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Abstract 
Microorganisms exhibit diverse metabolic capability and show physiological adaptation to 

genotype/environment perturbations. Metabolic robustness is attributed mostly to complex 

interplay and dynamic interactions among metabolic network components. In the event of 

disruption of metabolic gene function, it has been shown that fluxes are routed through 

alternate pathways to maintain constant flow of metabolites in order to sustain cellular 

growth. To understand resilient nature of Escherichia coli metabolic networks, the study of 

flux rerouting in single gene deletion strains can be studied using constraint based methods 

such as Flux Balance Analysis (FBA), which facilitates computation of in silico fluxes. Due 

to limitation of experimental growth rate in continuous culture condition for every single 

gene deletion strain, in the present study, we explore the possibility of using experimental 

large-scale single gene deletion in E. coli (fitness score data of generated from growth on 

solid media) to understand metabolic flux distribution in genetic perturbation. In the present 

study, we have used fitness scores of single deletion strains only on fermentable carbon 

sources viz. glucose, maltose, glucosamine, and N-acetyl glucosamine and used FBA with 

biomass function optimization to analyze flow of fluxes in alternate pathways. 
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Chapter 1 

Introduction 
 

1.1 Metabolic network 

Cellular metabolism consists of all chemical transformations catalyzed by enzymes or 

spontaneous reactions within a cell and forms the basis of any biological process. 

Traditionally, metabolism is described as organization of metabolic pathways, which usually 

is a linear arrangement of metabolites connected by enzymes responsible for chemical 

conversion of input substrate/s to output product/s (Figure 1.1a). In fact, enzyme function 

description also includes its role in a given metabolic pathway. The pathways can be 

organized into metabolism of a specific chemical compound such as ‘Lysine metabolism’ or 

‘glucose metabolism’ that includes both catabolism (degradation) and anabolism 

(biosynthesis). In many instances, pathways can also be organized for give a generalized 

metabolic context such as ‘energy metabolism’, ‘lipid metabolism’, and ‘carbohydrate 

metabolism’ (Tanabe and Kanehisa, 2012; Kanehisa et al., 2017). Since metabolite/s in a 

given pathway can be present in multiple pathways or enzyme from a pathway can be 

involved in multiple pathways, it is impossible to study effect of perturbation of a metabolite 

or an enzyme on the cellular phenotype by using isolated metabolic pathways. This 

necessitated the description of metabolism as interconnected metabolites through enzymes as 

edges in metabolic networks (Figure 1.1b). Biochemical networks is one of the earliest 

mathematical application of graph based description and analysis (Jeong et al., 2000).  

 The system level approach to study intracellular metabolism has revolutionized 

understanding as well as prediction of phenotypic behavior of cell under a given 

environmental condition or genotypic perturbations (Dunphy and Papin, 2017;Yilmaz and 
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Walhout, 2017). Metabolic networks have been extensively used in metabolic engineering of 

cells to biosynthetically produce large quantities of a desired product, especially when 

chemical synthesis of such compounds is challenging (Guo et al., 2017). 

Figure 1.1: Schematic representation showing a) metabolic pathway b) metabolic network. 

Images have been derived from KEGG database. 

 In a simplest description, metabolic networks are composed of nodes (vertices), as 

metabolites, and edges are enzyme/s, which catalyzes conversion of one metabolite to other. 

Further, depending on the reversibility of enzymatic reaction edge can be directional or 

undirected edges. Many studies have used graph theoretical approaches to derive global 

network properties such as topological properties and robustness (Samal and Martin, 2011) to 

determine the importance of individual enzyme or metabolites. However, limitation of this 

representation has been that one edge (enzyme) can link multiple input nodes and many 

output nodes (metabolites), of which only one or two metabolites are crucial in network 

description. Recent approaches have suggested hypergraphs to represent metabolic network 

(Carbonell et al., 2012).  

 Usually, metabolic network is reconstructed using information from annotated genes 

and known enzymatic reactions and their role in metabolic pathways. However, in the post-

genomic era, metabolic networks are reconstructed using genomic, proteomic, and 
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phenotypic data obtained from various sources (Fiest et al., 2009; Orth et al., 2014). Such 

genomic scale metabolic networks are also referred as genome scale metabolic network 

models (GSMNM). One of the limitations in abstracting metabolism as metabolic networks is 

that regulation of cell metabolism such as variations in enzyme expressions, protein levels via 

translation or post translational modifications and feedback regulation of enzymes are not 

taken into account. Since phenotype is net result of both regulation of enzymes and metabolic 

pathways, the prediction of phenotype from genotype or varying environmental conditions 

becomes challenging. Attempts are made in recent studies (Guo and Feng 2016) to include 

regulation on static metabolic network to improve genotype-phenoytpe correlations. Despite 

deficiencies in description of metabolic network, it has been used extensively in predict range 

of cellular functions such as cellular growth capabilities on various substrates, predict 

phenotype under single/multiple gene knockouts on genomic scale, tracing carbon in radio 

active labeling studies (O’Brien and Palsson, 2014; O’Brien et al., 2015).  

 In metabolic networks, flux through a reaction that is rate of substrate conversion to 

product can be useful in prediction of phenotypes and validating of genome scale metabolic 

networks (Gianchandani et al., 2010). Usually, this is performed using Flux Balance Analysis 

(FBA), which is mathematical approach to analyze flow of metabolites in a metabolic 

network (Orth et al., 2010). 

1.2 Flux Balance Analysis (FBA)   

 Briefly, FBA involves describing metabolic fluxes using a set of linear equations 

where all metabolic reactions are balanced and concentrations of metabolites do not change 

over time also referred as steady state condition. Further, these linear algebraic equations of 

fluxes are solved under biological or chemical constraints to obtain optimal solution to 

generate flux distribution with optimizing an objective function (Orth et al., 2010). Hence, 
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FBA facilitates computational prediction of systemic phenotypes in the form of fluxes in a 

biochemical network. 

 As described before, genome scale constructed metabolic models consist of 

stoichiometric balanced reactions, which are mathematically represented in stoichiometric 

matrix S (Figure 1.2a). In matrix S, the row is set of all metabolites or network components 

and the column corresponds to reactions or description of interaction among network 

components. Thus, stoichiometric coefficient of a reaction lies in the cell of column and row 

of the reaction and metabolite respectively. By definition for a given reaction, stoichiometric 

coefficient of the input metabolite or substrate is given a negative coefficient, while product 

metabolite is assigned a positive coefficient. A coefficient of zero is assigned to metabolite 

that does not participate in a particular reaction. Hence, stoichiometric matrix S puts 

constraints on the flow of metabolites through the network as well as capture quantitatively 

and chemically consistent accounting of biochemical network. The biochemical network as 

described by S can be multiplied by a column vector v (contains fluxes through reactions), 

such that (Figure 1.2b)  

 S. v = dx/dt,  

,where x is the concentration of metabolites, and dx/dt is the rate of change of metabolite. In 

order to solve for v, to obtain fluxes through metabolic network steady state condition is 

assumed i.e. dx/dt =0, which essentially means there is no net mass consumed or produced in 

the system. This leads to equation: 

 S. v = 0, 
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Figure 1.2: Showing various steps in flux balance analysis a) Generation of Stoichiometric 

matrix b) Linear equation S. v =0 and c) description of objective function; linear 

programming is used find optimal flux to maximize/minimize objective function (Image 

adopted from Orth et al., 2010)  

The linear programming can be used to determine solution of this equation and any v flux 

vector that satisfies above equation is within the solution space of S or is said to be in null 

space of S. The solution of this linear equation for most metabolic networks is 

underdetermined, i.e. there are more unknown variables than equations involving these. In 

other words, there are fewer metabolites than reactions whose fluxes are to be predicted and 

there are no unique solutions to this system of equations. FBA overcomes this by using 

Linear Programming (LP) to strategy by optimizing for a particular flux while ensuring that 

constraints on mass is maintained in steady state conditions. Here, FBA seeks to identify 

single point in solution space by maximizing or minimizing an objective function (Figure 

1.2c) given by  

 Z = cT.v 
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,where fluxes are given by v and c is a vector weights indicating how much each reaction 

contributes to the objective function. The objective function is a linear combination of c and 

v. Examples of objective function in FBA are maximizing growth rate, maximizing 

(minimizing) ATP production or a particular metabolite. In order to obtain optimal solution 

of S. v=0, and objective function, FBA employs LP methods to solve for this system of linear 

equations. Hence, FBA result in a solution vector v, the flux distribution, which is either 

maximizes or minimizes the objective function. In addition to previously described 

constraints, FBA solution space can be narrowed by specifying additional constraints such as 

maximum and minimum allowable fluxes through reactions (Orth et al., 2010). 

 A very common objective for FBA is biomass production, which consists of 

metabolites conversion into biomass constituents such as nucleic acids, proteins, and lipids. 

This biomass is represented mathematically as ‘biomass reaction’, which consumes precursor 

metabolites at stoichiometry in biomass production. Since biomass is represented in the 

model, maximal growth can be accomplished by finding conditions that result in maximal 

flux through biomass reaction (Orth et al., 2010). 

1.3 Application of FBA on phenotype prediction in Escherichia 

coli 

 FBA has demonstrated reasonable agreement with experimental data such as in E. coli 

for gene essentiality or metabolic gene knockouts (Long and Antoniewicz, 2014; Long et al., 

2018). Extensive work on computational prediction of flux response in E. coli under genetic 

perturbations such as gene knockouts shows reliable prediction overall. Despite development 

of both experimental and computational tools to study fluxes in E. coli metabolic network, it 

is still challenging to predict perturbation responses to gene deletions (Long and 

Antoniewicz, 2014). Such studies are also hampered by limitation of experimental data on 
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continuous culture, which is mostly used in studying metabolic fluxes. To study metabolic 

response to gene deletion on a large scale, we attempted to utilize the effect on colony sizes 

(on solid media) measured as fitness score upon gene deletion (Nichols et al., 2010). We used 

this data because it is comprehensive E. coli single gene deletion data.  

1.4 Enzyme promiscuity 

 In general, cells show diverse metabolic capability and show physiological adaptation 

to genotype/environment perturbations. This robust behavior has been mostly attributed to the 

complex interplay and dynamic interactions of components in the metabolic network (Ari and 

Casadesús, 1998). Moreover, experimental studies have shown that in the event of metabolic 

gene function disruption, apart from transcriptional, translational, and post-translational 

regulation of enzymes, fluxes are routed through alternate pathway/s to maintain constant 

flow of essential metabolites (Ishii et al., 2007; Nakahigashi, et al., 2009). These alternate 

metabolic routes often involve enzymes, which catalyze analogous substrates/reactions. For 

example, Pseudomonas diminuta uses phosphotriesterase to release phosphate from 

organophosphate insecticide, which is not its native substrate (Raushel and Holden, 2000). 

 Even though enzymes are usually described as efficient and specific catalysts to its 

substrate and reaction it catalyzes, many enzymes harbor capabilities to catalyze other 

reactions and/or substrates apart from the ones for which they are physiologically specialized 

or evolved (Khersonsky and Tawfik, 2010). These adventitious secondary (promiscuous) 

reactions are generally orders of magnitude less efficient than their evolved activities. Such 

low level of promiscuous activity, usually undetectable, can become important if 

substrate/enzyme concentration changes due to some factors (Ari and Casadesús, 1998). 

Promiscuous enzymes could confer fitness benefit to the organism under new selective 

pressures with these enzymes serving as starting point in the emergence of new enzyme 

functions and/or divergence of enzyme families (Nobeli et al., 2009). 
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1.5 Objective 

Given limitations in generating suitable experimental data for every single metabolic gene 

deletion in E. coli for flux analysis, we explored possibility of using E. coli growth data on 

solid media (fitness scores (Nichols et al., 2010)) to understand the effect of gene deletion 

and distribution of fluxes. To facilitate understanding of metabolic gene defect we formulated 

following hypothesis: 

A. If biomass from FBA models is unchanged or reduced marginally compared to wild type 

biomass, however fitness score predicts lower growth then we analyze (here FBA models 

are unable to predict in vivo conditions): 

1. Could this be a result of pleotropic effect of deleted gene? 

2. The alternate pathway evoked because of gene deletion may lead to harmful 

intermediates, which can affect growth of bacteria, such as reactive superoxide 

radicals. 

B. If gene deletion predicts zero biomass from FBA models, however, fitness score shows 

growth defect: 

1. Could alternate pathways missing in FBA model? 

2. In such conditions, promiscuous enzymes can assist in survival of bacteria. However, 

does not compensate full activity of the deleted gene. 

 In the present study, we have used fitness scores of E. coli single deletion strains only 

on fermentable carbon sources viz. glucose, maltose, glucosamine, and N-acetyl glucosamine 

and used FBA to analyze flow of fluxes in alternate pathways. 
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Chapter 2 

Methodology 

2.1 E. coli Fitness score data 

 In work of Nichols et al., 2010, effect of gene deletion in E. coli is measured using 

fitness score, which is relative size of colony size of strain having single gene deletion with 

respect to wild type colony size. Here, wild type colony size is represented by average colony 

sizes of all single deletion strains. We obtained fitness scores of 3979 genes on 324 

conditions from URL http://ecoliwiki.net/tools/chemgen/. The growth data of E. coli on 

fermentable carbon sources glucose, maltose, glucosamine and N-acetyl glucosamine are 

retrieved for analysis. 

2.2 FBA modeling using COBRA ToolBox 

 In order to perform FBA, we have used constraint-based reconstruction and analysis 

(COBRA) method using freely available MATLAB toolbox referred as COBRA Toolbox 

(Becker et al., 2007). The genome scale metabolic model of E. coli iJO1366 is obtained from 

BIGG models database (King et al., 2016). We have optimized biomass under various 

fermentable carbon sources. Further, we performed single gene deletion and again optimized 

the biomass to understand predicted effect of gene deletions on E. coli growth. We have used 

unlimited oxygen uptake (-1000 mmol gDW-1 Hr-1), which is mimicking aerobic growth 

condition and set a constant rate of glucose uptake at -20 mmol gDW-1 Hr-1. In order to model 

biomass growth in alternate carbon source, we have maintained same uptake rate of substrate 

in aerobic conditions. 

List of commands: 

initCobraToolbox() //To initialize CobraToolbox 
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load('iJO1366.mat ')   //load E. coli model 

model = changeRxnBounds(model,'EX_glc__D_e',-20,'l');  //set lower bound of the glucose 

model=changeRxnBounds(model,'EX_o2_e',-1000,'l'); //set lower bound for oxygen 

model=changeObjective(model,’BIOMASS_Ec_iJO1366_WT_53p95M’);//set objective 

function  

FBAsolution= optimizeCbModel(model,'max‘,0,0) // optimization step 

printFluxVector(model, FBAsolution.x, true); //print flux values 

2.3 FBA modeling of single gene deletion strains using COBRA 

ToolBox 

 For each metabolic gene, we find list of its associate enzymatic reactions in BIGG 

models database. To model the effect of gene deletion, we used a simple approach of making 

the flux of zero through this reaction by setting both upper and lower bound of reaction to 0. 

Rest all exchange reactions of carbon source and oxygen is maintained as in FBA of wild 

type. Apart from this, we also used function single reaction deletion (‘singleRxnDeletion’) to 

model effect of gene deletion on biomass. 

Additional list of commands: 

model=changeRxnBounds(model,'REACTION_NAME’,0,'b'); // makes reaction bound to zero   

model=changeObjective(model,'BIOMASS_Ec_iJO1366_WT_53p95M);//set objective 

function  

FBAsolution= optimizeCbModel(model,'max‘,0,0) //optimization step 

printFluxVector(model, FBAsolution.x, true); //print flux values 
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[grRatio, grRateKO, grRateWT, hasEffect, delRxns, fluxSolution] = 

singleRxnDeletion(model,'FBA') 

 We have compared biomass in wild type and gene knockout strains and performed 

analysis of gene knockout effects. 
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Chapter 3 

Results and Discussions 
 

3.1 Comparative analysis of fitness scores data of E. coli single 

gene deletion mutants grown in fermentable carbon source 

 In the seminal work of Nichols et al., phenotypic responses of single gene deletions 

strains under various physiological and drug stresses was studied with an aim to relate 

genotype to phenotype, function annotation of uncharacterized proteins and generate 

conditionally essential genes (Nichols et al., 2010). In this study, they performed high 

throughput phenotypic analysis and provided quantitative phenotypic responses of all single 

gene deletion mutants of E. coli under 324 conditions. The quantitative response is given by 

fitness score, which has been previously used for assessing genetic interactions  (Typas et al., 

2008; Bochner, 2009). Essentially, fitness score provides a measure of change in colony size 

of a single gene deletion strain with respect to the average colony size of all single gene 

deletions on all conditions, which is considered as representative for wild type E. coli colony 

size.. Hence, positive and negative fitness score represents increased and decreased colony 

sizes in comparison to average colony size respectively. Thus, a positive and negative fitness 

score of a single gene deletion strain grown in a given condition is interpreted as improved 

and reduced growth respectively. In the present work, we re-analyzed E. coli fitness score 

data growth on the fermentable carbon source (glucose, maltose, glucosamine and N-acetyl 

glucosamine) with a sole objective to explore possibility of using such data in metabolic 

network analysis and Flux Balance Analysis (FBA). Mostly, biomass (representative of 

bacterial growth) optimized in FBA is correlated with bacteria grown in liquid culture. Here, 

the optimized biomass in FBA is compared to fitness scores, which is a statistical relative 
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measure of colony sizes. Such studies will extend usefulness of FBA for bacteria grown on 

solid media as well as facilitate analysis of large fitness growth data. 

 First, we compared single gene deletion strains fitness score on maltose, glucosamine, 

and N-acetyl glucosamine with respect to glucose to identify and verify respective carbon 

source specific pathways. Since glucose is the simplest carbohydrate among set of 

fermentable carbon sources in this study (Figure 3.1), we expected a common set of essential 

genes for growth on these carbon sources and glucose. Furthermore, for growth on maltose, 

glucosamine, and N-acetyl glucosamine there will be conditionally essential genes, which are 

involved in transport of sugars/amino sugars or metabolic pathway to degrade sugars/amino 

sugars to glucose and genes required for regulation of genes in such metabolic pathways. To 

facilitate this analysis, E. coli metabolic pathway involved in maltose, glucosamine and N-

acetyl glucosamine from EcoCyc/literature (Keseler et al., 2016) is shown in Figure 3.2a and 

3.2b. 

  

 

Glucose 

  

 

 

 

Maltose 

  

 

Glucosamine 

  

 

N-acetyl glucosamine 

Figure 3.1: Comparison of chemical structures of carbon sources showing similarities in their 

chemical nature. 



  14 

 For maltose utilization, in E. coli, MalQ is a key enzyme with -1-4 

glucanotransferase activity in maltose degradation that recognizes maltose and a longer 

maltodextrins and preferentially removes glucose from reducing ends of maltose that can 

enter glycolysis (Figure 3.2a) (Park et al., 2011). Additionally, enzyme MalP recoginze 

maltotetraose and longer maltodextrins removes glucose from non-reducing ends to generate 

glucose-1-phosphate (Park et al., 2011), which can enter glycolysis. Maltose is transported by 

high affinity maltose transport system encoded by gene malEFGK (Dippel and Boos, 2005). 

 The degradation pathways of glucosamine and N-acetyl glucosamine involve 

common enzyme NagB, which catalyzes conversion of D-glucosamine 6 phosphate to D-

fructofuranose 6-phosphate. NagA enzyme removes acetate group from N-acetyl 

glucosamine to generate D-glucosamine 6-phosphate, which can be utilized by NagB (Figure 

2b). Additionally, gene NagE is involved in transport of glucosamine and N-acetyl 

glucosamine that also phosphorylates these substrates (Alvarez-Añorve et al., 2009). 

Figure 3.2: Figure showing maltose (a) and glucosamine and N-acetyl glucosamine (b) 

utilization pathways. 
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 The scatter plot (Figure 3.3) shows comparison of fitness scores of single gene 

deletion strains grown in maltose and glucose as sole carbon sources. As is evident in Figure 

3, fitness scores ≤ 5 are better correlated in comparison to fitness score of all genes. In 

general, fitness scores on glucose for same gene deletion is lesser compared to fitness score 

on maltose. Next, we focused on single gene deletions having negative fitness scores in 

maltose with no apparent loss of fitness in glucose. Genes having fitness score of ≥ 0 or ≥ -5 

are considered to have no effect on growth in respective carbon sugars. The gene malT has 

fitness scores of -22.7 and 3.2 in maltose and glucose respectively. As expected, malT is 

involved maltose utilization. It is a transcriptional activator of maltose regulon, which are 

responsible for uptake and catabolism of malto-oligosaccharide. Similarly, as expected gene 

malQ, which encoded enzyme for catabolism of maltose (Figure 2a), shows poor growth in 

maltose in comparison to glucose. Among components of maltose transporter malG, malK, 

malF shows varying degree of defect in growth in maltose. This shows that transport complex 

can probably assemble in absence of either of these components or maltose is transported in 

cell using other transport system. Interestingly, MalE, an important maltose binding protein 

exported in periplasmic space is responsible for activation of maltose transport does not show 

extensive fitness defect in maltose (-6.1) relative to glucose (-1.6).  

 Further, we analyzed genes with fitness defect in glucose relative to maltose. As 

mentioned before, gene fitness scores are correlated between maltose and glucose. However, 

genes such as pyrB, pyrC, pyrD, trpA, and cysA exhibited relative poor growth in glucose 

compared to maltose. Of these, pyrB, pyrC and pyrD are involved in de novo biosynthesis of 

uridine-5’-phosphate. superpathway of pyrmidine, purine, and histidine biosynthesis pathway 

(EcoCyc).   
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 Figure 3.3: Scatter plot of fitness score of single gene deletion strain on glucose versus 

maltose. 

 Similarly, genes fitness scores on sole carbon source as glucose are compared with 

amino sugars glucosamine and N-acetyl glucosamine as shown in Figure 3.4 and 3.5 

respectively. As observed before, higher correlation in fitness score is evident in scores are ≤ 

-5. Moreover, relatively a greater affect in growth on glucosamine and N-acetyl glucosamine 

is observed with respect to glucose as shown by higher magnitude of negative fitness score in 

amino sugars for a given deleted gene. Since NagB is an essential step in utilization of 

glucosamine, nagB deleted strain shows a low fitness score on glucosamine/N-acetyl 

glucosamine in comparison to glucose. A recent study has shown nagB that it is an essential 

gene for growth on glucosamine/N-acetyl glucosamine in Streptococcus pneumoniae (Afzal 

et al., 2016). However, E. coli ΔnagB strain is able to utilize amino sugars as sole carbon 

source. It is possible that alternate activity or promiscuous activity of enzyme GlmS, which 

converts fructose-6-phospate to glucosamine-6-phosphate in the biosynthesis of glucosamine 

compensates for deaminse activity in ΔnagB strains. In growth on N-acetyl glucosamine, 

apart from NagB, ΔnagA strain also shows lower fitness score in comparison to glucose. A 
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protein of unknown function encoded by yceB has relatively more defective growth on N-

acetyl glucosamine (fitness score: -13.4) in comparison to glucose (fitness score: -3.6). This 

gene may be involved in specific function in utilization of amino sugars that can be explored 

experimentally. 

 Interestingly, deletion of nagE, which encodes phosphoenolpyruvate:sugar phospho 

transferase system (PTS) permeases involved in transport of glucosamine/N-acetyl 

glucosamine does not show any growth defect on these carbon sources. It is possible that in 

ΔnagE strain other PTS permeases, such as for mannose/glucose may be responsible for 

transport of these amino sugars. In a recent study, it has been shown that components of 

mannose PTS viz. ManL, ManM and ManN plays dominant role in transport of amino sugars 

in S. mutans (Moye et al., 2014). Importantly, deletion of ManX, ManY and ManZ, which are 

E. coli homologues of ManL, ManM and ManN respectively shows slight lower (poor) 

fitness score on amino sugars.  
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Figure 3.4: Scatter plot of fitness score of single gene deletion strain on glucose versus 

glucosamine. 

Figure 3.5: Scatter plot of fitness score of single gene deletion strain on glucose versus N-

acetyl glucosamine. 
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3.2 Metabolic flux analysis and comparison it with fitness score 

obtained from single gene deletion mutants 

 In this study, we explore the possibility of using fitness score data in conjunction with 

theoretical metabolic flux models to understand the effect of gene deletions on metabolic 

networks and associated fluxes. Moreover, this will allow improving metabolic 

reconstruction models.  

 Overall, we have optimized biomass in both full metabolic flux model and for a given 

metabolic deleted gene. Then, relative biomass from FBA is compared with fitness score. 

Given that we are using known stoichiometric balanced reactions from E. coli, we may not 

observe concurrence between biomass optimized FBA models and fitness scores of single 

gene deletions strains. One of the reasons could be that a cell under various genotypic 

perturbations may not be involved in higher growth (improving biomass). However, such 

studies will provide limits of prediction from metabolic networks and give an opportunity to 

improve these theoretical models. To analyze and understand effect of gene deletion on 

metabolic networks, we hypothesized following in two situations: 

 If biomass from FBA models is unchanged or reduced marginally compared to wild 

type biomass, however fitness score predicts lower growth then we analyze (here FBA 

models are unable to predict in vivo conditions):  

1. Could this be a result of pleotropic effect of deleted gene? 

2. The alternate pathway in gene deletion may lead to harmful intermediates, which can 

affect growth of bacteria, such as reactive superoxide radicals. 

If gene deletion predicts zero biomass from FBA models, however, fitness score shows 

growth defect. This could be  

1. Could alternate pathways missing in FBA model? 
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2. Promiscuous enzymes can assist in survival of bacteria. However, does not 

compensate full activity of the deleted gene. 

 For our study, we have used recent full metabolic reconstructed E. coli model 

iJO1366 and used ‘cobraToolbox’ to perform flux balance analysis under various genotypic 

perturbation and change in carbon source for computation of bacterial growth (see methods). 

First, we optimized biomass production without any gene deletion where carbon source 

uptake rate is set at 20 mmol gDW-1 Hr-1 and aerobic condition is assumed with maximal 

allowed flux through exchange rate of oxygen of 1000 mmol gDW-1 Hr-1. Next, we used 

CobraToolBox function to delete gene and compute biomass under gene deletion condition.  

 The biomass computed using FBA models for wild type E. coli under various carbon 

sources (Glucose, Maltose, Glucosamine, and N-acetyl glucosamine). As expected maximum 

biomass is for growth on maltose as it is made up of 2 glucose units. This is followed by N-

acetyl glucosamine, which will provide additional 2 carbons from acetate moiety.   

Table 3.1: FBA computed biomass of wild type E. coli 

 Name of Carbon Source Uptake rate Biomass 

1 Glucose -20 1.986 

2 Maltose -20 3.985 

3 Glucosamine -20 1.986 

4 N-acetyl glucosamine -20 2.546 

 

 Subsequently, we deleted one gene at a time and re-computed biomass in FBA 

models. To begin with, genes are sorted based on their fitness score and we took top 30 gens 

for further analysis. Tables 3.2, 3.3, 3.4 and 3.5 summarizes biomass of single gene deletion 

under various sole carbon source. As is evident, most of the genes having lower fitness score 

are common in fermentable carbon souces. 
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Table 3.2: FBA computed single gene deletions under Glucose 

 

 

 

 

 

Sr. No Gene Deleted Growth rate Growth rate relative to WT Fitness Score

1 ECK0075-LEUB 0 -1.9861 -28.542293

2 ECK0002-THRA 1.9861 0 -22.093327

3 ECK0033-CARA 1.9861 0 -19.127788

4 ECK3161-ARGG 0 -1.9861 -18.4895

5 ECK2019-HISA 0 -1.9861 -18.126139

6 ECK2017-HISB 0 -1.9861 -16.956621

7 ECK1255-TRPB 0 -1.9861 -16.844067

8 ECK2021-HISI 0 -1.9861 -16.837168

9 ECK2836-LYSA 0 -1.9861 -16.822236

10 ECK3823-METE 1.9861 0 -16.820471

11 ECK2814-ARGA 0 -1.9861 -16.809406

12 ECK0244-PROA 1.9844 -0.0017 -16.792507

13 ECK2909-SERA 1.9441 -0.042 -16.78734

14 ECK2016-HISC 0 -1.9861 -16.543581

15 ECK3951-ARGH 0 -1.9861 -16.291227

16 ECK2020-HISF 0 -1.9861 -16.211824

17 ECK3933-METF 0 -1.9861 -16.19766

18 ECK3764-ILVA 1.9861 0 -16.014049

19 ECK3822-METR -1.9861 -15.951693

20 ECK2597-TYRA 0 -1.9861 -15.620196

21 ECK2014-HISG 0 -1.9861 -15.38656

22 ECK2555-PURL 0 -1.9861 -15.224041

23 ECK2323-AROC 0 -1.9861 -14.988352

24 ECK3376-AROB 0 -1.9861 -14.601909

25 ECK3763-ILVD 0 -1.9861 -14.501324

26 ECK3947-PPC 1.9801 -0.006 -14.500779

27 ECK3762-ILVE 0 -1.9861 -14.459306

28 ECK3998-PURH 0 -1.9861 -14.410078

29 ECK4210-CYSQ 0 -1.9861 -14.184101

30 ECK2747-CYSD 0 -1.9861 -14.156461
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Table 3.3: FBA computed single gene deletions under Maltose 

 

 

 

 

Sr. No Gene Deleted Growth rate Growth rate realted to WT  Fitness Score

1 ECK0075-LEUB 0 -3.9854 -20.755706

2 ECK0002-THRA 3.9854 0 -11.123402

3 ECK0033-CARA 3.9854 0 -12.527022

4 ECK3161-ARGG 0 -3.9854 -22.496025

5 ECK2019-HISA 0 -3.9854 -20.821367

6 ECK2017-HISB 0 -3.9854 -20.871902

7 ECK1255-TRPB 0 -3.9854 -14.25015

8 ECK2021-HISI 0 -3.9854 -17.529904

9 ECK2836-LYSA 0 -3.9854 -21.912441

10 ECK3823-METE 3.9854 0 -18.986523

11 ECK2814-ARGA 0 -3.9854 -15.33372

12 ECK0244-PROA 3.9819 -0.0035 -15.463079

13 ECK2909-SERA 3.901 -0.0844 -18.615858

14 ECK2016-HISC 0 -3.9854 -13.452438

15 ECK3951-ARGH 0 -3.9854 -20.33496

16 ECK2020-HISF 0 -3.9854 -14.379435

17 ECK3933-METF 0 -3.9854 -16.319253

18 ECK3764-ILVA 3.9854 0 -16.695228

19 ECK3822-METR -3.9854 -13.078199

20 ECK2597-TYRA 0 -3.9854 -12.505323

21 ECK2014-HISG 0 -3.9854 -11.611893

22 ECK2555-PURL 0 -3.9854 -15.050241

23 ECK2323-AROC 0 -3.9854 -10.171083

24 ECK3376-AROB 0 -3.9854 -20.531727

25 ECK3763-ILVD 0 -3.9854 -14.706607

26 ECK3947-PPC 3.9733 -0.0121 -22.0784

27 ECK3762-ILVE 0 -3.9854 -15.001737

28 ECK3998-PURH 0 -3.9854 -32.465045

29 ECK4210-CYSQ 0 -3.9854 -13.098526

30 ECK2747-CYSD 0 -3.9854 -9.757666
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Table 3.4: FBA computed single gene deletions under Glucosamine 

 

 

 

 

 

 

Sr. No Gene Deleted Growth rate Growth rate related to WT Fitness Score

1 ECK0075-LEUB 0 -1.9867 -31.952112

2 ECK0002-THRA 1.9867 0 -19.419673

3 ECK0033-CARA 1.9867 0 -21.628953

4 ECK3161-ARGG 0 -1.9867 -20.889105

5 ECK2019-HISA 0 -1.9867 -19.522231

6 ECK2017-HISB 0 -1.9867 -18.979149

7 ECK1255-TRPB 0 -1.9867 -20.725781

8 ECK2021-HISI 0 -1.9867 -21.803142

9 ECK2836-LYSA 0 -1.9867 -22.816676

10 ECK3823-METE 1.9867 0 -22.044893

11 ECK2814-ARGA 0 -1.9867 -20.909752

12 ECK0244-PROA 1.985 -0.0017 -15.397838

13 ECK2909-SERA 1.9447 -0.042 -22.501464

14 ECK2016-HISC 0 -1.9867 -17.847272

15 ECK3951-ARGH 0 -1.9867 -19.029234

16 ECK2020-HISF 0 -1.9867 -17.524683

17 ECK3933-METF 0 -1.9867 -19.53524

18 ECK3764-ILVA 1.9867 0 -16.058728

19 ECK3822-METR -1.9867 -18.059164

20 ECK2597-TYRA 0 -1.9867 -16.309859

21 ECK2014-HISG 0 -1.9867 -15.663783

22 ECK2555-PURL 0 -1.9867 -16.536849

23 ECK2323-AROC 0 -1.9867 -20.293052

24 ECK3376-AROB 0 -1.9867 -20.176259

25 ECK3763-ILVD 0 -1.9867 -17.041873

26 ECK3947-PPC 1.9807 -0.006 -23.327251

27 ECK3762-ILVE 0 -1.9867 -15.540219

28 ECK3998-PURH 0 -1.9867 -29.70611

29 ECK4210-CYSQ 0 -1.9867 -10.025838

30 ECK2747-CYSD 0 -1.9867 -20.380946
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Table 3.5: FBA computed single gene deletions under N-acetyl Glucosamine 

  

 The predicted biomass of ΔleuB strain under various carbon sources is 0. However, 

fitness score suggests ΔleuB strain shows growth defect. LeuB is involved in leucine 

biosynthesis, which is important for bacterial survival. A recent study has shown that D-

malate dehydrogenase is a generalist enzyme, which can perform same enzymatic reaction as 
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LeuB (Vorobieva et al., 2014). This may be the reason of low fitness on fermentable carbon 

sources.  We are analyzing other gene deletion strains to understand its effect of in silico 

metabolic models. 

 The preliminary analysis of comparing single gene deletion strains fitness scores with 

FBA predicted biomass on various fermentable carbon sources showed that not all gene 

deletion predicted no or poor growth phenotype in FBA models. In fact, in FBA we obtained 

either same biomass as without gene deletion or zero biomass. Further, detailed analysis of 

metabolic models and FBA will be required to fully explore reliability of fitness score 

prediction using flux distribution in metabolic models. 
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Conclusions 
 In the first section, as expected comparison of fitness scores of single gene deletion 

strains between maltose/glucosamine/N-acetyl glucosamine to glucose identified fermentable 

carbon sources specific enzymes. However, we identified transporter of amino sugars NagE 

is dispensable because mannose transporter, ManXYZ can actively transport amino sugars in 

absence of NagE. Another gene yceB, without known function, showed growth fitness defect 

on amino sugars that suggest condition specific gene function of which can be explored 

experimentally. 

 The preliminary analysis of comparing single gene deletion strains fitness scores with 

FBA predicted biomass on various fermentable carbon sources showed that not all gene 

deletion predicted no or poor growth phenotype in FBA models. In fact, in FBA we obtained 

either same biomass as without gene deletion or zero biomass. Further, detailed analysis of 

metabolic models and FBA will be required to fully explore reliability of fitness score 

prediction using flux distribution in metabolic models. 
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