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Abstract

Kakeya sets (or Besicovitch sets) were first introduced as a solution to a geometri-

cal problem. But, as it turns out, they have applications in solving many seemingly

unrelated problems in v various areas of mathematics. This dissertation aims at

studying the appearance of Kakeya sets in Harmonic analysis.

We begin with a brief introduction to the Kakeya Needle Problem, which asks

for the smallest area of a set in which a unit line segment can be continuously

turned around. Besicovitch’s solution that such sets can have arbitrarily small

area, is explained.

The first application of Kakeya sets in Harmonic analysis was seen in disprov-

ing the multiplier problem of the ball, and as a result invalidating the spherical

convergence of multiple Fourier series. When the more regularized Bochner-Riesz

means are considered, it is proven to be Lp´ bounded, at least in large dimensions.

The second part of the thesis begin by investigating the Kakeya conjecture, and

its known result in the two dimensional case. A result on the hausdroff dimension

of line segments and its extended lines is also briefly explained.

The Kakeya conjectue in the finite field case is easily solved by polynomial method,

as explained in Chapter 4.

The last part of the thesis contains a recent study on closed sets with Kakeya prop-

erty. It is proven that there are no non trivial closed sets with Kakeya property,

other than those which can be covered by a null set of parallel lines or concentric

circles.
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Chapter 1

Introduction

In 1917, S.Kakeya posed the Kakeya needle problem: What is the smallest area

required for a set within which one can rotate a unit line segment(a needle) by 360˝.

Such sets are now called the Kakeya sets. Clearly, a disk is an example. It can be

easily seen that a Deltoid also qualifies to be a Kakeya set with a much lesser area π
8

and for a long time, people believed that Deltoid is in fact the solution for Kakeya

problem. Around at the same time, A.S. Beiscovitch, a Russian mathematician

was trying to give a counter example to the following problem in analysis:

Given a function of two variables, Riemann-integrable on a plane domain, does

there always exist a pair of mutually perpendicular directions such that the repeated

simple integration along the two directions exists and gives the value of the integral

over the domain?

The problem reduces to that of existence of a plane measure zero which is the

union of segments of all directions each of length greater than 1. He constructed

such a set (its called the Besicovitch set) and published the result in a Russian

journal in 1920. As we can see, the Kakeya problem and Besicovitch’s counter

example are closely related. Both involves line segments in all directions, while

Kakeya problem has an extra requirement of continuous movement of these line

segments within arbitrarily small area. Due to the civil wars and blockade in

Russia, this problem didn’t reach Besicovitch. Few years later, after being aware

about the Kakeya problem, He published the solution in 1928. The movement

part was handled using ’Pal joins’, suggested by a Hungarian mathematician J.

Pal, and thus settling the Kakeya needle problem.

Though Kakeya problem is interesting on its own, it has gradually been realized

that this type of problem is connected to many other, seemingly unrelated prob-

lems in Harmonic analysis, number theory, and arithmetic combinatorics. They

1



The Kakeya Needle Problem 2

have been long used to construct various counter examples in analysis, starting

of course the Riemann integration problem, as we have seen above. Kakeya type

constructions was first introduced into Harmonic analysis by Charles Fefferman in

his famous result on Ball multiplier problem. We briefly discuss the problem here.

One primary question in Fourier analysis is to study about the p norm convergence

of Fourier series. Let ψ be a measurable function with compact support on Rn.

Define SRfpxq “
ş

ψpξ{Rqf̂pξqe2πix¨ξdξ for f P SpRnq. Do SRf converges to f in

Lp as R ÝÑ 8 ?

Fefferman proved that if ψ is the characteristic function of the ball, the partial

integrals will not converge to the function in p- norm for p ‰ 2. In his proof, we

can observe a beautiful interplay between multidimensional Fourier analysis and

Euclidean geometry.

Since Besicovitch set can have lebesgue measure zero, our usual measure theo-

retical tools are not enough to analyse these sets, instead we use the Hausdroff

measure theory. It is conjectured that any Besicovitch set in Rn should have the

Hausdroff dimension n, called the Kakeya conjecture. It is considered to be one of

the hard problems in geometric measure theory. Davies in 1971, gave the proved

the conjecture in n “ 2 case. Works by J.Bourgain, T.Wolff, T.Tao, I.Laba, etc

have shown progresses in the estimates on the Hausdroff dimension, But so far,

there has been no major breakthrough event in tackling this problem. Kakeya con-

jecture is inter-connected with two major unsolved problems in Harmonic Analysis;

Restriction conjecture and Bochner- Riesz conjecture. Wolff first asked the equiv-

alent of Kakeya problem in finite fields. The motivation was to avoid the technical

difficulties one might face in the real case. He conjectured that for a Kakeya set

K Ă Fn, the size of K should be at least qn multiplied by a constant (Cn), where

|F| “ q. Dvir proved the result in 2009, using polynomial method.



Chapter 2

The Kakeya Needle Problem

The Classical Kakeya problem was to find the minimum area required for a planar

set K in which a unit needle can be continuously turned around to come back to

its original position. A.S.Besicovitch in 1928 proved that there is no minimum

area, i.e., K can have area as small as we please. His construction used Pal joins,

a tool for translating a line segment from one position to another parallel position

consuming arbitrary small area, and thus made such sets to be multiply connected

and to have large diameter. A result by F.Cunningham gave the final statement

in this category, by coming up with a bounded simply connected set as a solution

to Kakeya Needle Problem.

In this chapter, we study the Kakeya Needle Problem and its solution given by

Besicovitch. We will be considering a modified construction due to Perron and

Schoenberg, which is much simpler to understand comparing to Besicovitch’s orig-

inal one.

2.1 Kakeya Needle Problem

The problem was first posed by the Japanese mathematician S.Kakeya, in 1917.

He stated the problem as follows:

Kakeya Needle Problem : In the class of figures in which a segment of length

1 can be turned around through 360°, remaining always within the figure, which

one has the smallest area ?

We have the following result due to Besicovitch[1].

3
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Theorem 2.1. Given ε ą 0, there exists a set E in R2, within which a unit

segment can be turned around through 360° , and its plane measure µpEq ă ε.

An elementary proof of the theorem contains two key observations.

• For any given ε ą 0, There exists a movement by which a line segment can

be translated to a parallel position in the plane, and the area covered by the

movement is less than ε. These movements are called Pál Joints.

• There exist a set in a plane which contains lines segments in all direction,

but has plane measure zero.

Proof. At first, we take a square of side 2 and divide it into four congruent right

triangles by joining the center to the vertices. The hypotenuse of each triangle is

divided into a large number n of equal parts. Joining each point of division to the

center of the square, we have 4n “elementary” triangles, each of height 1.

The directions of the various segments which join the vertex of each elementary

triangle to every point of its base have a range of 360°. The same will remain

true if we give arbitrary parallel translations to the elementary triangles. As we

shall show, parallel translations can be given to these elementary triangles which

achieve such a degree of overlapping that the total area covered by the triangles

in their new position is as small as we please.

Now if we place an end-point of the unit segment successively at the vertices

O1, O2, . . . of the first elementary triangle, the second one, and so on, in their

position after translations and in each case rotate it in the positive directions

from one side of the triangle to the other, the segment would turn through 360°.
But this movement would not be continuous, for in moving from one triangle to

the next one of the segment would not remain within the area of the figure. We

eliminate this difficulty by means of Pal’s joins, as follows:

Let DEF and GHI ( as shown in Figure 2.1) be a pair of consecutive elementary

triangles after a parallel translation, and ε an arbitrarily small positive number.

The sides DF and GH are parallel. Take a point K on HI so that HK{HI ă ε{8.

Suppose that the lines DF and GK meet in the point L and the triangle LMN

is congruent to GHK. We have (denoting area by the sign | |)

| LMN |“| GHK |ă
ε

8
| GHI | .
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I

E

G
H

D

FL

K

N

M

Figure 2.1: Pal Joins

The figure consisting of the lines GL, DL and of the triangle LMN will be called

the join. We see that the area of the join is less than ε{8 times the area of

an elementary triangle.Now, if we Connect every pair of consecutive elementary

triangles using these joins, we shall get totally 4n joins of total area less than

ă ε{2. The join added to the triangles DEF , GHI permits the unit segment to

come from the triangle DEF to GHI remaining always on the area of the triangles

or of the join. For, from the position of the segment on the side DF we let the

segment slide down along the line DL until its lower end-point reaches L, then

rotate about L until it reaches the side LN and then slide up until its top end

reaches G, that is, gets in the second triangle. Thus the problem is reduced to

finding parallel translations of elementary triangles such that the area covered by

them be small.

We consider the coordinate plane and an integer p ŕ 2. We construct the isosceles

right triangle ∆ “ OAB of our original square with its hypotenuse of length 2

on the x-axis. The base AB of ∆ is divided into n “ 2p´2 equal parts and n

elementary triangles with vertex O are constructed.

0

1

2

3

4

5

τ2
1

∆1

τ3
1 τ3

2
∆2

τ4
1 τ4

2 τ4
3 τ4

4
∆3 ∆4

τ5
1 τ

5
2 τ

5
3 τ

5
4 τ

5
5 τ

5
6 τ

5
7 τ

5
8

∆5

Figure 2.2

We next draw the lines y “ k{p, for k “ 1, 2, . . . , p (Figure 2.2) and call the

line y “ k{p the line of level k, or simply level k. We then construct p isosceles

right triangles ∆1,∆2, . . .∆p each with hypotenuse on the x-axis, and the opposite
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vertices on the 1, 2, . . . , p levels respectively. Note that ∆p “ δ. For each k, k “

3, . . . , p, the base of ∆k is divided into 2k´2 equal parts and the elementary triangles

are constructed on the subintervals of each base. Notice that ∆k`1 is divided into

twice as many elementary triangles as ∆k; ∆2 is not divided into elementary

triangles, ∆3 is divided into two, ∆4 into four, ∆5 into eight, and so on (see Figure

2.2).

We shall now assign labels to the elementary triangles in each ∆k. These will be

labeled from left to right as τ k1 , τ
k
2 , τ

k
3 , . . . , τ

k
j , . . . , τ

k
2k´2 . The superscript k shows

that τ kj is part of ∆k and the subscript j says that τ kj is the j-th elementary

triangle in ∆k counting from left to right. ∆2 is not divided into elementary

triangles. We shall say it coincides with the elementary triangle τ 2
1 ; ∆3 has τ 3

1 and

τ 3
2 as elementary triangles; ∆4 has τ 4

1 , τ
4
2 , τ

4
3 and τ 4

4 ; and so on.

Note a simple relationship between the elementary triangles of ∆k and of ∆k`l.

0

1

2

3

M

O

L N

P

RM

O

L NL N S

Q

L N

P

Rτ2
1 τ3

1 τ3
2

Figure 2.3

Let us start with τ 2
1 “ LON (Figure 2.3). Bisect it by the median OM into two

triangles OLM and ONM and expand them to similar triangles PLR and QNS

to the level 3. We shall call this operation the bisection and expansion. The

result of this operation is a pair of triangles congruent to the pair τ 3
1 and τ 3

2 of ∆3.

Similarly is defined the operation of bisection and expansion of the triangles τ kj

for any k ą 2 : τ kj bisected into two triangles by the median from its vertex, and

each of the triangles is expanded to the next level. The operation transforms τ kj

into parallel translates of τ k`1
2j´1 and τ k`1

2j , and applied to the set of all triangles τ kj ,

or to any set of their parallel translates, transforms the set into a set of parallel

translates of elementary triangles of ∆k`1. Figure 2.4 represents a particular case

of k “ 3.

The part of ∆k (or of any elementary triangle τ kj of ∆k) which lies between levels

k ´ 1 and k will be called the “top end” of ∆k (or of τ kj ). Notice that the top

end of ∆k is congruent to ∆1 and that the sum of the areas of the top ends of all

elementary triangles of ∆k is equal to the area of the top of ∆k, that is to | ∆1 |.
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τ3
1τ3

2 τ4
1 τ4

2 τ4
3 τ4

4

Figure 2.4

Now let us look at the change in area when bisection and expansion are applied

to a triangle. Consider an elementary triangle τ kj “ LMN with vertex N at level

k (see Figure 2.5). Let NP be the median of LMN , bisecting it into the two

subtriangles LPN and MPN . If we expand LPN upwards and to the right to

the level k` 1, we get a similar triangle LRQ. If we expand MPN upward to the

left to level k ` 1, we get a similar triangle MTS.

k-1

k

k+1

L

N

M L

N

MP

Q

R

S

T

V U

Y X

Figure 2.5

The two triangles LRQ and MTS together cover the triangle LMN and the two

“end pieces” SNV and QNU . We have

| SNV |“| QNU |“| NUV |

so that the two overlapping triangles cover an area equal to the area of the original

triangle LMN plus twice the area of the top end of LMN .

Observe that for constructing the end pieces to LMN , one merely has to know the

top end of the triangle LMN . The rule is this: produce the sides LN and MN to

the level k` 1 and join the end-points to the points of the sides on the level k´ 1.

If we start with a complete set of elementary triangles of ∆k or of their parallel

translates and apply bisection and expansion to each of these triangles, we shall
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arrive at a set of parallel translates of all elementary triangles of ∆k`1 and in-

troduce an increase in area at most equal to twice the sum of the areas of the

top ends of these triangles. (The “at most” is necessary here because of possible

overlapping.) The sum of the areas of the top ends of a complete set of elementary

triangles is equal to the area of ∆1, so that the total increase in area is at most

2 | ∆1 |.

This conclusion leads immediately to the complete solution of our problem. We

start with the triangle ∆2 “ τ 2
1 and apply to it the bisection and expansion

which will transform it into parallel translates of the elementary triangles of ∆3.

Applying the same operation to each of the new triangles we shall get a set of

parallel translates of elementary triangles of ∆4, and so on.

After p ´ 2 such operations we shall arrive at a set of parallel translates of ele-

mentary triangles of ∆p “ ∆. As the increment of the area at each operation is

ő 2 | ∆1 |, the area of the final figure will be

ő| ∆2 | `2pp´ 2q | ∆1 |“
4

p2
` 2pp´ 2q | ∆1 |“

4

p2
` 2pp´ 2q

1

p2
“

2

p
.

Taking p ą 16{ε we shall get the area ă ε{8. With similar translations for the

other 3n elementary triangles we shall get the total area covered by the translates

ă ε{2. Adding 4n´ 1 joins of total area ă ε{2 we shall get a figure of area ă ε on

which the unit segment can turn round through 360°, which represents a solution

of the problem.

The following figure shows the geometric appearance of sets we obtain by the

above mentioned construction.

Σ4

(a)

Σ5

(b)

∆5

(c)

Figure 2.6
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It can be easily proved that the as ε goes to 0, these sets converges to a set of

measure zero, containing a line segment in all direction(Besicovitch set).

It is clear that due Pal joins, the Kakeya sets constructed are highly multiply

connected, and complex in appearance. It was Besicovitch who first posed the

problem to construct a simply connected Kakeya set, which was solved by F.

Cunningham [3].

We state his result without the proof.

Theorem 2.2. Given ε ą 0, there exist a simply connected Kakeya set of area

less than ε contained in a disc of radius 1.
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Chapter 3

Multiple Fourier Series and Ball

Multiplier

The goal of this chapter is to understand the sense in which the Fourier series

of a function converges to itself. During the course of time, we will also see how

Kakeya sets enter into the frame and plays an important part in achieving the

goal. Let us consider a function f on the n-dimensional torus Tn, and its Fourier

series. The question is whether the equality shown below involving an infinite sum

on one side, is a true statement in the Lp space.

fpxq
?
“

ÿ

mPZn
f̂pmqe2πix¨m

for n “ 1, we can prove that the partial sums SNpfq “
řN
´N f̂pmqe

2πix¨ξ converges

to f as N Ñ 8 in Lp, due to fact that Hilbert transform is bounded in Lp for

1 ă p ă 8. If n ą 1, we address the problem by introducing a localizing factor

φpξq, that is zero outside a compact set and then to study the convergence of

SRpfq “
ř

mPZn
φpm{Rqf̂pmqe2πix¨m as RÑ 8.

There is an equivalent problem in Rn. Again, we consider φ be a measurable

function with compact support on Rn. Define SRfpxq “
ş

φpξ{Rqf̂pξqe2πix¨ξdξ for

f P SpRnq. The question we can ask here is whether SRf converges to f in Lp as

R ÝÑ 8 ?

11



Convergence of Multiple Fourier Series 12

3.1 Introduction to Theory of Multipliers

Definition 3.1. Let m be a measurable function in Rn. Consider the map Mm

defined by

Mmf “ p
­

m ¨ pfq,

where f P SpRnq.

If }Mmpfq}p ď C}f}p for any Schwartz class function, then the operator can be

extended to Lp space. In such a case, We call Mm to be a Multiplier operator on

LppRnq and m, to be a bounded multiplier function. The collection of all bounded

multiplier functions on LppRnq is denoted by µppRnq. It can be verified that it is

a normed space with }m}µppRnq “ }Mm}op.

Similar definition exists for Multiplier operators on LP pTnq. The difference is that

here, we begin with a function on Zn. i.e., a sequence of numbers tmpkq : k P Znu
and the operator is defined by

Mmf “
ÿ

kPZn
mpkqf̂pkqeipk¨p.qq

The collection of all multiplier sequences forms a normed space µppZnq with norm

as in the previous case.

Examples: For n “ 1, the multiplier operator corresponding to the function

mpξq “ ´isgnpξq is called the Hilbert transform, denoted as H. By the the-

ory of singular integrals, it can be proven that }Hf}p ď C}f}p for 1 ă p ă 8.

It is easy to see that the multiplier operator corresponding to positive half line

Mχ
r0,8q

“ pI ` iHq{2, where I denotes the identity operator. Therefore, Mχ
r0,8q

is a Lp multiplier operator for 1 ă p ă 8.

Properties of bounded multiplier functions: The following properties can

be proved by carrying out simple computations. Let m P µp, 1 ď p ď 8, x P Rn

and h ą 0 we have,

}τxpmq}µp “ }m}µp

}Dh
pmq}µp “ }m}µp

}e2πip.qxm}µp “ }m}µp

}rm}µp “ }m}µp
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where τxpmqpyq “ mpy´xq is the translation operator, Dhpmqpyq “ p1{hnqmpy{hq

is the dilation operator and rmpxq “ mp´xq is the conjugation operator.

We are mainly interested in two types of multiplier functions - The characteristic

function of a ball and a square.

• Consider mpkq “ χ
BR “

$

&

%

1, | k | ď R

0, else.
The corresponding Mm is denoted

by rDpn,Rq.

• Considermpk1, . . . knq “

$

&

%

1, | kj |“ R for some j

0, else.
Mm is denoted byDpn,Rq

Now, we have an interesting result which shows that restriction of a bounded

multiplier function is again a bounded multiplier operator.

Theorem 3.2. Suppose that mpξ, ηq P µppRn`mq, where 1 ă p ă 8. Then for

almost every ξ P R the function η Ñ mpξ, ηq is in µppRmq, with

}mpξ, q}µppRmq ď }m}µppRn`mq (3.1)

Proof. Since m lies in L8pRn`mq, it follows by Fubini’s theorem that almost all

ξ P Rn, the function mpη, .q Ă L8pRmq,with

}mpξ, .q}L8pRnq ď }m}L8pRn`mq.

Fix f1, g1 in SpRnq and f2, g2 in SpRmq.For all ξ for which (3.1) holds, define

Mpξq “

ż

Rm
pmp, .qpf2

qqpyqg2pyqdy “

ż

Rm
mp, ηqpf2pηqqg2pηqdη

and observe that

ˇ

ˇ

ˇ

ˇ

ż

Rn
pMp.q pf1

qqpxqg1pxqdx

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż

Rn
Mpξq pf1pξqqg1pξqdξ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż ż

Rn`m
mpξ, ηqyf1f2pξ, ηq}g1g2pξ, ηqdξdη

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż ż

Rn`m
pmzf1.f2

qqpx, yqpg1g2qpx, yqdxdy

ˇ

ˇ

ˇ

ˇ

ď }m}µppRn`mq}f1}p}f2}p}g1}p1}g2}p1 .
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Now, because of the identity,

}pMp.q pf1
qq}p “ }g1}p1 ď 1

sup

ˇ

ˇ

ˇ

ˇ

ż

Rn
pMp.q pf1

qqpxqg1pxqdx

ˇ

ˇ

ˇ

ˇ

we can conclude that Mpξq P µppRnq, and we also have

}M}µppRnq ď }m}µppRn`mq}f2}p}g2}p1 .

Since }M}L8 ď }M}µppRnq for almost all ξ P Rn, we obtain

ˇ

ˇ

ˇ

ˇ

ż

Rm
pmpξ, .qpf2

qqpyqg2pyqdy

ˇ

ˇ

ˇ

ˇ

ď }m}µppRn`gmq}f2}p}g2}
1
p

which gives the required conclusion, by taking the supremum over all g2 in Lp
1

with norm at most 1.

3.1.1 Transference theorems

Now, we have the transference theorems using which we can see a correspondence

between µppZnq and µppRnq. We begin with the following definition.

Definition 3.3. Consider a bounded function b on Rn. It is said to be regulated

at a point t0 if

lim
εÑ0

1

εn

ż

|t|ďε

pbpt0 ´ tq ´ bpt0qqdt “ 0. (3.2)

b is said to be a regulated function, if it is regulated at all points in Rn.

Indeed, b is regulated at any of its Lebesgue point. Thus, a continuous function is

a regulated function. But, this is much weaker idea than of Lebesgue points. For

example observe that the function bptq “ sgnpt´ t0q is regulated at t0, but it is not

a Lebesgue point. We state the following theorems without any proof. Interested

reader can refer [17].

Theorem 3.4. Suppose b is a regulated function at every point m P Zn and lies

in µppRnq for some 1 ď p ă 8. Then, the sequence tbpmq : m P Znu is in µppZnq
and moreover,

}tbpmqu}µppZnq ď }b}µppRnq (3.3)

Also, for all R ą 0 , the sequence tbpm
R
q : m P Znu are in µppZnq and we have

sup
Rą0

›

›

›

›

!

b
´m

R

¯)

›

›

›

›

µppZnq
ď }b}µppRnq (3.4)
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The second conclusion of the theorem is a consequence of the first, since for any

given R ą 0, the function bpξ{Rq is regulate don Zn and has the same norm as b.

Now, we have a converse to the previous theorem. If we have a bounded function

b on Rn, and even if tbpmqumPZn is in µppZnq, it will be a foolish idea to comment

on its µppRnq norm, because the whole integer lattice is a set of measure zero. So,

we require a more stronger condition as we shall notice below.

Theorem 3.5. Suppose bpψq is a bounded Riemann integrable function over Rn

and that the sequences tb
`

m
R

˘

u are in µppZnq uniformly in R ą 0, for some 1 ď

p ă 8. Then b is in µppRnq and we have,

}b}µppRnq ď sup
Rą0

›

›

›

!

b
´m

R

¯)
›

›

›

µppZnq
(3.5)

As a result, we have an important corollary which gives the correlation between

the p-convergence of partial Fourier series and Lp boundedness of corresponding

multiplier operators.

Corollary 3.6. Let 1 ď p ă 8, f P LP pTnq and α ě 0. Then,

(a) }Dpn,Rq ˚ f ´ f}LP pTnq Ñ 0 as RÑ 8 ðñ χ
r´1,1sn P µppRnq

(b) } rDpn,Rq ˚ f ´ f}LP pTnq Ñ 0 as RÑ 8 ðñ χ
Bp0,1q P µppRnq

Proof. The convergence is satisfied when f is a trigonometric polynomial, which

forms a dense subset for LP pTnq. Hence, We can extend the result to the whole

space if they are uniformly bounded. The converse of this statements is true by

Uniform boundedness principle. So we have,

L.H.S. in (a) ðñ sup
Rą0

}Dpn,Rq ˚ f}LP pTnq ď Cp}f}LP pTnq

L.H.S. in (b) ðñ sup
Rą0

} rDpn,Rq ˚ f}LP pTnq ď Cp}f}LP pTnq

Now we define

rχ
r´1,1snpx1, x2, . . . , xnq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

1, if | xj |ă 1 @j

1
2
, if | xj |“ 1 for some but all j

1
2n
, if | xj |“ 1 @j ď n

0, if | xj |ą 1for some j
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and

rχ
Bp0,1qpxq “

$

’

’

’

&

’

’

’

%

1, if | x |ă 1

1
2
, if | x |“ 1

0, if | x |ą 1

Now both rχ
Bp0,1q and rχ

r´1,1sn are regulated and Riemann integrable. Theorem 3.4

and Theorem 3.5 imply that the uniform boundedness of the operators Dpn,Rq

are rDpn,Rq equivalent to the statements that the functions rχr´1,1sn and rχ
Bp0,1q are

in µppRnq respectively. Since rχ
r´1,1sn “ χ

r´1,1sn a.e. and rχ
Bp0,1q “ χ

Bp0,1q a.e., the

result follows.

We note here that by much simpler arguments, it can be shown that if

SRfpxq “
ş

Rn ψpξ{Rqf̂pξqe
2πix¨ξdξ, we have

}SRf ´ f}LP pRnq Ñ 0 as RÑ 8 ðñ ψ P µppRn
q.

3.2 Cubic multipliers and Hilbert transform

After the translating the problem of convergence of Multiple Fourier series to a

problem of Fourier multipliers, we now focus on the latter. In this section, we

consider the case of χr´1,1sn and we prove that this function is in fact a bounded

multiplier function, using Hilbert transform. We can actually prove a more general

theorem, where the multipliers are characteristic functions of polygons in Rn. As

for now, we will be proving this result only for the case n “ 2.

Theorem 3.7. Let P be any closed polygon(convex polyhedron) lying in R2 (resp.,

Rn) and having a non empty interior. Then the Fourier multiplier MχP is bounded

on Lp, 1 ă p ă 8. therefore polygonal summations are valid in Lp for 1 ă p ă 8.

The outline of the proof is as follows. Using Hilbert transform, We first show that

the Half plane multiplier operators are Lp bounded. Now, A polygonal multiplier

operator is obtained by finite composition of Half plane multiplier operators and

hence the result follows. [16]

Theorem 3.8. Let P be a point of R2, v P R2 be a unit vector, and set

Ev “ tx P R2 : px´ P q ¨ v ě 0u.
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Then the operator

f ÞÝÑ pχEv ¨
pfq_

is bounded on LP , 1 ă p ă 8.

Proof. As we have stated earlier, the 1-dimensional Hilbert transform

Hφ “ p´i sgn ξ ¨ pφq_

is bounded on LppRq, 1 ă p ă 8. It is often useful to consider, instead of the

Hilbert transform H, the operator M “ 1
2
pI ` iHq because it has the very simple

Fourier multiplier m “ χ
r0,8q.

We now express the multiplier for a half-space as amalgam of multipliers for the

half-line, using the Fubini’s theorem.

After composition with a rotation and a translation, we may assume that P “ 0

and that the vector v is the vector p0, 1q. Let us drop the subscript and denote

the corresponding half-space by E.

Fix 1 ă p ă 8. Since the Schwartz functions are dense in LppR2q, it suffices for

us to perform the estimates for a a Schwartz function f . For almost every x1 P R,
the function fx1px2q ” fpx1, x2q is certainly in LppR1q and, by Fubini’s theorem,

ż

xiPR
}fx1}

p
LppRqdx1 “ }f}

p
LppR2q

.

Now we have

pχE pfq_px1, x2q “ p2πq
´2

ż 8

0

ż

R

ż

R

ż

R
fpt1, t2qˆe

iξ1t1eiξ2t2dt1dt2e
´iξ1x1e´iξ2x2dξ1dξ2.

The two inside integrals give rise to a Schwartz function, so all integrals converge

absolutely. By Fubini’s theorem, the last line equals

1

2π

ż

R

ż

R

„

1

2π

ż 8

0

„
ż

R
fpt1, t2qe

´2πiξ2t2dt2



ei2πξ2x2dξ2



ˆ e´i2πξ1t1dt1e
i2πξ1x1dξ1

“
1

2π

ż

R

ż

R
Mpft1qpx2qe

´i2πt1ξ1dt1e
i2πξ1x1dξ1

(3.6)
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Since, for almost every t1, ft1 P L
ppRq, we see that Mft1 makes sense for each t1.

Also

ż

t1PR
}Mft1p¨q}

p
LppRqdt1 ď C

ż

t1PR
}ft1p¨q}

p
LppRqdt1

“ C}f}pLppR2q
.

(3.7)

Hence we see that Mft1px2q is in LppR2q as a function of the variables pt1, x2q. In

particular, for almost every x2, the function

t1 ÞÑ Fx2pt1q ”Mpft1qpx2q

lies in LppRq. By equation 3.7 we get

ż

x2PR
}Fx2p¨q}

p
LppRqdx2 “

ż

t1PR
}Mft1p¨q}

p
LppRqdt1 ď C ¨ }f}LppR2q.

In summary, we may rewrite the right-hand side of 3.6 as

lim
εÑ0

ż

R

1

2π

ż

R
Fx2pt1qe

it1ξ1dt1e
´iξ1x1e´ε|ξ1|

2

dξ1

by Gauss-Weierstrass summation. But this equals

lim
εÑ0

1

2π

ż

R
F̌x2p´ξ1qe

´iξ1x1e´ε|ξ1|
2

dξ1 “ Fx2px1q,

for almost every x1. We have already noted that the latter function has LppR2q

norm dominated by C}f}LppR2q. Hence the proof.

Now consider,

E1 ” tpx, yq P R2 : p´1, 0q ¨ rpx, yq ´ p1, 0qs ě 0u,

E2 ” tpx, yq P R2 : p1, 0q ¨ rpx, yq ´ p´1, 0qs ě 0u,

E3 ” tpx, yq P R2 : p0,´1q ¨ rpx, yq ´ p0, 1qs ě 0u,

E4 ” tpx, yq P R2 : p0, 1q ¨ rpx, yq ´ p0,´1qs ě 0u.

Then E1, E2, E3, E4 are four half-planes whose common intersection is the unit

sphere Q “ tpx, yq : | x |ď 1, | y |ď 1u in R2. Let Tj be the multiplier operator
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associated to χEj , that is,

Tj : f ÞÝÑ pχEj ¨
pfq_.

Then T1˝T2˝T3˝T4 is the multiplier operator associated to the closed unit square.

We know from the above theorem that each Tj is bounded on Lp. 1 ă p ă 8.

As a result, T1 ˝ T2 ˝ T3 ˝ T4 is certainly bounded on Lp for the same range of

p. Therefore the multiplier operator associated to the unit square is bounded on

Lp, 1 ă p ă 8 . . . As a result, square summability is valid for double Fourier

series, 1 ă p ă 8. Indeed, by the exact same arguments, we obtain the proof for

Theorem 3.7.

3.3 Multiplier Problem for Ball

In this section, we investigate the Lp boundedness of Ball multiplier operator,

MχB , defined by the property, {MχBf “ χ
Bp0,1qf̂ . Unlike characteristic function

for the cube (or any general polygon), we cannot obtain a ball by composing

finitely many half-planes, and therefore it is not possible to tackle the multiplier

problem for ball by the same way we have treated the case of polygons in the

previous section. In fact, Ball multipliers are not in µppRnq for any n, if p ‰ 2.

C.Fefferman proved this surprising result by a clever exploitation of Kakeya set

construction. The theorem is stated below [4]:

Theorem 3.9. The characteristic function of the unit ball in Rn is not an LP

multiplier when 1 ă p ‰ 2 ă 8

As a consequence, spherical summation is not valid for multiple Fourier series. We

first prove some auxiliary results that will be needed for proving the theorem. The

method is to first assume that MχB is an Lp bounded operator, and arrive at a

contradiction. We begin by producing a modified construction of Kakeya sets (due

to F. Cunningham) which will be used in the proof to give a counter example.

3.3.1 Sprouting Method

We begin with a triangle ABC, with base b “ AB and height h0. M be the mid-

point of AB. We choose a number h1 ą h0, and extend the sides AC & BC till

it reaches the height h1, and denote the new end points as F and E respectively

(See 3.1).
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We obtain two triangles ∆AMF and ∆BME, called sprouts of ∆ABC. Union

of the two sprouts is denoted by Spr(ABC). The process of constructing more

number of triangles from a given triangle by this method is called Sprouting

method (similar to Divide and expansion method mentioned in chapter 1). Con-

sider a sequence of numbers h0, h1, h2, . . . hk such that hj´1 ă hj @ 0 ď j ď k.

A BM

C

FE

h0

h1

G H

P Q

h0

h1

Figure 3.1: Sprouting method

We begin with a triangle ABC,

with base b “ AB and height

h0. M be the midpoint of

AB. We choose a number

h1 ą h0, and extend the

sides AC & BC till it

reaches the height h1, and de-

note the new end points as

F and E respectively (See

3.1).

We obtain two triangles ∆AMF

and ∆BME, called sprouts

of ∆ABC. Union of the

two sprouts is denoted by

Spr(ABC). The process of con-

structing more number of tri-

angles from a given triangle by this method is called Sprouting method (similar

to Divide and expansion method mentioned in chapter 1). Consider a sequence of

numbers h0, h1, h2, . . . hk such that hj´1 ă hj @ 0 ď j ď k.

We can apply the sprouting procedure repeatedly on each triangle at each level,

starting from ∆ABC at zeroth level. At jth level, We obtain 2j triangles, each with

base length bj “
b
2j

and height hj, as the sprouts of 2j´1 triangles with height hj´1.

Lets fix b “ b0 “ ε and h0 “ ε. Define the heights hj “ p1`
1
2
` 1

3
` ¨ ¨ ¨ ` 1

j`1
qε.

Let Epε, kq be the union of 2k triangles we obtain at the kth level. We wants to

evaluate the total area of Epε, kq. At first, Let’s have a detailed look at the first

level (Figure 3.2).

We call the difference SprpABCqzABC the arms of the sprouted figure, denoted

by ArmpABCq.

It is easy to see that | CP |“| CQ |“ b
2
.h1´h0

h1
. Also, If we denote the perpendicular
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A BM

h0

h1

h2

h3

Figure 3.2: At the third level of sprouting procedure

height of G from AB by h1, we then have h1 “ h0{p1 `
h1´h0
h1
q. This expression

can be derived from the fact that ∆CGP « ∆AGM . We can easily show that the

height of H is also h1.

Now, AreapArmpABCqq “ 2p| ∆CPE | ` | ∆CGP |q “ bph1 ´ h0q
2{p2h1 ´ h0q.

Hence, at j-th level, the increment in area due to sprouting is 2j´1.
bj´1phj´hj´1q

2

2hj´hj´1
.

Summing over all these areas and adding the area of the original triangle, we ob-

tain the estimate

| Epε, kq | “
1

2
.ε2 `

k
ÿ

j“1

2j´1.
bj´1phj ´ hj´1q

2

2hj ´ hj´1

ď
1

2
.ε2 `

k
ÿ

j“1

2j´1.
ε

2j´1

ε2

pj ` 1qε

ď
1

2
.ε2 `

k
ÿ

j“2

ε2

j2

ď
3

2
ε2.
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We do not wish to elaborate on how the Kakeya problem is solved using the the

sprouting procedure (An interested reader can look upon Cunningham’s paper

[reference]). But it can be observed that for a fixed ε, the set Epε, kq contains line

segments with more and more directions for larger values of k, but the area always

remains lesser than 2ε2.

Now, consider a rectangle R in R2, R1 is the union of two copies of R adjacent to

R along the two shortest sides as shown in the following diagram. We will now

show that a suitable half plane multiplier operator translates R along its longer

axis.

RR1 R1

Figure 3.3: A rectangle R and its adjacent rectangles R1

Proposition 3.10. Let R be a rectangle whose center is P in R2 and let v be a

unit vector parallel to its longer side. Consider the half plane,

H “ tx P R2 : px´ P q ¨ v ě 0u

Then we have | MHpχRq |ě
1
10
χ
R1 . where MH is the corresponding multiplier

operator.

Proof. Since multiplier operators are translation invariant, We can take P to be

the origin. Also, applying a rotation, We can assume that R “ r´a, as ˆ r´b, bs

where 0 ď a ď b ă 8 and v “ p0, 1q. Now,

MHpχRqpx1, x2q “ χ
r´a,aspx1qppχr´b,bsχr0,8qq

_
px2q

“ χ
r´a,aspx1q

I ` iH

2
pχr´b,bsqpx2q

|MHpχRqpx1, x2q |ě
1

2
χ
r´a,aspx1q | Hpχr´b,bsqpx2q |

“
1

2π
χ
r´a,aspx1q

ˇ

ˇ

ˇ

ˇ

ˇ

log

ˇ

ˇ

ˇ

ˇ

ˇ

x2 ` b

x2 ´ b

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

.
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But for px1, x2q P R
1 ,

ˇ

ˇ

ˇ

ˇ

ˇ

x2 ` b

x2 ´ b

ˇ

ˇ

ˇ

ˇ

ˇ

ą 2

Hence,

|MHpχRqpx1, x2q |ě
log 2

π
ě

1

10
.

Now, we will see a construction closely related to Kakeya sets, which in turn will

lead to the counter example we need in the multiplier problem of ball.

Lemma 3.11. Let δ ą 0 be a given number. Then there exists a measurable subset

E Ă R2 and a finite collection of rectangles Rj such that

(a) The Rj’s are pairwise disjoint.

(b) We have 1{2 ď| E |ď 3{2.

(c) We have | E |ď δ
ř

j | Rj | .

(d) | R1j X E |ě
1
12
| Rj | @ j.

Proof. We begin with a triangle ∆ABC as in the sprouting procedure, with A “

p0, 0q, B “ p1, 0q, both height and base length 1. For a given δ ą 0, choose a k so

large such that k`2 ą e1{δ, and choose E “ Ep1, kq. By the previous calculations,

pbq is immediately satisfied.

Note that each dyadic interval rj2´k, qpj ` 1q2´ks is the base of exactly one

sprouted triangle, say, AjBjCj, where j P t0, 1, . . . , 2k´1u. We set Aj “ pj2
´k, 0q,

Bj “ ppj ` 1q2´k, 0q. We define Rj inside the angle =AjCjBj as shown in figure

3.5, with the length of its longest side 3 logpk ` 2q. By carefully examining the

sprouting construction, we can deduce that the region inside the angles =AjCjBj

and under the triangle AjCjBj are pairwise disjoint, satisfying paq in the lemma.

By, symmetry we can assume that | AjCj |ě| BjCj |. From the construction of

Ep1, kq, it can be easily seen that the longest possible value that | AjCj | can

achieve is
?

5hk{2. We now have that,

?
5

2
hk ă

3

2

´

1`
1

2
` ¨ ¨ ¨ `

1

k ` 1

¯

ă
3

2
p1` logpk ` 1qq ă 3 logpk ` 2q,
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R0 R1 R2 R3

p0, 0q p1, 0q

hk

3 logpk ` 2q

Figure 3.4: Rectangles Rj

which implies that R1j contains the triangle AjBjCj. We also have that

hk “ 1`
1

2
` ¨ ¨ ¨ `

1

k ` 1
ą logpk ` 2q.

As a result, we have the following inequality,

| R1J X E |ě AreapAjBjCjq “
1

2
2´khk ą 2´k´1 logpk ` 2q. (3.8)

Now, by applying the law of sines to the triangle AjBjDj gives

| AjDj |“ 2´k
sinp=AjBjDjq

sinp=AjDjBjq
ď

2´k

cosp=AjCjBjq
. (3.9)

But the law of cosines applied to the triangle AjBjCj with the estimates

hk ď| BjCj |ď| AjCj |ď
?

5hk{2 give that

cosp=AjCjBjq ě
h2
k ` h

2
k ´ p2

´kq2

25
4
h2
k

ě
4

5
´

2

5
.
1

4
ě

1

2
. (3.10)

Combining both the results, we obtain

| AjDj |ď 21´k
“ 2 | AjBj | . (3.11)



Convergence of Multiple Fourier Series 25

Cj

Aj Bj

Dj

Rj

3 logpk ` 2q

hk

Figure 3.5: A closer look at Rj

Using this result and (3.8), we prove that

| Rj X E |ě 2´k´1 logpk ` 2q “
1

12
2´k`13 logpk ` 2q ě

1

12
| Rj | . (3.12)

and hence conclusion pdq is proved.

Now, Let us prove the conclusion pcq in the lemma. Applying the law of sines

again on triangle AjBjDj gives

| AjDj |ě 2´k sinp=AjBjDjq ě 2´k´1=AjBjDj ě 2´k´1=BjAjCj.

But the smallest possible value of the angle =BjAjCj is attained when j “ 0, in

which case =B0A0C0 “ tan´1p2q ą 1. This gives that

| AjDj |ě 2´k´1.
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It follows that each Rj has area at least 2´k´13 logpk ` 2q. Therefore,

ˇ

ˇ

ˇ

ˇ

2k´1
ď

j“0

Rj

ˇ

ˇ

ˇ

ˇ

“

2k´1
ÿ

j“0

| Rj |ě 2k2´k´13logpk ` 2q ě| E | logpk ` 2q ě
| E |

δ
,

Since | E |ď 3{2 and k ` 2 ą e1{δ.

An important remark to state here is that the estimates we have in pbq and pdq are

independent of δ or number of Rj’s. We will need this observation while giving

the final proof for the multiplier problem of ball.

Now, We have a lemma regarding the vector-valued inequalities of half plane multi-

pliers. The lemma indeed plays a very important role in proving that ball multiplier

is not a bounded Lp-operator.

Lemma 3.12. (Meyer’s lemma) Let v1, v2, . . . be a set of unit vectors in R2. For

each vj, consider the half plane

Hj “ tx P R2 : x ¨ vj ě 0u

and the corresponding multiplier operator MHj
. If we assume that χBp0,1q P

µppR2q, then we have the inequality,

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

j

p|MHj
pfjq |

2
q
1
2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

p
ď Cp

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

j

p| fj |
2
q
1
2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

p
, (3.13)

where Cp “ }T }op, T “ MχB being the Disk multiplier operator, for all bounded

and compactly supported functions fj.

Proof. We first choose fj’s to be Schwartz functions. We define disks Dj,R “

tx P R2 :| x ´ Rvj |ă Ru. Consider the multiplier operator Tj,Rpfq “ pf̂χDj,Rq
_

associated with each disk. Observe that χDpj,Rq Ñ χHj
pointwise as RÑ 8.

By passing the limit inside the convergent integral, for f P SpR2q and every x P R2

we have

lim
RÑ8

Tj,Rpfqpxq “MHj
pfqpxq

Fatou’s lemma now yields

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

j

p|MHj
pfjq |

2
q
1
2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

p
ď lim

RÑ8
inf

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

j

p| Tj,Rpfjq |
2
q
1
2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

p
. (3.14)
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Now we note that

Tj,Rpfqpxq “ e2πiRvjxTRpe
´2πiRvjp.qfqpxq (3.15)

where TR is the R-dilate of T ; TRpfq “ pχBp0,Rqf̂q
_.Consider the dilation operator

DRpfqpxq “ 1
R
fp x

R
q. Then, We have

TRpfq “ D1{R
pT pDRfq (3.16)

Setting gj “ e´2πiRvjp.qfj we can deduce that

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

j

p|MHj
pfjq |

2
q
1
2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

p
ď lim

RÑ8
inf

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

j

p| TRpfjq |
2
q
1
2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

p
. (3.17)

Note here that the Dilation of an operator does not change its operator norm.

Now, using the vector valued inequality for bounded operator,

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

j

p|MHj
pfjq |

2
q
1
2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

p
ď lim

RÑ8
inf

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
TR

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

op

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

j

p| gj |
2
q
1
2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

p
“ Cp

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

j

p| fj |
2
q
1
2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

p

(3.18)

Now since Schwartz functions are dense in the space of all bounded and compactly

supported functions, we can extend the inequality to the required space.

Having all the auxiliary results, we can now proceed to prove our main theorem.

We first consider the Ball multiplier operator T , and assume that it is bounded.

Then by Meyer’s lemma, we will get the vector inequality involving countably

many half plane multiplier operators. Now, If we choose fj’s to be the charac-

teristic functions of Rj’s (Rectangles that we have constructed in the previous

lemmas), we have seen earlier that Half plane multiplies shift the rectangles, to-

wards the Kakeya set. Hence, the support of its image will be small, and using

holders inequality it can be shown that its Lp norm blows up, which gives us the

required counter example.

Proof of Theorem 2.7 : By Theorem 3.2, it is enough to look at the case when

n = 2. By duality, it suffices to prove the result when p ą 2. To begin with, we

assume that }T }p ď Cp}f}p.

Suppose that δ ą O is given. Let E and Rj be as in Lemma 3.11. We let

fj “ χ
Rj . Let vj be the unit vector parallel to the long side of Rj and Hj be the
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corresponding half-planes. Now using Proposition 3.10 and Lemma 3.11 we obtain

ż

E

ÿ

j

|MHj
pfjqpxq |

2 dx “
ÿ

j

ż

E

|MHj
pfjqpxq |

2 dx (3.19)

ě

ż

E

1

100
χ
R1j
pxqdx (3.20)

“
1

100

ÿ

j

| E XRj | (3.21)

ě
1

1200

ÿ

j

| Rj | (3.22)

Now, using Holder’s inequality with exponents p{2 and pp{2q1 “ p{pp´ 2q gives

ż

E

ÿ

j

|MHj
pfjqpxq |

2 dx ď| E |
p´2
p

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

j

p|MHj
pfjq |

2
q
1
2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

p
(3.23)

ď C2
p | E |

p´2
p

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

j

p| fj |
2
q
1
2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

p
(3.24)

“ C2
p | E |

p´2
p

´

ÿ

j

| Rj |
2
¯

2
p

(3.25)

ď C2
pδ

p´2
p

ÿ

j

| Rj | (3.26)

where we have used Lemma 3.12, disjointness of Rj’s and (c) part of Lemma 3.11.

Combining (3.22) and (3.26), we obtain the inequality

ÿ

j

| Rj |ď 1200Cpδ
p´2
p

ÿ

j

| Rj |

Which gives us the contradiction as δ was arbitrarily chosen. ˝

3.4 Bochner-Riesz Operators

Once we’ve shown that ball multiplier is not an Lp multiplier, one question which

can be posed is how bad does its operator norm blow up. To start answering this

question, we can consider a much smoother multiplier function like p1´ | ξ |2qλ`

(where ` sign indicates that the function takes the value zero outside the unit

disk) and consider the multiplier operator corresponding to it.
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Definition 3.13. For a function f P SpRnq we define its Bochner-Riesz multiplier

of complex order λ with Re λ ą 0 to be the operator

Bλ
pfqpxq “

ż

Rn
p1´ | ξ |2qλ`f̂pξqe

2πix¨ξdξ (3.27)

We are investigating whether Bochner-Riesz operator is an LP multiplier in the

case of n “ 2.

Proposition 3.14. For all 1 ď p ď 8 and Reλ ą n´1
2

, Bλ is a bounded operator

on LppRnq.

Proof. It can be seen that Bλ is a convolution operator with kernel

Kλpxq “
Γpλ` 1q

πλ
Jn

2
`λp2π | x |q

| x |
n
2
`λ

(3.28)

Where Γ, J are Gamma function and Bessel function respectively[ refer Appendix

A]. Now using the estimates for J , We can obtain for | x |ď 1,

| Kλpxq| ď
ΓpReλ` 1q

πReλ
C0e

π2|Imλ|2 (3.29)

Where CO is a constant that depends only on n{2` Re λ. For | x |ě 1, we have

| Kλpxq | ď C0
eπ|Imλ|`π

2|Imλ|2

πReλp2π | x |q
1
2

ΓpReλ` 1q

| x |
n
2
`Reλ

(3.30)

“
Cpn, λq

| x |
n`1
2
`Reλ

(3.31)

Hence for Reλ ą n´1
2

, Kλ is a smooth integrable function, and hence Bλ is a

bounded operator on Lp for 1 ď p ď 8.

Proposition 3.15. When λ ą 0 and p ď 2n
n`1`2λ

or p ě 2n
n´1´2λ

, the operators Bλ

are not bounded on LppRnq

Proof. Let h be a Schwartz function whose Fourier transform is equal to 1 on the

ball Bp0, 2q and vanishes off the ball Bp0, 3q. Then,

Bλ
phqpxq “

ż

|ξ|ď1

p1´ | ξ |2qλe2πiξ¨xdx “ Kλpxq,

and it suffices to show that Kλ is not in LppRnq for the claimed range of ps. Now,

we have,
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?
2{2 ď cosp2π | x | ´

πpπ ` 1q

4
´
πλ

2
q ď 1 (3.32)

for all x lying in the annuli and

Ak “
 

x P Rn : k `
n` 2λ

8
ď| x |ď k `

n` 2λ

8
`

1

4

(

, k P Z`.

According to the asymptotics for Bessel function, Kλ is a smooth function equal

to
Γpλ` 1q

πλ`1

cosp2π | x | ´πpπ`1q
4

´ πλ
2
q

| x |
n`1
2
`λ

`Op| x |´
n`3
2
´λ
q (3.33)

For | x |ě 1. When x P Ak, the argument of the cosine in the above equation lies

in r2πk, 2πk ` π
4
s.

Consider the range of ps that satisfy

2n

n` 1` 2λ
ě p ą

2n

n` 3` 2λ
. (3.34)

If we can show that Bλ is unbounded in this range, it will also have to be un-

bounded in the bigger range 2n
n`1`2

ě p. This follows by interpolation between the

values p “ 2n
n`3`2λ

´ δ and p “ 2n
n`1`2λ

` δ, δ ą 0, for λ fixed.

Using 3.32 and 3.34, we then obtain that

midKλ |
p
pě C 1

8
ÿ

k“n`2λ

ż

Ak

| x |´p
n`1
2
´pλ dx´C2´C3

ż

|x|ě1

| x |´p
n`3
2
´pλ dx, (3.35)

where C2 is the integral of Kλ in the unit ball. It can be easily proved that the

integral outside the unit ball converges, but the series diverges.

0

λ

1
p

1
2

1

n´1
2

n´1
2n

n`1
2n

Figure 3.6: Bλ is unbounded when p 1p , λq lies in the shaded area.
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The conclusion for p ě 2n
n´1´2λ

follows by duality.

We have proven that Bλ is unbounded for any pair p1
p
, λq, shown as a shaded

region in the Figure 3.6.

It is conjectured that the Bλ is Lp bounded for the unshaded area. As it turns out,

Kakeya sets again comes into the frame in the form of Kakeya conjecture,which

will be elaborated in the next chapter, and has a close relation with the Bochner-

Riesz conjecture.

Bochner- Riesz Conjecture: For λ ą 0, Bλ is a bounded Lp-operator, for all

1 ď p ď 8 such that | 1
p
´ 1

2
|ă 2λ`1

2n
holds.

• For n “ 2, it is a known result called Carleson-Sjolin Theorem.

• Bochner-Resz conjecture ùñ Kakeya conjecture.
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Chapter 4

Hausdorff dimension of

Besicovitch sets

As we have seen in the previous chapter, There are sets (We call them Besicovitch

sets) which contain line segments in all directions but with lebesgue measure zero.

It implies that Lebesgue measure theory is just not enough for studying Besicovitch

sets, and hence the need for Hausdorff measures, which is commonly used to

study sets in fractal geometry. The primary question we are interested is whether

Besicovitch sets can have full dimension in R2 since it contains line segments in

all direction, or is it lesser than that, since it can have lebesgue measure zero.

There is a generalization to this problem in the n-dimensional case. A Besicovitch

set in Rn is defined to be a set containing a unit line segment in all directions.

Lets call it E. It is conjectured that E has dimension n. Davies presented the

proof for the case n “ 2. When n ě 3, Kakeya conjecture sill is one of the

most infamous unsolved problems at the intersection of geometric measure theory,

incidence combinatorics and real-variable harmonic analysis.

In this chapter, we begin by introducing Hausdorff measure and dimension, and

move on to present solution for Kakeya conjecture for the case n “ 2. We will also

discuss an interesting result by T. Keleti on comparing the Hasudroff dimension

of a set of line segments and its extended line set.

33
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4.1 Introduction

4.1.1 Hausdorff Measure

Definition 4.1. For E Ă Rn, and two given numbers s and δ, Consider any open

cover tUiu with each diameter, | Ui |ď δ. Let C be the collection of all such δ

covers. Define,

Hs
δpEq “ inf

!

8
ÿ

i“1

| pUiq |
s : Ui P C

)

. (4.1)

Following facts can be easily checked.

• E Ă F ñ Hs
δpEq ď Hs

δpF q

• δ1 ě δ2 ñ Hs
δ1
pEq ď Hs

δ2
pEq

Last fact tells us that as we decrease δ towards 0, Hs
δpEq either goes to infinity, or

monotonically increases to a non-negative number. We define Hausdorff measure

to be the limit.

Hs
pEq “ lim

δÑ0
Hs
δpEq “ sup

δą0
Hs
δpEq (4.2)

Hausdorff measure is a metric outer measure. Indeed If we consider two sets E

and F with dpE,F q “ inf tdpx, yq : x P E, y P F u ą 0, we can see that any open

δ- covering for E
Ť

F can be written as disjoint union of two open coverings for

E and F , provided δ is less than 1
2
dpE,F q. Hence we achieve the equality

Hs
`

E
ď

F
˘

“ Hs
pEq `Hs

pF q.

Now by a Theorem in measure theory [ref.], the σ-algebra of all Hausdorff mea-

surable sets contains Borel sets.

Properties of Hausdorff Measure:

(a) Let F Ă Rn and λ P R. Then, HspλF q “ λsHspF q.

(b) Let F Ă Rn, f : F ÝÑ Rm be a mapping such that

| fpxq ´ fpyq |ď C | x´ y |α, @x, y P F (Holder condition)

Then for every s,

H
s
α pfpF qq ď C

s
αHs

pF q. (4.3)
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Proof. Let Ui be a δ´ cover for fpF q.Since f is an open map, Vi “ fpUiq

forms an open cover for fpF q. It is easy to observe that | Vi |ď C | Ui |
α. We

obtain

H
s
α
CδαpfpF qq ď

ÿ

| Vi |
s
αď

ÿ

C
s
α | Ui |

s

As δ Ñ 0,we have Cδα Ñ 0 and hence we get the required result.

Some additional comments:

• For a Lipchitz mapping (α “ 1), HspfpF qq ď CsHspF q

• If f is an isometry, HspfpF qq “ HspF q. In particular, Hausdorff measure

is translation invariant.

(c) Let F Ă Rn. If s1 ď s2, then Hs1pF q ě Hs2pF q. This is immediate after an

easy observation that Hs1
δ pF q ě Hs2

δ pF q for δ ă 1.

(d) For t ě s,
ÿ

| Ui |
t
ď δt´s

ÿ

| Ui |
s
ñ Ht

δpF q ď δt´sHs
δpF q

Hence, HspF q ă 8 ñ HtpF q “ 0.

(e) for t ą n, we have HtpRnq “ 0.

Proof. It is enough to show that HtpBq “ 0 for an n-dimensional unit cube

B, since Rn can be written as countable union of translates of B. Let tUiu

be a δ-cover for B. Now,

Ht
δpBq ď

ÿ

| Ui |
n . | Ui |

t´n
ď
`

ÿ

| Ui |
n
˘

.δt´n (4.4)

Since by the definition of lebesgue measure,
ř

| Ui |
nÑ VolpBq as δ Ñ 0.

So there exists δ0 , C ą 0 such that
ř

| Ui |
nď C for every δ ď δ0. Now it is

clear from (4.4) that Ht
δpBq “ 0.

Informally speaking, H1 is the linear measure of a set, H2 measures the area, H3

measures volume and so on.

Proposition 4.2. For any set E Ă Rn, there exists a Gδ-set G containing E such

that dimHpGq “ dimHpEq.

Proof. For each n, consider an open cover tUn
i u for E such that

ř

i

| Un
i |ď

dimHpEq ` 1{n. Now define G “
Ş

n

Ť

i

Un
i . Clearly, G is a Gδ-set, contains E
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and contained in
Ť

i

Un
i for each n. So we have,

dimHpEq ď dimHpGq ď dimHpEq ` 1{n for all n.

The result follows immediately.

4.1.2 Hausdorff dimension

Definition 4.3. Let F Ă Rn. Define Hausdorff dimension to be

dimHpF q “ inf ts ě 0 : Hs
pF q “ 0u (4.5)

“ sup ts ě 0 : Hs
pF q “ 8u (4.6)

The existence of Hausdorff dimension is ensured by property (e) and (f) listed

above.

Properties of Hausdorff dimension:

• Monotonicity : If E Ă F , then dimHpEq ď dimHpF q.

• Countable Stability : For a countable collection of sets tFiu,

dimH

´

ď

i

Fi

¯

“ suptdimHpFiqu (4.7)

Proof. By monotonicity, dimHpFiq ď dimH

´

Ť

Fi

¯

for any i, So we have

LHS ě RHS. Conversely, if s ą sup
i
tdimHpFiqu, then HspFiq “ 0 for all i

and hence Hs
´

Ť

Fi

¯

“ 0. So, dimH

´

Ť

Fi

¯

ď s, which leads to LHS ď

RHS.

• Any open set F in Rn contains an open ball of n-dimensional volume.

Hence, dimHpF q “ n.

• Suppose f : Rn ÝÑ Rm satisfies holder condition with parameter α, then

dimHpfpF qq ď
´ 1

α

¯

dimHpF q

Proof. choose s ą dimHpF q. Then we have HspF q “ 0.Using (4.4), H s
α pfpF qq “

0 ùñ dimHpfpF qq ď s. Since we have chosen s arbitrarily, the result fol-

lows.
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• A set F Ă Rn with dimHpF q ă 1 is totally disconnected.

Proof. Choose x, y P F . Consider f : Rn ñ r0,8q defined by fpzq “| z´x |.

Clearly, | fpzq ´ fpwq |ď| z ´ w | and by the above result,

dimHpfpF qq ď dimHpF q ă 1.

Thus fpF q Ă R is of H1 measure (or length) 0. Hence it has a dense com-

pliment. Choosing r with r R fpF q & 0 ă r ă fpyq, we have,

F “ tz P F : | z ´ x |ă ru Y tz P F :| z ´ x |ą ru,

Where x and y belongs to distinct open sets. Hence, singletons are the only

non-trivial connected sets in F.

4.2 Tools to calculate Hausdorff dimension

There are two important methods used to get bounds for the dimension of a

set. One is slicing the set with parallel lines and studying the dimension of the

intersection, whereas the second method is to analyse the dimension of its image

under an orthogonal projection on a line. More details can be found in [14] and

[15].

4.2.1 Slicing theorems

Theorem 4.4. Let F be a Borel subset of R2. Let Lx be the vertical line with

abscissa x. If 1 ď s ď 2, then,

ż 8

´8

Hs´1
pF X Lxqdx ď Hs

pF q (4.8)

Proof. For ε ą 0 , Let tUiu be a δ -cover of F such that

ÿ

| Ui |
s
ď Hs

δ ` ε

Now each Ui is contained in a square Si, whose sides are parallel to the co-ordinate

axis with a magnitude of | Ui |. Let, χi be the indicator function of Si. Now,
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tSi X Lxu forms a δ-cover for F X Lx.

Hs´1
δ pF X Lxq ď

ÿ

i

| Si X Lx |
s´1

ď
ÿ

i

| Ui |
s´2
| Si X Lx |

“
ÿ

i

| Ui |
s´2

ż

χ
ipx, yqdy

ż

Hs´1
δ pF X Lxqdx ď

ÿ

| Ui |
s´2

ż ż

χ
ipx, yqdydx

“
ÿ

| Ui |
s
ď Hs

δpF q ` ε

Since ε was chosen arbitrarily, the result follows.

Corollary 4.5. Let F be a Borel subset of R2 with dimHpF q ě 1. Then @ x P

R a.e.,

dimHpF X Lxq ď dimHpF q ´ 1.

Proof. Choose s ą dimHpF q so that HspF q “ 0. By Theorem 4.4, Hs´1pFXLxq “

0 for almost all x P R. Hence, s´ 1 ě dimHpF X Lxq @ x P R a.e.

4.2.2 Projection Theorems

Let Lθ be the line in R2 that passes through origin at an angle θ consider the

Projection projθ : R2 ÝÑ Lθ. Clearly, projθ is a lipschitz mapping, and its image

lies in a line. Hence,

dimHpprojθpF qq ď mintdimHpF q, 1u @ θ P r0, πs (4.9)

In fact the opposite inequality in (1.5) is true for almost all θ. We state the

following theorem without a proof. Interested reader can refer [14] for the proof.

Theorem 4.6. Let F Ă R2 be a Borel set. Then the following conditions hold.

1. If dimHpF q ď 1, then dimHpprojθpF qq “ dimHpF q @ θ P r0, πs a.e.

2. If dimHpF q ą 1, then projθpF q has positive length and has dimension 1 for

almost all θ P r0, πs
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4.3 Dimension of Besicovitch sets

Having enough material, we can now proceed to the main theorem in this chapter.

The key idea is to associate a line to a unique point in R2, and observe a duality

behavior between the slices of line set and projections of point set. We utilize the

duality to get a lower bound on dimension of Besicovitch set.

Duality arguments had been used since Besicovitch [6] and Davies [5], using polar

reciprocation as an association between lines and points; fix a circle C in R2, and

find the pole corresponding to each line (polar) with respect to C. Besicovitch

used the technique to construct a very simple example of a set of measure zero

containing a line in all directions. The following proof is a modified version of the

original one by Davies [5]. By a plane set, we mean a subset of R2.

Theorem 4.7. Any plane set E containing a line segment in every direction must

have a Hausdorff dimension 2.

Duality argument: For a given point pa, bq in the plane, define Lpa, bq “ ta`bx : x P

Ru. L is a bijection from R2 to the collection of all lines in R2. For any plane set

F , its line set is defined to be LpF q “
Ť

pa,bqPF

Lpa, bq. Let c “ tanpθq. Observe that,

LpF q X Lc “ tpc, pa, bq ¨ p1, cqq : pa, bq P F u is just a scaled copy of projθpF q by a

factor of
a

p1` c2q. It is easy to see that

dimHpLpF q X Lcq “ dimHpprojθF q (4.10)

LpLpF q X Lcq “ 0 ðñ LpprojθF q “ 0 (4.11)

Proof of Theorem 3.7 : Let E be a set containing line segments in all direction.

We can find two parallel lines Lx and Ly such that the set of directions of segments

contained in E that intersects both is of linear measure greater than zero. By

translating and scaling we may assume that Lx “ L0 and Ly “ L1. If we prove

the result for the E1, subset of E containing line segments that intersects both L0

and L1, clearly it follows for E. Hence, without loss of generality, let us assume

that E “ E1.

Consider the collection of lines we get by extending each line segment of E, we

denote it by E 1. We may assume E 1 to be a Borel set for now. Proof of this

claim will be given in Lemma 4.10. Take F “ tpa, bq : Lpa, bq Ă E 1u. Since L is a

continuous map, F “ L´1pE 1q is Borel. Since the set of all directions of lines in
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E 1 has positive linear measure, proj0F contains an interval in X-axis. Hence,

dimH F ě dimHpproj0F q “ 1 (4.12)

We observe that LpF q X Lc “ E X Lc @ c P r0, 1s. Combining results from Corol-

lary 4.5, Theorem 4.6 and duality argument, we obtain

dimH E ě dimHpLpF q X Lcq ` 1 “ dimHpprojθF q ` 1

“ min t2, 1` dimHpF qu

Though the results from Corollary 4.5, Theorem 4.6 are true in almost all cases, we

can find a θ and c “ tan θ where they are satisfied. Combining the last inequality

with (4.12) implies that dimH E ě 2, which completes the proof. ˝

4.3.1 Kakeya conjecture

Statement of Kakeya Conjecture: If E is a set in Rn containing unit line

segments in all directions, then dimHpEq “ n.

There is a corresponding conjecture for the Minkowski dimension. Except for

the cases n “ 1 and 2, no one could come up with a complete solution for the

conjecture till date, although rapid progress has been made during the last few

decades. We look at the known progress in Kakeya conjecture. Let’s denote the

Hausdorff [resp. Minkoswki] dimension of Besicovitch set in Rn to be dpnq [resp.

dMpnq].

• Davies(1971) solved the case n “ 2.

• Bourgain(1991) proved that dpnq ě pn`1q
2

using ”Bush” argument; In the

same paper he shows that infact dpnq ě pn`1q
2
` εn for some εn ą 0.

• Wolff’s agrument (1995) gives dpnq ě pn`2q
2

.

• Bourgain (1998) proved that dpnq ě 13n{25` 12{25.

• Tao,Laba and Katz(1999) have shown that dMp3q ě 5{2` 10´10.

• Katz,Tao (2001) have shown that dpnq ě p2´
?

2qpn´ 4q ` 3 for n ą 4.
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4.4 Lines and line segments

Here, we study the question if extending the line segments to full lines can increase

the Hausdroff dimension. We pose the following problem :

Line Segment Extension Conjecture: If A is the union of line segments in Rn,

and B is the union of the corresponding full lines, then the Hausdroff dimensions

of A and B agree.

Though Line Segment Extension Conjecture in its own is not an interesting result,

it can have very strong consequences. We state the following result by T.Keleti

[10] without the proof.

Theorem 4.8. • Line Segment Extension Conjecture for n would imply that

every Besicovitch set in Rn has Hausdroff dimension at least n´ 1.

• If the Line Segment Extension Conjecture holds for every n ě 2, then every

Besicovitch set in Rn has packing and upper Minkowski dimension n.

Now, we present some evidence for the conjecture. We have the following theorem

proving the conjecture for n “ 2:

Theorem 4.9. Let S be a collection of line segments in R2, and LpSq be the

collection of lines we get by extending S. Then dimHpYSq “ dimpYLpSqq.

Here, YS (or YLpSq) denotes the union of all lines sements (or lines) in S (or

LpSq) as a subset of R2.

Now we have a lemma which can save us from many measurability assumptions

while doing the calculation.

Lemma 4.10. For any collection S of closed line segments in Rn there exists a

collection S 1 Ą S of closed line segments with dimHpYS 1q “ dimHpYSq such that

LpSq is Borel.

Proof. We can suppose that for some fixed δ ą 0 and bounded open set B Ă Rn

each s P S is contained in B and has length at least δ since we can write S as as

countable union S “ YjSj of such sub collections and if Sj1 is good for Sj, then

YjSj
1

is good for S.

Let A “ YS. Then A Ă B. We can find a Gδ set A1 Ą A with A1 Ă B and

dimHpA
1q “ dimHpAq. We write A1 “ X8k“1Gk, Gk’s are open, B Ą G1 and

Gk Ą Gk`1. Let Sk be the collection of those closed line segments inside Gk that
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have length at least δ. Let S 1 “ X8k“1Sk.
Then S 1 Ą S, since each Sk contains S. Since for any k, YS 1 Ă YSk Ă Gk by

construction, we have YS 1 Ă XkGk “ A1, so dimH YS ď dimH YS 1 ď dimH A
1 “

dimH YS, hence dimH YS “ dimH YS 1.
We claim that LpS 1q “

Ş8

k“1 LpSkq. It is easy to see that LpS 1q Ď
Ş8

k“1 LpSkq.
Conversely, if l P

Ş8

k“1 LpSkq, then for each k, the set l X Gk contains a closed

line segment of length at least δ. Since, B is bounded and B Ą G1 Ą G2 Ą ...,

this implies that there exists a closed line segments Ă l of length at least δ that is

contained in every Gk, so s P S 1 and l P LpS 1q.
Since Gk is open, LpSkq is also open, so LpS 1q “ XkLpSkq is Borel.

Proof of Theorem 3.9 : S can be written as countable union of sub-collections

Si with the property that, each line segment s P Si intersect two fixed segments

ei and fi, which are opposite sides of a rectangle. Hence if we prove the result on

each sub-collection, it follows for S.

So, we make the assumptions that S has this property, LpSq is Borel, and YLpSq
is analytic. These assumptions are made in order to smoothly apply some results.

Now, Choose a number u such that u ă dimHpYLpSqq. We will now show that

u ď dimHpYSq. Which will imply that, dimHpYLpSqq ď dimHpYSq and the result

follows.

For u “ 1, It is clear, since YS is not a totally disconnected set.

For 1 ă u ď 2, we uses the following theorem.

Marstrand’s slicing theorem [13]: If u ą 1 and an analytic subset A of the

plane has positive u-dimensional Hausdorff measure, then in almost every direc-

tion, positively many lines meet A in a set of Hausdorff dimension atleast u´ 1.

In other words, when the assumptions are satisfied, for almost every unit vector

w, there exists T Ă R of positive lebesgue measure such that @ t P T , we have

dimHppYLpSqq X lw,tq ě u´ 1

where lw,t “ ta P R2 : a ¨ w “ tu.

Choose distinct parallel lines l0, l1 such that both separates e, f and they are

orthogonal to a unit vector w with the above property. Then every line segment

of S intersect both l0 and l1.

Without loss of generality, we assume that w “ p1, 0q, l0 “ v0, l1 “ v1 where vt is

the vertical line with x-coordinate t. Thus, dimHpLpSq X vtq ě u´ 1 @ t P T.
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Since T has a positive Lebesgue measure, dimHppYLpSqqXvtq ě u´1 @ t P R a.e.

Since pYLpSqq X vt “ pYSq X vt for every t P r0, 1s, we obtain,

dimHppYSq X vtq ě u´ 1 and hence dimHpYSq ě u.

˝
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Chapter 5

Kakeya Problem in finite field

5.1 Introduction

Let Fq be a finite field with | F |“ q. A Kakeya set K Ă Fz´qn is a set containing

a line in every direction. Formally,

@ x P Fn, Dy P Fn such that ty ` tx : t P Fu Ď K.

T.Wolff first posed the equivalent of Kakeya problem in finite field case, in his

survey. The motivation was to try and understand better the more complicated

questions regarding Kakeya sets in Rn. It was asked by Wolff that

Question: Can we find a estimate of the form | K |ě Cnq
n.?

The first estimate on this problem given by Wolff was of the form | K |ě Cnq
n`2
2 ,

using arguments such as counting the incident points of K with lines with different

directions. Bounds were improved later on using similar arguments in incidence

geometry, but nobody could come up with a complete solution until 2005, when

Z.Dvir produced a lower bound of Cnq
n´1. With a simple observation that product

of Kakeya sets also forms a Kakeya set, we could instantly improve the lower

bound to Cn,εq
n´ε. Dvir’s strategy was to show that there are no non-zero low

degree polynomials which vanish on K, and thus K should have some minimum

number of elements in it. Following the initial publication of Dvir’s result, T. Tao

and N. Alon observed that his arguments can be modified to obtain the required

lower bound of Cnq
n, and thus solves the Kakeya problem in finite field situation

completely.
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In this chapter, we reproduce Dvir’s proof to achieve the bound of Cnq
n´1 and its

modification for Cnq
n.

5.2 Nikodym sets and the first bound [Cnq
n´1].

Throughout this chapter we follow the notation F for an arbitrary field and Fq for

a finite field with cardinality q.

We begin with introducing Nikodym sets, which are closely related to Kakeya sets.

Definition 5.1 (Nikodym set). A set M Ă Fn is called a Nikodym set if

@y RM, D x such that ty ` tx : t P F˚qu ĎM.

Given a Kakeya set K, it is easy to construct a Nikodym set. We can define

M :“ ttx : t P F, x P Ku. For each x P Fn, there exists y P Fn such that

ty ` tx : t P Fu Ă K. Hence, tsy ` stx : s, t P Fu Ă M. Now, putting t = 1/s

implies tsy ` x : s P F˚qu PM.

5.2.1 Polynomial Method

The polynomial method is used to impose an algebraic structure on a geometric

problem. It gives us a correlation between the size of the zero set of a polynomial

to its degree. It relies on two simple lemmas, which we have shown below.The

first lemma gives an upper bound on the number of solutions for a multi-variable

polynomial.

Lemma 5.2 (Schwartz-Zippel Lemma). Let d ě 0. If p P Fqrx1, x2, ...xns is a

non-trivial polynomial of degree at most d, then | tx P Fn : ppxq “ 0u |ď dqn´1.

Proof. We prove the lemma by induction.

Let Epfq be the solution set of f P Fqrx1, ..xns. case k “ 1 follows from funda-

mental theorem of algebra.

Now, assuming the theorem for k “ n ´ 1, we consider a polynomial fpxq with

the mentioned properties. Let, fpx1, x2, ...xnq “
řr
i“1 gipx2, ..., xnqx

i
1, where gr is a

polynomial in n´1 variables, with degree at most d´ r. By induction hypothesis,

| Epgrq |ď pd´ rqq
n´2.
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Now, for each of the pn´ 1q-tuples px2, ..., xnq P Epgrq, we possible can have all q

choices for x1 as solutions for f which is now considered as a polynomial in one

variable.

If px2, ..., xnq R Epgrq ( for which there are at most qn´1 choices), then f is a

polynomial in x1 with degree r, and hence has at most r solutions. Counting the

total number of solutions for f , we obtain,

| Epfpx1, ..., xnqq |ď pd´ rqq
n´1

` r.qn´1
“ dqn´1.

Hence proved.

Lemma 5.3. Consider a field F. Let E Ă Fn be a set such that | E |ă
`

n`d
d

˘

for

some d ě 0. Then there exist a non-zero polynomial f P Frx1, ..., xns with degree

ď d such that f vanishes on E.

Proof. Let V P Frx1, ..., xns be the set of all polynomials of degree at most d. By

a combinatorial argument, it can be shown that dimpV q “
`

n`d
d

˘

. Let W “ F|E|

be the collection of all functions from E to F. The space clearly has a dimension

| E | over F. Consider the restriction map Φ : V Ñ W defined by Φpfq “ fˇ
ˇE

. By

the rank-nullity theorem, the linear map Φ has a non-trivial kernel. Hence, the

result is proved.

5.2.2 The bound r« qn´1s

The following result by Dvir [11] first introduced the Polynomial method in solving

finite field Kakeya problem.

Theorem 5.4. Let K Ă Fnq be a Kakeya set. Then | K |ě Cnq
n´1, where Cn

depends only on n.

Corollary 5.5. For every integer n and every ε ą 0 there exists a constant Cn,ε,

depending only on n and ε such that any Kakeya set K Ă Fn satisfies | K |ě

Cn,εq
n´ε.

Proof. We observe that for t ą 0, Kt Ď Fnt is also a Kakeya set. Hence by

Theorem 5.4,

| K |
t
“| Kt

|ě Cn,tq
nt´1

ùñ | K |ě Cn,tq
n´1{t.

Hence proved.
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Proof of Theorem 4.4 : We begin with any Nikodym set M Ă Fnq , and prove

that | M |ě Cnq
n. As we have seen before, given a Kakeya set, we can define a

Nikodym set M with |M |“ q | K |. Hence we achieve the required lower bound.

Claim: |M |ě
`

n`q´2
n

˘

.

We prove the claim by contradiction. assume that it is not the case. then by

Lemma 5.3, there exist a non-zero polynomial f P Frx1, ..., xns with degree ď q´2

such that fpxq “ 0 for all x PM .

If x RM , there exists y P Fn such that lx,y “ tx`ty : t P F˚qu ĎM . Now, fpx`tyq

is a polynomial in t with degree less than q´1 but vanishes on q´1 points. Hence

it has to be a zero polynomial on lx,y which implies that fpxq “ 0. Since x is

arbitrary, it follows that f vanishes on the whole space Fnq , which contradicts the

Schwartz-Zippel lemma.

Once the claim is proved, we have the inequality |M |ě p1{n!qpq ´ 1qn ě p 1
2nn!
qqn

for q ě 2. Hence proved. ˝

5.3 Improving the bound to « qn

T.Tao and N.Alon suggested a slight improvement on Dvir’s proof to achieve an

optimal bound.

Theorem 5.6. Let K Ă Fq
n be a Kakeya set. Then | K |ě p1{n!qqn.

Proof. We claim that | K |ě
`

n`q´1
n

˘

. If this is not true, again by Lemma 5.3,

there exist a nonzero polynomial P P Fnq rx1, ..., xns of degree d at most q ´ 1 such

that P pxq “ 0 for all x P K.

Write P “
řd
i“0 Pi with Pd ‰ 0, where Pi is the i-th homogeneous component of

P . Let, v P Fnq z0 be an arbitrary direction. There exists x such that tx ` tv : t P

Fqu Ď K. For such a fixed x and v, P px ` tvq is a polynomial of degree at most

q ´ 1, but vanishes for sll t P F, and hence is a zero polynomial. In particular,

Pdpvq, the coefficient of td is zero. Also by definition, Pdp0q “ 0. Since Pd vanishes

on whole of Fnq , it is identically zero by Schwartz-Zippel lemma. Thus we reach a

contradiction.

| K |ě

ˆ

n` q ´ 1

n

˙

ě p1{n!qqn.

Remark: The modification is in fact an argument using Projective spaces. The

idea is that a low-degree polynomial which vanishes on a line must also vanish
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on the point at infinity where the line touches the hyperplane at infinity( for

the polynomial P we’ve considered, Pd is its restriction on the hyperplane at

infinity). Thus a polynomial which vanishes on a Kakeya set vanishes at the

entire hyperplane at infinity. This means that Pd is identically zero, and hence the

contradiction.

In the finite field setting we also might care about the constant Cn (this does

not appear in the real case since we are taking a limit). There is a better bound

of | K |ě p 1
2n
qqn on Kakeya sets, which uses a more sophisticated polynomial

argument with zeros of high multiplicities.
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Chapter 6

Closed sets with Kakeya property

As we have seen earlier, a line segment can be continuously moved around in a

set of arbitrarily small area. A similar question was posed by Cunningham by

replacing line segments with circular arcs and it is proved that movement can be

done within an area as small as we please, proved we begin with cirular arcs of

angle short enough. It leads us to the question of finding out all such planar sets

which can be moved from one position to another within a set of arbitrarily small

area.

We begin by precisely formulating these notions.

6.1 Definitions

A rigid motion, α is function on C defined by αpxq “ ux ` c, where u, c P C and

u P S1. It is an isometry of the plane that preserves orientation.

A continuous movement, M : C ˆ r0, 1s ÝÑ C is a continuous map such that

Mt “ Mp., tq is a rigid motion for every t P r0, 1s and M0 “ Id, the identity map.

If M is a continuous movement, the set of points touched by a moving set A is

WMpAq “ tMtpxq : t P r0, 1s, x P Au.

Definition 6.1. A set A is said to have Kakeya property or in short property

pKq if there exist a rigid motion α ‰ Id such that for every ε ą 0 there exists a

continuous movement M such that M1 “ α and µpWMpAqq ă ε.
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Definition 6.2. A set A is said to have Strong Kakeya property or in short prop-

erty pKsq if for any rigid motion α and for every ε ą 0 there exists a continuous

movement M such that M1 “ α and µpWMpAqq ă ε.

A planar set A is said to be trivial (K)-set, if A can be covered by a null set which

is either the union of parallel lines or the union of concentric circles. A nontrivial

connected component of a set is connected component having at least two points

6.2 Main results

. The following theorems characterizes all possible closed sets with Kakeya prop-

erty. [12]

Theorem 6.3. Let A Ă C be a closed set having property (K). Then, the union

of the nontrivial connected components of A is a trivial (K) set. If A is nonempty,

closed, connected and has property (K), then A is a line segment, a half line, a

line, a circular arc, a circle or a singleton.

Theorem 6.4. If A Ă C is a nonempty closed and connected set having property

pKs
q, then a is a line segment, a circular arc or a singleton.

We make a few observations before proving the theorems.

• A circle has property pKq but when we move a circle C to a circle disjoint

from C, the moving circle has to touch all points inside C, hence cannot have

the property Ks.

• Any line can be translated along itself without consuming area, and hence

has property pKq. But it is impossible to rotate a line by any amount of

angle in finite area. In the case of line segments, we have seen that they have

property pKsq.

• Every set of Hausdroff dimension less than 1 has property pKsq. For such

a set A Ă R2, and a translation map Tcpxq “ x ` c , c P R2, we define the

movement by Mtpxq “ x ` tc, t P r0, 1s. We claim that the 2- dimensional

lebesgue measure µpWMpAqq “ 0. Let l be a line orthogonal to c. It is clear

that the orthogonal projections of both WMpAq and A on l are same, say

B, and thus dimHpBq ă 1. Now, If µpWMpAqq ą 0, it contains a ball of

positive measure, and the projection contains an interval, which gives us the
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contradiction. In similar fashion, we can prove that even when the movement

is a rotation, zero area consumed.

6.2.1 Some auxiliary results and the proof of theorems

In this section we formulate some auxiliary results needed for the proof of Theo-

rem 6.3 and Theorem 6.4.

As we have used earlier, translation by a vector c will be denoted by Tc. The

rotation about a point c by an angle Φ is denoted by Rc,Φ. i.e. Rc,Φpxq “

eiΦpx´cq`c @ x P C. If α is a rigid motion and α2 ‰ Id, then we define the elemen-

tary movement Eα as follows. If α “ Tc, then put Eαptq “ Ttc for every t P r0, 1s

If α “ Ra,Φ and α2 ‰ Id, then we can assume | Φ |ă π and define Eαptq “

Ra,tΦ for every t P r0, 1s.

Now denote L, the space of all functions x ÞÑ ux ` v, where u, v P C. Clearly

it is a linear space under pointwise addition and constant multiplication. Now

consider the operator norm }f} “ supt| fpxq |: x P C, | x |ď 1u. It is easy to see

that }f} “| u | ` | v | for f P L.

Now consider two rigid motions, f1 and f2 with fipxq “ uix`vi, ui, vi P C, | ui |“ 1.

Their inverses are given by f´1
1 pxq “ u´1

1 x ´ u´1
1 v1 and f´1

2 pxq “ u´1
2 x ´ u´1

2 v2.

Now, for | x |ď 1, we have

| f´1
1 pxq ´ f´1

2 pxq | “| pu´1
1 ´ u´1

2 qx` u
´1
2 v2 ´ u

´1
1 v1 |

ď| u´1
1 ´ u´1

2 | ` | u´1
2 v2 ´ u

´1
1 v2 ` u

´1
1 v2 ´ u

´1
1 v1 |

ď| u1 ´ u2 | ` | v2 || u1 ´ u2 | ` | v2 ´ v1 |

ď p1` | v2 |qp| u1 ´ u2 | ` | v1 ´ v2 |

Hence we have

}f´1
1 ´ f´1

2 } ď p1` | v2 |q}f1 ´ f2}. (6.1)

Indeed, if a set has property pKq, there exist a rigid motion α to which we can

reach by continuous movements but within arbitrarily small area. The next lemma

states that we can choose these movements so close to the elementary movements

corresponding to α, so that they can be approximated by translations or rotations.

Lemma 6.5. If A Ă R2 has property pKq, then there exists a rigid motion α such

that α2 ‰ Id and the following conditions are satisfied. For every ε ą 0, there is
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a continuous movement M such that M1 “ α, µpWMpAqq ă ε, and }Mt ´ Eα
t } ă

ε for every t P r0, 1s

By continuum, we mean a compact connected set. A connected set A Ă R2 is

said to be irreducible between a and b, If these two points cannot be joined by

any closed, connected, proper subset of A. In other words, A should be minimal

among all closed connected sets containing a and b. Informally, an irreducible set

looks like a curve between two points.

Lemma 6.6. If A Ă R2 be a continuum which is irreducible between two distinct

points a and b, and suppose that R2 z A is connected. Let D be an open disc not

containing the points a and b. Then every neighbourhood of every point of AXD

intersects at least two of the connected components of D z A.

We skip the proof for Lemma 6.5 and Lemma 6.6 now. We will look at them in

the next section.

Lemma 6.7. Let A Ă D Ă R2 be arbitrary and G Ă DzA. Suppose that M is a

continuous movement, t P r0, 1s, and M´1
s pxq P D for every s P r0, ts and x P G.

If G and M´1
t pGq are subsets of distinct connected components of D z A, then

G Ă WMpAq.

Proof. Choose u P G. We consider the continuous map γ : r0, ts Ñ D defined by

γpsq “M´1
s puq. Observe that γp0q “ u and γp1q “M´1

t puq PM
´1
t pGq are lying n

distinct connected components of D z A. Since γpr0, 1sq Ă D, it follows that there

exists an s P r0, ts such that γpsq “ a P A. Hence u = Mspaq P WMpAq. Since u

was chosen arbitrarily, the result follows.

Proof of Theorem 5.3 and 5.4 : First of all, We note that once Theorem 6.3

is proved, we just need to look at the possible cases in Theorem 6.4. By the first

two observations we made, it is clear that full circles, lines or half lines can have

property pKsq, and hence the result follows.

Let A Ă R2 be a closed set having property pKq. By Lemma 6.5, there exist a rigid

motion α with properties mentioned in the lemma. Let A1 be the union of all non-

trivial connected components of A. It is clear that µpAq “ 0. We shall prove that

if α is translation by a vector v, then A1 can be covered by lines parallel to v, and if

α is a rotation around a point c, A1 can be covered by concentric circles with centre

c. Since A1 has measure zero, it cannot meet parallel lines in positive length. More
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formally, for w P S1 orthogonal to v and T “ tl : l is parallel to v, λplXA1q ą 0u,

we have λtdpw, lq : l P T u “ 0, where λ is the 1-dimensional lebesgue measure.

Similarly, it cannot meet positively many concentric circles in positive length.

Therefore A1 is a trivial pKq-set.

We shall only prove the statement when α is a rotation; the latter case can be

solved by similar arguments.

Lets assume that α “ R0,φ. Take A1 to be a connected component of A1. We

have to show that A1 can be covered by a circle. Assume this is not true. Then,

Γ “ t| x |: x P A1u is a nondegenerate interval. Choose r1, r2 P Γ such that

0 ă r1 ă r2 ă 1.( The last inequality can be achieved by looking at a similar copy

of A1 inside the unit ball centered at 0).

Take U to be the annulus tx : r1 ă| x |ă r2u Ă Bp0, 1q. The set A1 contains

a minimal connected closed subset C that intersects the circles | x |“ r1 and

| x |“ r2. We may assume that C Ă Ū . Indeed, connected components and quasi-

components coincide in the compact set CX Ū . Using this fact, one can prove that

there is a connected component C1 of C X Ū which intersects the circles | x |“ r1

and | x |“ r2. So by minimality, C1 “ C.

Let C˚ denote the set of all points p P C X U with the following property: if

Bpp, rq Ă U , then every neighborhood of p intersects at least two connected com-

ponents of Bpp, rq z C. We will prove that if p P C˚, then C contains an arc of the

circle tx :| x |“| p |u. First choose p, r that satisfies the aforementioned condition.

Put D “ Bpp, rq. There exists a t0 such that Eα
t ppq P D @t P r0, t0s. We prove

that the arc I “ tEα
t ppq : t P r0, t0su is in C. Suppose it is not true. Then there

exists a t1 ă t0 such that q “ Eα
t1
ppq R D z C. Since D z C is open, there exist

a ball Bpq, δq R D z C. Now, Bpp, δq intersects D z C in at least two connected

components. Therefore, we can choose an open disc G whose closure is contained

in Bpp, δq z C and G and Bpq, δq belongs to different connected components.

Now by Lemma 6.5, for a given ε ą 0, we choose a movement M so that }Mt ´

Eα
t } ă ε for every t P r0, t1s. Now, by (6.1), we obtain

|M´1
s pxq ´ E

α´1

s pxq |ď }M´1
s ´ Eα´1

s } ă ε @x P G Ă Bp0, 1q (6.2)

Hence, if ε is small enough, we can have M´1
s pGq Ă D @s P r0, t1s. Since Eα´1

t1
is a

rigid motion, Ēα´1

t1
pGq Ă Bpq, δq.Therefore if ε is small enough, we have M´1

t1 pGq Ă

Bpq, δq. Using, Lemma 6.7, we obtain that G Ă WMpCq. But, µpWMpCqq ă ε and
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therefore cannot be bounded below by µpGq, which gives us the contradiction, and

hence I Ă C.

It is clear that if a, b P C and | a |“ r1 & | b |“ r2, then C is irreducible between

a and b. If R2zC is connected, then by Lemma 6.6, C˚ “ C X U . But then, by

what we have just proved, C intersects positively many circular arcs in positive

length, which is impossible since C is connected and µpCq “ 0.

Therefore, R2zC is not connected. Since C Ă B̄p0, r2q, There exist a bounded

connected component of R2zC inside Bp0, r2q. We denote it by V . We show

that, C contains a full circle of centre 0. This is clear if V “ Bp0, r1q, since

the boundary circle is contained inside C. Hence we assume that’s not the case.

Then, V X U ‰ H. We prove that V̄ is an annulus around 0. if not, there exists

x1 P V̄ and x2 R V̄ with | x1 |“| x2 |. Which implies that for small enough ε,

Bpx2, εq X V “ H. Since C being irreducible is nowhere dense, it is clear that

we can choose points y1 P Bpx1, εq and y2 P Bpx2, εq such that | y1 |“| y2 |, and

they belong to different connected components of R2 z C. This easily implies that

there is an η ą 0 such that for every | y1 | ´η ă r ă| y1 |, there exist a point

p P BV̄ with | p |“ r. If p P U X BV̄ , then it can be proved that p P C˚. Consider

an open disc D Ă U around p. Now, D has to intersect at least two connected

components of U z C since p P BV̄ . This is true for any disc Bpp, δq Ă D as well,

and thus intersects at least two different connected components of D z C, proving

that p P C˚. This implies that for every | y1 | ´η ă r ă| y1 |, C contains a sub

arc of the circle | x |“ r. As we have seen above, this gives us a contradiction.

Therefore, V̄ must be an annulus, and hence its boundary circle is contained in

C. We have proved that A1 X tx : r1 ă| x |ă r2u contains a full circle of centre

0 for every r1, r2 P Γ with r1 ă r2 ă 1. Thus A1 contains a dense subset of

tx :| x |P Γu X Bp0, 1q. Since A1 is closed, it contains the whole set, which is

clearly impossible. Thus we reach a contradiction, which tell us that Γ cannot be

a non degenerate interval, and hence Theorem 6.3 is proved.

˝
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Bessel function

A.1 An Interesting Identity

Let Re µ ą ´1
2
, Re ν ą ´1, and t ą 0. Then the following identity is valid:

ż 1

0

Jµptsqs
µ`1
p1´ s2

q
νds “

Γpν ` 1q2ν

tν`1
Jµ`ν`1ptq.

To prove this identity we use the following formula which says that, for Re µ ą 1
2
,

Jµptq “
1

Γp1
2
q

´ t

2

¯µ 8
ÿ

j“0

p´1qj
Γpj ` 1

2
q

Γpj ` µ` 1q

t2j

p2jq!
.

Hence we have
ż 1

0

Jµptsqs
µ`1
p1´ s2

q
νds “

`

t
2

˘µ

Γ
`

1
2

˘

ż 1

0

8
ÿ

j“0

p´1qjΓpj ` 1
2
qt2j

Γpj ` µ` 1qp2jq!
s2j`µ`µ

p1´ s2
q
νsds

“
1

2

`

t
2

˘µ

Γ
`

1
2

˘

8
ÿ

j“0

p´1qjΓpj ` 1
2
qt2j

Γpj ` µ` 1qp2jq!

ż 1

0

uj`µp1´ uqνdu

“
1

2

`

t
2

˘µ

Γ
`

1
2

˘

8
ÿ

j“0

p´1qjΓpj ` 1
2
qt2j

Γpj ` µ` 1qp2jq!

Γpµ` j ` 1qΓpν ` 1q

Γpµ` ν ` j ` 2q

“
2νΓpν ` 1q

tν`1

`

t
2

˘µ`ν`1

Γ
`

1
2

˘

8
ÿ

j“0

p´1qjΓpj ` 1
2
qt2j

Γpj ` µ` ν ` 2qp2jq!

“
Γpν ` 1q2ν

tν`1
Jµ`ν`1ptq.
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A.2 The Fourier Transform of Surface Measure on Sn´1

Let dσ denote surface measure on Sn´1 for n ě 2. Then the following is true:

xdσpξq “

ż

Sn´1

e´2πiξ.θdθ “
2π

|ξ|
n´2
2

Jn´2
2
p2π|ξ|q.

To see this, we use the result:

Let K be a function on the line. For n ě 2 and when x P Rnzt0u, we have

ż

Sn´1

Kpx.θqdθ “
2π

n´1
2

Γpn´1
2
q

ż `1

´1

Kps|x|qp
?

1´ s2q
n´3.

Therefore we can write

xdσpξq “

ż

Sn´1

e´2πiξ.θdθ

“
2π

n´1
2

Γpn´1
2
q

ż `1

´1

e´2πi|ξ|s
p1´ s2

q
n´2
2

ds
?

1´ s2

“
2π

n´1
2

Γpn´1
2
q

Γpn´2
2
` 1

2
qΓp1

2
q

pπ|ξ|q
n´2
2

Jn´2
2
p2π|ξ|q

“
2π

|ξ|
n´2
2

Jn´2
2
p2π|ξ|q.

A.3 The Fourier Transform of a Radial Function on Rn

Let fpxq “ f0p|x|q be a radial function defined on Rn, where f0 is defined on r0,8q.

Then the Fourier transform of f is given by the formula

pfpξq “
2π

|ξ|
n´2
2

ż 8

0

f0prqJn
2
´1p2πr|ξ|qr

n
2 dr.

To obtain this formula, use polar coordinates to write
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pfpξq “

ż

Rn
fpxqe´2πiξ.xdx

“

ż 8

0

ż

Sn´1

f0prqe
´2πiξ.rθdθrn´1dr

“

ż 8

0

f0prq
2π

pr|ξ|q
n´2
2

Jn´2
2
p2πr|ξ|qrn´1dr

“
2π

|ξ|
n´2
2

ż 8

0

f0prqJn
2
´1p2πr|ξ|qr

n
2 dr.

As an application we take fpxq “ χ
Bp0,1q, where Bp0, 1q is the unit ball in Rn. We

obtain

pχBp0,1qq
^
pξq “

2π

|ξ|
n´2
2

ż 1

0

Jn
2
´1p2π|ξ|rqr

n
2 dr “

Jn
2
p2π|ξ|q

|ξ|
n
2

,

in view of the result in Appendix A.1. More generally, for Re λ ą ´1, let

mλpξq “

$

&

%

p1´ |ξ|2qλ for |ξ| ď 1,

0 for |ξ| ą 1.

Then

mλ
_
pxq “

2π

|x|
n´2
2

ż 1

0

Jn
2
´1p2π|x|rqr

n
2 p1´ r2

q
λdr “

Γpλ` 1q

πλ
Jn

2
`λp2π|x|q

|x|
n
2
`λ

,

using again the identity in Appendix A.1.
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