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Abstract

This thesis focusses on oscillation revivals in networks of nonlinear systems me-

diated by a common environment. Specifically, we consider groups of Landau-

Stuart (LS) oscillators, in similar or distinct dynamical states, connected indi-

rectly via a common environment. Such an environment was shown to aid the

revival of suppressed oscillations at sufficiently high coupling strengths [1]. We ex-

tend this study further by considering the dynamical effects of single and multiple

blinking connections. First, we consider a single blinking oscillator-environment

connection in a network comprised of two groups, with two oscillators in each

group. We explore different combinations of dead and oscillatory group/s. We

find that when both the groups are initially in the steady-state (OD) regime, their

oscillations revive when one of the connections blinks on-off. The amplitude of

these oscillations increases with increasing time-period tpd of blinking. When one

of the groups is initially in the oscillatory regime, the revived oscillations display

distortions in the waveforms of their time series due to the connection switching

on-off. Further, the bifurcation diagram for local minima and maxima which

showed only one minima and one maxima for static connections, now exhibits a

continuum or band of minimas and maximas. For multiple blinking connections

we first investigate the scenario where one group had blinking connections, while

the other group has all static connections. We then go on to study the case where

all oscillator-environment connections are blinking. There were two distinct cases

we consider here. First we consider the links to switch on-off together (i.e. in-

phase blinking connections) and secondly, the links switch on-off alternately (i.e.

out of phase blinking connections). When connections of one group are blink-

ing in-sync, the oscillations do not revive till ε ' 1.4. On the other hand, the

oscillations revive quickly if the connections alternately blink on-off.

vii





Chapter 1

Introduction

Mean-field diffusive coupling in nonlinear oscillators leads to a transition from

oscillatory to amplitude death (AD) regime in the parameter space of the coupling

strength and mean-field control parameter [2]. A network containing such various

groups of nonlinear oscillators in different dynamical states (each group with

different control parameters) can be defined. A common environment is used

to connect these groups of oscillators (G1 and G2) thereby making a complete

network structure [1]. The entire network can be represented by Eq.(1.1).

Figure 1.1: Schematic of the described network with M,N = 2.
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Ẋi,j = F (Xi,j) + eoβ(QiX̄i −Xi,j) + εαiu,

u̇ = −ku+
ε

NM

M∑
i=1

αT
i

N∑
j=1

Xi,j (1.1)

where i = 1, 2, ...M and j = 1, 2, ...N , i.e. there are M number of groups

in this network with each group having N oscillators. The coupling strength eo
defines the mean-field coupling within the group and Qi is the control parameter

determining the weight of the mean-field. Coupling strength ε connects these

independent groups of oscillators via the common environment. A schematic

diagram is given in Fig.(1.1) to elucidate the overall structure of this network.

Figure 1.2: Network without blinking: time series with εo = 6 (a) G1 at q1 = 0.4,
(b) G2 at q2 = 0.6 and common environment for ε = 0.9. Corresponding figures
(d), (e) and (f) for 1 blinking connection in G1(black) with blinking time period
tpd = 2.

Stuart-Landau (LS) limit cycle oscillators with intrinsic-frequency ω = 2 have

been employed to carry out the numerical results given by Eq.(1.2).
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ẋi,j = (1− x2i,j − y2i,j)xi,j − ωiyi,j + eo(Qix̄i − xi,j)
ẏi,j = (1− x2i,j − y2i,j)yi,j + ωixi,j + εu

u̇ = −ku+ εȳ (1.2)

Here, the choice of parameters eo and Qi allows us to put each of the individual

group either in the oscillatory state or steady state (HSS/IHSS). To see the

competition between groups of different dynamical states parameters has been

chosen (eo) such that G1 will remain in oscillation death state (IHSS) with Q1 =

0.4 and G2 in the oscillatory state with Q2 = 0.9. As a result of the indirect

interaction, oscillations revive in the group G1 which initially had fixed point

dynamics shown in Fig.1.2(a),(b) for different values of ε. If ε is increased too

much, revived oscillations again die out, but this time it drags the healthy group

G2 with itself towards the steady state (Fig.1.2(c)).

Figure 1.3: Network without blinking: Bifurcation diagram showing Amplitude
(Eq.2.4) and local minima-maxima x-variable of revived oscillations changing
with ε.
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A bifurcation diagram has been given in Fig.1.3(b) to understand the role of

ε more clearly which shows the local minima and maxima of the x variable of

all the oscillators of both the groups. Here 2 transition points are clearly visible;

one at ε = 1 and another at ε ' 1.7. First transition point makes both the

revived oscillators (red) synchronized, and another one is the transition towards

the steady state of the entire network. Fig.1.3(a) shows the amplitude of the

revived oscillations (black) which keeps increasing till first transition point, then

keeps decreasing till the second transition where all the oscillations die out.

Extending the results mentioned above, in this thesis we study the effect of

time-varying links on the spatiotemporal patterns. Specifically, we consider one or

more connections with the environment to be periodically blinking, i.e. the links

to the environment of some of the oscillators are switched on and off periodically.

We look for the effects of these blinking links on pattern formation in the entire

network.
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Chapter 2

Network with Blinking

Connections with the

Environment

First, we describe the network with blinking connections, mathematically given

by the following generalized dynamical equation:

ẋi,j = f(xi,j, yi,j) + eo(Qix̄i − xi,j)
ẏi,j = g(xi,j, yi,j) + εΓi,j(tpd)u (2.1)

u̇ = −ku+
ε

MN
〈Γ, y〉F

where all the parameters are as defined in the previous section. Γ(tpd) is

the connectivity matrix with elements Γi,j(tpd) which is either 1 or a square wave

function oscillating between 0 and 1 with time period tpd. 〈Γ, y〉F is the Frobenius

inner product which is a component-wise inner product of two matrices (Γ and

y) and returns the sum of all elements of the resulting matrix.

We consider two groups of Stuart-Landau(LS) oscillators connected via com-

mon environment given by Eq.(2.2) and can be schematically represented by

Fig.(2.1).

ẋi,j = (1− x2i,j − y2i,j)xi,j − ωiyi,j + eo(Qix̄i − xi,j)
ẏi,j = (1− x2i,j − y2i,j)yi,j + ωixi,j + εΓi,j(tpd)u

u̇ = −ku+
ε

4
〈Γ, y〉F (2.2)
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Figure 2.1: Schematic of the described network with M,N = 2.

Here matrix Γ can be given by Eq.2.3 where only its first element Γ1,1 is

blinking with time-period tpd and rest are 1, i.e. one link switches on-off, and the

rest are static connections permanently connecting the corresponding oscillators

with the environment.

Γ(tpd) =

(
Γ1,1 1

1 1

)
2×2

(2.3)

We consider values of eo and Qi for which each group of oscillators occur in

different dynamical states: oscillatory/active or dead/inactive (which could be

an AD or OD). We consider the following combinations of Dead and Oscillatory

groups with blinking connections:

G1 (with one blinking connection) G2 (with all static links)

OD OD

OD Oscillatory

Oscillatory OD

Oscillatory Oscillatory

6



2.1 G1 and G2 in OD(IHSS)-State with one blink-

ing connection

Here one oscillator from the group G1 has a blinking connection with the en-

vironment, with the period of blinking tpd = 2. We study the system with

representative values of ε = 1.5 and eo = 6, where both groups (if independent)

will yield Oscillation Death (OD) states at Q1 = 0.4 and Q2 = 0.6.

On comparing with the case of static connections between the groups and the

environment (cf. Fig.2.2a,b and c), we observe that oscillations arise when one of

the connections with the environment starts blinking (cf. Fig.2.2d). Further os-

cillations also emerge in the environment (cf. Fig.2.2f). This oscillatory influence

reaches group G2, which has only static links, via coupling through the common

environment, and this group also starts to oscillate.

Figure 2.2: Time series of the network without blinking connection, for ε = 1.5
and εo = 6 in Eqn. 2.2. Here (a) group G1 with q1 = 0.4, (b) group G2 with
q2 = 0.6, and (c) environment u. Time series of the network with one blinking
connection: (d), (e) and (f) for the case where group G1 (black) has one blinking
connection, with blinking time period tpd = 2.

To obtain a clearer picture of the changing dynamics of the oscillators, we
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plotted the bifurcation diagrams of the oscillator with blinking connections, X1,1,

in Fig. 2.3 Row-1(a). Specifically, the figure shows the local minima and maxima

of the x-variable of oscillator X1,1 from the group G1. Up to coupling strength

ε ' 2, period-1 oscillations appeared in X1,1. After that, the period of oscillations

increased, and more significantly the effect of the blinking link is now apparent

even in the oscillator X1,2 which has a static connection with the environment

(cf. Fig. 2.3 Row-1(b)).

Figure 2.3: Row-1: Bifurcation diagram showing local minima and maxima of
(a) X1,1 oscillator with blinking connection and (b) X1,2 oscillator with fixed
connection with the common medium. Row-2: Amplitude ofX1,1(black):blinking,
X1,2(red):non-blinking and of G2(brown) for (a) tpd = 1 and (b) tpd = 2. Other
parameters are eo = 6, Q1 = 0.4 and Q2 = 0.6 in Eqn. 2.2.

Then we study the amplitude of the x-variables of the oscillators, from both

groups, given by equation2.4:

Amplitude Xi,j = | Global maxima - Global minima | (2.4)

The Amplitude Xi,j of x-variable is plotted in Fig. 2.3 Row-2 for different ε
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values. For blinking time period tpd = 1 the amplitude of X1,1 (i.e. the oscillator

with blinking environmental connection) and also X1,2 (i.e. the oscillator with

static connection) reaches its maximum at ε ' 1.69 (cf. Fig. 2.3 Row-2(a)).

However, at this ε, the amplitudes of the oscillators in group G2 becomes close

to 0. If we look at Fig. 1.3(a) and (b), ε ' 1.69 is the point of transition from

the region of revived oscillations to the global steady state region. Further, this

ε value remains constant under varying blinking time-periods (such as tpd = 2

shown in Fig. 2.3 Row-2(b)).

2.2 G1 in OD-State (IHSS) with one Blinking

Connection and G2 in Oscillatory State

Here the dead group G1 (q1 = 0.4) has one blinking connection and the oscilla-

tory group G2 (q2 = 0.9) has static links, with εo = 6. The time series of group

G1 for ε = 0.9 is shown in Fig.2.4(d). The oscillator with blinking connection

X1,1 is shown in black colour, and it exhibits a modified waveform as a result of

its blinking connection with the common medium. Due to the altered dynamics

of X1,1, the dynamics of X1,2 is also affected, as it is connected directly to X1,1

through mean-field coupling within the group G1. This can be more clearly visu-

alized in Fig.2.4(e) which displays the phase portraits, where a fuzzy band starts

to appear in X1,2 (red), representing irregularity in the period of oscillations.

A bifurcation diagram can be drawn showing local minima and maxima of the

time-series of each of the oscillators Xi,j. Such a local minimum and maximum

could be obtained from the time-series using the code given in Appendix-A.

Bifurcation diagram shown in Fig. 2.5 for 0.1 ≤ ε ≤ 3 with different blinking

time periods tpd = 1 and 5. The case of no blinking connections is displayed as

a reference. When X1,1 has a blinking connection with time-period tpd = 1, for

higher ε values (up to ε < 1.7), the period of oscillations increases. For ε > 1.7

the entire network collapses into a steady state region (see Fig. 1.3).

2.3 G1 in Oscillatory State with one Blinking

Connection and G2 in OD-State (IHSS)

As in the previous section, here we again consider a network containing 2-groups

G1 and G2, where one is in the oscillatory state and another is in the steady state.

Unlike in the section here, we consider 1-blinking connection with the oscillatory

9



Figure 2.4: Time series of a network without blinking connections connections,
with ε = 0.9 and εo = 6 in Eqn. 2.2. Here (a) group G1 with q1 = 0.4, (b) group
G2 with q2 = 0.9, and (c) environment u. Corresponding figures (d), (e) and (f),
for the case where group G1 (black) has one blinking connection, with blinking
time period tpd = 2.

group G1 with Q1 = 0.9 to have one blinking connection, while group G2 with

Q2 = 0.4 has only static connections. Parameter eo = 6 in the entire network

structure.

The revived oscillations of G2 show increased time-period of oscillations due

to the blinking connection of the common environment with G1 (which is in

the oscillatory regime). This is evident from Fig. 2.6 for blinking time-period

tpd = 1. As we increase the blinking time-period to 2, the pattern of oscillations

changes drastically in group G2. This difference in patterns can be seen easily

by comparison with Fig. 2.6 (b) and (e). The common environment u, which

is exponentially decaying in nature when uncoupled to the oscillator groups,

develops regular multi-periodic oscillations due to the blinking connection of X1,1

with it (see Fig. 2.6 (c) and (f)).

The bifurcation diagram showing local minima and maxima of X-variable

is plotted in Fig. 2.7 for blinking time-period tpd = 1 and 5. At tpd = 1 the
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Figure 2.5: Bifurcation diagrams displaying the local minima and maxima of x-
variables in the network for (a,b,c) group G1, and (d,e,f) group G2, for the static
case (a,d), for tpd = 1 (b,e) and tpd = 5 (c,f).

bifurcation diagram of G2 (with static connections) shows almost no fuzziness,

nor any major modification in temporal patterns. However, the transition point

to steady state, which was observed earlier to be at ε ' 1.7, reduces to ε ' 1.3

(cf. Fig. 2.7(b)).
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Figure 2.6: Network with one blinking connection in the Oscillatory Group: time
series with eo = 6, G1 at q1 = 0.9 with blinking time period tpd = 1 in (a),(b) and
(c) for ε = 0.9. Similarly, time series with eo = 6, G2 at q2 = 0.4 with blinking
time period tpd = 2 in (d),(e) and (f) for ε = 0.9.

Figure 2.7: Bifurcation diagram of local minima and maxima of x-variables in
the network for blinking time periods: (a) G1(q1 = 0.9), (d) G2(q2 = 0.4) for
Static connections. Similarly (b) and (e) at tpd = 1 and (c) and (f) at tpd = 5 for
1-blinking connection in G1.
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Chapter 3

Network with Multiple Blinking

Connections with the

Environment

Following the lines of the previous chapter, we introduce blinking effects in both

the connections of X1,1 and X1,2 of the group G1 or/and G2 with the common

environment. In the subsequent sections we explore the following cases: (i) both

groups are initially in the steady-state (OD) regime, and (ii) one of the groups is

initially in the steady-state (OD) regime.

3.1 G1 and G2 in OD-state with multiple-blinking

connections

To study the effect of multiple-blinking connections when both oscillator groups

G1 (with Q1 = 0.4) and G2 (with Q2 = 0.6) are in Oscillation Death (OD) state,

we first redefine the connectivity matrix Γ:

Γ(tpd) =

(
Γ1,1 Γ1,2

1 1

)
2×2

(3.1)

which shows connections of X1,1 and X1,2 to be blinking with the environment

while rest of the connections (i.e. of G2) are static. In this section, we study two

cases:

(a) when both the connections are blinking together, i.e. with zero phase differ-

ence and
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(b) when they are blinking alternatively, i.e. with a phase difference of π/2

between them.

Figure 3.1: Amplitude of G1 (red) where both connections are blinking. Here (a)
and (c) are the cases with zero-phase difference between the blinking connections,
while (b) and (d) have a phase difference of π/2 between the blinking connections.
G2-oscillators are shown with blue color. The blinking time-period tpd = 2 in
(a),(b) and tpd = 4 in (c),(d).

We observed that when both the connections blink in synchronization, i.e.

with the zero-phase difference between them, the entire network remains in

steady-state dynamics up to ε ' 1.4 (see Fig. 3.1 (a) and (c)). For ε > 1.4

the oscillations revive, and the G1 oscillators (both with blinking connections)

have higher amplitude oscillations as compared to that of the oscillators in group

G2. However, when the connections blink alternately, i.e. with a π/2-phase dif-

ference, oscillations arise in both the groups with the time-period of oscillation

equal to that of the blinking time-period tpd given in Fig.3.1 (b) and (d).

Interestingly, for 0.1 < ε < 1.4 the amplitude of G2 (which has all-static

connections) becomes more than that of G1 (with alternate-blinking connections).

14



It appears that the common environment has amplified the oscillations arising in

group G1 due to the blinking connections. On increasing the tpd from 2 to 4, the

amplitude of the oscillations also increased (ref. Fig. 3.1 (b) and (d)). Further,

for ε > 1.4 there is a sudden flip in the amplitude of both the groups. Now the

amplitude of group G1 becomes large, while in group G2 the amplitude becomes

almost 0.

Next, we introduced blinking connections in G2 also, along with the blinking

connections inG1, while keeping both groups in the OD-state. So the connectivity

matrix becomes:

Γ(tpd) =

(
Γ1,1 Γ1,2

Γ2,1 Γ2,2

)
2×2

(3.2)

Figure 3.2: Amplitude of oscillations in group G1 (red and black) and group
G2 (blue and purple), where both groups have blinking connections, with the
blinking time-period for G1 being tpd1 = 2, and for G2 being tpd2 = 4. The phase
difference of the blinking connections (0 or π/2 within the group) is mentioned
on the top right corner of each box.
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We introduced the blinking effect also in connections of G2 for the case given

in Fig.3.1 (a). So, here G1 and G2 both have in-sync (i.e. zero phase difference)

blinking connections with the environment. The amplitude of oscillations in

group G2 still remains 0 for 0.1 < ε < 1.7. However, the transition point to

revived oscillations now increases to ε ' 1.7, as compared to 1.4 for the case

of all-static G2 connections. For ε > 1.7 the amplitude of oscillations in G2

becomes larger than that of G1 (see Fig. 3.2 (a)). This is also observed when G2

connections are made to blink alternately (see Fig. 3.2 (b)).

Fig. 3.1 (b) showed the case where G1 had alternately blinking connections.

Now, if we make the links in G2 also blink on-off, the oscillators X2,1 and X2,2

which had zero amplitude for ε > 1.4 show a revival of oscillations, with the

amplitude of G2 being more than that of G1. This holds for the case of both 0

and π/2 phase difference between the blinking connections of G2.

3.2 G1 in OD-state with multiple-blinking con-

nections and G2 in Oscillatory state

Here we consider G1 in the OD state with Q1 = 0.4, with both its connections

to the environment blinking on-off. Group G2 has all static connections and

is in the oscillatory state with Q2 = 0.9. When both connections of G1 blink

together (in-phase), the oscillations still revive as one can expect from all-static

connections[1] or for the case of one blinking connection given in Section 2.2.

When both connections blink in-synchronization, an envelope develops in the

revived oscillations and the waveforms of this envelope are in phase for both X1,1

and X1,2 (Fig. 3.3 (a)). On the other hand, as expected, when these connections

blink alternately, the envelope of the waveforms of X1,1 and X1,2 is out-of-phase

(Fig. 3.3 (b)).

The bifurcation diagram showing local minima and maxima of x -variables

of X1,1 and X1,2 for in-phase blinking is shown in Fig. 3.3(c). A system where

both connections are blinking displays a symmetric bifurcation diagram till ε ' 2

(unlike the case of one blinking connection shown in Fig. 2.5). The spread in

local minima and maxima becomes less when the connections blink out-of-phase.

Further, we consider the connections of G2 with the environment to also

switch on-off with the blinking time-period tpd = 1.6, with group G1 being in the

OD-state (with Q1 = 0.4) and group G2 in an oscillatory state (with Q2 = 0.9).

Fig. 3.4 (a) shows the bifurcation diagram of x-variables of oscillators in group
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Figure 3.3: Time series for the case of ε = 0.9, where both the oscillators of
G1 have blinking connections with (a) zero phase difference and (b) π/2-phase
difference between the on-off connections. Bifurcation diagram of local minima
and maxima of x-variables of oscillators in group G1, for blinking time-period
tpd = 1.6, when there is (c) zero phase difference and (d) π/2 phase difference
between the blinking connections.

G1 when all connections are blinking on-off in-sync with each other within the

group. If we compare it with the case of all-static connections (cf. Fig. 1.3b)

the transition from bistable to mono-stable orbit is again clearly visible, though

this occurs at higher coupling strengths ε ' 2 (vis-a-vis ε ' 1 in Fig. 1.3b).

This transition disappeared when G1 had only in-phase blinking connections (ref.

Fig.3.3 (c)). When all the connections of G1 and G2 are alternately blinking

within the group (Fig.3.4 (c)), the bifurcation diagram is similar to that of all-

static connections (Fig.1.3 (b)), with an additional small fuzziness in the multiple

local minima and maxima arising from the connections blinking on-off.

17



Figure 3.4: Bifurcation diagram of local minima and maxima of x-variables for
blinking time-period tpd = 1.6: when (a),(b) zero phase difference and (c),(d)
π/2-phase difference between blinking connections in both G1 (Q1=0.4) and G2

(Q2=0.9).
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Conclusion

The phenomenon of oscillation revival has been a trending topic of research nowa-

days in various fields [3, 4, 5, 6]. This thesis focuses on such oscillation revivals in

networks of nonlinear systems mediated by a common environment. Specifically,

we explore the dynamics of groups of Landau-Stuart (LS) limit-cycle oscillators,

in similar or distinct dynamical states, connected indirectly via a damped com-

mon environment. Such an environment is shown to aid the revival of suppressed

oscillations at sufficiently high coupling strengths [1]. Here we have extended this

investigation further, and considered the dynamical effects of single and multiple

blinking connections.

First, we started with a single blinking oscillator-environment connection in

a network comprised of two groups, with two oscillators in each group. We ex-

plored different combinations of dead and oscillatory group/s. We found that

when both the groups were initially in the steady-state (OD) regime, their oscil-

lations revived when one of the connections blinked on-off. Theplitude of these

oscillations increased with increasing time-period tpd of blinking. When one of the

groups was initially in the oscillatory regime, the revived oscillations displayed

distortions in the waveforms of their time series due to the connection switching

on-off. Further, the bifurcation diagram for local minima and maxima which

showed only one minima and one maxima for static connections, now exhibited

a continuum or band of minimas and maximas.

For multiple blinking connections we first investigated the scenario where one

group had blinking connections, while the other group had all static connections.

We then went on to study the case where all oscillator-environment connections

were blinking. There were two distinct cases we considered here. First we con-

sider the links to switch on-off together (i.e. in-phase blinking connections) and

secondly, the links switch on-off alternately (i.e. out of phase blinking connec-

tions). When connections of one group were blinking in-sync, the oscillations

do not revive till ε ' 1.4. On the other hand the oscillations revive quickly if
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the connections switch on-off out-of-phase, i.e. the connections are alternately

blinking.

In summary, we have investigated the dynamics of groups of limit cycle os-

cillators connected via a common external environment. Specifically we have

explored the role of blinking oscillator-environment connections in the important

phenomenon of oscillation revival.
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Appendix A

C++ function for finding local min-

imas and maximas

The time-series of the oscillators can be filled into an array after leaving enough

of the transients. Such an array of time-series (data[ ]) can easily be used for

finding the local minima and maxima by accessing each element of that array.

1 f loat ∗ gminmax( f loat data [ ] )

2 {
3 int l ength = 10000 ;

4 f loat min [ 2 0 0 0 0 ] , max [ 2 0 0 0 0 ] ;

5 int c1=0, c2 =0;

6 f loat AvgMin=0, AvgMax=0, fmin , fmax ;

7 stat ic f loat packed [ 2 ] ;

8

9 for ( int i =5; i<l ength −5; i++)

10 {
11 i f ( data [ i ]<= data [ i −2] && data [ i ]<= data [ i +2])

12 {
13 min [ c1 ] = data [ i ] ;

14 c1++;

15 }
16

17 i f ( data [ i ]>= data [ i −2] && data [ i ]>= data [ i +2])

18 {
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19 max [ c2 ] = data [ i ] ;

20 c2++;

21 }
22 }
23

24 for ( int i =0; i<= c1 ; i++)

25 {
26 AvgMin += min [ i ] ;

27 }
28 for ( int i =0; i<= c2 ; i++)

29 {
30 AvgMax += max [ i ] ;

31 }
32

33 fmin = AvgMin/( c1 +1);

34 fmax = AvgMax/( c2 +1);

35

36 packed [ 0 ] = fmin ;

37 packed [ 1 ] = fmax ;

38

39 return packed ;

40 }
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Appendix B

C++ function for finding Global

minima and maxima

Similar to Appendix A the Global minimum and maximum can be found using

an array of time-series (data[ ])

1 f loat ∗ gminmax( f loat data [ ] )

2 {
3 int l ength = 10000 ;

4 f loat min , max ;

5 min = data [ 0 ] ;

6 max = data [ 0 ] ;

7 stat ic f loat packed [ 2 ] ;

8

9 for ( int i =10; i<l ength ; i++)

10 {
11 i f ( data [ i ]<= min)

12 {
13 min = data [ i ] ;

14 }
15

16 i f ( data [ i ]>= max)

17 {
18 max = data [ i ] ;

19 }

23



20 }
21

22 packed [ 0 ] = min ;

23 packed [ 1 ] = max ;

24

25 return packed ;

26 }
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