Finite Coxeter Groups

Pragnya Das

A dissertation submitted for the partial fulfilment of BS-MS dual degree in Science

Indian Institute of Science Education and Research Mohali April 2018

Certificate of Examination

This is to certify that the dissertation titled "Finite Coxeter Groups" submitted by Pragnya Das (Reg. No. MS13014) for the partial fulfillment of BS-MS dual degree programme of the Institute, has been examined by the thesis committee duly appointed by the Institute. The committee finds the work done by the candidate satisfactory and recommends that the report be accepted.

Dr. Mahender Singh

Dr. Soma Maity

Dr. Pranab Sardar (Supervisor)

Dated: April 20, 2018

Declaration

The work presented in this dissertation has been carried out by me under the guidance of Dr. Pranab Sardar at the Indian Institute of Science Education and Research Mohali.

This work has not been submitted in part or in full for a degree, a diploma, or a fellowship to any other university or institute. Whenever contributions of others are involved, every effort is made to indicate this clearly, with due acknowledgement of collaborative research and discussions. This thesis is a bonafide record of original work done by me and all sources listed within have been detailed in the bibliography.

> Pragnya Das (Candidate)

Dated: April 20, 2018

In my capacity as the supervisor of the candidate's project work, I certify that the above statements by the candidate are true to the best of my knowledge.

> Dr. Pranab Sardar (Supervisor)

Acknowledgment

I would like to extend my sincere gratitude to my supervisor Dr. Pranab Sardar for his patient support, motivation and guidance through out my project. I would also like to express thanks to the rest of my project committee members- Dr. Mahender Singh and Dr. Soma Maity for their insightful feedback and suggestions.

Finally, I would like to thank my friends and family and most importantly my parents who have continuously encouraged me and guided me through life.

Abstract

Finite Coxeter groups, named after H.S.M Coxeter, is an abstract group generated by finite set of reflections with some defining properties. In this dissertation we define Finite Coxeter groups and give some of its properties, which is discussed in chapter 2 and 3. In chapter 4 we give a presentation of Coxeter groups. In chapter 5 and 6 we define Coxeter graphs and classification and construction of finite Coxeter Groups is discussed based on that.

Contents

A	bstra	act	i
1	Fin	ite Reflection Groups	1
	1.1	Introduction	1
	1.2	Definitions	1
	1.3	Finite subgroups in $O(2,\mathbb{R})$	3
	1.4	Finite subgroups in $O(3,\mathbb{R})$	3
	1.5	Extending the orthogonal transformation from \mathbb{R}^2 to \mathbb{R}^3	4
	1.6	Symmetry Group of Regular convex polyhedra	5
	1.7	Finite reflection groups in \mathbb{R}^3	6
2	Intr	roduction To Coxeter Groups	9
	2.1	Introduction	9
	2.2	Definition	9
	2.3	t-base Π is a basis for V \ldots	13
		2.3.1 $G=G_t$	14
	2.4	Some Properties of a Finite Coxeter group	15
	2.5	Example of a Coxeter Group(Dihedral group, H_2^n)	15
3	Fun	ndamental Regions	17
	3.1	Introduction	17
	3.2	Definitions	17
	3.3	Lemmas to be used	18
	3.4	Fundamental Region for a group G in V	19
	3.5	Fundamental Region For a Coxeter Group G $\leq\!O(V)$ in V	21
4	\mathbf{Pre}	sentation of Coxeter Group	23
	4.1	Introduction	23

	4.2	2 Definitions					
5	Clas	sification of Coxeter group	27				
	5.1	Introduction	27				
	5.2	Definitions	27				
	5.3	Positive definite graphs	29				
	5.4	Marked graphs with determinant zero	31				
	5.5	Crystallographic Groups	33				
6	Con	struction Of Coxeter Group	35				
	6.1	Introduction	35				
	6.2	Construction of Coxeter group with graph A_n	35				
	6.3	3 Construction of Coxeter group B_n with graph B_n 4 Construction of a Coxeter group D_n with Coxeter graph D_n 5 Construction of Coxeter groups with Coxeter Graph G_2 , I_3 , I_4 , F_4 , E_6 , E_7 , E_7					
	6.4						
	6.5						
		6.5.1 Construction of Coxeter group with Coxeter Graph F_4					
	6.6	Algorithm to find the Root system of any of the above mentioned groups	39				
		6.6.1 Example to demonstrate the algorithm	39				
	6.7	The root system and its order for various groups	40				
	6.8	Order of the Coxeter groups	41				
		6.8.1 Order of Group A_n	41				
		6.8.2 Order of Group B_n	41				
		6.8.3 Order of Group D_n	41				
		6.8.4 Order of group H_2^n	41				
Bi	bliog	graphy	43				

Chapter 1

Finite Reflection Groups

1.1 Introduction

In this chapter the prerequisites needed throughout this report is mentioned. Moreover, we discuss the finite subgroups of orthogonal transformations in dimension 2 and 3 as motivation for the latter chapters.

1.2 Definitions

Definition 1.1. For a real vector space, say V, of dimension n over field \mathbb{R} an inner product<-,->:V × V $\rightarrow \mathbb{R}$ satisfies the following four properties. For any, u,v and w $\in V$ and $c \in \mathbb{R}$,

- 1. < u + v, w > = < u, w > + < v, w >
- 2. < cv, w > = c < v, w >
- 3. < v, w > = < w, v >
- 4. $\langle v, v \rangle \geq 0$ and equality holds if and only if v=0

Example: $V = \mathbb{R}^n$, $v = \{x_1, x_2, ..., x_n\}$, $w = \{y_1, y_2, ..., y_n\}$, then the standard inner product is

$$(v,w) = \sum_{i=1}^{n} x_i y_i$$

Remark. Given an n-dimensional vector space V over \mathbb{R} with the inner product < -, -> there is a linear isomorphic transformation $T: V \rightarrow \mathbb{R}^n$ such that < v, w > = < Tv, Tw >. Hence for the most part of the thesis we shall work with \mathbb{R}^n with the standard inner product.

Definition 1.2. For an n dimensional vector space V over \mathbb{R}

$$O(V) = \{ T \in Aut_{\mathbb{R}}(V) : < Tv, Tw > = < v, w > , v, w \in V \}$$

Example: $O(n,\mathbb{R}) = \{ A \in GL(n,\mathbb{R}) \mid AA' = A'A = I, Where A' is transpose matrix of A and I is the identity matrix. \}$

Lemma 1.1. Determinant of orthogonal matrices can be only 1 or -1.

Definition 1.3. For n=2,3, Rotation subgroup in $O(2,\mathbb{R})$;

$$H := \{ R \in O(2, \mathbb{R}) \mid det(R) = 1 \}$$

Non-identity elements in $H, R \in H$, are called rotations.

Remark. The rotation subgroup is an index 2 subgroup of $O(2,\mathbb{R})$ or $O(3,\mathbb{R})$ and hence it is normal $inO(\mathbb{R}^n)$ fro n=2,3.

Definition 1.4. Reflection in terms of linear transformation is represented by:

$$S_r x = x - 2\frac{(x,r)}{(r,r)} r \forall x \in V$$

Where $0 \neq r \in V, P = r^{\perp}$ and P is a hyperplane of \mathbb{R}^n , for n=2,3.

The vector $\pm \frac{r}{\|r\|}$ above is generally called the roots of S_r .

Remark. $S \in O(n,R), forn = 2, 3.Sodet(S) = -1, if Sisare flection in \mathbb{R}^2$ or \mathbb{R}^3 .

Definition 1.5. Points in a unit sphere of in \mathbb{R}^3 those are fixed by non-zero rotations are called poles.i.e., If $\{x \in \mathbb{R}^3 \mid ||v|| = 1\}$ be a unit sphere of \mathbb{R}^3 and $1 \neq T$ be a rotation in \mathbb{R}^3 , If Tx = x, then x is a pole and these are precisely the points where axis of rotation T intersects the unit sphere.

1.3 Finite subgroups in $O(2,\mathbb{R})$

Rotation R in O(2, \mathbb{R}) is represented by the matrix $\begin{pmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{pmatrix}$ and reflection S in O(2, \mathbb{R}) is represented by the matrix $\begin{pmatrix} \cos\theta & \sin\theta\\ \sin\theta & -\cos\theta \end{pmatrix}$ wrt to standard basis in \mathbb{R}^2 .

Theorem 1.1. A finite subgroup of $O(2,\mathbb{R})$ is either a cyclic group denoted by H or a dihedral group denoted by H_2^n .

Proof. We have any orthogonal transformation can be either be a rotation or a reflection which follows from lemma 1.1.

Let $H := \{R \in G | det(R) = 1\}$, subset of rotational transformations.

We will prove that H is cyclic.

Let $T \in H$ be rotation with minimum angle θ . And T' be any other rotation in H with angle ϕ . Then we have for some $m \in \mathbb{Z}$:

$$m\theta \le \phi \le (m+1)\theta$$
$$\Rightarrow 0 \le \phi - m\theta \le \theta$$
$$\Rightarrow \phi - m\theta = 0$$
$$\Rightarrow \phi = m\theta$$

This proves that $T'=T^m$

So H is cyclic as $H = \langle T \rangle$

If H=G then there is nothing to prove. But if H $\neq G$ then there exists S $\in Gn$ H And ST^k is a reflection as det(ST^k)=-1.

Let S' be an arbitrary reflection then we have det(SS')=1

So $S' \in SH$.

So $G=H\cup$ SH and [G:H]=2

 $G = \langle R, S \rangle = \{1, R, ..., R^{n-1}, S, SR, ..., SR^{n-1}\}$ which is isomorphic to D_{2n} , dihedral group of order 2n.

1.4 Finite subgroups in $O(3,\mathbb{R})$

The following results can be derived for 3-dimensional cases.

- 1. Let $R \in O(\mathbb{R}^3)$ be a rotation, then R is a rotation about a fixed axis, i.e., R has eigen vector v having eigen value 1 s.t. $R|_P$, $(P=v^{\perp})$ is a 2-dimensional rotation.
- 2. S is a reflection in $O(\mathbb{R}^3)$ is a transformation s.t.

$$Sx = x \ \forall x \in P$$
$$Sx = -x \ \forall x \in P^{\perp}$$

Where P is plane passing through origin.

3. Let $S \in O(\mathbb{R}^3)$ s.t. det S = -1 then geometrical effect of S is the same as reflection through a plane P, followed by a rotation about the line through the origin orthogonal to P.

The above result gives us an interpretation of rotation and reflection in 3-dimensional case.

1.5 Extending the orthogonal transformation from \mathbb{R}^2 to \mathbb{R}^3

Finite subgroups $G \leq O(3,\mathbb{R})$ can be obtained by the following ways:

1. We first extend rotations in $O(2,\mathbb{R})$ to get rotational subgroup in $O(3,\mathbb{R})$. Let W be a the y-z plane in \mathbb{R}^3 . Let R be rotation in $O(2,\mathbb{R})$; set Rx=x for all $x \in W^{\perp}$ then

$$R = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{bmatrix} is a matrix representing rotation in V wrttobasis \{e_1, e_2, e_3\}$$

} in V where $\mathbf{e}_1 \in W^{\perp}$ and $\{\mathbf{e}_2, e_3\}$ in W.

Remark. We can extend each rotation in rotation subgroup $H \leq O(2,\mathbb{R})$ to get rotation in $O(3,\mathbb{R})$ that forms rotation subgroup in $O(3,\mathbb{R})$.

2. We can also extend reflectionS in $O(2,\mathbb{R})$ to get rotational subgroup in $O(3,\mathbb{R})$. Let W be y-z plane in \mathbb{R}^3 . Let S be a reflection in $O(2,\mathbb{R})$; set Sx=-x for all $\mathbf{x} \in W^{\perp}, \text{then}$

$$R = \begin{bmatrix} -1 & 0 & 0\\ 0 & \cos\theta & \sin\theta\\ 0 & \sin\theta & -\cos\theta \end{bmatrix} is a matrix representing rotation in O(3, 3)$$

R) $wrttobasis\{e_1, e_2, e_3\}$ in \mathbb{R} where $\mathbf{x}_1 \in W^{\perp}$ and $\{e_2, e_3\}$ in W.

Remark. we can extend each rotation and reflection in dihedral subgroup $H_2^n \leq O(2,\mathbb{R})$ to get rotations in $O(3,\mathbb{R})$ that forms rotation subgroup denoted by H_3^n in $O(3,\mathbb{R})$ and referred to as dihedral group $O(3,\mathbb{R})$.

1.6 Symmetry Group of Regular convex polyhedra

We can look at the finite subgroups $G \leq O(3,\mathbb{R})$ as the symmetric groups of regular convex polyhedra.

Theorem 1.2. There can be only 5 possible regular convex polyhedra; Tetrahedron, cube, octahedron, icosahedron and dodecahedron

Figure 1.1. The 5 polyhedra discussed

Remark. Since cube and octahedron are geometrically same and so are icosahedron and dodecahedron we discussing only 3 cases are enough.

Rotation group for tetrahedron(\mathcal{T})						
Angle of rota-	Axes of rotation	no.of axes of ro-	order of rotation			
tion		tation				
$\frac{2\pi}{3}$ and $\frac{4\pi}{3}$	rotation along	4	3			
	axes joining ver-					
	tices with center					
	of opposite faces					
π	axes joining the	3	2			
	mid point of op-					
	posite edges					

Symmetric groups of these 3 Platonic solids are tabulated below:

Table 1.1: Table for rotation subgroup of tetrahedron

Rotation group for $\operatorname{cube}(\mathcal{W})$							
Angle of rota- Axes of rotation no.of axes of ro- order of rotation							
tion		tation					
$\frac{\pi}{2},\pi,\frac{3\pi}{2}$	axes joining the	3	4				
	center of oppo-						
	site faces						
$\frac{2\pi}{3}$ and $\frac{4\pi}{3}$	axes joining ex-	4	3				
	treme opposite						
	vertices						
π	axes joining the	6	2				
	mid point diago-						
	nally of opposite						
	edges						

Table 1.2: Table for rotation subgroup of cube

Order of \mathcal{T} , $|\mathcal{T}|=12$ Order of \mathcal{W} , $|\mathcal{W}|=24$ Order of \mathcal{I} , $|\mathcal{I}|=60$

1.7 Finite reflection groups in \mathbb{R}^3

Lemma 1.2. If $V = \mathbb{R}^3$ and the finite subgroup $G \leq O(3,\mathbb{R})$, then G is a permutation group on its set of poles.

Rotation group for $\operatorname{IIcosahedron}(\mathcal{I})$						
Angle of rota-	Axes of rotation	no.of axes of ro-	order of rotation			
tion		tation				
$\frac{2\pi}{3}$ and $\frac{4\pi}{3}$	axes joinign the	10	3			
	center of oppo-					
	site faces					
$\frac{2\pi}{5}, \frac{4\pi}{5}, \frac{6\pi}{5}, \frac{8\pi}{5}$	axes joining ex-	6	5			
	treme opposite					
	vertices					
π	axes joining the	15	2			
	mid point diago-					
	nally of opposite					
	edges					

Table 1.3: Table for rotation subgroup of Icosahedron

Let C_3^n denote the cyclic rotation subgroup in $O(3, \mathbb{R})$ and H_3^n denote the dihedral subgroup in $O(3, \mathbb{R})$. this gives us the following result :

Table 1.4: Order of rotation subgroups in \mathbb{R}^3

G	G	orbits	order of set of poles	order of stabilizers
C_3^n	n	2	2	n,n
H_3^n	2n	3	2n+2	2,2,n
\mathcal{T}	12	3	14	$2,\!3,\!3$
\mathcal{W}	24	3	26	2,3,4
I	60	3	62	$2,\!3,\!5$

Remark. The above table give us the complete list of finite rotational subgroups.

Let G \leq O(3,R) and -1 \notin G and H \leq G be a rotation subgroup, then define :

$$G^* = H \cup -(1)H$$

And if $-1 \in G$ and $H \leq G$ be a rotation subgroup which has a subgroup K such that [H:K]=2, then define:

$$H]K := K \cup \{-T : T \in H \setminus K\}$$

Finally we have If $G \leq O(3, \mathbb{R})$ and G is finite then G is one of the following:

- (a) $C_3^n, n \ge 1; H_3^n, n \ge 2; \mathcal{T}; \mathcal{W}; \mathcal{I}$
- (b) $(C_3^n)^*, n \ge 1; (H_3^n)^*, n \ge 2; (\mathcal{T})^*; (\mathcal{W})^*; (\mathcal{I})^*$
- (c) $C_3^{2n} [C_3^n, n \ge 1; H_3^{2n}] H_3^n, n \ge 2; H_3^n] C_3^n, n \ge 2; \mathcal{W}] \mathcal{T}$

Chapter 2

Introduction To Coxeter Groups

2.1 Introduction

Coxeter group, named after H.S.M Coxeter, is an abstract group generated by finite set of reflections with some defining properties. In this chapter, Coxeter group will be defined with its root system followed by some properties of Coxeter groups. Here we take $V=\mathbb{R}^n$

2.2 Definition

Definition 2.1. Let r be a non zero vector and P be the hyper plane perpendicular to r passing throough the origin i.e., $P=r^{\perp}$. Define

$$S_r x := x - 2\frac{(x,r)}{(r,r)}r$$

as the reflection on the hyperplane P, then generally $\pm \frac{r}{\|r\|}$ are called roots along reflection S_r .

Remarks

- $S_{\lambda r} = S_r \cdot \forall \lambda \in \mathbb{R} \setminus \{0\} S_r^2 = 1$
- $S_r \in \mathcal{O}(\mathbb{R})$

Definition 2.2. Let $G \leq O(V)$ $V_T := \{x \in V | Tx=x\}$ where $T \in G V_o := \cap \{V_T | T \in G\}$ If $V_o(G) = 0$ then G is called an effective group.

Remarks

- V_0 is a vector subspace of V
- $T|_{Vo} = 1$ (identity) on V_o for all $T \in G$.

Proposition 2.1. $T(V_o) = V_o$ and $T(V_o^{\perp}) = V_o^{\perp} \forall T \in GhenceifV = V_o \bigoplus V_o^{\perp}$ then $T = 1 \oplus T'$ for any $T \in G$ and $T' = T|_{V_o^{\perp}} \in O(V_o)^{\perp}$

Proposition 2.2. If $G' = \{T': T' = T|_{V_o^{\perp}}, T \in G\} \leq O(V_o)^{\perp}$ then there exists an isomorphism from G to G' and $V_o(G') = 0$ that is G' is effective.

Proof. let

$$\Phi: G \longrightarrow \mathbf{G}'$$

s.t. $\Phi(T) = \mathbf{T}|_{V_{\alpha}}$

It is clear that Φ is a group homomorphism and $\mid G \mid = \mid \operatorname{G}' \mid$.

we just need to show isomorphism

Let
$$T \in Ker(\Phi)$$

 $\Rightarrow \Phi(T) = 1$
 $\Rightarrow T'=1$
 $\Rightarrow T|_{V_{o}^{\perp}} = 1$
 $\Rightarrow Tx = x \quad \forall x \in V_{o}^{\perp}$
 $\Rightarrow T = 1$

If not then $x \in V_o$, that is x=0 as $x \in V_o^{\perp} \cap V_o$, which is a contradiction.

so Φ is an isomorphism.

$$V_0(G') = \{ \mathbf{x} \in V | \mathbf{T'x} = \mathbf{x} \}$$
$$\Rightarrow x \in \mathbf{V}_o^{\perp} \cap \mathbf{V}_o = \{0\}$$

 $V_0(G') = 0$ So G' is effective. This completes the proof.

Proposition 2.3. If r is a root of a reflection $S_r \in G \leq O(V)$. And if $T \in G$, then Tr is a root of the reflection $S_{Tr} = TS_rT^{-1} \in G$.

Proof. Let $P=r^{\perp}$ and P'=TP. Then P' is a hyperplane as P is a hyperplane. We have Tr=x, Let $P'=x^{\perp}$. Let $y=Tz \in P'$ $\Rightarrow TS_rT^{-1}y = TS_rz = Tz = y$ $\Rightarrow TS_rT^{-1}x = TS_rr = -Tr = -x$ So it is clear that $TS_rT^{-1}=S_x \in G$ and Tr is a root of the reflection S_{Tr} .

Proposition 2.4. Let $G \leq O(V)$ is generated by reflections along roots r_1, \ldots, r_k . Then G is effective iff $\{r_1, \ldots, r_k\}$ contains a basis for V.

Proof. Let
$$W = \{r_i^{\perp} \mid 1 \le i \le k\}$$

 $T|_W = 1_W \quad \forall T \in G$
 $\Rightarrow W \subseteq V_o(G)$
If $x \in V_o(G)$
 $\Rightarrow Tx = x \forall T \in G$
 $\Rightarrow x \in r_i^{\perp} \quad \forall i$
 $\Rightarrow x \in W.$
 $\Rightarrow W = V_o(G)$
G is effective iff $V_o(G) = 0$ iff $W = 0$ iff $W^{\perp} = V$
 $W^{\perp} = \sum_{i=1}^k r_i^{\perp \perp}$
We know that, $\{r_1, \dots, r_k\}$ spans $r_i^{\perp \perp}$
 $\Rightarrow \{r_1, \dots, r_k\}$ spans W^{\perp}
G is effective iff $\{r_1, \dots, r_k\}$ spans V that is iff it contains a basis for V.

11

Definition 2.3. Root system of G: Let $A = \{r \in V \mid r \text{ is a root of } S_r, where S_r \in generating set of reflection of G \} and <math>B = \{Tr \forall r \in A \text{ and } \forall T \in G \} \dot{T}hen \Delta := A \cup B \text{ is called the root system of group } G.$

Proposition 2.5. Let $G \leq O(V)$ be generated by a finite set of reflections and that G is effective. If Δ is finite then G is finite.

Remark. Even if G is not effective it follows from proposition 2.1 that if Δ is finite then G is finite.

Definition 2.4. Coxeter group G:

A finite effective subgroup $G \leq O(V)$ that is generated by a set of reflections is called Coxeter group.

Definition 2.5. *t-base*, Π :

Let $t \in V$ s.t $(t,r) \neq 0$, $\forall r \in \Delta$ Let $\Delta_t^+ := \{r \in \Delta \mid (t,r) > 0\}$ and $\Delta_t^- := \{r \in \Delta \mid (t,r) < 0\}$. Let $\Pi \subseteq \Delta_t^+$ be a minimal subset such that $r = \sum_{r \in \Pi} \lambda_i r_i$ for any $r \in \Delta_t^+$ and $\lambda_i \geq 0$. Then Π is called a t-base for G.

Note: From now onwards G will denote a Coxeter group with root system

 Δ and t-base Π .

Remarks

- If $\mathbf{r} \in \Delta$ then $-\mathbf{r} \in \Delta$ since if $\mathbf{r} \in \Delta_t^+$ then $-\mathbf{r} \in \Delta_t^-$ and vice versa.
- $|\Delta_t^+| = |\Delta_t^-|$
- If $v \in V$ is such that $v = \sum_{i=1}^{k} \lambda_i r_i$ where $r_i \in \Pi$ and $\lambda_i \ge 0$, then we say that v is t-positive.
- If $v \in V$ is such that $v = \sum_{i=1}^{k} \lambda_i r_i$ where $r_i \in \Pi$ and $\lambda_i \leq 0$, then we say that v is t-negetive.

Proposition 2.6. If $r_i, r_j \in \Pi$ where $i \neq j$, and λ_i and λ_j are positive real numbers, then $x = \lambda_i x_i - \lambda_j x_j$ is neither positive nor negative.

Proposition 2.7. Suppose $\{v_1, v_2, ..., v_m\} \subseteq V$ be such that $(v_i, v) > 0$ where $1 \leq i \leq m$ for some $v \in V$. If $(v_i, v_j) \leq 0$ whenever $i \neq j$, then $\{v_1, v_2, ..., v_m\}$ is a linearly independent set.

2.3 t-base Π is a basis for V

Theorem 2.1. If Π is a t-base for Δ then Π is a basis for V.

For the proof of the theorem we need the following lemma and some of the remarks mentioned above.

Lemma 2.1.1. If $r_i, r_j \in \Pi$ where $i \neq j$, and if S_i is the reflection along r_i then $S_i r_j \in \Delta_t^+$ and $(r_i, r_j) \leq 0$

Proof. $S_i r_j \in \Delta$ by proposition 2.2. so $S_i r_j$ is either +ve or -ve, by remark already mentioned. Also we have,

$$S_i r_j = r_j - 2 \frac{(r_i, r_j)}{(r_i, r_j)} \mathbf{r}_j$$

Coefficient of r_j is positive so $S_i r_j \in \Delta_t^+$ and also $(r_i, r_j) \leq 0$ as both coefficients has to be positive.

Proof. (of theorem 2.1)Since G is effective so V is spanned by Δ and Δ is linear combination of elements in Π so V is spanned by Π and by the last remark and lemma 2.1.1 Π is linearly independent.So, Π

is a basis for V.

Corollary 2.1.1. Uniqueness of Π

t-base Π is unique for Δ .

Proof. Let Π_1 and Π_2 be two t-bases. Since both are basis for V, so let Π_1 be an ordered basis and A be the change of basis matrix from Π_1 to Π_2 . Since each element in Π_2 is a non-negative linear combination of elements in Π_1 , so entries in A are non-negative. Let B be the change of matrix from Π_2 to Π_1 . AB=1, entries in A are non-zero entries and $B = A^{-1}$ so entries in B are also non-negative as each element in Π_1 is a non-negative linear combination of elements in Π_2 .Let a_1, \ldots, a_n and b_1, \ldots, b_n be row of A and columns of B respectively. Since AB=1 so $a_1^t \perp b_i \ 2 \leq i \leq n$.B is non singular $\Rightarrow b_2, \ldots, b_n$ are linearly independent.

 \Rightarrow There exists at most one j for which j^{th} entry is zero for $b_2, ..., b_n$

 \Rightarrow a₁ has atmost one nonzero entry.

Similarly each a_i has at most one non zero entry.

A is non singular \Rightarrow A has exactly one non-zero entry in each row and each column.

 \Rightarrow Each root in Π_1 is a positive multiple of roots in Π_2 .

But, only the root is a positive multiple of itself so A is a permutation matrix. And hence $\Pi_1 = \Pi_2$.

Definition 2.6. Simple roots: The roots r_1, \ldots, r_n in the base Π are called fundamental roots or simple roots.

Definition 2.7. Fundamental reflections: The reflections $S_1, ..., S_n$ along roots $r_1, ..., r_n$ are called fundamental reflections of G.

Let $G_t := \langle S_i : 1 \leq i \leq n \rangle$ be subgroup of G.

Remarks

- Let S_i be reflection along $r_i \in \Pi = \{r_1, ..., r_n\}$. If $r \in \Delta^+$ but $r \neq r_i$ then $S_i \mathbf{r} \in \Delta^+$.
- If $v \in V$, there exisits a transformation $T \in G_t$ such that $(Tv,r_i) \ge 0, \forall r_i \in \Pi$

2.3.1 $G = G_t$

Theorem 2.2. The fundamental reflections S_1, \ldots, S_n generate G. i.e., $G=G_t$.

For the proof we need the following:

Lemma 2.2.1. : If $r \in \Delta^+$, $Tr \in \Pi$ for some $T \in G_t$.

Proof. If $\mathbf{r} \in \Pi$ choose T=1. If $\mathbf{r} \notin \Pi$, then $(\mathbf{r}, r_i) \geq 0$, else Π will not be a basis for V, as $\Pi \cup \{\mathbf{r}\}$ will be linearly independent. Set $a_1 = S_{i_1}\mathbf{r} \in \Delta^+$ and $(a_1, t) < (\mathbf{r}, t)$. If $a_1 \in \Pi$ then $\mathbf{T} = S_{i_1}$. If not we continue the process which terminates for some $a_k \in \Pi$ as Δ_t^+ is finite. So now we can choose $\mathbf{T} = S_{i_1,\ldots,S_{i_k}} \in G_t$. And the claim follows. \Box

Proof. of theorem 2.2:

 $G = \langle S_r | r \in \Delta \rangle$ and $wehaveS_r = S_{-r}$. So it is enough to prove if $r \in \Delta^+$, then $S_r \in G_t$ as G_t is already a subgroup of G. If $r \in \Delta^+$ then by the claim 2.2.1 Tr $\in \Pi$ for some T in G_t . Suppose $Tr = r_i$, then $S_r = TS_iT^{-1} \in G_t$.

Hence $G=G_t$.

2.4 Some Properties of a Finite Coxeter group

Property(1) If $T \in G$ and $T\Pi = \Pi$ then T = 1.

Property(2) If $T \in G$ and $T(\Delta_t^+) = (\Delta_t^+)$ then $T\Pi = \Pi$.

Property(3) If $T \in G$ and $T(\Delta_t^+) = (\Delta_t^+)$ then T = 1 (this property follows from property 1 and property 2)

Property(4) If $r_i, r_j \in \Pi$, then there exists an integer $P_{ij} > 1$ such that $\frac{r_i r_j}{\|r_i\| \|r_j\|} = -\cos \frac{\pi}{P_{ij}}$.

2.5 Example of a Coxeter Group (Dihedral group, H_2^n)

$$\begin{split} H_2^n = & < S, T \mid T \text{ is represented by the matrix} \begin{pmatrix} \cos(\frac{2\pi}{n}) & \sin(\frac{2\pi}{n}) \\ \sin(\frac{2\pi}{n}) & -\cos(\frac{2\pi}{n}) \end{pmatrix}, \text{ where } 1 \leq k \leq n \\ \text{and S is represented by the matrix:} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} > \end{split}$$

By the result,Sr=-r,if r is a root for reflection S and by some simple calculations we get:

 $\Delta(H_2^n) = \{(\cos\frac{k\pi}{n}, \sin\frac{k\pi}{n}) \text{ where } 0 \le k \le n-1 \}$. Now since $\Delta(H_2^n)$ contains a basis for $V = \mathbb{R}^2$. So H_2^n is effective and hence

is a Coxeter group.Now we will see what are the possible t-bases for $\Delta(H_2^n)$. This follows from the following result, that can be proved by detailed computation.

Lemma 2.5.1. Suppose $r_i \in \Delta_t^+(H_2^n)$ for some $t \in V$, and $r_i = (\cos \frac{k\pi}{n}, \sin \frac{k\pi}{n})$ where $k=0,1,2,\ldots,2n-1$. If $r_i \in \Pi_t$ and $r_j \in \Pi_t$ then $r_j = (\cos \frac{k\pm(n-1)\pi}{n}, \sin \frac{k\pm(n-1)\pi}{n})$ This gives us the t-base for dihedral group H_2^n . We will now look at dihedral group for n=4 explicitly.

The case n=4:, H_2^4 : Here the root system by our above

mentioned formula is:

 $\Delta(H_2^4) = \{ (1,0), (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}), (0,1), (-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}), (-1,0), (-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}), (0.-1), (\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}) \}$ And the possible(depending on t) t-bases are:

- $\{(1,0), (-\frac{1}{\sqrt{2}}, \pm \frac{1}{\sqrt{2}})\}$
- $\{(\frac{1}{\sqrt{2}},\pm\frac{1}{\sqrt{2}}),(-1,0)\}$
- $\{(0,1), (\pm \frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}})\}$
- $\{(\pm \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}), (0, -1)\}$

Example of Coxeter group H_2^4 , with its roots and possible t-base colored in same color

Chapter 3

Fundamental Regions

3.1 Introduction

In this chapter first we will give a description of **fundamental region** of a group and then find ways for obtaining the **fundamental region** for any finite subgroup of orthogonal transformations. Then we specialize to Coxeter groups. We assume $V=\mathbb{R}^n$.

3.2 Definitions

Definition 3.1. Relatively Open Set: Suppose $Y \subseteq X \subseteq V$. Then Y is said to be relatively open wrt to another set X if $Y=X\cap U$ for some open set U in V.

Definition 3.2. A subset F of V is said to be a fundamental region of G in V iff the following conditions are satisfied:

- (a) F is open in V.
- (b) $F \cap TF = \phi$ if $1 \neq T \in G$
- $(c) \quad V = \cup \{ \overline{(TF)} \mid T \in G \}$

Definition 3.3. Suppose $X \subseteq V$ is a linear subspace s.t. $T(X) = X \forall T \in G$. F is a fundamental region for G in X iff the following conditions are satisfied:

- (a) F is relatively open in X.
- (b) $F \cap TF = \phi$ if $1 \neq T \in G$
- (c) $X = \cup \{\overline{(TF)} \cap X | T \in G.\}$

Some useful notation and convention: Here $x_o \in V$ is such that $Tx_o \neq x_o$, for any $1 \neq T \in G$. Let $G = \{1, T_1, ..., T_{N-1}\}$ and $ix_o = x_i$. So $orb(x_o) = \{x_1, ..., x_{N-1}\}$.

Let
$$[x_o x_i] := \{x_o + \lambda(x_i - x_o) \mid 0 \le \lambda \le 1\},\$$

 $L_i := \{x \in V \mid d(x, x_o) < d(x, x_i), 1 \le i \le N - 1\}, L_i \text{ is an open half space. } F := \cap \{L_i \mid 1 \le i \le N - 1\}.$

Remark: Further it will be proved that F as defined above is a fundamental region for G in V. For that we will need some results which are mentioned in the next section.

3.3 Lemmas to be used

Lemma 3.1. Suppose $\dim(V) \geq 2$ and $x_1, x_2 \in V$ are linearly independent. For each $\lambda \in \mathbb{R}$ and define $V_{\lambda} = (x_1 + \lambda x_2)^{\perp}$. If $\lambda \neq \mu$, then V_{λ} and V_{μ} are distinct (n-1) dimensional subspace of V.

Proof. V_{λ} and V_{μ} are subspaces of V.Let W := $\langle x_1 + \lambda x_2 \rangle$, dim(W)=1 Let

$$T_{(x_{1+\lambda x_{2}})} : \mathbf{V} \to \mathbf{F} \text{ s.t.}$$
$$T_{(x_{1+\lambda x_{2}})}(\mathbf{y}) = (\mathbf{y}, x_{1} + \lambda x_{2})$$

Ker $T_{(x_1+\lambda x_2)} = V_\lambda$ dim $(\text{Im}(T_{(x_1+\lambda x_2)}))=1$ \Rightarrow dim $(\text{Ker}(T_{(x_1+\lambda x_2)}))=n-1$, where n is the dimension of V. Let $y \in V_\lambda \cap V_\mu$ $\Rightarrow (y, x_1 + \lambda x_2) = (y, x_1 + \mu x_2)$ $\Rightarrow (y, x_2(\lambda - \mu)) = 0$ $\Rightarrow (\lambda - \mu)(y, x_2) = 0$ $\Rightarrow y = 0$ as $\lambda \neq \mu$ and $x_2 \neq 0$. So $V_\lambda \cap V_\mu = \{0\}$.

Corollary 3.1.1. If dim $V=n \ge 2$, then there are infinitely many subspaces og dim(n-1).

Lemma 3.2. If $dim(V) \ge 1$, then V is not the union of any finite number of proper subspaces.

Proof. Let dim V=1, then the only proper subgroup of V is $\{0\}$ and $V \neq \bigcup_{i=1}^{n} \{0\}$.

The proof is by induction on dim V for all vector spaces of dimension \leq n-1.Let $\dim(V)=n$.

Suppose the lemma holds. Suppose that $V = \bigcup_{i=1}^{n} V_i$ where V_i is a proper subspace of V.

Let W be a subspace of V s.t. dim W=n-1.

$$W=W\cap V=W\cap \bigcup_{i=1}^{n} V_{i} = \bigcup_{i=1}^{n} (W\cap V_{i})$$

$$\Rightarrow W = W\cap V_{i} \text{ for some i}$$

 $\Rightarrow W = V_i$ for some i.

 \Rightarrow Every n-1 subspace of V $\in \{V_1, V_2, \dots, V_n\}$

 \Rightarrow There are finitely many n-1 subspaces of V.Which is a contradiction by Corollary 3.3.1.

So
$$V \neq \bigcup_{i=1}^{n} V_i$$
.

г	_		
L			
L			
L			

3.4 Fundamental Region for a group G in V

In this section it is proved that one fundamental region of a finite group $G \leq O(V)$ in V is F as defined above. Then some of the basic properties of a fundamental region is given.

Theorem 3.1. Let $G \leq O(V)$ be a finite subgroup. The set $F = \bigcap \{Li : 1 \leq i \leq N-1\}$ is a fundamental region for G in V.

Proof. (a) **F** is open Since each L_i is open, so $\cap L_i$ is open for $1 \le i \le N-1$ and hence F is open.

(b)
$$\mathbf{F} \cap T_i \mathbf{F} = \mathbf{0} \ \forall \ \mathbf{1} \neq T_i \in \mathbf{G}.$$

 $T_i \mathbf{F} = T_i (\cap L_j)$
 $\Rightarrow T_i F = \{T_i x \in V \mid d(T_i x, T_i x_o) < d(T_i x, T_i x_j, 1 \le j \le N - 1\}$
 $\Rightarrow T_i F = \{T_i x \in V \mid d(T_i x, T_i x_o) < d(T_i x, T_i T_j x_o, 1 \le i \le N - 1\}$
 $\Rightarrow T_i F = \{y \in V \mid d(y, x_i) < d(y, T_k x_o), k \ne i, 0 \le k \le N - 1\}.$
Since $\{T_i T_j : 1 \le j \le N - 1\} = \mathbf{G} \setminus \{T_i\}.$ Thus $T_i \mathbf{F} = \{\mathbf{x} : \mathbf{d}(\mathbf{x}, \mathbf{x}_i) < d(x, x_j), i \ne j\}$

Let $0 \neq \mathbf{x} \in \mathbf{F} \cap T_i \mathbf{F}$,

⇒ $d(x, x_o) < d(x, x_i)$ and $d(x, x_i) < d(x, x_o)$ since $i \neq 0$. Which is a contradiction. So F∩T_iF=0

(c)
$$\mathbf{V}=\cup \{\overline{T_iF} \mid 0 \le i \le N-1\}$$

we have $\mathbf{V} \supseteq \cup \{\overline{T_iF} \mid 0 \le i \le N-1\}$
Now,let $\mathbf{x} \in \mathbf{V}$ and choose i such that $\mathbf{d}(\mathbf{x},\mathbf{x}_i)$ is minimal i.e., $\mathbf{d}(\mathbf{x},\mathbf{x}_i) \le d(x,x_j) \forall \mathbf{j}$
 $\Rightarrow x \in \overline{T_iF}$
 $\Rightarrow x \in \cup \{\overline{T_iF} \mid 0 \le i \le N-1\}$
So $\mathbf{V}=\cup \{\overline{T_iF} \mid 0 \le i \le N-1\}$.

Hence F is a fundamental region for G in V.

Remark. F is convex since each L_i is convex and it is also connected.

Corollary 3.1.1. If F is a fundamental region for a group $G \leq O(V)$ in V and $T \in G$ then TF is also a fundamental region for G in V.

Proof. (a) T is continuous and F is open so TF is open.

- (b) if $\mathbf{x} \in TF \cap T_iTF$ proof for this is analogous to that in the proof for theorem 3.1 replacing x_o with $T\mathbf{x}_o$.
- (c) since $T_iTF=T_jF$ for some j where $T_j \neq T$ so $V=\cup \{\overline{T_iF} \mid 0 \le i \le N-1\}$ implies $V=\cup \{\overline{T_iTF} \mid 0 \le i \le N-1\}$

So TF is also a fundamental region.

Corollary 3.1.2. If F is a fundamental region for G in V and $X \subseteq V$ is an invariant subspace under G than $F_X = F \cap X$ is a fundamental region for G in X.

Proof.

 $F \cap X$ is relatively open as F is open in X.

 $F \cap T_i F = 0$ $T_i \in G$ as F is a fundamental region for G and X is invariant under G.

 $\mathbf{X}{=}\mathbf{V}{\cap}\mathbf{X}{=}{\cup}~\{\overline{T_iF}~|~0{\leq}~i{\leq}~N-1\}{\cap}\mathbf{X}{=}~\{\overline{T_iF}{\cap}~X~|0{\leq}~i{\leq}~N-1\}$

3.5 Fundamental Region For a Coxeter Group G $\leq O(V)$ in V

Suppose G is a Coxeter group with t-base $\Pi = \{r_1, ... r_n\}, say.$

Let F := {v \in V | (v,r_i) > 0, r_i \in \Pi} = \cap_{i=1}^n {v \in V(v,r_i) > 0}

In this section we will prove that F is a fundamental region for G.

Theorem 3.2. F is a fundamental region for G.

Prd(af) F is open because of the way it is defined.

- (b) Let $x \in F \cap TF$, and $1 \neq T = R^{-1} \in G$. So we have $Rx \in F$ as $x \in TF$. Hence (x, r) > 0 for all $r \in \Delta_t^+$ So, $\Delta_t^+ = \Delta_x^+$. $\Rightarrow \Pi_t = \Pi_x$. Similarly we have $\Pi_t = \Pi_{Rx}$ $\Rightarrow \Pi_t = \Pi_{Rx} = R\Pi_x = R\Pi_t$ $\Rightarrow R = T = 1$ $\Rightarrow F \cap TF = \phi$
- (c) If $y \in V$ then there exists a $T \in G$ such that $(Ty,r_i) \ge 0$ for all r_i in Π . So $Ty \in \overline{F}$. $\Rightarrow y \in \overline{T^{-1}(F)}$ $\Rightarrow V \subseteq \bigcup \{\overline{R_iF} \mid R \in G \}$

$$\Rightarrow V = \bigcup \left\{ \overline{R_i F} \mid \mathbf{R} \in \mathbf{G} \right\}$$

Chapter 4

Presentation of Coxeter Group

4.1 Introduction

Our main aim in this chapter is to show that Coxeter group G has a presentation $\langle S_i, ..., S_n | (S_i S_j)^{P_{ij}} = 1 \rangle$ where P_{ij} is the order of $S_i S_j$ and S_i 's are the fundamental reflections of Coxeter group G.

4.2 Definitions

Definition 4.1. If $T=S_{i_1},...,S_{i_n}$ where S_{ij} 's are fundamental reflections in G such that there is no other word in S'_i 's representing T having less than k fundamental reflections as factor than k is called the length of T and write l(T)=k.

Remark. l(1)=0.

Definition 4.2. $n(T) := |T(\Delta_t^+) \cap \Delta_t^-|$

In other words n(T) is the number of positive roots sent to negative roots by T.

Definition 4.3. Suppose $i \neq j$. Then $(S_i S_j \dots)_m$ is the product of S_i and S_j appearing alternately *m* times starting with S_i .

 $(\dots, S_i S_j)_m$ is the product of S_i and S_j appearing alternately m times ending with S_i .

 $(\ldots,S_iS_j,\ldots)_m$ is the product of S_i and S_j appearing alternately m times.

Definition 4.4. Partial words: Let $W=S_{i_1,\ldots,}S_{i_k}$ and $W_j=S_{i_1,\ldots,}S_{i_j}$ where $1 \le j \le k$ then W_j is called a partial word of W.

Theorem 4.1(Coxeter). Every relation $W=S_{i_1,\ldots,S_{i_k}}=1$ in a Coxeter group G is a consequence of the relations of the form $(S_iS_j)^{P_{i_j}}=1$.

Proof. The following lemmas will be used in the proof of this theorem.

Lemma 4.1.1. If
$$T \in G$$
 then $l(TS_i) = \begin{cases} l(T) - 1 & ifTr_i \in \Delta_t^-\\ l(T) + 1 & ifTr_i \in \Delta_t^+ \end{cases}$

If S_i is a fundamental reflection in G.

Proof of this lemma follows from the fact that n(T)=L(T) and $n(TS_i)=n(T)-1$ if $Tr_i \in \Delta_t^-$ and $n(TS_i)=n(T)+1$ if $Tr_i \in \Delta_t^+$.

Lemma 4.1.2. If S_i and S_j are fundamental reflection in G and $1 \le m \le P_{ij}$ then $(S_i S_j \dots)_{m-1} r_i \in \Delta_t^+$.

Lemma 4.1.3. Let $T \in G$ and i and j are fixed and $l(TS_i)=l(TS_j)=l(T)-1$ then $l(T(\ldots S_iS_j\ldots)_m)=l(T)-m$ if $0 \le m \le P_{ij}$

Proof: Let u be the maximal length of partial words of W and $p=P_{ij}$.

We can write $W=W_1S_iS_jW_2$ such that $l(W_1S_i)=u$ and all partial words of W_1 are of length less than u. Denote $W'=W_1(S_jS_i....)_{2p-2}W_2$. We have $(S_iS_j)^p=1$ in G

 $\Rightarrow S_i S_j = (S_j S_i \dots)_{2p-2} \text{ in } \mathbf{G}$ $\Rightarrow W_1 \mathbf{S}_i S_j \mathbf{W}_2 = \mathbf{W}_1 (\mathbf{S}_j S_i \dots)_{2p-2} W_2. \text{ in } \mathbf{G}$ $\Rightarrow W = W' \text{ in } \mathbf{G}.$

So W and W' are equal as elements in G.Except for W_1S_i all partial words of W coincides with partial words of W'.

Set $W_1S_i = T$. Replacing W_1S_i with $T(S_iS_j....)_m$ where $2 \le m \le 2p-2$ we see that $T(S_iS_j....)_m$ coincides with $W_1S_j, W_1S_jS_i, ..., W_1(S_jS_i....)_{2p-2}$ which are the partial words of W'as elements of G. In this step we used the identity $S_i^2 = 1$.

 $l(T(S_i S_j....)_m) < u$ by lemma 4.1.3.

So we have by the above step replaced W with W' where the latter has partial words of length less than or equal to u and one partial word of length less than that of W having length u.

Repeating the above steps after a certain number of steps we obtain the empty word, that is we conclude that applying the identity $(S_i S_j)^p = 1$ and $(S_i)^2 = 1$ we get W=1 as elements in G.

Corollary 4.1.1. G has a presentation $\langle S_i, \ldots, S_n | (S_i S_j)^{P_{ij}} = 1 \rangle$

Let G be a finite group having presentation

 $< T_i, ..., T_n | (T_i T_j)^{P_{ij}} = 1, 1 \le i, j \le n > where P_{ii} = 1$ for all i, $P_{ij} = P_{ji} \ge 2$ if $i \ne j$. Let $S = \{T_1, ..., T_n\}.$

Next we will prove that G is infact a Coxeter group.

Definition 4.5. If $S=S_1 \sqcup S_2$ where S_1 and S_2 are non empty and $P_{ij}=2$ if $T_i \in S_1$ and $T_j \in S_2$ or vice-versa then G is called decomposable otherwise it is called indecomposable.

Remark. If G is decomposable then clearly it is the direct product of two subgroups with the same type of presentation, therefore we will assume that G is indecomposable.

Let $H := \langle S_1, ..., S_n \rangle$ be the group of non-singular transformations of \mathbb{R}^n where

$$S_j e_i = e_i + 2\cos\frac{\pi}{P_{ij}}e_j$$

and $\{e_1, ..., e_n\}$ is the standard basis of \mathbb{R}^n . Denote $A = [\alpha_{ij}]$ be the n × n matrix where $\alpha_{ij} = -\cos \frac{\pi}{P_{ij}}$.

Let the coloumn of A be $\{a_1, \dots, a_n\}$ and $(\mathbf{P}_i) = (a_i)^{\perp} \subseteq \mathbb{R}^n$.

Remark. $S_i x = x$ if $x \in P_i$ and $S_i e_i = -e_i$.

Theorem 4.2. $H \leq O(V)$ is a Coxeter subgroup and G is isomorphic to H.

Proof. We will need the following lemmas for the proof of this theorem.

Lemma 4.2.1. There is a homomorphism ϕ from G to H,i.e. $\phi(T_i) = S_i \ 1 \leq i \leq n$.

Remark. From the above lemma we have H is finite.

Lemma 4.2.2. If H is as above(or finite group of invertible transformations on \mathbb{R}^n). Then there is an inner product $(-,-)_C$ such that $(x,y)_C = (Tx,Ty)_C = (x,y)_C, \forall T \in G$ such that $H \leq O(\mathbb{R}^n, (-,-)_C)$.

Lemma 4.2.3. If W is a subspace of \mathbb{R}^n such that W is invariant under T for all T in H then $W=\mathbb{R}^n$ or W=0.

Lemma 4.2.4(*Schur's lemma*). Suppose the only *H*-invariant subspaces in \mathbb{R}^n are \mathbb{R}^n and 0. If S is a non-zero linear transformation on \mathbb{R}^n such that ST=TS for all $T \in H$ then S is non-singular.

Lemma 4.2.5. If S is a linear transformation and λ is an eigen value of S, then $S = \lambda I$

Let $B:=\mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ be the bilinear transformation such that B(x,y)=(Ax,y),

where $A = [\alpha_{ij}]$.

Remark. B is a symmetric form as A is a symmetric matrix and B is invariant under transformations in H. Also $S_i x = x - B(x, e_i) e_i$

Lemma 4.2.6. Let $T_i \in H$ be represented by matrix M_i wrt standard basis of \mathbb{R}^n and $P = \sum_{i=1}^n M_i^t M_i$. If $T \in H$ is represented by a matrix M wrt standard basis of \mathbb{R}^n then $M(P^{-1}A) = (P^{-1}A)M$.

Remark. From the above lemma we see that B is a positive scalar multiple of inner product C and hence B is also an inner product on \mathbb{R}^n

Using these lemmas and remarks we will prove that H is infact a Coxeter group. B is invariant under transformations in H so $\mathbf{H} \leq \mathbf{O}(\mathbb{R}^n)$. Since $S_i \mathbf{x} = \mathbf{x} \cdot \mathbf{B}(\mathbf{x}, e_i)e_i$ and $\mathbf{B}(e_i, e_i) = 1$ and $\mathbf{B}(\mathbf{x}, e_i) = 0$ if $\mathbf{x} \in (e_i)^{\perp}$ so S_i is a orthogonal reflection of \mathbb{R}^n with root $\mathbf{r}_i = e_i$.Since $\{e_1, \dots, e_n\}$ is a basis for \mathbb{R}^n so H is effective. So H is a **Coxeter group**. H has a postive definite graph as $\mathbf{B}(\mathbf{r}_i, r_j) = \alpha_{ij}$. So the matrix of $\{\mathbf{r}_1, \dots, \mathbf{r}_n\}$ is A which is postive definite. As G is indecomposable so the Coxeter graph of H is connected. Also we have $\{\mathbf{S}_1, \dots, \mathbf{S}_n\}$ are fundamental reflections of H so H has the same representation as that of G and hence H is isomorphic to G.

Chapter 5

Clasification of Coxeter group

5.1 Introduction

In this chapter we will introduce Coxeter graph and establish a relationship between Coxeter graph and Coxeter group. This will lead to classification of Coxeter groups.

5.2 Definitions

Definition 5.1. Marked graph: A Marked graph is finite set of points called nodes such that any two distinct nodes may or may not be joined by a line called Branch and if there is a branch joining the i^{th} and j^{th} nodes then it is marked with a real number $P_{ij} > 2$.

Definition 5.2. Coxeter graph: If for a marked graph every mark P_{ij} is an integer then it is a Coxeter graph.

Remark. If $P_{ij}=3$ then the labelling is not done on the branch.

Definition 5.3. Quadratic forms of a marked graph: Let G be a marked graph with n nodes we associate a quadratic form Q_G with G such that

$$Q_G(\lambda_1, ..., \lambda_n) = \sum_{ij} \alpha_{ij} \lambda_i \lambda_j$$

where $\alpha_{ij} = -\cos \frac{\pi}{P_{ij}}$, if there is a branch joining i^{th} and j^{th} nodes. Otherwise $\alpha_{ij}=2$ and $\alpha_{ii}=1$.

We denote $A = [\alpha_{ij}]$

Remark. A is a symmetric matrix.

Definition 5.4. *Positive definite Marked graph:* If A is positive definite for a marked graph G then G is called positive definite.

Remark. Given a marked graph G by det(G) we denote the determinant of the matrix associated to that graphas discussed above.

Definition 5.5. Marked graph G for a set of vectors: If $\{x_1,...,x_n\}$ is a finite set of mutually obtuse vectors then we define a marked graph G with n nodes x'_i s and if $i \neq j$ then the i^{th} and j^{th} nodes are joined by a branch iff $(x_i, x_j) \neq 0$ and it is labelled P_{ij} , where $\frac{(x_i, x_j)}{\|x_i\|\|x_j\|} = -\cos \frac{\pi}{P_{ij}}$.

Remark. For a Coxeter group G we denote the graph associated to it by \mathbb{G} .

Definition 5.6. Reducible and Irrreducible graphs: If the t-base Π is not a union of two non empty orthogonal subsets then \mathbb{G} is irreducible. Else it is reducible.

Remark. If G is Coxeter group then the marked graph corresponding to G is a Coxeter graph.

Definition 5.7. Connected nodes: Two distinct nodes a and b are connected iff there are nodes a_1, \ldots, a_n in G such that $a=a_1$ joined by a branch with a_2 , a_2 is joined by a branch with a_3, \ldots, a_{n-1} is joined by a branch with $a_n=b$.

Remark. If all the nodes in a graph are connected then the graph is called connected graph. So a Coxeter graph of a Coxeter group is connected iff it is irreducible.

Definition 5.8. Subgraph A marked graph \mathbb{H} is called a subgraph of a graph G if \mathbb{H} can be obtained either by deleting some of the nodes of G or by decreasing the marks on some branches or by both.

Theorem 5.1. If G_1 and $G_2 \leq O(V)$ are Coxeter groups having the same Coxeter graphs then they are geometrically the same.i.e., $G_1 = T^{-1}G_2T$ for some $T \in O(V)$

Proof. If $\Pi_1 = (\mathbf{x}_1, ..., \mathbf{x}_n)$ and $\Pi_2 = (\mathbf{y}_1, ..., \mathbf{y}_n)$ be the t-bases for G_1 and G_2 respectively then $(\mathbf{x}_i, \mathbf{x}_j) = (y_i, y_j)$ for all i and j since G_1 and G_2 have the same Coxeter graph.

Let T be a linear transformation defined as:

$$T: \mathbb{R}^n \to \mathbb{R}^n$$

such that $Tx_i = y_i$ then since $T(x_i, x_j) = (Tx_i, Tx_j) = (Ty_i, Ty_j) = (x_i, x_j)$ so $T \in O(V)$.

As $x_i = y_i$ so $S'_i = TS_iT^{-1}$ for all $S_i \in G_1$ and S'_i in G_2 .

As S_i generates G_1 and S'_i generates G_2 so $G_2 = TG_1T^{-1}soG_1 = T^{-1}G_2T$ as required.

Remark. The Coxeter Graph of a Coxeter group is positive definite.

5.3 Positive definite graphs

The following are some of the marked graphs.

Figure 5.1

In this section we will prove that these graphs are positive definite.

Remark. The k^{th} principal minor of matrix of marked graph A_n is the det of matrix of marked graph A_k . So if we prove that $det(A_k)$ is positive for all k then A_n will be positive definite. This is true form all other marked graphs for figure 4.1.

Theorem 5.2. The marked graphs $A_n, B_n, D_n, H_2^n, G_2, I_3, I_4, F_4, E_6, E_7, E_8$ are all postive definite.

Proof.

Lemma 5.2.1. Let G be a marked graph and a_1 be one of its nodes connected to only one other node say a_2 by a branch marked P_{12} . Denote subgraphs $G \setminus \{a_1\}$ by G_1 and $G \setminus \{a_1, a_2\}$ by G_2 . Then det $G = det(G_1) - cos \frac{\pi}{P_{12}} det(G_2)$

By a simple calculation we have $\det(A_1)=1$ and $\det(A_2)=\frac{3}{4}$ and by applying induction on A_n we have $\det(A_n)=\frac{n+1}{2^n}$

Now using the above lemma we get the following:

(a) $det(A_n) = det(A_{n-1}) - \frac{1}{4}det(A_{n-2}) = \frac{n+1}{2^n} > 0$

(b)
$$det(B_n) = det(A_{n-1}) - \frac{1}{2}det(A_{n-2}) = \frac{1}{2^{n-1}} > 0$$

(c)
$$det(D_n) = det(A_{n-1}) - \frac{1}{4}det(A_{n-3}) = \frac{1}{2^{n-2}} > 0$$

(d)
$$det(I_3) = det(A_2) - \alpha^2 det(A_1) = \frac{3-\sqrt{5}}{8} > 0$$

(e)
$$det(I_4) = det(A_3) - \alpha^2 det(A_2) = \frac{7 - 3\sqrt{5}}{8} > 0$$

(f)
$$det(F_4) = det(B_3) - \frac{1}{4}det(A_2) = \frac{1}{16} > 0$$

(g)
$$det(E_n) = det(D_{n-1}) - \frac{1}{4}det(A_{n-2}) = \frac{9-n}{2^n} > 0$$

Since determinant of all the minors of the matric associated to the graphs is positive so the above graphs are positive definite.

Since H_2^n and G_2 are graphs of Coxeter graph of dihedral groups H_2^n so they are positive definite by remark already mentioned in chapter 2.

5.4 Marked graphs with determinant zero

THE MARKED GRAPHS WITH DETERMINANT ZERO

Figure 5.2

Definition 5.9. Cycle in a marked Graph is a subgraph of form P_n .

Definition 5.10. Branch point in marked graph G is a node having 3 or more branches emanating from it.

Theorem 5.3. Marked graph $P_n, Q_n, S_n, T_n, U_3, V_5, Z_4, Y_5, R_7, R_8, R_9$ have determinant zero.

Proof. Using lemma 5.2.2 we have the following:

(a)
$$det(Q_n) = det(D_{n-1}) - \frac{1}{4}det(D_{n-3}) = 0$$

(b) $det(S_n) = det(B_{n-1}) - \frac{1}{2}det(B_{n-2}) = 0$
(c) $det(T_n) = det(B_{n-1}) - \frac{1}{4}det(B_{n-3}) = 0$
(d) $det(U_3) = det(A_2) - \frac{3}{4}det(A_1) = 0$
(e) $det(Y_5) = det(A_2) - \beta^2 det(I_3) = 0$
(f) $det(Y_5) = det(B_4) - \frac{1}{4}det(A_3) = 0$
(g) $det(R_7) = det(E_6) - \frac{1}{4}det(A_5) = 0$
(h) $det(R_8) = det(E_7) - \frac{1}{4}det(D_6) = 0$
(i) $det(R_9) = det(E_8) - \frac{1}{4}det(E_7) = 0$

 Z_4 by finding the matrix and den its determinant and for P_n the rows of the matrix for P_n add up to zero so they are linearly dependent and hence $det(P_n) = 0$.

Theorem 5.4. If G is a connected positive definite Coxeter graph then G is one of the following graphs $A_n, B_n, D_n, H_2^n, G_2, I_3, I_4, F_4, E_6, E_7, E_8$.

Proof. We first note

Lemma 5.4.1. A non nonempty subgraph \mathbb{H} of a positive definite graph G is also positive definite.

Case 1: Subgraph of the form \mathbf{P}_n . If a marked graph has a cycle as a subgraph then this positive definite graph will have a subgraph that is not positive definite leading to a contradiction to lemma 5.4.1. A cycle cannot be a subgraph for G.

Case 2: Branch points of G.G can have only one branch point with 3 branches emanating from it. Else Q_n would be a subgraph of G contradicting lemma 5.4.1.

Case 3: If G has $H_2^n n \ge 7$ as a subgraph. Then $G = H_2^n$ otherwise U_3 would be a subgraph contradicting lemma 5.4.1 and same reason hold for if G_2 is a subgraph of G then $G = G_2$

Now the only possible marks on G could be 3,4 or 5. These cases are dealt with in the next steps.

Case 4: If B_2 is a subgraph. It can occur as subgraph in G only once else S_n would be a subgraph. Also G cannot have a branch point else T_n would be a subgraph. If H_2^5 is also a subgraph then $G=H_2^5$ or $G=I_3$ or $G=I_4$. These are the only possibilities for this particular case with H_2^5 as subgraph else Z_4 and Y_5 would be its subgraphs.

Case 5: If B_2 is a subgraph and H_2^5 is not a subgraph. Then $G=B_n$ or F_4 else V_5 would be a subgraph of G.

We are done with branches marked with 4 and 5 so the only case remaing is if all the branches of G are unmarked or $P_{ij}=3$.

case 6: If the branches of G are all unmarked. If G has no branch point the $G=A_n$. If G has a branch point then $G=D_n$ or E_6 or E_7 or E_8 no other possibilities are there as except for these graphs anyother case will lead to subgraph as R_7 , R_8 and R_9 on G.

5.5 Crystallographic Groups

Definition 5.11. A lattice in vector space $V(\dim v=n)$ is a discrete set of points obtained by taking all integer linear combination of n-linearly independent vectors in $V, i.e., If X = \{x_1, ..., x_n\}$ is a set of linearly independent vectors in V, then lattice L in V is defined as:

 $L := \{ v \in V \mid v = \sum_{i=1}^{n} \lambda_i x_i, \text{ for all } \lambda_i \in \mathbb{Z} \text{ and } x_i \in X \}$

Definition 5.12. A subgroup $G \le O(V)$ is said to satisfy the crystallographic condition iff there is a lattice L invariant under G.

Remark. If a Coxeter group G is crystallographic then the only possible values of P_{ij} are 1,2,3,4 or 6.

From this remark it follows that the only Possible irreducible crystallographic Coxeter groups are $A_n, B_n, D_n, G_2, E_6, E_7, E_8$ and E_9 .

Theorem 5.5. A Group with graph $A_n, B_n, D_n, G_2, E_6, E_7, E_8$ and E_9 satisfies crystallographic conditions.

Proof. Let L{ $\sum_{i=1}^{i=n} \lambda_i r_i : \lambda_i \in \mathbb{Z}$ and $r_i \in \Pi$ }

Assign relative lengths to the roots of the groups as follows:

P_{ij}	relation between lengths of r $_i$ and r $_j$
3	$\ r_i\ = \ r_j\ $
4	$ r_i = \sqrt{2} r_j $ or $ r_j = \sqrt{2} r_i $
6	$ r_i = \sqrt{3} r_j $ or $ r_j = \sqrt{3} r_i $

- Case(1) If $P_{ij} = 1$ then $S_i r_j = -r_j$
- Case(2) If $P_{ij} = 2$ then $S_i r_j = r_j$
- Case(3) If $P_{ij} = 3$ then $S_i r_j = r_i + r_j$
- Case(4) If $P_{ij} = 4$ then $S_i r_j = r_i + r_j$ or $2r_i + r_j$ depending on the relative lengths of r_i and r_j
- Case(5) If $P_{ij} = 6$ then $S_i r_j = r_i + r_j$ or $3r_i + r_j$ depending on the relative lengths of r_i and r_j In all the above cases $S_i r_j \in L$ for all So we have $S_i L = L$, hence TL = L as required since S_i generated G.

Chapter 6

Construction Of Coxeter Group

6.1 Introduction

In this chapter we Construct Coxeter group and for that we will show that the graphs listed in previous chapter are actually the graphs of Coxeter groups.

6.2 Construction of Coxeter group with graph A_n

Let the symmetric group S_{n+1} be viewed as a group of linear transformation on \mathbb{R}^{n+1} such that any $T \in S_{n+1}$ permutes the basis vectors e_1, \dots, e_{n+1} .

then we have, $S_{n+1} = \langle S_1, ..., S_n \rangle$ where $S_i = (e_i e_{i+1})$.

Proposition 6.1. $S_{n+1} \leq O(\mathbb{R}^{n+1})$

Proof.
$$S_i(e_{i+1} - e_i) = -(e_{i+1} - e_i)$$

 $S(e_i + e_{+1}) = e_i + e_{+1}$
 $S_i(e_j) = e_j$, if $j \neq i, j \neq i + 1$
 $(e_{i+1} - e_i)^{\perp}$ is spanned by $\{e_j \mid j \neq i, j \neq i + 1\} \cup \{e_i + e_{+1}\}$
So S'_is are reflection along root $r_i = e_{i+1} - e_i$ and $S_{n+1} = \langle S_1, ..., S_n \rangle$. Hence S_{n+1}
 $\leq O(\mathbb{R}^{n+1})$.

Remark. The root system of $S_{n+1} = \{e_i - e_j : i \neq j, 1 \leq i, j \leq n+1\}$. Reason being the conjugates of any transposition is the set of all transpositions and hence the set of conjugate reflections is the set of all transpositions.

Let V be the subspace of of \mathbb{R}^{n+1} spanned by $\{r_1, \dots, r_n\}$ and A_n be the group of transformations in S_{n+1} restricted to V.

Then we have $A_n = \langle S_1, \dots, S_n \rangle$ and $A_n \leq O(V)$.

Remark. A_n is effective since $\{r_1, r_2, ..., r_n\}$ forms a basis for V.

So from this remark we have A_n is a Coxeter group. Also $\{r_1, ..., r_n\}$ is a t-base for A as any root in A_n is a positive linear combination of $\{r_1, ..., r_n\}$.

Remark. The Coxeter graph of A_n is A_n as $\frac{(r_i, r_j)}{\|r_i\| \|r_j\|} = \frac{-1}{2}$, $1 \le i, j \le n+1$.

6.3 Construction of Coxeter group B_n with graph B_n

Let $K_n := \langle S_{e_1}, ..., S_{e_n} \rangle$ where $S_{e_i}(\lambda_1, ..., \lambda_i,, \lambda_n) = (\lambda_1, ..., -\lambda_i,, \lambda_n)$ is linear transformation on \mathbb{R}^n .

And as before S_n is a group of linear transformation but here $S_n = \langle S_2, ..., S_n \rangle$ where S_i is a reflection with root $r_i = e_i - e_{i-1}$.

Let $J \subseteq \{e_1, ..., e_n\}$ define $f_J: \mathbb{R}^n \to \mathbb{R}^n$ such that

$$f_J(e_i) = \begin{cases} -e_i & ife_i \in J \\ e_i & ife_i \notin J \end{cases}$$

Remarks:

- 1. K_n is abelian and $|K_n|=2^n$.
- 2. K_n is normalised by S_n .
- 3. $K_n \cap S_n = 1$.

Let $B_n := \langle K_n \cup S_n \rangle$ and $f_i = f_{\{ei\}} = S_{ei}$. Then we have $B_n = \langle f_1, ..., f_n, S_2, ..., S_n \rangle$. But $f_i = T_i f_1 T_i^{-1}$ where T_i is a reflection in S_n whose root is $e_i - e_1$.

So we have $\mathbf{B}_n = \langle f_1, S_2, ..., S_n \rangle$ where f_1 is a reflection with root $r_1 = e_1$.

Remark. For B_n we can conclude the following

- 1. root system for B is $\{\pm e_i : 1 \le i \le n\} \cup \{e_i \pm e_j : i \ne j, 1 \le i, j \le n\}$
- 2. $\{r_1, ..., r_n\}$ is a t-base for B_n as any root in B_n is a linear combination of $\{r_1, ..., r_n\}$.
- 3. Since $\{r_1, ..., r_n\}$ forms a basis for \mathbb{R}^n so B_n is effective and hence a Coxeter group.
- 4. The Coxeter graph for B_n is B_n as $\frac{(r_1, r_2)}{\|r_1\| \|r_2\|} = \frac{-\sqrt{2}}{2}$. and $\frac{(r_i, r_j)}{\|r_i\| \|r_j\|} = \frac{-1}{2}$, $2 \le i, j \le n+1$.

6.4 Construction of a Coxeter group D_n with Coxeter graph D_n

Let $L_n \leq K_n$ such that $L_n = \{f_J : | J | \text{ is even}\}$. L_n is a subgroup of K_n . Let $D_n = \langle L_n \cup S_n \rangle$. L_n is generated by elements like $S_{e_i}S_{e_j}$ $i \neq j$.

For $i \neq j, S_{e_i+e_j} \in D_n$ and $S_{e_i-e_j}S_{e_i}+e_j=S_{e_i}S_{e_j}$.

Let $T \in S_n$ be such that $Te_1 = e_i$ and $Te_2 = e_j$. Then we have $TS_{e_1+e_2}T^{-1} = S_{e_i+e_j}$ $\Rightarrow D_n = \langle S_1, S_2, ..., S_n \rangle$ with roots $r_1 = e_1 + e_2$ and $r_i = e_i - e_{i-1}$ for $2 \leq i \leq n$

Remark. The following can be concluded about D_n ,

- 1. Root system for D_n is $\{e_i \pm e_j : i \neq j, 1 \le i, j \le n\}$.
- 2. $\{r_1, ..., r_n\}$ is a t-base for D_n as any root in D_n is a linear combination of $\{r_1, ..., r_n\}$.
- 3. Since $\{r_1, ..., r_n\}$ forms a basis for \mathbb{R}^n so D_n is effective and hence a Coxeter group.
- 4. The Coxeter graph for D_n is D_n .

6.5 Construction of Coxeter groups with Coxeter Graph $G_2, I_3, I_4, F_4, E_6, E_7, E_8$

In this section the method we use to find a Coxeter group is by extending the base of Coxeter groups A_n or B_n or D_n and obtaining base and hence Coxeter groups having Coxeter graph G_2 , I_3 , I_4 , F_4 , E_6 , E_7 , E_8 . We will give one example to find the Coxeter group with graph F_4 rest follows similarly hence the detailed proof is omitted and just a summary is given for the rest.

6.5.1 Construction of Coxeter group with Coxeter Graph F_4

We will extend the base of the group B_3 to get the required Coxeter group.

Let the base for Coxeter group with Coxeter Graph F_4 be $\{r_1, r_2, r_3, r_4\}$. Where $\{r_2, r_3, r_4\}$ is the base for B₃. Let $r_1 = (\lambda_1, \lambda_2, \lambda_3, \lambda_4)$ then using the crystallographic condition and the required values of (r_i, r_j) for all i and j we have $r_1 = (\frac{-1}{2}, \frac{-1}{2}, \frac{-1}{2}, \frac{-1}{2})$. This Coxeter group has Coxeter graph F_4 .

Similarly we can do for the rest of the groups.

For G_2 we extend the base of the group A_1 .

For I_3 we verify the conditions for the base of symmetric group of icosahedron.

For I_4 we extend the base of the group I_3 .
For E_6, E_7 and E_8 we extend the base of the group A_5, A_6 and A_7 .
We get the following result:

Graph	Base
A _n	$r_i = e_{i+1} - e_i, 1 \le i \le n.$
B_n	$r_1 = e_1, r_i = e_i - e_{i-1}, 2 \le i \le n.$
D_n	$r_1 = e_1 + e_2, r_i = e_i - e_{i-1}, 2 \le i \le n.$
H_2^n	$r_1 = (1, 0), r_2 = (-\cos \pi/n, \sin \pi/n).$
G_2	$r_1 = e_2 - e_1, r_2 = e_1 - 2e_2 + e_3.$
I_3	$r_1 = \beta(2\alpha + 1, 1, -2\alpha), r_2 = \beta(-2\alpha - 1, 1, 2\alpha),$
	$r_3 = \beta(2\alpha, -2\alpha - 1, 1).$
I_4	$r_1 = \beta(2\alpha + 1, 1, -2\alpha, 0), r_2 = \beta(-2\alpha - 1, 1, 2\alpha, 0),$
	$r_3 = \beta(2\alpha, -2\alpha - 1, 1, 0), r_4 = \beta(-2\alpha, 0, -2\alpha - 1, 1).$
F_4	$r_1 = -(1/2)\Sigma_1^4 e_i, r_2 = e_1, r_3 = e_2 - e_1, r_4 = e_3 - e_2.$
E_6	$r_1 = (1/2)(\Sigma_1^3 e_i - \Sigma_4^8 e_i), r_i = e_i - e_{i-1}, 2 \le i \le 6.$
$\vec{E_7}$	$r_1 = (1/2)(\Sigma_1^3 e_i - \Sigma_4^8 e_i), r_i = e_i - e_{i-1}, 2 \le i \le 7.$
E_8	$r_1 = (1/2)(\Sigma_1^3 e_i - \Sigma_4^8 e_i), r_i = e_i - e_{i-1}, 2 \le i \le 8.$

figure 6.1

6.6 Algorithm to find the Root system of any of the above mentioned groups

Here we will give the basic steps of the algorithm and one example to illustrate the algorithm. Rest will be tabulated.

- 1. Let $\Gamma_o = \{r_1, ..., r_n\}$ be basis of V. This is actually our t-base for the group G, whose root system we want to find. For $1 \le i \le n$ find $S_i r_j$ such that $(r_i, r_j) < 0$. Denote the this set along with Γ_o as Γ_1 .
- 2. For all $r \in \Gamma_1 \setminus \Gamma_o$ for which $(r,r_i) < 0$ find $S_i r$ and denote this set along with Γ_1 by Γ_2 .
- 3. We repeat the above step and get the following set of vectors

$$\Gamma_0 \subseteq \Gamma_1 \subseteq \Gamma_2 \subseteq \dots$$

- 4. The process ends after a finite number of steps for all the groups that we need to find a root system and also we found that every vector obtained by this method is a linear combination of the vectors in the base. Let Γ_k be the set after which this process procedure is terminated then we denote $\Gamma_k \cup (-\Gamma_k)$ by Γ^* .
- 5. Verify that $S_i \Gamma^* = \Gamma^*, 1 \leq i \leq n$. So $T\Gamma^* = \Gamma^*$ for all $T \in G$. Hence Γ^* is the root system for G.

6.6.1 Example to demonstrate the algorithm

Let the group whose roots we need to find be G_3 .

- step(1) $\Gamma_o = \{r_1 = e_2 e_1, r_2 = e_1 2e_2 + e_3\}$. We have $(r_1, r_2) = -3 < 0$ So we find $S_1 r_2$ and $S_2 r_1$ which are $3r_1 + r_2$ and $r_1 + r_2$ respectively. So $\Gamma_1 = \{r_1, r_2, r_1 + r_2, 3r_1 + r_2\}$
- step(2) $(\mathbf{r}_1, r_1 + r_2) = -1 < 0$ and $(\mathbf{r}_1, 3r_1 + r_2) = 3 > 0$. $(\mathbf{r}_2, r_1 + r_2) = 3 > 0$ and $(\mathbf{r}_2, 3r_1 + r_2) = -3 < 0$. So we find $S_1(r_1 + r_2) = 2r_1 + r_2$ and $S_2(3r_1 + r_2) = 3r_1 + 2r_2$. Hence $\Gamma_2 = \{\mathbf{r}_1, r_2, r_1 + r_2, 3r_1 + r_2, 2r_1 + r_2, 3r_1 + 2r_2\}$
- step(3) After this we get $(r_1, 3r_1 + 2r_2) = 0$ and $(r_1, 2r_1 + r_2) = 3 > 0$. $(r_2, 2r_1 + r_2) = 0$ and $(r_2, 3r_1 + 2r_2) = 3 > 0$. So our $\Gamma^* = \Gamma_2 \cup -\Gamma_2$.

step(4) For all r_i and $r_j \in \Gamma_2$ we have if $(r_i, r_j) < 0$ then $S_i r_j \in \Gamma_2$. If $(r_i, r_j) = 0$ then $S_i r = r \in \Gamma_2$. If $(r_i, r_j) > 0$ then we find that $S_i r_j = S_i^2 r_k = r_k \in \Gamma_2$ for some $r_k \in \Gamma_2$. So we get $S_i \Gamma_2 = \Gamma_2$ So we have $S_i \Gamma^* = \Gamma^*$. Hence it follows that the root system of $G_2 = \Gamma^*$.

6.7 The root system and its order for various groups

Base	Group	Δ	Root system Δ
A _n	An	$n^2 + n$	$\pm (e_i - e_j), 1 \le j < i \le n + 1.$
B_n	B _n	$2n^2$	$\pm e_i, 1 \le i \le n; \pm e_i \pm e_j, 1 \le j < i \le n.$
D _n	\mathcal{D}_n	2n(n-1)	$\pm e_i \pm e_j, 1 \le j < i \le n.$
H_2^n	\mathscr{H}_{2}^{n}	2n	$(\cos j\pi/n, \sin j\pi/n), 0 \le j \le 2n-1.$
G_2	\mathscr{G}_2	12	$\pm (e_i - e_i), 1 \le j < i \le 3; \pm (1, -2, 1),$
			$\pm (-2, 1, 1), \pm (1, 1, -2).$
I_3	I_3	30	$\pm e_i$, $1 \le i \le 3$; $\beta(\pm (2\alpha + 1), \pm 1, \pm 2\alpha)$, and all even
			permutations of coordinates.
I4	J_4	120	$\pm e_i, 1 \le i \le 4; (1/2)(\pm 1, \pm 1, \pm 1, \pm 1);$
			$\beta(+2\alpha, 0, +(2\alpha + 1), +1)$, and all even permutations
			of coordinates.
F4	\mathcal{F}_1	48	$\pm e_i, 1 \le i \le 4; \pm e_i \pm e_i, 1 \le j < i \le 4;$
	+		$\frac{1}{(1/2)} \sum_{i=1}^{4} \varepsilon_{i} e_{i}, \varepsilon_{i} = +1.$
E_8	E.	240	$+e_i + e_i, 1 \le j < i \le 8; (1/2) \Sigma_1^8 \varepsilon_i e_i,$
U	0		$\varepsilon_i = +1, \Pi_1^8, \varepsilon_i = -1,$
E_{τ}	6,	126	Those roots of \mathcal{E}_{8} orthogonal to $u = (1/2)(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1$
,	I		1, 1, -1).
E ₆	66	72	Those roots of \mathscr{E}_7 orthogonal to $r_{\mathfrak{s}} = e_{\mathfrak{s}} - e_7$.
v	v		

figure 6.2

6.8 Order of the Coxeter groups

For finding the order of these groups we need the following 2 lemmas.

Lemma 6.2. If $H \leq G$ that fixes the dual basis element s_i then, $H = \langle S_1, ..., S_{i-1}, S_{i+1}, ..., S_n \rangle$

Lemma 6.3. Let G be irreducible and its Coxeter graph does not have any mark over its branches that is $P_{ij}=3$ for all i and j. Then G is transitive as a permutation group on its root system.

6.8.1 Order of Group A_n

A_n is isomorphic to symmetric group S_{n+1} so $|A_n| = |S_{n+1}| = (n+1)!$

6.8.2 Order of Group B_n

 $B_n = K_n \rtimes S_n$ So we have $|B_n| = |K_n| |S_n| = 2^n . n!$

6.8.3 Order of Group D_n

 $|D_n| = \frac{|B_n|}{2} = 2^{n-1} \cdot n!$

6.8.4 Order of group \mathbf{H}_2^n

As these are the dihedral groups so $|H_2^n|=2n$.

For the rest of the groups we will follow the following method.

- 1. We know that for a group G and any element $g \in G$, |G| = [G:stab(g)] [stab(g)] = [orb(g)] [stab(g)], where orb(g)=orbit of g and stab(g)=stabilizer of g. We will use this result to find the order of the groups.
- 2. The element of the group which we will choose to find the stabilizer and orbit of is a root $r \in \Delta$ such that r is orthogonal to all but one elements in Π .
- 3. To find the orbit of the group we follow a similar procedure as that of finding the root system of group. But here in place of $(\mathbf{r},\mathbf{r}_i) < 0$ we find $(\mathbf{r},\mathbf{r}_i) \neq 0$. And compute $S_i r$, which gives us orb(r).
- 4. To find the stabilizer, if r is not orthogonal to r_i only, then r is a scalar multiple of dual basis vector s_i . So stabilizer of r fixes s_i and Lemma 6.2 gives us stab(r).

For example,Let us Consider group E₆. We have root $r=e_7 + e_8$ is orthogonal to all the roots in the base except $r_1.Sostab(r) = iS_2, S_3, ...S_6 >$ which is A₅. So | stab(r) | = | $A_5 | = 6!$

 $|E_6| = 6! 72$

As $| orbE_6 | = 72$

Similarly we can do for the rest of the groups. The results are tabulated below.

Group G	$\operatorname{root}(\mathbf{r})$	$\mathbf{r}_i s.t(r,r_i) \neq 0$	$\operatorname{stab}(\mathbf{r})$	$\mid stab(r) \mid$	$\mid orb(r) \mid$	$\mid G \mid$
F ₄	$e_4 - e_3$	r_4	B ₃	48	24	$2^7 3^2$
I ₃	$\beta(1, 2\alpha, 2\alpha + 1)$	r_2	$A_1 \times A_1$	4	30	120
I I4	e4	r_4	i ₃	120	120	14400

Group G	root(r)	$\mathbf{r}_i s.t(r,r_i) \neq 0$	$\operatorname{stab}(\mathbf{r})$	$\mid stab(r) \mid$	$\mid orb(r) \mid$	$\mid G \mid$
E ₆	$e_7 + e_8$	r ₁	A_5	6!	72	$2^7.3^4.5$
E_7	$e_1 + e_8$	r_2	D_6	$2^5.6!$	126	$2^{10}.3^4.5.7$
E ₈	$(1/2)(\sum_{i=1}^{7} e_i - e_8)$	r_8	E_7	$2^5.6!.126$	240	$2^{14}.3^{\overline{5}}.5^{2}.7$

Next we just tabulate the results we already discussed before.

Group G	$\mid G \mid$		
A _n	(n+1)!		
B_n	$2^{n}.n!$		
D_n	$2^{n-1}.n!$		
H_{2}^{n}	2n		
G ₂	12		

Bibliography

- L.C. Grove and C.T. Benson. *Finite reflection groups*. Springer-Verlag, New York, Berlin, Heidelberg, Tokyo 1985.
- [2] James E. Humphreys. *Reflection groups and Coxeter groups*. Cambridge university press, UK, 1992.
- [3] Oleg Bogopolski Introduction to group theory. European Mathematical Society, Germany, 2008