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Notation

I Identity Matrix(in appropriate dimensions)
Z The ring of integers
Q The field of rational numbers
C The field of complex numbers
Gal(L/K) The Galois group of the field extension K ⊆ L
Z
nZ

The cyclic group of order n
OK The ring of integers of the field K
dK The fundamental discriminant of number field K
H(K) The ideal class group of number field K
hK The class number of number field K
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Abstract

The goal of this project is to form an understanding of quadratic number fields of
both positive and negative discriminants D, and in particular, their class groups.
We begin by establishing a correspondence between the ideal class group and the
form class group, which consists of equivalence classes of binary quadratic forms.
We further explore Gauss’s class number problems and use the correspondence es-
tablished to compute class numbers for different values of the discriminant D, and
to derive other results about the structure of the ideal class group. We then look
at the splitting of prime ideals in field extensions of a Dedekind domain, and then
apply this theory specifically to prime numbers in Q to obtain their prime ideal fac-
torizations in quadratic number fields. The theory of ramification of prime numbers
is then used as background knowledge to further study the ideal class group, and
derive various results on the class number. In particular, unramified field extensions
are studied in detail. The Hilbert class field is briefly introduced.
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Chapter 1

Pre-requisite Knowledge

In the chapter below we state a number of results without proofs. Some common
references are [1], [2], and [3].

1.1 Fields and Galois Theory

Let K be a field and F an extension field of K. This means that F is a vector space
over K, dimK(F ) = [F : K],

1K = 1F

Recall that if u ∈ F is algebraic over K, then

• K(u) = K[u]

• K(u) ∼= K[x]
(f)

where f is the minimal polynomial of u and deg f = n

• [K(u) : K] = n

• {1K , u, u2, . . . , un−1} is a basis of K(u) over K

Also recall that a finite-dimensional extension field of K is finitely-generated (as
a ring over K) and algebraic.

Definition 1.1.1 (K-homomorphism). Let E and F be extension fields of K. A
nonzero map

σ : E → F

which is both a field and a K-module homomorphism is called a K-homomorphism.

It is easy to see that a field homomorphism σ is a K-homomorphism if and only
if it fixes K element-wise. K-automorphisms are defined similarly.

Definition 1.1.2 (Galois Group of F over K). The Galois group of a field extension
F over K is defined as the group of all K− automorphisms of F , i.e.

Gal(F/K) = AutKF
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Theorem 1.1.1. Let F be an extension field of K and f ∈ K[x]. If u ∈ F is a root
of f and σ ∈ AutKF , then σ(u) is also a root of f .

Note that F = K ⇒ AutKF = 1. However, the converse is not true. For
example, take

K = Q, F = Q(
3
√

2) 6= Q

Here, F 6= K but AutKF = 1 because the only possible images of 3
√

2 under
an automorphism are the roots of x3 − 2 (by the above theorem), the other two of
which are complex.

Definition 1.1.3 (Fixed field, Galois Extension). Let F be an extension field of K
and E be an intermediate field. Let H be a subgroup of AutKF . Then,

1. FH = {v ∈ F | σ(v) = v,∀ σ ∈ H} is an intermediate field of the extension
K ⊂ F

2. AutEF = {σ ∈ AutKF | σ(u) = u,∀ u ∈ E} is a subgroup of AutKF

FH is called the fixed field of H in F . F is called a Galois extension of K if the
fixed field of AutKF is K.

Theorem 1.1.2 (Fundamental Theorem of Galois Theory). Let F , K, H, FH , E,
AutEF be as above. If F is Galois over K, then the correspondence

H → FH

is a bijection from the set of subgroups of Gal(F/K) := AutKF to the set of subfields
of the extension K ⊂ F , and its inverse is given by the map E → AutEF .

Definition 1.1.4 (Splitting Field). Let K be a field, f ∈ K[x] be a polynomial of
positive degree. An extension field F of K is said to be a splitting field over K of f
if f splits in F [x], and F = K(u1, u2, . . . , un), where u1, u2, . . . , un are the roots of
f in F . F ⊇ K is said to be a splitting field over K of the set S of polynomials if
every polynomial in S splits in F [x] and F is generated over K by the roots of all
polynomials in S. If S is finite and S = {f1, f2, . . . , fn}, then a splitting field of S
is the same as a splitting field of the single polynomial f = f1f2 . . . fn.

Definition 1.1.5 (Galois Closure). The Galois Closure of extension K ⊆ F in a
fixed algebraic closure F̄ is a field which is minimal among all Galois extensions of
F containing K, i.e. it is the intersection of all Galois extensions of F containing
K.

Definition 1.1.6 (Separable Extensions). A separable extension is an algebraic field
extension E ⊃ F such that for every α ∈ E, the minimal polynomial of α over F is
a separable polynomial, i.e., its formal derivative is not zero when evaluated at any
of its roots, or equivalently, its roots are distinct in an algebraic closure of K. An
extension that is not separable is said to be inseparable.

Definition 1.1.7 (Normal Extensions). An algebraic field extension L ⊃ K is called
normal (we also say that L is normal over K) if every monic irreducible polynomial
over K that has at least one root in L, splits over L. In other words, if α ∈ L, then
all conjugates of α over K (i.e., all roots of the minimal polynomial of α over K)
belong to L.
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1.2 Quadratic Number Fields and Rings of Inte-

gers

Definition 1.2.1 (Number Field). An algebraic number field, or simply a number
field, is a finite degree extension of the field Q of rational numbers.

Definition 1.2.2 (Quadratic Number Field). A degree two number field is called a
quadratic number field.

Theorem 1.2.1. Every quadratic number field is of the form Q(
√
d) where d is a

square-free integer.

Let L be a field and A be a ring such that A ⊆ L.

Definition 1.2.3. An element α ∈ L is said to be integral over A if α satisfies a
nonzero monic polynomial equation with coefficients in A.

Theorem 1.2.2. An element α ∈ L is integral over A if and only if A[α] is a finitely
generated A-module. Consequently, the set of elements of L that is integral over A
constitutes a ring.

Definition 1.2.4 (Integral Closure). The integral closure of A in L is the ring of
elements of L integral over A.

A is called integrally closed if it is its own integral closure in its field of fractions.

Proposition 1.2.1. A UFD is integrally closed.

Proposition 1.2.2. Let K be the field of fractions of A and L a finite extension
field of K. Assume that A is integrally closed. Then, an element α ∈ L is integral
over A if and only if its minimal polynomial over K had coefficients in A.

Theorem 1.2.3. The ring of integers of a number field is integrally closed.

1.2.1 Ring of Integers is Finitely-Generated

In this subsection, we prove that the ring of integers OK is a finitely generated
Z-module. Let A be an integrally closed Noetherian domain with field of fractions
K. Let L be a separable and finite field extension of K, and let B be the integral
closure B of A in L.

Proposition 1.2.3. Let A be an integrally closed domain with field of fractions K,
and let B be the integral closure of A in a separable extension L of K of degree m.
There exist free A-submodules M and M ′ of L such that

M ⊆ B ⊆M ′

Thus, B is a finitely generated A-module if A is Noetherian, and it is free of rank
m if A is a PID.

Corollary 1.2.1. The ring of integers in a number field L is the largest subring that
is finitely generated as a Z-module.

10



Proof. Apply the above proposition to the special case where A = Z, K = Q, L =
Q(
√
d)) to conclude that the ring of integers OK is a finitely generated Z-module.

It is known to also be a subring. Moreover, if B ⊆ K is any finitely generated
Z-module, any element of B must be integral over Z, and thus B ⊆ OK .

Remark 1.2.1. Since OK is finitely generated over Z, every ideal of it is also finitely
generated (as an ideal). Thus, it is a Noetherian ring.

Definition 1.2.5 (Integral Basis). When K is a number field (i.e. a finite extension
of Q), a basis α1, α2, . . . , αm for OK as a Z-module is called an integral basis for K.

Definition 1.2.6. Let K be a number field, and let OK be its ring of integers.
Let α1, α2, . . . , αm for OK be an integral basis of OK and let {σ1, . . . , σn} be the
set of embeddings (injective homomorphisms) of K into the complex numbers. The
discriminant dK of K is the square of the determinant of the n by n matrix B
whose (i, j)-entry is σi(bj).

∆K = det


σ1(b1) σ1(b2) · · · σ1(bn)

σ2(b1)
. . .

...
...

. . .
...

σn(b1) · · · · · · σn(bn)


2

Equivalently, the trace from K to Q can be used. Specifically, define the trace
form to be the matrix whose (i, j)-entry is TrK/Q(bibj). This matrix equals BTB,
so the discriminant of K is the determinant of this matrix.

Theorem 1.2.4. Let K be a quadratic field. Let m be the unique square-free integer
such that K = Q(

√
m). Then, the set OK of algebraic integers in K is given by

OK =

{
Z + Z(

√
m), if m ≡ 2, 3 (mod 4),

Z + Z(1+
√
m

2
), if m ≡ 1 (mod 4)

Thus, an integral basis for the quadratic field Q(
√
m) is [1, θ], where θ =

√
m if

m ≡ 2, 3 (mod 4) and θ = 1+
√
m

2
if m ≡ 1 (mod 4).

A simple computation also shows that the discriminant dK of K is given by

dK =

{
4m, if m ≡ 2, 3 (mod 4),

m, if m ≡ 1 (mod 4)

Definition 1.2.7 (Fundamental Discriminant). An integer which is the discriminant
of a quadratic field is called a fundamental discriminant.

Clearly, d is a fundamental discriminant if and only if d ≡ 1 (mod 4) and d is
squarefree, or d = 4k where k ∈ Z squarefree such that k ≡ 2, 3 (mod 4).

There exists a unique quadratic number field for every fundamental discriminant.

Theorem 1.2.5 (Units of Imaginary Quadratic Fields). Let K be an imaginary
quadratic field and let U(OK) denote the group of units of its ring of integers OK.
Then

U(OK) =


{±1,±i} ∼= Z4, ifK = Q(

√
−1)

{±1,±ω,±ω2} ∼= Z6, ifK = Q(
√
−3)

{±1} ∼= Z2, otherwise
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1.2.2 DVR’s and Dedekind Domains

Definition 1.2.8 (Dedekind Domain). A Dedekind domain is an integral domain
A such that

1. A is Noetherian

2. A is integrally closed

3. Every nonzero prime ideal of A is maximal

Proposition 1.2.4. Localizations of Dedekind domains are Dedekind.

Theorem 1.2.6. OK is a Dedekind domain for any algebraic number field K.

Definition 1.2.9 (Basis of an ideal). Let K be an algebraic number field of degree
n. Let I be a nonzero ideal of OK . If {η1, . . . , ηn} is a set of elements of I such that
every element α ∈ I can be expressed uniquely in the form

α = x1η1 + . . .+ xnηn, with x1, . . . , xn ∈ Z,

then {η1, . . . , ηn} is called a basis for ideal I.

Definition 1.2.10 (Fractional Ideal). Let R be an integral domain, and let K be
its field of fractions. A fractional ideal of R is an R-submodule I of K such that
there exists a non-zero r ∈ R such that rI ⊆ R. Note than rI is, by definition, an
ideal (in the usual sense) of R.

Two fractional ideals I and J are multiplied as follows. Let I = 1
a
S and J = 1

b
T

where S and T are ideals of R, a, b ∈ R. Define the product

IJ :=
1

ab
ST where

IJ =

{
m∑
n=1

injn, in ∈ I, jn ∈ J,m ∈ Z+

}
is the usual ideal multiplication.

Definition 1.2.11. The fractional ideal I is called invertible if there exists another
fractional ideal J such that IJ = R.

A fractional ideal of R that is contained in R is called an integral ideal. In other
words, an integral ideal is the ring ideal in the usual sense.

Definition 1.2.12 (Principal Fractional Ideal). A fractional ideal I of R is called
principal if it is generated by a single element of K, i.e.

I = aR, where a ∈ K

Theorem 1.2.7. In a Noetherian domain, every nonzero ideal contains a product
of one or more prime ideals.
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Theorem 1.2.8. In a Dedekind domain A, every integral ideal other than 0 and A
is a product of prime ideals, and this factorization is unique.

Theorem 1.2.9. The set of all nonzero integral and fractional ideals of a Dedekind
domain A forms an Abelian group with respect to ideal multiplication (with the empty
product being equal to A). The identity element of this group is A and the inverse
of an ideal I =

∏n
i=1 P

ai
i where P1, . . . , Pn are distinct prime ideals, and ai ∈ Z is

I−1 =
n∏
i=1

P−aii

Theorem 1.2.10. Let K be an algebraic number field. Let OK be its ring of integers.
Then, the set of all nonzero integral and fractional ideals of OK forms an Abelian
group I(K) with respect to multiplication.

Let P (K) denote the subgroup of principal ideals in I(K).

Definition 1.2.13. The ideal class group H(K) of K defined as the quotient group

H(K) :=
I(K)

P (K)

It will be proved later that the ideal class group I(K) is finite for any algebraic
number field K.

Definition 1.2.14 (Class Number). The class number h(K) of K is the order of
the ideal class group, i.e.

h(K) := o(H(K))

Theorem 1.2.11. Let K be an algebraic number field. Let OK be its ring of integers
and h(K) be its class number. Then, h(K) = 1 ⇔ OK is a PID ⇔ OK is a UFD.
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Chapter 2

Binary Quadratic Forms

In this chapter we state a number of results without proof. The detailed proofs may
be found in the reference [4].

2.1 Introduction

Definition 2.1.1 (Binary Quadratic Form, Primitivity). A binary quadratic
form (BQF) is a degree two homogeneous polynomial in two variables.

An integral binary quadratic form is a BQF with integer coefficients. It looks
like

f(x, y) = ax2 + bxy + cy2

where a, b, c ∈ Z

Definition 2.1.2 (Primitive Form). The integral binary quadratic form f is called
primitive if a, b and c have no common factor.

It will be shown that for d 6= 0, the ideal class group of Q(
√
d) is isomorphic

to the “class group” of integral binary quadratic forms of discriminant d, which
constitutes equivalence classes of binary quadratic form, under a certain equivalence
relation.

Definition 2.1.3 (Equivalence of BQF’s). We say that two binary quadratic forms
f(x, y) and g(x, y) are equivalent if there exist p, q, r, s ∈ Z such that ps− rq = ±1
and

g(x, y) = f(px+ qy, rx+ sy)

f and g are said to be properly equivalent if ps − rq = 1, and this notion is used
more often. Commonly, equivalence refers to proper equivalence.

We may define an action of SL2(Z) on the set of all integral binary quadratic
forms by

A ? f := f(px+ qy, rx+ sy)

for an integral binary quadratic form f where

14



A =

(
p q
r s

)
∈ SL2(Z)

Clearly, two integral BQF’s are (properly) equivalent if and only if they lie in
the same orbit of the above action.

Proposition 2.1.1. Equivalence and proper equivalence indeed define equivalence
relations on the set of integral BQF’s.

Definition 2.1.4 (Representation of Integers by BQF’s). An integral BQF f(x, y)
is said to represent an integer a ∈ Z if there exist integers x0, y0 ∈ Z such that
f(x0, y0) = a. The representation is called proper if x0 and y0 are co-prime.

Proposition 2.1.2. Two equivalent forms represent the same numbers.

Proposition 2.1.3. Let a ∈ Z. Then f(x, y) properly represents a if and only if
f(x, y) is properly equivalent to the form g(x, y) = ax2 + bxy+ cy2 for some b, c ∈ Z.

Definition 2.1.5 (Discriminant). The discriminant D of a BQF f(x, y) = ax2 +
bxy + cy2 is defined as D = b2 − 4ac. If D > 0, the form f is called indefinite. If
D < 0, f is called definite.

Proposition 2.1.4. If a is positive, the definite form f(x, y) = ax2 + bxy + cy2

represents only non-negative integers, and is called positive definite. If a is negative,
the definite form f(x, y) = ax2 +bxy+cy2 represents only non-positive integers, and
is called negative definite.

Proposition 2.1.5. The discriminant is invariant under the equivalence relation
defined above.

Proposition 2.1.6. An odd integer M is properly represented by a primitive form
of discriminant D if and only if D is a quadratic residue (mod 4).

2.2 Reduction of primitive positive definite forms

Definition 2.2.1 (Reduced primitive positive definite forms). A form f(x, y) =
ax2 + bxy + cy2 with discriminant D = b2 − 4ac is reduced if

|b| ≤ a ≤ c, and b ≥ 0 if a = c or |b| = a

Theorem 2.2.1. Every primitive positive definite form is properly equivalent to a
unique reduced form.

The proof of this theorem involves two steps. The first one shows the existence of
a reduced form equivalent to any given positive definite primitive form. The second
shows the uniqueness of this reduced form

Step 1. Any positive definite primitive form is equivalent to a reduced form.

Step 1 is further divided into two steps: (A) and (B).

15



Step 1 (A). Any given form is properly equivalent to a form satisfying |b| ≤ a ≤ c

Proof. Among all forms properly equivalent to f , pick f(x, y) = ax2 +
bxy + cy2 such that |b| is minimal. If a < |b|, then

g(x, y) : = f

[(
1 m
0 1

)(
x
y

)]
= f(x+my, y)

= a(x+my)2 + b(x+my)y + cy2

= ax2 + (b+ 2am)xy + (am2 + bm+ c)y2

g is equivalent to f for any m ∈ Z.

Since a < |b|, we can choose m ∈ Z such that |2am + b| < |b|, a contra-
diction to the choice of f . So, we must have a ≥ b.

• If c < |b|, then

g(x, y) : = f

[(
1 0
m 1

)(
x
y

)]
= f(x,mx+ y)

= ax2 + bx(mx+ y) + c(mx+ y)2

= (a+ bm+ cm2)x+ (b+ 2mc) + cy2

Since c < |b|, we can choose m ∈ Z such that |2mc + b| < |b|, which
is a contradiction to the choice of f . So, c ≥ |b|.
Thus, |b| ≤ a and |b| ≤ c.

• If a > c, we need to change the outer coefficients, which is accom-

plished by the proper equivalence (x, y)→ (−y, x)

[
i.e. the transformation matrix

(
0 −1
1 0

)]
Therefore, |b| ≤ a ≤ c is achieved.

Step 1 (B) Any form f with |b| ≤ a ≤ c is properly equivalent to a reduced form.

Proof. The form f(x, y) = ax2 + bxy + cy2, |b| ≤ a ≤ c is reduced unless
b < 0 and (a = c or a = −b).
In these cases, ax2− bxy+ cy2 is reduced. So, we only need to show that
the forms f(x, y) = ax2±bxy+cy2 are properly equivalent in these cases.

• If a = -b,

the matrix

(
1 1
0 1

)
provides the required equivalence.

• If a = c,

the matrix

(
0 −1
1 0

)
provides the required equivalence.
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Step 2. Uniqueness of the reduced form.

We need to prove that different reduced forms cannot be properly equivalent.

Claim: The outer coefficients of a reduced form give the minimum values
properly represented by any equivalent form. The three smallest values taken
by the form f(x, y) = ax2 + bxy + cy2 are a, c, and a− |b|+ c.

Proof. If f(x, y) = ax2 + bxy + cy2, |b| ≤ a ≤ c, then

f(x, y) ≥ ax2 − |b|min(x2, y2) + cy2

⇒ f(x, y) ≥ (a− |b|+ c) min(x2, y2)

So, whenever xy 6= 0, f(x, y) ≥ a − |b| + c ≥ c. Thus, the smallest nonzero
value of f(x, y) is a, at (±(1, 0).

So, the smallest nonzero value of f(x, y) (at ±(1, 0)) is a. Further, if c > a,
then c is he next smallest number represented by f (at ±(0, 1)).

Further, if c > a, c is the next smallest number represented properly by f(x, y)
(at ±(0, 1)).

Proof of uniqueness:

Case 1. |b| < a < c.

As per the claim above, the three smallest numbers represented properly
by f are a < c < a− |b|+ c.

Let g(x, y) be a reduced form equivalent to f(x, y). Then, f and g are
reduced and represent the same numbers. So, f and g have the same
minimum value represented, i.e. a. We can assume that g(x, y) has a as
the coefficient of x2.

Let g(x, y) = ax2 + b′xy+ c′y2. We know a = a′ ≤ c because g is reduced.

If a = c′, then g(x, y) = a has four proper solutions, namely ±(1, 0),
±(0, 1). But, f ≡ g. This is a contradiction because f(x, y) = a has
precisely two proper solutions, ±(1, 0). So, a < c′.

Now, a, c′ are the smallest values of the form g and a, c are the smallest
values of the form f . Thus, c = c′. Since f and g also have the same
discriminant, we have b′ = ±b and so g(x, y) = ax2 ± bxy + cy2.

It remains to prove that f(x, y) = g(x, y) when f is properly equivalent
to g.

Let

g(x, y) = f

[(
p q
r s

)(
x
y

)]
= f(px+ qy, rx+ sy)

where ps− qr = 1

We have a = g(1, 0) = f(p, r), c = g(0, 1) = f(q, s) (proper representa-
tions).
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So, (p, r) = ±(1, 0), (q, s) = ±(0, 1). Since ps− qr = 1,(
p q
r s

)
= ±

(
1 0
0 1

)
.

Thus, f(x, y) = g(x, y).

Case 2. |b| = a or a = c (so b ≥ 0)

The argument in case 1 breaks down because a ≤ c ≤ a − |b| + c are no
longer distinct.

Case 2(A). a 6= c and |b| = a
Here, we must have a < c and b ≥ 0, so b = a, and since f and g have
the same two smallest values, c = c

′
. Moreover, the two forms have

the same discriminant, so b = ±b′ Now, a = g(1, 0) = f(p, r), c =
g(0, 1) = f(q, s). Thus, (p, r) = ±(1, 0); (q, s) = ±(0, 1), ps− qr = 1.

So,

(
p q
r s

)
= ±

(
1 0
0 1

)
.

Thus, f(x, y) = g(x, y).

Case 2(B). a = c and |b| 6= a
Again, b ≥ 0.
Here, a = c < a − |b| + c = a − b + c = 2a − b are the smallest
two values of f . The smallest two values of g are a and c

′
. Thus,

c
′
= 2a− b.

b2 − 4a2 = b
′2 − 4ac

′

= b
′2 − 4a(2a− b)

= b
′2 − 8a2 + 4ab

⇒ b2 − b′2 = 4ab− 4a2

We have g(x, y) = f

[(
p q
r s

)(
x
y

)]
ax2 + b

′
xy + c

′
y2 = f(px+ qy, rx+ sy)

Thus a = g(1, 0) = f(p, r) = f(q, s), so (p, r) = ±(1, 0) or ±(0, 1),
and (q, s) = ±(0, 1) or ±(1, 0).

So,

(
p q
r s

)
= ±

(
1 0
0 1

)
or

(
p q
r s

)
= ±

(
0 1
−1 0

)
So, g(x, y) = f(x, y) or f(y,−x) or f(−y, x), so g(x, y) = ax2−bxy+
ay2 or ax2 + bxy + ay2, so b = ±b′ . But, b ≥ 0 and g is reduced, so
b
′
= b.

Thus, f = g.

Case 2(C) a = |b| = c
We have b ≥ 0, so a = b = c

g(x, y) = f(px+qy, rx+sy) = a[(px+qy)2+(px+qy)(rx+sy)+(rx+sy)2]

So,
a = g(1, 0) = f(p, r) = a(p2 + pr + r2)

18



a = g(0, 1) = f(q, s) = a(q2 + qs+ y2)

a = g(1,−1) = f(p− q, r − s)
= a(p2 + q2 − 2pq + r2 + s2 − 2rs+ pr − ps− qr + qs)

= a[x2 + y2 + xy]

Thus, a = a
′
, a = b

′
, a = c

′
and so f(x, y) = g(x, y).

Algorithm to Reduce Primitive Positive Definite Forms

Let f(x, y) = ax2 + bxy + cy2

Step 1. If a > c, f ∼ g = cx2 − bxy + ay2 via

(
0 −1
1 0

)
Thus, we may assume

that c ≥ a.

Step 2. If |b| > a, then f ∼ g, where

g(x, y) = f [

(
1 m
0 1

)(
x
y

)
]

= f(x+my, y)

= a2x2 + (2am+ b)xy + c
′
y2

Let b
′
= 2am+ b, b

′2 − 4ac
′
= D so that c

′
= b

′2−D
4a

.
Choose m such that |2am+ b| < |a| (m > 0 if b > 0, m < 0 if b < 0).
Then, g satisfies |b′ ≤ a

′
= a.

Repeat steps 1 and 2 till |b′ | ≤ a
′
= a ≤ c

′
.

Step 3. If |b′| = a or a = c and b
′
< 0, then the required reduced form is

ax2 − b′xy + c
′
y2. Else, g is already, by definition, in reduced form.

The algorithm terminates in a finite number of steps because the number of
positive definite forms of a given discriminant is finite, since we have D = b2 − 4ac,
b2 ≤ a2 ≤ ac, D = b2 − 4ac ≤ −3a, so ac ≤ −D

3
, thus, there are finitely many

choices for ac, and |b| ≤ a ≤ c (recall that each of them is an integer).

2.3 Reduction of primitive indefinite forms

Definition 2.3.1. A primitive indefinite form of a nonsquare discriminant D > 0
is reduced if ∣∣∣2|a| − √D∣∣∣ < b <

√
D

This is equivalent to D = b2 − 4ac,

0 < b <
√
D

and
|a|+ |c| <

√
D

The latter equivalent definition of reduced forms shows that the number of in-
definite forms of a given discriminant is finite.

The next theorem is stated without proof.
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Theorem 2.3.1. Let f be a reduced indefinite form. Then, there exists n ≥ 1 such
that the reduced forms equivalent to f are precisely

ρ(f), ρ2(f), . . . , ρn(f),

where
ρ : Formp(d)→ Formp(d)

is the reduction map.

2.3.1 Algorithm to Reduce Primitive Indefinite Forms

1. Let f = [a, b, c] be an indefinite primitive form with discriminant D > 0
(nonsquare). If f is reduced, terminate the algorithm.

2. Let b
′ ∈ Z be such that b

′ ≡ −b (mod 2)c, i.e. find m ∈ Z such that b
′

=
−b+ 2mc and

• −|c| < b
′
< |c| if |c >

√
D

•
√
D − 2|c| < b

′
<
√
D if |c| <

√
D

• c′ = b
′2−D
4c

3. Continue the algorithm with the neighbour ρ([a, b, c]) = [c, b
′
, c
′
]

Theorem 2.3.2. The indefinite form reduction algorithm terminates in a finite
number of steps.

Sketch of proof. Let [a0, b0, c0] be an indefinite form of discriminant D > 0. It
can be shown, in a manner similar to the definite case, that at every step i ≥ 1 of the
above algorithm, either the neighbour [ai, bi, ci] is reduced, or it satisfies |ci| < |ci−1|.
Since ci ∈ Z, the process terminates with at most |ci| iterations. In this case,
uniqueness need not hold.

2.3.2 Algorithm: Determination of a complete set of rep-
resentatives of SL2(Z)-equivalence classes of indefinite
forms with given discriminant D > 0

1. Determine the set R of all reduced forms [a, b, c] of discriminant D by using
the fact that |a|+ |c| <

√
D, 0 < b <

√
D, b2 − 4ac = D

2. For each reduced form f , compute ρn(f), n ≥ 1, until obtaining a cycle
{f, ρ(f), . . . , ρN(f), ρN+1(f) = f}. (ρ denotes the map of the reduction al-
gorithm). Remove ρi(f) from R for 1 ≤≤ N .

3. R is a complete reduced set of representatives of SL2(Z)-equivalence classes
of indefinite forms with discriminant D.
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2.4 The Form Class Group

Definition 2.4.1 (Principal Forms). We define the principal forms as{
x2 − D

4
y2 if D ≡ 0 (mod 4)

x2 + xy + 1−D
4
y2 if D ≡ 1 (mod 4)

Let C+
p (d) denote the set of equivalence classes of properly equivalent primitive

(positive definite if d < 0) BQF’s of discriminant d.
Once it is established that the ideal class group is isomorphic to C+

p (d), we will
have proved that the ideal class group is finite.

Lemma 2.4.1. Assume that f(x, y) = ax2+bxy+cy2 and g(x, y) = a′x2+b′xy+c′y2

have discriminant D and satisfy gcd(a, a′, b+b
′

2
) = 1 (since b and b′ have the same

parity, b+b′

2
∈ Z). Then, there is a unique integer B modulo 2aa′ such that

B ≡ b (mod 2a)

B ≡ b′ (mod 2a′)

B2 ≡ D (mod 4aa′)

Definition 2.4.2 (Dirichlet decomposition). Given primitive positive definite forms
f(x, y) = ax2 + bxy + cy2 and g(x, y) = a′x2 + b′xy + c′y2 with discriminant D < 0
and gcd

(
a, a′, b+b

′

2

)
= 1, the Dirichlet decomposition of f and g is given by

F (x, y) = aa′x2 +Bxy +
B2 −D

4aa′
y2

where
B ≡ b (mod 2a), B ≡ b (mod 2a′), B2 ≡ D (mod 4aa′)

Proposition 2.4.1. Given f(x, y) and g(x, y), the Dirichlet decomposition F (x, y)
is a primitive positive definite form of discriminant D.

Theorem 2.4.1. Let D ≡ 0, 1 (mod 4) be negative. Let C+
p (D) be the set of classes

of primitive positive definite forms of discriminant D. The Dirichlet composition
induces a well-defined binary operation on C+

p (D) which makes C+
p (D) into a finite

abelian group whose order is the class number h(D). Furthermore, the identity
element of C+

p (D) is the class containing the principal form{
x2 − D

4
y2 when D ≡ 0 (mod 4)

x2 + xy + 1−D
4
y2 when D ≡ 1 (mod 4)

and the inverse of the class containing the form ax2 + bxy + cy2 is the class ax2 −
bxy + cy2.

C+
p (D) is called the form class group.
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2.5 Primes represented by forms

Proposition 2.5.1. For d ≡ 0, 1 (mod 4) and gcd(n, d) = 1, n is properly rep-
resented by a principal form of discriminant d if and only if d is a square modulo
4n.

Proof. We have gcd(n, d) = 1. Since n is represented by a form f of discriminant d,
by Proposition 2.0.3, we must have f ≡ f̃ = [n, b, c], b, c ∈ Z,

d = ∆(f̃) = b2 − 4nc ≡ b2 (mod 4n)

Conversely, let n be an integer co-prime to d, and suppose that there exists b ∈ Z
such that d ≡ b2 (mod 4n), so there exists c ∈ Z such that d = b2 − 4nc. Then, the
form [n, b, c] has discriminant d and properly represents n. Moreover, it is primitive,
since if e | n, b, c, then e | D, so e = ±1, since gcd(n, d) = 1.

In the above proof, in the case when d ≡ 0 (mod 4), the condition is reduced
to d being a square modulo n. [This requires proof only in the “if” case. Suppose
D ≡ b2 (mod m). Let b

′
= b, if b is even, and b

′
= b+m, if b is odd.

Then D ≡ b (mod m), and, since m is odd and D ≡ 0 (mod 4), D and b
′

are

both even. This means that D ≡ b
′
2 (mod 4)m (4 divides both D and b

′2
/ So,

D ≡ b2 − 4mc for some integer c. So, we have the form f(x, y) = mx2 + bxy + cy2,
which is of discriminant D, properly represents m, and is primitive, since m and D
are co-prime.

When hf (d) = 1, all forms are mutually equivalent and since equivalent forms
properly represent the same integers, this criterion lets us know when an integer is
represented by a given form.

Corollary 2.5.1. Let n be an integer and p be an odd prime that does not divide n.
Then p is represented by a primitive form of discriminant 4n if and only if (−n

p
) = 1.

Proof. Note that a primitive form represents a prime p if and only if it properly
represents p. Now, (−4n

p
) = (−n

p
)(2
p
)2. The result follows from the previous theorem

and the discussion following it.

Proposition 2.5.2. If n = 1, 2, 3, 4, 7, p 6= n is an odd prime, then p is represented
by x2 + ny2 if and only if (−n

p
) = 1.

Sketch of proof. We have seen that p is represented by a form of discriminant 4n,
where gcd(p, n) = 1 if and only if (−n

p
) = 1. It is clear that the form x2 + ny2 has

discriminant −4n and represents p whenever (−n
p

) = 1. It only needs to be shown
that in the cases n = 1, 2, 3, 4, 7, the only form classes with discriminant −4n are
x2 + ny2. This is done by calculating all the reduced forms [a, b, c] of discriminant

−4n for each of the given n, using the reduced criteria |b| ≤ a ≤
√
D
3

. For example,

in the case n = 2, we have |b| ≤ a ≤
√
8
3
< 2. Since 1 − 4c = −8 has no integer

solutions, we must have b = 0, a = 1, c = 2, so that the only reduced form of
discriminant -8 is x2 + 2y2.

The other cases are argued out similarly.

The case n = 1 gives Fermat’s two squares theorem: An odd prime p can be
expressed as a sum of two squares if and only if p ≡ 1 (mod 4).
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Chapter 3

The Picard Group and Narrow
Picard Group

In this chapter we state a number of results without proof. The detailed proofs may
be found in the reference [4].

3.1 Orders

Definition 3.1.1 (Order). An order in a number field K is a subring O ⊂ K
containing 1 such that

1. O is a finitely generated Z-module

2. O contains a Q-basis of K

1 implies that OK contains any order of K, 1 and 2 imply that O is a free Z-
module of rank 2, 2 implies that K is the field of fractions of O. Thus, OK itself is
an order, and contains all other orders. It is called the maximal order of K.

To describe orders in quadratic fields more explicitly, the maximal order can be
written as follows

OK = [1, ωK ], ωK =
dK +

√
dk

2

where dK is the discriminant of K.

Lemma 3.1.1. Let O be an order in a quadratic field K of discriminant dK. Then,
O has finite index in OK, and if we set f = [OK : O], then

O = Z + fOK = [1, fΩK ]

where ωK = dK+
√
dk

2

Definition 3.1.2 (Conductor). The number F = [OK : O] is called the conductor
of the order O.
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Definition 3.1.3 (Discriminant of an order). An order O admits an integral basis
of K, so we can define the discriminant of O as the square of a 2 × 2 determinant
with rows being the integral basis under the two automorphisms of the field K, in
the same manner as we described the discriminant of OK .

Proposition 3.1.1. The discriminant of an order O of conductor F is F 2dK.

Proof. In the same way as for OK, we can show that the discriminant of O is inde-
pendent of the basis used, and, calculating it using the basis [1, fwK ], where {1, wK}
is an integral basis of O, gives the discriminant D = f 2dK .

3.2 Ideals of Orders and Invertibility

Definition 3.2.1. Let O be an order in K. A fractional ideal α of O is proper if
O = {x ∈ K : xα ⊂ α}.

Fact: All ideals in OK are proper.

Notation: [x, y] := Zx+ Zy

Lemma 3.2.1. Let O be an order in K, τ ∈ K be of degree two with minimal
polynomial ax2 + bx+ c ∈ Z[x]. Then,

1. Õ = [1, aτ ] is an order in K, α = [1, τ ] is a proper fractional ideal of Õ.

2. If α is proper, then O = Õ

Proposition 3.2.1. Let O be an order in K, α be a fractional ideal of O. Then, α
is invertible in O if an only if it is proper. The inverse in this case is given by

α
′

N(α)

where α
′

is the conjugate ideal of α, i.e.

α
′
= {x′ : x ∈ α} ⊂ O

Proposition 3.2.2. Let K be a quadratic number field, OK be the ring of algebraic
integers in K. Let f > 0 be a positive integer. Then there exists a unique order
R of K such that f is the order of the group OK

R
. Moreover, the discriminant of

R is f 2d, where d is the discriminant of K. Conversely, if R is an order of K, its
discriminant is f 2d for f > 0 and where f = [OK : R]

Note that the proof of this proposition involves the result that states that the
quotient of two free abelian ranks of the same rank is finite, which, in turn, is proven
using the Stacked bases theorem, or using results from Lattice theory.

Definition 3.2.2 (Alternate definition of fractional ideal norm). Let I be a frac-
tional ideal of an order R. We define N(I) = [R : I] where the right hand side is
defined as usual.
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Proposition 3.2.3. Let I be a fractional ideal of an order R. Let γ be a nonzero
element of K. Then, N(γI) = |N(γ)|N(I)

Proposition 3.2.4. Let I be a fractional ideal of an order R. Let α1, α2, . . . αn be a
Z-basis of I. Let θ1, . . . θn be a Z-basis of R. Suppose αi = Σjaijθj for i = 1, 2, . . . , n
Then,

N(I) = det(aij)

Proposition 3.2.5. Let I and J be fractional ideals of R, J ⊂ I. Then,∣∣∣∣ IJ
∣∣∣∣ =

N(J)

N(I)

Hence, if K is an algebraic number field of degree n and R is an order of K with
fractional ideal I, the norm of I is defined as follows:

There exists α ∈ R, an ideal J of R such that

I =
1

α
J

N(I) :=
N(J)

N(αR)
where N(J) :=

∣∣∣∣RI
∣∣∣∣

3.3 Picard Groups and Class Numbers

Let d ∈ Z be a fundamental discriminant, K be a quadratic field of dscriminant d,
and O be an order in K.

Definition 3.3.1. The Picard Group of O is

Pic(O) =
J(O)

P (O)

where J(O) is the group of invertible fractional O-ideals and P (O) is the group of
principal O-ideals.

Definition 3.3.2. The Narrow Picard Group of O is

Pic+(O) =
J(O)

P+(O)

where J(O) is the group of invertible fractional O-ideals and P+(O) is the group of
principal O-ideals with generator of positive norm.

When O = OK , Pic(O) is the ideal class group Cl(d) of cardinality h(d), the
class number.
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3.4 Narrow Picard Groups

If d < 0, all norms are positive. So, the Picard group and the Narrow Picard
group are the same for all orders. However, in the real case, we will establish a
correspondence with a narrow Picard group.

Let O be an order in a real quadratic field K with discriminant d. By the third
isomorphism theorem,

Pic(O) =
J(O)

P (O)
∼=
J(O)/P+(O)

P (O)/P+(O)
=

Pic+(O)

P (O)/P+(O)

where J(O) is consists of invertible fractional ideals of O, P (O) consists of principal
fractional ideals of O, and P+(O) ∈ P (O) consists of principal fractional ideals of
O with generator of positive norm.

Lemma 3.4.1.

| P (O)

P+(O)
| ≤ 2

Proof.

|Pic+(O)| =

{
|Pic(O)| if O∗ has an element of norm -1, and

|Pic+(O)| = 2|Pic(O)| otherwise
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Chapter 4

Associating Binary Quadratic
Forms and Ideals

We use the symbol f̄ to denote the equivalence class of the form f under the equiv-
alence relation described in Chapter 2, and the symbol I to denote the equivalence
class of the ideal I ∈ J(O) in the group Pic+(O) = J(O)

P+(O) . In this chapter we state a
number of results without proof. The detailed proofs may be found in the reference
[4].

4.1 Associating Binary Quadratic Forms to Ideals

Let K be a quadratic number field and O be an order of conductor F ≥ 1.

Recall that every ideal of an order in a quadratic field is a free abelian group of
rank 2.

Lemma 4.1.1. Let I be a fractional ideal of O. There exists x ∈ K∗ such that
xI + FO = O

Proposition 4.1.1. Let I be an invertible ideal of O with the choice of an ordered
Z-basis (α, β). Then

fI,(α,β)(x, y) :=
N(αx+ βy)

N(α)

is a primitive binary integral quadratic form of discriminant F 2dK. Moreover, it is
positive-definite when dK < 0.

Note that the above definition depends upon the choice and order of the Z-basis
for the ideal. We now introduce the concept of “correctly ordered bases”, such that
two different choices of correctly ordered bases yield equivalent forms.

Proposition 4.1.2. Let I be an ideal of an order O in K. Then, O
I

is finite. We
call its cardinality the norm N(I) of the ideal. Then,

1. For all x ∈ O, N(xO) = |N(x)|

2. For all invertible ideals I, J ,

N(IJ) = N(I)N(J)
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3. If (x1, . . . , xn) is a Z-basis of an ideal I in O, then

N(I)2 =
D(x1, . . . , xn)

F 2dK

So for the case n=2, we have

N(I)2 =
(αβ

′ − βα′)2

F 2dK

⇒ (αβ
′ − βα′) = ±N(I)F

√
dK

⇒ αβ
′ − βα′√
dK

∈ R∗ ∪ iR∗

This allows the following definition.

Definition 4.1.1. Let O be an order of K, and I and ideal in O. A correctly
ordered basis (α, β) of I is an ordered Z-basis of I such that

αβ
′ − α′β√
dK

∈ R>0 ∪ iR>0

Any ideal ofO admits a correctly ordered basis, since permuting the elements of a
basis that is not correctly ordered gives a correctly ordered basis. By the description

of orders in a quadratic field, the order of conductor F ≥ 1 has the correctly ordered
basis (dK+

√
dK

2
, F ).

4.1.1 Two Correctly Ordered Bases Produce Equivalent Forms

Proposition 4.1.3. Let O be an order in K, I be an ideal of O. Any two correctly
ordered bases of I are equivalent under the action of an element of SL2(Z). Con-
versely, the natural action of an element of SL2(Z) on a correctly ordered basis of I
viewed as an element of I × I gives another correctly ordered basis.

Proposition 4.1.4. Let O be an order in K, I be an ideal of O with two correctly
ordered bases (α, β) and (δ, γ). Then, fI,(α,β) and fI,(δ,γ) are properly equivalent.

Finally, we shall have that two equivalent ideals give equivalent classes under the
restriction that this equivalence is in the Narrow Picard group.

Proposition 4.1.5. If I, J are two ideals in an order O of K that are equivalent
in Pic+(O), then f̄I = f̄J .

Thus, up to equivalence, the form obtained from an ideal does not depend on
the choice of a correctly ordered basis nor on ideal equivalence.

Proposition 4.1.6. Let I, J be ideals of order O in K. If f̄I , f̄J , then I = J .

28



4.2 Associating Ideals to Binary Quadratic Forms

Let O be an order of conductor F ≥ 1 in a quadratic field K of discriminant dK .
In the previous section, we showed that there is an injection from Pic+(O) to

C+
p (d) with d = F 2DK . We now prove that this map is onto and find its inverse.

Proposition 4.2.1. Let f = [a, b, c] be a primitive binary quadratic form of dis-
criminant d = F 2dK with dK a fundamental discriminant and let K be a quadratic
form of discriminant dK. Suppose that f is positive definite if d < 0. Then,

If :=

[
λa, λ

(
b− f

√
dK

2

)]
with

λ =

{
1 if a > 0 and

F
√
dK otherwise

is a fractional ideal of the order of conductor F in K, such that f̄If = f̄ . Moreover,
the fractional ideal If is invertible if f is primitive.

Corollary 4.2.1. If f and g are two equivalent primitive forms, then If = Ig.

We may summarize all the results obtained in the following theorem:

Theorem 4.2.1. Let d ∈ Z, d ≡ 0, 1 (mod 4), d = F 2dK, with dK a fundamental
discriminant. Let K be a quadratic field of discriminant dK, O an order of conductor
F . There exists a bijection between Pic+(O) and C+

p (d). The bijection is given as
follows by φ and its inverse by ψ.

φ : Pic+(O)→ C+
p (d)

ψ : C+
p (d)→ Pic+(O)

If I is an ideal class of Pic+(O) and (α, β) is a correctly ordered basis of any
ideal of O contained in I,

φ(I) =
[N(αx+ βy)]

N(I)
∈ C+

p (d)

If f = [a, b, c] is a class of Cp(d), let

ψ(f̄) =

[
a,
b− F

√
d

2

]
∈ Pic+(O)

φ · ψ = ψ · φ = 1, i.e. φ−1 = ψ
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Chapter 5

Using the two points of view

5.1 Gauss composition law and the group struc-

ture

Definition 5.1.1 (Gaussian Composition of Forms). Suppose we wish to compose
forms f1 = A1x

2 + B1xy + C1y
2 and f2 = A2x

2 + B2xy + C2y
2, each primitive and

of the same discriminant D. We perform the following steps:

1. Compute B̃ = B1+B2

2
and e = gcd(A1, A2, B̃), and A = A1A2

e2
.

2. Solve the system of congruences

x ≡ B1 (mod 2A1

e
)

x ≡ B2 (mod 2A2

e
)

B̃
e
x ≡ D+B1B2

2e
(mod 2A)

It can be shown that this system always has a unique integer solution modulo
2A. We arbitrarily choose such a solution and call it B.

3. Compute C such that D = B2 − 4AC. It can be shown that C is an integer.
Then, Ax2 +Bxy + Cy2 is the composed form. It turns out that this compo-
sition respects proper equivalence and makes the set of classes of forms into a
finite abelian group.

It turns out that this definition is equivalent to the composition of form classes
that is obtained by identifying them with ideals in the narrow Picard group of the
corresponding quadratic field.

For any d ≡ 0, 1 (mod 4), the set C+
p (d) is in one-to-one correspondence with a

narrow Picard group of a quadratic field, so it can be endowed with the structure of
an abelian group.

Let d ≡ 0, 1 (mod 4) be an integer and write d = F 2dK with dK a fundamental
discriminant, F ≥ 1. Let K be a quadratic field of discriminant dK , O = Z + FOK
its order of conductor F . The group law ? induced on C+

p (d) is explicitly given by

ḡ ? h̄ = φ(ψ(ḡ)ψ(h̄))
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(ḡ, h̄ ∈ C+
p (d)), with

ψ : C+
p (d)→ Pic+(O)

φ : Pic+(O)→ C+
p (d)

(φ is the inverse of ψ)

ψ([a, b, c]) =

[
λa, λ

(
b− F

√
dK

2

)]
with λ = 1 if a < 0, λ = F

√
dK otherwise. And

φ(I) = N(αx+βy)
N(I)

∈ C+
P (d)

where (α, β) is a correctly ordered basis of I.
The identity element of C+

p (d) is given by φ(O). The inverse of ḡ ∈ C+
p (d) is

φ

(
ψ(ḡ)

′

N(I)

)
Thus, by construction,

Pic+(O) ∼= C+
p (d)

as finite abelian groups.

It is easy to check that a correctly ordered basis of the O-ideal O is
(
F
√
dK
2

, 1
)

if dK ≡ 2, 3 (mod 4)(
F 1+

√
dK

2
, 1
)

if dK ≡ 1 (mod 4)

Thus, the identity element of C+
p (d) is

φ(O) =
N

(
F
√
dK
2

X+Y

)
N(O) if dK ≡ 2, 3 (mod 4), and

φ(O) =
N

(
F
1+
√
dK

2
X+Y

)
N(O) if dK ≡ 1 (mod 4), i.e.

φ(O) =

{(
−F 2dK

4
, 0, 1

)
, if dK ≡ 2, 3 (mod 4),(

(1−dK
4

)F 2, F, 1
)
, if dK ≡ 1 (mod 4)

We now compute inverses. We use the fact that the inverse of the class of an ideal
I is simply given by the class of I

′
. Recall that if f = [a, b, c] is a primitive binary

quadratic form of discriminant d = F 2dK , with dK a fundamental discriminant and
K a quadratic field of discriminant dK . f is positive definite if d < 0. The ideal
corresponding to f is

If =

[
λa, λ

b− F
√
dK

2

]
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(where λ = 1 if a > 0 and λ = F
√
dK otherwise), which is a fractional ideal of the

order of conductor F in K. So, fIf = f . Moreover, If is invertible if f is primitive.
By the calculations,

[a, b, c]
−1

= [c, b, a] = [a,−b, c]

which is reduced when [a, b, c] is reduced.

5.2 Explicit Determination of Picard Group

We need to calculate the number of classes of forms of discriminant d. This is equiv-
alent to calculating the number of non-equivalent reduced forms with discriminant
d. We need [a, b, c] with b2 − 4ac = d, B2 ≤ a2 ≤ ac d = b2 − 4ac ≤ −3ac. So,
ac ≤ −d

3
. Also, d + 4ac = b2 ≥ 0, which means that ac ≥ −d

4
, and d + 4ac is a

perfect square.

Summarising, we may use the following facts to calculate C+
p (d)

• d
4
≤ ac ≤ −d

3

• d+ 4ac is a perfect square.

5.2.1 Computing the Picard Group for d = -47

Here,

11 ≤ 47

4
≤ ac ≤ 47

3
≤ 16

and d+ 4ac = −47 + 4ac is a perfect square.

So, 11 ≤ ac ≤ 16. We check the values of −47 + 4ac for each of the possible
values of ac.

• ac = 11 −47 + 4ac = −3, which is not a perfect square

• ac = 12 −47 + 4ac = 1, which is a perfect square

• ac = 13 −47 + 4ac = 5, which is not a perfect square

• ac = 14 −47 + 4ac = 9, which is a perfect square

• ac = 16 −47 + 4ac = 17, which is not a perfect square

Thus, ac = 12 or 14 The corresponding values of b must satisfy b2 − 4ac = −47,
or b2 − 48 = −47⇒ b = ±1, and b2 − 56 = −47⇒ b = ±3

Case: b = ±1, ac = 12 The forms are:
[1, 1, 12], [2, 1, 6], [2,−1, 6], [3, 1, 4], [3,−1, 4]. (Note that [1,−1, 12] is not reduced)
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Case: b = ±3, ac = 12. Since the only factorizations of 12 are 1 · 12, 2 · 6, and
3 · 4, none of these possibilities for a and c along with b = ±3 gives a reduced form.

Thus, there are only 5 reduced forms of discriminant -47, i.e. |C+
p (d)| = 5. We

now give the correspondence between Cl(−47) and C+
p (−47).

Let K = Q(
√
−47) be the quadratic field with discriminant -47. Note that F = 1

here.
−47 ≡ 1 (mod 4), so a correctly ordered Z-basis of OK is(

1 +
√
−47

2
, 1

)
The class of OK in Cl(−47) corresponds to the identity element in C+(−47), which

is
[
F 2 1−dK

4
, F, 1

]
=
[
1+47
4
, 1, 1

]
= [12, 1, 1] = [1, 1, 12].

The ideal associated to the class [2, 1, 6] is[
a,

(
b− F

√
dK

2

)]
=

[
2,

1−
√
−47

2

]
and so [2, 1, 6] is associated to the ideal

[
2, 1+

√
−47
2

]
.

[3, 1, 4] is associated to the ideal
[
3, 1−

√
−47
2

]
[3,−1, 4] is associated to the ideal [3, 1+

√
−47
2

].
Thus, we have systematically determined a complete set of representatives of the

ideal class group. This group is{[
1, 1+

√
−47
2

]
= OK ,

[
2, 1+

√
−47
2

]
,
[
2, 1−

√
−47
2

]
,
[
3, 1−

√
−47
2

]
,
[
3, 1+

√
−47
2

]}
∼=

Z

5Z

5.2.2 Computing the Picard group for d = 12

d = 12 ≡ 0 (mod 4)
For positive d, a form ax2 + bxy + cy2 is reduced if and only if

| |a|+ |c| |<
√
d

and
0 < b <

√
d

Here, that means |a| + |c| < 2
√

3, so |a| + |c| ≤ 3 (since they are integers) and
0 < b ≤ 3, (d = b2 − 4ac)

We cannot have a or c equal to 0, since 12 is not a perfect square. The possibilities
are: a = ±1, c = ±1, a = ±2, c = ±2, a = ±1, c = ±2. Also, b2 = 12− 4 · 2 = 4⇒
b = 2 But, |a| = |c| = 1 gives b = ±4, which is not possible by the second condition.
Arguing similarly, we find that the reduced forms are:
[2, 2,−1], [−2, 2, 1], [1, 2,−2], [−1, 2, 2].
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Applying the reduction algorithm to [−2, 2, 1], we get that the cycle associated
to [−2, 2, 1] is

[−2, 2, 1]→ [1, 2,−2]→ [−2, 2, 1]

Similarly, the cycle associated to the cycle associated to [−1, 2, 2] is

[−1, 2, 2]→ [2, 2,−1]→ [−1, 2, 2]

Thus, a complete set of reduced representatives of C+
p (12) is given by [−2, 2, 1].

Now, 12 is the fundamental discriminant of the field Q(
√

3). So, here F = 1.
As before, we compute the ideals associated to the form classes above, to find that
[−2, 2, 1] corresponds to the ideal [2, 1−

√
3] and [−1, 2, 2] corresponds to the ideal

[1, 1−
√

3]. Also, OK has no element of norm -1, since the equation a2 − 3b2 = −1
has no integer solutions. (To see this, consider both sides modo 4, a2 and b2 may be
0 or 1 (mod 4)). So, the Picard Group (here, the ideal class group) of OK is the
trivial group. Thus, the class number of the field Q(

√
3) is 1.

5.3 Class numbers

The Class Number Problem: We are interested in the following questions:

1. Do there exist infinitely many d ≡ 0, 1 (mod 4) such that hf (d) = 1? (Class
number one problem)

2. More generally, do there exist infinitely many d ≡ 0, 1 (mod 4) such that
hf (d) = n for given n ≥ 1? Can an efficient way to find them be given?

3. What is the asymptotic behaviour of hf (d) with d ≡ 0, 1 (mod 4)?

Gauss’s conjectures:

1. h(d)→∞ as d→ −∞

2. Class number = 1 for d = -3, -4, -7, -8, -11, -12, -16, -19, -27, -28, -43, -67,
-163. There are no other negative discriminants with class number one. (This
has been proven, and is known as the Baker-Heegner-Stark theorem [5])

3. There are infinitely many positive discriminants with class number 1 (Open
problem).

Class number problem for negative d

Theorem 5.3.1 (Baker-Heegner-Stark [5]). For d < 0, we have hf (d) = 1 ⇔
d = −1,−2,−3,−4,−7,−11,−19,−43,−67,−163.
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5.3.1 Units, automorphisms, Pell’s equation

Theorem 5.3.2. Let d be a form discriminant and g ∈ Form+
p (d), the group of

all equivalence classes of positive definite forms of discriminant d, if d < 0 and
of all indefinite forms if d > 0. Let us write d = F 2dK with dK a fundamental
discriminant of a quadratic field K, F ≥ 1. Let O be the order of K of conductor
F . Then, there is an isomorphism between Aut(g) and O∗.

Determining the group of units turns out to be equivalent to solving Pell’s equa-
tions x2 − ny2 = 1.

Proposition 5.3.1 (Units in Imaginary Quadratic Fields). The group of units O∗
of an O of an imaginary quadratic field is given by

O∗ ∼=


Z/4Z if d = −1, F = 1

Z/6Z if d = −3, F = 1,

Z/2Z otherwise

Proposition 5.3.2 (Units in Real Quadratic Fields). The group of units O∗ of an
order O of a real quadratic field is given by

O∗ ∼= Z/2Z× Z

5.4 On Gauss’s Class Number Problems: Some

Computations

In this section, we follow the notational convention of Daniel Shanks’s 2010 paper,
[6], which will serve as a reference. Let h(∆) (or simply h, when there is no confu-
sion) denote the class number of a binary quadratic form (or equivalently, quadratic
number field) of discriminant −∆. We use the notation Au2 +Buv+Cv2 for a form.

We distinguish between the discriminant −∆ = −4AC + B2 of the form Au2 +
Buv+Cv2 and the determinant −D, used in Gauss’s (equivalent) formulation, given
by D = AC −B2, of the form Au2 + 2Buv + Cv2.

Lemma 5.4.1. If ∆ = 8k + 3 (k > 0), then we have

h(−4∆) = 3h(−∆)

Lemma 5.4.2. If ∆ = 8k − 1 (k > 0), then we have

h(−4∆) = h(−∆)

Fact: If the determinant −D = 1, 2 or 4, the class number is 1.

Proposition 5.4.1 (Shanks, 2010 [6]). If −D = 4k+ 1, 4k+ 2, 4k+ 4 (k > 0), the
class number is even.

Proof. There then exists a form of order 2 (called an ambiguous form) f =
(A, 2B,C) distinct from the principal form I, namely:
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f = (2, 2, 2k + 1), for −D = 4k + 1
f = (2s, 0, 2k + 1), for −D = 2s(2k + 1)
f = (4, 4, 2s−2 + 1), for −D = 2s (s > 2)

Since f 2 = I = (1, 0,−D) under composition, there is a subgroup of order 2.

Proposition 5.4.2 (Shanks, 2010 [6]). If −D = 8k + 3 (k > 0), the class number
is divisible by 3.

Proof. We have f = (4, 2, 2k + 1) 6= I satisfying F 3 = I, so there is a subgroup of
order 3.

Proposition 5.4.3 (Shanks, 2010 [6]). For a class number h = 6n ± 1, n > 0, we
must have −D = 8k − 1.

Proof. Propositions 5.4.1 and 5.4.2 rule out the possibilities of −D = 8k+ 1, −D =
8k + 2, −D = 8k + 3, −D = 8k + 4, and thus also −D = 8k + 5 and −D = 8k + 6.
−D = 8k is not possible since D is square-free. So, the only remaining possibility is
−D = 8k − 1 (or equivalently −D = 8k + 7).

We wish to look at forms with class number 6n±1, so we may restrict our study
to negative discriminants ∆ = 8k− 1 with h(1− 8k) = 6n± 1 (since ∆ = 32k− 4 =
4(8k − 1), 8k − 1 ≡ 3 (mod 4), and h(−∆) = h(−4∆), and ∆ = 4D).

One quadratic form is then F = (2, 1, k), and by composition, its hth power is
the principal form

F h = (1, 1, 2k)

Since h represents 2, we have

2h = u2 + uv + 2kv2

or
2h+2 = (2u+ v)2 + ∆v2

Here, v 6= 0, since h is odd. Thus, the only possible values of ∆ are given by

∆ =
2h+2 − (2u+ v)2

v2

which are finite in number.
If h is a prime greater than 3, we also have (2u+ v) and v odd. To see this, note

that any one of 2u+ v and v being even forces the other of these terms to be even,
as well, from equation 5.1. Now,

2h = u2 + uv + 2kv2

⇒ 2h−2 =
(u

2

)2
+
(u

2

)(v
2

)
+ 2k

(v
2

)2
So, there exists a representation of 2h−2 by (1, 1, 2k),

2h−2 = u
′2

+ u
′
v
′
+ 2kv

′2
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This is a contradiction because F is a primitive root of the cyclic class group (recall
that h is prime), and thus the smallest power of 2 represented by any form class is
2h. Therefore, v must be odd (or equivalently, (2u+ v) and v must be odd).

Example: h = 5
Setting v = 1, we get, from equation 5.4,

127 = 128− 1

119 = 128− 9

103 = 128− 25

70 = 128− 49

47 = 128− 81

7 = 128− 121

We find that ∆ = 119 has class number 10, and ∆ = 7 has class number 1 (by
construction, any h dividing 5 must also appear on this list, because any element F
of such a class group would also satisfy F h = (1, 1, 2k), while the rest of the numbers
on the above list have class number 5. From computations with binary quadratic
forms, we find that there are four form classes, so the above list is comprehensive.
Note that it was unnecessary to vary v here, which may not always be the case.

5.4.1 Class Number 13 and Some Techniques

We have looked at the cases where the class number equals to primes 5 or 7 (6n±1).
We now look at the case h = 13 = 6 · 2 + 1, which was not discussed by Gauss. We
have

∆v2 = 215 − (2u+ v)2 = 32768− (2u+ v)2

We need to test only those ∆ that are prime powers, because for others, the class
number is even (a proof of this fact can be found in Section 1 of Chapter 7) Aside
from v = 1, any other v must have 2 as a quadratic residue for every prime divisor
p of v

(2 · 214 ≡ (2u + v)2 (mod p) ⇒ 2 ≡
(

(2u+v)2

27

)2
(mod p), p | v, p 6= 2, since v is

odd).
Let p denote a prime divisor of v. Now, 2 is a quadratic residue mod p if and

only if (
2

p

)
= (−1)

p2−1
8 = 1

The possible values of p are 7, 17, and so on.
If p = 17, 2u+ v = 2u+ 17 (mod 289), so ∆v2 = 215 − (2u+ v)2

(2u+ v)2 ≡ 215 (mod 172)

≡ 32768 (mod 172)

≡ 111 (mod 289)

≡ 400 (mod 289)
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u ∆
18 631
67 263
24 607
73 191

So, 289 | (2u+ v)2− 202, or 172 divides (2u+ v− 20)(2u+ v+ 20). If 17 divides
2u+ v − 20, then 17 doesn’t divide (2u+ v + 20), so we must have

2u+ v ≡ ±20 (mod 1)72

But
(2u+ 17)2 = (289± 20)2 ≥ (269)2

So,
∆v2 = 215 − (2u+ v)2 = −39593 < 0

So, v yields only negative ∆. Similarly, v > 17 yields negative ∆, or, at best, positive
∆ that are clearly “too small” for h = 13 (note that one needs a considerably large
discriminant to have class number 13).

If p = 7, (and v = 7, since we are only considering v less than 17),

2u+ v ≡ ±6 (mod 72)

So, 2u ≡ −1 (mod 72) or 2u ≡ −13 (mod 172). This gives the following possibili-
ties.

It may be verified that these four ∆’s are prime and indeed have h = 13.
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The remaining candidates are those with v = 1 i.e.

∆ = 32768− (2u+ 1)2

(215 = 32768)
These cases may be eliminated or sieved out by separately considering the cases

2u + 1 < 128 = 27 and 2u + 1 > 128 and calculating the possible quadratic form
classes.

Here, −D = 727 and −D = 2143 arise from the ∆ < 214 or 2u+ 1 > 27 case.
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Chapter 6

Splitting of Prime Ideals in Field
Extensions

6.1 Introduction

Let A be a Dedekind domain with field of fractions K, L be a finite extension of K,
and B be the integral closure of A in L.

Fact: If L/K is a finite separable extension, then B is a finitely generated A-
module. If A is a Dedekind domain, so is B. This has been proven in Chapter
1.

[7] and [8] are references for this chapter.

Definition 6.1.1. Let P be a nonzero prime ideal of A and β be a nonzero prime
ideal of B, If β ⊇ PB, write β|P , i.e. β divides P , or β is above P .

We may decompose PB as

PB =
∏
β|P

βeβ

where eβ (or eβ/P ) is the ramification index of P in β.

Proposition 6.1.1. β divides P if and only if β ∩ A = P .

Proof. If β ∩ A = P , then it is clear that β ⊇ PB, i.e. β divides P . Conversely, let
β divide P . Then, β ∩A is a prime ideal of A (because β is prime) that contains P ,
and thus must equal P , since A is a Dedekind domain and every prime ideal is thus
maximal.

Proposition 6.1.2. For each β dividing P , residue field B/β is a finite extension
field of A/P .

Proof. We may consider the composition of the natural inclusion of A in B with the
projection map of B onto B/β, i.e.

A→ B −→ B/β

The kernel of this map is β∩A = P . Thus, there is an induced injection of A/P into
B/β. Moreover, since we know that B is a finitely generated A-module, it follows
that B/β is a finitely generated A/P -module (i.e. vector space), as well. In other
words, it is a finite extension field of A/P .
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Note that we may replace β in the above argument by the ideal PB in B to obtain
that B/PB is a finitely generated A/P -algebra, in particular, a finitely-generated
vector space over A/P .

In the case where A = Z, K = Q, and L is a finite number field, A/P has the
form Fp, the finite field with p elements, and thus L/OL is also a finite field (with
order a power of p).

Definition 6.1.2. The degree [B/β : A/P ] is called the inertial degree of β over P
in B and is denoted fβ or fβ/P .

fβ := [B/β : A/P ]

Proposition 6.1.3. Suppose that we have PB =
∏g

i=1 P
ei
i . Then, we have∑

i

eifi = n = [B/PB : A/P ]

Proof. Consider the chain of ideals

B ⊇ P1 ⊇ P 2
1 . . . ⊇ P e1

1 ⊇ P e1
1 P2 ⊇ . . . ⊇ P e1

1 P
e2
2 ⊇ . . . ⊇ P e1

1 P
e2
2 . . . P eg

g

Since the factorization of ideals into prime ideals in a Dedekind domain is unique,
there can be no ideals between consecutive terms in the sequence, since any such
intermediate ideal would contain, thus divide, PB. The quotient of any two con-
secutive terms is given by β/βPi, and is a vector space over the field B/Pi since
it is annihilated by Pi. Moreover, since this vector space has no nontrivial proper
subspace as discussed above, it must have dimension one.

So, [β : βPi] = [B : Pi] = fi. Therefore, by the multiplicative property of indices,
and using the fact that there are exactly ei consecutive quotients, each of dimension
fi for each i, we have

[B : PB] = [B : Pi][Pi/P
2
i ] . . . [P e1

1 P
e2
2 . . . P eg−1

g : PB] =

g∑
i=1

eifi

We now prove the second equality under the assumption that B is a free A-module
of rank n. In particular, this covers the case where L is a number field. The general
case can be proven by an extension of this argument through localization.

If {x1, ..., xn} is a basis for B over A, we can reduce mod PB to produce a
basis for B/PB over A/P . We need to prove only linear independence. Suppose∑n

i=1(ai + P )(xi + PB) = 0 in B/PB. Then,
∑n

i=1 aixi ∈ PB, and so it can be
written as

∑
j bjyj with bj ∈ B, yjP . But, bj =

∑
k cjkxk with cjk ∈ A, we have

ak =
∑

j cjkyj ∈ P for all k. Thus, the xi + PB are linearly independent and form
a basis of B/PB over A/PB. The proof is now complete.

Proposition 6.1.4. If σ ∈ G = Aut(L/K), then σ(B) = B. If Q is a prime ideal
of B, then so is σ(Q). Moreover, if Q lies above the nonzero prime ideal P of A,
then so does σ(Q). Thus, G acts on the set of prime ideals lying above P .
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Proof. If x ∈ B, then σ(x) ∈ B (apply σ to an equation of integral dependence).
Thus σ(B) ⊆ B. But, σ−1(B) is also contained in B (since σ was an arbitrary
element of the Galois group). Hence, B = σ(σ−1(B)) ⊆ σ(B). If PB =

∏
iQ

ei ,
then apply σ to both sides to get PB =

∏
i σ(Qi)

ei . Since σ preserves all algebraic
relations, it is easily verified that the σ(Qi) must be prime ideals. Moreover, σ,
being a K-automorphism, fixes every element of A (and thus of P ). Therefore
Q ∩A = P ⇒ σ(Q ∩A) = P ⇒ σ(Q) ∩A = P . By the definition of a group action,
Aut(L/K) acts on the set of prime ideals lying above in P .

Proposition 6.1.5. Let A, B, K, L be as defined at the beginning of the chapter.
Suppose L/K is Galois. Then, Gal(L/K) acts transitively on the set of prime ideals
β of B which divide a given prime ideal P of A.

Proof. Let Q1 and Q2 be prime ideals lying above P. We have to prove that there
exists some σ ∈ Gal(L/K) such that σ(Q1) = Q2. Assume that this is not true.
Then, the ideals Q2 and σ(Q1) are maximal and distinct, so Q2 6⊆ σ(Q1) for each
σ ∈ Gal(L/K). The Prime Avoidance Lemma says that if an ideal of a commutative
ring is contained in a finite union of prime ideals, then it must be contained in one
of these prime ideals. Thus, there exists an element x ∈ Q2 such that x doesn’t lie
in any of the σ(Q1)’s.

Computing the norm of x relative to L/K, we have N(x) =
∏

σ∈G (x) (since the
extension is Galois). But, one of the σ’s is the identity, Q1 is an ideal, and σ(x) ∈ B
for all σ. Thus, N(x) ∈ Q2. But, N(x) ∈ A by the Galois theory discussed in a
previous section. So, N(x) ∈ Q2 ∩ A = P = Q1 ∩ A. N(x) =

∏
σ∈G (x) ∈ Q1,

thus one of the σ−1(x) lies in Q1, implying that x ∈ σ(Q1) as well, which is a
contradiction. Therefore, we must have Q2 = σ(Q1) for some σ ∈ Gal(L/K).

Corollary 6.1.1. Let L/K be a Galois extension and n = [L : K] and let P be a
nonzero ideal of A. The integers eβ/P and fβ/P depend only on P . Denote them
by e and f. Let g be the number of prime ideals of B that divide P . Then, by the
previous proposition, n = efg. This is called the efg formula.

Proof. Let PB =
∏g

i=1 P
ei
i . We know that β divides P if and only if it is one of the

Pi’s. Take 1 ≤ j 6= k lying between 1 and g. By the previous proposition, there
exists σ ∈ Gal(L/K) such that σ(Pj) = Pk. Apply σ to both sides of PB =

∏g
i=1 P

ei
i

to get PB =
∏g

i=1 σ(Pi)
ei . (Here, σ(PB) = PB, because it is (finitely) generated

by the generators of P in A, which are fixed by σ, and because σ(B) = B : PB =
σσ−1(PB) ⊆ σ(PB) ⊆ PB)

On the right hand side, the power of Pj dividing PB is ek, and the power of
Pk dividing PB is ej. By uniqueness of prime factorization, we must have ej = ek.
Since j and k were arbitrary, we have ej = ek for all indices j and k.

We also have fi = [B/Pi : A/P ]. Consider j 6= i. Without loss of generality,
fj ≤ fi. If {x1 + Pi, x2 + Pi, . . . xfi + Pi} is a basis (as a vector space) of B/Pi over
A/P , then the set {σ(x1) +Pj, σ(x2) +Pj, . . . σ(xn) +Pj} ⊆ Pj is claimed to form a
basis of B/Pj over A/P . To prove this, it is sufficient to show linear independence
(because fj ≤ fi).
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Assume a linear dependence relation∑
i

(ai + P )(σ(xi) + Pj) = 0 in B/Pj

⇒
∑
i

σ(aixi) ∈ Pj ⇒ σ(
∑
i

aixi) ∈ Pj

⇒
∑
i

aixi ∈ σ−1(Pj) = Pi

By linear independence in B/Pi, we have ai ∈ Pi∩A = P , and thus the set {σ(x1)+
Pj, σ(x2) + Pj, . . . σ(xn) + Pj} is linearly independent. Thus, fj ≥ fi, and hence
fj = fi. Since i and j were arbitrary, we must have fβ independent of β. Denoting
the common values of the ei’s by e and the fi’s by f , and from a previous proposition,
we have efg = n = [L : K].

Definition 6.1.3. Given a Galois extension L/K, we say that a prime ideal P of A
is ramified when eP > 1.

Definition 6.1.4. If eP = 1, we say that P is unramified.

Definition 6.1.5. If e = f = 1, we say that P splits completely in L.

Definition 6.1.6. Let L/K be a finite Galois extension of number fields, and β be
a prime ideal of OK . Define Dβ, the Decomposition Group of β to be

Dβ = {σ ∈ Gal(L/K) | σ(β) = β}

Each σ ∈ Dβ induces an automorphism σ̄ on l := OL
β

whose fixed field is k = OK
P

where P = β
⋂
OK . Moreover, the map σ → σ̄ is naturally a group homomorphism.

Definition 6.1.7 (Inertia Group). The kernel I = ID of the above homomorphism,
is called the inertia group of Q.

The inertia group is a normal subgroup of the decomposition group, as it is the
kernel of a homomorphism. It is given explicitly by

I = {σ ∈ D : σ(x) +Q = x+Q, ∀ x ∈ B} = {σ ∈ D : σ(x)x ∈ Q, ∀ x ∈ B}

Theorem 6.1.1. Assume that the extension (B/Q)/(A/P ) is separable. Let D de-
note the decomposition group of Q. Then, l : k = B/Q : A/P is a Galois extension.
Moreover, the natural homomorphism σ → σ̄ of D to Gal[(B/Q)/(A/P )], which
has been defined above, is surjective with kernel I. Therefore, Gal[(B/Q)/(A/P )] ∼=
D/I.

Proof. The field extension (B/Q)/(A/P ) is separable is finite and separable. By
the primitive element theorem, it must be a simple extension. Let x̄ be a primitive
element of B/Q over A/P . Let x ∈ B be a representative of x̄. Let h(X) =
Xr + ar1X

r1 + . . . + a0 be the minimal polynomial of x over FD. The coefficients
ai belong to AD = B ∩ FD since each of them lies in a finitely generated module
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of B (using the fact that x is primitive, which in turn must be a finitely generated
module of A (thus they are all integral over A, and must lie in B). The roots of
h are all of the form σ(x), σ ∈ D. (We are working in the extension L/KD, with
Galois group D.) If we reduce the coefficients of hmodPD, the resulting polynomial
h(X) has coefficients in A/P . The roots of h are of the form σ(x), σ ∈ D (because x
is a primitive element). Since σ ∈ D means that σ(Q) = Q, all conjugates of x over
A/P lie in B/Q. By the basic theory of splitting fields, B/Q is a Galois extension
of A/P .

Therefore, every conjugate x̄ overA/P is of the form σ(x̄), everyA/P -automorphism
of B/Q (necessarily determined by its action on x), is of the form σ̄ where σ ∈ D.
By the definition of the inertial group, σ̄ is trivial iff σ ∈ I. Thus, the map σ → σ̄
is surjective and has kernel I.

Proposition 6.1.6. For Q dividing P and all other notations as before, the decom-
position group DQ has order ePfP .

Proof. By the orbit-stabilizer theorem applied to the action of G on the set of primes
Q dividing P , the size of the orbit of Q is the index of the stabilizer subgroup DQ.
Since the action is transitive, there is only one orbit of size g. So, g = [G : DQ] =
|G|/|DQ|, hence |DQ| = n/g = efg/g = ef , independent of Q.

Note also that distinct conjugates of Q determine distinct cosets of DQ, since

σ1D = σ2D ⇔ σ−12 σ1 ∈ DQ ⇔ σ1(Q) = σ2(Q)

Corollary 6.1.2. The order of I is e. Thus the prime ideal P does not ramify if
and only if the inertia group of every prime ideal Q lying over P is trivial.

Proof. By definition of relative degree, the order of Gal[(B/Q)/(A/P )] is f . By the
previous proposition, the order of D is ef . Thus by the isomorphism in the previous
theorem, the order of I must be e.

Definition 6.1.8 (Decomposition and Inertial Fields). The decomposition field FD
is defined to be the fixed field of the decomposition group DQ, and the inertial field
FI is defined to be the fixed field of the inertial group IQ.

Consider the extension FDQ ⊆ L with Galois group DQ (this holds since L/K is
a Galois extension). Let ADQ = B∩FDQ be the integral closure of A in FDQ . Let PD
be the prime ideal Q ∩ADQ . Q is the only prime factor of PDB, because all primes
in the factorization are conjugate, and σ(Q) = Q for all σ ∈ D, by definition of D.

Proposition 6.1.7. Fix a prime ideal Q dividing P and denote DQ by D, eP by e

and fP by f . Let PDB = Qe
′

and f
′

= [B/Q : AD/PD]. Then e
′

= e and f
′

= f .
Moreover, A/P ∼= AD/PD.

Proof. Observe that e
′
f
′

= [L : KD] = |D| = ef . Now, A/P ⊆ AD/PD ⊆ B/Q,
so f

′ ≤ f . Also, PAD ⊆ Q ∩ FD = PD, so PD divides PAD, hence PDB divides
PADB = PB. Consequently, e

′ ≤ e, and this forces e
′

= e and f
′

= f . Thus,
the dimension of B/Q over AD/PD is the same as the dimension of B/Q over A/P .
Since A/P can be regarded as a subfield of AD/PD, the proof is complete.
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In the basic AKLB setup, with L/K a Galois extension, we now assume that K
and L are number fields.

Definition 6.1.9 (Frobenius Element/Automorphism). Let L/K be a finite Galois
extension of number fields. Let β be a prime ideal of OL and P = β

⋂
OK . Assume

P which does not ramify in L (i.e. eP = 1). Then, l = OL
β

is a finite extension of

the field k = OK/P of q elements (q is a power of some rational prime).
Now, eβ/P = 1, so Iβ = {1}. Thus,

Dβ
∼= Gal(l/k)

(
k =
OK
P

)
Since k = Fq = Gal(l/k) is cyclic and generated by the map I → Iq. De-

note by σq the corresponding element in Dβ ⊂ Gal(L/K). Call σ the Frobenius
automorphism related to the extension L/K.

We use the notation
[
L/K
Q

]
for the Frobenius automorphism.

Proposition 6.1.8. If τ ∈ G, then
[
L/K
τ(Q)

]
= τ

([
L/K
Q

])
τ−1

Proof. If x ∈ B, then
[
L/K
Q

]
τ−1x ≡ τ 1xq = τ 1xq (mod Q). Apply τ to both sides

to conclude that τ
([

L/K
Q

])
τ−1 satisfies the defining equation for

[
L/K
τ(Q)

]
. Since the

Frobenius is uniquely determined by its defining equation, the result follows.

Lemma 6.1.1. Let L/K, β, P be as before. Then, the Frobenius automorphism is
the unique element σ ∈ Gal(L/K) such that ∀ α ∈ OL,

σ(α) ≡ αN(P ) (mod β)

where N(P ) = |OK : P | = q.

Corollary 6.1.3. If L/K is abelian, then
[
L/K
Q

]
depends only on P , and we write

the Frobenius automorphism as
(
L/K
P

)
and sometimes call it the Artin symbol.

6.2 The Chebotarev Density Theorem

The Chebotarev density theorem gives a statistical description of the splitting of
primes in a given Galois extension K of the field Q. In general, a prime integer
(more precisely, the principal ideal generated by it) will factor into several prime
ideals in OK . For a given prime, only finitely may splitting patterns may occur. The
full description of splitting of every p in a general Galois extension is an unsolved
problem. The Chebotarev Density Theorem states that the frequency of occurrence
of a given pattern for all primes less than or equal to N (for some large integer N)
tends to a given limit as N goes to infinity.

In the special case in which K is a Galois extension of Q of degree n, the primes
that completely split in K have density 1/N among all primes. Primes may be
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assigned an invariant called the Frobenius element, a representative of a well-defined
conjugacy class in the Galois group Gal(K/Q). The asymptotic distribution of these
invariants is uniforms over the group, so that a conjugacy class with k elements
occurs with frequency asymptotic to k/n.

In this section, we use the notation ∆(f) for the discriminant of the form f .
Proofs of unproven results may be found in the references [19], [2], and [16].

Definition 6.2.1 (Dirichlet/Analytic Density). A set S of prime numbers has
Dirichlet density δ if (∑

p∈S

1

ps

)( ∑
p prime

1

ps

)−1
→ δ

as s decreases to 1.

Definition 6.2.2 (Natural Density). A set S of prime numbers has natural density
δ if

#{p ≤ x : p ∈ S}
#{p ≤ x : p prime}

→ δ as x→∞

In general, let f be a polynomial with integer coefficients and leading coefficient
1. Let n denote the degree of f. Suppose that ∆(f) :6= 0. Then, f has distinct
zeroes α1, α2, . . ., αn in a suitable extension field of Q.

Let K = Q(α1, . . . , αn), and G be the Galois group of f over the field extension
K/Q. Each σ ∈ G permutes α1, . . ., αn and is determined completely by its action
on them. Thus G lies inside Sn.
Write σ ∈ G as a product of disjoint cycles (including those of length 1), to obtain
a cycle patern of σ, i.e. a partition n1, . . ., nt of n. where the ni are the lengths of
the individual cycles constituting that of σ.

If p doesn’t divide the discriminant ∆(f) of the form f , we can write f modulo p
as a product of distinct irreducible factors over Fp. The degrees of these irreducible
factors form the decomposition type of f modulo p, which is also a partition of n.

Theorem 6.2.1 (Frobenius). The density of the set of primes p for which f has a
given decomposition type n1n2 . . . nt exists, and it is equal to 1/|G| times the number
of σ ∈ G with cycle pattern n1n2 . . . nt, where G is the Galois group of f .

Thus, the density of the set of primes for which f splits into linear factors (cor-
responding to the identity permutation) is 1/|G|.

Definition 6.2.3 (Frobenius Substitution of p). There is a natural association be-
tween a prime not dividing ∆(f) and an element σp ∈ G, such that the decomposition
of f modo p is the same as the cycle type of σp. Here, σp is the Frobenius symbol
of p, and is well-defined only up to conjugacy in G.

Recall that the Frobenius map (or here, also, the Artin map), as described in
the previous section, is an automorphism of the field Fp of characteristic p, and the
Frobenius substitution σp is an automorphism of the field k of characteristic 0. To
relate the two fields, we develop a way of taking elements of K = Q(α1, α2, . . . , αn)
modulo p so that the zeroes of (f (mod p) can be regarded as (zeroes of f) (mod p).
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Let f be a polynomial with integer coefficients. We are interested in the frequency
of each factorization pattern of f modo each prime p (except in the cases where a
double factor occurs, i.e. when p divides the discriminant of f .

In case of an abelian extension (i.e. the Galois group is abelian) K ⊂ L, we have
an Artin symbol A(p) ∈ Gal(L/K) for primes p not dividing ∆L/K , with the unique
property that for all α ∈ OL,

A(P )(α) ≡ α#
OK
P (mod P )OL

This element A(P ) is often called the Frobenius at P .
If we drop the abelian condition and only require the extension to be Galois,

then the definition of the Artin map depends on the choice of the prime Q lying
over the prime P = (p). Upon this choice, when p not dividing ∆L/K , there is a
unique FrobQ ∈ G such that for all α ∈ OL,

FrobQ(α) ≡ α#
OK
P (mod Q)

This really does depend on the choice of Q. Given another choice Q′/P , there is
an element σ ∈ Gal(L/K) such that Q′ = σ(Q) and we see that

FrobQ′ = σFrobQσ
−1

since

σFrobQσ
−1((α)) = σ(σ−1(α)#OK/P )) (mod Q)

= σ(σ−1(α#OK/P )) (mod Q)

= α#OK/P (mod Q)

In this case, we must treat not just the elements themselves but the entire con-
jugacy class.

Definition 6.2.4. Define the Frobenius symbol of P in L/K to be the conjugacy
class {FrobQ : Q | P}.

FrobP is also denoted by σP .

For an abelian group, this set contains a single element.

The Frobenius element restricts well to subfields of fields. If K ⊂ L, L ⊂ M
are Galois extensions of fields, then σP ∈ Gal(M/K) maps by restriction to σP ∈
Gal(L/K).

Knowledge of σP allows us to control the decomposition of P in every subfield.
Given a subextension K ⊂ E ⊂ L not necessarily Galois, write

POE =
∏
Q|P

Q

If P is unramified, the decomposition of P is given by the sequence of residue
class degrees f(Q/P ). The Frobenius symbol tells us what they are.
Let E = LH be the fixed field under the subgroup H of the group G.
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Fact: The decomposition type of P in OE (the “factorization pattern”, which
is a partition of the degree [E : K]) is equal to the cycle structure of σP acting on
G/H where E = LH .

Note that G/H is a set of [E : K] cosets. It comes with the action of G, hence a
cycle structure of σ on this set. Note that this cycle structure only depends on the
conjugacy class of σP .

Let E = K(α) and f ∈ O[x] be the minimal polynomial of α and assume that p
does not divide ∆(f). We have two factorization patterns to consider:

• the factorization pattern of f (mod p) in OK
P

[X]

• the cycle structure of the Frobenius symbol

Since α generates E over K, for any τ , τα = α⇔ τ ∈ H & τ1α = τ2α⇔ τ1H = τ2H.
So, instead of the cycle structure on G/H, we may instead consider the cycle on the
K-conjugates of α in L.

By concatenating, we can take the product of any distinct irreducible polynomi-
als. We still have the fact that the factorization pattern of f modo p is the same as
the cycle of σP acting on the set of roots of f .

Theorem 6.2.2 (Chebotarev Density Theorem). Let K ⊂ L be Galois, and let
C ⊂ G = Gal(L/K) be a conjugacy class. Then, {P : P is a prime of K, p doesn’t

divide divide ∆L/K, σP ∈ C} has density |C||G| . In particular, this ratio is always ¿0,
so there always exist such primes. Every element of the Galois group is the Frobenius
element of some prime.

Let S be the set of primes of K. We have already defined the notions of natural
and analytic density of primes. If the natural density exists, it is equal to the
analytic density. The converse is not true. The Chebotarev density theorem is true
with both notions of density.

The theorem goes both ways. If the densities are known, we can get information
about the Galois group. If the Galois group is known, we can predict the densities
that occur by computing the set of conjugacy classes of the group.

Applying this theorem to the Abelian case, combine the Chebotarev denisty
theorem with classification of abelian extensions that comes from Galois theory.

Q(ζm) ⊃ Q

G ∼= (
Z

mZ
)∗

by the isomorphism
σP ↔ (p (mod m))

For any a (mod m) ∈ ( Z
mZ

)∗, Chebotarev density theorem then implies that {p
: p ≡ a (mod m)} has density 1

φ(m)
, a statement that is a bit stronger than the

Dirichlet theorem on primes in arithmetic progressions.
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6.3 Ramification in Number Fields

We first describe the theory that holds in a general number field K and then look,
in particular, at quadratic number fields.

Let p be a rational prime number. The ideal generated by p in the ring of integers
OK of a number field K has a unique factorization in terms of the prime ideals of
OK . We have seen that this factorization looks like pO = P

eP1

1 P
eP2

2 . . . P
ePg
g , and

also that n = [K : Q] = Σg
i=1ePifPi , where fPi denotes the intertial index of Pi, i.e.

fPi = [OK/Pi : Z/pZ]. Also, since the extension K/Q is Galois, all the ePi ’s and
fPi ’s are equal, and we have the formula n = efg.

In general, there is no straightforward method to compute the factorization of
pOK . However, when OK = Z[O], we can use the following result.

Theorem 6.3.1 (Kummer). Let K be a number field and p ∈ Z be prime. Assume
that there exists θ such that OK = Z[θ], where f is the minimal polynomial of O
and f is the reduction of f modulo p. Let

f(X) =

g∏
i=1

φi(X)ei

be the factorization of f(x) in Fp[X], with the φi(X)’s co-prime and irreducible. Set

Pi = (p, fi(θ)) = pOK + fi(θ)OK

where fi is any lift of φi to Z[X], i.e. fi = φi (mod p). Then,

pOK = P e1
1 . . . P eg

g

is the factorization of pOK in OK.

Proof. Note that

OK
pOK

=
Z[O]

pZ[O]
' Z[X]/f(X)

p(Z[X]/f(X))
' Z[X]

(p, f(X))
' Fp[X]

(f(X))
)

where f = f (mod p).

Let A := Fp[X]

(f(X))
)

If ψ(X) ∈ Fp[X], ψ(X) (mod )f(X) ∈ A and g ∈ Z[X] such that g = ψ, then

its preimage is given by g(O) (i.e. the inverse of the isomorphism Z[O]
pZ[O] '

Fp[X]

(f(X))
) is

evaluation at O).

By the Chinese Remainder Theorem, we have

A =
Fp[X]

(f(X)))
'

g∏
i=1

Fp[X]

φi(X)ei

Since by assumption, the ideal f(X) has a prime factorization given by f(X) =∏g
i=1(φi(X))ei .
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We are now ready to understand the structure of prime ideals of both OK
pOK

and A,

thanks to which we will prove that Pi = (p, fi(O)) is prime, that any prime divisor
of pOK is actually one of the Pi, that the powers ei appearing in the factorization
of f are bigger than or equal to the ramification index ePi of Pi. Then, invoke the
result that n =

∑
i=1 eifi to show that ei = ePi .

Since

A =
Fp[X]

(f(X)))
'

g∏
i=1

Fp[X]

φi(X)ei
,

the maximal ideals of A are given by (φi(X))ei , and the degree of the extension
A

φi(X)A
over Fp is the degree of φi.

Since A ' OK
pOK

, we get that the maximal ideals of OK
pOK

are the ideals generated

by fi(O) (mod p)OK . Consider the projection

π : OK →
OK
pOK

We have

π(Pi) = π(pOK + fi(O)OK)

= fi(O)OK (mod pOK)

= φi(O)OK (mod pOK)

We have seen that fi(O)OK are maximal ideals in O
pO , and are thus prime.

Therefore, Pi, being the pre-image of a prime ideal under the above projection,
is a prime ideal. Furthermore, since Pi ⊃ pOK , Pi|pOK and the inertial degree is
equal to the degree of the polynomial φi.

fPi =

[
OK
Pi

: Fp

]
=

[
OK/pOK
π(Pi)

: Fp

]
=

[
OK/pOK

fi(O) (mod pOK)
: Fp

]
=

[
A

(φi(X))A
: Fp

]
= deg φi

Now, every prime ideal P in the factorization of pOK is one of the Pi, since the
image of P by π is a maximal ideal of OK/pOK .

We are left to look at ePi , the ramification index of Pi. The ideal φi
eiA of A

belongs to OK
pOK

via the isomorphism OK
pOK

' A and its preimage in OK by π−1

contains Pi
ei .

In OK
pOK

, we have

OK = ∩gi=1φi(O)ei
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i.e.

pOK = π−1(OK)

= ∩gi=1π
−1(φeii A) ⊃ ∩gi=1P

ei
i

=

g∏
i=1

P ei
i

Thus,
∏g

i=1 P
ei
i is divided by pOK =

∏g
i=1 P

ePi
i , and so ei ≥ ePi .

n = [K : Q] =

g∑
i=1

ePifPi ≤
g∑
i=1

ei deg(φi) = dimFp(A) = dimFp

Zn

pZn
= n

Thus, ePi = ei.

Thus, we have a concrete method to compute the factorization of pOK for a
prime p:

1. Choose a prime p ∈ Z

2. Let f be the minimal polynomial of θ where OK = Z[θ]

3. Let f̄ =
∏g

i=1 φi(X)ei be the factorization of f = f (mod p)

4. Lift each φi to a polynomial fi ∈ Z[X]

5. Compute Pi = (p, fi(θ)) by evaluating fi at θ

6. We have pOK = P e1
1 . . . P

eg
g

Recall the following definition.

Definition 6.3.1. A prime p is called inert if pOK is prime, i.e. g = 1, e = 1, f = n,
and is called totally ramified if e = n, g = 1, f = 1.

In general, the following theorem holds.

Theorem 6.3.2. Let K be a number field. If a prime p is ramified, it divides the
discriminant dK.

Proof. Let P be a prime ideal dividing pOK such that P
2|pOK (P exists because p

is ramified). Write
pOK = PI

where I is an ideal divisible by all prime ideals above p.
Let {α1, α2, . . . , αn} ⊂ OK be a Z-basis of OK and let α be an element of I that

does not lie in pOK (α exists because pO ⊂ I (properly) since P divides I). Write

α = b1α1 + . . .+ bnαn, bi ∈ Z
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Since α /∈ pOK , there exists bi such that p doesn’t divide bi, say p doesn’t divide
b1
Recall

dK = det

σ1(α1) . . . σ1(αn)
...

...
σn(α1) . . . σn(αn)


2

where σi are the n embeddings of K into C
Let L be the Galois closure of K. All the conjugates of α belong to L. We also

know that α belongs to all the primes of OK above p. Similarly, α ∈ L ⊆ L belongs
to all primes β of OL lying above p, since β ∩ OK is a prime ideal of OK above p
and contains α.

Fix a prime β above p in OL. Then σi(β) is also a prime ideal of OL above p
(σi(β) ∈ L since L/Q is Galois, σi(β) is prime because β is, and p = σi(p) ∈ σi(β))
Now, σi(α) ∈ β, ∀ σi, thus the first column of the matrix involved in computing dK
is in β, we have dK ∈ β ∩ Z = pZ, as required. The proof of the theorem is now
complete.

Corollary 6.3.1. There are only finitely many primes that ramify in a given number
field.

6.3.1 Ramification in Quadratic Number Fields

In the case of quadratic fields, e, f and g may take values 1 or 2, and the only
possibilities for a prime p are the following.

1. If g = 2, e = f = 1, pOK = P1P2 for some distinct primes P1, P2 of OK . p is a
decomposed or split prime.

OK
Pi
∼=

Z

pZ

2. g = 1, e = 2, f = 1 pOK = P 2, P is a prime ideal of OK . p is a ramified prime.

OK
Pi
∼=

Z

pZ

3. g = 1, e = 1, f = 2 pOK = P , where P is a prime ideal of OK . p is an inertial
or inert prime.

[
OK
Pi

:
Z

pZ
] = 2

Let (a
b
) denote the Legendre symbol.

Theorem 6.3.3. Let K = Q(
√
m) be a quadratic field and p be a rational prime.

If m ≡ 1 (mod 4), p is

• decomposed if (m
p

) = 1, p 6= 2 or if p = 2, m ≡ 1 (mod 8) 8,

• ramified if p|m, i.e. (m
p

) = 0 (here p 6= 2)
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• inert if (m
p

) = −1 if p 6= 2 or if p = 2 and m ≡ 1 (mod 8) 8.

If m ≡ 2, 3 (mod 4), p is

• decomposed if (m
p

) = 1, p 6= 2

• ramified if p = 2 or (m
p

) = 0

• inert if p 6= 2 and (m
p

) = −1

Proof. CASE-1: m ≡ 2, 3 (mod 4)

We have OK = Z[
√
m]

f(X) = X2−m is the minimal polynomial of O =
√
m. By Kummer’s theorem,

the factorization of pOK is determined by the factorization of
f(X) = f(X) (mod p)

• If p | m or p = 2, then clearly, f(X) = X2 or (X−1)2 [with (X−1)2 occurring
in case of these restrictions if and only if p doesn’t divide m and p = 2) and
thus

(p)OK = Q2, , Q = (p,
√
m) or Q = (p, 1−

√
m)

By Kummer’s theorem, p is ramified.

• If p does not divide m and p 6= 2, then f(X) = X2−m is either irreducible in
Z
pZ

[X] or has two distinct roots in Z
pZ

.

– If f(X) is irreducible, then p is inert, since it has only one prime ideal
(with power 1) in its factorization.

– If f(X) is reducible,

X2 −m = (X + a)(X + b) (mod p) = X2 + (a+ b)X + ab (mod p)

⇒ b = −a (mod p), ab = −m (mod p)

m = a2 (mod p)

p does not divide a or b since it does not divide m, so m is a square
(mod p). Moreover, we must have b 6= a (mod p), else 2b = 0 (mod p)⇒
p | b, a contradiction. By Kummer’s theorem, p is split into two distinct
prime ideal factors.

We have proven the m ≡ 2, 3 (mod 4) case in the theorem.

CASE-2: m ≡ 1 (mod 4)

We have OK = Z[1+
√
m

2
]

f(X) = X2 −X − m−1
4

is the minimal polynomial of 1+
√
m

2
over Q

53



• If p = 2, f(X) has a root modulo p if and only if m−1
4
≡ 0 (mod 2), i.e. m ≡ 1

(mod 8)

– In this case, i.e. if m−1
4
≡ 0 (mod p)2, each of the two distinct elements

in mathbfZ
2Z

is a root of f(X), so p is a split prime.

– If p = 2 and m−1
4
≡ 1 (mod 2), f(X) is irreducible, thus p is inert.

• If p 6= 2,

– If the roots 1±
√
m

2
of X2 − X − m−1

4
exist in Z

pZ
(they are necessarily

distinct), their sum,
√
m exists in Z

pZ
(note that 2 is a unit (mod p)).

Equivalently, m is a square modulo p, i.e. (m
p

) = 1. Kummer’s theorem
shows that p is a split prime.

– Moreover, f(X) has multiple roots in Z
pZ

if and only if p divides m. Thus,
by Kummer’s theorem, p is ramified if and only if p divides m, i.e. if and
only if (m

p
) = 0.

– Thus, in this case, p is inert if and only if (m
p

) = −1

We have thus completed the proof by showing the m ≡ 1 (mod 4) case in the
theorem.

In particular, looking at the ramified conditions in both the above cases, we have
the following result.

Corollary 6.3.2. Let K be a number field. A rational prime p is ramified in OK if
and only if p divides the discriminant of K.

Theorem 6.3.4 (Fermat’s Two Square Theorem). An odd prime p can be expressed
as a sum of two squares if and only if p ≡ 1 (mod 8) 4. These primes are also called
Pythagorean primes.

Proof. Take K = Q(i), so that OK = Z[i]. Now, a prime p is the sum of two squares
if and only if there exist integers nonzero x and y such that

p = x2 + y2 = (x+ iy)(x− iy)

Thus, p must be a decomposed or split prime (it cannot be ramified because that
would imply that x + iy = x − iy (mod p) or 2y = 0 (mod p) or p divides x,
a contradiction to the assumption.) We see in the previous theorem (noting that

m = −1 = 3 (mod 4)) that this implies that (−1
p

) = 1 or (−1)
p−1
2 = 1 or p−1

2
= 0

(mod 2) or p = 1 (mod 4).
Conversely, suppose that p ≡ 1 (mod 4). By the theorem, p is a decomposed

prime in K, i.e. it is not a Gaussian prime. Then, we have pZ[i] = P1P2 =
((a+ ib)(γ), where a+ bi and γ are Gaussian integers, since Z[i] is a PID. Since by
definition, a Gaussian prime is an element of Z[i] whose norm is prime, or in other
words, a Gaussian integer that is not the product of Gaussian integers of smaller
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norm, a+ bi and γ are Gaussian integers with norm less than the norm p2 of p (and
hence also of norm > 1). Taking conjugates of both sides we get

p = (a− ib)γ

Multiplying these two expressions for p gives

p2 = (a− ib)(a+ ib)γγ = (a2 + b2)|γ|2

where both a2 + b2 and |γ|2 are greater than 1. But the only such factorization of
p2 is pp, hence p = a2 + b2.

[Also, this implies that γ = a − ib, so we have shown that every integral odd
prime p is either a Gaussian prime or the product of two conjugate Gaussian primes]

We have proven that p is the sum of two squares, completing the proof of the
theorem.

Corollary 6.3.3. A positive integer n can be written as a sum of two squares if
and only if n has a prime factorization n = pe11 . . . penn (pi distinct) where ei is even
whenever pi ≡ 2 or 3 (mod 4).

Proof. We may assume that n is non-prime. To prove the corollary, we first claim
that if two numbers are each individually a sum of squares, then their product is
a sum of squares, as well. By induction, this result holds for any finite number of
multiplicands.

Proof of claim:
(x21 + y21)(x22 + y22)

= ((x1x2)
2 + x1y

2
1 + y1x

2
2 + (y1y2)

2) + 2x1x2y1y2 − 2x1x2y1y2

= (x1x2 − y1y2)2 + (x1y1 + y1x2)
2

Now, assume (without loss of generality) that for 1 ≤ i ≤ r, p1 ≡ 2, 3 (mod 4),
and for r ≤ in, pi ≡ 1 (mod 4). Then, using Fermat’s two square theorem and the
previous claim, we may write pr+1 . . . pn = x2 + y2, and so

n = pe11 . . . perr (x2 + y2)

Now, it is clear that if each of the ei for 1 ≤ i ≤ r is even, then pe11 . . . perr is a
square, and thus n is a sum of squares, as required. Conversely, if we know that n
is a sum of squares, say n = X2 + Y 2 = (X + iY )(X − iY ), write

(X + iY )(X − iY ) = pe11 . . . perr (x+ iy)(x− iy)

Case-1: (x + iy) (and thus also (x− iy)) is prime. Since it divides the product
(X + iY )(X − iY ), it must divide one of the two factors, say (X + iY ) (without
loss of generality). Then, x− iy divides X − iY , but taking conjugates shows that
X+iY
x+iy

= X−iY
x−iy , and thus pe11 . . . perr is a square and the corresponding ei’s must be

even.
Case-2: (x+ iy) is not prime, and thus neither is (x− iy)). Then, each of these

is the product of the same (seen by taking conjugates) conjugate Gaussian primes.
Thus, (x+ iy)(x− iy) is a square. Similarly, (X + iY )(X − iY ) is a square, as well.
Thus, pe11 . . . perr is a square and so each of the ei’s is even.
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Chapter 7

Factorization of the Class Number

7.1 Class numbers of fields with discriminant hav-

ing only two odd prime factors

This section states and proves results that are found in [9] and [10].

Theorem 7.1.1. Let K = Q(
√
d) be a quadratic field whose discriminant is divided

by at least two distinct primes. Then, the class number of K is even.

Proof. Pick a prime p that divides d. We know that this condition is equivalent to p
being a ramified prime. So, pOK = P 2 for some prime ideal P of the ring of integers
OK of K.

Claim: P cannot be a principal ideal.

Proof of claim: If, to the contrary, P is a principal ideal, pOK = (a + b
√
d)

if d ≡ 2, 3 (mod 4) and pOK = 1
2
(a + b

√
d) if d ≡ 1 (mod 4). Here a and b are

integers. So, p = (a + b
√
d)2 or p = (1

2
(a + b

√
d))2. Thus, p = a2 + b2d + 2ab

√
d or

4p = a2 + b2d+ 2ab
√
d. In either case, we must have a = 0 or b = 0. We must have,

respectively, p = a2 or p = b2d, which is not possible, because p is prime, or 4p = a2

or 4p = b2d, both of which are, again, impossible by similar arguments.

Thus, the class of P is a non-trivial element of the ideal class group. Since
P 2 = pOK , (the class of) P has order 2. By Lagrange’s theorem, 2 divides the order
of the ideal class group (i.e. the class number), and the proof is complete.

We now consider imaginary quadratic fields whose discriminant has only two odd
prime factors.

Theorem 7.1.2 (Byeon & Lee, [9]). Let g ≥ 2. Then, there exist infinitely many
imaginary quadratic fields whose ideal class group has an element of order 2g and
whose discriminant has only two prime factors.

This theorem is proved by showing the existence of infinitely many fields of the
form Q(

√
n2 −m2g) and Q(

√
n2 − 4m2g) whose class number is divisible by n and

whose discriminant has only two prime factors. The construction of fields of the form
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Q(
√
n2 −m2g), in which case the odd prime divisors of d lie in different congruence

classes modulo 4, was carried out by Byeon and Lee [9], while Akiko Ito [10] proved
the theorem for fields of the form Q(

√
n2 − 4m2g), in which case the odd prime

divisors of d lie in the same congruence class modulo 4.

Theorem 7.1.3 (Bruden, Kawada, and Wooley, [11]). Let φ(x) ∈ Z[x] be a poly-
nomial of degree k with positive leading coefficient. Let Sk(N, φ) denote the number
of positive integers n, 1 ≤ n ≤ N for which the equation 2φ(n) = p + q has no
solution in primes p and q. Then, there exists an absolute constant c > 0 such that
Sk(N, φ) <<φ N

1− c
k where the last equation means that there exists a constant c

′

that depends on φ and satisfies Sk(N, φ) < c
′
N1− c

k for large enough N .

We now use this theorem first to prove the theorem 7.1.2.

Lemma 7.1.1. Let g ≥ 2 and let

φ(x) = 2(8x+ 1)g ∈ Z[x]

By the lemma, there exist infinitely many positive integers m
′

for which the equation

2φ(m
′
) = 4(8m

′
+ 1)g = p+ q

has a solution in odd primes p and q.

Proof. Assume that only finitely many such m
′

exist. Let m
′

denote the largest
integer for which there exist odd p and q with 2φ(m

′
= p + q. Then, for any

N > m
′
,

Sk(N, φ) ≥ N −m′

But, the lemma implies that Sk(N, φ) < c
′
N1− c

g , c > 0, g ≥ 1. So, N − m
′
<

c
′
N1− c

g∀ N > m
′
. But, this is a contradiction because the function N(1 − c′N−

c
g )

is strictly increasing and unbounded, as c, g > 0, g ≥ 1]
Thus, the equation 1 has a solution in odd primes p, q for infinitely many m

′
.

The congruence p+ q ≡ 4 (mod 8) gives the following possibilities:

1. p ≡ 1 (mod 8), q ≡ 3 (mod 8)

2. p ≡ 3 (mod 8), q ≡ 1 (mod 8)

3. p ≡ 5 (mod 8), q ≡ 7 (mod 8)

4. p ≡ 7 (mod 8), q ≡ 5 (mod 8)

For m
′
, p, q satisfying equation 1, let m = 8m

′
+ 1, n = p−q

2
> 0. There exist

infinitely many distinct positive square-free integers

d = 4m2g − n2 = (
p+ q

2
)2 − (

p− q
2

)2 = pq

Consider the ideal factorization in Q(
√
−d):

(4m2g) = (n2 + d) = (n+
√
−d)(n−

√
−d)
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d = 4m2g − n2 = pq
(1) to (4) ⇒ pq ≡ 3 (mod 8) ⇒ −d ≡ 5 (mod 8) and n = p−q

2
is odd.

So, n±
√
−d

2
is an algebraic integer (−d ≡ 1 (mod 4)). So, we can also consider

the ideal factorization in Q(
√
−d)

(m)2g = (
n+
√
−d

2
)(
n−
√
−d

2
)

Claim: (n+
√
−d

2
) and (n−

√
−d

2
) are coprime ideals.

Proof of claim. If (α) is a common factor, α divides m2g and n+
√
−d

2
+ n−

√
−d

2
= n.

So, α divides gcd(m2g, n). But, this gcd has to be 1, otherwise d = 4m2g − n2 is not
square-free. So, α = 1, i.e. there are no common factors.

Therefore, each of n±
√
−d

2
is a 2g-th power, say

β2g =
n+
√
−d

2

Suppose that the ideal β has order r < 2g. Then, r | 2g and so r ≤ g.

βr = (
n+
√
−d

2
)r

=
u+ v

√
−d

2

, u, v ∈ Z∗. Taking norms,

u2 + dv2

4
=

(n2 + d)r

2r

=
(4m2g)r

4r

= (8m
′
+ 1)2g ≡ 1 (mod 4)

, u2+dv2

4
∈ Z. We have

u2 + dv2 ≡ u2 + 3v2 ≡ 0 (mod 4)

So, u ≡ v (mod 2). We also have

n±
√
−d

2
= (

u+ v
√
−d

2
)
2g
r , g ≥ r

Taking norms on both sides of β2g = n+
√
−d

2
, we get

m2g =
n2 + d

4

= N(βr)
2g
r

= (
u2 + v2d

4
)
2g
r

≥ (
1 + d

4
)2
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i.e. 16m2g ≥ (1 + d)2 ⇔ 4mg − 1 ≥ d.
But, d = 4m2g − n2.
Thus,

4mg − 1 ≥ (2mg − n)(2mg + n)

If 2mg − n > 1, then 2mg + n ≤ d
2
, so 4mg + 2n ≤ d. But, 4mg − 1 ≥ d, a

contradiction.
If 2mg−n = 1, this implies that 2mg−n = p+q

2
− p−q

2
= q 6= 1. Therefore, r < 2g

is not possible, and the order of β is exactly 2g.

Therefore, we have constructed an infinite family of quadratic fields Q(
√
n2 − 4m2g),

(m,n) = 1, 4m2g > n2 whose class numbers are divisible by 2g where g is any integer.
In this process, we have also proven the following theorem.

Theorem 7.1.4. For an integer g > 1, #{(p, q)| p, q odd primes, p 6= q (mod 4),
2g|h(−pq)} =∞.

We now turn focus to the case p ≡ q (mod 4). A proof similar to the above
may be outlined to prove an analogous result for this case, as well. In particular, we
have the following result.

Theorem 7.1.5 (Ito, 2012 [10]). Let g > 1. Then,
#{(p, q)| p, q odd primes, p ≡ q (mod 4), 2g | h(−pq)} =∞.

Proof. This theorem is proved by showing the existence of infinitely many imaginary
quadratic fields Q(

√
n2 −m2g), n2 − m2g = −pq, p ≡ q (mod 4), (m,n) = 1,

m2g > n2. This implies m2g − n2 = pq ≡ 1 (mod 4), p ≡ q (mod 4).

The theorem of Bruden, Kawada, and Wooley [11] is used again.

Let n > 1 and let
φ(x) := (4x+ 1)n ∈ Z[x]

We know that there exist infinitely many positive m
′
for which 2φ(m

′
) := 2(4m

′
+

1)n ≡ 2 (mod 4). Thus, p and q satisfy one of:

• p ≡ q ≡ 1 (mod 4)

• p ≡ q ≡ 3 (mod 4)

Without loss of generality, assume that p > q. For m′, p, q satisfying equation
1, put m = 4m

′
+ 1 and n = p−q

2
. Here, n is even because p ≡ q (mod 4).

m2g − n2 =

(
p+ q

2

)2

−
(
p− q

2

)2

= pq

So, there exist infinitely many distinct positive square-free integers d = m2n − n2

with only two odd prime divisors. m is odd and greater than 1, and n is an even
integer, pq ≡ 1 (mod 4), so −d = −pq ≡ 3 (mod 4). So, OQ(

√
−pq) = Z[

√
−pq]. We

can write
(m2g) = (n2 + pq)) = (n+

√
−pq)(n−

√
−pq)
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in Q(
√
−pq). As before, (n +

√
−pq) and (n −

√
−pq) have no common factors,

because if they did, such a factor would divide m2g, which is odd, as well as 2n, and
thus would divide the g.c.d. of n and m2g, but this would imply that d = n2 −m2g

is not square-free. So, the ideals have to be co-prime. Thus, (n +
√
−pq) = β2g for

some ideal β of OQ(
√
−pq).

Suppose that the order of β in the ideal class group is r < 2g. Then, r | 2g, so
r ≤ g. Since OQ(

√
−pq) = Z[

√
−pq], we have

βr = (u+ v
√
−pq), u, v ∈ Z

(n+
√
−pq) = β2g = (βr)

2g
r = (u+ v

√
−pq)

2g
r

Now, if u = 0 or v = 0, the above equation doesn’t hold, since n 6= 0. Moreover,
since Q(

√
−pq) 6= Q(

√
−1), Q(

√
−3, the group of units of Q(

√
−pq) is {±1}. Then,

n+
√
−pq = ±(u+ v

√
−pq)

2g
r

Taking norms on both sides,

m2g = n2 + pq

= N((n+
√
−pq))

= N(βr)
2g
r

= N(u+ v
√
−pq)

2g
r

= (u2 + v2pq)
2g
r

Since u2 ≥ 1, v2 ≥ 1, g/r ≥ 1 hold,

m2g = (u2 + v2pq)
2g
r ≥ (1 + pq)2

⇔ mg − 1 ≥ pq

But, m2g − n2 = pq ⇒ (mg − n)(mg + n) = pq.
We have

mg + n =
p+ q

2
+
p− q

2
= p > 1

So, mg + n = p, mg − n = q, but mg + n > mg − 1 ≥ pq, a contradiction. Therefore,
the order of β must be equal to 2g, and the proof of the theorem is complete.

7.2 The Hilbert Class Field:

A Brief Introduction

Definition 7.2.1 (Unramified Field Extension). A field extension K ⊆ L is called
unramified if every prime ideal P of OK is unramified in OL.

Definition 7.2.2 (Minkowski’s Bound). Let D be the discriminant of a field K, n
be the degree of K over Q, and 2r2 = n− r1, 2r2 = n− r1 be the number of complex
embeddings where r1 is the number of real embeddings. Then, by Minkowski’s
theorem, every class in the ideal class group of K contains an integral ideal of norm
not exceeding Minkowski’s bound.

Minkowski’s constant/bound for the field K is this bound MK .
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We have

MK =
√
|D|
(

4

π

)r2 n!

nn

Minkowski’s bound implies that there exists a lower bound for the discriminant
of a field K given n, r1 and r2.√

|D| ≥
(π

4

)r2 nn
n!
≥
(π

4

)n/2 nn
n!

For n at least 2, it is easy to show that the lower bound is greater than 1, so we ob-
tain the fact that the discriminant of every number field, other than Q, is non-trivial.

Theorem 7.2.1. The field of rational numbers has no unramified finite extension.

Proof. From the above result, no finite extension of Q has discriminant equal to ±1,
and thus every number field’s discriminant is divided by some prime. We know that
any prime dividing the discriminant of a number field ramifies in it. Thus, such an
extension cannot be unramified.

On the other hand, fields larger than Q may have unramified extensions.

Definition 7.2.3 (Relative Discriminant). Let K be a number field and L be a
finite extension of K. The relative discriminant ∆L/K is an ideal of OL. Let {σi} be
the embeddings of K into C and {bi} be an integral basis of OK . When OK = Z[α],
the discriminant of K is equal to the discriminant of the minimal polynomial of α
(bi = αi−1) and the matrix is the Vandermonde matrix associated to αi = σi(α)
whose determinant is

∏
1≤i<j≤n(αi − αj)2), which is also equal to the discriminant

of the minimal polynomial of α.

In a tower of fields L ⊇ K ⊇ F ,

∆L/F = NK/F (∆L/K∆
[L:K]
K/F )

where N denotes the relative ideal norm, i.e.

NL/K(α) = (
n∏
j=1

σj(α))[L:K(α)]

where σj(α) are the roots of the minimal polynomial of α over K in some extension
field of L.

Theorem 7.2.2. The extension L/K is ramified in exactly those prime ideals that
divide the relative discriminant ∆L/K. Hence, the extension is unramified in all but
finitely many prime ideals.

Definition 7.2.4. The Hilbert class field E of a number field K is the maximal
abelian unramified extension of K.
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Its degree over K equals the class number of K.

The Galois group of E over K is canonically isomorphic to the ideal class group
using the Frobenius elements for prime ideals in K.

If OK is a UFD, in particular if K = Q, then K = E.

Example. ConsiderK = Q(
√
−15) with discriminant -15, and let L = Q(

√
−3,
√
−5)

with discriminant 225 = −152. L is an everywhere unramified extension of K, since
the relative discriminant ∆L/K equals the unit principal ideal OK :

∆L/Q = NK/Q(∆L/K)∆
[L:K]
K/Q

⇒ −152 = NK/Q(∆L/K)(−152)

⇒ NK/Q(∆L/K) = 1

⇒ ∆L/K = (1) = OK

Thus, L is an everywhere unramified abelian extension of K. The computations
using binary quadratic forms as described in a previous section show that K has
class number 2. Thus, L is the Hilbert class field, since the Gal(L/K) has order 2.

7.2.1 Properties of the Hilbert Class Field

1. E is a finite Galois extension of K with [E : K] = hK , the class number of K

2. The ideal class group of K is isomorphic to the Galois grop of E/K.

3. Every ideal of OK is a principal ideal of the ring extension OE

4. Every prime ideal P of OK decomposes into the product of hK
f

prime ideals in

OE, where f is the order of [P ] in the ideal class group of OK .

In fact, E is the unique field satisfying 1, 2, and 4.

7.3 Unramified Extensions of Quadratic Number

Fields

This section is based mainly on two papers by Koji Uchida, [12], and [15].

Theorem 7.3.1 (Hensel’s Lemma). Assume K is a field complete with respect to
a normalised discrete valuation ν. Suppose, furthermore, that OK is the ring of
integers of K (i.e. all elements of K with non-negative valuation), let π ∈ K be
such that ν(π) = 1 and let k = OK/π denote the residue field. Let f(X) ∈ OK [X]
be a polynomial with coefficients in OK. If the reduction f(X) ∈ k[X] has a simple
root (i.e. there exists x0 ∈ k such that f(x0) = 0 and f ′(x0) 6= 0, then there exists a
unique a ∈ OK such that f(a) = 0 and the reduction a equals x0 in k.

62



Theorem 7.3.2 (Uchida, 1969 [12]). Let K be an algebraic number field of finite
degree. Let a and b be integers of K, i.e. a, b ∈ OK. Let L denote the minimal
splitting field of a polynomial

f(X) = Xn − aX + b

i.e., L = K(α1, . . . αn), where α1, . . ., αn are the roots of f(X) = 0. Let

D =
∏
i<j

(αi − αj)2

be the discriminant of f(X). If (n1)a and nb are relatively prime, L is unramified
over K(

√
D).

Proof. Let β be any finite prime of L, and let P = β ∩ K. Let G be the Galois
group of L over K. Then, G is a permutation group of {α1, . . . , αn}. Let H be the
subgroup of G consisting of the even permutations. H corresponds to the fixed field
K(
√
D). We show that H meets the inertia group of β trivially. First we consider the

factorization of f(X) (mod p). From f(X) = Xn−aX+ b and f
′
(X) = nXn−1−a,

it follows that
Xf ′(X)− nf(X) = (n− 1)aX − nb

As ((n−l)a, nb) = 1, the above expression does not vanish (mod p). So (nl)aX−
nb is divisible by the gcd of f(X) and f ′(X) (mod p). If f(X) and f ′(X) have
common factors (mod p), it must equal to the gcd since it is of degree one. Therefore
f(X) is factorized as

f(X) ≡ f1(X) . . . fr(X) (mod p)

if f has only simple roots (mod p) and

f(X) ≡ ((n− 1)aX − nb)2g2(X) . . . gs(X) (mod p)

if f(X) has non-simple roots (mod p).

In the above each fr(X) is irreducible (mod p) and fi(X) 6= fj(X)) for i 6= j.

Each gj(X), 2 ≤ j ≤ s is irreducible and gi(X) 6= gj(X)) for i 6= j, and also
gi(X) 6= (n− 1)aX − nb (mod p), ∀ i.

By Hensel’s lemma, f(X) is factorized in the in the completion of K with respect
to the norm given rise to by prime ideal P , the local field kP in the form

f(X) ≡ f1(X) . . . fr(X)

or
f(X) ≡ g1(X) . . . gs(X)

as according to whether f has only simple roots or not, respectively.

Here, fi(X) = fi(X) (mod p), gj(X) = gi(X) (mod p) for i ≥ 2 and g1(X) ≡
(n− 1)aX − nb (mod p).

Lβ is obtained from KP , by adjoining the roots of f(X) = 0. The roots of fi(X)
or gj(X), j ≥ 2, generate unramified extensions of K. So, if f has only simple
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roots, Kβ is unramified over kP . If f(X) has non-simple roots (mod p) and if Lβ is
ramified over KP , gi(X) is irreducible of degree 2 and the inertia group is generated
by the transposition of the roots of g1(X) = 0. So it meets with H trivially (since
H contains only even permutations), and thus β is unramified over K (H is the
Galois group of the extension L/K(

√
D), and the order of the inertial group is e,

the ramification index). As β was arbitrary, L is unramified over K(
√
D).

Theorem 7.3.3 (Uchida, 1969 [12]). Let K be an algebraic number field of finite
degree. Let a and b be integers of K, i.e. a, b ∈ OK. Let L denote the minimal
splitting field of a polynomial

f(X) = Xn − aX + b

i.e., L = K(α1, . . . αn), where α1, . . ., αn are the roots of f(X) = 0. If (n− 1)a and
nb are relatively prime, any prime ideal of L has the ramification index 1 or 2 over
K.

Proof. We have seen from the previous theorem that any prime of L is unramified
over K(

√
D), where D is the discriminant of f . We know that ramification indices

are multiplicative over field extensions. Since the ramification index of a prime in
K(
√
D) over K can be either 1 or 2 (from the efg formula), the result follows.

Corollary 7.3.1. Let K = Q be the field of rational numbers. Let D =
∏

i<j(αi −
αj)

2 be the discriminant of f(X) = 0. Assume that any prime number that appears
in the factorization of D, appears odd number of times. Then, L = Q(α1, . . . , αn)
is unramified over Q(

√
D).

Proof. Every prime number that is ramified in L/Q appears in D. By assumption,
it is ramified in Q(

√
D)/Q, since it appears odd number of times in D. Thus, by

the multiplicative property of ramification indices, such a prime is unramified in
L/Q(

√
D), as required.

Lemma 7.3.1 ([13], Theorem 13.3). If a primitive permutation group contains a
transposition, it is a symmetric group.

Proposition 7.3.1. If n = l is a prime and if f(X) is irreducible over Q with
discriminant D and splitting field K, the Galois group of K over Q is a symmetric
group Sl. Therefore, K is an unramified extension of Q(

√
D) with Galois group Al.

Proof. As we have seen in the proof of Theorem 7.1.4, the inertia group of a prime β
contains a transposition if β is ramified. As the field Q has no unramified extension,
there exist primes of K ramified over Q. Therefore, the Galois group of K over Q
contains a transposition. As any transitive group of prime degree is primitive [[13],
Theorem 8.3], so the Galois group of K over Q is primitive, and by lemma 7.1.1, it
is a symmetric group.

Proposition 7.3.2. Let P (x) be a polynomial in k[x] for a field k. The equation
P (x) = 0 has a root α generating a degree d extension K of k if and only if P (x)
has a degree d irreducible factor f(x) in k[x].
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Proof. Let α be a root of P (x) = 0 generating a degree d extension k(α) = k[α] over
k. Let M(x) be the minimal polynomial for α over k. Let

P = Q ·M +R

in k[x] with degR < degM . Then, evaluating these polynomials at α, R(α) = 0,
but the minimality of the degree of M with this property assures that R = 0. That
is, M divides P . On the other hand, for an irreducible (monic, without loss of

generality) M(x) dividing P (x), the quotient K = k[x]
<M(x)>

is a field containing (a

canonical copy of) k, and the image α of x in that extension is a root of M(x) = 0.
Letting P = Q ·M , P () = Q() ·M(α) = Q(α) · 0 = 0, showing that P (x) = 0 has
root α.

Theorem 7.3.4 (Uchida, 1969 [12]). The polynomials f(X) = Xn−X + 1 for n =
5, 6, 7 (a = b = 1) satisfy the condition of Corollary 7.1.1. The Galois groups of
f(X) = 0 are symmetric groups. Thus, there exists an unramified extension of the
quadratic field Q(

√
D) with the alternating groups A5, A6, A7 or symmetric groups

S5, S6, S7 as Galois groups.

Proof. First consider the general case f(X) = Xn− aX + b. Then, the discriminant
D of f may be expressed in terms of its roots αi as before. The product of all the
αi’s is equal to b.

1. D =
∏

i<j(αi − αj)2 = (−1)
n(n−1)

2

∏
i f
′
(αi) and∏

i

f
′
=
∏
i

(nαn−1i − a)

=
∏
i

nαni − aαi∏
i αi

=
∏
i

n
(aαi − b)− aαi∏

i αi

=

∏n
i=1((n− 1)aαi − nb)∏

i αi

=nnbn−1 − (n− 1)n−1an

Let D5, D6, D7 be the discriminants corresponding to n = 5, 6, 7. Here, we
have a = 1 = b. So,

D5 = 55 − 44 = 19× 151

D6 = 55 − 66 = −101× 431

D7 = 66 − 77 = −776887, a prime

So, for n = 5, 6, and 7, any prime appearing in the factorization of the dis-
criminant Dn of the polynomial f(X) = Xn− aX + b, appears odd number of
times. Thus, by Corollary 7.1.1, L = Q(α1, . . . , αn) is unramified over Q(

√
D).
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2. Now, we find the Galois groups of these equations. If n = 5, f is irreducible
modulo 5. (Since Z

5Z
is cyclic of order 5, there are no roots. It can be checked

manually that there are not quadratic irreducible factors.) If n = 7, f is
irreducible modulo 7. (Since Z

7Z
is cyclic of order 7, there are no roots. It

can be checked manually that there are not quadratic and cubic irreducible
factors.)

Thus, using the following lemma, f is irreducible over Z for n = 5, 7.

Lemma 7.3.2. If f(T ) ∈ Z[T ] is monic and there is a prime p such that f(T )
is irreducible in Z

pZ
[T ] then f(T ) is irreducible in Q[T ].

If n = 6, f is irreducible mod 2.

Now, when n is a prime number, a transitive permutation group of n letters
is a symmetric group if it contains a transposition. We have

x5 ≡ (X2 −X + 1)(X3 + x2 + 1) (mod 2)

X7 −X + 1 ≡ (X2 −X + 1)(X5 +X4 −X3 −X + 1) (mod 3)

Since quadratic polynomials occur in the factorizations, the Galois groups con-
tain transpositions (and are n-transitive). Thus, they are symmetric groups.
We are left with the case n = 6. We have

X6 −X + 1 ≡ (X + 1)(X2 +X − 1)(X3 +X2 +X − 1) (mod 3)

X6 −X + 1 ≡ (X − 2)(X5 + 2X4 − 3X3 +X2 + 2X + 3) (mod 7)

Now, X5 + 2x4 − 3X3 +X2 + 2X + 3 is irreducible modulo 7. To see this, we
use Proposition 7.1.2.

If X5 + 2x4−3X3 +X2 + 2X+ 3 was reducible modulo 7, it would have a root
in Z

7Z
(for a linear factor) or in a quadratic extension field of Z

7Z
(for a quadratic

factor). In either case, this factor would divide both X6−X+ 1 and X49−X.
But, these polynomials have no common factors except X − 2, which does not
divide X5+2x4−3X3+X2+2X+3 modulo 7. So, X5+2x4−3X3+X2+2X+3
is irreducible, and the Galois group is a symmetric group by a result in [14],
cited in [12].

3. We have shown that L = Q(α1, . . . , αn) is an unramified extension of Q with
Galois group Sn, for n = 5, 6, 7. Now, L/Q(

√
D) is an unramified field exten-

sion (because Q(
√
D/Q is ramified, and ramification indices are multiplicative)

with Galois group of order |Sn|
2

. But, the only permutation group with this

order is An. Thus, L is an unramified extension of Q(
√
D) with Galois group

An, n = 5, 6, 7.

Let p be a prime number which does not appear in the factorization of D.
Then, each L(

√
p)/Q(

√
pD) is unramified and its Galois group is a symmetric

group.
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Theorem 7.3.5 (Uchida, 1969 [12]). There exist infinitely many real quadratic field
with class numbers divisible by 3.

Proof. If a cubic irreducible equation X3 − aX + b = 0 (a, b ∈ Z) satisfies the
condition of Theorem 7.1.5, and if K denotes its splitting field, the Galois group of
K/Q is a symmetric group of three letters. Let D = 4a3 − 27b2 be the discriminant
of the given equation. Then K/Q(

√
D) is an unramified abelian extension. So, the

degree of the extension K/Q(
√
D) divides the degree of the Hilbert class field over

Q(
√
D). Now, the Hilbert class field over Q(

√
D) has order is divisible by the order

of the Galois group K/Q(
√
D), which is 3 (by multiplicative property of degrees

of field extensions). Since the class group is isomorphic to this Galois group (as
discussed in section 2 of this chapter), the class number of Q(

√
D) is divisible by 3.

Therefore, it is enough to prove there exist infinitely many different Q(
√
D)

with positive D. If we assume that a ≥ 2, a ≡ 1 (mod 3), and b = 1, then
X3 − aX + l is irreducible and satisfies the condition of Theorem 7.1.1 and has a
positive discriminant 4a3− 27 = D > 0. Then clearly, if p 6= 2, 3 is a prime number,
p divides D for some a if and only if 4 is a cubic residue mod p. If p = 2 (mod 3),
any number is a cubic residue. So, there exists a1 > 2 such that p | 4a31− 27. As the
equation

a1 + rp ≡ 1 (mod 3)

has an integral solution r, we may assume that a1 ≡ 1 (mod 3) If 4a31−27 is divisible
by p2, we replace a1 by a = a1 + 3p. Then, 4a3 − 27 is divisible by p but not by
p2. So, p is ramified in Q(

√
D)/Q. As there exist infinitely many p satisfying the

above condition (p = 2 (mod 3)), there exist infinitely many different Q(
√

D), with
D positive and the discriminant of some irreducible monic cubic equation.

Theorem 7.3.6 (Uchida, 1970 [15]). Let n ≥ 3 be an integer, and An be an alter-
nating group of degree n. Then there exist infinitely many quadratic number fields
which have unramified Galois extensions with Galois groups An.

Proof. We find pairs of rational integers (a, b) such that ((n − 1)a, nb) = 1 and
the equations f(X) = Xn − aX + b = 0 which have symmetric groups Sn as Galois
groups. Now, we show that there exist pairs of integers (a, b) satisfying the conditions
of Theorem 7.1.4. Let l be a prime number such that

l ≡ 1 (mod (n− 1))

holds. If b is divisible by 1, then

Xn − ax+ b ≡ X(Xn−1 − a) (mod l)

holds. As Z/lZ contains all the (n − 1)-st roots of unity, Xn−1 − a is irreducible
mod 1 if a is a primitive root mod 1. Then, Xn − aX + b has irreducible factors of
degree 1 and degree n− 1, if it is reducible over Q. But, it has no factor of degree
1 if a is sufficiently large. Then Xn − aX + b is irreducible over Q, and its Galois
group is primitive by the factorization Xn − ax + b ≡ X(Xn−1 − a) (mod l). We
can choose a and b as ((n− 1)a, nb) = 1. Then, all the conditions of Theorem 7.1.1
are satisfied.
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Now let p be any prime number such that (p, ln(n − 1)) = 1, where l is fixed
as above. We show that there exists a pair (a, b) such that D = D(a, b) = pD0,
(p,D0) = 1 and that satisfies the above conditions. Then we have infinitely many
different Q(

√
D). D is calculated as

D =
∏
i<j

(αi − αj)2 =(−1)
n(n−1)

2

∏
i

f
′
(αi)

= (−1)
n(n−1)

2

∏
i

(nαn−1i − a)

=(−1)
n(n−1)

2

∏
i

nαni − aαi∏
i αi

=
∏
i

n
(aαi − b)− aαi∏

i αi

=

∏n
i=1((n− 1)aαi − nb)∏

i αi

=nnbn−1 − (n− 1)n−1an

Let b be a multiple of l such that b ≡ n−1 (mod p) and (b, n−1) = 1. As (p, n) = 1,
we have a sufficiently large integer a1 such that al ≡ n (mod p), (al, nb) = 1 and a1
is a primitive root mod 1. Then D1 = D(a1, b) is divisible by p. If D1 is divisible by
p2, we replace a1 by

a = a1 + nblp

Then D = D(a, b) is divisible by p, but not divisible by p2. This completes the
proof.

Corollary 7.3.2 (Uchida, 1969 [12]). Let G be a finite group. Then, there exists an
algebraic number field k which has an unramified extension with Galois group G. If
G is of order N , k is taken as [k : Q] ≤ 2(n− 1)!

Proof. Let K be a Galois extension of Q with Galois group Sn, which is unramified
over Q(

√
D). Let q be a prime number such that (q,D) = 1. Then, K(

√
q) is

unramified over Q(
√
D) and its Galois group is a symmetric group Sn. So, G can be

considered as a subgroup of Sn. If k denotes the subfield of K(
√
q) corresponding

to G, k satisfies the conditions of this corollary, as required.

Corollary 7.3.3 (Uchida, 1970 [15]). Let F be an algebraic number field of finite
degree. Let a and b be indeterminates. Then, the equation

Xn − aX + b

has the Galois group Sn over F (a, b).

Proof. We may assume that F is normal over Q. Let (a0, b0) be a pair of rational
integers such that the Galois group of Xn − a0X + b0 is a symmetric group Sn. Let
D0 = D(a0, b0) be its discriminant. By the proof of Theorem 7.1.8, (a0, b0) can be
chosen such that Q(

√
D) is not included in F . Then, the Galois group of Xn−aX+b

over F is also Sn. So the Galois group of Xn − aX + b over F (a, b) is also Sn.
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