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Abstract

According to Einstein’s Theory of General Relativity, gravity bends space-
time and objects follow this curved geometry. If a particle or object comes
in the gravitation field of given mass source, it gets attracted because mass
source bends spacetime and object follows the structure of spacetime. This
is all happening due to the potential field generated by the mass source. So
curvature can be thought of as the force field.

Black holes are objects whose potential field is so high that classically
nothing can escape. Therefore it is essential to get the region for which we
are accessible to get all information about the particle and below which we
do not have access to the physics of the particle. In simple words, a horizon
is a region which separates two regions by a null boundary.

In this thesis, first, we studied possible trajectories of a particle around
a given mass source in Newtonian theory, and then we find the correction to
this theory. We apply this general theory of relativity to Schwarzschild and
BTZ black hole and find the trajectories of massive and massless particles.
All in all, the aim is to look at potential field produced by black holes. We
also go through the general mathematical structure of identifying horizon and
describe the physics of lightcones in different coordinate systems to make sure
that the physics is well defined on the horizon. At last, we focused on the
null trajectories around black hole geometry in the presence and absence of
cosmological constant. We obtain the location of photon sphere, the position
of photons at which it exhibits circular motion.





Chapter 1

Orbits in Newtonian theory

1.1 Introduction

According to Newton’s theory, ’Time’ is an absolute physical parameter
which means it does not change from one frame to another frame of reference
but it was not the case. Though the foundations of classical physics were de-
veloped by Sir Isaac Newton (1642− 1727), it was Einstein who proved that
time is not absolute instead it is relative. When Albert Einstein formulated
special theory of relativity (1905), he knew that this theory is applicable
for objects moving with constant velocity. He was willing to generalise his
approach to accelerated objects. So he worked on this significant problem
for the next ten years, and he gave a theory in 1915 named as the General
theory of relativity which says that gravity is not a force. It is the bending
of space-time structure produced by the mass source.

So my thesis work includes the study of trajectories of a particle in Newto-
nian and General relativistic theory. How null trajectories behave in presence
and absence of cosmological constant.

1.2 Planetary Orbits in Newtonian theory

According to Newtonian theory, gravity is a force. So given a mass source,
we can look for possible trajectories of a particle which is moving under the
gravitational field of the mass source[1].

1



1.2. PLANETARY ORBITS IN NEWTONIAN THEORY 2

Figure 1.1: motion of an object around a given source in Newtonian theory

If the source has mass M and object is of unit mass, from the principle
of energy conservation

E =
1

2
v2 − GM

r

Where G is the Newtonian gravitational constant G = 6.67×1011 m3kg−1s−2.
Object’s velocity v includes radial (vr) and angular (vφ) velocity given by-

vr =
dr

dt
& vφ = r

dφ

dt

Now if we take a vector ~r joining source and object and take a dot product
with angular momentum (~L), it turns out to be zero. Which simply means

motion of the object lies in a plane i.e. ~r · ~L = 0. So from the principle of
angular momentum conservation

L = r2
dφ

dt

Combining these with conservation principles, we get the following expres-
sion,

1

2

(dr
dt

)2
= E − L2

2r2
+
GM

r
= E − Veff

Above expression tells us that kinetic energy equals to total energy minus
centrifugal potential. Now we can define our effective potential

Veff =
L2

2r2
− GM

r
(1.1)
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The ultimate aim is to find effective potential. Because it contains all infor-
mation about the possible trajectories of the particle around the given source
and this is what we say possible orbits. Now using this effective potential, if
we look for circular orbits,

dVeff
dr

= 0 ⇒ r0 =
L2

GM

At this value of r = r0, the double derivative test becomes positive i.e.

d2Veff
dr2

|r=r0=
G4M4

L6
> 0

So potential at this value r0 is going to be minimum.

Vmin = −G
2M2

2L2
(1.2)

Figure 1.2: Potential curve for an unit mass moving around a source

The figure 1.2 is the plot of effective potential. The blue curve is for 1
r2

part
of the effective potential, the pink curve is for −1

r
part of the effective poten-

tial, and the dotted curve is representing the whole effective potential field.
By making constant total energy E lines parallel to r axis, we can look for
different possible orbits for this kind of potential curve. At the minimum of
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this potential curve, we expect to get circular orbits as r = constant, and
as we move above from this minimum value, we hope to get different orbits.
We will see this mathematically in further calculations and discussions.

Now we shall try to obtain an equation which will tell about all possible
orbits for the object. That equation is known as Orbit equation.

dφ

dr
=
dφ

dt

dt

dr
(1.3)

We know dφ
dt

and dt
dr

, given by,

dφ

dt
=
L

r2
&

dr

dt
=
√

2(E − Veff )

putting these two expressions in equ(2), we get the following simple first
order differential equation in r and φ variables

dφ

dr
=
L

r2
1√

2(E − Veff )
dφ

dr
=
L

r2
1√

2(E − L2

2r2
+ GM

r
)

assuming u = 1/r and solving the differential equation, we get

r =
1

u
=

r0
1− cosφ

(1.4)

This equation is known as Orbit Equation. Where e is eccentricity and r0 is
a constant.

e =

√
1 +

2Er20
L2

=

√
1 +

2EL2

G2M2
and r0 =

L2

GM

Since the motion lies in a plane, therefore r cosφ = x and r2 = x2 + y2, and
finally we get an expression which explains all possibles orbits in Newtonian
theory.

(1− e2)x2 + y2 − 2er0x− r20 = 0 (1.5)

If we look at points p or q in the given fig1.3, at these points change in
velocity is zero. So, for Circular orbits, acceleration and change in velocity
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Figure 1.3: Elliptical orbit equation plot

both are zero which means r = constant. But for elliptical orbits change in
velocity at p and q points is zero but acceleration is non zero which makes
the object to change r.

Looking at the energy conservation equation,

1
2
ṙ2 = E − L2

2r2
+ GM

r

at point p, ṙ = 0 =⇒ E − L2

2r2
+ GM

r
= 0

Solving for r, we get two roots of r here,

r =
−GM ±

√
G2M2 + 2EL2

2E

At these two values of r, f = −∂Veff
∂r
6= 0 which means acceleration r̈ is non

zero. But for Circular orbits
dVeff
dr

= 0 gives,

r = L2

GM

For this value of r, f = −∂Veff
∂r

= 0 which means acceleration r̈ = 0.

This is why for elliptical case r is changing (r̈ 6= 0) and for circular case
r is not changing (r̈ = 0).

Here are some plots (x vs y) of orbits for different values of eccentricity
e. These plots describe orbits in the x − y plane which mathematically can
be seen from the orbit equation (1.4).
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Figure 1.4: Sr.No.1: x-y plot for circular orbit; e = 0
Sr.No.2: x-y plot for Elliptical orbits; e = 0.5
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Figure 1.5: Sr.No.3 : x-y plot for Elliptical orbits; e = 0.9
Sr.No.4 : x-y plot for Parabolic orbits e = 1
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Figure 1.6: Sr.No.5 : x-y plot for Hyperbolic orbits

Sr.
No.

e r0 Orbit Equation

v

Type

1. 0 4 x2 + y2 = 16 Circle

2. 0.5 4 3
4
x2 − 4x+ y2 = 16 Ellipse

3. 0.9 4 19
100
x2 − 36

5
x+ y2 = 16 Ellipse

4. 1.0 4 −8x+ y2 = 16 Parabola

5. 1.4 4 − 69
100
x2− 56

5
x+y2 = 16 Hyperbola

Table 1.1 : Possible orbits for different values of e



1.2. PLANETARY ORBITS IN NEWTONIAN THEORY 8

If we look at Sr.No.5 above, Hyperbola always comes in pair. So, which
of the trajectories is possible, will be decided by initial conditions. Initial
conditions can be fixed by E and L for an unit mass body because eccentric-
ity e depends on E and L.

All these five plots named as Sr.No. (Serial Number), can be seen from
the Table 1.1. The orbit equation and its type are also mentioned in the
table. Table 1.2 gives a general description of the same for different ranges of
constant total energy E and eccentricity e. Orbit is bounded or unbounded
depends whether the object comes back to its initial position or not. If the
object comes back to its initial position, the orbit is Bounded. If it does not
then orbit is unbounded.

Sr.
no.

Energy
(E)

Eccentricity
(e)

Orbit Bound/UnB

1. E > 0 e > 1 Hyperbola Unbound

2. E = 0 e = 1 Parabola Unbound

3. Vmin < E < 0 0 < e < 1 Ellipse Bound

4. Vmin = E e = 0 Circle Bound

Table 1.2 : Possible orbits for different ranges of total energy E

Combining all plots in one and considering all given values of eccentricity
e keeping r0 same presented in the table (1.1). We get the following x vs y
plot for different orbit equations.
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e = 1.4

e = 1

e = 0.9

e = 0.5

e = 0
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Figure 1.7: orbits with different values of e



Chapter 2

Orbits in General Relativity Theory

2.1 Introduction

We have seen in the previous discussion in Newtonian theory that Circular,
Elliptical, Parabolic and Hyperbolic all these orbits are possible and if we
look at the potential, as r becomes smaller and smaller potential becomes
positive infinity which means the object is repelled by the source or in other
words it escapes from the source. This happens because centrifugal barrier
term L2

2r2
becomes larger than attractive potential term -GM

r
for small values

of r.
Now in general relativistic theory, it is not true. An object can be cap-

tured by the source for small values of r. So, we shall see a correction term to
the Newtonian theory which makes the potential negative infinity for small
values of r. As we know that Newtonian method does not provide us with
the time evolution description of the potential field φ(x) whereas general
relativistic theory does provide.

52φ(x) = 4πGρ(x) (2.1)

Given a source ρ(x) (mass density) and mass M , we can solve this equa-
tion. This equation is known as Newton’s field equation[2]. If we consider a
spherically symmetric source, the gravitational potential is given by

φ(x) = −GM
x

(2.2)

This is the non-relativistic solution of Newton’s field equation, and most
importantly this field equation does not involve time component.

10



2.2. WEAK FIELD LIMIT IN GENERAL RELATIVITY 11

In General relativity, the notion of the potential field lies in the metric
tensor and the second derivative of the metric tensor is curvature tensor.
This abstract statement is known as Einstein Field Equation. Which math-
ematically can be written as

Gµν = 8πGTµν (2.3)

Where Gµν is Einstein tensor and Tµν is Energy-Momentum tensor. Here
we’ll consider the same spherically symmetric source and introduce the time
coordinate because time is not absolute. So we’ll try to see the time evolution
of the potential field.

2.2 Weak field limit in General relativity

Under weak field limit, a general relativistic field becomes the Newtonian
potential field. Consider an object moving in a weak and static gravitational
field. Weak field means small perturbation to the flat space, i.e. hµν << 1.
The Newtonian limit is achieved by keeping in mind three main points-

1. Particle moves slowly w.r.t. light
2. Field is static, i.e. ∂gµν

∂t
= 0

3. Gravitational field is weak

Now considering the geodesic equation

d2xλ

dτ 2
+ Γλµν

dxµ

dτ

dxν

dτ
= 0 (2.4)

Since particles are moving slowly relative to the speed of light c. There-
fore,

dxi

dτ
<<

d(ct)

dτ

Taking this approximation and staticity condition, the geodesic equation
becomes

d2xλ

dτ 2
+

1

2

( dt
dτ

)2
5 h00 = 0
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For slowly moving objects dx0

dτ
' 1 because v << c. The above equation

becomes,

d2~x

dτ 2
= −1

2
5 h00

comparing this equation with Newton’s equation of motion,

d2~x

dt2
= ~F = − ∂φ

∂xi
= −~5φ

We get perturbation to the flat metric,

h00 =
2φ

c2

If the signature of the flat metric is ηµν = (1,−1,−1,−1), the components
of the metric tensor under weak field limit become,

g00 = η00 + h00 = (1 +
2φ

c2
)

For spherically symmetric source, the potential field is given by φ(r) = −GM
r

.
Therefore,

g00 =
(

1− 2GM

r

)
and grr =

(
1− 2GM

r

)−1
(2.5)

2.3 Schwarzschild Black hole

Before taking a direct jump to the orbits, let us try to see the notion of
distance or metric in this theory. Since Einstein field equation is highly non-
linear so we can look for symmetries here. We shall consider Schwarzschild
black hole which is a spherically symmetric static black hole. Metric tells us
about the local geometry of the surface. Therefore the Schwarzschild met-
ric tells us the geometry of space-time outside a massive source[3]. Consider
spherical coordinate system (t, r, θ, φ), the general spherically symmetric met-
ric is given by,

ds2 = A(r, t)dt2 − C(r, t)dr2 −B(r, t)dtdr −D(r, t)r2(dθ2 + sin2 θdφ2)
(2.6)
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Since we are considering static metric, the components of metric tensor will
be independent of time. Therefore the metric can be written as following-

ds2 = A(r)dt2 − C(r)dr2 −B(r)dtdr −D(r)r2(dθ2 + sin2 θdφ2)

We can define a new time coordinate,

ct
′ −→ ct

′ ≡ ct+ f(r) (2.7)

This will eliminate dtdr term which is non-diagonal term. The differential
form of the above definition of new time is

dt = dt
′ − df

dr
dr

The metric ds2 in this definition can be written as follows,

ds2 = Adt
′2 +

(
A
(df
dr

)2
−Bdf

dr
− C

)
dr2 − dt′dr

(
2A

df

dr
+B

)
−Dr2(dθ2 + sin2 θdφ2)

Now we can choose f(r) which eliminates dt
′
dr term. For this to be elimi-

nated the following condition must be met

df

dr
= − B

2A

Now I’ll write Dr2 → r
′2 and define coefficient of dr2 as B

′
(r).

ds2 = Adt
′2 −B′

(r)dr2 − r′2(dθ2 + sin2 θdφ2)

just for writing simplicity, omitting prime from dt and r, the metric becomes

ds2 = A(r)dt2 −B(r)dr2 − r2(dθ2 + sin2 θdφ2) (2.8)

Elimination of cross term of dtdr ensures the time-reversal symmetry i.e. if
we make transformation t → −t, metric remains invariant. There can not
be any cross terms of angular parts because in that case, we’ll lose spherical
symmetry property. Because in crossing angular terms, if we transform φ→
−φ or θ → −θ, it will flip the sign of the metric. And a metric is a scalar
quantity which should be invariant under any kind of transformation. So
keeping in mind the property of spherical symmetry, we do not consider any
cross-terms in angular parts. This given metric equ(2.8) is general spherically
symmetric and static. Components of the metric tensor are given by,
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gtt = A grr = −B gθθ = −r2 gφφ = −r2 sin2 θ

gtt = 1
A

grr = − 1
B

gθθ = − 1
r2

gφφ = − 1
r2 sin2 θ

There are 9 non-zero Christoffel symbols exist, given below

(i) Γtrt = A
′

2A
(ii) Γrtt = A

′

2B
(iii) Γrrr = B

′

2B

(iv) Γrθθ = − r
B

(v) Γrφφ = − r sin2 θ
B

(vi) Γθφφ = − sin θ cos θ

(vii) Γφrφ = 1
r

(viii) Γφφθ = cot θ (ix) Γθrθ = 1
r

Now Tµν is zero outside the spherically symmetric source and and non-zero
inside the source. Therefore Einstein field equation outside a spherically
symmetric source becomes

Gµν = Rµν −
1

2
Rgµν = 0

Where Rµν is Ricci Tensor and R is Ricci Scalar. If we multiply by gµν on
both sides, we get,

R = 0

putting back Ricci scalar (R) into the equation, we get Ricci tensor,

Rµν = 0

We will try to find the solution of this equation.

Rtt =
A

′′

2B
− A

′2

4AB
− A

′
B

′

4B2
+
A

′

rB

Rrr = −A
′′

2A
+
A

′2

4A2
+
A

′
B

′

4AB
+
B

′

rB

Where prime over A and B, is derivative with respect r.
Now considering two of the Einstein’s field equations,

Rtt

gtt
− 1

2
R = 0 &

Rrr

grr
− 1

2
R = 0
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Subtracting these two equations, we get

BA
′
+ AB

′
= 0

AB = constant = C1

Considering another Einstein’s field equation,

Rθθ = − rA
′

2AB
+
rB

′

2B2
+ 1− 1

B

using the result B = C1

A
=⇒ B

′

B
= −A

′

A
,

Rθθ =1− 1

B
+

r

2B

[
− A

′

A
+
B

′

B

]
Rθθ =1− 1

B
− rA

′

C1

using the fact that Rµν = 0,

0 =1− 1

B
− rA

′

AB
rA =C1r − C2

A =C1 −
C2

r

We can rescale time coordinate in equ(2) t → t√
C1

to set C1 = 1 and under

the weak field approximation limit, looking at the equ(2), we get constant
C2. Therefore,

A(r) =
(

1− 2GM

r

)
and B(r) =

(
1− 2GM

r

)−1
Finally, the expression for the spherically symmetric static metric is given

by,

ds2 =
(

1− 2GM

r

)
dt2 −

(
1− 2GM

r

)−1
dr2 − r2(dθ2 + sin2 θdφ2) (2.9)

There are two singularities here. One is r = 2GM and another one
is r = 0. r = 2GM is known as Schwarzschild radius (rsch) and it is a
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coordinate singularity also known as event horizon. Whereas r = 0 is true
singularity because if we calculate Kretschmann scalar, it turns out that it
is inversely proportional to r6. At r = 2GM this scalar is going to be finite
but at r = 0 it blows up.

RαβγδRαβγδ =
48G2M2

r6

Kretschmann Scalar :

In general relativity, Kretschmann scalar is the best quantity which tells
about the singularity whether it is coordinate singularity or true singularity.
Here we’ll try to obtain this scalar. There are 9 non-zero Christoffel symbols.

(i) Γtrt = GM
r2

(
1− 2GM

r

)−1
(ii) Γrtt = GM

r2

(
1− 2GM

r

)
(iii) Γrrr = −GM

r2

(
1− 2GM

r

)−1
(iv) Γrθθ = −r

(
1− 2GM

r

)
(v) Γrφφ = −r

(
1− 2GM

r

)
sin2 θ (vi) Γθφφ = − sin θ cos θ

(vii) Γφrφ = 1
r

(viii) Γφφθ = cot θ

(ix) Γθrθ = 1
r

There are 6 non-zero independent Riemann tensors.

(i) Rtrtr = −2GM
r3

(ii) Rtθtθ = −GM
r

(
1− 2GM

r

)
(iii) Rtφtφ = −GM

r

(
1− 2GM

r

)
sin2 θ (iv) Rrφrφ = GM

r

(
1− 2GM

r

)
sin2 θ

(v) Rθφθφ = −2GMr sin2 θ (vi) Rrθrθ = −GM
r

(
1− 2GM

r

)−1
Now we need to find Riemann tensors with upper indices. Contravariant

Riemann tensors can be written as follows,

Rtrtr = gαrgβrgγrRt
αβγ = grrgttgrrRt

rtr

Similarly, it can be done for other components. All components of the
Kretschmann scalar is given by

(i) RtθtθRtθtθ = (gθθ)2(Rt
θtθ)

2 (ii) RtφtφRtφtφ = (gφφ)2(Rt
φtφ)2

(iii) RrφrφRrφrφ = (gφφ)2(Rr
φrφ)2 (iv) RθφθφRθφθφ = (gφφ)2(Rθ

φθφ)2
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(v) RrθrθRrθrθ = (gθθ)2(Rr
θrθ)

2 (vi) RtrtrRtrtr = (grr)2(Rr
rtr)

2

The general form of the Kretschmann scalar for the Schwarzschild black
hole is,

RαβγδRαβγδ = 4RtθtθRtθtθ + 4RtφtφRtφtφ + 4RrφrφRrφrφ + 4RθφθφRθφθφ+

4RrθrθRrθrθ + 4RtrtrRtrtr

The final expression of the Kretschmann scalar is,

RαβγδRαβγδ =
48G2M2

r6
(2.10)

Now we can see that if r = 2GM , the scalar is going to have some finite
value and if r = 0, scalar becomes undefined. Therefore r = 0 is the actual
singularity of the schwarzschild black hole.

Motion lies in a plane :

As we have seen in the Newtonian theory that ~r · ~L = 0, i.e. the motion
of the object lies in a plane. Similarly here, we’ll obtain the geodesic equa-
tion, and from there we’ll try to understand the motion of the object. The
geodesics of the purpose is given by,

(i) 0 =
d2t

dλ2
+ 2

GM

r

(
r − 2GM

)−1 dt
dλ

dr

dλ

(ii) 0 =
d2θ

dλ2
− sin θ cos θ

(dφ
dλ

)2
+

2

r

dθ

dλ

dr

dλ

(iii) 0 =
d2φ

dλ2
+

2

r

dr

dλ

dφ

dλ
+ 2 cot θ

dθ

dλ

dφ

dλ

(iv) 0 =
d2r

dλ2
+
GM

r2

(
1− 2GM

r

)( dt
dλ

)2
− r
(

1− 2GM

r

)dθ
dλ

dφ

dλ
−

sin2 θ(r − 2GM)
(dφ
dλ

)2
− GM

r2

(
1− 2GM

r

)−1(dr
dλ

)2
Considering θ = π

2
i.e. equatorial plane then from geodesic equation(ii)

dθ

dλ
= 0 ⇒ d2θ

dλ2
= 0
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Here λ is a free parameter. In real space, if you give a value to λ, I can fix
the point in the space. So for any value of λ say λ → λ

′
, θ remains π

2
i.e.

d2θ
dλ′2

= 0 Considering transformation in λ, λ
′ → λ+ ελ. Where ε is very very

small. We know

d

dλ

(dθ
dλ

)
= 0 ⇒ d

dλ

( dθ
dλ′

dλ
′

dλ

)
= 0

We know derivative of λ w.r.t. λ
′

which is dλ
′

dλ
= (1 + ε) and using the

commutativity property of derivative, we need to find dθ
dλ

, which is given by
dθ
dλ

= (1 + ε) dθ
dλ′

.

∴
d

dλ′

(dθ
dλ

)
=0 ⇒ (1 + ε)

d

dλ′

( dθ
dλ′

)
= 0

d2θ

dλ′2
=0

When we solve both differential equations d2θ
dλ2

= 0 & d2θ
dλ′2

= 0 and using the
initial condition i.e. θ(λ = 0) = π

2
, we get θ for any value of λ which turns

out to be θ(λ
′
) = π

2
.

2.3.1 Constants of motion

If the object’s path is xµ = xµ(τ) and kµ is a direction of symmetry vector.
uµ = dxµ

dτ
is the tangent to the object’s path. Physically it is the 4-velocity

vector of the object in free fall which follows the geodesic. For example
kµ = (1 0 0 0)T along time t-axis. Components of kµ along the path is
uµk

µ. The rate of change of uµk
µ in the direction of uν is [4],

uν(kµuµ);ν =uνkµ;νuµ + uνkµuµ;ν

=uνuµ;νk
µ + uνuµkµ;ν

=uνuµ;νk
µ +

1

2
uνuµ(kµ;ν + kν;µ)

Considering the path is a geodesic, 1st term becomes 0 and 2nd term is Killing
equation which is also equal to zero. Therefore whole expression becomes 0.

uν(kµuµ);ν = 0 (2.11)
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So, kµuµ is a constant along a geodesic. Considering the direction of symme-
try, we can find the constant of motion in that direction. We’ll try to obtain
potential field for Schwarzschild black hole in the further calculation.

Considering Schwarzschild black hole, we can have two directions of sym-
metries. Symmetry means, a transformation under which the metric does
not change. So for this type of black hole one symmetry in time t direction
and another in φ direction.

Symmetry in t direction : kµ = (1 0 0 0)T

kµuµ =gµνk
µuν

=g00k
0u0

=g00u
0 = E

E =
(

1− 2GM

r

) dt
dλ

(2.12)

Here E is one of the constants of motion.

Symmetry in φ direction : kµ = (0 0 0 1)

kµuµ =gµνk
µuν

=g33u
3 = −L

L =r2
dφ

dλ
(2.13)

Here L is another constant of motion. Which is angular momentum per unit
mass.
Now considering the inner product of four velocity

uµuµ = gµν
dxµ

dλ

dxν

dλ
= ε

Where ε = 1 for massive particles/objects and ε = 0 for massless parti-
cles/objects. Expanding this equation taking all non-zero components of the
metric tensor,

1

2

(dr
dλ

)2
+
( ε

2
− εGM

r
+
L2

2r2
− GML2

r3

)
=
E2

2
(2.14)
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Effective potential is given by,

V (r) ≡ ε

2
− εGM

r
+
L2

2r2
− GML2

r3
(2.15)

For a unit mass particle, first two terms are same as Newtonian effective
potential. But the third term is an extra term which is the correction to the
Newtonian theory. This tells us that for small values of r effective potential
becomes negative infinity which means particle can fall into the black hole.

For circular orbits r will be constant. Therefore dr
dλ

= 0. This sets the
condition that

dV

dr
= 0

For massive particles, this gives us two possible roots of r.

r =
L2 ±

√
L4 − 12G2M2L2

2GM

Negative root of r corresponds to maximum of V (r) which is unstable because
double derivative test turns out to be less than zero whereas positive root of
r corresponds to minimum of V (r) which is stable because double derivative
test turns out to be positive. If we take discriminant equals zero, it will give
us inner most stable circular orbits i.e. rISCO.

L2 − 12G2M2 = 0

At this value of L2, both roots of r collapses into one root.

r = rISCO = 6GM

This is for a massive particle. For massless particles ε = 0 which gives us
only one root of r.

r = 3GM

This r = 3GM is maxima of the potential because the double derivative
test is negative at this value of r. Therefore, orbit is unstable. The potential
curve can be seen in the fig(2.1). Here solid curves are implying trajectories
of a massless particle and dotted curves are implicating the trajectories of



2.3. SCHWARZSCHILD BLACK HOLE 21

Figure 2.1: V (r) plot for a particle moving around a schwarzschild black hole

Figure 2.2: Left:V (r) plot of massive particles for L2 = 8 geometrical usits
Right:V (r) plot of massive particles for L2 = 12 geometrical units

Figure 2.3: Left:V (r) plot of massive particles for L2 = 16 geometrical units
Right:V (r) plot of massive particles for L2 = 20 geometrical units
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Figure 2.4: Left:V (r) plot of massless particles for L2 = 0.1 geometrical units
Right:V (r) plot of massless particles for L2 = 1 geometrical units

Figure 2.5: Left:V (r) plot of massless particles for L2 = 2.5 geometrical units
Right:V (r) plot of massless particles for L2 = 4 geometrical units

massive particles. The solid pink curve is for L2 = 4 geometrical units, and
the solid blue curve is for L2 = 2. Similarly, the green dotted curve is for
L2 = 18 geometrical units, and the brown dotted curve is for L2 = 15.

I have provided some of the effective potential plots for massive and mass-
less particles for different values of angular momentum L, i.e. fig(2.2), fig(2.3)
and fig(2.4), fig(2.5) respectively.

We see that for small values of angular momentum, particle just falls into
the black hole. But for intermediate and large values of angular momentum,
particle can form elliptical orbits. For small values of r and for a freely falling
particle, it can not increase its angular momentum. It will fall into the black
hole. Well, to remain stable, particle should increase its angular momentum.
But it is difficult to maintain angular momentum at an orbit with minimum
radius, so it starts expressing spiral motion fast and it will fall into the black
hole at last.
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We now have results that Schwarzschild solutions exhibit stable circular
orbits for r > 6GM and unstable orbits for 3GM < r < 6GM . The thing
should be noted that these are geodesics. So there is nothing to stop the
particle moving below r = 3GM . It can fall below r = 3GM and can emerge
from this value of r, if it lies in r > 2GM region.

Last four effective potential plots for massless particles are implicating
the unstable circular orbits. Below r = 3GM particle is captured by the
black hole. Any perturbation is being made to the particle at this location,
will start moving inward or outward. If small perturbation is being made
inward, the particle will simply fall into the black hole, and if perturbation
is being made outward, the particle will simply escape to r → ∞. Same
physics happens for massive particles at r = 6GM . The double derivative of
effective potential at this value of r becomes 0.

If we try to solve dr
dφ

, we get a solution which is not ellipse, and we get

a precession to this theory for non-circular orbits[3]. Using equ(2.13) &
equ(2.14) and solving for ε = 1,

( dr
dφ

)2
=
r4E2

L2
− r4

L2
+

2r3GM

L2
− r2 + 2GMr

Let r = L2

GMq
,( dq
dφ

)2
− 2G2M2q3

L2
+ q2 − 2q +

L2

G2M2
=

E2L2

G2M2

Differentiating the above equation w.r.t. φ,

d2q

dφ2
− 3G2M2

L2
q2 + q − 1 = 0 (2.16)

dq
dφ

can not be zero for non-circular orbits i.e. dq
dφ
6= 0. And if we follow the

same procedure in Newtonian theory, we’ll get the following expression,

d2q

dφ2
− 1 + q = 0

Under this Newtonian limit, the 2nd term in equ(2.16) becomes zero. And
the solution of the limiting equation is given by,

q1 = 1 + e cosφ
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Where e is eccentricity and which contains the information of semi-major
and minor axes.

Now in general relativistic case, we add a correction term to this solution.

q ≈ q1 + q2

And we obtain the following expression,

d2q2
dφ2

+ q2 −
3G2M2

L2
(1 + e cosφ)2 (2.17)

Where q2 is the correction term to q1. When we solve this equation setting
large φ, we get q2 which is given by,

q2 ≈ 1 + e cos
(
φ− 3G2M2

L2
φ
)

Now Perihelion advance of the planet, i.e. 4φ can be written as,

4φ = 2πδ = 6π
G2M2

L2
(2.18)

Therefore the angular advancement during each orbit is given by 4φ. The
whole process is known as the precession of orbits.

2.4 Orbits for BTZ black hole

So far, we have seen orbits for Schwarzschild black hole in four-dimensional
space-time which is spherically symmetric and static. Now we shall opt a
lower dimensional black which is not static, i.e. three-dimensional rotating
black hole with negative cosmological constant. The purpose of considering
this type of black hole is to see the calculation simplification along with
results so that we can do the similar process with other lower and higher
dimensional black holes.

Solutions of this type of black holes were produced by Banadõs, Teitelboim
and Zanelli (BTZ). The action for BTZ black hole is given by [5][6],

S =
1

2π

∫ √
−g
[
R +

2

l2

]
dtd2x (2.19)
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where l is a length scale in order to have horizon which is given by 1
l2

= −Λ.
The metric takes the following form using this action,

ds2 = −N2dt2 +
1

N2
dr2 + r2(Nφdt+ dφ)2

where N2(r) = −M + r2

l2
+ J2

4r2
and Nφ = − J

2r2
with limits -∞ < t < ∞,

0 < r <∞ and 0 ≤ φ ≤ 2φ. And M , J are total mass of the black hole and
angular momentum of the black hole respectively. The rearranged metric is,

ds2 = −(N2 − r2Nφ2)dt2 +N−2dr2 + r2dφ2 + r2dtdφ+ r2Nφdφdt (2.20)

Now if we look at the horizon, take N2(r) = 0. Which gives us two roots of
r. One is the inner event horizon and another one is the outer event horizon.

r± = l
[M

2

(
1±

√
1−

( J

Ml

)2)] 1
2

To Exist horizon M > 0 and |J | ≤ Ml, these two conditions should be
satisfied. But for |J | = Ml, these two roots of r gets coincided. Now the
components of the metric tensor are given by the following matrix,

gµν=


−
(
−M + r2

l2

)
0 −J

2

0
(
−M + r2

l2
+ J2

4r2

)−1
0

−J
2

0 r2


Since this is a non-diagonal matrix, so we would need to find adjoint of the
matrix. The final expression of the inverse of gµν i.e. gµν is,

gµν=



r2(
− J2

4r2
+Mr2− r4

l2

) 0 J

2

(
−J2

4
+Mr2− r4

l2

)
0

(
−M + r2

l2
+ J2

4r2

)
0

J

2

(
−J2

4
+Mr2− r4

l2

) 0

(
M− r

2

l2

)
(
−J2

4
+Mr2− r4

l2

)


Now we’ll look for the possible symmetries in the metric. One of the

directions of symmetries is time t and another one is φ if we consider the
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simultaneous transformation of t and φ. Otherwise, the individual transfor-
mation will flip the sign in the diagonal terms of the metric tensor.

Symmetry in t direction : kµ = (1 0 0 )T

E =− gµνkµuν = −gttktut − gtφktuφ

=
(
−M +

r2

l2

) dt
dλ

+
J

2

dφ

dλ
(2.21)

where E is one of the constants of motion. Let another constant of motion
is L which is mainly angular momentum of the particle.

Symmetry in φ direction : kµ = (0 0 1)T

L =gµνk
µuν = gφφk

φuφ + gφtk
φut

=r2
dφ

dλ
− J

2

dt

dλ
(2.22)

Considering the inner product of four-velocity,

uµuµ = gµν
dxµ

dλ

dxν

dλ
= −ε

Where ε = 1 for massive particles/objects and ε = 0 for massless parti-
cles/objects. Expanding this equation taking all non-zero components of the
metric tensor,

−
(
−M +

r2

l2

)( dt
dλ

)2
− J

2

dt

dλ

dφ

dλ
− J

2

dφ

dλ

dt

dλ
+ r2

(dφ
dλ

)2
+

1

N2

(dr
dλ

)2
= −ε

Except for radial velocity, eliminating all differential terms, the expression
becomes,

r2
(dr
dλ

)2
=− ε

(
−M +

r2

l2
+
J2

4r2

)
r2 + E2r2 − L2r2

l2
+ML2 − JEL

(2.23)

r2

l2M2

(dr
dλ

)2
=− ε

(
− r2

l2M
+

r4

l4M2
+

J2

4M2l2

)
+
E2r2

l2M2
− L2r2

l4M2
+

L2

l2M
− JEL

l2M2
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defining our variables again,

r4

l4M2
≡ r̃4 ⇒ r̃ =

r

l
√
M

and
L2

l2M
≡ L̃2 ⇒ L̃ =

L

l
√
M

JEL

l2M2
=

J

lM

E√
M

L

l
√
M

= J̃ẼL̃⇒ J̃ =
J

lM

E2r2

l2M2
=
E2

M

( r

l
√
M

)2
= Ẽ2r̃2 ⇒ Ẽ =

E√
M

λ̃ ≡ λ

l
and φ̃ ≡ φ

√
M and t̃ ≡

√
M

l
t

The final expression, after this transformation, becomes,

r̃2
(dr̃
dλ̃

)2
= Ẽ2r̃2 − J̃ẼL̃− ε

(
r̃4 − r̃2 +

J̃2

4

)
− L̃2r̃2 + L̃2

for writing convenience, I’ll remove tilde from the above expression.

r2
(dr
dλ

)2
= E2r2 − JEL− ε

(
r4 − r2 +

J2

4

)
− L2r2 + L2 (2.24)

using equ(17), rearranging the terms,

1

2

(dr
dλ

)2
=

1

2
(εM + E2)− 1

2

(εr2
l2

+
εJ2

4r2
+
L2

l2
− ML2

r2
+
JEL

r2

)
(2.25)

Now we can define our effective potential and total energy as

V (r) ≡1

2

(εr2
l2

+
εJ2

4r2
+
L2

l2
− ML2

r2
+
JEL

r2

)
(2.26)

Ē ≡1

2
(εM + E2)

Effective potential for massive and massless particles is given by the fol-
lowing expressions,

V (r)massive =
1

2

(r2
l2

+
J2

4r2
+
L2

l2
− ML2

r2
+
JEL

r2

)
(2.27)
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Figure 2.6: Effective potential plot for a massless particle; Blue: L=0.145 ;
l=0.1 ; M=10 ; J=1.005 ; E=1 & Pink: L=0.145 ; l=0.1 ; M=10 ; J=2 ; E=1

V (r)massless = V (r) =
1

2

(L2

l2
− ML2

r2
+
JEL

r2

)
(2.28)

Here I have shown effective potential plots for massless and massive par-
ticles in fig(2.6) and fig(2.7) respectively which tells us about the possible
trajectories of the particle. Here in plots, I have varied different parameters
in both cases. Varying parameters can be seen in the footnote of each figure.
We expect to get to different types of trajectories in each case which will
depend on the physical parameters, we are considering.

The potential field can take two different signs, i.e. effective potential
can approach towards positive infinity or negative infinity. I have varied pa-
rameters in such a way that I can get two different curves. Here in fig(2.6)
and fig(2.7), I have varied J and M values to get two different curves. The
potential-plot fig(2.6) considers two different values of J .

We may also consider other values of physical parameters which can bring
two different signs in the potential of a massless particle. The similar thing
we can see for the potential of a massive particle, i.e. two different values
of M fig(2.7). It depends on physical parameters which can take different
values. This is what I have shown in both potential graphs fig(2.6) and
fig(2.7) for massless and massive cases.
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Figure 2.7: Effective potential plot for a massive particle; Blue: L=0.145
; l=1.004 ; M=1 ; J=0.505 ; E=1 & Pink: L=0.145 ; l=1.004 ; M=10 ;
J=0.505 ; E=1

Now we can also consider one signature of potential field and vary one of
the parameters. So fig(2.8), fig(2.9), fig(2.10) and fig(2.11) are for different
values of l and L in both massive and massless cases.

For massless case, if we consider, ML2 = JEL

V (r) =
L2

2l2

the potential becomes constant. This is why we are getting a straight line
in part of the potential of a massless particle fig(2.6). Constant potential
physically means force F = −∂V

∂r
= 0, i.e. acceleration is zero which means

there is no change in velocity. So particle is moving with a constant velocity
without getting attracted or repelled by the source. As other physical pa-
rameters are being changed then potential takes positive or negative infinity
for small values of r.

ML2

r2
term is the important term because fixing M and increasing L values

will flip the sign to the potential. In fig(2.9), if we set L > 0.43, potential
will tend to negative infinity. Similar explanation can be made for different
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l = 0.502 l = 1.004

l = 1.506

l = 2

l = 0.1

Figure 2.8: l varying effective potential plot for a massive particle for fixed
values of L=0.145 ; M=10 ; J=0.505 ; E=1

L = 0

L = 0.1

L = 0.305

L = 0.43

Figure 2.9: L varying effective potential plot for a massive particle for fixed
values of l=1.004 ; M=10 ; J=2 ; E=1
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l = 0.1

l = 0.2

l = 0.502
l = 2

Figure 2.10: l varying effective potential plot for a massless particle for fixed
values of L=0.145 ; M=10 ; J=2 ; E=1

L = 0.25 L = 0.505 L = 1.005 L = 2 L = 5

Figure 2.11: L varying effective potential plot for a massless particle for fixed
values of l=1.004 ; M=10 ; J=2 ; E=1
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values of l. But the whole point is that first, third & fourth and first &
second terms are significantly changing terms in the effective potentials of
massive and massless cases respectively.

Therefore this is all about trajectories of a particle around a BTZ black
hole. Different cases have been considered here to get the physical meaning
of the potential field. This also tells us that for small values of r, a particle
can fall into the black hole contrast to the Newtonian theory.



Chapter 3

Null rays in black hole geometry in presence

of cosmological constant

When we talk about black hole physics, it is essential to figure out the physics
at the horizon. Horizon is a boundary which separates timelike, spacelike and
null hypersurfaces. Here we shall try to obtain the mathematical structure
to find the horizon of a given metric and then what is happening to the
trajectories of particles considering different hypersurfaces. We shall see the
physical interpretations of a particle’s motion using light cone structure in
the presence and absence of cosmological constant.

3.1 Mathematical Structure of Horizon

We consider a smooth function F(x) of given spacetime coordinates. The
family of hypersurfaces is given by Σ ≡ F (x) − constant = 0. The normal
vector to this hypersurface is[7],

nµ = gµν∂νF (x)

and covariant form of the normal vector is,

nµ = ∂µF (x)

Normalization of the normal vector will give us the essential information i.e.

nµn
µ = gµν∂µF (x)∂νF (x) (3.1)

Now considering r constant surfaces, we can look for different timelike, space-
like and null hypersurfaces. We shall see this description for Schwarzschild
and BTZ black holes in further discussions.

33
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3.1.1 Horizon of Schwarzschild Black hole

The metric of the static spherically symmetric black hole in sign (-,+,+,+)
is given by,

ds2 = −
(

1− 2GM

r

)
dt2 +

(
1− 2GM

r

)−1
dr2 + r2(dθ2 + sin2 θdφ2) (3.2)

We have already seen in chapter 2 that r → 0 is essential singularity and
r = 2GM is just a coordinate singularity. Now we shall see, why r = 2GM
is called horizon of Schwarzschild black hole.

Considering a hypersurface Σ ≡ r − const. = 0, the norm of the normal
vector is given by,

nµnµ = gµν∂µΣ∂νΣ

Since we are dealing with r = cosnt surface, Therefore

nµnµ = grr∂rΣ∂rΣ

So norm of the normal vector will be just the contravariant form of the metric
tensor, i.e. grr.

nµnµ = (1− 2GM

r
) (3.3)

Now we can set different inequalities for different values of r. Therefore
r = const. surface will be timelike if r > 2GM , spacelike if r < 2GM and
null if r = 2GM . For r = 2GM surface, inner product of normal vector
becomes zero which means normal vector, for the given hypesurface, is a null
vector and the surface is null surface. So we get different hypersurfaces about
r = 2GM . In other words, r = 2GM separates hypersurfaces. This is why
we call r = 2GM as the horizon of the black hole.

Now we can understand these different hypersurfaces by looking at the
physics of lightcones about r = 2GM .

Light cones in Schwarzschild black hole

We face a problem in schwarzschild black hole at r = 2GM because we see
that t − r plot diverges at r = 2GM . Which means light cones gets closed
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at infinity so we can not make precise physical statements about the light
cones in this coordinate system. Setting ds2 = 0 in the metric keeping θ and
φ constant. We get following expression which is basically the angle of light
cone[3].

dt

dr
= ± 1

1− 2GM
r

⇒ t = ±
[
r + 2GMln | r − 2GM

2GM
|
]

+ c (3.4)

+ve sign is for the outgoing trajectory of a particle and −ve is for the in-
going trajectory of a particle. And we define constant c as u for outgoing
trajectories and v for ingoing trajectories. So we have following expression
in short notation,

t = r∗ + u (Outgoing) and t = −r∗ + v (Ingoing)

where r∗ is defined as, r∗ = r + 2GMln | r−2GM
2GM

|
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Figure 3.1: t-r plot of schwarzschild black hole

Since the trajectory of a particle must lie inside lightcones, i.e. all real
particles move on timelike trajectories. So lightcones will always open up
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towards t → ∞. In the equ(3.4), for r = 2GM , t becomes ±∞ for v and u
respectively. We can see in the fig(3.1) that there could be something wrong
with the coordinate system we are using. So we shall investigate another
coordinate system in which physics of the lightcones become smooth.

Since physics of lightcones is a coordinate-dependent notion. So the
trick is to use those constants u and v as coordinates which are known as
Eddington-Finkelstein coordinate system, now we see the tilting over of light
cones. So, all in all, we had bad coordinate system (t, r, θ, φ) in which we did
not have a clear picture of lightcones at horizon whereas it becomes clear in
Eddington-Finkelstein coordinate system.

In (v, r) coordinate system our metric becomes,

ds2 = −
(

1− 2GM

r

)
dv2 + 2dvdr + r2dΩ2 (3.5)

Solving for null trajectories setting θ and φ constant, we get two differential
equations, i.e.

dv

dr
= 0 and

dv

dr
=

2(
1− 2GM

r

) (3.6)

and solutions of these two simple differential equations are,

v = v0 and v = v0 + 2r + 4GMln | r − 2GM

2GM
| (3.7)

In similar ways, we have metric for (u, r) coordinates,

ds2 = −
(

1− 2GM

r

)
du2 − 2dudr + r2dΩ2 (3.8)

Again of null trajectories, setting θ and φ constant, we get two differential
equations, i.e.

du

dr
= 0 and

du

dr
= − 2(

1− 2GM
r

) (3.9)

and solutions of these two differential equations are,

u = u0 and u = u0 −
[
2r + 4GMln | r − 2GM

2GM
|
]

(3.10)
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Figure 3.2: (v,r)& (u,r) plot of schwarzschild black hole

Where v0 and u0 are constants. Now we can see plots of (v, r) and (u, r) in
the Fig(3.2).
In (v, r) plot, for region r > 2GM , particle can move towards future-directed
timelike path. At r = 2GM particle is having two choices either it will cross
the barrier and reaches towards r → 0 point. Or it can move on the horizon.
Massless particle will move on null surface i.e. r = 2GM . The key point is
that once particle crosses the horizon, it will never come back to r > 2GM
region. Because all future-directed paths will be ended up at r = 0

In (u, r) plot, for region r > 2GM , particles can move through past di-
rected path. So we have separated our space-time in two directions, i.e.
future one and past one. And light cones are smooth at the horizon. They
do tilt over as r starts decreasing. Whereas light cones were closed in (t, r)
coordinate system. So now we have seen the coordinate dependent notion of
lightcones. So this is why Eddington-Finkelstein coordinate system is good
to describe the physics of a particle about the horizon.

3.1.2 Horizon of BTZ black hole

We have already gone through the introduction of BTZ black hole in section
2.4. Here we shall try to identify the horizon and what is the behaviour
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of lightcones at the horizon. The first thing is to notice that Kretschmann
scalar for BTZ black hole turns out to be

K =
12

l4
(3.11)

So It is independent of r which means we do not have any true singularity.
In fact r± are coordinate singularities.

The metric of BTZ black hole can be taken from section 2.4 and consider
a constant surface Σ ≡ r − const. = 0,

ds2 = −(N2 − r2Nφ2)dt2 +N−2dr2 + r2dφ2 + r2dtdφ+ r2Nφdφdt (3.12)

where, N2(r) = −M + r2

l2
+ J2

4r2
and Nφ = − J

2r2

Now the inner product of normal vector is given by,

nµnµ = grr =
(r + r+)(r − r+)(r + r−)(r − r−)

r2l2

Now we can set different inequalities for different values of r. Therefore,
r = const. surface is timelike if r > r+ and r < r−, spacelike if r− < r < r+.
So r+ and r− are the region of separating timelike, spacelike and null hyper-
surfaces. Therefore, r+ is outer event horizon and r− outer event horizon.

Light cones for BTZ black hole

As we already discussed lightcone behaviour for Schwarzschild black hole.
Taking limit J → 0, the calculation gets simplified and now the horizon at
r = l

√
M , but the description remains same as we have seen for Schwarzschild

black hole.
If we take limit J → 0, the metric equ(3.15) with constant φ reduces to,

ds2 = −
(
−M +

r2

l2

)
dt2 +

(
−M +

r2

l2

)−1
dr2 (3.13)

So, to avoid the divergence at the horizon in (t, r, φ) coordinate system.
We introduce Eddington-Finkelstein coordinate system so that metric can
become regular and lightcones do not close up.

t = −r∗ + v (Ingoing) t = r∗ + u (Outgoing)
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Where r∗ is given by, r∗ = − l
2
√
M
ln
∣∣∣ l√M+r
l
√
M−r

∣∣∣
The metric in (v, r) coordinate is given by,

ds2 = −
(
−M +

r2

l2

)
dv2 + 2dvdr (3.14)

Now we can look for radial null trajectories by setting ds2 = 0 and φ =
const. We get two differential equations,

dv

dr
= 0 and

dv

dr
=

2

−M + r2

l2

(3.15)

and solutions of these two differential equations are,

v = v0 and v = v0 −
1

l
√
M
ln
∣∣∣ l√M + r

l
√
M − r

∣∣∣ (3.16)

On the similar note, as we have seen in Schwarzschild black hole, we expect
to get future directed light cones. Since physical particle always moves on
timelike trajectories, so particle will remain inside the light cone, and when
it reaches the horizon, it has two options to move. If the particle is massless
that will be the null trajectory of the particle and if it is massive then it will
hit at r = 0 boundary. So the critical point is that once the particle reaches
the horizon l

√
M , it will never come back. Metric also become regular and

lightcones do not close up at horizon. We can see the behaviour of lightcones
in the fig(3.3).
Similarly, we can see the behaviour of lightcones in (u, r) coordinate system.

The metric in this coordinates is given by,

ds2 = −
(
−M +

r2

l2

)
du2 − 2dudr (3.17)

Again for radial null trajectories setting ds2 with φ = const. We get two
differential equations.

du

dr
= 0 and

du

dr
=

2(
M − r2

l2

) (3.18)
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Figure 3.3: behaviour of lightcones in (v,r) coordinates

Figure 3.4: behaviour of lightcones in (u,r) coordinates

And solutions of these two differential equations are,

u = u0 and u = u0 +
1

l
√
M
ln
∣∣∣ l√M + r

l
√
M − r

∣∣∣ (3.19)

Now we can see the behaviour of lightcones in this coordinate system in
fig(3.4). We see that metric is regular on the horizon, and lightcones do not
close up instead they tilt over as expected. The trajectories, in this case,
will be past directed, and once particle crossed the horizon barrier, it will hit
r = 0 point.

Therefore, Eddington-Finkelstein coordinates are good at describing the
behaviour of lightcones specifically at the horizon. This gives us an idea that
the behaviour of lightcone is a coordinate-dependent notion, i.e. in different
coordinate system metric becomes regular and lightcones tilt over instead of
getting closed at the horizon.

3.2 Photon sphere

In this section, we shall be looking for the position r of the photon, i.e.
at which value of r, photon starts doing circular orbits. That is known as
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photon sphere. Due to the strong potential field of the black hole, photons
make circular orbits. Here we’ll be considering the potential field of black
holes in presence and absence of cosmological constants.

3.2.1 Photon sphere for Schwarzschild black hole

From equation(2.14) in Chapter 2, we have effective potential for Schwarzschild
black hole

V (r) ≡ ε

2
− εGM

r
+
L2

2r2
− GML2

r3
(3.20)

For photons ε will be zero. The effective potential field reduces to

V (r)photons =
L2

2r2
− GML2

r3
(3.21)

A derivative of this potential with respect to r, will give me the location of
photon sphere. Which turns out to be at,

r = 3GM (3.22)

The double derivative test of effective potential is less than zero at r = 3GM
which means this is unstable circular orbit location of photons. If a small
perturbation is being made inward or outward to photons, it will fall into the
black hole or can escape to infinity respectively.

3.2.2 Photon sphere for BTZ black hole

The expression of effective potential for BTZ black hole is given by equation
(2.26),

V (r) =
1

2

(εr2
l2

+
εJ2

4r2
+
L2

l2
− ML2

r2
+
JEL

r2

)
(3.23)

For photons ε will be zero. The effective potential field reduces to,

V (r)photons =
1

2

(L2

l2
− ML2

r2
+
JEL

r2

)
(3.24)
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Now we can find the location of photon sphere by taking derivative of effective
potential with respect to r,

ML2 − JEL
r3

= 0 (3.25)

Which means photon sphere is located at r →∞. In other words, if we say
that there is no photon sphere, is also correct. This statement can be verified
by plotting the potential curve for massless particles. Which we already have
seen in fig(2.6). There is no such point, i.e. r which gives us circular orbits.
Potential is constant at ML2 = JEL which is V = L2

2l2
, at this equality, each

r is photon sphere. If this equality does not hold photon sphere will be at
infinity, i.e. no photon sphere.

If we consider l → ∞ limit in equ(3.31), the result will not get affected,
and the location of photon sphere is r →∞.

3.2.3 Potential field and photon sphere of de sitter
schwarzschild black hole

The metric of de sitter schwarzschild black hole in presence of cosmological
constant is given by,

ds2 = −
(

1− 2GM

r
− r2

l2

)
dt2 +

(
1− 2GM

r
− r2

l2

)−1
+ r2(dθ2 + sin2 θdφ2)

(3.26)

Considering θ = constant we can have two directions of symmetry i.e.
one in time (t) another one in φ. Therefore,

E = −gµνkµuν =
(

1− 2GM

r
− r2

l2

) dt
dλ

(3.27)

This E is one of the constants of motion and another one in φ direction which
is L,

L = gµνk
µuν = r2

dφ

dλ
(3.28)

Where kt = (1 0 0 0)T and kφ = (0 0 0 1)T . uµ and uν is four velocity.
Now we can use inner product of four velocity i.e. gµνu

µuν = −ε,

gttu
tut + grru

rur + gφφu
φuφ = −ε (3.29)
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Where ε is one for massive particles and zero for massless particles. Plugging
all expressions in terms of E and L, we get the following expression,

1

2

(dr
dλ

)2
+
ε

2

(
1− 2GM

r
− r2

l2

)
+
L2

2r2

(
1− 2GM

r
− r2

l2

)
(3.30)

This is nothing but conservation of energy. Now we can define our total
energy as Ẽ = E2

2
and the effective potential is,

V (r) =
ε

2

(
1− 2GM

r
− r2

l2

)
+
L2

2r2

(
1− 2GM

r
− r2

l2

)
(3.31)

If we take limit l →∞, we recover Schwarzschild black hole effective poten-
tial. For photons, the effective potential reduces to,

Vphoton =
L2

2

( 1

r2
− 2GM

r3
− 1

l2

)
(3.32)

taking a derivative of V (r) with respect to r, to find the position of photon
sphere,

r = 3GM (3.33)

Here if we take limit l→∞ in the Vphoton expression, the location of photon
sphere does not get affected. It remains at the same position i.e. r = 3GM .
This is the unstable circular orbit of photons because second derivative test
at r = 3GM is negative. So any small perturbation made to the particle,
will cause the particle to fall or escape from the black hole which depends on
in which direction the perturbation is being made.

So we find that there is no effect of cosmological constant, i.e. length scale
l, on photon sphere for mentioned black holes. For both cases, BTZ black
hole and de sitter schwarzschild black hole, it disappears in the derivative of
potential while finding r. If we take limit l→∞, it does not make any effect
on the location of the photon sphere.



Chapter 4

Summary

4.1 Conclusion and Discussion

Chapter 1 introduces the particle’s trajectory around a given mass source.
We see that particle, approaches to a given mass source, can escape to in-
finity. Though we get all different kinds of orbits, e.g. elliptical, circular,
parabolic and hyperbolic. The key point is, in Newtonian theory particle
always escapes to infinity. We find in chapter 2 that there was a correction
term to the Newtonian theory i.e. − 1

r3
which makes particle to fall into the

source. Here our mass source is Schwarzschild black hole and BTZ black
hole. Though we do get circular, elliptical and parabolic orbits but for small
values of r, particle falls into the black hole. We realise that the Newtonian
theory assumes time as an absolute parameter whereas in relativity space
and time are treated on equal footing. Considering time as a relative param-
eter, Einstein found the relativistic generalisation of the Newtonian theory
of gravity.

In Chapter 3, we have a general mathematical structure for identifying
horizon of a given metric. We face a problem that in the specific coordinate
system, it takes an infinite amount of time for a particle to cross the horizon.
We find Eddington-Finkelstein coordinates which make the metric regular at
horizon for both Schwarzschild and BTZ black holes. So lightcones become
coordinate dependent notion, and we get future and past-directed lightcones
but once a particle crosses the horizon, it will never come back.

Above results and discussion include physics of massive and massless par-
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ticles. Further, we understand the effect of cosmological constant on null tra-
jectories in black hole geometry. We determine the location of circular photon
orbits for Schwarzschild, BTZ black holes and Schwarzschild black hole in the
presence of cosmological constant. We get photon sphere at r →∞ and if we
see potential plot of massless particle, it becomes clear that there is no pho-
ton sphere for BTZ black hole. However, we do get photon sphere location
at r = 3GM for Schwarzschild black hole and de sitter Schwarzschild black
hole. These orbit locations are unstable, so any small perturbation made to
the particle will compel the particle to fall into the black hole or to escape
depending upon the direction of perturbation. So cosmological constant is
not producing any effect on photon sphere as the effect of l is getting dis-
appeared in the derivative of effective potential in both cases BTZ and de
sitter schwarzschild black hole with cosmological cosntant.
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