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Abstract

In this thesis, we studied some basic properties of dynamical systems in the

first chapter, in particular, Linear Stability analysis which provides a framework

to understand the stability of a dynamical system in the neighborhood of fixed

points.

In the second chapter, we apply the Linear stability formalism to a general

system coupled by mean-field diffusive coupling. We then use the framework to

analyze the steady state of groups of Landau Stuart(LS) Oscillators coupled via

a common environment. We obtain the different steady-state solutions of the LS

Oscillator in the parameter space of the oscillator-environment coupling strength.

In the third chapter, we study the multiplex network. Our main emphasis was

on the intra-layer and inter-layer synchronization and to understand the effect of

various parameters on the synchronization region. We considered the prototypical

logistic map at the nodes of both layers of the multiplex network. Further, we

study the emergent dynamics under parameter mismatch in the layers of the

multiplex network.

vii





Chapter 1

Introduction

1.1 Linear Stability Analysis

First, we consider a one-dimensional flow, given by the differential equation ẋ =

f(x). When f(x∗) = 0, x∗ is a fixed point(s) [14] Now, fixed points can be

classified into two principal types:

• Stable fixed points: these are fixed points in which sufficiently small dis-

turbances around the fixed point decay with time.

• Unstable fixed points: these are fixed points in which small disturbances

around the fixed point grow in time.

We would like to have a more quantitative measure of stability, such as a rate

of decay or growth to a fixed point. We can get such information by linearizing

about a fixed point as follows.

Let x∗ be a fixed point and η(t) = x(t)− x∗ be a small perturbation away

from x∗. Differentiating yields,

η′ = x′ + 0 = x′ (1.1)

as x∗ is constant.Now, η′ = x′ = f(x) = f(x∗+η). Using, Taylor series expansion

we get,

f(x∗ + η) = f(x∗) + η × f ′(x∗) +O(η2) (1.2)
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where O(η2) denotes quadratically small terms in η and f ′(x∗) = 0 since x∗ is a

fixed point. Considering O(η2) terms to be negligible, we obtain the following:

η′ ≈ η × f ′(x∗) (1.3)

This is the linear equation in η and called a linearization about x∗ [14]. Now

perturbation η(t) grows exponentially if f ′(x∗) > 0 and decays if f ′(x∗) < 0. So

in the former case, x∗ is an unstable fixed point and in latter case it is a stable

fixed point.

For a 2-dimensional flow given by ẋ = f(x), with x having two components,

a detailed analysis of the fixed points can be seen in 1.1.

Figure 1.1: Stability of fixed points

Here, τ and ∆ denotes the trace and determinant of the Jacobian matrix of

f(x) respectively. We can observe the following from the figure:

• If ∆ < 0, the eigenvalues are real and have opposite signs,then the fixed

point is a saddle [14]

• If ∆ > 0, the eigenvalues are either real with same signs(nodes), or complex

conjugate (spirals and centers) [14].

• When τ < 0, eigenvalues have negative real part, so the fixed point is stable

[14].

So, for a fixed point to be stable Re(λ) < 0 for all eigenvalues.
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1.2 Bifurcation

The qualitative structure of the flow can be changed as parameters are varied. In

particular, fixed points can be created or destroyed by changing the parameters.

These qualitative changes are called bifurcations, and the parameters values at

which they occur are called bifurcation points [14].

1.2.1 Saddle-Node Bifurcation

The saddle-node is the bifurcation in which fixed points are created and destroyed.

As a parameter is varied, two fixed points move toward each other, collide and

then disappears [14].

Example:

ẋ = r + x2 (1.4)

where r is a parameter. If we plot x versus ẋ then we get a parabola which

depends on the value of r. If r < 0 then there will be two fixed points. As r

approaches 0, two fixed points start to move towards each other and at r = 0 we

get only one fixed point and as becomes r > 0 the fixed points disappear.

Stability of the fixed points can be checked by linearisation method. So,

f(x) = 0 gives r = −x2 and at all the points where f ′(x∗) < 0 will be stable

points and vice-versa.

1.2.2 Transcritical Bifurcation

In transcritical bifurcation, fixed points must exist for all the values of a parameter

and can never be destroyed. So, as a parameter is varied the stability of a fixed

point changes.[14]

The normal form of a transcritical bifurcation is

ẋ = rx− x2 (1.5)

So, for these equation x∗ = 0 is a fixed point for all values of r. When r < 0,

x∗ = 0 is a stable fixed point and at r = 0 it changes to half-stable and as soon

as r > 0 it becomes unstable.
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1.2.3 Pitchfork Bifurcation

This bifurcation is common in physical systems having symmetry. In such cases,

fixed points tend to appear and disappear in symmetrical pairs [14].

There are two types of Pitchfork Bifurcation, which we describe below.

Supercritical Pitchfork Bifurcation

The normal form of the supercritical pitchfork bifurcation is

ẋ = rx− x3 (1.6)

This equation is invariant under the change of variable x→ −x which indicates

left-right symmetry.

As we can see from the equation that when r ≤ 0, an origin is the only fixed

point and when r > 0 two stable fixed points appear on either side symmetrically

and origin becomes unstable.

Critical Slowing down

When r = 0, the origin is stable, but the solution no longer decays exponentially

fast as it was in the case when r was less than 0. Instead, the decay is a much

slower function of time. This lethargic decay is called critical slowing down [14].

Sub-critical Pitchfork Bifurcation

The normal form of the sub-critical pitchfork bifurcation is

ẋ = rx+ x3 (1.7)

In the supercritical case, −x3 was stabilizing, but here x3 is the destabilizing

term. So, if there is any small perturbation, then the cubic term will help in

driving trajectories to infinity.

In this case, the fixed points will appear when r < 0 and will be unstable and

origin will become stable when r < 0.
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1.3 Linearization

In this section, we will extend the technique of linear stability to the higher

dimension systems.

Consider the following set of an autonomous system:

ẋ = f(x) (1.8)

and let x∗ be the fixed point of the system.

By definition, f(x∗)=0.

Let’s take the Taylor expansion of the right-hand side of the equation (1.8).

ẋ = f(x∗) +
∂f

∂x

∣∣∣∣
x∗

(x− x∗) + · · ·

=
∂f

∂x

∣∣∣∣
x∗

(x− x∗) + · · ·
(1.9)

The partial derivatives in (1.9) can be interpreted as the Jacobian Matrix, if the

components of the state vector x are (x1, x2, · · · , xn) and the components of the

rate vector f are (f1, f2, · · · , fn) then the Jacobian matrix will be:

J=



∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

s · · · ∂f2
∂xn

...
... · · · ...

∂fn
∂x1

∂fn
∂x2

· · · ∂fn
∂xn


Suppose, δ = x− x∗ and taking the derivative, we obtain δ̇ = ẋ and since we are

looking in the very small neighborhood of the fixed point, δ will be infinitesimal.

So only the first two terms of the (1.9) are significant. Now, we have to analyze

how the trajectories behave near the fixed point, i.e. whether the fixed point is

stable or unstable. So, now we have

δ̇ = J∗δ (1.10)

where J∗ is the Jacobian evaluated at the fixed point x∗. Now, since the matrix J∗

is just the constant, the equation (1.10) is nothing but just the linear differential

equation and the solutions of this type of equations can be written as the linear

combination of eλjt where λj’s are the set of eigenvalues of the Jacobian matrix.
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Now, the complex part of the eigenvalue will only contribute to an oscillatory

component of the solution. So, just the real part matters for analyzing the

stability of the fixed point. Now, if the Re(λj) > 0 then the eλjt will grow

in time.

So, to conclude we see that a fixed point x∗ of (1.8) is stable if all the eigenvalues

of J∗ have the negative real part and the fixed point is unstable if at least one

of the eigenvalue has a positive real part. We will use this analysis in chapter

2(2.6).
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Chapter 2

Analysis of Stuart Landau

Oscillator

2.1 Introduction to Landau-Stuart Oscillator

Consider N number of Landau-Stuart (LS) oscillators interacting via mean-

field[12] diffusive coupling.

Ż = (1 + iωi − |Zi|2)Zi + ε(qZ̄ −Re(Zi)) (2.1)

The equation (2.1)[1] represents the mathematical model of LS Oscillator, where

i = 1, . . . , N ; Z̄=
1

N
ΣN
i=1Re(Zi) is the mean-field of the coupled oscillator, Zi =

xi + jyi. The ε is the coupling strength, and q is a control parameter which

determines the density of the mean-field (0 ≤ q ≤ 1); As q → 0 the effect of the

mean-field coupling decreases which suppresses the oscillations of the coupled

system. When q = 0 there is no interaction and as a result system behaves as

an uncoupled system with self-feedback, where q = 1 represents the maximum

mean-field interaction.

We analyzed the system for N = 2 case. We will describe the analysis in the

subsequent section in the following manner: First, the linear stability analysis of

the LS oscillator along with the environment. Second, Stability analysis of the

coupled LS oscillators with the variation in coupling strength. Following is the

schematic diagram of the network with which we worked.
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Figure 2.1: schematic diagram; Ẋ1 and Ẋ2 are two LS oscillators with coupling

strength ε0 and u a common environment coupled with oscillators with strength

ε

2.2 Linear Stability Analysis

Consider the 2 LS oscillators with an environment, we analyzed the stability of

the steady state. We write the variational form by linearizing (2.1) as

η̇1 = f ′(X1)η1 + ε0[
q(η1 + η2)

2
− η1] + εu (2.2a)

η̇2 = f ′(X2)η2 + ε0[
q(η1 + η2)

2
− η2] + εu (2.2b)

η̇3 = −ku+
ε(η1 + η2)

2
(2.2c)

Assuming that the time averaged value of f ′(X1) and f ′(X2) are approxi-

mately the same. We will replace it by effective constant value ζ.This type of

approximation was used in [9][12] Also, in this approximation we will treat η1, η2

as the scalars. Therefore the Jacobian matrix of the (2.2) is

J9(η1, η2, u) =


ε0(

q

2
− 1)ζ

qε0
2

ε
qε0
2

ε0(
q

2
− 1)ζ ε

ε

2

ε

2
−k

 (2.3)

The characteristic equation of the Jacobian matrix(J9)(2.3) is given by:

(ε0 + λ− ζ)(ε2 + (ζ + ε0(q − 1)− λ)(k + λ)) = 0 (2.4)

The eigenvalues of this (2.4) are as follows:
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λ1 = ζ − ε0 (2.5a)

λ2,3 =
1

2
(ζ + ε0(q − 1)− k ± ( 2

√
4ε2 + (k + ε0(q − 1) + ζ)2)) (2.5b)

A coupled system goes to the stable steady state if the Re(λ) is negative. So,

we can say that for the transition from an unstable steady state to stable steady

state is

ζ − ε0 = 0 (2.6a)

1

2
(ζ + ε0(q − 1)− k ± ( 2

√
4ε2 + (k + ε0(q − 1) + ζ)2)) = 0 (2.6b)

This analysis we will be used for the analytical calculations done further.

2.3 Analysis of LS oscillator

Using the logic of section 4, we will write the model(given by (2.1)) in the Carte-

sian coordinate system with each oscillator as the function f(x, y) and oscillators

will be interacting with the environment u.

ẋ1 = [1− (x21 + y21)]x1 − ω1y1 + ε0(qx̄− x1) (2.7a)

ẋ2 = [1− (x22 + y22)]x2 − ω2y2 + ε0(qx̄− x2) (2.7b)

ẏ1 = [1− (x21 + y21)]y1 + ω1x1 + εu (2.7c)

ẏ2 = [1− (x22 + y22)]y2 + ω2x2 + εu (2.7d)

u̇ = −ku+
ε(y1 + y2)

2
(2.7e)

where x̄ =
x1 + x2

2
, ε0 is a coupling strength between the two oscillators and ε is

the coupling strength between the oscillator and the environment.

The Jacobian of the system given by (2.7) is J(x1, x2, y1, y2, u):

ε(
q

2
− 1)− 3x21 − y21 + 1

ε0q

2
−ω − 2x1y1 0 0

ε0q

2
ε0(

q

2
− 1)− 3x22 − y22 + 1 0 −ω − 2x2y2 0

ω − 2x1y1 0 −x21 − 3y21 + 1 0 ε

0 ω − 2x2y2 0 −x22 − 3y22 + 1 ε

0 0 ε
2

ε
2

−k


(2.8)

The system has the following fixed points[13][1]:
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1. Trivial fixed points :- =(x∗1, y
∗
1, x

∗
2, y
∗
2, u

∗)=(0,0,0,0,0)

2. Inhomogeneous steady state, FIHSS= (x∗1, y
∗
1, x

∗
2, y
∗
2, u

∗) = (a1, b1,−a1,−b1, 0)

3. Non-trivial Homogeneous steady state = FHSS= (x∗1, y
∗
1, x

∗
2, y
∗
2, u

∗) = (a2, b2, a2, b2,
εb2
k

)

We will look at the analysis of Inhomogeneous and Homogeneous steady state in

the subsequent sections. For further calculations, we’re interested in the λ − ε
plane and for that, we will fix some values of the variables used in equations (2.7)

as follows:-

Variables Value

k 1

ε0 6

q 0.4

10



2.4 Results

2.4.1 Inhomogeneous Steady State

We substituted the steady state conditions given above in the equation (2.7) and

will solve for a1 and b1.

[1− (a21 + b21)]a1 − ω1b1 − ε0a1 = 0 (2.9a)

− [1− (a21 + b21)]a1 + ω2b1 + ε0a1 = 0 (2.9b)

[1− (a21 + b21)]b1 + ω1a1 + εu = 0 (2.9c)

− [1− (a21 + b21)]b1 − ω2a1 + εu = 0 (2.9d)

By solving equations, (2.9a) and (2.9b), we get ω1 = ω2. For simplicity, let’s

assume ω1 = ω2 = ω. We did further analysis at ω = 2.

Further, solving and substituting the values we get the following equations:

[1− (a21 + b21)]a1 − 2b1 − 6a1 = 0 (2.10a)

[1− (a21 + b21)]b1 + 2a1 = 0 (2.10b)

After solving equations(2.9), we got following values of a1 and b1.

a1 b1

-0.174 0.45

0.174 -0.45

-1.92ι 0.73ι

1.92ι -0.73ι

We substituted the real values of a1 and b1 in equation (2.8) and calculated

the characteristic equation for a1 = −0.174 and b1 = 0.45 which is as follow:

−5.93ε2+λ5+8.45λ4+λ3(−λ2+24.87)+λ2(−7.81ε2+37.02)−λ(16.28ε2−25.6)+6.001

(2.11)

Now, we varied the ε(the coupling strength between the oscillator and the envi-

ronment) in a range of 0 to 2 and analyzed the variation of eigenvalues with the ε.

11



Figure 2.2: Distribution of λ s with ε

As, we, can see that λ3 crosses the positive y-axis at ε ≈1. So, we analyzed

the Re(λ). For a steady state to be stable the Re(λ) < 0.

Figure 2.3: Distribution of Re(λ) and Im(λ) with ε

Here, we can see it clearly that the steady state is stable below ε ≈1 and

above that it becomes unstable.
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2.4.2 Homogeneous Steady State

We substituted the steady state conditions given above in the equations(2.7) and

will solve for a2 and b2.

[1− (a22 + b22)]a2 − ω1b2 + ε0(qa2 − a2) = 0 (2.12a)

[1− (a22 + b22)]a2 − ω2b2 + ε0(qa2 − a2) = 0 (2.12b)

[1− (a22 + b22)]b2 + ω1a2 + εu = 0 (2.12c)

[1− (a22 + b22)]b2 + ω2a2 + εu = 0 (2.12d)

− ku+ εb2 = 0 (2.12e)

By solving equations,(2.12c) and (2.12d), we get ω1 = ω2. For simplicity, let’s

assume ω1 = ω2 = ω. We did further analysis at ω = 2.

Further, solving and substituting the values we get the following equations:

[1− (a22 + b22)]a2 − 2b2 − 3.6a2 = 0 (2.13a)

[1− (a22 + b22)]b2 + 2a2 + b2ε
2 = 0 (2.13b)

Since, a2 and b2 are dependent on ε, we, didn’t get any specific values of a2 and

b2. Using the varying values of the steady state with ε varying from 0 to 2. We

analyzed the variation of the eigenvalues with ε.

13



Figure 2.4: Distribution of λ s with ε

As we can see that ε ≈ 0.67 all the eigenvalues become negative. Then, we

checked whether the real part of the eigenvalues is negative for the whole range

of ε or not.

Figure 2.5: Distribution of Re(λ) and Im(λ) with ε

As we can see clearly that the Re(λ) is above x-axis. So, after ε ≈ 0.67 Re(λ)

becomes negative and remains negative. So, that implies the system is stable

14



after ε ≈ 0.67.

2.5 Discussion

Figure 2.6: Two [N = 2] environmentally coupled oscillators with ε

The numerical result of the steady state of two environmentally coupled oscillators

presented in Figure2.6[16] solved using the RK-4 method with initial conditions

between [−1, 1] for xi,j and [0, 1] for u. The region ε ≤ 1 is called the OD

state which is referred here as the Inhomogeneous Steady State[16]. Also, the

region ε ≥ 0.7 is called an AD which is referred here as the Homogeneous Steady

State[16]. Also, in the region between 0.7 ≤ ε ≤ 1 the network is bistable.

In our, analytical result we can see that when ε ≈ 0.7 in the eigenvalue (IHSS

figure) starts tending towards the positive x-axis and in HSS figure we can see

that the eigenvalue crosses the positive y-axis at ε ≈ 0.7 only. So, the values

obtained from the analytical analysis are consistent with the numerical result[16]

obtained.
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Chapter 3

Analysis of the Multiplex

Network

3.1 Introduction

In this chapter, we studied the synchronous state of the network which had the

multilayer construction. The networks considered in this study is time static, i.e.

the links between the nodes doesn’t vary with the time. Developments in recent

past in the study of fields of the multi-layered network, a multiplex network pro-

vides the important framework for the realistic description of the large number of

system[2, 6]. In this kind of network, the processes occurring in one network may

have an effect on the other network as well, which is taken into account and the

way in which one layer is coupled/connected(to the other nodes)may differ from

each other. This has also helped us in understanding the outcomes of interconnec-

tions in a different complex system, like epidemic spreading processes[11, 3, 10, 5],

congestion in traffic[7] and air transportation network[4], etc.

Usually, the networks consist of two or more layers. In our study, we took two

layer network, in which the topology of both the layers where different. In a

multiplex network, we, generally study two types of interaction: Intra-layer and

Inter-layer. In intra-layer, we study the interaction between the nodes in the

same layer and in the latter one we study the interaction between the replica

nodes of the different layer[8].

The first layer will be denoted by X and the second one by Y. The topology for

the layer X is that of regular ring topology where each node is connected to 2k

nearest neighbor i.e the ith node is connected to (i− k)th and (i+ k)th node and

17



the topology for the layer Y is that of a small-world network. The small-world

network is constructed by Watts-Strogatz procedure as given in[15].

Def :-The small-world network is a network in which the shortest distance be-

tween the nodes grows slowly. Shortest distance is defined as the minimum num-

ber of edges that should be traversed from one node to the destination node. In a

small-world network, if the shortest distance between two randomly chosen node

is ` and the number of nodes in Network is N then

` ∝ logN (3.1)

The small-world network is characterized by two properties:

• Small average shortest path length which is given by (3.1).

• Large clustering coefficient.

Def :- Let the number of node in a network(G) be N . The clustering coeffi-

cient(CC) of G is given by

CC(G) =
1

N

N∑
Node=1

CC(Node) (3.2)

Let V be a node and KV be the degree of the node V , i.e. to how many nodes,

node V is connected. Let NV be the number of links between the neighbors of

V . Then the CC(V ) is given by

CC(V ) =
2NV

KV (KV − 1)
(3.3)

So, for the layer Y , we start with N nodes with regular ring topology where each

node is connected to the 2k neighbors, k on each side. Then with probability p,

we reconnect all the edges to vertices chosen uniformly at random.
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3.1.1 Logistic Maps

The logistic map is defined by:

xn+1 = rxn(1− xn) (3.4)

Logistic map is the discrete equation for population growth model. It’s a classic

example of how complex and chaotic behavior can arise from simple non-linear

equation.

xn varies between 0 and 1. The control parameter r is restricted to [0, 4] between

which we see very interesting dynamics.

• When r < 1, the population will go extinct, i.e. xn → 0 as n → ∞, no

matter what was the initial population size.

• When 1 < r < 3, the population will approach to steady state (
r − 1

r
),

independent of the initial population size.

• When r > 3, the population oscillates in two-period cycle till r < 3.4.

Above that population oscillates between four-period cycle till r < 3.5.

For higher values of r, we will see 8,16,32,· · · periods cycle. This is called

period-doubling bifurcation, and chaotic behavior can be observed.

Figure 3.1: Period-doubling bifurcation in logistic map
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3.1.2 Lyapunov Exponent

A Lyapunov exponent of any dynamical system characterizes the rate of separa-

tion between two very close trajectories. Positive Lyapunov exponent indicates

that the system is chaotic because if you start with two initial conditions which

are very close to each other, say x0 and y0=x0 + δ, where δ is infinitesimal. And

we evolve them under the map, then the difference between the trajectories/two-

time series given by δn = xn − yn diverges exponentially. The rate of divergence

is given by

|δn| = |δ0| eλn (3.5)

where λ is called the Lyapunov Exponent.

Now, after rearranging equation(3.5), we get

λ = lim
n→∞

1

n
ln

∣∣∣∣δnδ0
∣∣∣∣ (3.6)

Now, by definition we know,

δn = fn(x0 + δ0)− fn(x0) (3.7)

Substituting this in equation(3.6), we get

λ = lim
n→∞

1

n
ln

∣∣∣∣fn(x0 + δ0)− fn(x0)

δ0

∣∣∣∣ (3.8)

For δ0 → 0, the numerator inside the mod is just the derivative of fn evaluated

at x = x0. So,

λ =
1

n
ln

∣∣∣∣dfndx
∣∣∣∣
x=x0

(3.9)

Also,

fn(x) = f(f(f(· · · f(x)))) (3.10)

So, by the chain rule

dfn

dx

∣∣∣∣
x=x0

=
n−1∏
i=0

f ′(xi) (3.11)

Hence, the formula for lyapunov exponent becomes,
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λ =
1

n
ln

∣∣∣∣∣∣
n−1∏
i=0

f ′(xi)

∣∣∣∣∣∣ =
1

n

n−1∑
i=0

ln(
∣∣f ′xi∣∣) (3.12)

Lyapunov exponent contains an average over a trajectory, and for the stable fixed

point the orbit turns out to be a fixed point. Hence, the contribution by the fixed

point dominates the average and, we get

λ = ln
∣∣f ′(x∗)∣∣ (3.13)

By, using equation (3.13) we found out the lyapunov exponent for the logistic

equation and to see whether it shows chaotic behavior or not.

Figure 3.2: Bifurcation in logistic map and the trajectory of the lyapunov expo-

nent
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3.2 Dynamics of the Multiplex Network of Lo-

gistic Map

3.2.1 Model

We have considered two layers defined by the topology given above. Each layer

has N nodes of a single dimension. So, the state of the layers is given by

X={x1,x2,· · · ,xN} and Y={y1,y2,· · · ,yN} where xi and yi ∈ R ∀ i.
The model under study is described by the following system of equations:

xt+1
i = f ti +

ε

2k

N∑
j=1

A1
i,j(f

t
j − f ti ) + γF t

i (3.14)

yt+1
i = gti +

ε

2k

N∑
j=1

A2
i,j(g

t
j − gti) + γGt

i (3.15)

where xti and yti are the real dynamical variable of the coupled ensemble, N is the

total number of oscillator in each sub-network, t is the discrete time variable.

In our study, both the sub-network are defined by the logistic map.

f ti = α1x
t
i(1− xti) (3.16)

gti = α2y
t
i(1− yti) (3.17)

with different control parameters α1 and α2. ε is the intra-layer coupling strength

within the sub-network and γ signifies the inter-layer coupling strength between

the sub-network.

F t
i = (gti − f ti ) (3.18)

Gt
i = (f ti − gti) (3.19)

The functions in the equations, (3.18) and (3.19) are the coupling functions be-

tween the sub-networks.

A1,2 = (A1,2
i,j )NxN are the adjacent matrices which are defined as:

A1,2
i,j =

1 if the ith and jth node are connected,

0 otherwise
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As we can see in figure 3.2 that for r > 3.56 the logistic map shows chaotic

behavior. So, from there we choose the values of α1 and α2 for further study of

the multiplex network. In this study we focused on two types of synchronization:

intra-layer and inter-layer synchronization.

Def : Intra-layer synchronization is defined as the state of synchrony in which

nodes within the layer evolve synchronously, independent of whether layers evolve

coherently or not[8].

Def : Inter-layer Synchronization is defined as the state of synchrony where the

layers are synchronized but, nodes within each layer may not be[8].

So, In our formulation, we have considered N = 10 and k = 1, with non-identical

layers in the network and on each node we have the system as the logistic map

which is defined by the equations,(3.16) and (3.17), α1 = 3.7 and α2 = 3.85. So,

that the system is in the chaotic regime and the model formulation is given by

equation(3.14) for layer X and by equation (3.15) for layer Y.

We will study Intra-layer and Inter-layer synchronization in which emphasis will

be to identify parameter regions for intra-layer and inter-layer synchronization,

under variations of following parameters: Intra-layer and Inter-layer coupling

strength,the probability of re-linking of the edges and the difference between α1

and α2.

Without loss of generalization, we will assume that the intra-layer strength is

much more than the inter-layer strength, specifically ε = 3γ. The Intra-layer

synchronization is given by:

Eintra = lim
T→∞

1

T

∫ T

0

N∑
j=2

‖xj(t)− x1(t)‖
N − 1

dt (3.20)

and Interlayer synchronization is given by,

Einter = lim
T→∞

1

T

∫ T

0

N∑
j=2

‖δzi(t)‖
N − 1

dt (3.21)

where δzi(t)= xi(t)− yi(t) is the difference between the layer dynamics at the ith

node, ‖.‖ is the Euclidean norm[].
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3.3 Results

• Effect of varying number of nodes of each layer. Here α1 = 3.7 and α2 = 3.85

and the probability(p) of relinking in layer 2 is p = 0.5.

(a)

(b)

Figure 3.3: (a) 100 oscillators and (b) 10 oscillators (γ=ε/3)

• Effect of varying ∆α = α2−α1. Here also, p = 0.5 for layer Y and 10 nodes

in each layer.
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(a)

(b)

(c)

Figure 3.4: (a)∆α = 0(α1 = α2 = 3.7) (b)∆α = 0.4(α1 = 3.5 α2 = 3.9) (c)∆α =

0.6(α1 = 3.4 α2 = 4)

• Effect of varying both ε and γ with fixed α1 = 3.7 and α2 = 3.85
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(a)

(b)

Figure 3.5: (a) Intra-layer and (b) Inter-layer Synchronization Error for varying

the intra-layer and inter-layer coupling strength

• In this we observed the effect on the synchronization parameter space by

varying the probability of the layer Y .
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(a)

(b)

Figure 3.6: (a) Intra-layer and (b) Inter-layer Synchronization Error for different

probabilities
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• Snapshot of representative spatial profiles for various ε for both the layer.

α1 = 3.7,α2 = 3.85,p = 0.5 and γ = ε/3

(a) (b) (c)

(d) (e) (f)

Figure 3.7: Layer X (top) and layer Y (bottom); Columns (L to R): ε = 0.1,

ε = 0.7 (complete synchronization) and ε = 0.9
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3.4 Conclusion

• Intra-layer and inter-layer synchronization regions in the parameter space

of inter-layer and intra-layer coupling strengths were identified.

• We observed that inter-layer synchronization was drastically affected by

parameter mismatch in the nodal dynamics of the layers.

• For large coupling strength ε, synchronization within layers, as well as be-

tween networks can be achieved.

• Although the edge re-linking probability has a slight effect on the synchro-

nization regions, compared to the other parameters, it does not affect the

synchronization regions significantly.

• In the parameter region 0.5 ≤ ε ≤ 0.9 and 0 ≤ γ ≤ 0.3 we achieved

complete synchronization.

• Increase in number of nodes across both layers decreases the range in pa-

rameter space yielding complete synchronization.

• In future, we will try to extend this analysis to time-varying networks.
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Summary

To summarize, we first studied fundamental properties of dynamical systems,

classification of fixed points and linear stability analysis. We also generalized

these concepts to higher dimensional systems.

Next, we studied a specific illustrative example of a group of limit cycle os-

cillators coupled via a common external environment. We found out analytically

the transition of Inhomogeneous steady states (IHSS) to Homogeneous steady

states (HSS) in the parameter space of the coupling strength of the oscillator and

the common environment. We also found the parameter region in which both

IHSS and HSS are stable, and the results were compatible with existing results

from numerical simulations.

Further, we studied multiplex networks of logistic maps. In particular, we

focused on intra-layer and inter-layer synchronization and identified the region

where synchronization is achieved, in the parameter space of intra-layer and inter-

layer coupling strengths. Lastly, the effect of various parameters on intra-layer

and inter-layer synchronization was also investigated.
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