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Abstract

Finite Coxeter groups, named after H.S.M Coxeter, is an abstract

group generated by finite set of reflections with some defining properties.

In this dissertation we define Finite Coxeter groups and give some of its

properties, which is discussed in chapter 2 and 3. In chapter 4 we give

a presentation of Coxeter groups. In chapter 5 and 6 we define Coxeter

graphs and classification and construction of finite Coxeter Groups is

discussed based on that.
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Chapter 1

Finite Reflection Groups

1.1 Introduction

In this chapter the prerequisites needed throughout this report is mentioned. More-

over,we discuss the finite subgroups of orthogonal transformations in dimension 2 and

3 as motivation for the latter chapters.

1.2 Definitions

Definition 1.1. For a real vector space, say V, of dimension n over field R an inner

product<-,->:V × V → R satisfies the following four properties.For any, u,v and w

∈ V and c ∈ R,

1. < u+ v, w >=< u,w > + < v,w >

2. < cv, w >= c < v, w >

3. < v,w >=< w, v >

4. < v, v >≥ 0 and equality holds if and only if v=0

Example:V=Rn,v={x1, x2, ..., xn},w={y1, y2, ...., yn} ,then the standard inner prod-

uct is

(v, w) =
n∑
i=1

xiyi
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Remark. Given an n-dimensional vector space V over R with the inner product <

−,− > there is a linear isomorphic transformation T:V→ Rn such that < v,w >=<

Tv, Tw >. Hence for the most part of the thesis we shall work with Rn with the

standard inner product.

Definition 1.2. For an n dimensional vector space V over R

O(V ) = {T ∈ AutR(V ) :< Tv, Tw >=< v,w >, v, w ∈ V }

Example: O(n,R)={ A∈ GL(n,R) | AA’=A’A=I,Where A’ is transpose matrix

of A and I is the identity matrix.}

Lemma 1.1. Determinant of orthogonal matrices can be only 1 or –1.

Definition 1.3. For n=2,3 ,Rotation subgroup in O(2,R);

H := {R ∈ O(2,R) | det(R) = 1}

Non-identity elements in H ,R∈ H, are called rotations.

Remark. The rotation subgroup is an index 2 subgroup of O(2,R) or O(3,R) and

hence it is normal inO(Rn) fro n=2,3.

Definition 1.4. Reflection in terms of linear transformation is represented by:

Srx = x–2
(x, r)

(r, r)
r∀x ∈ V

Where 0 6= r∈V,P=r⊥ and P is a hyperplane of Rn,for n=2,3.

The vector ± r
‖r‖ above is generally called the roots of Sr.

Remark. S∈ O(n,R), forn = 2, 3.Sodet(S) = −1, ifSisareflectioninR2 or R3.

Definition 1.5. Points in a unit sphere of in R3 those are fixed by non-zero rotations

are called poles.i.e.,If {x∈R3 | ‖v‖=1} be a unit sphere of R3 and 16=T be a rotation

in R3,If Tx=x,then x is a pole and these are precisely the points where axis of rotation

T intersects the unit sphere.
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1.3 Finite subgroups in O(2,R)

Rotation R in O(2,R) is represented by the matrix

(
cosθ −sinθ
sinθ cosθ

)
and reflection S

in O(2,R) is represented by the matrix

(
cosθ sinθ

sinθ −cosθ

)
wrt to standard basis in R2.

Theorem 1.1. A finite subgroup of O(2,R) is either a cyclic group denoted by H or

a dihedral group denoted by Hn
2 .

Proof. We have any orthogonal transformation can be either be a rotation or a reflec-

tion which follows from lemma 1.1.

Let H := {R∈ G| det(R) = 1},subset of rotational transformations.

We will prove that H is cyclic.

Let T∈H be rotation with minimum angle θ. And T’ be any other rotation in H

with angle φ. Then we have for some m∈Z:

mθ ≤ φ ≤ (m+ 1)θ

⇒ 0 ≤ φ−mθ ≤ θ

⇒ φ−mθ = 0

⇒ φ = mθ

This proves that T’=Tm

So H is cyclic as H=< T >

If H=G then there is nothing to prove.But if H 6= G then there exists S∈ Gn H

And STk is a reflection as det(STk)=-1.

Let S’ be an arbitrary reflection then we have det(SS’)=1

So S’∈ SH.

So G=H∪ SH and [G:H]=2

G=< R,S >={1, R, ..., Rn−1, S, SR, ...., SRn−1} which is isomorphic to D2n,dihedral

group of order 2n.

1.4 Finite subgroups in O(3,R)

The following results can be derived for 3-dimensional cases.
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1. Let R ∈ O(R3) be a rotation,then R is a rotation about a fixed axis, i.e., R has

eigen vector v having eigen value 1 s.t. R|P , (P=v⊥) is a 2-dimesional rotation.

2. S is a reflection in O(R3) is a transformation s.t.

Sx=x ∀x∈ P

Sx=-x ∀x∈ P⊥

Where P is plane passing through origin.

3. Let S ∈ O(R3) s.t. det S =-1 then geometrical effect of S is the same as reflection

through a plane P, followed by a rotation about the line through the origin

orthogonal to P.

The above result gives us an interpretation of rotation and reflection in 3-dimensional

case.

1.5 Extending the orthogonal transformation from

R2 to R3

Finite subgroups G≤ O(3,R) can be obtained by the following ways:

1. We first extend rotations in O(2,R) to get rotational subgroup in O(3,R). Let

W be a the y-z plane in R3. Let R be rotation in O(2,R); set Rx=x for all

x∈ W⊥ then

R =

1 0 0

0 cosθ −sinθ
0 sinθ cosθ

 isamatrixrepresentingrotationinV wrttobasis{e1, e2, e3

} in V where e1 ∈ W⊥ and {e2, e3} in W.

Remark. We can extend each rotation in rotation subgroup H≤O(2,R) to get

rotation in O(3,R) that forms rotation subgroup in O(3,R).

2. We can also extend reflectionS in O(2,R) to get rotational subgroup in O(3,R).

Let W be y-z plane in R3. Let S be a reflection in O(2,R); set Sx=-x for all

4



x∈ W⊥,then

R =

−1 0 0

0 cosθ sinθ

0 sinθ −cosθ

 isamatrixrepresentingrotationinO(3,

R)wrttobasis{e1, e2, e3} in R where x1 ∈ W⊥ and {e2, e3} in W.

Remark. we can extend each rotation and reflection in dihedral subgroup Hn
2

≤O(2,R) to get rotations in O(3,R) that forms rotation subgroup denoted by Hn
3

in O(3,R) and referred to as dihedral group O(3,R).

1.6 Symmetry Group of Regular convex poly-

hedra

We can look at the finite subgroups G≤ O(3,R) as the symmetric groups of

regular convex polyhedra.

Theorem 1.2. There can be only 5 possible regular convex polyhedra;Tetrahedron,

cube,octahedron,icosahedron and dodecahedron

5



Remark. Since cube and octahedron are geometrically same and so are icosa-

hedron and dodecahedron we discussing only 3 cases are enough.

Symmetric groups of these 3 Platonic solids are tabulated below:

Rotation group for tetrahedron(T )
Angle of rota-
tion

Axes of rotation no.of axes of ro-
tation

order of rotation

2π
3

and 4π
3

rotation along
axes joining ver-
tices with center
of opposite faces

4 3

π axes joining the
mid point of op-
posite edges

3 2

Table 1.1: Table for rotation subgroup of tetrahedron

Rotation group for cube(W)
Angle of rota-
tion

Axes of rotation no.of axes of ro-
tation

order of rotation

π
2
, π, 3π

2
axes joining the
center of oppo-
site faces

3 4

2π
3

and 4π
3

axes joining ex-
treme opposite
vertices

4 3

π axes joining the
mid point diago-
nally of opposite
edges

6 2

Table 1.2: Table for rotation subgroup of cube

Order of T , | T |=12

Order of W , | W |=24

Order of I, | I |=60

1.7 Finite reflection groups in R3

Lemma 1.2. If V=R3 and the finite subgroup G≤ O(3,R), then G is a permu-

tation group on its set of poles.
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Rotation group for IIcosahedron(I)
Angle of rota-
tion

Axes of rotation no.of axes of ro-
tation

order of rotation

2π
3

and 4π
3

axes joinign the
center of oppo-
site faces

10 3

2π
5
, 4π

5
, 6π

5
, 8π

5
axes joining ex-
treme opposite
vertices

6 5

π axes joining the
mid point diago-
nally of opposite
edges

15 2

Table 1.3: Table for rotation subgroup of Icosahedron

Let Cn
3 denote the cyclic rotation subgroup in O(3,R) and Hn

3 denote the dihe-

dral subgroup in O(3,R).thisgivesusthefollowingresult :

Table 1.4: Order of rotation subgroups in R3

G | G | orbits order of set of poles order of stabilizers
Cn

3 n 2 2 n,n
Hn

3 2n 3 2n+2 2,2,n
T 12 3 14 2,3,3
W 24 3 26 2,3,4
I 60 3 62 2,3,5

Remark. The above table give us the complete list of finite rotational subgroups.

Let G≤O(3,R) and -1/∈G and H ≤ G be a rotation subgroup,then define :

G∗ = H ∪ −(1)H

And if -1∈G and H≤G be a rotation subgroup which has a subgroup K such that

[H:K]=2, then define:

H]K := K ∪ {−T : T ∈ H\K}

7



Finally we have If G≤ O(3,R) and G is finite then G is one of the following:

(a) Cn
3 , n ≥ 1;Hn

3 , n ≥ 2; T ; W ; I

(b) (Cn
3 )∗, n ≥ 1; (Hn

3 )∗, n ≥ 2; (T )∗; (W)∗;(I)∗

(c) C2
3
n]Cn

3 , n ≥ 1;H2
3
n]Hn

3 , n ≥ 2;Hn
3 ]Cn

3 , n ≥ 2; W ]T

8



Chapter 2

Introduction To Coxeter Groups

2.1 Introduction

Coxeter group, named after H.S.M Coxeter, is an abstract group generated by finite

set of reflections with some defining properties. In this chapter,Coxeter group will be

defined with its root system followed by some properties of Coxeter groups. Here we

take V=Rn

2.2 Definition

Definition 2.1. Let r be a non zero vector and P be the hyper plane perpendicular

to r passing throough the origin i.e., P=r⊥. Define

Srx := x-2 (x,r)
(r,r)

r

as the reflection on the hyperplane P, then generally ± r
‖r‖ are called roots along re-

flection Sr.

Remarks

• Sλr=Sr.∀λ ∈ R\{0}Sr2=1

•• Sr ∈ O(R)

9



Definition 2.2. Let G ≤ O(V )

VT := {x ∈ V| Tx=x}where T∈ G Vo:=∩{VT |T ∈ G}

If Vo(G) = 0 then G is called an effective group.

Remarks

• V0 is a vector subspace of V

• T |V o = 1(identity) on Vo for all T ∈ G.

Proposition 2.1. T(Vo) = Vo and T(Vo
⊥)=V ⊥o ∀ T ∈ GhenceifV =Vo

⊕
Vo
⊥ then

T=1⊕T
′

for any T ∈ G and T
′
=T |V ⊥o ∈ O(Vo)

⊥

Proposition 2.2. If G
′
={T ′: T

′
=T |V ⊥o , T∈ G} ≤ O(Vo)

⊥ then there exists an

isomorphism from G to G
′

and Vo(G
′
)=0 that is G

′
is effective.

Proof. let

Φ : G −→G
′

s.t. Φ(T ) =T|V ⊥o

It is clear that Φ is a group homomorphism and | G |=|G′ | .

we just need to show isomorphism

Let T∈ Ker(Φ)

⇒ Φ(T ) = 1

⇒T
′
=1

⇒T|V ⊥
o

=1

⇒ Tx = x ∀ x ∈Vo
⊥

⇒ T = 1

If not then x ∈Vo,that is x=0 as x ∈Vo
⊥ ∩Vo,which is a contradiction.

so Φ is an isomorphism.

V0(G
′
)= { x ∈ V |T′x=x }

⇒ x ∈Vo
⊥ ∩Vo ={0}
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V0(G
′
) = 0

So G
′

is effective.This completes the proof.

Proposition 2.3. If r is a root of a reflection Sr ∈ G ≤ O(V). And if T ∈ G, then

Tr is a root of the reflection ST r=TSrT
−1∈G.

Proof. Let P=r⊥ and P
′
=TP. Then P

′
is a hyperplane as P is a hyperplane.

We have Tr=x,

Let P
′
=x⊥.

Let y=Tz∈ P ′

⇒ TSrT
−1y = TSrz = Tz = y

⇒ TSrT
−1x = TSrr = -Tr = -x

So it is clear that TSrT
−1=Sx ∈ G and Tr is a root of the reflection ST r.

Proposition 2.4. Let G ≤ O(V) is generated by reflections along roots

r1,....,rk. Then G is effective iff {r1,......,rk} contains a basis for V.

Proof. Let W ={r⊥i | 1≤i≤k}

T|W=1W ∀ T ∈ G

⇒ W⊆ Vo(G)

If x ∈ Vo(G)

⇒ Tx = x∀ T ∈ G

⇒ x∈ r⊥i ∀ i

⇒ x∈ W.

⇒ W =Vo(G)

G is effective iff Vo(G)=0 iff W=0 iff W⊥ =V

W⊥=
∑k

i=1r⊥i
⊥

We know that,{r1,......,rk} spans r⊥i
⊥

⇒ {r1,......,rk} spans W⊥

G is effective iff {r1,......,rk} spans V that is iff it contains a basis for V.
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Definition 2.3. Root system of G: Let A = {r ∈ V | r is a root of Sr,where Sr ∈
generating set of reflection of G}and B = {Tr ∀ r ∈ A and ∀ T ∈ G }Ṫhen ∆:=A∪
B is called the root system of group G.

Proposition 2.5. Let G ≤ O(V) be generated by a finite set of reflections and that

G is effective.If ∆ is finite then G is finite.

Remark. Even if G is not effective it follows from proposition 2.1 that if ∆ is finite

then G is finite.

Definition 2.4. Coxeter group G:

A finite effective subgroup G ≤ O(V) that is generated by a set of reflections is called

Coxeter group.

Definition 2.5. t-base, Π:

Let t ∈ V s.t (t,r) 6= 0 , ∀ r ∈ ∆

Let ∆+
t := {r ∈ ∆ | (t, r) > 0} and ∆−t := {r ∈ ∆ | (t, r) < 0}.

Let Π ⊆ ∆+
t be a mininal subset such that r=

∑
r∈Πλiri for any r ∈ ∆+

t and λi ≥ 0.

Then Π is called a t-base for G.

Note: From now onwards G will denote a Coxeter group with root system

∆ and t-base Π.

Remarks

• If r ∈ ∆ then -r ∈ ∆ since if r ∈∆+
t then -r ∈ ∆−t and vice versa.

• |∆+
t |=|∆−t |

• If v ∈ V is such that v=
∑k

i=1λiri where ri ∈ Π and λi ≥ 0,then we say

that v is t-positive.

• If v ∈ V is such that v=
∑k

i=1λiri where ri ∈ Π and λi ≤ 0,then we say

that v is t-negetive.

Proposition 2.6. If ri,rj ∈ Π where i 6= j, and λi and λj are positive real numbers,

then x=λixi-λjxj is neither positive nor negative.

Proposition 2.7. Suppose {v1, v2, ....., vm} ⊆ V be such that (vi,v)>0 where 1≤ ı ≤
m for some v ∈ V. If (vi,vj) ≤ 0 whenever i 6= j, then {v1, v2, ....., vm} is a linearly

independent set.
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2.3 t-base Π is a basis for V

Theorem 2.1. If Π is a t-base for ∆ then Π is a basis for V.

For the proof of the theorem we need the following lemma and some of the remarks

mentioned above.

Lemma 2.1.1. If ri,rj ∈ Π where i 6= j,and if Si is the reflection along ri

then Sirj ∈ ∆+
t and (ri,rj) ≤ 0

Proof. Sirj ∈ ∆ by proposition 2.2. so Sirj is either +ve or -ve, by remark already

mentioned. Also we have,

Sirj=rj-2
(ri,rj)

(ri,rj)
rj

Coefficient of rj is positive so Sirj ∈ ∆+
t and also (ri,rj) ≤ 0 as both coefficients has

to be positive.

Proof. (of theorem 2.1)Since G is effective so V is spanned by ∆ and ∆ is linear

combintation of elements in Π so V is spanned by Π and by the last remark and

lemma 2.1.1 Π is linearly independent.So,Π

is a basis for V.

Corollary 2.1.1. Uniqueness of Π

t-base Π is unique for ∆.

Proof. Let Π1 and Π2 be two t-bases. Since both are basis for V,so let Π1 be an

ordered basis and A be the change of basis matrix from Π1 to Π2. Since each element

in Π2 is a non negative linear combination of elements in Π1,so entries in A are non-

negative. Let B be the change of matrix from Π2 to Π1. AB=1,entries in A are non

zero entries and B = A−1 so entries in B are also non negative as each element in Π1

is a non-negative linear combination of elements in Π2.Let a1, .....an and b1, ..., bn be

row of A and columns of B respectively. Since AB=1 so at1 ⊥bi 2 ≤ i ≤ n.B is non

singular ⇒b2, ..., bn are linearly independent.
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⇒ There exists at most one j for which jth entry is zero for b2, ..., bn

⇒a1 has atmost one nonzero entry.

Similarly each ai has atmost one non zero entry.

A is non singular ⇒ A has exactly one non-zero entry in each row and

each column.

⇒ Each root in Π1 is a positive multiple of roots in Π2.

But,only the root is a positive multiple of itself so A is a permutation matrix.And

hence Π1 = Π2.

Definition 2.6. Simple roots: The roots r1, ....., rn in the base Π are called funda-

mental roots or simple roots.

Definition 2.7. Fundamental reflections: The reflections S1, .., Sn along roots

r1, ...., rn are called fundamental reflections of G.

Let Gt := < Si:1 ≤ i ≤ n > be subgroup of G.

Remarks

• Let Si be reflection along ri ∈ Π={r1, ...., rn} .If r∈∆+ but r 6=ri then

Sir ∈∆+.

• If v ∈ V, there exisits a transformation T ∈ Gt such that (Tv,ri) ≥ 0, ∀
ri ∈ Π

2.3.1 G=Gt

Theorem 2.2. The fundamental reflections S1, ......, Sn generate G. i.e., G=Gt.

For the proof we need the following:

Lemma 2.2.1. :If r ∈ ∆+,Tr ∈ Π for some T ∈ Gt.

Proof. If r ∈ Π choose T=1. If r /∈ Π, then (r,ri) ≥ 0,else Π will not be a basis for

V,as Π ∪ {r} will be linearly independent. Set a1=Si1r ∈ ∆+ and (a1, t) <(r,t). If a1

∈ Π then T=Si1 . If not we continue the process which terminates for some ak ∈ Π as

∆+
t is finite. So now we can choose T=Si1,.....,Sik ∈ Gt.And the claim follows.
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Proof. of theorem 2.2:

G = <Sr | r ∈ ∆ > and wehaveSr=S−r. So it is enough to prove if r ∈ ∆+,then Sr

∈Gt as Gt is already a subgroup of G. If r ∈ ∆+ then by the claim 2.2.1 Tr ∈ Π for

some T in Gt. Suppose Tr=ri,then Sr=TSiT
−1 ∈Gt.

Hence G=Gt.

2.4 Some Properties of a Finite Coxeter group

Property(1) If T∈G and TΠ=Π then T=1.

Property(2) If T∈G and T(∆+
t )=(∆+

t ) then TΠ = Π.

Property(3) If T ∈G and T(∆+
t )=(∆+

t ) then T=1(this property follows from property

1 and property 2)

Property(4) If ri, rj∈ Π,then there exists an integer Pij > 1 such that
rirj
‖ri‖‖rj‖ =

−cos π
Pij
.

2.5 Example of a Coxeter Group(Dihedral group,Hn
2 )

Hn
2 =< S, T | T is represented by the matrix

(
cos(2π

n
) sin(2π

n
)

sin(2π
n

) −cos(2π
n

)

)
, where 1 ≤ k ≤ n

and S is represented by the matrix:

(
1 0

0 −1

)
>

By the result,Sr=-r,if r is a root for reflection S and by some simple calculations we get:

∆(Hn
2 ) = {(coskπ

n
,sinkπ

n
) where 0 ≤ k ≤ n-1 }.Now since ∆(Hn

2 ) contains a basis for

V=R2. So Hn
2 is effective and hence

is a Coxeter group.Now we will see what are the possible t-bases for ∆(Hn
2 ).This

follows from the following result,that can be proved by detailed

computation.
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Lemma 2.5.1. Suppose ri ∈ ∆+
t (Hn

2 ) for some t ∈ V, and ri= (coskπ
n

,sinkπ
n

)

where k=0,1,2,.....,2n-1.Ifri ∈ Πt and rj ∈ Πt then rj=(cosk±(n−1)π
n

,sink±(n−1)π
n

) This

gives us the t-base for dihedral group Hn
2 . We will now look at dihedral group for

n=4 explicitly.

The case n=4:, H4
2: Here the root system by our above

mentioned formula is:

∆(H4
2 )={(1,0), ( 1√

2
, 1√

2
), (0,1), (- 1√

2
, 1√

2
), (-1,0), (- 1√

2
,- 1√

2
), (0.-1), ( 1√

2
,- 1√

2
)}

And the possible(depending on t) t-bases are:

• {(1,0),(- 1√
2
,± 1√

2
)}

• {( 1√
2
,± 1√

2
),(-1,0)}

• {(0,1),(± 1√
2
,- 1√

2
)}

• {(± 1√
2
, 1√

2
),(0,-1)}
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Chapter 3

Fundamental Regions

3.1 Introduction

In this chapter first we will give a description of fundamental region of a group

and then find ways for obtaining the fundamental region for any finite subgroup

of orthogonal transformations. Then we specialize to Coxeter groups. We assume

V=Rn.

3.2 Definitions

Definition 3.1. Relatively Open Set: Suppose Y ⊆ X ⊆ V . Then Y is said to be

relatively open wrt to another set X if Y=X∩U for some open set U in V.

Definition 3.2. A subset F of V is said to be a fundamental region of G in V iff the

following conditions are satisfied:

(a) F is open in V.

(b) F∩TF=φ if 16=T∈G

(c) V=∪{(TF ) | T∈G}

Definition 3.3. Suppose X⊆V is a linear subspace s.t. T(X)=X ∀ T∈G.

F is a fundamental region for G in X iff the following conditions are satisfied:
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(a) F is relatively open in X.

(b) F∩TF=φ if 16=T∈G

(c) X=∪{(TF )∩X| T∈G.}

Some useful notation and convention: Here xo ∈ V is such that Txo 6= xo,for

any 1 6=T ∈G. .Let G = {1, T1, ..., TN−1} and ixo = xi. So orb(xo)={x1, ..., xN−1}.

Let [xoxi] := {xo + λ(xi − xo) | 0≤ λ ≤ 1},

Li:= {x∈V | d(x,xo) < d(x, xi),1≤ i ≤ N−1}, Li is an open half space. F := ∩{Li|1≤
i ≤ N − 1}.

Remark: Further it will be proved that F as defined above is a fundamental region

for G in V. For that we will need some results which are mentioned in the next section.

3.3 Lemmas to be used

Lemma 3.1. Suppose dim(V) ≥ 2 and x1, x2 ∈ V are linearly independent. For

each λ ∈ R and define Vλ=(x1 + λx2)⊥. If λ 6= µ, then Vλand Vµ are distinct (n-1)

dimensional subspace of V.

Proof. Vλ and Vµ are subspaces of V.Let W := < x1 + λx2 >, dim(W)=1 Let

T(x1+λx2) : V→ F s.t.

T(x1+λx2)(y)=(y,x1 + λx2)

Ker T(x1+λx2) = Vλ

dim(Im(T(x1+λx2)))=1

⇒dim(Ker(T(x1+λx2)))=n-1 ,where n is the dimension of V.

Let y ∈ Vλ∩Vµ

⇒ (y,x1 + λx2)=(y,x1 + µx2)

⇒ (y,x2(λ− µ))=0

⇒ (λ− µ)(y,x2)=0

⇒ y = 0 as λ 6=µ and x2 6= 0.

So Vλ ∩Vµ={0}.
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Corollary 3.1.1. If dim V=n ≥ 2, then there are infinitely many subspaces og dim(n-

1).

Lemma 3.2. If dim(V) ≥1, then V is not the union of any finite number of proper

subspaces.

Proof. Let dim V=1, then the only proper subgroup of V is {0} and V 6=
n⋃
i=1

{0}.

The proof is by induction on dim V for all vector spaces of dimension ≤ n-1.Let

dim(V)=n.

Suppose the lemma holds. Suppose that V=
n⋃
i=1

Vi where Vi is a proper subspace of

V.

Let W be a subspace of V s.t. dim W=n-1.

W=W∩V=W∩
n⋃
i=1

Vi=
n⋃
i=1

(W∩Vi)

⇒ W = W∩Vi for some i

⇒ W = Vi for some i.

⇒ Every n-1 subspace of V ∈ {V1, V2, ......, Vn}

⇒ There are finitely many n-1 subspaces of V.Which is a contradiction by Corollary

3.3.1.

So V 6=
n⋃
i=1

Vi.

3.4 Fundamental Region for a group G in V

In this section it is proved that one fundamental region of a finite group G ≤O(V) in

V is F as defined above. Then some of the basic properties of a fundamental region

is given.

Theorem 3.1. Let G ≤ O(V) be a finite subgroup.The set F=∩{Li :1≤ i ≤ N − 1}
is a fundamental region for G in V.

Proof. (a) F is open Since each Li is open,so ∩Li is open for 1 ≤ i ≤ N − 1

and hence F is open.
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(b) F∩TiF=0 ∀ 1 6= Ti ∈ G.

TiF=Ti(∩Lj)

⇒TiF = {Tix ∈ V | d(Tix, Tixo) < d(Tix, Tixj, 1 ≤ j ≤ N − 1}

⇒TiF = {Tix ∈ V | d(Tix, Tixo) < d(Tix, TiTjxo, 1 ≤ i ≤ N − 1}

⇒TiF = {y ∈ V | d(y, xi) < d(y, Tkxo), k 6= i, 0 ≤ k ≤ N − 1}.

Since {TiTj : 1 ≤ j ≤ N − 1}=G\{Ti}. Thus TiF={ x : d(x,xi) <

d(x, xj), i 6= j}

Let 0 6= x ∈ F∩TiF,

⇒ d(x, xo) < d(x,xi) and d(x,xi) < d(x,xo) since i6= 0. Which is a contradiction.

So F∩TiF=0

(c) V=∪ {TiF | 0 ≤ i ≤ N − 1}

we have V ⊇ ∪ {TiF | 0 ≤ i ≤ N − 1}

Now,let x ∈ V and choose i such that d(x,xi)is minimal i.e., d(x,xi) ≤ d(x, xj) ∀ j

⇒ x∈ TiF

⇒ x∈∪ {TiF | 0 ≤ i ≤ N − 1}

So V=∪ {TiF | 0≤ i ≤ N − 1}.

Hence F is a fundamental region for G in V.

Remark. F is convex since each Li is convex and it is also connected.

Corollary 3.1.1. If F is a fundamental region for a group G ≤ O(V) in V and T ∈
G then TF is also a fundamental region for G in V.

Proof. (a) T is continuous and F is open so TF is open.

(b) if x ∈ TF ∩ TiTF proof for this is analogous to that in the proof for

theorem 3.1 replacing xo with Txo.

(c) since TiTF=TjF for some j where Tj 6=T so V=∪ {TiF | 0 ≤ i ≤ N − 1}
implies V=∪ {TiTF | 0 ≤ i ≤ N − 1}

So TF is also a fundamental region.
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Corollary 3.1.2. If F is a fundamental region for G in V and X ⊆V is an invariant

subspace under G than FX = F ∩X is a fundamental region for G in X.

Proof.

F∩X is relatively open as F is open in X.

F∩TiF=0 Ti ∈ G as F is a fundamental region for G and X is invariant under G.

X=V∩X=∪ {TiF | 0≤ i ≤ N − 1}∩X= {TiF ∩X |0≤ i ≤ N − 1}

3.5 Fundamental Region For a Coxeter Group G

≤O(V) in V

Suppose G is a Coxeter group with t-base Π={r1, ...rn}, say.

Let F := {v∈ V | (v,ri) > 0, ri ∈ Π} = ∩ni=1{v∈ V (v, ri) > 0}

In this section we will prove that F is a fundamental region for G.

Theorem 3.2. F is a fundamental region for G.

Proof.(a) F is open because of the way it is defined.

(b) Let x ∈ F∩TF, and 1 6= T=R−1 ∈ G. So we have Rx∈ F as x∈ TF.Hence

(x, r) > 0 for all r ∈ ∆+
t So,∆+

t =∆+
x .

⇒ Πt=Πx. Similarly we have Πt=ΠRx

⇒ Πt=ΠRx=RΠx=RΠt

⇒ R = T = 1

⇒ F∩TF=φ

(c) If y∈ V then there exists a T∈ G such that (Ty,ri) ≥ 0 for all ri in Π.

So Ty∈ F .

⇒ y ∈ T−1(F )

⇒ V ⊆ ∪ {RiF | R∈G }
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⇒ V = ∪ {RiF | R∈G }
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Chapter 4

Presentation of Coxeter Group

4.1 Introduction

Our main aim in this chapter is to show that Coxeter group G has a presentation

< Si, ....., Sn|(SiSj)P ij=1> where Pij is the order of SiSj and Si’s are the fundamental

reflections of Coxeter group G.

4.2 Definitions

Definition 4.1. If T=Si1.....Sin where Sij’s are fundamental reflections in G such

that there is no other word in S ′is representing T having less than k fundamental

reflections as factor than k is called the length of T and write l(T)=k.

Remark. l(1)=0.

Definition 4.2. n(T) := | T (∆+
t )∩∆−t |

In other words n(T) is the number of positive roots sent to negative roots by T.

Definition 4.3. Suppose i6= j. Then (SiSj.....)m is the product of Si and Sj appearing

alternately m times starting with Si.

(.........SiSj)m is the product of Si and Sj appearing alternately m times ending with

Si.

(.....SiSj......)m is the product of Si and Sj appearing alternately m times.

Definition 4.4. Partial words: Let W=Si1.....Sik and Wj=Si1.....Sij where 1≤j≤k then

Wj is called a partial word of W.

23



Theorem 4.1(Coxeter). Every relation W=Si1.....Sik=1 in a Coxeter group G is a

consequence of the relations of the form (SiSj)
P ij=1.

Proof. The following lemmas will be used in the proof of this theorem.

Lemma 4.1.1. If T ∈ G then l(TSi)=

l(T )− 1 ifTri ∈ ∆−t

l(T ) + 1 ifTri ∈ ∆+
t

If Si is a fundamental reflection in G.

Proof of this lemma follows from the fact that n(T)=L(T) and n(TSi)=n(T)-1 if Tri

∈ ∆−t and n(TSi)=n(T)+1 if Tri ∈ ∆+
t .

Lemma 4.1.2. If Si and Sj are fundamental reflection in G and 1≤m≤Pij then

(SiSj....)m−1ri∈∆+
t .

Lemma 4.1.3. Let T ∈G and i and j are fixed and l(TSi)=l(TSj)=l(T)-1 then

l(T(....SiSj....)m)=l(T)-m if 0≤m≤Pij

Proof: Let u be the maximal length of partial words of W and p=Pij.

We can write W=W1SiSjW2 such that l(W1Si)=u and all partial words of W1 are of

length less than u. Denote W‘=W1(SjSi......)2p−2W2. We have (SiSj)
p=1 in G

⇒ SiSj=(SjSi......)2p−2 in G

⇒ W1SiSjW2=W1(SjSi......)2p−2W2. in G

⇒ W = W ‘ in G.

So W and W‘ are equal as elements in G.Except for W1Si all partial words of W

coincides with partial words of W‘.

Set W1Si = T . Replacing W1Si with T(SiSj....)m where 2 ≤m≤2p-2 we see that

T(SiSj....)m coincides with W1Sj,W1SjSi, ....,W1(SjSi......)2p−2 which are the partial

words of W’as elements of G. In this step we used the identity Si
2=1.

l(T(SiSj....)m) < u by lemma 4.1.3.

So we have by the above step replaced W with W’ where the latter has partial words

of length less than or equal to u and one partial word of length less than that of W

having length u.

Repeating the above steps after a certain number of steps we obtain the empty word,

that is we conclude that applying the identity (SiSj)
p=1 and (Si)

2=1 we get W=1 as

elements in G.
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Corollary 4.1.1. G has a presentation < Si, ....., Sn |(SiSj)
P ij=1>

Let G be a finite group having presentation

< Ti, ....., Tn |(TiTj)
P ij=1, 1 ≤i,j≤n > wherePii=1 for all i, Pij = Pj i ≥2 if i6=j.

Let S={T1, .....Tn}.

Next we will prove that G is infact a Coxeter group.

Definition 4.5. If S=S1 t S2 where S1 and S2 are non empty and Pij=2 if Ti∈
S1 and Tj∈ S2 or vice-versa then G is called decomposable otherwise it is called

indecomposable.

Remark. If G is decomposable then clearly it is the direct product of two subgroups

with the same type of presentation, therefore we will assume that G is indecomposable.

Let H := < S1, ...., Sn> be the group of non-singular transformations of Rn where

Sjei = ei + 2cos
π

Pij
ej

and {e1, ....en} is the standard basis of Rn. Denote A=[αij] be the n × n matrix where

αij = −cos π
Pij
.

Let the coloumn of A be {a1, ....an} and (Pi) = (ai)
⊥ ⊆ Rn.

Remark. Six = x if x∈Pi and Siei = −ei.

Theorem 4.2. H ≤ O(V) is a Coxeter subgroup and G is isomorphic to H.

Proof. We will need the following lemmas for the proof of this theorem.

Lemma 4.2.1. There is a homomorphism φ from G to H,i.e. φ(Ti)=Si 1 ≤ i ≤ n.

Remark. From the above lemma we have H is finite.

Lemma 4.2.2. If H is as above(or finite group of invertible transformations on Rn).

Then there is an inner product (-,-)C such that (x,y)C =(Tx,Ty)C = (x, y)C ,∀T ∈ G}
such that H ≤ O(Rn,(-,-)C).

Lemma 4.2.3. If W is a subspace of Rn such that W is invariant under T for all T

in H then W=Rn or W=0.
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Lemma 4.2.4(Schur’s lemma). Suppose the only H-invariant subspaces in Rn are

Rn and 0. If S is a non-zero linear transformation on Rn such that ST=TS for all T

∈ H then S is non-singular.

Lemma 4.2.5. If S is a linear transformation and λ is an eigen value of S, then

S=λI

Let B:=Rn × Rn → R be the bilinear transformation such that B(x,y)=(Ax,y),

where A=[αij].

Remark. B is a symmetric form as A is a symmetric matrix and B is invariant

under transformations in H. Also Six=x-B(x,ei)ei

Lemma 4.2.6. Let Ti ∈H be represented by matrix Mi wrt standard basis of Rn and

P=
∑n

i=1 M
t
iMi. If T∈H is represented by a matrix M wrt standard basis of Rn then

M(P−1A)=(P−1A)M.

Remark. From the above lemma we see that B is a positive scalar multiple of inner

product C and hence B is also an inner product on Rn

Using these lemmas and remarks we will prove that H is infact a Coxeter group. B

is invariant under transformations in H so H≤O(Rn). Since Six=x-B(x,ei)ei and

B(ei, ei)=1 and B(x,ei)=0 if x∈ (ei)
⊥ so Si is a orthogonal reflection of Rn with root

ri = ei.Since {e1, ....en} is a basis for Rn so H is effective. So H is a Coxeter group. H

has a postive definite graph as B(ri, rj) = αij. So the matrix of {r1,...,rn} is A which is

postive definite. As G is indecomposable so the Coxeter graph of H is connected. Also

we have {S1,....Sn} are fundamental reflections of H so H has the same representation

as that of G and hence H is isomorphic to G.
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Chapter 5

Clasification of Coxeter group

5.1 Introduction

In this chapter we will introduce Coxeter graph and establish a relationship between

Coxeter graph and Coxeter group. This will lead to classification of Coxeter groups.

5.2 Definitions

Definition 5.1. Marked graph: A Marked graph is finite set of points called nodes

such that any two distinct nodes may or may not be joined by a line called Branch and

if there is a branch joining the ith and jth nodes then it is marked with a real number

Pij > 2.

Definition 5.2. Coxeter graph: If for a marked graph every mark Pij is an integer

then it is a Coxeter graph.

Remark. If Pij=3 then the labelling is not done on the branch.

Definition 5.3. Quadratic forms of a marked graph: Let G be a marked graph

with n nodes we associate a quadratic form QG with G such that

QG(λ1, ..., λn) =
∑
ij

αijλiλj

where αij = −cos π
Pij

, if there is a branch joining ith and jth nodes.Otherwise αij=2

and αii=1.
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We denote A=[αij]

Remark. A is a symmetric matrix.

Definition 5.4. Positive definite Marked graph: If A is positive definite for a

marked graph G then G is called positive definite.

Remark. Given a marked graph G by det(G) we denote the determinant of the matrix

associated to that graphas discussed above.

Definition 5.5. Marked graph G for a set of vectors: If {x1,....,xn} is a finite

set of mutually obtuse vectors then we define a marked graph G with n nodes x′is and

if i 6= j then the ith and jth nodes are joined by a branch iff (xi, xj) 6=0 and it is labelled

Pij, where
(xi,xj)

‖xi‖‖xj‖ = −cos π
Pij
.

Remark. For a Coxeter group G we denote the graph associated to it by G.

Definition 5.6. Reducible and Irrreducible graphs: If the t-base Π is not a

union of two non empty orthogonal subsets then G is irreducible. Else it is reducible.

Remark. If G is Coxeter group then the marked graph corresponding to G is a Coxeter

graph.

Definition 5.7. Connected nodes: Two distinct nodes a and b are connected iff

there are nodes a1,....,an in G such that a=a1 joined by a branch with a2 ,a2 is joined

by a branch with a3,....,an−1 is joined by a branch with an=b.

Remark. If all the nodes in a graph are connected then the graph is called connected

graph. So a Coxeter graph of a Coxeter group is connected iff it is irreducible.

Definition 5.8. Subgraph A marked graph H is called a subgraph of a graph G if H
can be obtained either by deleting some of the nodes of G or by decreasing the marks

on some branches or by both.

Theorem 5.1. If G1 and G2 ≤ O(V) are Coxeter groups having the same Coxeter

graphs then they are geometrically the same.i.e., G1=T−1G2T for some T ∈ O(V)

Proof. If Π1=(x1,...,xn) and Π2=(y1,....yn) be the t-bases for G1 and G2 respectively

then (xi, xj) = (yi, yj) for all i and j since G1 and G2 have the same Coxeter graph.
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Let T be a linear transformation defined as:

T : Rn → Rn

such that Txi=yi then since T(xi, xj) = (Txi, Txj) = (Tyi, T yj) = (xi, xj) so T ∈
O(V).

As xi=yi so S′i=TSiT
−1 for all Si ∈G1 and S′i in G2.

As Si generates G1 and S′i generates G2 so G2=TG1T−1soG1=T−1G2T as required.

Remark. The Coxeter Graph of a Coxeter group is positive definite.

5.3 Positive definite graphs

The following are some of the marked graphs.
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In this section we will prove that these graphs are positive definite.

Remark. The kth principal minor of matrix of marked graph An is the det of matrix

of marked graph Ak. So if we prove that det(Ak) is positive for all k then An will be

positive definite. This is true form all other marked graphs for figure 4.1.

Theorem 5.2. The marked graphs An, Bn, Dn, H
n
2 , G2, I3, I4, F4, E6, E7, E8 are all

postive definite.

Proof.

Lemma 5.2.1. Let G be a marked graph and a1 be one of its nodes connected to only

one other node say a2 by a branch marked P12. Denote subgraphs G\{a1} by G1 and

G\{a1, a2} by G2. Then det G=det(G1)− cos π
P12

det(G2)

By a simple calculation we have det(A1)=1 and det(A2) = 3
4

and by applying induction

on An we have det(An) = n+1
2n

Now using the above lemma we get the following:

(a) det(An) = det(An−1)− 1
4
det(An−2) = n+1

2n
> 0

(b) det(Bn) = det(An−1)− 1
2
det(An−2) = 1

2n−1> 0

(c) det(Dn) = det(An−1)− 1
4
det(An−3) = 1

2n−2> 0

(d) det(I3) = det(A2)− α2det(A1) = 3−
√

5
8
> 0

(e) det(I4) = det(A3)− α2det(A2) = 7−3
√

5
8

> 0

(f) det(F4) = det(B3)− 1
4
det(A2) = 1

16
> 0

(g) det(En) = det(Dn−1)− 1
4
det(An−2) = 9−n

2n
> 0

Since determinant of all the minors of the matric associated to the graphs is

positive so the above graphs are positive definite.

Since Hn
2 and G2 are graphs of Coxeter graph of dihedral groups Hn

2 so they are

positive definite by remark already mentioned in chapter 2.
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5.4 Marked graphs with determinant zero

Definition 5.9. Cycle in a marked Graph is a subgraph of form Pn.

Definition 5.10. Branch point in marked graph G is a node having 3 or more

branches emanating from it.
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Theorem 5.3. Marked graph Pn, Qn, Sn, Tn, U3, V5, Z4, Y5, R7, R8, R9 have determi-

nant zero.

Proof. Using lemma 5.2.2 we have the following:

(a) det(Qn) = det(Dn−1)− 1
4
det(Dn−3) = 0

(b) det(Sn) = det(Bn−1)− 1
2
det(Bn−2) = 0

(c) det(Tn) = det(Bn−1)− 1
4
det(Bn−3) = 0

(d) det(U3) = det(A2)− 3
4
det(A1) = 0

(e) det(Y5) = det(I4)− β2det(I3) = 0

(f) det(V5) = det(B4)− 1
4
det(A3) = 0

(g) det(R7) = det(E6)− 1
4
det(A5) = 0

(h) det(R8) = det(E7)− 1
4
det(D6) = 0

(i) det(R9) = det(E8)− 1
4
det(E7) = 0

Z4 by finding the matrix and den its determinant and for Pn the rows of the matrix

for Pn add upto zero so they are linearly dependent and hence det(Pn) = 0.

Theorem 5.4. If G is a connected positive definite Coxeter graph then G is one of

the following graphs An, Bn, Dn, H
n
2 , G2, I3, I4, F4, E6, E7, E8.

Proof. We first note

Lemma 5.4.1. A non nonempty subgraph H of a positive definite graph G is also

positive definite.

Case 1: Subgraph of the form Pn. If a marked graph has a cycle as a subgraph

then this positive definite graph will have a subgraph that is not positive definite

leading to a contradiction to lemma 5.4.1. A cycle cannot be a subgraph for G.

32



Case 2: Branch points of G.G can have only one branch point with 3 branches

emanating from it. Else Qn would be a subgraph of G contradicting lemma 5.4.1.

Case 3: If G has Hn
2 n ≥7 as a subgraph. Then G= Hn

2 .otherwise U3 would be a

subgraph contradicting lemma 5.4.1 and same reason hold for if G2 is a subgraph of

G then G=G2

Now the only possible marks on G could be 3,4 or 5. These cases are dealt with in

the next steps.

Case 4: If B2 is a subgraph. It can occur as subgraph in G only once else Sn would

be a subgraph. Also G cannot have a branch point else Tn would be a subgraph. If

H5
2 is also a subgraph thenG=H5

2 or G=I3 or G=I4. These are the only possibilities

for this particular case with H5
2 as subgraph else Z4 and Y5 would be its subgraphs.

Case 5: If B2 is a subgraph and H5
2 is not a subgraph. Then G=Bn or F4 else

V5 would be a subgraph of G.

We are done with branches marked with 4 and 5 so the only case remaing is if all the

branches of G are unmarked or Pij=3.

case 6: If the branches of G are all unmarked. If G has no branch point the

G=An. If G has a branch point then G=Dn or E6 or E7 or E8 no other possiblities

are there as except for these graphs anyother case will lead to subgraph as R7, R8 and

R9 on G.

5.5 Crystallographic Groups

Definition 5.11. A lattice in vector space V(dim v=n) is a discrete set of points

obtained by taking all integer linear combination of n-linearly independent vectors in

V,i.e.,If X={x1, ...xn} is a set of linearly independent vectors in V, then lattice L in

V is defined as:

L := {v∈ V | v =
∑n

i=1 λixi, for all λi ∈ Z and xi ∈ X}

Definition 5.12. A subgroup G≤ O(V) is said to satisfy the crystallographic condition

iff there is a lattice L invariant under G.

Remark. If a Coxeter group G is crystallographic then the only possible values of Pij

are 1,2,3,4 or 6.
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From this remark it follows that the only Possible irreducible crystallo-

graphic Coxeter groups are An,Bn,Dn,G2,E6,E7,E8 and E9.

Theorem 5.5. A Group with graph An,Bn,Dn,G2,E6,E7,E8 and E9 satisfies crystal-

lographic conditions.

Proof. Let L{
∑i=n

i=1 λiri :λi ∈ Z and ri ∈ Π}

Assign relative lengths to the roots of the groups as follows:

Pij relation between lengths of r i and rj
3 ‖ri‖ = ‖rj‖
4 ‖ri‖ =

√
2‖rj‖ or ‖rj‖ =

√
2‖ri‖

6 ‖ri‖ =
√

3‖rj‖ or ‖rj‖ =
√

3‖ri‖

Case(1) If Pij = 1 then Sirj = −rj

Case(2) If Pij = 2 then Sirj = rj

Case(3) If Pij = 3 then Sirj = ri + rj

Case(4) If Pij = 4 then Sirj = ri + rj or 2ri + rj depending on the relative lengths of ri and rj

Case(5) If Pij = 6 then Sirj = ri + rj or 3ri + rj depending on the relative lengths of ri and rj

In all the above cases Sirj∈L for all So we have SiL=L,hence TL=L as required since

Si generated G.
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Chapter 6

Construction Of Coxeter Group

6.1 Introduction

In this chapter we Construct Coxeter group and for that we will show that the graphs

listed in previous chapter are actually the graphs of Coxeter groups.

6.2 Construction of Coxeter group with graph An

Let the symmetric group Sn+1 be viewed as a group of linear transformation on Rn+1

such that any T ∈ Sn+1 permutes the basis vectors e1,.....,en+1.

then we have,Sn+1= < S1, ....Sn > where Si=(eiei+1).

Proposition 6.1. Sn+1 ≤ O(Rn+1)

Proof. Si(ei+1 − ei) = −(ei+1 − ei)
S(ei + e+1) = ei + e+1

Si(ej) = ej, if j6= i, j 6= i+ 1

(ei+1 − ei)⊥is spanned by {ej | j6= i,j 6= i+ 1} ∪{ei + e+1}
So S′is are reflection along root ri=ei+1− ei and Sn+1= < S1, ....Sn >. Hence Sn+1

≤ O(Rn+1).

Remark. The root system of Sn+1 ={ei − ej : i 6= j, 1 ≤ i, j ≤ n + 1}. Reason being

the conjugates of any transposition is the set of all transpositions and hence the set of

conjugate reflections is the set of all transpositions.

Let V be the subspace of of Rn+1 spanned by {r1, ...., rn} and An be the group of

transformations in Sn+1 restricted to V.

35



Then we have An=< S1, ...., Sn > and An ≤ O(V).

Remark. An is effective since {r1, r2, ...rn} forms a basis for V.

So from this remark we have An is a Coxeter group. Also {r1, ..., rn} is a t-base

for A as any root in An is a positive linear combination of {r1, ..., rn}.

Remark. The Coxeter graph of An is An as
(ri,rj)

‖ri‖‖rj‖ = −1
2

, 1≤ i, j ≤ n+ 1.

6.3 Construction of Coxeter group Bn with graph

Bn

Let Kn:= <Se1 ,....,Sen> where Sei(λ1, ..., λi, ....., λn)=(λ1, ...,−λi, ....., λn) is linear

transformation on Rn.

And as before Sn is a group of linear transformation but here Sn=< S2, ...., Sn >where

Si is a reflection with root ri = ei − ei−1.

Let J ⊆ {e1, ..., en} define fJ : Rn → Rn such that

fJ(ei) =

−ei ifei ∈ J

ei ifei /∈ J

Remarks:

1. Kn is abelian and |Kn |=2n.

2. Kn is normalised by Sn.

3. Kn∩Sn=1.

Let Bn:= < Kn∪Sn > and fi = f{ei}=Sei. Then we have Bn=< f1, ..fn, S2, ...Sn >.

But fi = Tif1T
−
i

1 where Ti is a reflection in Sn whose root is ei − e1.

So we have Bn = < f1, S2, ...Sn > where f1 is a reflection with root r1=e1.

Remark. For Bn we can conclude the following

1. root system for B is {±ei : 1 ≤ i ≤ n} ∪ {ei ± ej : i 6= j, 1 ≤ i, j ≤ n}

2. {r1, ...rn} is a t-base for Bn as any root in Bn is a linear combination of {r1, ...rn}.

3. Since {r1, ...rn} forms a basis for Rn so Bn is effective and hence a Coxeter group.

4. The Coxeter graph for Bn is Bn as (r1,r2)
‖r1‖‖r2‖ = −

√
2

2
. and

(ri,rj)

‖ri‖‖rj‖ = −1
2

, 2 ≤ i, j ≤ n+ 1.
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6.4 Construction of a Coxeter group Dn with Cox-

eter graph Dn

Let Ln ≤ Kn such that Ln = {fJ : | J | is even}. Ln is a subgroup of Kn. Let

Dn=< Ln ∪ Sn >. Ln is generated by elements like SeiSej i 6=j.

For i6= j, Sei+ej∈ Dn and Sei−ejSei+ej=SeiSej .

Let T∈Sn be such that Te1 = ei and Te2 = ej.Then we have TSe1+e2T
−1 = Sei+ej

⇒ Dn=< S1, S2, ..., Sn > with roots r1 = e1 + e2 and ri = ei − ei−1 for 2≤i ≤ n

Remark. The following can be concluded about Dn,

1. Root system for Dn is {ei ± ej : i 6= j, 1 ≤ i, j ≤ n}.

2. {r1, ...rn} is a t-base for Dn as any root in Dn is a linear combination of {r1, ...rn}.

3. Since {r1, ...rn} forms a basis for Rn so Dn is effective and hence a Coxeter group.

4. The Coxeter graph for Dn is Dn.

6.5 Construction of Coxeter groups with Coxeter

Graph G2, I3, I4, F4, E6, E7, E8

In this section the method we use to find a Coxeter group is by extending the base of

Coxeter groups An or Bn or Dn and obtaining base and hence Coxeter groups having

Coxeter graph G2, I3, I4, F4, E6, E7, E8. We will give one example to find the Coxeter

group with graph F4 rest follows similarly hence the detailed proof is omitted and just

a summary is given for the rest.

6.5.1 Construction of Coxeter group with Coxeter Graph F4

We will extend the base of the group B3 to get the required Coxeter group.

Let the base for Coxeter group with Coxeter Graph F4 be {r1, r2, r3, r4}. Where

{r2, r3, r4} is the base for B3. Let r1=(λ1, λ2, λ3, λ4) then using the crystallographic

condition and the required values of (ri, rj) for all i and j we have r1 = (−1
2
, −1

2
, −1

2
, −1

2
).

This Coxeter group has Coxeter graph F4.

Similarly we can do for the rest of the groups.

For G2 we extend the base of the group A1.

For I3 we verify the conditions for the base of symmetric group of icosahedron.
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For I4 we extend the base of the group I3.

For E6, E7 and E8 we extend the base of the group A5, A6 and A7.

We get the following result:
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6.6 Algorithm to find the Root system of any of

the above mentioned groups

Here we will give the basic steps of the algorithm and one example to illustrate the

algorithm. Rest will be tabulated.

1. Let Γo = {r1, ...., rn} be basis of V. This is actually our t-base for the group G,

whose root system we want to find. For 1≤ i ≤ n find Sirj such that (ri, rj) < 0.

Denote the this set along with Γo as Γ1.

2. For all r∈ Γ1\Γo for which (r,ri) < 0 find Sir and denote this set along with Γ1

by Γ2.

3. We repeat the above step and get the following set of vectors

Γ0 ⊆ Γ1 ⊆ Γ2 ⊆ ........

4. The process ends after a finite number of steps for all the groups that we need to

find a root system and also we found that every vector obtained by this method

is a linear combination of the vectors in the base. Let Γk be the set after which

this process procedure is terminated then we denote Γk∪(-Γk) by Γ∗.

5. Verify that SiΓ
∗=Γ∗,1≤ i ≤ n.So TΓ∗=Γ∗ for all T∈ G. Hence Γ∗ is the root

system for G.

6.6.1 Example to demonstrate the algorithm

Let the group whose roots we need to find be G3.

step(1) Γo={r1 = e2− e1, r2 = e1− 2e2 + e3}. We have(r1, r2) = −3 < 0 So we find S1r2

and S2r1 whcih are 3r1+r2 and r1+r2 respectively. So Γ1={r1, r2, r1+r2, 3r1+r2}

step(2) (r1, r1 + r2) = −1 < 0 and (r1, 3r1 + r2) = 3 > 0. (r2, r1 + r2) = 3 > 0 and

(r2, 3r1 + r2) = −3 < 0. So we find S1(r1 + r2) = 2r1 + r2 and S2(3r1 + r2) =

3r1 + 2r2. Hence Γ2={r1, r2, r1 + r2, 3r1 + r2, 2r1 + r2, 3r1 + 2r2}

step(3) After this we get (r1, 3r1 + 2r2) = 0 and (r1, 2r1 + r2) = 3 > 0. (r2, 2r1 + r2) = 0

and (r2, 3r1 + 2r2) = 3 > 0. So our Γ∗=Γ2∪-Γ2.
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step(4) For all ri and rj ∈ Γ2 we have if (ri, rj) < 0 then Sirj ∈ Γ2. If (ri, rj) = 0 then

Sir = r ∈ Γ2. If (ri, rj) > 0 then we find that Sirj = S2
i rk = rk ∈Γ2 for some

rk ∈ Γ2. So we get Si Γ2 =Γ2 So we have SiΓ
∗=Γ∗.Hence it follows that the root

system of G2 = Γ∗.

6.7 The root system and its order for various groups
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6.8 Order of the Coxeter groups

For finding the order of these groups we need the following 2 lemmas.

Lemma 6.2. If H ≤ G that fixes the dual basis element si then, H =< S1, ...Si−1, Si+1, ...Sn >

.

Lemma 6.3. Let G be irreducible and its Coxeter graph does not have any mark over

its branches that is Pij=3 for all i and j. Then G is transitive as a permutation group

on its root system.

6.8.1 Order of Group An

An is isomorphic to symmetric group Sn+1 so | An |=| Sn+1 |=(n+1)!

6.8.2 Order of Group Bn

Bn = Kn o Sn So we have | Bn |=| Kn || Sn |=2n.n!

6.8.3 Order of Group Dn

| Dn |= |Bn|
2

=2n−1.n!

6.8.4 Order of group Hn
2

As these are the dihedral groups so | Hn
2 |=2n.

For the rest of the groups we will follow the following method.

1. We know that for a group G and any element g∈ G, | G | = [G:stab(g)] [stab(g)]

= [orb(g)] [stab(g)], where orb(g)=orbit of g and stab(g)=stabilizer of g. We

will use this result to find the order of the groups.

2. The element of the group which we will choose to find the stabilizer and orbit

of is a root r∈∆ such that r is orthogonal to all but one elements in Π.

3. To find the orbit of the group we follow a similar procedure as that of finding

the root system of group. But here in place of (r,ri) < 0 we find (r,ri) 6= 0.And

compute Sir, which gives us orb(r).

4. To find the stabilizer, if r is not orthogonal to ri only,then r is a scalar multiple

of dual basis vector si .So stabilizer of r fixes si and Lemma 6.2 gives us stab(r).
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For example,Let us Consider group E6. We have root r=e7 +e8 is orthogonal to all

the roots in the base except r1.Sostab(r)= ¡S2, S3, ..S6 > which is A5. So | stab(r) |=|
A5 |=6!

| E6 |=6! 72

As | orbE6 |= 72

Similarly we can do for the rest of the groups.The results are tabulated below.

Group G root(r) ris.t(r, ri) 6= 0 stab(r) | stab(r) | | orb(r) | | G |
F4 e4 − e3 r4 B3 48 24 2732

I3 β(1, 2α, 2α + 1) r2 A1 × A1 4 30 120
I4 e4 r4 i3 120 120 14400

Group G root(r) ris.t(r, ri) 6= 0 stab(r) | stab(r) | | orb(r) | | G |

E6 e7 + e8 r1 A5 6! 72 27.34.5

E7 e1 + e8 r2 D6 25.6! 126 210.34.5.7

E8 (1/2)(
∑7

i=1 ei − e8) r8 E7 25.6!.126 240 214.35.52.7

Next we just tabulate the results we already discussed before.

Group G | G |
An (n+1)!

Bn 2n.n!

Dn 2n−1.n!

Hn
2 2n

G2 12
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