
Reversibility of Evolution:
A Simulation and Mathematical

Approach

PARVATHY S
MS13020

A dissertation submitted for the fulfillment

of BS-MS dual degree in Science

Indian Institute of Science Education and Research Mohali

April 2018





Certificate of Examination

This is to certify that the dissertation titled “Reversibility of Evolution: A

Simulation and Mathematical Approach” submitted by Parvathy S (Reg.

No. MS13020) for the partial fulfillment of BS-MS dual degree program of the

Institute, has been examined by the thesis committee duly appointed by the

Institute. The committee finds the work done by the candidate satisfactory and

recommends that the report be accepted.

Dr. Abhishek Chaudhuri Dr. Rhitoban Ray Choudhury

Dr. N. G. Prasad Prof. Arvind Prof. Shobha Madan

(Supervisor) (Co- supervisor) (Local Guide)

Dated: April 20, 2018





Declaration

The work presented in this dissertation has been carried out by me under the guidance

of Dr. N. G. Prasad, Prof. Arvind and Prof. Shobha Madan at the Indian Institute of

Science Education and Research Mohali.

This work has not been submitted in part or in full for a degree, a diploma, or a

fellowship to any other university or institute. Whenever contributions of others are

involved, every effort is made to indicate this clearly, with due acknowledgement of

collaborative research and discussions. This thesis is a bonafide record of original work

done by me and all sources listed within have been detailed in the bibliography.

Parvathy S

(Candidate)

Dated: April 20, 2018

In my capacity as the supervisor of the candidate’s project work, I certify that the above

statements by the candidate are true to the best of my knowledge.

Dr. N. G. Prasad Prof. Arvind Prof. Shobha Madan

(Supervisor) (Co- supervisor) (Local Guide)

iv





Acknowledgements

First and foremost, I would like to thank my thesis supervisors Dr. N.G. Prasad, Prof.

Arvind and Prof. Shobha Madan, without whose help and supervision, this thesis would

have never been possible. The discussions that I had with them has enhanced my capa-

bilities at a professional level. Also I would like to thank my thesis committee members

Dr. Abhishek Chaudhuri and Dr. Rhitoban Ray Choudhury for their valuable sugges-

tions and criticism of my work.

I owe my deepest gratitude to Pranay Rungta for helping me with the computational

aspects. The discussions I had with him was extremely useful to improve my computa-

tional skills.

I would like to thank all my friends for supporting and helping me during the entire

period of the project. I am also thankful to my seniors for their useful advice and guid-

ance. I would like to acknowledge the moral support and encouragement that I have

received from my family.

Finally, I am thankful to IISER Mohali for providing me Infrastructure and Computer

Centre for all the technical support. I would like to acknowledge DST INSPIRE, Gov-

ernment of India for the financial support.

Parvathy S

vi





Contents

Declaration iv

Acknowledgements vi

List of Figures x

List of Tables xii

List of Listings xiii

Abbreviations xiv

Abstract xvi

1 Introduction 1

2 Methods: Computational and Mathematical Approach 3

2.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Computational approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 Classical evolutionary models . . . . . . . . . . . . . . . . . . . . . 5

2.2.2 Changing environment and reversibility . . . . . . . . . . . . . . . 7

2.2.3 Constraining survival rate by threshold fitness . . . . . . . . . . . 9

2.3 Mathematical approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Results and Discussion 13

3.1 Results for the classical evolutionary models . . . . . . . . . . . . . . . . . 13

3.2 Results for changing environment and reversibility . . . . . . . . . . . . . 22

3.3 Results for constraining survival rate by threshold fitness . . . . . . . . . 30

3.4 Results for mathematical approach . . . . . . . . . . . . . . . . . . . . . . 33

4 Conclusions 35

A Codes 37

viii



Contents ix

Bibliography 48



List of Figures

3.1 Gene B - additive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 B0 is dominant and beneficial . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 B1 is dominant and deleterious . . . . . . . . . . . . . . . . . . . . . . . . 14

3.4 B- Heterozygous superiority . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.5 B - Homozygous superiority . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.6 A0 is dominant and beneficial and B1 is dominant and deleterious . . . . 15

3.7 A- Type 1, B- Type 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.8 A- Type 2, B- Type 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.9 A- Type 3, B- Type 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.10 Case 1 of table 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.11 Case 2 of table 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.12 Case 3 of table 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.13 Case 1 of table 3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.14 Case 2 of table 3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.15 B is additive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.16 B0 is dominant and beneficial . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.17 B1 is dominant and deleterious . . . . . . . . . . . . . . . . . . . . . . . . 20

3.18 B - Heterozygous superiority . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.19 B- Homozygous superiority . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.20 Frequency graphs for 4-gene model . . . . . . . . . . . . . . . . . . . . . . 21

3.21 Rate of change of fitness - 400 generations . . . . . . . . . . . . . . . . . . 22

3.22 Rate of change of fitness - 50 generations . . . . . . . . . . . . . . . . . . 22

3.23 Rate of change of fitness - 10 generations . . . . . . . . . . . . . . . . . . 23

3.24 Rate of change of fitness - 200 generations . . . . . . . . . . . . . . . . . . 23

3.25 Rate of change of fitness - 20 generations . . . . . . . . . . . . . . . . . . 24

3.26 Rate of change of fitness - 5 generations . . . . . . . . . . . . . . . . . . . 24

3.27 When population size is 160 . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.28 When population size is 1600 . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.29 When population size is 16000 . . . . . . . . . . . . . . . . . . . . . . . . 25

3.30 Initial frequency of A0 = 0.275 . . . . . . . . . . . . . . . . . . . . . . . . 26

3.31 Initial frequency of A0 = 0.375 . . . . . . . . . . . . . . . . . . . . . . . . 26

3.32 Initial frequency of A0 = 0.425 . . . . . . . . . . . . . . . . . . . . . . . . 26

3.33 Case A- A0A1- 0.5, A1A1- 1 . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.34 Case B- A0A1- 1, A1A1- 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.35 Case C- A0A1- 0.75, A1A1- 5 . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.36 When rate of change of fitness is 400, 100, 50 and 5 generation . . . . . . 28

3.37 When rate of change of fitness is 400 and 5 generation . . . . . . . . . . . 29

x



List of Figures xi

3.38 Case 3 frequency pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.39 Th = 0.1,(a) rate = 400 generations, (b) rate = 5 generations . . . . . . 30

3.40 Th = 0.5(a) rate = 400, (b) rate = 50, (c) 5 generations . . . . . . . . . . 31

3.41 Th = 0.3(a) rate = 400 generations, (b) rate = 5 generations . . . . . . . 31

3.42 Th = 0.5(a) rate = 400 generations, (b) rate = 5 generations . . . . . . . 32

3.43 Th = 0.3, rate =(a) 100, (b)20, (c) 5 generations . . . . . . . . . . . . . . 32

3.44 Th = 0.7, rate =(a) 100, (b)20, (c) 5 generations . . . . . . . . . . . . . . 33

3.45 Case 1 - when coefficients are of the form 1/j . . . . . . . . . . . . . . . . 33

3.46 Case 2 - when coefficients are of the form 1/j2 . . . . . . . . . . . . . . . 34

3.47 Case 3 - when coefficients are of the form 1/2j . . . . . . . . . . . . . . . 34

3.48 Case 6 - when coefficients are of the form random/2j . . . . . . . . . . . . 34



List of Tables

2.1 Model summarized . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Different fitness values assignment to each genotype . . . . . . . . . . . . 6

2.3 Different fitness values assignment to each allele . . . . . . . . . . . . . . 6

2.4 Fitness values assigned to genotypes A0A1 and A1A1 . . . . . . . . . . . 8

2.5 Different fitness values assigned to genotypes . . . . . . . . . . . . . . . . 9

2.6 Coefficients chosen for the linear combination . . . . . . . . . . . . . . . . 11

3.1 Fitness assignment when A increases fitness of B . . . . . . . . . . . . . . 17

3.2 Fitness assignment when A suppresses fitness of B . . . . . . . . . . . . . 18

xii



Listings

A.1 Code 1-main.cpp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

A.2 Code 2- population.cpp . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

A.3 Code 3- phenotype.cpp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

A.4 Code for varying the fitness sinusoidally where fitness comes back in 10
generations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

A.5 Code for updating fitness of A0A0 . . . . . . . . . . . . . . . . . . . . . . 46

A.6 Code for finding linear combination and normalizing . . . . . . . . . . . . 46

A.7 Code for finding linear combination and normalizing . . . . . . . . . . . . 47

xiii



Abbreviations

No Number

Vs Versus

Freq Frequency

xiv





Abstract

Evolution is the change in the characteristics of a population with successive generations.

When selection is imposed to the population, some individuals reach sexual maturity at

higher rates or produce more number of offspring proportional to their fitness values.

We focus on one aspect of evolution: its reversibility. The great evolutionist Stephen

Jay Gould describes the experiment ”replaying life’s tape” to talk on the notion of

reversibility. A series of papers by Henrique Teotonio and Michael R.Rose addresses

reverse evolution from an experimental point of view. Evolution is reversible if the

traits observed in a population goes back to their ancestral state.

In this project, the question ”Is evolution reversible?” has been addressed using simu-

lation. The fitness of a genotype is varied in a sinusoidal manner (fitness values come

back to their initial value in some generations) and we see how does the slow rate of

change of fitness and fast rate of change of fitness affect the course of evolution and

its reversibility. We also build a mathematical model of evolution to predict how the

frequencies accross generations would be.

It has been seen that either evolution is reversible or frequency of alleles follows a

decreasing trend. The Fourier basis considered to build the model is not the right choice

as the operator that maps the fitness function to the frequency function is not linear.

xvi





Chapter 1

Introduction

A group of interbreeding individuals along with their offspring form a population. In

a population, adults produce gametes, they combine to form zygotes, they develop to

comprise the next generation of adults. In this process, traits beneficial for survival are

passed on more frequently than those which are detrimental. This changes the char-

acteristics of the population with each generation, which is evolution. In a population

genetics perspective, the change in the frequency of alleles with generation can be termed

as evolution. This change in the traits is due to the corresponding changes in the genetic

variants that affect them. If there is no selection, mutation, migration, chance events

and when mating occurs randomly, there would be no change in the population and

hence no evolution takes place.

Once we impose selection to the population, certain individuals (having a particular

phenotype) become adults at higher rates or produces more number of offspring than

other individuals (with a different phenotype). As a consequence individuals have un-

equal chances of surviving to adulthood and contributing to the next generation. We

assume a one-one correspondence between phenotype and genotype. Selection occurs

due to change in fitness, which is the ability of an individual to survive and reproduce.

One would like to see which alleles become more common in the population and how

the course of evolution will look like.[1]

When a rare allele is dominant, the rate of evolution is fastest. Its effect will be expressed

in the heterozygotes and selection can act for or against it depending on whether it is

beneficial or deleterious. If the rare allele is recessive, it hides from selection as its effect

1



Chapter 1 2

is seen only in homozygote recessive. To conclude, if the beneficial allele is dominant but

rare, its frequency increases quickly but if it is common, elimination of deleterious allele

will be slow. If the beneficial allele is recessive, its frequency increases slowly but reaches

fixation rapidly once it is common. In case of heterozygote superiority, the population

remains in a stable equilibrium.

An important aspect of evolution is its reversibility. According to Stephen Jay Gould,

he refers to an experiment ’replaying life’s tape’.[2] It is described as follows: rewind the

life’s tape, erasing everything that has happened and go back to any place and time.

We play the tape again and see how its repetition looks like. If each time we play the

tape the occurrence of events are similar to the original, then evolution is reversible. We

follow this notion of reversibility here.

Questions on reversibility have been addressed experimentally in a series of papers by

Henrique Teotonio and Michael R. Rose using Drosophila melanogaster populations.[3]

Different groups are maintained, each one subjected to different selection conditions.

They have been selected for early reproduction, mid-life reproduction, late reproduction,

survival under complete starvation and so on. It has been shown that reverse evolution

back to the initial state occurs in some cases. They have tried to determine possible

genetic mechanisms for reversibility of evolution- the ones that facilitate and limits the

process. [4] [5] These include checking the effects of genetic variation, mutation, epistasis,

genotype-by-environment interaction and pleiotropy.

In this project, we take up the question of reversibility of evolution approaching it using

simulation and mathematically. The effect of a reversibly varying environment has been

analyzed. We consider a population in which selection has been imposed. A change

in environment, like temperature or light, will have an effect on an individuals fitness

values. A linearly or sinusoidally changing fitness values have been assigned to the

genotype in such a way that their rate of change varies from slow to fast. Instead of

following a particular trait, which is in turn determined by genotype, we measure the

frequency of alleles after each generation. Frequency plots are analyzed to see the effect

of reversibility. Finally, we try to produce a mathematical model for predicting the

course of evolution, or more specifically, the allele frequencies after each generation.



Chapter 2

Methods: Computational and

Mathematical Approach

In this project, we try to understand the aspects of reversibility of evolution. We ap-

proach this problem in two ways, first by using simulation and then mathematically.

Darwinian evolution has been modeled using C++ programming based on certain as-

sumptions. The model is described in detail below.

2.1 Model

Consider a population of constant population size such that for each individual we are

concerned with its genes. Two models have been considered here- the 2-gene model and

the 4-gene model. For the 2-gene model, each individual has 2 genes, say A and B and

for each gene, there are two alleles, A0, A1 and B0, B1. The individuals are diploid,

hence they carry two copies of gene A and two of gene B. The possible genotypes are

A0A0, A0A1, A1A1, B0B0, B0B1, and B1B1. The total number of types of genotypes

possible for the individuals are 16 since the first two positions are filled by A0 or A1

and the last two positions are filled by B0 or B1. We consider for now that there are 10

individuals of each type. The total population size will now be 160. We also assume that

each individual mates at most once by finding its pair randomly and each pair produces

10 offspring by random recombination of their alleles.

3



Chapter 2 4

We now impose selection to the population. Now, individuals of each type have un-

equal chances of surviving to adulthood and contributing to the next generation. The

probability that an individual reaches adulthood depends on the total fitness of the in-

dividual. There is a fitness value assigned for each genotype and, unless specified, the

total fitness of the individual is the average of the genotype fitness values. When adults

mate and produce offspring, the number of offspring of each type reaching adulthood

varies according to their fitness values. We then normalize the population to maintain

constant population size. At generation 0, since there are equal number of individuals of

each type, frequency of each allele is 0.5. After running the simulation we measure the

frequency of allele after each generation. We also assume a one-one correspondence be-

tween the genotype and phenotype. Hence whatever trait we are looking for, its change

is reflected in the genotype and hence in the frequency of alleles.

For the 4-gene model, for each individual we are concerned with 4 genes, A,B,C and

D. For each gene, there are 4 alleles- A0,A1,A2,A3; B0,B1,B2,B3; C0,C1,C2,C3 and

D0,D1,D2,D3. There are 16 genotypes for each of the four genes and the total number

of genotypes of the individuals would be 48 = 65536. The total population size would

now be 655360. The remaining characteristics of the model is same as that of the 2 gene

model. The two models have been summarized in table 2.1.

Model 1 Model 2

No. of genes 2- A, B 4- A, B, C, D

No. of alleles for each gene 2- A0, A1, B0, B1

4- A0, A1, A2, A3,
B0, B1, B2, B3, C0,
C1, C2, C3, D0, D1,
D2, D3

Total no. of genotypes 24 = 16 48 = 65536

Population size 160 655360

Table 2.1: Model summarized

2.2 Computational approach

A general code has been written for the model described above used for the 2-gene

model. The required parameters have been iterated and/ or changed accordingly for



Chapter 2 5

the 4-gene model. The program has three parts- ”main.cpp”, ”population.cpp” and

”phenotype.cpp”.

In ”phenotype.cpp”, the different types of genotypes have been assigned. Functions have

been written for their characteristics which include finding the type given an index and

vice versa, assigning fitness values and calculating fitness of individual and so on.

In ”population.cpp”, functions for the characteristics of the population have been writ-

ten. These include initializing the allele frequency, finding pair for each individual,

producing offspring by random recombination of alleles, imposing selection. finding the

new allele frequencies, normalizing the population size, assigning the new parent genera-

tion, and saving the allele frequencies after each generation. In the ”main.cpp” program,

the different parameters have been set such as the number of types of each genotype,

initial allele frequency, number of children per pair and the number of generations. It

also creates the population, one for parent and one for children to do the required oper-

ations. It also calls the functions in the needed order to run the simulation. The code

for the three programs has been given in Appendix A.

The graphs for the frequency plots and fitness plots have been plotted as needed. Once

the code is written, we first verify it using classical models and then further check for

reversibility of evolution. There are three parts where we use the simulation- one for the

basic evolutionary models, second for checking the reversibility by varying the fitness

and lastly for applying threshold fitness.

2.2.1 Classical evolutionary models

The simulation has been verified by using the code for testing classical evolutionary

models for the 2-gene case. These include the following.

1. Genotype fitness fixed: The genotype fitness is kept fixed for each of the six geno-

types. We consider the following combination of the fitness values which can be

categorized as in table 2.2, where s and t are real numbers between 0 and 1.

We assign every possible combination for genes A and B from the 5 cases and run

the simulation. We look at the change in the frequency of alleles over a period of

time.



Chapter 2 6

A0A0 A0A1 A1A1

(i) Additive 1 1- s
2 1-s

(ii) Dominant and beneficial 1 1 1-s

(iii) Dominant and deleterious 1 1-s 1-s

(iv) Heterozygous superiority 1-s 1 1-t

(v) Homozygous superiority 1 1-s 1

Table 2.2: Different fitness values assignment to each genotype

2. Allele fitness fixed: Fitness is considered as a function of alleles. Total fitness of

an individual is the average of the fitness of four alleles. We consider the fitness

cases as seen in table 2.3.

Fitness type Allele 1 Allele 2

(i) 1 1-s

(ii) 1-s 1

(iii) 1-s 1-s

Table 2.3: Different fitness values assignment to each allele

For each of A and B, we ascribe the three types of combination of allele fitness and

see how the frequency of allele varies by looking at the generation vs. frequency

plot.

3. Interaction of genes: We consider two cases here, one when the presence of A

increases the fitness of corresponding genotypes of B and the other when the

presence of A suppresses the fitness of genotypes of B. Fitness is increased by

doubling the fitness of genotype when fitness is less than 0.5. Suppression of fitness

is done by squaring the fitness when it is between 0 and 1, and interchanging 0

and 1 for each other. We then see the frequency patterns obtained.

4. Fitness is multiplicative: The total fitness of the individual is the product of

genotype fitness. When fitness is calculated in this manner we look at the change

in frequency of alleles after each generation.

For the 4- gene model, the fitness have been kept constant for genotypes, which have

been assigned randomly. The resulting generation vs. frequency plot is observed.



Chapter 2 7

2.2.2 Changing environment and reversibility

After the simulation have been verified, we now move on to find the answer to the

question ”Does evolution retraces it’s path ?” under reversibly changing environment.

This is done by changing the fitness of genotypes in a reversible manner. We vary the

fitness values of A0A0, keeping the fitness of genotypes A0A1 and A1A1 fixed. Since

the frequency behaviour of B is independent of that of A, it is enough to see how either

one of them behaves in a reversibly changing environment. We vary the fitness of A0A0

and measure the frequency of A0 after each generation for 400 generations.

1. Linearly changing fitness

For the 2- gene model, the fitness of A0A0 is changed linearly starting from 0,

increasing till 1 and then returning to 0 in a certain number of generations. The

rate of change of fitness is increased from 400 generations to fitness coming back in

5 generations. We look into various cases where fitness comes back in 400, 100, 50

and in 10 generations. For each case, we see how the frequency of alleles changes.

Is the population able to adapt to the changing environment or do we see different

frequency patterns? Does the frequency of allele A0 return back to their initial

value as the fitness does? These are some of the questions that we are trying to

address.

2. Sinusoidally changing fitness

It is not always the case that change would be as sharp as linear change. Here we

change the fitness smoothly in a sinusoidal manner such that the fitness values come

back in 400 generations, 200 generations, 50 generations and then in 5 generations.

We see the effect of slowly changing environment versus fast changing environment

in the reversibility of evolution.

For both these approaches, in the program ”phenotype.cpp” we add some extra

lines of code to assign the fitness of A0A0 in a linearly or sinusoidally changing

manner and then update the fitness of A0A0 accordingly. We normalize the fitness

values so that they lie between 0 and 1. The portion of the code for doing this is

listed in Appendix A.



Chapter 2 8

3. Effect of population size

So far the simulation has been done for a single population of size 160. To reduce

the effect of small population size and reduced sample size, we run the simulation

for 50 populations of the same kind and take the average frequency of allele A0

after each generation. We increase the population size from 160 to 1600 and to

16000. We then vary the fitness sinusoidally and compare the frequency patterns

in these three cases.

For running the simulation for 50 times, we provide an iterating loop at the begin-

ning of the code and set the parameters to their initial value each time one run is

over for 400 generations. The average of the frequency values are calculated and

the graphs in all the cases have been plotted using Gnuplot.

4. Effect of initial allele frequency

We focus on a population size of 16000. To see the effect of initial allele frequency

on the frequency pattern obtained, we assign different initial numbers to the types

of genotypes and see the corresponding frequency pattern in these cases. Different

initial frequencies assigned are 0.275, 0.375,0.425 and so on.

5. Effect of fixed fitness values of genotypes

So far we have been changing the fitness of one genotype, keeping the fitness of

others fixed. Initially 1 and 0.5 were assigned to A0A1 and A1A1 respectively.

We now assign other fitness values to A0A1 and A1A1 and see the corresponding

frequency pattern observed. The assignments given are described in table 2.4.

Case A0A1 A1A1

a 0.5 1

b 1 1

c 0.75 0.5

d 0.25 1

e 0.5 0.5

Table 2.4: Fitness values assigned to genotypes A0A1 and A1A1



Chapter 2 9

6. Sinusodialy changing fitness for 4-gene model

After having done these simulations for the 2-gene model we now move on to the

4-gene model. We vary the fitness of A0A0 for different assignments of fitness of

other genotypes of A as given in table 2.5.

Case A0 A1 A2 A3 Case A0 A1 A2 A3

A0

1

vary 0.5 0.5 0.5

2

vary 0.5 0.75 0.5
A1 0.5 0.5 0.5 0.5 0.5 0.25 0.75 0.5
A2 0.5 0.5 0.5 0.5 0.75 0.75 0.25 0.75
A3 0.5 0.5 0.5 0.5 0.5 0.5 0.75 0.25

Case A0 A1 A2 A3 Case A0 A1 A2 A3

A0

3

vary 0.75 0.75 0.75

4

vary 0.5 0.75 0.25
A1 0.75 0.25 0.5 0.5 0.5 0.1 0.45 0.95
A2 0.75 0.5 0.25 0.5 0.75 0.45 0.1 0.35
A3 0.75 0.5 0.5 0.25 0.25 0.95 0.35 0.1

Table 2.5: Different fitness values assigned to genotypes

For each case, we vary the fitness of A0A0 sinusoidally from a slow rate of change

of fitness to fast rate of change of fitness. After observing the frequency pattern

observed for each case, we try to see if the same pattern is observed for different

assignments or if there is an effect of the fitness values in the type of pattern

observed.

2.2.3 Constraining survival rate by threshold fitness

After seeing the effects of a changing environment on the variation in the frequency

of alleles we add one more constraint to the survivability of individuals. At times

individuals need a certain minimum value of fitness to reach adulthood. We call this the

threshold fitness, the fitness value below which the individuals die and do not survive to

become adults. For both the 2-gene and 4-gene model, we first apply threshold fitness

values from 0.1 to 0.7 along with varying fitness. For the 2-gene model, we consider two

cases:

1. A0A0 -vary, A0A1- 1 and A1A1-0.5

2. A0A0- vary, A0A1- 0.5 and A1A1- 0.5



Chapter 2 10

For the 4- gene model we consider the 4 cases as described in table 2.5. For each case,

we apply different fitness threshold values, and for each value, we look at the frequency

pattern observed as we increase the rate of change of fitness.

After having done the simulations for the different cases mentioned, we now move on to

the mathematical approach which is described in the next section.

2.3 Mathematical approach

From the simulations done, we have obtained the data, say α = (α1, α2, . . . , αN ), where

α corresponds to frequency of alleles and coordinates correspond to time or generation.

For each fitness function provided, we obtain a corresponding frequency function. Fitness

function or frequency function is the function of the fitness values or frequency values

corresponding to N generations respectively.

We consider a finite dimensional vector space, say CN such that our fitness function and

frequency function belongs to this vector space. Since we mostly deal with sinusoidal

functions, we consider Fourier basis in finite dimension. Let us call F to be our fitness

function. We choose the basis as follows.

F1(t) = (e2πi/N , e2πi2/N , . . . , e2πiN/N )

F2(t) = (e2π2i/N , e2π2i2/N , . . . , e2π2iN/N )

...

Fj(t) = (e2πji/N , e2πji2/N , . . . , e2πjiN/N )

...

FN (t) = (e2πNi/N , e2πNi2/N , . . . , e2πNiN/N )

In general, we choose {Fj = ((. . . , e2πijk/N , . . . ) : k = 1, 2, . . . , N) : j = 1, 2, . . . , N} to

be the basis for the vector space. In our simulations, N = 400. For each of these F ′
js, we

obtain the corresponding frequency function through simulation. For fitness function F ,

let graph(F ) be the frequency function. Let T be the operator taking fitness function

F to the frequency function graph(F ). Let us denote the frequency function by TF .



Chapter 2 11

We are trying to answer the question that if we choose any arbitrary fitness function,

being any linear combination of basic fitness functions, can we predict how the cor-

responding frequency function would look like. For addressing this problem, we first

see that if we take the linear combination of fitness functions and then look at its fre-

quency function obtained through simulation, is it the same as the graph obtained if we

take the linear combination of the corresponding frequency functions of the basic fitness

functions. We check the linearity of operator T by comparing the linear combination

of simulation and simulation of linear combination, where we are concerned with the

pattern.

Let us consider

F (gk) = a0 +
N∑
j=1

aje
2πigkj/N

wherefor coeffcient a0 we consider different cases as in table 2.6.

Case a0 aj

1 0 1/j

2 0 1/j2

3 0 1/2j

4 0 random/j

5 0 random/j2

6 0 random/2j

Table 2.6: Coefficients chosen for the linear combination

Here we generate 400 random numbers and use it in the coefficients as needed. ’Random’

in the table refers to these random numbers. Since the fitness functions are complex,

for the simulation we consider its real or imaginary part (I have considered imaginary

part in the simulation) and normalize them so that fitness values lie in between 0 and

1. The code for finding the linear combination F as above is provided in Appendix A.

The graphs have been plotted using ”matplotlib”.

Now, F (gk) =
∑N

j=1 aje
2πigkj/N .

TF (gk) = b0 +

N∑
j=1

e2πigkj/N −→ Simulation of linear combination

Since we are not worried about the constant, we consider

TF ′(gk) = TF (gk)− b0 =
N∑
j=1

e2πigkj/N where b0 =
1

N

N∑
k=1

TF (gk)



Chapter 2 12

Let SF (gk) = a0 +
∑N

j=1 ajT (e2πigkj/N). Under the assumption that T (a0) = a0,

SF (gk) =

N∑
j=1

TF (gk) −→ Linear combination of simulation

For each case, we have (g, TF ′) and (g, SF ). We need to compare TF ′ and SF . We

see if T is linear in different cases mentioned. For finding the simulation of linear

combination we do the same modifications as above code and plot the graph required

using ”matplotlib”. For finding the linear combination of simulation I have used a

Python code as below with small modifications as and when required. The code used is

provided in Appendix A.

These are the different methods we use in approaching the question addressed in this

project. The results and observations are what we discuss in the coming chapter.



Chapter 3

Results and Discussion

In this chapter, I provide the various results obtained and the observations following the

results. Though a lot of data have been generated by simulation, some of the selected

results have been provided here from the pool of graphs. The results have been given

section wise as in chapter 2.

3.1 Results for the classical evolutionary models

1. Genotype fitness fixed: When fitness is fixed for various cases, the figures 3.1 to

3.5 represent the cases when gene A is kept in the additive case and fitness of

genotypes of B is assigned as in caption of the figures with reference to table 2.2.

Figure 3.1: Gene B - additive

13



Chapter 3 14

Figure 3.2: B0 is dominant and beneficial

Figure 3.3: B1 is dominant and deleterious

Figure 3.4: B- Heterozygous superiority



Chapter 3 15

Figure 3.5: B - Homozygous superiority

We see that for 3.1, A0 and B0 goes to fixation in about 20 generations since they

have the highest fitness. In 3.2, frequency of dominant allele B0 reaches 1 in about

90-100 generations. It takes a longer time to reach fixation since the recessive allele

hides from selection as its effect is expressed only in the homozygote recessive. In

3.3, dominant allele B1 is selected against quickly as its effect is expressed in both

homozygote and heterozygote genotype. In 3.4, both B0 and B1 remain in the

population in a stable equilibrium as it is expected from theory. In 3.5, one of

them reaches frequency 1 and other 0 in about 20-40 generation. This is the case

of unstable equilibrium.

Figure 3.6: A0 is dominant and beneficial and B1 is dominant and deleterious



Chapter 3 16

Since we have done simulation for all possible assignments, I give the frequency

graph, figure 3.6, for the case when A is in dominant and beneficial case and B is

assigned the dominant and deleterious case as in table 2.2.

The way the genes behave is independent of each other. There is no interaction

between the two genes. The results for the classical case are those that are expected

from the theory. This verifies the simulation written.

2. Allele fitness fixed: The generation versus frequency graph for some of the combi-

nation of cases as in 2.3 have been shown in figures 3.7, 3.8 and 3.9.

Figure 3.7: A- Type 1, B- Type 1

Figure 3.8: A- Type 2, B- Type 1



Chapter 3 17

Figure 3.9: A- Type 3, B- Type 1

We see that the allele with the highest fitness reaches a frequency 1 in about 30-70

generations. When both alleles have the same fitness, then one of them is selected

for or against randomly.

3. Interaction of genes: When the presence of gene A increases the fitness of gene B

as described in the methods, the results for the cases as in table 3.1 are given in

figures 3.10, 3.11 and 3.12.

Case A0A0 A0A1 A1A1 B0B0 B0B1 B1B1

1 1 0.75 0.5 1 0.75 1

2 1 0.5 0.5 1 1 1

3 1 0.5 1 1 1 1

Table 3.1: Fitness assignment when A increases fitness of B

Figure 3.10: Case 1 of table 3.1



Chapter 3 18

Figure 3.11: Case 2 of table 3.1

Figure 3.12: Case 3 of table 3.1

For gene B, when each genotype fitness is 1, either both alleles remain in the

population or one of them gets selected for or against just by chance. In other

cases, the change is similar to specific case they belong to as in table 2.2.

Case A0A0 A0A1 A1A1 B0B0 B0B1 B1B1

1 1 0.75 0.5 0 0.5625 0.25

2 1 1 0.5 0 0 0.25

Table 3.2: Fitness assignment when A suppresses fitness of B

When the presence of A suppresses the fitness of B, the results obtained for the

cases mentioned in table 3.2 are shown in figures 3.13 and 3.14. The observations

are similar to the last case.



Chapter 3 19

Figure 3.13: Case 1 of table 3.2

Figure 3.14: Case 2 of table 3.2

4. Fitness is multiplicative: For the different combinations as in table 2.2, the results

obtained when fitness is multiplicative when A is assigned additive case and B as

in caption, are given in figures 3.15 to 3.19. The change in frequency of alleles

is irrespective of the presence of two genes. Even if fitness is multiplicative, the

frequency is similar to that when fitness is additive and fixed.

Figure 3.15: B is additive



Chapter 3 20

Figure 3.16: B0 is dominant and beneficial

Figure 3.17: B1 is dominant and deleterious

Figure 3.18: B - Heterozygous superiority



Chapter 3 21

Figure 3.19: B- Homozygous superiority

5. 4-gene model- When fitness is fixed: When we assign random values to genotype

fitness and then run the simulation, we get the following frequency graphs for genes

A, B, C and D as in figure 3.20.

(a) (b)

(c) (d)

Figure 3.20: Frequency graphs for genes: (a) A; (b) B; (c) C; and, (d) D



Chapter 3 22

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200  250  300  350  400

�

tn
e
s
s
 o

f 
A

0

generation

"1.txt" u 1:2

(a) Fitness graph

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  50  100  150  200  250  300  350  400

fr
e
q
u
e
n
c
y
 o

f 
A

0

generation

"1.txt" u 1:3

(b) Frequency graph

Figure 3.21: Rate of change of fitness - 400 generations

3.2 Results for changing environment and reversibility

The results for the 2-gene model are given first.

1. Linearly changing fitness

The fitness graph and its corresponding frequency graphs are given in figures 3.21,

3.22 and 3.23 when fitness comes back in 400, 50 and 10 generations for a popu-

lation of size 160.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200  250  300  350  400

�

tn
e
s
s
 o

f 
A

0

generation

"4.txt" u 1:2

(a) Fitness graph

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0  50  100  150  200  250  300  350  400

fr
e
q
u
e
n
c
y
 o

f 
A

0

generation

"4.txt" u 1:3

(b) Frequency graph

Figure 3.22: Rate of change of fitness - 50 generations

We see that the number of cycles of frequency is proportional to the number of

times fitness comes back to 0. As the rate of change of fitness increases, the highest

frequency attained decreases from 0.9 to 0.5. Each peak attains a different highest

frequency as the rate of change becomes faster. During rapid rate of change of



Chapter 3 23

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200  250  300  350  400

�

tn
es

s 
of

 A
0

generation

"7.txt" u 1:2

(a) Fitness graph

 0.4

 0.42

 0.44

 0.46

 0.48

 0.5

 0.52

 0.54

 0.56

 0.58

 0.6

 0  50  100  150  200  250  300  350  400

fre
qu

en
cy

 o
f A

0

generation

"7.txt" u 1:3

(b) Frequency graph

Figure 3.23: Rate of change of fitness - 10 generations

fitness, peaks become irregular. During slow rate of change of fitness frequency

values come back to their initial values after each cycle.

2. Sinusoidally changing fitness

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200  250  300  350  400

�

tn
e
s
s
 o

f 
A

0

generation

"s2.txt" u 1:2

(a) Fitness graph

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  50  100  150  200  250  300  350  400

fr
e
q
u
e
n
c
y
 o

f 
A

0

generation

"s2.txt" u 1:3

(b) Frequency graph

Figure 3.24: Rate of change of fitness - 200 generations



Chapter 3 24

Similar to the above case the fitness and frequency graphs are provided when

fitness comes back in 200, 50 and 5 generations in figures 3.24, 3.25 and 3.26.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200  250  300  350  400

�

tn
e
s
s
 o

f 
A

0

generation

"s5.txt" u 1:2

(a) Fitness graph

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0  50  100  150  200  250  300  350  400

fr
e
q
u
e
n
c
y
 o

f 
A

0

generation

"s5.txt" u 1:3

(b) Frequency graph

Figure 3.25: Rate of change of fitness - 20 generations

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  50  100  150  200  250  300  350  400

�

tn
es

s 
of

 A
0

generation

"s7.txt" u 1:2

(a) Fitness graph

 0.42

 0.44

 0.46

 0.48

 0.5

 0.52

 0.54

 0.56

 0.58

 0  50  100  150  200  250  300  350  400

fre
qu

en
cy

 o
f A

0

generation

"s7.txt" u 1:3

(b) Frequency graph

Figure 3.26: Rate of change of fitness - 5 generations

The number of times frequency comes back to 0.5 is proportional to the number

of times fitness comes back to 0.5. As the rate of change of fitness increases, the

frequency of highest peak decreases. When change is rapid peaks are attained at



Chapter 3 25

different frequencies and change is irregular. At a slow rate of change of fitness,

evolution retraces its path.

3. Effect of population size

For the case when fitness varies sinusoidally such that it comes back in 5 genera-

tions as in figure 3.26(a), figures 3.27, 3.28 and 3.29 show the frequency pattern

attained for population sizes of 160, 1600 and 16000 after averaging for 50 gener-

ations.

 0.45

 0.46

 0.47

 0.48

 0.49

 0.5

 0.51

 0.52

 0.53

 0.54

 0.55

 0.56

 0  20  40  60  80  100  120  140  160  180  200

fre
qu

en
cy

 o
f A

0

generation

"7.txt" u 1:55

Figure 3.27: When population size is 160

 0.44

 0.46

 0.48

 0.5

 0.52

 0.54

 0.56

 0  50  100  150  200  250  300  350  400

fre
qu

en
cy

 o
f A

0

generation

"7.txt" u 1:54

Figure 3.28: When population size is 1600

 0.44

 0.46

 0.48

 0.5

 0.52

 0.54

 0.56

 0.58

 0  50  100  150  200  250  300  350  400

fre
qu

en
cy

 o
f A

0

generation

"7.txt" u 1:54

Figure 3.29: When population size is 16000



Chapter 3 26

We see that as we increase the sample size, all small effect changes are cancelled

off. More uniform peaks are obtained. For smaller rates of change, all peaks

attained are of the same frequency. At higher rates for larger population sizes, we

see that after some generations, say about 50, frequency oscillates between two

fixed values. This initial 50 generation is the time taken by the population to

adapt to the environmental condition as 0.5 happened to be the initial frequency

by chance.

4. Effect of initial frequency

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0  50  100  150  200  250  300  350  400  450

fre
qu

en
cy

 o
f A

0

generation

"e.txt" u 1:53

Figure 3.30: Initial frequency of A0 = 0.275

 0.36

 0.38

 0.4

 0.42

 0.44

 0.46

 0.48

 0.5

 0.52

 0.54

 0  50  100  150  200  250  300  350  400  450

fre
qu

en
cy

 o
f A

0

generation

"a.txt" u 1:53

Figure 3.31: Initial frequency of A0 = 0.375

 0.42

 0.43

 0.44

 0.45

 0.46

 0.47

 0.48

 0.49

 0.5

 0.51

 0.52

 0.53

 0  50  100  150  200  250  300  350  400  450

fre
qu

en
cy

 o
f A

0

generation

"h.txt" u 1:53

Figure 3.32: Initial frequency of A0 = 0.425



Chapter 3 27

The frequency graphs for the different initial frequencies are given in figures 3.30

to 3.32. We see that whatever initial frequency we start with, as long as A0A1 and

A1A1 fitness are kept constant, after some generations frequency of A0 oscillate

between two fixed values 0.52 and 0.46 all the time.

5. Effect of fixed fitness values of genotypes A0A1 and A1A1

For the fitness values as given in captions, the results are given in figures 3.33,

3.34 and 3.35.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  50  100  150  200  250  300  350  400  450

fre
qu

en
cy

 o
f A

0

generation

"a.txt" u 1:53

Figure 3.33: Case A- A0A1- 0.5, A1A1- 1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0  50  100  150  200  250  300  350  400  450

fre
qu

en
cy

 o
f A

0

generation

"b.txt" u 1:53

Figure 3.34: Case B- A0A1- 1, A1A1- 1

 0.48

 0.5

 0.52

 0.54

 0.56

 0.58

 0.6

 0.62

 0.64

 0.66

 0.68

 0.7

 0  50  100  150  200  250  300  350  400  450

fre
qu

en
cy

 o
f A

0

generation

"res_c.txt" u 1:52

Figure 3.35: Case C- A0A1- 0.75, A1A1- 5



Chapter 3 28

In case A, when fitness of A1A1 is 1, the frequency of A0 goes to 0 in a few

generations as expected. For case B, when both genotype fitness’ is equal we

observe a new trend where the frequency of A0 decreases with generation with

weakening oscillation after each cycle. Evolution does not retrace its path here.

For case C, when heterozygote fitness is more, we obtain a similar trend as previous

cases. But now the frequency oscillates between two other values. The pattern of

frequency depends on the rate of change of fitness and other fixed fitness values of

genotypes.

6. 4-gene model- sinusoidal change of fitness

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  50  100  150  200  250  300  350  400  450

fr
e
q
u
e
n
c
y
 o

f 
A

0

generation

"1.txt" u 1:53

(a)

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  50  100  150  200  250  300  350  400  450

fr
e
q
u
e
n
c
y
 o

f 
A

0

generation

"2.txt" u 1:53

(b)

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0.32

 0.34

 0  50  100  150  200  250  300  350  400  450

fre
qu

en
cy

 of
 A0

generation

"7.txt" u 1:53

(c)

 0.21

 0.22

 0.23

 0.24

 0.25

 0.26

 0.27

 0  50  100  150  200  250  300  350  400  450

fre
qu

en
cy

 of
 A0

generation

"5.txt" u 1:53

(d)

Figure 3.36: When rate of change of fitness is 400, 100, 50 and 5 generation.



Chapter 3 29

We now move on to the 4-gene model. For some of the cases as in table 2.5 we

give the frequency plots as we increase the rate of change of fitness from 400, 100,

50 and to 5 generations.

Figure 3.36 shows the frequency patterns for Case 1 of the table as the rate of

change of fitness increases.The pattern observed is similar to case B of figure 3.35.

For case 2 in table 2.5 the graphs are as in figure 3.37.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  50  100  150  200  250  300  350  400  450

fr
e
q
u
e
n
c
y
 o

f 
A

0

generation

"1.txt" u 1:53

(a)

 0.24

 0.26

 0.28

 0.3

 0.32

 0.34

 0.36

 0.38

 0.4

 0.42

 0.44

 0  50  100  150  200  250  300  350  400  450

fre
qu

en
cy

 o
f A

0

generation

"7.txt" u 1:53

(b)

Figure 3.37: When rate of change of fitness is 400 and 5 generation.

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0  50  100  150  200  250  300  350  400  450

fre
qu

en
cy

 o
f A

0

generation

"7.txt" u 1:53

Figure 3.38: Case 3 frequency pattern



Chapter 3 30

For different assignments, different trends are observed. For case 3, when fitness

comes back in 5 generations frequency pattern observed (figure 3.38) is similar to

case C of table 2.5.

3.3 Results for constraining survival rate by threshold fit-

ness

For the 2-gene model, when the fitness of A0A0 =1 and A1A1 = 0.5, we apply threshold

fitness of 0.1 to 0.7 with a difference of 0.1. The results for some of the cases are given

in figures below.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  50  100  150  200  250  300  350  400  450

fr
e
q
u
e
n
c
y
 o

f 
A

0

generation

"1.txt" u 1:53

(a)

 0.44

 0.46

 0.48

 0.5

 0.52

 0.54

 0.56

 0  50  100  150  200  250  300  350  400  450

fr
e
q
u
e
n
c
y
 o

f 
A

0

generation

"7.txt" u 1:53

(b)

Figure 3.39: Th = 0.1(a) rate = 400 generations, (b) rate = 5 generations

For lower threshold of 0.1 we see from figure 3.39 that at low rates of change of fitness,

the lower portion of the peak is cut off and for some generations frequency remains

constant. The frequency values do not go below a certain value. But there is no effect

of the threshold for higher rates of change of fitness. For a higher threshold of 0.5, as

in figure 3.40 we see that for a slow and moderate rate of change of fitness, the lower

portion is swiped off but like above no change is seen in the highest rate of change.

For case when A0A1= 0.5 and A1A1= 0.5, the frequency pattern obtained for threshold

fitness of 0.3 and 0.5 are given in figure 3.41 and 3.42 respectively. We see that when

threshold becomes 0.5, the fitness values of genotype A0A0 for which individual survive

will be greater than 0.5, which is greater than both A0A1 and A1A1. Hence the fre-

quency of A0 reached 1 quickly with no further variation. The same thing is observed

for case 1 of 4- gene model as in table 2.5.



Chapter 3 31

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0  50  100  150  200  250  300  350  400  450

fr
e
q
u
e
n
c
y
 o

f 
A

0

generation

"1.txt" u 1:53

(a)

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 0  50  100  150  200  250  300  350  400  450

fr
e
q
u
e
n
c
y
 o

f 
A

0

generation

"3.txt" u 1:53

(b)

 0.48

 0.5

 0.52

 0.54

 0.56

 0.58

 0.6

 0.62

 0.64

 0.66

 0.68

 0  50  100  150  200  250  300  350  400  450

fre
qu

en
cy

 of
 A

0

generation

"7.txt" u 1:53

(c)

Figure 3.40: Th = 0.5(a) rate = 400, (b) rate = 50, (c) 5 generations

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  50  100  150  200  250  300  350  400  450

fr
e
q
u
e
n
c
y
 o

f 
A

0

generation

"3.txt" u 1:53

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  50  100  150  200  250  300  350  400  450

fr
e
q
u
e
n
c
y
 o

f 
A

0

generation

"7.txt" u 1:53

(b)

Figure 3.41: Th = 0.3(a) rate = 100 generations, (b) rate = 5 generations

For the 4-gene model, for case 2 of table 2.5, when threshold fitness of 0.3 and 0.7 is

applied the changes seen are as in figures 3.43 and 3.44.

For a threshold of 0.3, we see that for the smallest rate of change of fitness, the lower

portion is swiped off as above. For a moderate rate of change of fitness, a V like pattern

is seen in the lower portion of the frequency graph. For higher rates of change, we do

not see any significant change. For a threshold of 0.7, a larger portion is swiped off form

the lower part for the smallest rate of change of fitness such that frequency does not go



Chapter 3 32

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  50  100  150  200  250  300  350  400  450

fr
e
q
u
e
n
c
y
 o

f 
A

0

generation

"3.txt" u 1:53

(a)

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  50  100  150  200  250  300  350  400  450

fr
e
q
u
e
n
c
y
 o

f 
A

0

generation

"7.txt" u 1:53

(b)

Figure 3.42: Th = 0.5(a) rate = 100 generations, (b) rate = 5 generations

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  50  100  150  200  250  300  350  400  450

fr
e
q
u
e
n
c
y
 o

f 
A

0

generation

"3.txt" u 1:53

(a)

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0  50  100  150  200  250  300  350  400  450

fr
e
q
u
e
n
c
y
 o

f 
A

0

generation

"5.txt" u 1:53

(b)

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0  50  100  150  200  250  300  350  400  450

fre
qu

en
cy

 of
 A

0

generation

"7.txt" u 1:53

(c)

Figure 3.43: Th = 0.3, rate =(a) 100, (b)20, (c) 5 generations

below 0.5. For a moderate rate of change, the same pattern is seen. For others, V like

patterns are formed, increasing trend of frequency is no longer present and it begins to

oscillate between two fixed values after about 100 generations.For case 3, we observe the

same changes as before.



Chapter 3 33

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  50  100  150  200  250  300  350  400  450

fr
e
q
u
e
n
c
y
 o

f 
A

0

generation

"3.txt" u 1:53

(a)

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0  50  100  150  200  250  300  350  400  450

fr
e
q
u
e
n
c
y
 o

f 
A

0

generation

"5.txt" u 1:53

(b)

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0  50  100  150  200  250  300  350  400  450

fre
qu

en
cy

 of
 A

0

generation

"7.txt" u 1:53

(c)

Figure 3.44: Th = 0.7, rate =(a) 100, (b)20, (c) 5 generations

Figure 3.45: Case 1 - when coefficients are of the form 1/j

3.4 Results for mathematical approach

For all the basic fitness functions, we have obtained the corresponding frequency func-

tions. We see that the pattern of the corresponding functions looks similar though in

some cases evolution is found to be reversible, in others not. Simulation of linear com-

bination and linear combination of simulation have been plotted for all the cases as in

table 3.2. For cases 1,2,3 and 6 the results are in the figure below.



Chapter 3 34

In the above graphs, green line indicates the linear combination of simulation and the

blue line indicates simulation of linear combination. The two patterns in each graph are

not similar. Hence T is not linear. Given any arbitrary linear combination of fitness,

we cannot predict how its corresponding fitness function will look like according to this

chosen basis.

Figure 3.46: Case 2 - when coefficients are of the form 1/j2

Figure 3.47: Case 3 - when coefficients are of the form 1/2j

Figure 3.48: Case 6 - when coefficients are of the form random/2j



Chapter 4

Conclusions

From the first part of the simulation, where the focus was on classical evolutionary

models, the results obtained verify the simulation. By trying to address the question of

reversibility, we obtained the following conclusion.

For the 2-gene model, we obtain three results according to fitness values of A0A1 and

A1A1.

• A0A1 > A1A1: When the rate of change of fitness in a sinusoidal manner is slow,

we see that evolution is reversible. The frequency values come back to their initial

value and evolution retraces its path. We focus on larger population size due to the

occurrence of regular patterns. When the rate of change of fitness becomes fast,

evolution is no longer reversible. But if we omit the initial number of generations

which the population takes to adapt to the environment, the remaining frequency

pattern suggests that evolution is reversible.

• A0A1 = A1A1: When both the genotypes have the same fitness, decreasing trend

of frequency pattern is obtained with weakening oscillations. Evolution is not

reversible here.

• A0A1 < A1A1: No variation is observed in this case as the frequency reaches a

constant value.

It has also been noted that there is no effect of initial allele frequency to the frequency

pattern obtained. The trend depends on the rate of change of fitness of A0A0 and fitness

values of other genotypes.

35



Chapter 4 36

For the 4-gene model, we have obtained all the similar results as of 2-gene model. But

we cannot conclude that these are the only frequency patterns that could occur due to

the presence of 16 genotypes for each gene.

When we further apply a certain threshold fitness, for low threshold fitness, only slower

rate of change of fitness patterns are affected, where lower portion would be swiped off

and frequency remains constant for some generations. In some cases, V-like patterns

begin to form. There is no effect of the threshold when the rate of change of fitness is

fast. For high rate of change of fitness, frequency remains constant for a larger number

of generations ( when the lower part is swiped off) at higher frequency values for slow

rate of change of fitness. When the rate of change of fitness is fast, in some cases, there

is yet again no change in the frequency pattern or frequency reaches fixation or follows

an increasing trend initially and then oscillate between two fixed values. These results

are based on the cases checked for the reversibility of evolution.

When we try to analyze mathematically, we found that T is not linear. With the chosen

Fourier basis evolution cannot be modeled. We cannot predict how the frequency pattern

will look like or what the course of evolution is given arbitrary fitness functions.

Future directions : We plan to obtain a valid mathematical model for modeling

evolution so that given any fitness function, the course of evolution can be predicted.

With further improvements, this might also help in the setting up experiments. Secondly,

we try to experimentally verify the results obtained using bacterial population by varying

temperature and light.



Appendix A

Codes

The general C++ code for the 2-gene model is described below.

1 #inc lude ” populat ion . cpp”

2 #inc lude<f stream>

3

4 namespace parameter

5 {

6 const s t r i n g f i l ename=”data . txt ” ;

7

8 constexpr i n t i n i t i a l p a r e n t f r e q =100;

9 constexpr double i n i t i a l a l l e l f r e q= 1/2 . 0 ;

10

11 constexpr i n t c h i l d r e n p e r p a i r = 10 ;

12 constexpr i n t g ene ra t i on s = 400 ;

13 }

14

15

16

17 void wr i t e heade r ( ostream& os )

18 {

19 os<<”#” ;

20 s t r i n g g=”AB” , n=”12” ;

21 f o r ( auto i : g )

22 f o r ( auto j : n )

23 os<<i<<j<<”\ t ” ;

24 os<<endl ;

25 }

26

37



Appendix A 38

27 i n t main ( )

28 { us ing namespace parameter ;

29

30 Phenotype a l l t y p e s ;

31

32 Populat ion parent ( a l l t y p e s ) ;

33 Populat ion ch i l d r en ( a l l t y p e s ) ;

34

35 parent . i n i t i a l i z e f r e q ( i n i t i a l p a r e n t f r e q ) ;

36 parent . i n i t i a l i z e a l l e l f r e q ( i n i t i a l a l l e l f r e q ) ;

37

38 ofstream f ( f i l ename ) ;

39 wr i t e heade r ( f ) ;

40 parent . w r i t e a l l e l f r e q ( f ) ;

41

42 f o r ( i n t g=0; g<gene ra t i on s ; g++)

43 {

44 i f ( g>0)

45 {

46 ch i l d r en . swap ( parent ) ;

47 parent . normal i s e ( a l l t y p e s . s i z e ( ) ∗ i n i t i a l p a r e n t f r e q ) ;

48 }

49

50 cout<<” p ro c e s s i ng gene ra t i on : F”<<g+1<<endl ;

51

52 parent . populate ( ch i ld r en , c h i l d r e n p e r p a i r ) ;

53 ch i l d r en . impo s e s e l e c t i o n ( ) ;

54 ch i l d r en . u p d a t e a l l e l f r e q ( ) ;

55 ch i l d r en . w r i t e a l l e l f r e q ( f ) ;

56 }

57 }

Listing A.1: Code 1-main.cpp

1 #inc lude ”phenotype . cpp”

2 #inc lude<random>

3 #inc lude<algor ithm>

4 #inc lude<ctime>

5 mt19937 generato r ( time (NULL) ) ;

6

7 i n t rand50 ( )

8 {



Appendix A 39

9 s t a t i c un i f o rm i n t d i s t r i b u t i o n<int> d i s t ( 0 , 1 ) ;

10 re turn d i s t ( genera to r ) ;

11 }

12

13

14 c l a s s Populat ion

15 { pub l i c :

16 Populat ion ( const Phenotype& t ) :

17 types ( t ) ,

18 f r e q ( types . s i z e ( ) ) ,

19 a l l e l f r e q (2 , vector<double >(2) )

20 {}

21

22 void i n i t i a l i z e f r e q ( const i n t n)

23 { f o r ( i n t& i : f r e q ) i=n ; }

24

25 void i n i t i a l i z e a l l e l f r e q ( const double t ) ;

26

27

28 void populate ( Populat ion& ch i ld ren , const i n t s i b l i n g s =10) ;

29 void impo s e s e l e c t i o n ( ) ;

30 void u p d a t e a l l e l f r e q ( ) ;

31 void w r i t e a l l e l f r e q ( ostream& os ) ;

32

33 void normal i se ( const double f i n a l s i z e ) ;

34 void swap ( Populat ion& p) ;

35

36 pr i va t e :

37 s t a t i c vector<int> pa i r i n g ;

38 const Phenotype& types ;

39 vector<int> f r e q ;

40 vector<vector<double>> a l l e l f r e q ;

41

42

43 void u pd a t e i n d v a l l e l f r e q ( const vector<int>& indv , const i n t i n d f r e q

) ;

44

45 ///producing 1 ch i l d from parents p1 and p2

46 vector<int> one ch i l d ( const vector<int>& p1 , const vector<int>& p2 ) ;

47 } ;

48



Appendix A 40

49

50

51 ///−−−−−−Implementation o f c l a s s funct i ons−−−−−−−−

52 vector<int> Populat ion : : p a i r i n g (pow(2 , 4 ) ∗51) ;

53

54 void Populat ion : : i n i t i a l i z e a l l e l f r e q ( const double t )

55 {

56 f o r ( auto& i : a l l e l f r e q )

57 f o r ( auto& j : i )

58 j=t ;

59 }

60

61 ///producing 1 ch i l d from parents p1 and p2

62 vector<int> Populat ion : : on e ch i l d ( const vector<int>& p1 , const vector<int>&

p2 )

63 {

64 vector<int> ch i l d p12 ( p1 . s i z e ( ) ) ;

65 f o r ( i n t i =0; i<ch i l d p12 . s i z e ( ) ; i+=2)

66 {

67 i f ( rand50 ( ) )

68 ch i l d p12 [ i ] = p1 [ i ] ;

69 e l s e

70 ch i l d p12 [ i ] = p1 [ i +1] ;

71

72 i f ( rand50 ( ) )

73 ch i l d p12 [ i +1] = p2 [ i ] ;

74 e l s e

75 ch i l d p12 [ i +1] = p2 [ i +1] ;

76 }

77 re turn ch i l d p12 ;

78 }

79

80 void Populat ion : : populate ( Populat ion& ch i ld ren , const i n t s i b l i n g s )

81 {

82 ch i l d r en . i n i t i a l i z e f r e q (0 ) ;

83 pa i r i n g . c l e a r ( ) ;

84

85 // s e l e c t pa i r s by s h u f f l i n g

86 f o r ( i n t i =0; i<f r e q . s i z e ( ) ; i++)

87 f o r ( i n t j =0; j<f r e q [ i ] ; j++)

88 pa i r i n g . push back ( i ) ;



Appendix A 41

89 s h u f f l e ( pa i r i n g . begin ( ) , p a i r i n g . end ( ) , genera tor ) ;

90 i f ( p a i r i n g . s i z e ( )%2==1)

91 pa i r i n g . r e s i z e ( pa i r i n g . s i z e ( )−1) ;

92

93 vector<int> ch i l d ;

94 f o r ( i n t i =0; i<pa i r i n g . s i z e ( ) ; i+=2)

95 f o r ( i n t j =0; j<s i b l i n g s ; j++)

96 {

97 ch i l d= one ch i l d ( types [ pa i r i n g [ i ] ] ,

98 types [ pa i r i n g [ i +1] ] ) ;

99 ch i l d r en . f r e q [ types [ c h i l d ] ]++;

100 }

101 }

102

103 void Populat ion : : impo s e s e l e c t i o n ( )

104 {

105 f o r ( i n t i =0; i<f r e q . s i z e ( ) ; i++)

106 f r e q [ i ] = i n t ( round ( f r e q [ i ]∗ types . f i t n e s s ( i ) ) ) ;

107 }

108

109

110 void Populat ion : : normal i s e ( const double f i n a l s i z e )

111 {

112 i n t t o t a l =0;

113 f o r ( i n t i =0; i<f r e q . s i z e ( ) ; i++)

114 t o t a l+=f r e q [ i ] ;

115

116 /// normal i z ing

117 double s c a l e=f i n a l s i z e / t o t a l ;

118 f o r ( i n t i =0; i<f r e q . s i z e ( ) ; i++)

119 f r e q [ i ] = i n t ( round ( f r e q [ i ]∗ s c a l e ) ) ;

120 }

121 void Populat ion : : swap ( Populat ion& p)

122 {

123 f r e q . swap (p . f r e q ) ;

124 a l l e l f r e q . swap (p . a l l e l f r e q ) ;

125 }

126

127

128 void Populat ion : : u p d a t e i n d v a l l e l f r e q ( const vector<int>& indv , const i n t

i n d f r e q )



Appendix A 42

129 {

130 f o r ( i n t i =0; i<indv . s i z e ( ) ; i+=2)

131 {

132 a l l e l f r e q [ i / 2 ] [ indv [ i ] ]+= i nd f r e q ;

133 a l l e l f r e q [ i / 2 ] [ indv [ i +1] ]+= ind f r e q ;

134 }

135 }

136 void Populat ion : : u p d a t e a l l e l f r e q ( )

137 {

138 i n i t i a l i z e a l l e l f r e q (0 ) ;

139 i n t t o t a l =0;

140 f o r ( i n t i =0; i<f r e q . s i z e ( ) ; i++)

141 {

142 upd a t e i n d v a l l e l f r e q ( types [ i ] , f r e q [ i ] ) ;

143 t o t a l += f r e q [ i ] ;

144 }

145 f o r ( auto& i : a l l e l f r e q )

146 f o r ( auto& j : i )

147 j /= 2∗ t o t a l ;

148 }

149

150 void Populat ion : : w r i t e a l l e l f r e q ( ostream& os )

151 {

152 f o r ( auto& i : a l l e l f r e q )

153 f o r ( auto& j : i )

154 os<<j<<”\ t ” ;

155 os<<endl ;

156 }

Listing A.2: Code 2- population.cpp

1 #inc lude<iostream>

2 #inc lude<vector>

3 #inc lude<cmath>

4 us ing namespace std ;

5

6 ostream& operator<<(ostream& os , const vector<int>& ind )

7 {

8 f o r ( i n t i =0; i<ind . s i z e ( ) ; i+=2)

9 os<<ind [ i ]<<” ”<<ind [ i+1]<<” ” ;

10 re turn os ;

11 }



Appendix A 43

12

13

14

15

16 c l a s s Phenotype

17 { pub l i c :

18 Phenotype ( )

19 {

20 f i l l p t y p e s ( ) ;

21 f i l l p f i t ( ) ;

22 }

23

24 i n t s i z e ( ) const

25 { re turn ptypes . s i z e ( ) ;}

26

27 double f i t n e s s ( i n t i ) const

28 { re turn p f i t [ i ] ; }

29

30 /// return i t h ptype

31 const vector<int>& operator [ ] ( i n t i ) const

32 { re turn ptypes [ i ] ; }

33

34 /// return index o f i nd i v i dua l from ptypes

35 i n t operator [ ] ( const vector<int>& ind ) const ;

36

37

38 pr i va t e :

39 void f i l l p t y p e s ( ) ;

40 void f i l l p f i t ( ) ;

41 double c a l c f i t ( const vector<int>& ind ) ;

42

43 s t a t i c vector<vector<double>> g f i t ; /// genotype f i t n e s s

44 vector<vector<int>> ptypes ; /// a l l types o f i n d i v i d u a l s .

45 vector<double> p f i t ; /// f i t n e s s o f each type o f i nd i v i dua l

46 } ;

47

48

49

50

51 i n t mainPhenotype ( )

52 {



Appendix A 44

53 Phenotype p ;

54 const vector<int>& t = p [ 8 ] ;

55 cout<< t<<endl ;

56

57 cout<<p . f i t n e s s (8 )<<endl ;

58

59 // const vector<int>& ind = p [ 9 5 ] ;

60 cout<<p [ t ] ;

61 }

62

63

64

65

66

67

68 ///−−−−−−−−−−implementation o f c l a s s funct i ons−−−−−−−−−−−

69

70 /// return index o f i nd i v i dua l from ptypes

71 i n t Phenotype : : operator [ ] ( const vector<int>& ind ) const

72 {

73 i n t s=0;

74 f o r ( i n t i =0; i<ind . s i z e ( ) ; i++)

75 {

76 i n t p lace = ind . s i z e ( )−1 − i ;

77 s+= ind [ i ]∗pow(2 , p lace ) ;

78 }

79 re turn s ;

80 }

81

82

83

84

85 void Phenotype : : f i l l p t y p e s ( )

86 {

87 ptypes . r e s i z e (pow(2 , 4 ) ) ;

88 i n t i =0;

89 // a l l t yp e s i z e types .

90 f o r ( i n t a = 0 ; a < 2 ; a++)

91 f o r ( i n t b = 0 ; b < 2 ; b++)

92 f o r ( i n t c = 0 ; c < 2 ; c++)

93 f o r ( i n t d = 0 ; d < 2 ; d++)



Appendix A 45

94 {

95 ptypes [ i ] = {a , b , c , d } ;

96 i++;

97 }

98 }

99

100 void Phenotype : : f i l l p f i t ( )

101 {

102 p f i t . r e s i z e ( ptypes . s i z e ( ) ) ;

103 f o r ( i n t i =0; i<p f i t . s i z e ( ) ; i++)

104 p f i t [ i ] = c a l c f i t ( ptypes [ i ] ) ;

105 }

106

107 double Phenotype : : c a l c f i t ( const vector<int>& ind )

108 {

109 double s=0;

110 f o r ( i n t i =0; i<ind . s i z e ( ) ; i+=2)

111 s+= g f i t [ i / 2 ] [ ind [ i ] + ind [ i +1] ] ;

112 s /=2;

113 re turn s ;

114 }

115

116 vector<vector<double>> Phenotype : : g f i t=

117 {

118 {1 , 0 . 5 , 1} ,

119 {1 , 1 , 0 .5}

120

121 } ;

Listing A.3: Code 3- phenotype.cpp

To change the fitness of genotype A0A0 in a sinusoidal manner as described in Chapter

2, the portion of the code is listed below.

1 double s i n f un c ( i n t g )

2 {

3 i f ( ( g>=0) && (g<=10))

4 re turn (1+ s i n ( ( g /5 . 0 ) ∗PI ) ) / 2 . 0 ;

5 e l s e re turn s i n f un c ( g % 10) ;

6 }



Appendix A 46

Listing A.4: Code for varying the fitness sinusoidally where fitness comes back in 10

generations

1 void upda t e g f i t ( const i n t g )

2 {

3 g f i t [ 0 ] [ 0 ] [ 0 ] = s i n f un c ( g ) ;

4 f i l l p f i t ( ) ;

5 }

Listing A.5: Code for updating fitness of A0A0

The function ”update gfit” is called by the ”main” program.

The code for finding the linear combination of fitness functions is listed below.

1 f l o a t f i n d f i t ( i n t g , vector<f l o a t>a )

2 {

3 f l o a t pp=0;

4 f o r ( i n t j =1; j <401; j++)

5 {

6 pp+= (1+ s in (2∗PI∗g∗ j /400) ) /(2∗ a [ j ] / j ) ;

7 }

8 re turn pp ;

9

10

11 }

12

13 f l o a t normal i se ( vector<f l o a t>a )

14 {

15 f l o a t xx=0;

16 f o r ( i n t g=1;g<401;g++)

17 {

18 xx+= (pow( f i n d f i t ( g , a ) ,2 ) ) ;

19

20 }

21

22 re turn sq r t ( xx ) ;

23

24 }

25



Appendix A 47

26

27 double s i n f un c ( i n t g , vector<f l o a t>a )

28 {

29 re turn f i n d f i t ( g , a ) / normal i se ( a ) ;

30 }

Listing A.6: Code for finding linear combination and normalizing

The code for finding the linear combination of simulation is provided below.

1 import matp lo t l i b . pyplot as p l t

2 import numpy as np

3

4 f i l ename =’ c o e f f . txt ’

5 c=np . l oadtx t ( f i l ename )

6

7 Matrix = np . z e ro s (400)

8 f o r j in range (1 ,401) :

9 f i l ename = ’%s . txt ’%j

10 data = np . l oadtx t ( f i l ename )

11 f o r k in range (1 ,401) :

12 Matrix [ k−1] += ( data [ k ] [ 5 2 ] / c [ k−1])

13

14 l ength=np . sq r t ( np . sum(Matrix∗Matrix ) )

15 Matrix /=length

16

17 data = np . l oadtx t ( ’ s im of l c random . txt ’ )

18 f o r k in range (0 ,400) :

19 Matrix [ k ] = data [ k ] [ 52 ] −Matrix [ k ]

20

21 x=np . arange (1 ,401)

22 f i g = p l t . f i g u r e ( f i g s i z e =(20 ,10) )

23 p l t . p l o t (x , Matrix )

24 p l t . x l ab e l ( ” gene ra t i on ” )

25 p l t . y l ab e l ( ” D i f f o f f requency o f A0” )

26 p l t . t i t l e ( ’ D i f f o f Linear Comination o f S imulat ion 3 ’ )

27 p l t . s a v e f i g ( ’ d i f f l c o f s im r andom . png ’ )

Listing A.7: Code for finding linear combination and normalizing



Bibliography

[1] Jon C.Herron and Scott Freeman. Evolutionary analysis. Pearson.

[2] Stephen Jay Gould. Wonderful life: The burgess shale and the nature of history. W.

W. Norton & Company, 1989. URL http://link.aip.org/link/?RSI/69/1236/1.

[3] Henrique Teotonio and Michael R. Rose. Variation in the reversibility of evolution.

Nature, 408:463–466, November 2000. URL https://www.semanticscholar.

org/paper/Variation-in-the-reversibility-of-evolution.-Teot%C3%

B3nio-Rose/7cb16df97d31bb883987221e421993ffed349734.

[4] Henrique Teotonio and Michael R. Rose. Perspective: reverse evolution. Evolution,

55(4):653–660, April 2001. URL https://onlinelibrary.wiley.com/doi/pdf/10.

1111/j.0014-3820.2001.tb00800.x.

[5] Henrique Teotonio and Michael R. Rose. Reverse evolution of fitness in Drosophila

melanogaster. Journal of Evolutionary Biology, pages 608–617, 2002. URL https:

//onlinelibrary.wiley.com/doi/full/10.1046/j.1420-9101.2002.00424.x.

48

http://link.aip.org/link/?RSI/69/1236/1
https://www.semanticscholar.org/paper/Variation-in-the-reversibility-of-evolution.-Teot%C3%B3nio-Rose/7cb16df97d31bb883987221e421993ffed349734
https://www.semanticscholar.org/paper/Variation-in-the-reversibility-of-evolution.-Teot%C3%B3nio-Rose/7cb16df97d31bb883987221e421993ffed349734
https://www.semanticscholar.org/paper/Variation-in-the-reversibility-of-evolution.-Teot%C3%B3nio-Rose/7cb16df97d31bb883987221e421993ffed349734
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.0014-3820.2001.tb00800.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.0014-3820.2001.tb00800.x
https://onlinelibrary.wiley.com/doi/full/10.1046/j.1420-9101.2002.00424.x
https://onlinelibrary.wiley.com/doi/full/10.1046/j.1420-9101.2002.00424.x

	Declaration
	Acknowledgements
	List of Figures
	List of Tables
	List of Listings
	Abbreviations
	Abstract
	1 Introduction
	2 Methods: Computational and Mathematical Approach
	2.1 Model
	2.2 Computational approach
	2.2.1 Classical evolutionary models
	2.2.2 Changing environment and reversibility
	2.2.3 Constraining survival rate by threshold fitness

	2.3 Mathematical approach

	3 Results and Discussion
	3.1 Results for the classical evolutionary models
	3.2 Results for changing environment and reversibility
	3.3 Results for constraining survival rate by threshold fitness
	3.4 Results for mathematical approach

	4 Conclusions
	A Codes
	Bibliography

