decay).

Let M = max(C’, D) be such that it satisfies both the above inequalities. Now,
we define a plane Ds = {Re”|0 < t < §,R > 0} where 0 < § < 7 and a

function

Then for y = Re®, we get

—mRsin(t — §/2)

os(Re")| = eap( o)

For t = 0 we get |gs(R)| = ™ and for t = 7 we get |gs(Re'™)| = e ™% then

from above we have
lgs(R)h(R)| < M and |gs(Re")h(Re™)| < M

The function gsh is limited on the boundary of Ds and as function is analytic, by

Phragmén-Lindeldf, it is bounded on whole of Ds. Also

sin(t —0/2)

— —costasd — T
sind /2

and gsh < M gives that
|h(y)| < Me ™% for 0 <t <.
For —7 < t < 0 we can get similar result. For all z = re® € C we get

’eﬂ'Zh(Z)’ _ ‘67TR(cost+isint)h(Z)| — ’eﬂRcosth(z)’ < M.
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By Liouville’s theorem, we get that e™h(z) is constant for all z € C.Thus, we
get that f(y) = Ke ™" and by Fourier inversion formula we get that f(z) =
K/67x2/47r-

Also, if f odd then so is its f, and it can be written as power series f (y) =

> nen Cny®" 1 then yt f will be analytic and even. Then treating it as even
function we get f (y) = yK e~™" and which can be bounded for all y € C only if
K =0.

Now any function can be split into f = feyen + foaq Such that

f(z) + f(==) f(=x) = f(=x)

feven(x) == 9 9

and  foga(T) =

Since f satisfies the given conditions, so does f.,., and f,qq. Therefore, for ab =

1/4 we get f, f are Gaussian functions.

(ii) For ab > 1/4, let us assume that a > 1/47 and b > 7. Then from the given

conditions we will have
1f(z)] < Ce=™* < Ce ™" qsa > 1/4n

1F(6)| < De™™ < De &/ asb>n

then from (i) we get that f = C’e~*"/4" for some C’, but that would mean that

C'e="*/47 < C'e=%*" for all # € R which is only possible if ¢’ = 0 as a > 1 /4.

(iii) For ab < 1/4 we can assume that a = b < 1/2. Since Hermite functions are

z2/2

polynomials multiplied with e~ and any polynomial function is bounded by

k= for some k > 0, so there exists K >) such that
|Ho(2)] = [Hy(z)] < Kem (/27
by choosing & such that k + 1/2 > a we get that e~ (F1/2)2* < g—as®,

Therefore we get infinite family of functions satisfying given conditions of decay.

2.3.2 Beurling’s Theorem

Let us suppose f and f satisfy

1f(z) < Ce ™ VaeR
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and

f()| < De™veeR

for some a, b, C, D € R then

/f e dIL‘<C/ —(a+a)7 g < 0.
R

Similarly for [, F(&)e e de.

/R /R F() f€)e" Ve dude
/ / F() F(€)e @ Ve

As we know that 22 + €2 > z& = e~ (F"+€) < =3¢

Now, let us compute

1.e.

Therefore computing the integral with e~1*/l¢l will give us a stronger result and the result
will also be true with e~(#*+&%),

However, a much stronger result is Beurling-H6rmander Theorem:

Theorem 2.15. Beurling-Hdérmander Theorem

If f € L'(R) satisfies
// ()| £ (&) |2l dzde < oo
RxR

then f = Q.

Due to time constraint, the proof of the theorem could not be completed fully. How-
ever, one can consult appendix section of the paper by Aline Bonami, Bruno Demange,
Philippe Jaming, on Hermite functions and uncertainty principles for the Fourier and the

windowed Fourier transforms, to see the proof of the theorem.
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