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Chapter 1

Introduction

In this chapter we will describe the basic setups and theory of cavity optomechan-
ics.We will first study the coupled harmonic oscillator in order to understand the
splitting of normal modes. So that later we can relate the the optomechanical setup
with the coupled harmonic oscillator.

1.1 A classical Mechanical Harmonic Oscillator

The harmonic oscillator is a basic textbook example of classical mechanical systems.
Mechanical oscillations are a widespread form of motion in nature,for example, it
can be found in almost any kind of physical system-from microscopic objects such
as molecules up to the biggest found in our universe including neutron stars or more
familiarly in systems like clocks, engines or musical instruments. The concept is al-
ways the same: an oscillation is the repetitive variation of some parameter around
a central value. For example, a system at an initial position x0 experiences a restor-
ing force F that is proportional to its position x, returns to its point of origin and
subsequently moves back to x0. As long as the system stays decoupled from its
environment it continues with this oscillatory movement. According to Newton’s
second law, the system is described by F = mẍ = −kx ,where F is a force, m is the
mass of the harmonic oscillator, ẍ is the second derivative of its position with respect
to time and k is a positive constant, usually referred to as the spring constant. This
is a simple differential equation and one easily sees that the equation of motion is
given by

x(t) = A sin(ωmt + ψ)

Here A is the amplitude, which is determined by the initial conditions and wm =
2π fm is the oscillator’s eigenfrequency. The phase ψ is the position of the oscillator
relative to the point of origin at t = 0 and is also determined by the initial conditions.
In fact A and ψ are given by[1]

A =
√

ẋ2/ωm + x2,

ψ = arctan(ωmx(0)/ẋ(0))

Eigenfrequency of the system is

ωm = 2π/τm =
√

k/m

where τm is the period of oscillation.The total energy Etot of the harmonic oscillator
is conserved, only it total kinetic energy Ekin and total potential Epot vary with time
as,

Ekin = (m/2)ẋ2 = (k/2)A2cos2(ωmt + ψ)
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Epot = (k/2)x2 = (k/2)A2sin2(ωmt + ψ),

Now the total energy is given by,

Etot = Ekin + Epot = (m/2)ω2
m A2

The aboves mentioned equations are for free harmonic oscillator, but the real har-
monic oscillator experiences some kind of friction as it interacts with it’s environ-
ment and therefore we have to include damping in the equation of motion. There-
fore the equation which includes damping is given by

ẍ + Γm ẋ + ωm
2x = 0

Here Γm is the damping rate and it tells about, how fast the oscillations decays.Now
the solution of the damped harmonic oscillator is given by [1]

x(t) = Ade−Γm/2tsin[
√

ωm2 − (Γm/2)2t + ψd]

Where Ad and ψd are the amplitude and phase of the damped harmonic oscillator
respectively. Now there is a very useful quantity for the damped harmonic oscillator
is its quality factor Q, which measures how many oscillations it undergoes before it’s
amplitude decays by a factor of e:

Q = ωm/Γm

The three different alternatives associated with quality factor are:

1) Q > 1/2 : In this condition, the system is underdamped. In this condition the
oscillator oscillates at a slightly different frequency than the free harmonic oscillator
and gradually decays to zero.

2) Q = 1/2 : In this condition, the system is critically damped. In this condition the
oscillator attempts to return to its equilibrium position as quickly as possible and
does this without oscillating at all.

3) Q < 1/2 : In this condition, the system is overdamped. In this condition the
oscillator oscillator also returns to its equilibrium position without oscillations but
takes longer than in the critically damped case – the smaller Q becomes, the longer
it takes.

Now the real harmonic oscillator is not only damped but it is also coupled with the
external bath(surrounding) that drives it’s motion. The equation of such damped
and driven harmonic oscillator s given by:

ẍ + Γm ẋ + ωm
2 = F(t)/m,

where F(t) in the simplest case is a harmonic driving force of the form F(t) = F0 sin(ωt)
but can in general take the form of any arbitrary external force. We can again take
an Ansatz of the form x(t) = A sin(ωt + ψ) and we can get the amplitude relation and
the phase relation respectively as:

A = (F0/m)/
√
(ωm2 −ω2)2 + ω2Γm

2,

ψ = arctan((−ωΓm)/(ωm
2 −ω2)2),

The response of the damped, driven harmonic oscillator is similar to a Lorentzian
and has its resonance close to the natural frequency of the oscillator. It is given by

ωres = ωm
√

1− Γm
2/2ωm

2,
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FIGURE 1.1: The amplitude response A of a damped, driven har-
monic oscillator as a function of frequency ω . In this example the
unperturbed frequency ωm = 1 and the damping Γm = 0.1ωm, which
is defined as the full width at half maximum (FWHM) of the reso-

nance.(ref:simon grblacher thesis)

1.2 Normal modes of coupled harmonic oscillator

An interesting effect occurs if two harmonic oscillators are coupled together (fig 1.2))
– for sufficiently strong coupling the two oscillators can be described as one sin-
gle system oscillating at frequencies that are determined by their coupling strength.
The differential equations for two simple harmonic oscillators that are coupled by a
spring with spring constant k j are

mẍ1 = −kx1 + k j(x2 − x1),

mẍ2 = −kx2 + k j(x1 − x2),

FIGURE 1.2: Coupled harmonic oscillators. Above Two oscillators
have same masses m and frequencies ωm are each coupled to an en-
vironment via a spring with a spring constant k and a damping rate
Γm. In addition, they are coupled to each other via a joint spring with

a spring constant k j.(ref:simon grblacher thesis)
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For simplicity, here the oscillators have the same mass m and spring constant k.
Taking the Ansatz x1(t) = Asin(ωt+ ψ) and x2(t) = Bsin(ωt+ ψ) and substituting the
above ansaltz solutions[2] in the coupled differential equations we find

(k + k j −mω2)A− k jB = 0,

−k j A + (k + k j −mω2)B = 0,

For the equation to have a non-trivial solution the determinant of the system of equa-
tions must be singular, i.e. zero:

(k + k j −mω2)2 − k j
2 = 0,

This is a simple quadratic equation in ω and assuming that ω ≥ 0 we obtain

ω1 =
√
(k + 2k j)/m,

ω2 =
√

k/m,

Now subsituting back these in coupled amplitudes equations, we get A = B ≡ A1
and A = −B ≡ A2 for the two frequencies respectively. The most general equations
of motions now are

x1(t) = A1 sin(ω1t + ψ1) + A2 sin(ω2t + ψ2),

x2(t) = −A1 sin(ω1t + ψ1) + A2 sin(ω2t + ψ2),

The amplitudes A1,2 and the phases ψ1,2 are determined by the initial conditions of
x1,2(0) and ẋ1,2(0). The motion of the oscillators can therefore be decomposed into
two normal modes with frequencies ω1,2 and amplitudes A1,2, which are nondegen-
erate for k j 6= 0.

The system becomes even more interesting for two damped (and driven) oscilla-
tors. Their uncoupled equations of motions are given by

ẍ1 + Γm ẋ1 + ωm
2x1 − (k j/m)(x2 − x1) = 0,

ẍ2 + Γm ẋ2 + ωm
2x2 − (k j/m)(x1 − x2) = F(t)/m

Here we assumed that Γm , ωm, m of both the oscillators are same and one oscil-
lator is driven by external force F(t). The solutions of above equations are

q1(t) = A1 sin(ωm + ψ1)

q2(t) = A2 sin(ωm + ψ2)

where q1 and q2 are the normal modes coordinates with q1 = x1 + x2 and q2 =
x2 − x1. Therefore the frequency of normal modes are give by

ω1 =
√
(k + 2k j)/(m− (Γm

2/4)),

ω2 =
√

k/(m− (Γm
2/4)),

and there respective amplitudes are given by

Ai = (F0/m)/
√
(ωi

2 −ω2)2 + ω2Γm
2,

with i=1,2. Now if we see the spectrum of the normal modes(as shown in figure
1.3), it is seen that the modes are degenerate as long as long as the coupling strength
between the oscillators is small ie. k j << γm. Here we can see that normal modes are
only degenerate only if coupling strength between them is greater than the damping
with the environment.
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FIGURE 1.3: Splitting of normal modes in damped coupled harmonic
oscillators. The spectrum of two coupled oscillators is shown for dif-
ferent coupling constants k j . The parameters of the oscillators are
chosen to be F(t) = m = k = ωm = 1 and Γm = 0.1ωm. a For a
coupling k j = 0.5Γm the normal modes are still degenerate, while for
k j = Γm the splitting can already be observed b. c When increasing

the coupling further to k j = 4Γm the modes become very distinct.

1.3 A quantum mechanical harmonic oscillator

Harmonic oscillator is one of the basic example in quantum mechanics. This system
shows some peculiar quantum effects that makes it so distinct from classical me-
chanics. To understand the quantum nature of harmonic oscillator, we first have to
write its hamiltonian. If one replaces the classical variables with their corresponding
quantum operators, i.e.x → x and mẋ = p = -ih̄ d

dx one obtains the quantum mechan-
ical Hamiltonian operator

H = − h̄2

2m
d2

dx2 +
mω2x2

2 ,

Now we can write position and momentum operators in terms of creation and anni-
hilation operators.

x =
√

h̄
2mω (a + a†),

p =
√

mωh̄
2 (a− a†).

Here x,p,a and a† satisfy the following commutation relations [x,p] = ih̄, [a,a†] = 1,
[a,a] = [a†,a†] = 0
Hence the Hamiltonian can now be written as

H = h̄ω(a†a + 1
2 ),

and now the schrodinger equation can be written as

a†aψ = ( E
h̄ω −

1
2 )ψ,

Now we can write the ground state wavefunction ψ0 for the harmonic oscillator, this
we can calculate using aψ = 0, and can be written as

ψ0(x) = (mω
2h̄ )

1
4 exp

−mω2x2
2h̄ ,

The wavefunction of excited states can be written as
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ψn(x) = ( 1
n! )

1
2 (a†)nψ0(x),

It is now easy to find the energy spectrum for the harmonic oscillator by simply
writing down the eigenvalue equation for the Hamiltonian, which is discrete and
the energy levels are equidistant:

En = h̄ω(n + 1
2 ),

Now we can calculate the expectation value of position operator and the square of
position operator.Therefore

< x >=< ψn|x|ψn >= 0,

< x2 >=< ψn|x2|ψn >= h̄
mω (n + 1

2 ,

From the above equation we can see that the ground state of harmonic oscillator has
non zero energy,which is given by E0 = h̄ω

2 Now due to this non zero ground state
energy, there is uncertainity in the position of the ground state, which is called zero
point extension and is given by

xzp =
√
< x2 >0 − < x0 >2 =

√
h̄

2mω ,

One point to note from above equation is that if the frequency or mass of the oscilla-
tor increases than the zero point extension decreases.

1.4 Radiation pressure

Electromagnetic radiation exerts a force on everything it encounters.Due to which
the object feels a minute pressure upon itself.This is known as radiation pressure[3,4],
and can be thought of as the transfer of momentum from photons as they strike
the surface of the object.The effects of radiation pressure have been discussed as
early as the 17th century when Johannes Kepler suspected that the inclination of
tail of comets could be due to a mechanical force exerted by the sun[5,6 ]. In the
early 20th century, experiments Lebedev [7] and Nichols and Hull [8] first verified
unambiguously predictions by Maxwell [9] and Bartoli [10] on the strength of the
radiation-pressure force. In the 1960s and 70s, Braginsky and colleagues studied
radiation-pressure effects in the context of gravitational wave antennae – they ex-
perimentally and theoretically analyzed the sensitivity limits due to the quantum
nature of light [11, 12]. . First experiments on radiation-pressure effects in cavities
with macroscopic mechanical oscillators were performed in the 1980s [13]. Subse-
quently, several theoretical proposals for quantum optics experiments in a cavity
using radiation-pressure effects were published, such as the generation of squeezed
light [14, 15], quantum non-demolition measurements of photon numbers [16, 17],
feedback-cooling of the mechanical motion [18] (which was experimentally realized
in [19]), entanglement between the optical and the mechanical mode [20–22], and the
quantum-state transfer from the light field to the mechanical oscillator [23]. How-
ever, first experiments were only realized in recent years (except for [23]): measure-
ments of the motion of a mechanical oscillator [24–26], parametric amplification of
the mechanical motion [27], cavity cooling of the mechanical resonator [28–31], cryo-
genic cavity cooling [32–35] and strongly coupled opto-mechanics [36]. . It is impor-
tant to note that experiments involving nanomechanical oscillators and microwave
cavities have achieved similar results[37,38].
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1.5 Cavity Optomechanics

Cavity optomechanics as the name suggests, is basically the interaction between
light(electromagnetic field mode) and the mechanical object.In optomechanics a cav-
ity play a important role, because using cavity we can trap the light in order to max-
imize the effect of radiation pressure force on mechanical object. The basic set-up of
cavity optomechanics is a Fabry-Perot cavity, in which one of the end-mirrors is sus-
pended, i.e. it can be described as a damped harmonic oscillator with a resonance
frequency ωm and a mass m, subject to an external thermal bath and coupled to the
light inside the cavity via the radiation-pressure force as shown in figure(1.4).

FIGURE 1.4: Basic set-up of the radiation-pressure interaction: light
is coupled through a rigid input mirror into an optical resonator with
a movable back-mirror of frequency ωm and mass m. The photons
inside the cavity each transfer momentum of 2h̄κ onto the movable
mirror, displace it and hence acquire a phase shift, depending on its
position. The intensity of the light field inside the cavity strongly
depends on the relative distance between the mirrors, as well as on
their reflectivities – the amplitude cavity decay rate is given by κ. The

movable mirror couples to its environment at a rate Γm.

1.6 Various Optomechanical setups

There are various optomechanical setups which shows the same radiation pressure
effect as discussed in section(1.4).In figure(1.5) there are two optomechanical sys-
tems. The first system is same as the fabry perot setup and the second system is
also a type of optomechanical system. In the second system you can see a LC circuit
which is inductively coupled to a microwave drive. In this circuit the distance be-
tween the plates of the capacitor varies due to which the resonance frequency of Lc
circuit changes.

1.6.1 Hamiltonian of optomechanical system

Here we will describe the basic hamiltonian of optomechanical systems[4]. Here we
will consider a simple febry perot cavity in order to derive the hamiltonian. Suppose
we have uncoupled cavity with resonance frequency wcav and a uncoupled mechan-
ical resonator with resonance frequency ωm. Now you can think of a cavity and
mechanical resonator as two harmonic oscillator. Therefore the basic hamiltonian
becomes

Ĥ0 = h̄wcavâ† â + h̄ωmb̂†b̂,
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FIGURE 1.5: Schematic of a generic optomechanical system, both in
the optical domain (top), with a laser-driven optical cavity and a vi-
brating end mirror, as well as in the microwave domain (bottom),
with a vibrating capacitor. Here we have depicted a microwave drive
entering along a transmission line that is inductively coupled to the

LC circuit representing the microwave resonator.(ref:[4]

where â† (â) are the creation(annihilation) operators of photons and b̂† (b̂) re the cre-
ation(annihilation) operators of phonons. Now in the case of cavity with a movable
mirror, as the mirror moves the length of cavity changes due to which the cavity
resonance frequency gets modulated(resonance frequency becomes the function of
distance),

wcav(x) ≈ wcav + x ∂wcav
∂x + ...

we can also write it as

wcav(x) ≈ wcav − Gx + ...

where we define the optical frequency shift per displacement as G = − ∂wcav
∂x For a

simple cavity of length L, we have G = wcav
L The sign reflects the fact that we take x

> 0 to indicate an increase in cavity length, leading to a decrease in wcav(x) if G > 0.
In general, expanding to leading order in the displacement, we have:

h̄wcav(x)â† â ≈ h̄(wcav − Gx̂)â† â
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Here x̂ = xzp(b̂ + b̂†). Therefore interaction part of hamiltonian may be written as

Ĥint = −h̄g0 â† â(b̂ + b̂†)

where

g0 = Gxzp

is the vacuum optomechanical coupling strength, expressed as a frequency. It quan-
tifies the interaction between a single phonon and a single photon.The Hamiltonian
reveals that the interaction of a movable mirror with the radiation field is fundamen-
tally a nonlinear process, involving three operators (three wave mixing).The radia-
tion pressure force is simply the derivative of Ĥint with respect to displacement:

F̂ = − dĤint
dx̂ = h̄Gâ† â = h̄ g0

xzp
â† â

1.7 Sidebands due to optomechanical interaction

FIGURE 1.6: Sidebands appears due to optomechanical interac-
tion.(ref: o colonel thesis)

In figure(1.6) there are 3 peaks shown, in which the central peak is due to the
cavity resonance and right and left peaks are anti-stokes and stokes respectively.
Where stokes and anti-stokes bands corresponds to the transfer of photons from
laser to mechanical mode and vice versa. In section 1.1 we learned that the nor-
mal mode splitting of two harmonic oscillator takes place only when the coupling
spring constant is greater than the damping rate. Therefore we can consider cavity
and mechanical oscillator as two harmonic oscillator which are coupled to each other
through a constant g. We briefly note that g > κ is one neccessary condition for the
so-called “strong coupling” regime of cavity optomechanics, where the mechanical
oscillator and the driven optical mode hybridize.A much more challenging condi-
tion is to have g0 > κ, i.e. the single photon optomechanical coupling rate exceeding
the cavity decay rate. In order to cool the mechanical oscillator, the system should
be in sideband resolved-regime (κ << ωm) Where g referred to as optomechanical
coupling strength and g0 is the single photon coupling

g = g0
√

n̄cav



10 Chapter 1. Introduction

1.8 Experimental realisations and optomechanical parame-
ter

In order to get the maximum coupling, we need to combine high Q optical resonators
with the high Q mechanical oscillator in order to get the maximum optomechanical
effect. Therefore we will now discuss some of the optomechanical parameters that
effect the optomechanical coupling. Figure(1.7) shows the various type of optome-
chanical systems that had been used by various research groups in order to study
the optomechanical effect.

FIGURE 1.7: Various optomechanical devices[4], arranged according
to there masses.(ref:[4])

1.8.1 Optomechanical parameters

The following table summarizes the optomechanical parameters for some for the
past years experiments.s. These are: the mechanical resonator frequency ωm and
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mass m; the fundamental mechanical (phonon) and optical (photon) dissipation
rates γm = ωm

Qm
and κ, respectively; the QF product, which is a direct measure for the

degree of decoupling from the thermal environment specifically, Qm f = Qm
ωm
2π >

kbT
h̄ is the condition for neglecting thermal decoherence over one mechanical period;

the sideband suppression factor κ
ωm

that determines the ability to realize ground-
state cooling ; and finally the bare optomechanical coupling rate g.

FIGURE 1.8: optomechanical parameters of past experiment done by
research groups.(ref:[4])
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Chapter 2

Mechanical Resonator

The mechanical resonator that will be studied in this thesis is a 6MHz AT-cut quartz
resonator. In this chapter we will study about the quartz resonator and the experi-
ments that lead to achievement of high quality factor of Quartz resonator.

2.1 What is Quartz?

The technical formula is SiO2 and it is composed of two elements, silicon and oxy-
gen. In its amorphous form SiO2 is the major constituent in many rocks and sand.
The crystalline form of SiO2 or quartz is relatively abundant in nature, but in the
highly pure form required for the manufacture of quartz crystal units, the supply
tends to be small.Quartz crystals are an indispensable component of modern elec-
tronic technology. They are used to generate frequencies to control and manage
virtually all communication systems. They provide the isochronous element in most
clocks, watches, computers and microprocessors. The quartz crystal is the product
of the phenomenon of piezo-electricity discovered by the Curie brothers in France
in 1880.

2.2 Working

Piezoelectricity is a complex subject, involving the advanced concepts of both elec-
tricity and mechanics. The word piezo-electricity takes its name from the Greek
piezein "to press", which literally means pressure electricity. Certain classes of piezo-
electric materials will in general react to any mechanical stresses by producing an
electrical charge. In a piezoelectric medium the strain or the displacement depends
linearly on both the stress and the field. The converse effect also exists, whereby a
mechanical strain is produced in the crystal by a polarising electric field. This is the
basic effect which produces the vibration of a quartz crystals.

2.3 Quartz resonator

Quartz resonators consist of a piece of piezoelectric material precisely dimensioned
and orientated with respect to the crystallographic axes. This wafer has one or more
pairs of conductive electrodes, formed by vacuum evaporation. When an electric
field is applied between the electrodes the piezoelectric effect excites the wafer into
mechanical vibration. Many different substances have been investigated as possible
resonators, but for many years quartz has been the preferred medium for satisfying
the needs for precise frequency generation. Compared to other resonators e.g. LC
circuits, mechanical resonators, ceramic resonators and single crystal materials, the
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quartz resonator has proved to be superior by having a unique combination of prop-
erties. The material properties of quartz crystal are both extremely stable and highly
repeatable. The acoustic loss or internal fraction of quartz is particularly low, which
results in a quartz resonator having an extremely high Q-factor. The intrinsic Q of
quartz is 107 at 1 MHz. Mounted resonators typically have Q factors ranging from
tens of thousands to several hundred thousands, orders of magnitude better than
the best LC circuits. The second key property is its frequency stability with respect
to temperature variations. Figure(2.1) shows the modes of vibration of quartz.

FIGURE 2.1: Modes of vibrations of Quartz resonator.(ref:[40])

2.4 AT-cut Quartz

The AT-cut characteristic (fig.2.2) is the most commonly used type of resonator. It
has a frequency temperature coefficient described by a cubic function of tempera-
ture, which can be precisely controlled by small variations in the angle of cut. This
cubic behaviour is in contrast to most other crystal cuts which give a parabolic tem-
perature characteristic. It makes the AT-cut well suited to applications requiring a
high degree of frequency stability over wide temperature ranges. Other important
characteristics are aging and quality factor Q.AT cut quartz crystals are widely em-
ployed in a range of applications, from oscillators to microbalances[40]. One of the
important properties of the AT cut is that the resonant frequency of the crystal is
temperature independent to first order. This is desirable in both mass sensing and
timing applications. AT cut crystals vibrate in the thickness shear mode—an applied
voltage across the faces of the cut produces shear stresses inside the crystal.
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FIGURE 2.2: AT cut frequency temperature curve.(ref:[40])

2.4.1 6MHz AT-cut quartz

This a 1 inch diameter quartz crystal, it has resonance frequency close to 6MHz. It
vibrates at a fundamental shear mode at a resonance frequency of 6MHz[41].This
thesis uses AT cut quartz, defined in the IEEE 1978 standard as: (YXl) -35.25deg.The
first two letters in the bracketed expression always refer to the initial orientation of
the thickness (t) and the length (l) of the plate. Subsequent bracketed letters then
define up to three rotational axes, which move with the plate as it is rotated. Angles
of rotation about these axes are specified after the bracketed expression in the order
of the letters, using a right-handed convention. For AT cut quartz only one rotation,
about the l axis, is required. In the above figure you can see 2 surfaces of same

FIGURE 2.3: 6MHz AT-cut quartz.

quartz crystal(one surface is fully covered with gold electrode and other is partially
covered.The fully covered surface is convex in shape and other is planar.) Now
consider a piezoelectric disc having thickness t, shear mode stress coefficient es of
the material, shear modulus Ys, and relative permittivity er. One further defines th
dimensionless piezoelectric coupling coefficient K0

2 = es
2

ere0Ys
. A shear deformation

by a characteristic distance x corresponds to a shear strain λs = x/t, and generates a
piezoelectric surface charge density Σq = λses. A piezoelectric oscillator is made by
metallizing both surfaces of the chip over an area A. The geometric capacitance in the
plate-capacitor approximation is then C0 = ere0A/t. The oscillator can be represent
as an equivalent LCR resonator with the effective parameters Cm = K0

2C0,Lm =
[(2πωm)2Cm]−1 and Rm = (ωmCmQ)−1. The corresponding quantised harmonic
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oscillator xhibits zero-point vibrations of an amplitude xzp =
√

h̄
2Mωm

, where M is
the effective mass. Figure(2.4,2.5) shows the comsol simulation of 6MHZ AT cut
quartz of diameter 14mm.

FIGURE 2.4: simulation of stress and displacement of 6MHz AT-cut
quartz.

2.5 Recent experiment to increase quality factor of quartz

This experiment was done by the group of people from Aalto university.In this ex-
periment they succeeded in improving the quality factor of quartz using the charge
focusing electrode scheme. In this experiment they took 3 quartz among which one
is bare quartz, second is quartz coated with aluminium(figure 2.6), third is charge
focussing aluminium electrode(figure 2.7). In this experiment they used 6mm diam-
eter, 200µm to 250µm thick plano-convex quartz disks with a fundamental thickness
shear mode around 7 MHz. They experimentally measure the dissipation due to
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FIGURE 2.5: simulation of displacement vs frequency for 6MHz AT-
cut quartz crystal.

charge focusing and thin film electrodes from room temperature down to mk tem-
peratures. In contrast to Ref. [23], they find that dissipation due to uniform thin
film electrodes on the quartz surface is negligible, and instead the Q factor is limited
by the electrical properties of the grounded charge focusing structures. In the Al-
coated quartz electrode configuration there is an Al-island of 2 mm diameter and 30
nm thickness evaporated on the top surface of the piezo disk.
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FIGURE 2.6: Photograph of the actuation and transmission measure-
ment setup employed to acquire the resonance frequency and qual-
ity factor of the quartz resonator at temperatures ranging from 10
mK to 300 K. Two quartz disk devices are seen laying in lens-shaped
supports and Top-view photograph of a quartz disk having an alu-

minium island (black circle) in the center.(ref:[42])

FIGURE 2.7: Charge focussing aluminium electrode.(ref:[42])
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FIGURE 2.8: Dependence of the internal mechanical quality factor on
temperature for the three metallization configurations studied in this
work: bare quartz disk (blue dots), quartz disk coated with an alu-
minium thin film island (red diamonds), and quartz disk coated with
an aluminium thin film in a charge focusing configuration (green tri-

angles).(ref:[42]
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Experimental design

In this chapter i will describe the design of the experiments that i have done.First
one is optomechanical interaction between microwave cavity and quartz resonator.
Secondly about the circuit that is used to measure resonance frequency of quartz.
Third includes the various experiments that are done to increase quality factor of
quartz resonator.

3.1 Coaxial λ/4 resonator

Quarter-wave (Λ/4-wave) coaxial resonators[43] are constructed by shorting the
center conductor of a coaxial cable to the shield at the far end of the circuit. The
length of the cable is exactly λ/4 at the desired resonant frequency. A short circuit
is transformed to an open circuit a quarter wavelength away, so when the λ/4-wave
coaxial resonator is part of an oscillator circuit, it electrically is not even present (Z
→ ∞); however, whenever the frequency of the oscillator attempts to go above or
below the resonator’s center frequency (due to load changes, temperature changes,
etc.), the λ/4-wave section looks like a low impedance that works to attenuate other
frequency components.

3.2 Resonant modes

The coaxial transmission line (TL) supports a TEM mode [111] with fields

E = V0exp−γz

ρ log ba ρ̂,

H = V0exp−γz

ρ log ba ,

The coaxial λ/4 resonator (Fig. 3.1) is formed by such a TL that is short-circuited
on one end and open-circuited on the other by virtue of a narrow circular waveg-
uide. The fundamental resonance frequency f0, is determined by the length of the
transmission line, l ≈ λ/4. We rely on a length L of circular waveguide, located be-
tween the λ/4 section and our light-tight seal, to protect the λ/4 mode from contact
resistance at that joint. Because we design the resonator to be well below the waveg-
uide’s cutoff frequency ( f0 < fc), the fundamental mode’s energy density decreases
exponentially into the waveguide section, at a rate determined by the radius of the
outer conductor.Because the cavity is a λ/4 resonator, we expect the next transmis-
sion line mode at f0 ≈ 3λ/4. The separation in frequency between the fundamental
mode and the next TEM harmonic is actually double the fundamental frequency it-
self, which provides a remarkably ‘clean’ spectrum. In fact, waveguide modes of
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FIGURE 3.1: A quarter-wave coaxial resonator is defined by shorting
a coaxial transmission line’s inner and outer conductors at one loca-
tion on the transmission line (bottom) and open-circuiting the line a

distance λ/4away
and it is coupled with quartz resonator.(ref:[43].

the coax, in particular the TE11 mode, can be lower-lying than the second TEM har-
monic. The TE11 mode begins to play a role when ω ≈ 2c

(a+b) = (2π)x15GHz.
In fig.(3.2) you can see the actual setup used in order to couple the cavity and

mechanical mode. Here you can see a small cylinder fitted on lid and in front of
lid there is a quartz resonator.The cavity is made up of brass Now you can think of
this microwave cavity as a parallel LCR circuit, which has a particular resonance fre-
quency. now this cavity has a quartz fitted inside in front of that small cylinder.Now
as this quartz vibrate in its lowest shear mode, capacitance of cavity changes and
due to which we should get two side bands. Also you can see from fig.(3.1) that
the electric field in the cavity is radially outward. Now as this electric field can also
interacts with he charge present on surface of quartz. And if we can use the charge
focussing scheme than we can enhance this coupling by increasing the charge on
the surface of quartz. Fig (3.3) shows the resonance frequency of TEM mode of cav-
ity. Here we have measured s11 parameter in order to find resonance frequency of
cavity.Fig.(3.4) shows the comsol simulation of electric and magnetic field inside the
microwave cavity. In fig.(3.5) we can see that cavity is having a resonance frequency
close to 2.5 GHz. One thing to see from this plot is the cavity linewidth. The cavity
linewidth is quite high. That means the losses in the cavity are quite large. In fig.(3.4)
you can see the blue and red arrows. Here blue arrows represent the magnetic field
and red arrow represents the magnetic field.

3.3 Increasing quality factor of quartz resonator

In this section i will describe the various experiments that i have done in order to
increase the quality factor of quartz. In my first experiment first i coat the quartz
resonator with 100nm of nickel and measure its response in presence of magnetic
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FIGURE 3.2: Setup of cavity fitted with quartz.

field. As nickel is magnetic so the quality factor of nickel coated quartz should be
effected by the magnetic field. But in the result it was seen that resonance frequency
and quality factor are not enough changing. In my second experiment i coated the
quartz with 100nm of Fe-Ni permalloy. And then i measure it response in presence
of magnetic field(fig.(3.5)).In this experiment i plot the response of quality factor and
resonance frequency for many values of current(ie. magnetic field)

3.4 Quartz cavity

Currently i am also working on a cavity in which quartz is coupled to a magnetic
field present inside the cavity and overall it shift the resonance frequency of cavity
due to coupling wit the magnetic field.Bic setup is shown in fig(3.6). The design
of tunable cavity is based on a typical three-loop, two-gap configuration. The gaps
here act as capacitors while the loops act as inductors, so the cavity resonance is
analogous to that of an LC circuit. Shown in Fig. 1(b) is a schematic of the cavity.
A plunger mounted on a piezoactuator can be moved in and out to change the gap
d, which alters the capacitance of the equivalent LC circuit, allowing us to tune the
resonance frequency of the cavity.
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FIGURE 3.3: Resonance frequency response of microwave cavity.

FIGURE 3.4: Comsol simulation of microwave cavity.



3.4. Quartz cavity 25

FIGURE 3.5: quartz magnet setup.

FIGURE 3.6: Two straight antennas are used to couple microwaves in
and out. A separated plunger mounted on a piezoactuator is able to
move in and out to change the gap size. (b) Schematic picture of the
resonator. The resonant frequency can be shifted by changing the gap

size d.(ref:[44])
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Conclusion

In this section we will discuss about the results that we have got in doing the pre-
viously mentioned experiments. In the first experiment that is to couple the mi-
crowave cavity with the quartz resonator. I have not got any coupling between cav-
ity and quartz. This is because the cavity losses in my experiment was dominating
over the coupling rate. In order to get this coupling we have to increase the quality
factor of both quartz and the microwave cavity so that normal mode splitting con-
dition is satisfied. Other experiment i have tried is to increase the quality factor of
quartz. Fig(4.1,4.2) shows the response of quality factor and resonance frequency
of quartz in magnetic field. In the above plots we can see that quality factor and

FIGURE 4.1: quality factor vs magnetic field.

resonance frequency are not changing much this my be due to two reasons. First,
material deposited on quartz is not enough therefore not much change is seen. Sec-
ondly, the maximum current i could send is 4A. Therefore the magnetic may be not
enough to cause some noticeable change.



28 Chapter 4. Conclusion

FIGURE 4.2: Resonance frequency vs magnetic field.
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